当前位置: 仪器信息网 > 行业主题 > >

膏粉结晶定仪

仪器信息网膏粉结晶定仪专题为您提供2024年最新膏粉结晶定仪价格报价、厂家品牌的相关信息, 包括膏粉结晶定仪参数、型号等,不管是国产,还是进口品牌的膏粉结晶定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合膏粉结晶定仪相关的耗材配件、试剂标物,还有膏粉结晶定仪相关的最新资讯、资料,以及膏粉结晶定仪相关的解决方案。

膏粉结晶定仪相关的资讯

  • 合肥研究院高结晶石墨烯宏观体研究获进展
    近期,中国科学院合肥物质科学研究院固体物理研究所研究员王振洋团队在高结晶石墨烯宏观体的共价生长及其电学行为调制方面取得系列进展。石墨烯是具有优异力学、电学、热学和光学性能的二维碳材料。石墨烯的高效制备与宏观组装对其规模应用具有重要意义。目前,石墨烯宏观体的常规制备方法如液相自组装、3D打印和催化模板法等,仅能实现石墨烯片层间的非共价弱相互作用连接,导致石墨烯晶体结构的不连续,成为限制石墨烯宏观体电学性质的主要因素。 鉴于此,研究开发了激光辅助的layer-by-layer共价生长方法来制备高结晶石墨烯宏观体。分子动力学模拟从理论上揭示了它的共价生长机制。共价生长法使得材料具有连续的晶体结构,且与非共价组装相比,其跨层电导率实现了100倍的提升。该材料有助于解决石墨烯规模化应用面临的层状堆垛、晶体质量调控、离子输运通道、体积效应等问题,为石墨烯的储能电极应用奠定了基础。相关研究成果发表在《先进功能材料》(Advanced Functional Materials)上。 此外,为了解决石墨烯电极中低自由电子浓度导致的电导率不理想的问题,研究将富含自由电子的铜纳米粒子引入到材料体系,在Cu与石墨烯界面形成了稳定的Cu-C键,从而通过电子注入实现了复合材料超高的导电性能,电导率达到与纯金属接近的0.37×107 S m-1, 是纯石墨烯的3000倍。研究进一步利用X射线吸收精细结构(XAFS)光谱,结合密度函数理论(DFT)模拟揭示了界面结构对电导率的影响,这对石墨烯的电导率调制以满足不同应用具有重要意义。相关研究成果发表在《化学工程杂志》(Chemical Engineering Journal)上。研究工作得到国家重点研发计划、国家自然科学基金、安徽省科技重大专项和安徽省重点研发计划等的支持。 高结晶石墨烯宏观体的layer-by-layer共价生长及其表征。  (a)不同铜含量的石墨烯电导率;(b)不同铜含量的石墨烯载流子迁移率和载流子密度。
  • 喜报:先正达引进芬兰Pixact公司PCM结晶监测系统!
    喜报:先正达引进芬兰Pixact公司PCM结晶监测系统! 先正达是世界领先的农业公司,总部位于瑞士巴塞尔,通过帮助广大农民更有效率地使用现有资源、以提升全球的粮食安全。遍布全球90多个国家,致力于改进作物种植方法,拯救濒临退化的耕地,提高生物多样性并繁荣农村社区。 创新,尤其是研发,是先正达战略的核心。先正达在全球拥有5000多名研发人员,与大学、研究机构和商业组织建立了500多项研发合作,凭借对植物的深入理解,广泛的技术实力以及全球覆盖,先正达能够为种植者提供整合解决方案,帮助他们可持续地提高农业生产力;同时,持续满足法规制定者、作物加工者和消费者的更高望。近日,先正达南通技术中心引进芬兰Pixact公司的PCM结晶监测系统,此次新设备引进将促进先正达为全球的种植者提供定制化、规模化的整合解决方案,以满足其多样化的需求。 PCM结晶监测系统采用透射光原理设计,由仪器探头末端发出的激光透过测试样品,由探头另一端的高分辨率CCD相机接收透射光并对晶体成像。对于微小晶体也可以清晰成像,并保证图像质量。PCM结晶监测系统利用功能强大的图像算法,可以得到高准确度的晶体尺寸、晶体尺寸分布、晶体尺寸变化趋势、晶体形态、晶体径长比、晶体生长速率等数据。 PCM结晶监测系统不需要离线取样,可以实时监测晶型转变过程。测试过程清晰直观,既大大提高了晶型转变的研究效率和准确性,又可以避免传统显微镜的多晶型研究的取样问题、以及取样后由于条件变化导致的样品变化问题,可帮助用户优化与控制工艺流程,以及排除故障。芬兰Pixact公司除了PCM结晶监测系统,还有PPM颗粒监测系统、PDM液滴监测系统、PBM微气泡监测系统等。 PPM颗粒监测系统是为在线分析不同形态颗粒而设计,广泛应用于微颗粒、颗粒、纤维、团块、絮状物等。 PDM液滴监测系统是为在线分析液滴和乳液而设计。 PBM微气泡监测系统是为在线分析气泡悬浮液和泡沫体系而设计,可以得到:气泡尺寸分布、平均气泡尺寸、标准偏差、索特平均直径和累积分布参数(D10、D50、D90等)。 芬兰Pixact公司的所有在线监测系统都可以提供PIXSCOPE探头、PIXSCOPE FL非接触式探头、PIXCELL流通管,均可以应用于研发、实验室小试、千吨级中试和万吨级工业化现场。创新是企业兴旺的灵魂,先正达与时俱进,不断推动理念创新,管理创新,科技创新,此次与北京海菲尔格科技有限公司合作,引进世界先进设备武装科研,必将实现农业生产力全球性的飞跃。
  • 喜讯不断!祝贺万华化学成功引进芬兰Pixact公司PCM结晶监测系统
    喜讯不断!祝贺万华化学成功引进芬兰Pixact公司PCM结晶监测系统 万华化学集团股份有限公司是一家全球化运营的化工新材料公司,依托不断创新的核心技术、产业化装置及高效的运营模式,为客户提供更具竞争力的产品及解决方案。 万华化学始终坚持以科技创新为第一核心竞争力,持续优化产业结构,业务涵盖聚氨酯、石化、精细化学品、新兴材料四大产业集群。所服务的行业主要包括:生活家居、运动休闲、汽车交通、建筑工业、电子电气、个人护理和绿色能源等。作为一家全球化运营的化工新材料公司,万华化学拥有烟台、宁波、四川、福建、珠海、匈牙利六大生产基地及工厂,形成了强大的生产运营网络。 万华化学秉承“化学,让生活更美好!”的使命,始终以创建受社会尊敬、让员工自豪、国际一流的化工新材料公司为公司愿景,一如既往地在化工新材料领域持续创新,引领行业发展方向!万华化学此次引进芬兰Pixact公司的PCM结晶监测系统,为万华化学的科技创新再添新动力,必将创造更加辉煌的未来。