甲烷吸附定仪

仪器信息网甲烷吸附定仪专题为您提供2024年最新甲烷吸附定仪价格报价、厂家品牌的相关信息, 包括甲烷吸附定仪参数、型号等,不管是国产,还是进口品牌的甲烷吸附定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲烷吸附定仪相关的耗材配件、试剂标物,还有甲烷吸附定仪相关的最新资讯、资料,以及甲烷吸附定仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

甲烷吸附定仪相关的厂商

  • 贝士德仪器,注册地北京,是具有自主知识产权的高科技企业,旗下拥有北京贝士德分析仪器研究院,北京贝士德计量检测中心,总部位于北京市海淀区中关村科技园。 贝士德仪器,专注于吸附表征领域,从事低温氮吸附BET比表面积及微孔分析、高压气体吸附、重量法蒸气吸附、多组分选择性吸附、腐蚀性气体吸附、化学吸附、真密度及孔隙率等分析测试仪器的研发、生产和销售,业务遍及全球10多个国家和地区,为国际吸附表征领域领先的“吸附表征专家”。 自行研发制造的BSD系列吸附表征类分析仪,为国内知名品牌,经过十多年的不断研发创新,性能达到国际先进水平,其中多款仪器填补国际空白。 贝士德仪器在上海,广州,武汉等地设有办事处或实验室。各个办事处具有2-3名技术人员和销售工程师,可及时便捷的为客户提供技术支持。 贝士德仪器发展成就 ◆ 连续13年获得北京及国家高新技术企业认证。 ◆ 连续9年通过ISO9001质量标准体系和CE认证; ◆ 发明专利15项,实用新型专利62项; ◆ 获得市科委和国家科技部中小企业创新基金支持; ◆ 计量与检测证书18项; ◆ 获得北京市新技术新产品证书6项; ◆ 北京市科委组织的国产真密度仪验证与评价项目承担单位; ◆ 参与国家标准《精细陶瓷—陶瓷粉末比表面积测试方法 BET 法》制定; ◆ 参与国家标准《骨架密度的测量 气体体积置换法》的起草与制定; ◆ 参与国家标准《膜孔径测试 气体渗透法》的起草与制定; ◆ 贝士德仪器测试数据被国际知名期刊Science、Nature Chemistry、Advance Materials、JACS、Angew、Nano Energy、ACS Nano、CEJ等引用的论文数量达到近百篇; 组织机构◆ 销售服务部:主要负责产品销售和服务工作。 ◆ 技术开发部:主要负责电路设计、机械设计、产品研制、产品升级。 ◆ 软件开发部:主要负责吸附表征仪器分析软件的开发、升级和理论研究。 ◆ 仪器制造部:主要负责仪器制造以及整机质量性能检测。 ◆ 质量管理部:主要负责质量文件的制定、质量考核、质量管理和检测。 ◆ 办公室:主要负责财务、后勤等工作。 售后服务 在服务上建立了一支朝气蓬勃的服务队伍,有10位专职服务工程师为用户提供安装、调试培训服务。为了提高服务时效,缩短服务半径,贝士德仪器公司在上海,广州,武汉设有办事处,有90%的用户可以在24小时内到达仪器使用现场。此外,公司实行保修期内免费免责保修制度,吸附表征仪器软件免费升级制度,定期回访制度等等,消除了用户的后顾之忧。 ◆ 我们的宗旨: 质量 诚信 科技 创新 ◆ 我们的信仰: 诚实 勤奋 专业 独到 ◆ 我们的精神: 敬业精神 创新精神 合作精神 责任意识 ◆ 我们的行为准则:客户是我们一切行为的核心,不断创新,追求完美,为客户创造价值. 贝士德仪器主营产品:比表面积,BET吸附,BET吸附仪,BET测试,BET测试仪,二氧化碳吸附,二氧化碳吸附仪,低温氮吸附,低温氮吸附仪,吸附仪,比表面,比表面仪,比表面分析,比表面分析仪,比表面检测,比表面检测仪,比表面测定,比表面测定仪,比表面测试,比表面测试仪,比表面积,比表面积仪,比表面积分析,比表面积分析仪,比表面积检测,比表面积检测仪,比表面积测定,比表面积测定仪比表面积测试,比表面积测试仪,气体吸附,气体吸附仪,氨气吸附,氨气吸附仪,氮吸附,氮吸附仪,物理吸附,物理吸附仪比表面积孔径,介孔分布,介孔分布分析仪,介孔分析,介孔分析仪,介孔孔容,介孔孔径,介孔孔容分析仪,介孔孔径分析仪,介孔孔径分布分析仪,介孔孔隙度分析仪,介孔孔隙率分析仪,介孔检测,介孔检测分析仪,介孔测定,介孔测定分析仪,介孔测试,介孔测试仪,介孔结构,介孔结构分析仪,孔体积分析仪,孔体积检测仪,孔体积测定仪,孔体积测试仪,孔容分析,孔容孔径,孔容孔径分析仪,孔容孔径检测,孔容孔径检测仪,孔容孔径测定,孔容孔径测定仪,孔容孔径测试,孔容孔径测试仪,孔容积分析,孔径分布,孔径分布分析仪,孔径分析,孔径分析仪,孔径检测,孔径检测仪,孔径测定,孔径测定仪,孔径测试,孔径测试仪,孔结构,孔结构分布,孔结构分析,孔结构分析仪,孔结构检测,孔结构检测仪,孔结构测定,孔结构测定仪,孔结构测试,孔结构测试仪,孔隙度分析,孔隙度分析仪,孔隙度检测,孔隙度检测仪,孔隙度测定,孔隙度测定仪,孔隙度测试,孔隙度测试仪,孔隙率,孔隙率分析,孔隙率分析仪,孔隙率检测,孔隙率检测仪,孔隙率测定,孔隙率测定仪,孔隙率测试,孔隙率测试仪,微孔分析,微孔分析仪,微孔孔体积分析仪,微孔