PCM结晶监测系统采用透射光原理设计,由仪器探头末端发出的激光透过测试样品,由探头另一端的高分辨率CCD相机接收透射光并对晶体成像。对于微小晶体也可以清晰成像,并保证图像质量。PCM结晶监测系统利用功能强大的图像算法,可以得到高准确度的晶体尺寸、晶体尺寸分布、晶体尺寸变化趋势、晶体形态、晶体径长比、晶体生长速率等数据。PCM结晶监测系统不需要离线取样,可以在线原位实时监测晶型转变过程。测试过程清晰直观,既大大提高了晶型转变的研究效率和准确性,又可以避免传统显微镜的多晶型研究的取样问题、以及取样后由于条件变化导致的样品变化问题,可帮助用户优化与控制工艺流程,以及排除故障。 PCM结晶监测系统,非常适合结晶工艺的开发与优化,速度快,效率高;帮助工艺问题原因被快速发现及快速解决,可以实现生产质量稳定性监控,原料杂质监控,补料时间确定,晶体颗粒度监控,二次成核控制,晶体颗粒度分布宽度监控,出料时刻判定,加晶种方案优化,晶体颗粒形状调整等。PCM结晶监测系统是结晶工艺研究与控制的强有力工具,是结晶过程的眼睛,代表了当前结晶成像及颗粒度监控领域的国际最高水平。 芬兰Pixact公司除了PCM结晶监测系统,还有PPM颗粒监测系统、PDM液滴监测系统、PBM微气泡监测系统等。(1)PPM颗粒监测系统是为在线分析不同形态颗粒而设计,广泛应用于微颗粒、颗粒、纤维、团块、絮状物等;(2)PDM液滴监测系统是为在线分析液滴和乳液而设计;(3)PBM微气泡监测系统是为在线分析气泡悬浮液和泡沫体系而设计,可以得到:气泡尺寸分布、平均气泡尺寸、标准偏差、索特平均直径和累积分布参数(D10、D50、D90等);芬兰Pixact公司的所有在线监测系统都可以提供PIXSCOPE探头、PIXSCOPE FL非接触式探头、PIXCELL流通管,均可以应用于研发、实验室小试、千吨级中试和万吨级工业化现场。 万华化学始终坚持以科技创新为第一核心竞争力,伴随着芬兰Pixact公司的PCM结晶监测系统的成功引进,相信万华化学必将创造自我、超越自我!北京海菲尔格科技有限公司作为Pixact在国内的总代理,继续致力于将最先进的仪器设备推广到所需要的各个领域,让我们一起加油向未来,让生活变得更美好!
  • 热烈庆祝浙江新和成股份有限公司引进芬兰Pixact公司PCM结晶监测系统
    热烈庆祝浙江新和成股份有限公司引进芬兰Pixact公司PCM结晶监测系统 浙江新和成股份有限公司创建于1999年,2004年作为国内中小企业板第一股在深交所成功上市。公司现有浙江新昌、浙江上虞、山东潍坊、黑龙江绥化4个现代化生产基地,新和成始终坚持“创新精细化工,改善生活品质”的使命,专注于精细化工,坚持创新驱动发展和在市场竞争中成长的理念,不断创新发展营养品、香精香料、高分子材料和原料药等功能性化学品,并在这些领域为全球100多个国家和地区的客户创造了可持续的价值。浙江新和成股份有限公司坚持以技术创新为驱动力,坚持研发是创新的保障。近期引进芬兰Pixact公司PCM结晶监测系统助力研发。 PCM结晶监测系统采用透射光原理设计,由仪器探头末端发出的激光透过测试样品,由探头另一端的高分辨率CCD相机接收透射光并对晶体成像。对于微小晶体也可以清晰成像,并保证图像质量。PCM结晶监测系统利用功能强大的图像算法,可以得到高准确度的晶体尺寸、晶体尺寸分布、晶体尺寸变化趋势、晶体形态、晶体径长比、晶体生长速率等数据。PCM结晶监测系统不需要离线取样,可以实时监测晶型转变过程。测试过程清晰直观,既大大提高了晶型转变的研究效率和准确性,又可以避免传统显微镜的多晶型研究的取样问题、以及取样后由于条件变化导致的样品变化问题,可帮助用户优化与控制工艺流程,以及排除故障。 芬兰Pixact公司除了PCM结晶监测系统,还有PPM颗粒监测系统、PDM液滴监测系统、PBM微气泡监测系统、PSM浆料监测系统等。PPM颗粒监测系统是为在线分析不同形态颗粒而设计,广泛应用于微颗粒、颗粒、纤维、团块、絮状物等;PDM液滴监测系统是为在线分析液滴和乳液而设计;PBM微气泡监测系统是为在线分析气泡悬浮液和泡沫体系而设计,可以得到:气泡尺寸分布、平均气泡尺寸、标准偏差、索特平均直径和累积分布参数(D10、D50、D90等);PSM浆料监测系统是为在线分析工业过程中的残留颗粒物或杂质、颜色和光泽度而设计,可以在暗黑、棕色、浓稠多相体系中测试。芬兰Pixact公司的所有在线监测系统都可以提供PIXSCOPE探头、PIXSCOPE FL非接触式探头、PIXCELL流通管。可以应用于研发、实验室小试、千吨级中试和万吨级工业化现场。浙江新和成股份有限公司勇于创新的开拓精神加之PCM结晶监测系统的助攻,相信不久的将来,新和成将成为中国新和成、世界新和成,成为一个全球化企业,在化工制造、工业发展史上留下浓墨重彩的一笔。
  • 借助Integrity 10平行结晶系统分析溶菌酶结晶介稳区
    #Integrity 10 平行结晶系统#结晶介稳区是指溶解度平衡曲线与超溶解度曲线之间的区域。溶解度曲线和超溶解度曲线将溶液浓度-温度相图分割成三个区域,分别是稳定区、介稳区和不稳定区。一个特定的物系,只有一条明确的溶解度曲线,而超溶解度曲线的位置却受到很多因素的影响,如有无搅拌、搅拌速度、有无晶种、晶种的大小种类、杂质,超声波、电磁场等。介稳区理论对API结晶工艺过程控制至关重要。在一个结晶过程中,当过饱和度超过介稳区进入不稳定区域时,溶液中就会自发成核。为了使得产品具有较高的纯度和理想的粒度分布,通常将结晶过程控制在介稳区内进行。介稳区宽度越大,说明结晶物质的过饱和溶液越稳定。图1:介稳区示意图介稳区宽度的测定对于工业结晶有着非常重要的意义,它不仅是结晶操作时选取适宜过饱和度的依据,也是进行过夜结晶器设计的重要参数,也就是说,要求的较为准确的最大过饱和度或最大过冷却度,作为设计中选择适宜的过饱和度的依据。目前使用经典技术测量样品溶液的溶解度点和成核点可能需要很长时间。在蛋白质的应用中,这是一个特殊的问题,因为不能用一种方法同时进行测定。 本应用简报介绍了一种快速、可靠且可重复的测定方法,用于测定乙酸钠缓冲溶液中溶菌酶的介稳区宽度。该方法使用配备红外透射检测器的 STEM Integrity 10 平行结晶系统,使用浊度测量技术进行检测。图2:STEM Integrity 10 平行结晶系统相关实验及结果 实验方法:溶液在 STEM Integrity 10 平行结晶系统中以 0.1°C/min 的控制方式加热和冷却,以确定成核点和溶解度点。使用可选的浸入式 IR 探头(货号:ATS10230)收集浊度测量值。 实验结果:溶解度点定义为透射率百分比达到稳定平台的点,形核点定义为透射率百分比持续下降的第一个点,如下图所示。图3: 溶菌酶溶液浊度随温度的变化(15mg/ml)下图确定了许多溶液浓度下的成核点和溶解度点。图4:12mg/ml和20mg/ml溶菌酶溶液浊度随温度的变化根据浊度测量确定的成核点和溶解度点与下图所示伪相图中溶菌酶溶解度的文献数据一起绘制。图5:溶菌酶蛋白假相图(4%NaCl,0.1M醋酸钠缓冲液pH 5.0)这种类型的图表的构造使得介稳区很容易被识别。结论:通过使用浊度测量技术确定具有不同蛋白质浓度的溶液的成核点和溶解度点。该方法的特点是重现性好、可信度高。结合文献报道的已知相图,本研究中获得的数据显示了良好的相关性。与其他经典方法相比,使用这种技术可以在几个小时内确定介稳区宽度,并且精度极高。Integrity 10 应用及配置一、Integrity 10应用方向:介稳区宽度测定快速获取溶解度曲线测定成核诱导时间API晶型高效率筛选API溶解度筛选化学反应条件筛选二、Integrity 10为您提供:1. 多管平行结晶系统10个完全独立的反应池,行业领先每个反应池独立控温和搅拌温度范围: -30°C~150°C搅拌速度: 350rpm~1200rpm2. 精确的温度控制变温速度可以在0.1°C/min至5°C/min之间选择反应池间可承受温差高达180℃温度均一性: ±0.5℃分辨率: 0.01℃3. 强大的软件功能直观,易于操作,由您指尖随心完全控制6’高清微处理触摸屏PC软件可快速获取溶解度曲线,用于溶解度/结晶评价4. 宽广的样品体积1ml试管适合珍贵药物的筛选3ml试管适合常规筛选25ml试管适合化学合成筛选5. 灵活的配置可选非浸入及浸入式IR探头,分析样品浊度(可搭配多重红外探头盒进行平行实验)可选外置温度探头及多重温度控制单元,使温度监控更加精确可选惰性气体接口可选冷凝回流装置可选集成机器人自动化工作站三、我们的客户众多行业用户选择了我们的Integrity 10 平行结晶系统,这些用户中不乏知名药企巨头。联系我们,获取行业用户应用案例。
  • 阿尔塔科技稳定同位素标记技术产业化基地建设成果系列报道之七:稳定同位素标记孔雀石绿与结晶紫
    为提高渔业产品质量,兽药被广泛应用于渔业养殖中寄生虫和微生物疾病的防治,不当使用会导致水产品中抗生素残留,最终影响人类食品安全和健康。图片来源:千图网孔雀石绿和结晶紫是有毒的三苯甲烷类化合物,易在水产品体内长期残留,农业部已将其列为水产禁药。然而,因其对鱼体的水霉病、寄生虫病等有特效,使得许多水产养殖户仍有违规使用,其在水产品中残留超标时有发生。因此,孔雀石绿和结晶紫为水产品检测的重点项目。孔雀石绿和结晶紫对人体健康有什么危害?图片来源:千图网孔雀石绿和结晶紫的人体暴露途径主要是食用含有孔雀石绿和结晶紫的鱼、虾等水产品。它们具有高毒性,可能会引起致癌、致畸、致突变,其代谢产物隐性孔雀石绿和隐性结晶紫的毒性强于母体化合物,对人体的健康危害非常大。孔雀石绿和结晶紫的限制法规图片来源:千图网2011年卫生部发布的《食品中可能违法添加的非食用物质和易滥用的食品添加剂名单(第1-5批汇总)》,以及2014年国家卫计委发布的《食品中可能违法添加的非食用物质名单》(国卫办食品函〔2014〕843号) 都指出不得违法添加及使用孔雀石绿和结晶紫。阿尔塔助力守护“舌尖上的安全”GB/T 19857-2005 《水产品中孔雀石绿和结晶紫残留量的测定 液相色谱-串联质谱和高效液相色谱的测定方法》适用于鲜活水产品及其制品中孔雀石绿、结晶紫及其代谢物残留量的检验。为保证检测的有效实施,阿尔塔科技成功研发出系列稳定同位素标记孔雀石绿和结晶紫及其代谢物标准物质,并且考虑到其具有高毒性的特点,推出系列经准确定值的标准溶液和混合标准溶液,为检测用户减少配制标液的风险,保护检测人员身体健康。部分孔雀石绿与结晶紫产品:了解更多产品或需要定制服务,请联系我们阿尔塔科技稳定同位素标记物产业化基地阿尔塔科技致力于建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障。阿尔塔科技开展科研攻关,已开发十余种稳定同位素标记物制备共性关键技术,实现了上百种的稳定性同位素标记农药、兽药、食品添加剂的量产和可持续供应,稳定同位素标记物产业化基地建设成果斐然,国产化和替代进口成绩显著。2022年,阿尔塔科技获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”。阿尔塔科技将依托重点实验室继续深耕食品安全、环境安全、医药研发、临床检测等领域稳定同位素标记标准物质的结构设计合成和分离纯化、分析方法开发和质量控制,开展稳定同位素标记标准物质全产业链应用技术研究。阿尔塔科技将陆续推出稳定同位素标记物产业化基地建设成果系列报道,展示阿尔塔科研团队的研发成果,包括但不限于十三五项目开发的稳定同位素标记RM。产品的化学结构、化学纯度和同位素丰度、均匀性和稳定性均经过严格的检测和评估,质量媲美进口产品,价格较进口产品大幅降低。我们期待与更多的科研机构、检测实验室进行合作,持续开发市场需求的高品质产品,让更多的国家标准制修订和实验室检测活动用上国产稳定同位素标记标准物质。
  • "光学之眼,精准透视" —海菲尔格携手芬兰Pixact公司PCM结晶监测系统开启新视界