孔容分析仪,微孔孔径分析仪,微孔孔径分布分析仪,微孔孔隙度,微孔孔隙率,微孔检测,比表面及孔径分析仪,比表面积及孔径分析仪微孔检测仪,微孔测定,微孔测定仪,微孔测试,微孔测试仪,孔隙率测试仪,多组份吸附,多组份气体吸附,多组份气体吸附仪,多组份竞争吸附,多组分吸附,多组分吸附仪,多组分气体吸附多组分竞争吸附,多组分竞争性吸附,混合气体吸附,混合气体吸附仪,混合组份吸附,混合组份吸附仪,混合组份气体吸附,混合组份气体吸附仪,混合组分吸附,混合组分气体吸附,混合蒸汽吸附,混合蒸汽吸附仪,穿透曲线,穿透曲线分析仪,穿透曲线测试,竞争吸附,竞争吸附仪,竞争性吸附,竞争性吸附仪,选择吸附,选择吸附仪,选择性吸附,选择性吸附仪,静态容量法多组分吸附,腐蚀性气体吸附,腐蚀性气体吸附仪,腐蚀性吸附,腐蚀性吸附仪,腐蚀性吸附分析,腐蚀性吸附分析仪高压吸附,PCT储氢,PCT储氢测试,pct储氢分析仪,pct储氢性能测试仪,二氧化碳吸附,二氧化碳吸附仪,低温氮吸附,低温氮吸附仪,储氢PCT,储氢吸附,储氢吸附仪,吸附仪,吸附速度,吸附速率,天然气吸附,天然气吸附仪,气体吸附,气体吸附仪,氢气吸附,氢气吸附仪,氨气吸附,氨气吸附仪,氮吸附,氮吸附仪,煤层气吸附,煤层气吸附仪,物理吸附,物理吸附仪,瓦斯吸附,瓦斯吸附仪,甲烷吸附,甲烷吸附仪,页岩气吸附,页岩气吸附仪,高压储氢,高压储氢pct,高压储氢pct测试,高压储氢吸附仪,高压吸附,高压吸附仪,高压气体吸附,高压气体吸附仪,化学吸附,化学吸附tpd,化学吸附仪,化学吸附分析,化学吸附分析仪,化学吸附测定,化学吸附测定仪,化学吸附测试,化学吸附测试仪,吸附化学,静态化学吸附,静态化学吸附仪,静态化学吸附分析仪膜孔径,膜孔径分析仪,膜孔径检测仪,膜孔径测定仪,膜孔径测试仪,膜孔径测量仪,毛细流孔径,毛细管流动,毛细管流动孔径,毛细管流动孔径分析仪,滤膜孔径,滤膜孔径分析,滤膜孔径分析仪,滤膜孔径检测,滤膜孔径测试,滤膜孔径测量,隔膜孔径分析仪,无纺布孔径分析仪,电池隔膜孔径分析仪,纤维膜孔径分析仪,泡压法滤膜,泡压法膜孔径真密度,真密度仪,真密度分析仪,真密度测试仪,真密度测定仪,真密度检测仪,氦比重,氦比重仪,氦真密度,氦真密度仪,开闭孔率测试仪,开闭孔率分析仪,开闭孔率测定仪,开闭孔率检测仪,骨架密度仪,骨架密度分析仪,骨架密度测试仪,骨架密度测定仪,骨架密度检测仪在线气体质谱,在线气体质谱仪,在线质谱,在线质谱仪,气体质谱,质谱,质谱仪,过程质谱,过程质谱仪容量法气体吸附仪,容量法蒸汽吸附仪,有机蒸汽吸附仪,有机蒸气吸附仪,水蒸气吸附仪,水蒸汽吸附仪,水蒸气吸附分析仪,水蒸汽吸附分析仪,蒸气吸附,蒸气吸附仪,蒸气吸附分析仪,蒸汽吸附,蒸汽吸附仪,蒸汽吸附分析仪,动态蒸汽吸附,动态蒸气吸附,重量法吸附仪,重量法蒸气吸附仪,重量法蒸汽吸附仪,重量法静态蒸汽吸附仪,重量法动态蒸汽吸附仪,重量法静态蒸气吸附仪,重量法动态蒸气吸附仪,重量法蒸气吸附仪,重量法蒸汽吸附仪,重量法静态蒸汽吸附仪,重量法动态蒸汽吸附仪,重量法静态蒸气吸附仪,重量法动态蒸气吸附仪克努森透析法,超低蒸气压,超低蒸汽压,超低饱和蒸气压,超低饱和蒸汽压,超低蒸气压分析仪,超低蒸汽压分析仪,超低饱和蒸气压分析仪,超低饱和蒸汽压分析仪,超低蒸气压测试仪,超低蒸汽压测试仪,超低饱和蒸气压测试仪,超低饱和蒸汽压测试仪,努森透析法,克努森透析法,努森质量透析法
    留言咨询
  • 留言咨询
  • 400-860-5168转4405
    “专业专心专注,我们致力于分析检测技术。” 孚禾科技 PHXTEC 是专业的分析检测设备供应商。我们坚持自主研发、自主制造,坚定持续创新、质量至上、客户优先,为各行业提供一系列性能优异、有竞争力的产品,包括模块组件、仪器设备和完整的解决方案。 我们的产品包括微型气相色谱仪、原子吸收光谱仪、气相色谱仪、便携式气相色谱仪、在线气相色谱仪、电子压力流量控制器模块、检测器模块等,整体性能均为业内领先水平。我们在石油化工、环境监测、煤矿安全等多个领域都有优秀的应用案例,并和国内外多家知名公司建立了良好的产品和技术合作关系。 我们积极进取,努力前进。我们也期待着与您的合作,共创互利共赢! 发展历程:2023年 700 Micro GC 微型气相色谱系统2023年 500 TVOC 便携式挥发性有机气体分析仪2023年 630 SCANIR 便携式红外热成像气体泄漏检测仪2022年 220 ELITE 便携式非甲烷总烃/苯系物分析仪2022年 新一代原子吸收光谱仪 AA68 SERIES2021年 500 TVOC 系列 便携式总烃分析仪2020年 200 PLUS 系列 便携式气相色谱仪2020年 新一代微型气相色谱系统 Micro GC PLUS2018年 200 系列 便携式气相色谱仪2016年 300 系列 在线式气相色谱仪2015年 301-M 系列 高精度独立电子压力流量控制 EPC/EFC 模块2015年 401-M 系列 高灵敏度独立火焰离子检测器 FID 模块2012年 第一代原子吸收光谱仪 6810 SERIES