    "光学之眼,精准透视" —海菲尔格携手芬兰Pixact公司PCM结晶监测系统开启新视界芬兰Pixact公司成立于2006年,总部位于芬兰坦佩雷,核心技术和团队成员均来自芬兰TUT坦佩雷理工大学。Pixact为过程分析提供在线原位监测技术,开发新颖的基于光学成像的过程监测探头,是全球在线颗粒成像技术及算法的领导者。其使命是为实验室研发和工业过程提供创新型工具,用于提高过程控制的自动化水平和产品质量的稳定性。芬兰Pixact公司开发的测试系统有:PCM结晶监测系统、PBS气泡尺寸监测系统、PPM颗粒监测系统、PBM气泡监测系统、PDM乳液监测系统、PSM浆料监测系统、PMFCM微纤化纤维素监测系统。 PCM结晶监测系统原理: PCM结晶监测系统采用透射光原理设计,由仪器探头末端发出的激光透过测试样品,通过探头另一端的高放大倍数CCD相机获取晶体高质量图像,通过功能强大的图像算法,分析颗粒轮廓,从而得到高分辨率的晶体图像、晶体径长比、晶体生长速率、微晶和粗晶趋势图、晶体尺寸分布的平均值和标准偏差、晶体数量累积分布、晶体尺寸分布相关统计D10、D50、D90等。 PCM结晶监测系统测试结果: 晶体径长比 体系流动性 晶体生长速率 高分辨率晶体图像 微晶和粗晶趋势图 索特直径及累积分布 测试区域的晶体数量和成核速率 晶体尺寸分布平均值和标准偏差 晶体体积分布(Dv10、Dv50、Dv90等) 晶体数量分布(Dn10、Dn50、Dn90等) PCM结晶监测系统应用领域: PCM结晶监测系统广泛应用于制药、农药、锂电池电解液(六氟磷酸锂、双氟磺酰亚胺锂、碳酸乙烯酯等)、精细化工、石油化工、生物化工、磷石膏、含能材料、航空航天、功能性糖醇(木糖、木糖醇、赤藓糖醇、甘露醇、甜菜糖等)等领域。 PCM结晶监测系统广泛应用于实验室研发、中试反应釜、工业现场反应釜、工业管道等场景。根据应用场景的不同可以选择Pixscope浸入式探头、Pixscope FL非接触式探头、Pixcell流通管等。Pixscope浸入式探头的直径有14mm、19mm、24mm、32mm等,可自选规格。 北京海菲尔格科技有限公司携手芬兰Pixact公司共同致力于提升中国的研究机构和企业的研发效率和自动化水平,为客户提供量身定制系统的解决方案,通过专业、细致和全面的技术支持服务,实现“为客户创造更多价值”的承诺。
  • 化学试剂结晶点测定仪成功研发上市
    在科学技术一日千里的当下,科学仪器的开展不仅仅是仪器行业自身的表现,更直接表现了一个国家在科技上的实力和水平。同时,科学仪器的开展还会推动与之相关范畴的开展,例如医疗设备的革新可能会推动医疗工作的进一步开展,勘探设备的改良也会带动资源动力发现、发掘… … 总而言之,科学仪器对国家立异开展、科技进步有着重要的含义。 人类的开展是在不断的认知社会、改造社会中得到实现的。在这个过程中,科学仪器也是人类不行缺少的重要工具,尤其是现代高、精、尖的科学仪器和设备,使得人类得到的信息更多、更快、更深入、更精确,同时也正是这些科学仪器,在支撑着各个领域的科学家们不断纵深探究。北京得利特迈着创新的步伐走在了油品分析仪器行业的前端,我公司引进先进人才大力研发新产品,化学试剂结晶点测定仪是我公司新研发的一款产品. A2103化学试剂结晶点测定仪适用标准:GB/T618,主要用于化学试剂结晶点的分析测定。技术参数• 冷槽控温: -35~30℃• 分辨率: 0.1℃• 加热功率: 600W• 制冷功率: 800W• 试样搅拌: 60次/分钟• 浴液搅拌: 自动搅拌(功率6W,1200r/min)• 环境温度: ≤30℃• 相对湿度: ≤85%• 储运温度: (-25~55)℃• 供电电源:交流220V±10% 50Hz±10%• 功 率: 2kw创新点: 数码控温、操作方便 采用**压缩机Danfoss(Secop),制冷快速、稳定可靠 自动搅拌,大大降低工作强度 德国**温度传感器(PT100) 双层真空玻璃浴,严格控温,便于观察.
  • 【瑞士步琦】全自动熔点仪测定半结晶高熔点聚合物的熔化范围
    根据 EN ISO 3146测定半结晶聚合物的熔化范围熔点应用”1简介根据官方法规 EN ISO 3146,通常聚合物不具有作为低分子物质的明确熔点。在这里,我们证明了采用步琦熔点仪 M-565 根据相关法规 EN ISO 3146 中方法 A:使用毛细管法测定半结晶聚合物熔化范围的可行性。选择半结晶聚四氟乙烯(PTFE)作为测试材料进行熔点测量。对于分析的 PTFE 样品,根据报道其熔点范围在 322.9±0.4°C 到 326.0±0.1°C 之间,根据 HG/T 2902-2024《模塑用聚四氟乙烯树脂》(替代HG/T 2902-1997)技术要求熔点应在 327±5℃。▲ 步琦喷雾干燥仪 S-300 配置的 PTFE 出口过滤袋2实验介绍结晶和半结晶聚合物的熔融过程属于结构敏感型。此外,分子量、分子量分布、质量、结晶材料/相的体积分数和热力学性质等参数对聚合物材料的熔融表现也有很大的影响。另外,样品的热历史(物质在地质历史中所经历的温度变化过程)也会影响聚合物的熔化。根据以了解的样品参数特性,我们不能期望检测到聚合物材料的确切熔点,而是可以得到一个熔化范围。半结晶聚合物的熔化范围开始于样品的固体粉末形态发生轻微的改变,并在物质完全熔化而结晶相消失之前继续经历粘性过渡转变的过程(如 图1 所示)。▲ 图1 所示。聚四氟乙烯的熔化过程。绿色曲线表示熔点软件 Melting Point Monitor1.2 记录的相应熔化等级。熔点范围为 322.9±0.4°C ~ 326.0±0.1°C。3实验为了接近测试化合物的熔化温度,使用自动装样器 M-569 在毛细管中进行装填聚四氟乙烯粉末(Sigma Aldrich,粉末状,自由流动,粒径 ≤12μm)。聚四氟乙烯(PTFE)提前在 25℃ 室温且相对湿度为 55% 条件下放置 3h,备用。装填好样品的熔点毛细管置于熔点仪 M-565 中,每次可测 3 个平行样品,设定升温梯度 10°C/min。三个测试样的平均熔化温度为 328.1℃。为了确定 PTFE 更加准确的熔化范围,新制备的样品仅使用 2.0°C/min 的升温梯度,并利用熔点软件 Melting Point Monitor 1.2 版本记录样品的整个熔化过程。通过编辑熔点测定方法,初始温度设定微低于预期熔点(328.1°C)20°C 开始升温,终点温度定为高于预期熔点(328.1°C)的 10°C 左右结束,该过程在没有监督的情况下运行。每次运行后分析记录的数据。4结果按照上述制备过程共测量六个 PTFE 样品,显示熔化过程开始于 322.9±0.4°C,在 326.0±0.1°C 下完成熔化。