甲烷吸附定仪相关的仪器

  • 国仪量子高温高压吸附仪H-Sorb 4600H-Sorb X600系列高温高压气体吸附仪产品,是我公司自主研发的高性能吸脱附等温线测试仪器,采用静态容量法测量原理。可测试的等温线温度和压强范围满足众多科研领域需求。该系列产品的高性能,不仅实现了对进口产品的替代,还通过与国际品牌的比对测试,获得了美国高校实验室的认可,进入欧美市场,实现了民族品牌的突破。H-Sorb X600 系列产品具备的高温高压吸附测试功能,可广泛应用于页岩气煤层气吸附研究稀土合金材料储氢行业石油勘探和气体分离等领域;此外对于一些吸附材料如催化剂、分子筛、活性炭等吸附性能的了解,燃料电池、碳纳米管及石墨烯等研究也至关重要。嵌入式测试电脑,安全稳定,10寸电容触摸屏,平板电脑的操控体验微焊不锈钢样品管及VCR金属面密封连接,高温高压下保持可靠的密封性;微量装样依旧可获得高精度测试数据安全防护门,可防止误触碰高低温保温装置,引发安全事故,并可避免环境因素对测试的影响最高温度至350℃的软性加热包,易于使用;更高温度加热装置可选配陶瓷纤维一体成型的硬性加热炉滚珠丝杠一体式升降系统,步进电机控制,克服普通螺杆式易卡死等缺点独立2样品处理站,可与样品测试同时进行,提高测试效率产品优势 数字化压力测量及数据采集系统数字量输出的压力及温度传感器,比采用模拟量输出的同类产品精度提高一倍,抗干扰能力更强工业标准的 RS485 或 RS232 通讯模式,通讯总线上随需添加多只传感器,可扩展性高高稳定性数字量压力传感器,极低的压力温漂,高压下仍能保持低压力波动,有利于提高测试精度传感器温度和压力同时数字量输出,有利于压力温漂软件二次修正高压及真空通用的不锈钢微焊管路系统全系统内管壁电抛光处理,满足高真空下漏气率达到1*10-10 Pa.m3/s要求采用金属面密封的 VCR 接口配件,克服 O 型圈密封在低真空下自动放气问题配套的 VCR 接口气动阀门,降低电磁阀局部发热引入的测量误差,使用寿命达 500 万次,提高仪器稳定性和使用寿命316L 不锈钢厚壁高压微焊管路系统,管路连接紧凑,体积空间小防飞溅不锈钢微焊样品管不锈钢微焊样品管,标准容量体积低至 10 ml 左右,可放置岩石 / 煤柱,大容量样品管可定制样品管内部安置一级气体阻隔系统,样品管接头位配置有二级可拆卸式气体过滤系统, 双重防护措施,可有效防止样品意外进入超洁净阀体内部,提高仪器使用寿命及可靠性针对微量易飞溅样品设计的三重防样品飞溅系统,高压下测试安全媲美国际品牌数据精度及专业认可采用微型标准腔体(参考腔体),结合高密封性管路系统,使用少量样品量(毫克级至几克级)即可达到传统仪器采用几十克样品量测试结果同等精度,小样品量可以有效提高测试效率全自动化测试流程,避免人工操作可能引入的误差,无人值守式测试模式可连续长时间运行(一星期以上)测试过程中测量误差由软件动态消除,测试完成后无数据二次误差消除操作,不同操作人员测试结果具有高度一致性和可靠性在国际市场上与国外品牌竞争中获得客户认可,多款产品进入欧美高校测试实验室,测试数据论文在专业期刊上发表应用行业通过对地下开采出的煤及页岩样品,模拟其在地下环境中所处的高压强和温度条件下吸附煤层气或页岩气(甲烷)的等温线及吸脱附动力学测定,可预估煤层气或页岩气的储量和开采难易程度,评估开采的可行性和经济价值。通过模拟储氢材料在应用环境下的气体压强和温度要求,测定出储氢材料的 PCT 曲线、吸脱附动力学曲线及吸脱附氢平台压,为氢能的储备及应用开发研究提供强有力的工具。
    留言咨询
  • ZR-7220型 便携式甲烷非甲烷总烃分析仪(A款)产品简介:ZR-7220型 便携式甲烷非甲烷总烃分析仪(A款)是我公司精心研制的用于非甲烷总烃监测的便携设备,采用色谱柱分离-氢火焰离子化检测器进行检测的原理,配合采样烟枪、过滤系统并全程伴热的技术路线,避免出现颗粒物和冷凝水进入仪器,对“环境空气、固定污染源中废气中总烃、甲烷和非甲烷总烃”进行现场快速、准确检测,避免现场样品采集再到实验室分析的滞后性导致样品失真引起监测结果出现偏差。本仪器能够满足固定源有组织排放时高湿、颗粒物污染的工况下对废气中的NMHC进行测量,其广泛应用于有机化工厂、表面涂装行业、印染业、家具制造业、汽车制造业、制药业等行业的非甲烷总烃的现场监测,大气环境中非甲烷总烃的监测。适用范围:l 环境空气中非甲烷总烃的测定;l固定源废气排放中非甲烷总烃的测定;l 烟气连续测量仪器准确度的评估和校准;l 其它可应用的场合。 执行标准: GB 16297-1996《大气污染物综合排放标准》 HJ/T 397-2007《固定源废气监测技术规范》 HJ 1012-2018 《环境空气和废气 总烃、甲烷和非甲烷总烃便携式监测仪技术要求及检测方法》 HJ/T 38-2017 《固定污染源废气总烃、甲烷和非甲烷总烃的测定气相色谱法》 DB11/T 1367-2016 《固定污染源废气甲烷/总烃/非甲烷总烃的测定便携式氢火焰离子化检测器法》 技术特点:l预热时间短,可以在15~20min内完成预热,现场快速检测;l分析周期短,60s分析周期,提升检测频率,快速捕捉污染变化;l四路电子压力控制器,控制分辨率达到0.01psi,温度补偿,控制稳定;l反吹气路,有效避免干扰组分参与造成数据误差;l全程高温伴热,采样管内壁硅烷化处理,无吸附;l检出限低,同时满足环境空气和固定源的非甲烷总烃现场快速检测;l配置大容量锂电池,可支撑现场检测时间≥5h(带采样管预热≥3h);l进口固态储氢瓶,储氢量大、寿命长、使用安全;l主机进样口内置滤芯,可有效过滤颗粒物,防止进入主机影响测试;l配备具有自主知识产权的柱箱模块、FID检测器模块、电气控制模块,关键部件带有恒温、减震装置,消除温度漂移,测量结果稳定可靠;l内置不同浓度校准点,根据NMHC测试高低浓度值跨度大小的不同选择所需的校准浓度;l测试数据可打印数据凭条,导出测试谱图,及结合工况信息自动计算排放速率;l仪器状态动态显示,方便用户掌握仪器工作情况;l采用进口隔膜阀,避免死体积及气体泄漏造成测试误差,使用寿命更长;l实时查询检测数据,配有蓝牙打印机,可按照选定的测试结果进行现场打印;l选配ZR-3062型一体式烟气流速湿度直读仪进行工况测量,也可手动输入工况信息;l选配PAD手操器,方便用户获取和观测数据。工作条件:l工作电源: AC(220±22)V,(50±1)Hzl环境温度:(-10~45)℃l环境湿度:(0%~95)%RHl大气压力:(60~130) kPal适用环境: 非防爆性固定污染源非甲总烃监测和环境空气非甲烷总烃监测 l电源接地线应良好接地l野外工作时,应有防雨、雪、尘以及日光爆晒等侵袭的措施
    留言咨询
  • 一、产品简介ZR-7221型便携式甲烷非甲烷总烃分析仪是用于非甲烷总烃检测的便携设备。采用氢火焰离子化检测器(FID)和特定催化氧化技术完成总烃和甲烷值的测量,然后相减的差值即为非甲烷总烃值。测量过程中,为了避免样品气中颗粒物和冷凝水进入仪器产生干扰,使用了可全程伴热、能过滤颗粒物的采样管进行预处理,确保测量数据准确可靠。直接现场出数,不需要将样品带回实验室进行检测,实现了“环境空气、固定污染源废气中总烃、甲烷和非甲烷总烃”的现场快速、准确检测。可广泛应用于有机化学工厂、表面涂装行业、印染业、家具制造业、汽车制造业、制药业等行业的非甲烷总烃的现场监测,大气环境中非甲烷总烃的监测及烟气连续测量仪器准确度的评估和校准等应用领域。二、技术特点1、优异的工作效率2、预热时间短,可以在(15~20)min内完成预热,现场快速检测。3、分析周期短,15s分析周期,提升检测频率,快速捕捉污染变化。4、四路电子压力控制器,控制分辨率达到0.01psi,温度补偿,控制稳定。5、全程高温伴热,采样管内壁硅烷化处理,无吸附。6、配置大容量锂电池,可支撑现场检测时间≥4h(注:带采样管预热≥3h)。7、主机进样口内置滤芯,可有效过滤颗粒物,防止颗粒进入主机影响测试。8、配备具有自主知识产权的催化装置模块、FID检测器模块、电气控制模块,关键部件带有恒温、减震装置,消除温度漂移,测量结果稳定可靠。9、采用进口催化剂,转化效率高,使用寿命更长。10、检出限低,同时满足环境空气和固定源的非甲烷总烃现场快速检测。11、内置不同浓度校准点,根据NMHC测试高低浓度值跨度大小选择所需的校准浓度。12、测试数据可打印数据凭条,可结合工况信息自动计算排放速率。13、仪器状态动态显示,方便用户掌握仪器工作情况。14、实时查询检测数据,可用蓝牙打印机对选定的测试结果进行现场打印。15、可选配ZR-3062型一体式烟气流速湿度直读仪进行工况测量,也可手动输入工况信息。16、可选配PAD手操器,方便用户获取和观测数据。进口固态储氢瓶,储氢量大、寿命长、使用安全。三、参考标准GB16297-1996 大气污染物综合排放标准HJ1012-2018 环境空气和废气 总烃、甲烷和非甲烷总烃便携式监测仪技术要求及检测方法DB11/T1367-2016固定污染源废气 甲烷/总烃/非甲烷总烃测定 便携式氢火焰离子化检测器法DB33/T 2146-2018固定污染源废气 挥发性有机物的测定 便携式氢火焰离子化检测器法DB51/2377-2017 VOCs的测定 便携式氢火焰离子化检测器法DB36/1101-2019 固定污染源废气 甲烷/总烃/非甲烷总烃测定 便携式氢火焰离子化检测器法DB37T3922-2020固定污染源废气总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法DB 35/T 1913-2020固定污染源废气 非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法DB 12/524-2020 固定污染源废气总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法
    留言咨询