正如预期的那样,与 10°C/min 的加热梯度相比,2.0°C/min 的加热梯度在较低的温度下完成熔化。表1 总结了所有六个样本的结果;Tstart 为样品开始熔化时的温度,Tend 为熔化过程完成时的温度。熔化过程如 图1 所示。绿色曲线对应于每个温度下各自的熔化等级。表1:六个 PTFE 样品的熔化范围数据。温度以 ℃ 表示。样品TstartTend平均值(Tstart)Std(Tstart)1322.8326.1322.90.42322.3325.83323.1325.9___平均值(Tend)Std(Tend)4323.4326.1326.00.15323.2325.96322.7326.24实验结论本次实验成功地证明了半结晶聚合物的熔化范围可以根据相关法规 EN ISO 3146 使用步琦熔点仪 M-565 测定。结果标准偏差 5参考EN ISO 3146 : 2002-06HG/T 2902-2024《模塑用聚四氟乙烯树脂》
  • nanoDSF技术助力蛋白结晶的研究
    01研究背景稳定的、高纯度、单分散的生物样品显示出更高的结晶倾向[1]。早期阶段识别那些更有可能产生晶体的结构或变体能够节省大量的人力和时间成本。目前的很多方法,如凝胶过滤、DSF等技术可以帮助识别最优性质的样品,但是存在样品消耗量大或者外源染料与溶剂不兼容等问题。NanoTemper开发的nanoDSF差示扫描荧光技术,基于蛋白的内源荧光检测Tm值,通过Tm值的绝对数值和变化来确定优先结晶的缓冲条件或者蛋白变体等。接下来,我们通过两篇文献来了解nanoDSF如何助力结晶条件的筛选。02案例解读https://doi.org/10.1038/s41467-023-35915-4IF: 16.6 Q1非特异性磷脂酶C (NPC) 是植物特有的一类磷脂酶。尽管对NPCs的研究揭示了其在植物生长发育中的基本作用,但相比于其它磷脂酶(A1/A2/D/PI-PLC)水解底物的分子机制研究,NPCs是迄今为止唯一一类尚未被阐明的磷脂酶。湖北洪山实验室、作物遗传改良全国重点实验室蛋白质科学研究团队联合油菜团队的研究成果解析研究了NPC4的晶体结构和工作机制,为真核生物磷脂水解酶家族的分子机制提供了新见解。 研究中获得了NPC41-415和NPC41-496 两组结晶,对比结晶结果,发现NPC41-415没有磷酸化,且CTD结构域没有观察到电子密度。SDS-PAGE结果显示,蛋白在结晶过程中被部分降解,可能导致晶体中缺少CTD结构域。对比结晶条件发现NPC41-415的结晶中不存在KH2PO4,同时KH2PO4不影响NPC4活性。因此,作者推测KH2PO4可能会增强NPC4的稳定性。NPC4为膜蛋白,一般膜蛋白的表达和纯化得率均比较低,因此需要使用蛋白消耗量少的热稳定分析技术以最大程度的节约膜蛋白样品。nanoDSF技术样品检测浓度可低至5ug/ml,10μl,大大节约蛋白样品。研究人员利用nanoDSF技术检测了KH2PO4对NPC蛋白热稳定性的影响,每个条件仅需5.6ug NPC4蛋白样品。加入KH2PO4后,Tm值从51.1℃提高到55.3℃,表明NPC4在KH2PO4存在下更稳定,也解释了缺少KH2PO4时蛋白降解的原因。图示:KH2PO4提高NPC41-496 稳定性:nanoDSF结果显示,NPC41-496 Tm为51.1℃;在有50mM KH2PO4 存在下提高到55.3℃03案例解读https://doi.org/10.1038/s41598-023-41616-1IF: 4.6 Q2水通道蛋白2(APQ2)调控水的重吸收进而调控机体的水代谢平衡。AQP2基因的点突变可能导致肾性尿崩症(NDI)。为了进一步了解AQP2突变导致NDI的分子机制,作者通过对三种AQP2突变体(T125M、T126M和A147T)进行结晶,以了解突变AQP2的结构和功能关系,为NDI背后的机制提供了分子见解。为了提前了解突变对AQP2蛋白稳定性以及其对后续结晶的影响,研究人员使用nanoDSF技术比较了三种突变体的热稳定性差异。需要注意的是AQP2同样为膜蛋白,其储存溶液中含有去垢剂OGNG等成分,而nanoDSF技术是基于蛋白的内源荧光进行Tm检测,对去垢剂等兼容,无需优化检测条件,可快速获得重复性高的Tm结果。nanoDSF结果显示所有的热变性曲线显示出相似的形状。然而,Tm和Tonset在不同突变体之间存在差异。野生型AQP2的稳定性最高,其次为T126M和T125M, A147T的热稳定性最低。 图示:nanoDSF检测WT AQP2以及其突变体的热稳定性接下来,作者对AQP2以及其突变体进行结晶。在与野生型AQP2相同的条件下,只有T125M和T126M产生了足以用于结构测定质量的晶体,与野生型AQP2的结构高度相似。T126M晶体的衍射分辨率最高,为(~ 3-3.3 &angst ),其次是T125M (~ 3.7-4 &angst )。A147T晶体质量最低,衍射x射线约为5-7 &angst 。结晶结果与三种蛋白质结构的热稳定性非常一致,即蛋白质的热稳定性降低可能会降低其成功结晶的能力[2][3]。03案例小结&技术优势在上述两篇文献中,作者使用nanoDSF技术检测了膜蛋白在不同缓冲条件或者突变体的热稳定性,并且均可与后续的结晶结果对应。nanoDSF对缓冲溶液兼容,如去垢剂,无需额外优化条件,仅需非常少量的样品,即可快速完成Tm检测。明星产品PR Panta更是整合了4大检测模块(DLS、SLS、Backreflection和nanoDSF),仅需一份样品即可获得多种参数,更清楚了解结晶前样品情况,挑选最佳条件蛋白或条件进行结晶。PR Panta蛋白稳定性分析仪[1] Zulauf M, D'Arcy A (1992) J Cryst Growth 122:102–106[2] Dupeux, F (2011) Acta. Crystallogr. D Biol. Crystallogr. 67, 915–919.[3] Deller, M. C. (2016).Acta. Crystallogr. F Struct. Biol. Commun. 72, 72–95.