甲烷吸附定仪相关的资讯

  • 【ISCO泵】ECBM:在现实条件下的重力吸附测量
    01 摘要煤层气作为传统天然气的有力补充,拥有广阔的开发前景。增强型煤层气(ECBM)技术不仅显著提升了甲烷的采收效率,同时还实现了二氧化碳的地下封存。该技术的研究可通过利用 Rubotherm IsoSORP 系统配备的磁悬浮天平对吸附等温线进行重力测量来深入进行。在策划 ECBM 项目时,精确的气体吸附数据是必不不可少的。02 关键词&bull 天然气&bull 增强型煤层气 (ECBM),二氧化碳 (CO2)&bull 煤层气&bull 重力测量法*图片来自互联网03 引言受能源价格不断攀升的驱动,对油气替代资源的开发探索具有极其重要的经济价值。众多天然气资源以煤层气(CBM)的形态赋存于煤层之中。增强型煤层气(ECBM)技术通过注入二氧化碳来提升从煤层中提取甲烷的效率[1]。除增加天然气提取量外,ECBM 还具备另一项优势:即能将碳捕集与封存(CCS)过程中产生的 CO2 安全地贮存于地下,避免其排放至大气中[2]。但是,甲烷被 CO2 取代的过程极为复杂:气体不仅会在煤的表面发生吸附作用,还会被吸收进入煤的内部结构,导致煤样体积膨胀。因此,发展 ECBM 技术必须在真实条件下,对不同煤样进行细致的研究[3]。本应用说明阐述了如何运用 Rubotherm IsoSORP 系统通过重力测量方法研究 ECBM 过程。04实验Rubotherm IsoSORP 系统采用磁悬浮天平(MSB)技术来精确测定吸附等温线。一套气体定量供应系统用于在特定实验条件下提供纯净或混合气体。煤层气通常存在于压力介于 30 至 300 bar,温度介于 30 至 100℃ 的煤层中。实验室级别的测量必须能够覆盖这些压力与温度范围。在较高压力下用二氧化碳创建一个特定的气体环境并非简单任务:需要通过柱塞泵将二氧化碳从钢瓶压力(60 bar)加压[4],同时需对整个供气系统包括所有阀门和管道加热以防凝结。图 1 展示了完整的 IsoSORP 系统的示意图。图1. 配备 MSB 和 SC HP 静态气体定量系统的 IsoSORP 仪器流程图05结果在意大利南部撒丁岛的苏尔西斯煤田采集的煤样上开展了 ECBM 研究。图 2 展示了在 45℃ 和 60℃ 条件下,二氧化碳的吸附等温线:观察到二氧化碳的吸附量超过了甲烷,这对于 ECBM 技术来说是一个至关重要的条件[5]。图2. 在 45℃ 和 60℃ 下,甲烷和二氧化碳在撒丁岛煤样上的绝对吸附量下一步是测量二氧化碳和甲烷混合物的吸附量。在此过程中,利用磁悬浮天平重力测定总体吸附等温线。依据这些数据,通过对气相中未被吸附的混合气体进行气相色谱(GC)分析,可以得出各单一组分的吸附数据。在降压步骤后,可以将气体样品通过六通气体采样阀采集用于 GC 分析。另一种分析手段是利用质谱(MS)进行分析。图3. 在 45℃ 下,两种甲烷/二氧化碳混合物在撒丁岛煤上的总吸附量和组分选择性吸附量这些实验获得的数据(图3)显示,在混合气体中即使二氧化碳含量较少,其在煤中的吸附量也超过甲烷[6]。这证明了通过注入二氧化碳可以从煤层中置换出甲烷。为了制备成分精确的气体混合物,Rubotherm 开发了MIX-模块作为附加配置选项:MIX 仪器配备了经过校准体积的储罐、一个气体循环泵以及一个带有采样阀的气体采样体积用于分析(图4)[7]。图4. 用于气体混合物高准确度吸附分析的 IsoSORP SC MIX 静态系统06 结论煤层气(CBM)是未来替代传统天然气的宝贵资源。增强型煤层气开采技术(ECBM)通过注入二氧化碳来提高天然气的采收率,并具有长期封存二氧化碳的额外优势。研究表明,Rubotherm IsoSORP 仪器能够为 ECBM 项目的规划和设计提供关键数据,包括气体储存容量以及甲烷被 CO2 置换的动力学过程。Rubotherm为这一应用所需配置:IsoSORP MSB 系统&bull 高测量负载,高达 60 克&bull 流体密度测量&bull 压力范围 HP II 高达 350 bar&bull 温度范围从环境温度到 150℃SC-HP II 静态定量给料系统&bull 加热至 100℃ 以避免凝结&bull Teledyne ISCO 柱塞泵用于输送二氧化碳&bull 可选:MIX 模块参考1. R. Pini, D. Marx, L. Burlini, G. Storti, M. Mazzotti: Coal characterization for ECBM recovery: gas sorption under dry and humid conditions Energy Procedia, Vol. 4 (2011) 2157-21612. Ch. Garnier, G. Finqueneisel, T. Zimny, Z. Pokryszka, S. Lafortune, P.D.C.Défossez, E.C. Gaucher: Selectionof Coals of different maturities for CO2 Storage by modelling of CO2 and CH4 adsorption isotherms Inter-national Journal of Coal Geology, Vol. 87 (2011) 80-863. J.S. Bae, S.K. Bhatia: High-Pressure Adsorption of Methane and Car-bon Dioxide on Coal Energy & Fuels, Vol. 20 (2006) 2599-26074. Supercritical Fluid Applications in Manufacturing and Materials Pro-duction, Teledyne ISCO, Syringe Pump Application Note AN15. S. Ottiger, R. Pini, G. Storti, M. Mazzotti, R. Bencini, F. Quattrocchi, G.Sardu and G. Deriu: Adsorption of Pure Carbon Dioxide and Methane on Dry Coal from the Sulcis Coal Province (SW Sardinia, Italy) Environ-mental Progress, Vol. 25 (2006), 355-3646. S. Ottiger, R. Pini, G. Storti and M. Mazzotti: Competitive adsorption equilibria of CO2 and CH4 on a dry coal Adsorption, Vol. 14 (2008)7. FlexiDOSE Series Gas & Vapor Dosing Systems, Rubotherm 2013作者:Frieder Dreisbach 拥有机械工程热力学博士学位,是德国波鸿 Rubotherm GmbH 的董事总经理。Thomas Paschke 拥有分析化学博士学位,是德国波鸿 Rubotherm GmbH 的应用专员。
  • 物理吸附检测方法分类大全
    p style=" text-align: justify text-indent: 2em " img src=" https://img1.17img.cn/17img/images/201906/uepic/554eae64-8ff0-4d72-ab23-5ceee57b8ef8.jpg" title=" 123.jpg" alt=" 123.jpg" width=" 180" height=" 198" style=" max-width: 100% max-height: 100% float: right width: 180px height: 198px " border=" 0" vspace=" 0" / 吸附,是在界面层中的组分的浓度与它们在体相中的浓度不同的界面现象;物理吸附,通常是指气体或蒸汽在固体界面的吸附。当气体或蒸汽在固体表面被吸附时,固体称为吸附剂,被吸附的气体称为吸附质。吸附于固体表面的气体/蒸汽分子,不与固体产生化学反应,吸附热小 , span style=" text-indent: 2em " 吸附速度 /span span style=" text-indent: 2em " 快,在一定程度上是可逆的。 /span span style=" text-indent: 2em " 物理吸附分析方法有单组气体/蒸汽分吸附、多组分气体/蒸汽选择性竞争吸附、低压段吸附、高压气体吸附等(详细分类见下条)。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 物理吸附分析方法常被应用于催化剂、吸附剂等固体材料的比表面积分析、孔容孔径分析、气体吸附能力评价、蒸汽吸附能力评价、多组分选择性竞争吸 /span img src=" https://img1.17img.cn/17img/images/201906/uepic/a3caaf5d-8f20-43af-b5fe-fc999b763b94.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 250" height=" 82" border=" 0" vspace=" 0" style=" text-align: justify text-indent: 32px max-width: 100% max-height: 100% width: 250px height: 82px float: left " / span style=" text-indent: 2em " 附评价等分析内容,具体领域如工业催化领域的催化剂性能检测、气体净化提纯的吸附剂评价、氢气甲烷的高压吸附存储等领域。 /span 物理吸附仪为采用物理吸附现象、原理来进行材料表面特性分析表征的仪器。物理吸附仪的原理和类型,根据不同的分析目的、材料、原理、压力范围、吸附质种类等而不同,下文对物理吸附分析方法的分类介绍,基本也适用于物理吸附仪的分类。 /p p style=" text-align: justify text-indent: 2em " 按照如下三种分类方法,对物理吸附进行分类,由该分类图表可清晰的对物理吸附分析方法有总体的框架性的了解,是物理吸附的入门级基础知识。 /p p style=" text-align: justify text-indent: 2em " strong 物理吸附分类方法一:根据吸附质类型分类 /strong /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 298px " src=" https://img1.17img.cn/17img/images/201906/uepic/88ae3670-c353-47a9-a4ce-d29bab432ab1.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 500" height=" 298" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong 物理吸附分类方法二:根据吸附质定量方式分类 /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 500px height: 340px " src=" https://img1.17img.cn/17img/images/201906/uepic/a2d24a38-06fc-45a6-a32d-9519649b7e53.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 500" height=" 340" border=" 0" vspace=" 0" / /strong /p p style=" text-align: justify text-indent: 2em " strong 物理吸附分类方法三:根据测试内容或数据分析理论分类 /strong /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 352px " src=" https://img1.17img.cn/17img/images/201906/uepic/31898eb8-8b30-4539-9f56-87ebfa58a0e8.