  • 《RISE大招》无机材料之结构分析和结晶度分析
    《RISE大招》前情回顾:这是一个荡气回肠的相遇、相知、相恋、相爱的故事。本系列前两集讲述了RISE从传统扫描电镜“心有余而力不足”的分析困境下一跃而出到它对于无机相鉴定和金属夹杂分析的武功路数,相信大家对RISE电镜-拉曼一体化系统已经有了基本了解。(然而小编还是无比体贴的放上了前两集链接:点击下列文字即可快速阅读)。01 “我的前半生”结束了,后面的科研之路就靠它了!02 无机材料分析,RISE还有这些大招!科研无涯,却无需苦作舟。路即在此,英雄闻声而至。话不多说,今天呢,接着上次的招式,给大家讲讲RISE在无机材料结构分析和结晶度分析上的套路。无机材料之结构分析对于无机材料来说,经常会碰到同分异构的情况。但是仅仅通过扫描电镜和能谱,我们只能得到形貌和成分数据,而没有办法对样品进行准确的结构分析。而结构作为物质的基本特性,极大的影响着热、力、光、电、磁等性能,因此也是微区表征不容忽视的方面。而目前在SEM系统中,能够进行结构表征的也只有EBSD,但是前提依然是要有严格的样品制备,局限性很大。而成分相同结构不同的同分异构材料的拉曼光谱,往往表现出较大的差异,因此拉曼光谱分析手段是很好的表征结构的手段。因此,通过SEM+EDS+Raman (RISE) 的综合分析手段,我们就可以对同分异构材料进行全面准确的形貌、成分和结构分析。 如下图,试样为TiO2粉末,TiO2有锐钛矿和金红石两种结构,并且两者表现出完全不同的拉曼光谱特征。因此在RISE系统中通过拉曼光谱的面扫描分析,可以轻易的区分出蓝色区域为锐钛矿结构,红色区域为金红石结构。再例如下图,通过EDS数据知道电镜分析区域为Sm2O3 ,然后在此基础上进行拉曼面分布分析。虽然试样并不平整,完全不够EBSD的测试要求,但是RISE系统依然可以发现其中红色区域为立方结构的Sm2O3 ,蓝色区域为单斜结构的Sm2O3 。无机材料之结晶度分析对于无机材料来说,结晶度也是重要的参数。目前能够很好的表征结晶情况的主要是XRD,并且是基于宏观分析,能在微区尺度对结晶度进行表征的手段则很少。而无机晶体材料的结晶度却会对特征拉曼峰产生较大的影响。结晶度程度高,特征拉曼峰高而尖锐;反之,若结晶度低,则特征峰会变宽。因此,可以通过特征拉曼峰的宽度来对结晶度进行评判。由此可见,原位一体化的RISE对微区领域的结晶度分析提供了新的途径。如下图,用SEM-FIB双束电镜在硅表面进行图形加工。由于Ga+离子的注入效应、热效应等会使加工区域的硅产生一定程度上的非晶化。仅凭形貌是无法知道非晶化程度的。而在此区域用RISE进行拉曼面扫描,并用每一个测试点的Si的特征拉曼峰的半高宽为依据进行RISE成像,红色区域为半高宽较窄,蓝色区域为半高宽较宽。由此形成的RISE图像,对于研究FIB加工产生的非晶化一目了然。RISE七十二般武艺,招招新奇,但一招一式,每一个路数都为更好的帮助您的科研分析而生。除了切实突破并解决了传统扫描电镜分析能力薄弱的问题,针对传统意义上的电镜-拉曼联用系统的种种分析弊端,RISE系统采用了扫描电镜-拉曼光谱一体化的硬件和软件设计,使得综合分析更加行之有效。 故事刚开始,我们已相遇,还有相知、相恋、相爱̷̷跑远了,下面请收看“下集预告”:《RISE大招》下集看点:无机材料之微量元素分析、取向分析、取向应力分析。关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。关注TESCAN中国官方微信“TESCAN公司”,更多精彩资讯。↓ ↓ ↓ 观看RISE大招全系列,请戳:01 “我的前半生”结束了,后面的科研之路就靠它了!02 无机材料分析,RISE还有这些大招!
  • 北京理工大学陈棋/朱城AM:ZrNx阻挡层的非晶-结晶界面工程用于稳定的反式钙钛矿太阳能电池
    金属卤化物钙钛矿太阳能电池为下一代光伏技术开辟了一条新的途径,它制造成本低且具有高光电转化效率。然而,长期稳定性仍是阻碍商业化的关键问题。在目前的钙钛矿太阳能电池中,原子/离子/分子间相互扩散(如卤化物侵蚀、阳离子偏析等)和化学反应(如电化学反应、光化学反应等)常常导致器件在运行条件下出现严重的退化,特别是光照和热产生的化学腐蚀和材料分解在金属/钙钛矿界面尤为突出,这限制了高效电池的长期稳定性。阻挡层已被证明是抑制电极腐蚀和提高器件稳定性的有效策略。作为离子迁移的屏障材料,其应具有本征的不渗透性和化学稳定性,这一点已经得到了广泛的研究。目前大多数阻挡层材料都是基于材料本征稳定性和制备工艺展开研究和筛选,从而优化器件性能和稳定性。然而,纳米尺度非晶薄膜微结构异质性和离子迁移的阻挡能力之间的固有规律尚未有系统研究。非晶态半导体由于其致密的形态和化学均匀性,具有良好的化学抗腐蚀性和抗渗透性,在太阳能转换、微电子学、催化和光电子学中具有多种应用。与晶体薄膜相比,非晶薄膜没有典型的晶体缺陷,这有三个优点:(1)少的能量异质位点减少化学腐蚀程度;(2)缺乏高维缺陷(如晶界)作为离子/原子迁移通道;(3)局部表面电荷的波动降低,表面电位更平滑,接触良好。因此,非晶阻挡层为防止器件发生腐蚀反应和扩散途径提供了一个有效的方案。但是,目前对器件中的非晶阻挡层的关注有限,其阻挡作用需要进一步探索。因此,来自北京理工大学的朱城副研究员和陈棋教授,在Advanced Materials上发表了“Engineering amorphous-crystallized interface of ZrN x barriers for Stable Inverted Perovskite Solar Cells”的文章,第一作者为肖梦琪。文章开发了非晶态ZrNx薄膜作为屏障,以抑制金属腐蚀并提高反式电池的稳定性。通过借助模式识别技术对a-c界面密度进行了量化,研究了非晶-结晶(a-c)界面对ZrN x阻挡层性能的影响。此外进一步通过电化学方法揭示了a-c界面防腐蚀特性和非晶薄膜的化学稳定性。最终调控制备了具有非晶ZrN x阻挡薄膜的高效率器件(23.1 %),并显示出良好的稳定性。在室温下最大功率点跟踪连续1500小时后,仍保持88%的初始效率。本文要点要点一:非晶ZrNx阻挡层的a-c界面量化及其阻挡特性非晶-多晶阻挡层中通常包含不同程度的结晶区域,由此产生的非晶-结晶(a-c)界面容易成为离子渗透的通道。通过收集不同结晶程度ZrN x阻挡层的高分辨率透射电子显微镜(HRTEM)数据,采用模式识别技术来分析和评估短程异质性和长程无序性。通过调控工艺参数,实现了ZrN x薄膜中结晶区域和非晶区域的比例调控,从而导致a-c界面密度的降低。并通过Tof-SIMS证明了非晶程度高的ZrN x薄膜具有更好的阻挡特性。要点二:非晶ZrNx的防腐性能和化学稳定性提升作者通过电化学方法证明了,ZrN x非晶态薄膜中a-c界面的减少有助于薄膜的防腐性能提高。通过DFT理论计算和不同结晶程度的ZrN x薄膜的表面电势的结果,作者认为防腐性能的提高归因于非晶材料活化能提高和化学势的均匀分布,从而在动力学上抑制了离子或者原子的迁移。因此,非晶程度高的ZrN x薄膜具有更好的抗腐蚀能力和化学稳定性。要点三:非晶ZrNx抑制电极腐蚀和钙钛矿退化作者验证了非晶ZrN x在没有传输层器件中的阻挡效果。在85 ˚C黑暗和N 2条件下老化500小时后,通过SEM图像发现具有非晶ZrN x阻挡层器件的Cu电极表面没有明显变化,而标件Cu电极表面出现针孔和形貌变化。进一步通过XRD和XPS确认标件电极中出现CuI,但是非晶ZrN x阻挡的器件中电极没有出现CuI,说明非晶ZrN x能够抑制电极的腐蚀。此外,剥离Cu电极后,通过光致发光图像和隧道式原子力显微镜得到非晶ZrN x减缓了钙钛矿的退化过程,提高了钙钛矿薄膜的稳定性。要点四:器件稳定性提升通过在传输层和电极之间插入非晶ZrN x阻挡层,明显提高了反式钙钛矿太阳能电池的运行稳定性,在一个太阳光照下,连续的最大功率点跟踪超过1500小时后,保持初始效率的88%。此外,还表现出良好的光热稳定性,在85 ˚C下超过1000小时后仍保持90%的初始效率,在N 2气中一个太阳光照下超过1300小时后仍保持90%的初始效率。从老化后PSCs的Tof-SIMS和截面的SEM图像中,均发现非晶ZrN x有效抑制PSCs中的Cu和I的迁移。
  • 中国化学会第六届高分子结晶研讨会第一轮通知
    中国化学会第六届高分子结晶研讨会将由中国化学会高分子学科委员会和杭州师范大学共同主办、杭州师范大学材化学院承办,于2022年4月15日至4月17日在杭州举行。本次研讨会将邀请国内高分子结晶、高分子物理、高分子加工等领域的专家学者,对高分子结晶理论、应用及表征技术等方面的前沿问题进行深入研讨,欢迎各位同行参加本次研讨会。会议介绍有机高分子材料超过三分之二是半结晶高分子,高分子结晶行为和晶体结构对于调控材料性能具有重要意义。我国自2017年以来每年举办一次以高分子结晶理论、表征和应用为主题的小型学术会议,中国化学会第五届高分子结晶研讨会去年夏天在长春成功举办。因疫情控制等方面的原因,本次会议将适度控制参会人数及规模,请各位代表尽早注册报名。组织机构会议主办单位:中国化学会高分子学科委员会、杭州师范大学会议承办单位:杭州师范大学材料与化学化工学院会议主席(以姓氏为序):胡文兵、李良彬、门永锋会议执行主席:李勇进组织委员会:由吉春、曹肖君、王莲、王亨缇、梁媛媛、杨静、叶丽军、颜廷姿、郑鑫征文内容投稿论文可参照但不限于以下内容:1. 高分子结晶的计算机模拟及新方法2. 高分子结晶的新现象新理论3. 功能高分子的结晶行为4. 天然和生物可降解高分子的结晶行为5. 加工过程的高分子结晶行为会议日期2022年3月25日 摘要截止日期2022年4月15日会议报到,4月16--4月17日学术研讨会。会议地点及酒店预订:详见第二轮通知。注册缴费会议注册方式、论文摘要格式及截至日期等信息,请联系会议主办方索取,邮件地址:(polymer_crystal_6@163.com)。会议注册费:参会费用:含会议资料费、会务费、场租费,会议期间食宿费用自理。会议注册费(单位:元)注册缴费教师(非中国化学会会员)/企业代表1500元/人教师代表(中国化学会会员)1200元/人学生代表(凭学生证)1000元/人学生代表(中国化学会会员)800元/人付款方式:详见第二轮通知。赞助事宜本次会议将为企业提供展示平台,欢迎会议赞助和厂商宣传,相关事宜请联系由吉春老师。联系电话:13732208663(微信同号),0571-28868108电子信箱:you@hznu.edu.cn会议组委会秘书处联 系 人: 由吉春 13732208663,0571-28868108叶丽军(摘要与论文,会议参会、参展)15158019447 郑 鑫(会议注册) 15158018557杨 静(交通安排) 15558027301 联系信箱:polymer_crystal_6@163.com通讯地址:杭州师余杭区余杭塘路2318号,杭州师范大学, 邮 编:310000
  • 结构生物学领域迎来“不结晶”革命
    如果继续发展下去,并且所有技术问题都得到解决,冷冻电镜确实会成为一种占据统治地位的技术,而不仅仅是第一选择。  在英国剑桥市一座钢结构建筑深处的地下室里,一场大规模的“叛乱”正在上演。  一个约3米高的庞大金属箱正通过消失在屋顶上的橙色粗电缆,静悄悄地发射兆兆字节的数据。这是全球最先进的冷冻电子显微镜之一:一台利用电子束为冷冻的生物分子成像并揭秘其分子形状的设备。英国医学研究委员会分子生物学实验室(LMB)结构生物学家Sjors Scheres像个矮子一样站在这台价值500万英镑(合770万美元)的设备旁边介绍说,这台显微镜非常敏感,以至于一个叫喊声就能毁掉试验。  在全球实验室中,类似这样的冷冻电镜正影响着结构生物学领域。过去3年里,它们揭示了制造蛋白的核糖体细节,而这些发现正在以飞快的速度发表于顶级期刊。结构生物学家们毫不夸张地认为,他们的领域正处于一场革命当中:冷冻电镜能快速创建那些抗拒X射线结晶学和其他方法的分子的高分辨率模型。与此同时,利用此前技术获得诺贝尔奖的实验室正争先恐后地学习这种“新贵”方法。  挑战“王者”  当1973年生物学家Richard Henderson到LMB研究一种被称为菌视紫红质的蛋白时,利用光能量推动质子穿过细胞膜的X射线结晶学是毫无疑问的“王者”。Henderson和他的同事Nigel Unwin利用这种蛋白制成二维晶体,但它们并不适合X射线衍射。因此,两人决定尝试电子显微镜。  当时,电子显微镜用于研究被重金属染色剂处理过的病毒或组织切片。一束电子被射向样品,其中挣脱开来的电子被探测到并用于描绘它们所撞入的材料结构。这种方法产生了烟草病菌的首幅清晰图像,但染色剂使观察单个蛋白变得困难,更不用说X射线所能揭示的原子水平上的细节。  