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 500" height=" 352" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 以上物理吸附的三种分类方式,基本涵盖了目前国际上物理吸附分析方法的全部内容,也是目前已经普及应用的物理吸附仪的功能涉及范围。了解清楚并掌握该三种分类方法中的各种物理吸附分析方法的原理、特征、优劣势与适用范围,是正确应用物理吸附这种分析方法进行材料表征的基础,是让物理吸附这种分析方法服务与科研和工业生产过程的关键。 /p p style=" text-align: right " strong 作者:柳剑锋 /strong /p p style=" text-align: right " strong 贝士德仪器科技(北京)有限公司总经理 /strong /p p style=" text-align: left text-indent: 2em " (注:本文由贝士德供稿,不代表仪器信息网本网观点) /p
  • 应用麦克仪器,表征金属有机框架中的水蒸气吸附
    金属有机框架的混合特性提供了金属簇和有机配体之间几乎无限可能的组合,使这些多孔材料具有很大的应用前景,例如甲烷储存1、二氧化碳捕获2、氢气储存3和气体分离4。由于金属有机框架(MOFs)在空气除湿6、低湿度捕水7和储水8等方面的潜在应用,MOFs 的水吸附5引起了越来越多的关注。随着越来越多的具有动力学和热力学水稳定性的 MOFs9,10 的设计和合成,通过水蒸气吸附仪器对材料进行表征的需求变得至关重要。Micromeritics 的 3Flex 三站多用气体吸附仪是公认的气体吸附材料表征领域先进的仪器,广泛应用于研究型大学、政府实验室和私营部门的研发机构。除了惰性气体(如氮气、氩气和氪气)的物理吸附、静态化学吸附、动态化学吸附(TCD 或质谱仪作为检测器),蒸汽吸附是 3Flex 三站多用气体吸附仪上另一个广泛使用且值得信赖的选项。* Micromeritics 3Flex 三站全功能型多用气体吸附仪蒸汽吸附分析具有以下优点:1.实验速度更快:重量吸附分析仅需数小时或数天即可完成实验,而不需要数周;2.更高的吞吐量:3Flex 具有多达三个工作站,即使是不同的压力表,也可以同时分析三个样品;3.样品处理更容易:对于湿敏材料,只需使用手套箱里的密封块即可简单地将样品从瓶中转移到样品管中。样品无需暴露在空气中,这在重量吸附分析仪上很难实现。在此,我们给出了 HKUST-1(Cu-BTC)11 和 MIL-1019 这两种典型 MOFs 的水蒸气吸附等温线,该等温线在 Micromeritics 3Flex 三站多用气体吸附仪上获得。HKUST-1,Cu3[C6H3(COO)3]2,是由均苯三酸三阴离子连接的铜(II)桨轮二聚体组成,可商购。图1. HKUST-1的氮吸附等温线(红色),HKUST-1 的水蒸气吸附等温线(蓝色)图 2. MIL-101 的氮吸附等温线(红色),MIL-101 的水蒸气吸附等温线(蓝色)图 3. HKUST-1 在 77K 时的氮等温线对数图图 4. MIL-101 在 77K 时的氮等温线对数图MIL-101,Cr3XO[C6H4(COO)2]3 (X = F, OH), 具有三核铬(III)金属簇和对苯二甲酸二价阴离子。之所以选择这两个 MOFs,是因为 HKUST-1 和 MIL-101 都具有配位不饱和金属位点,在保持其结构完整的同时,对水分子具有很高的亲和力。在 298K 的温度下,在同一台 3Flex 仪器上,采用不同的压力表设置(P/P0 = 0.001- 0.90),同时进行两种材料的水蒸气吸附实验。HKUST-1 材料由 NuMat 科技公司的科学家提供,MIL-101 材料的结晶度由供应商确认。SEM 图像是在颗粒测试机构使用 Phenom ProX 台式扫描电镜获得的(图 5 及图 6)。样品在 170℃ 下进行真空脱气过夜。图 5. HKUST-1 的 SEM 图图 6.MIL-101 的 SEM 图HKUST-1 和 MIL-101 的 BET 比表面积分别为 1574 m2/g 和 1379 m2/g。图1中低 P/P0 区域的陡峭吸附和随后的氮气吸附等温线表明了 HKUST-1 的微孔性。图 3 中 HKUST-1 的氮气等温线对数图表现出阶跃特征,显示了 HKUST-1 与具有强四极性气体分子间的相互作用12,13。而图 2 的氮气吸附等温线表明,MIL-101 中存在两种类型的介孔,内径分别接近2.9 nm 和 3.4 nm9。在 3Flex 上精确注气 10 cm3/g STP 后,HKUST-1 在配位不饱和金属位点和随后的微孔吸附在图 1 的水蒸气吸附等温线(P/P0 0.35,这与其介孔性质相一致。MIL-101 在 P/P0 = 0.3 时的水容量为 96.2 cm3/g STP (7.7 wt. %),在 P/P0 = 0.90 时 的水容量为 850.5 cm3/g STP (68.3 wt. %)。尽管 MIL-101 可能不适合于低湿度环境下的水捕集应用,但它可以用于静态条件下的除湿,例如用于干燥剂中。回滞环是由于毛细管凝聚引起的孔填充造成的。在 P/P0 = 0.35 到 0.5 的较窄的相对湿度范围内,630cm3/g STP (50.6 wt. %) 吸水量的巨大差异揭示了其在吸附式热泵或冷水机的潜在应用14。在较高的压力和温度下,可以消除滞后现象,从而产生更窄的相对湿度范围,使其更适合上述应用。除了典型的水蒸气吸附和解吸等温线外,带有蒸汽选项的Micromeritics 3Flex 配备了广泛的常用蒸汽的流体性质的数据库,用于进行吸附剂的再生性和循环性研究、吸附热研究等。Micromeritics 3Flex 三站全功能型多用气体吸附仪是广大高校及学术机构的可靠合作伙伴。想以更具优势的价格体验领先的气体吸附技术,欢迎关注 Micromeritics 2023 学术奖助计划。

甲烷吸附定仪相关的方案

甲烷吸附定仪相关的资料

甲烷吸附定仪相关的试剂

甲烷吸附定仪相关的论坛

  • 【求助】求助:吸附剂与二氯甲烷好像相溶??

    自己买的Tenax TA吸附剂,买回后自己填充在玻璃管中,主要想做挥发物。昨天抽了一天,晚上用二氯甲烷解吸的时候发现Tenax TA吸附剂与二氯甲烷好像相溶了一样,变成凝胶状的物质。我用的是固相萃取装置解吸的,这样就完全没办法做了,想问一下各位高手都用什么试剂来解吸,为什么我会出现这种情况???谢谢了。。

  • 【求助】求助:吸附剂与二氯甲烷好像相溶??

    自己买的Tenax TA吸附剂,买回后自己填充在玻璃管中,主要想做挥发物。昨天抽了一天,晚上用二氯甲烷解吸的时候发现Tenax TA吸附剂与二氯甲烷好像相溶了一样,变成凝胶状的物质。我用的是固相萃取装置解吸的,这样就完全没办法做了,想问一下各位高手都用什么试剂来解吸,为什么我会出现这种情况???谢谢了。。

甲烷吸附定仪相关的耗材

  • 至电量滴定杯的 KF 吸附管 6.1403.030
    至电量滴定杯的 KF 吸附管订货号: 6.1403.030用于 KF 库仑法卡式水分测定仪。
  • 汞分析仪MI 吸附棒
    操作原理和特性 使用Sorb-Star的PBSE(聚合物棒吸附萃取)基于从不同样品基质中吸附半挥发性有机化合物 专为痕量分析开发 允许各种采样技术 物质类别:杀虫剂、多环芳烃、烷烃(C10至C24)、有机污染物、药物... 对具有高对数KOW值、高吸附体积的物质具有非常好的吸附/回收性能 Sorb-Star由非极性和高纯度聚合物固体材料组成 (L= 20毫米,D= 2毫米)具有非常高的吸附能力。吸附适用于非极性物质的任何样品基质。应用领域水的分析、味道和气味(饮用水、地表水、污水....) 饮料行业(软饮料和酒精饮料) 食品工业 风味和parfume分析(顶空富集)包装工业,纸板,... 药物筛选 辩论术
  • HD-2003活性炭吸附测氡仪
    HD-2003活性炭吸附测氡仪 HD-2003活性碳吸附测氡仪描述 应用领域 测量土壤氡浓度及氡析出率,主要应用于寻找放射性异常及土壤氡的环境评价。 仪器特点 数据准确,灵敏度高,具有数据存储和回放功能,标准USB接口。 仪器认证 由核工业放射性勘查计量站检定并出具检定证书。 HD-2003活性碳吸附测氡仪参数 (1)测量范围    土壤氡浓度测量范围:100~100000Bq∕m    氡析出率的测量范围:0.001~1.000Bq∕m (2)灵 敏 度:&ge 1.5sˉ?(Bq/L)ˉ?; (3)能 量 阈:50keV; (4)非 线 性:&le 10%; (5)重 复 性:&le 10%; (6)稳 定 度:&le 5%; (7)使用环境:0℃~40℃   湿度:&le 90% (40℃) (8)重量及外形尺寸: 铅室的重量及外形尺寸(含包装箱):25kg;15cm× 34cm× 20cm 操作台重量及外形尺寸(含包装箱):1.5kg.; 50cm× 31cm× 22cm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制