在一个关键步骤中,当Henderson和 Unwin利用电子显微镜对菌视紫红质的晶片进行成像时,他们省略了染色剂,相反把晶体放在金属网格上,以便使蛋白凸显出来。“你能看到蛋白中的原子。”和Unwin在1975年发表了菌视紫红质结构的Henderson介绍说。“这是一个巨大的进步。”美国加州大学旧金山分校细胞生物学家David Agard表示,“这就是说,利用电子显微镜研究蛋白结构将成为可能。”  冷冻电镜领域在上世纪八九十年代得到发展。一个关键进步是将液态乙烷用于瞬间冻结溶液中的蛋白并使其保持静止。不过,通常情况下,这种技术仍然只能将蛋白结构解析到10埃(1埃相当于1纳米的十分之一)的分辨率——与X射线晶体学超过4埃的模型相比并没有竞争力,并且远远无法满足将这些结构用于药物设计的要求。当诸如美国国立卫生研究院等资助者把上亿美元投资到野心勃勃的晶体学项目时,对冷冻电镜的资助远远落后于此。  1997年,当Henderson参加关于3D电子显微镜的年度高登研究会议时,一位同事在开幕式上发表了颇有挑衅意味的声明:冷冻电镜是一种“小生境”方法,不可能取代X射线晶体学。不过,Henderson能看到一个不同的未来,并且在随后的演讲中进行了反驳。“当时我说,我们应当让冷冻电镜在全球统治所有结构学方法。”他回忆道。  革命从此开始  此后第二年,Henderson、Agard和其他冷冻电镜的狂热支持者有条不紊地实现了各种技术改善,尤其是找到了感知电子的更好方法。在数码相机风靡世界很久之后,很多电子显微镜专家仍然偏好过时的胶片,因为它能比数字传感器更高效地记录电子。不过,和显微镜生产厂商一道,研究人员开发出远超胶片和数码相机探测器的新一代直接电子探测器。  这些从2012年左右获得应用的探测器,能以每秒几十帧的速率捕捉单一分子的速射图像。与此同时,诸如Scheres等研究人员编写了复杂的软件程序,将上千幅2D图像转变成在很多情况下可与晶体学解析的分子图像质量相媲美的3D模型。  冷冻电镜适合能忍受电子轰击而不会四处晃动的稳定、大型分子,因此通常由几十个蛋白制成的分子机器是很好的目标。而研究证明,没有什么比由RNA相互缠绕支撑的核糖体更加合适了。通过X射线晶体学解析核糖体结构的方法,让3位化学家获得了2009年诺贝尔化学奖。过去几年里,不同的研究团队迅速发表了来自众多生物体的核糖体冷冻电镜结构,包括首个人类核糖体高分辨率模型。在由分享了2009年诺贝尔奖的Venki Ramakrishnan领导的LMB实验室,X射线晶体学在很大程度上变得无人问津。他认为,对于大型分子来说,“冷冻电镜将大幅取代晶体学技术的预测是可靠的”。  今年5月,加拿大多伦多大学结构生物学家John Rubinstein和他的同事利用约10万幅冷冻电镜图像,创建了一种名为V-ATPase、形状类似转子的酶的“分子影片”。V-ATPase通过燃烧三磷酸腺苷(ATP)推动质子进出细胞液泡。“我们看到的是一切事情都在灵活进行。”Rubinstein说,“它在弯曲、扭动和变形。”在他看来,这种酶的灵活性能帮助其高效传递ATP释放的能量。  统治结构生物学领域  像任何新兴领域一样,冷冻电镜领域也有着成长的烦恼。一些专家担心,竞相利用此项技术的研究人员会产生有问题的结果。2013年发表的一种艾滋病病毒表面蛋白的结构,便受到科学家的质疑。他们认为,用于构建模型的图像是白噪声。从那以后,虽然其他团队产生的X射线和冷冻电镜模型对原始模型提出了挑战,但这些研究人员一直坚守他们的成果。  今年6月,在高登会议上,想要更多质量控制的研究人员通过一项决议,督促各期刊为审稿人提供关于冷冻电镜结构如何被创建的细节资料。  成本也会减缓此项技术的扩散。据Scheres估算,LMB每天花费约3000英镑运行其冷冻电镜设备,还要加上1000英镑的电费。大部分电费是由储存和处理图像所需的计算机产生的。“对于很多实验室来说,这是一项很高的开支。”  为了让冷冻电镜的使用更加便利,一些资助者建立了研究人员能预定时间的共享设备。霍华德休斯医学研究所(HHMI)在其弗吉尼亚州珍利亚农场校区运营着一个对HHMI资助的研究人员开放的冷冻电镜实验室。在英国,由政府和惠康基金会资助的一台全国性冷冻电镜设备,今年在牛津附近的迪德科特开始运行。“人们想要了解冷冻电镜,已成为当下的一股浪潮。”帮助建立上述设备的伦敦大学伯克贝克学院结构生物学家Helen Saibil表示。  追赶这一浪潮的还有纽约洛克菲勒大学生物物理学家Rod MacKinnon。他因确定了特定离子通道的晶体结构而共同分享了2003年诺贝尔化学奖,但如今却在深入研究冷冻电镜。“我正处在学习曲线的陡坡上,而这总是令我兴奋不已。”MacKinnon希望利用冷冻电镜研究离子通道是如何打开和关闭的。  当Henderson在1997年反驳说冷冻电镜将统治结构生物学世界时,他或许是在口是心非。但将近20年以后,他的预言已不像当时看上去的那么夸张。“如果继续发展下去,并且所有技术问题都得到解决,冷冻电镜确实会成为一种占据统治地位的技术,而不仅仅是第一选择。”Henderson说,“我们或许已经成功了一半。”
  • 你知道吗 | 不同溶剂的多晶型筛选只需一台设备就能搞定!
    随着近日寒潮来袭,南方多地也迎来了2021年冬季首场降雪,而北方人纷纷在朋友圈看南方下雪。但你知道吗?下雪其实是一种结晶现象,雪花的冰晶形状各式各样,其形状很大程度上取决于云层中的温度和湿度。▲图1-雪花的不同形状药物的结晶和雪花类似,影响其结晶的因素包括温度、溶剂、搅拌等。什么是药物晶型?药物的晶型包括药物分子排列不同形成的各种状态,也包括与其他分子共同存在时形成的共晶状态。晶型是药物重要属性之一,因为同一种药物的不同晶型,却具有不同的理化性(如溶解度,溶出速度,稳定性等),从而影响到药品的有效性、安全性和质量,往往药物专利都需要列出药物的晶体形式。结晶过程受多种因素影响,如溶剂的种类与数量、温度、溶液的过饱和度、密度、机械搅拌和杂质等,例如,下图2是不同溶剂下药物的不同晶型形状。因此,高度控制的溶剂蒸发结晶过程在结晶研究中变得尤其重要。▲图2-不同溶剂如丙酮(左),乙酸乙酯(右)的布洛芬晶型可控可重复的多晶型筛选方式多晶型筛选目的是筛选出最适合生产、生物利用度高、利于制剂的优势药物晶型,这个过程可能需要很长时间,因此Genevac公司开发的eXalt™ 结晶工具包结合EZ-24.0浓缩仪或HT系列溶剂蒸发工作站,可以高度控制蒸发结晶过程,协助研究人员进行结晶研究,以可控可重复的方式进行多晶型筛选或者寻找亚稳态或稳定形态。▲GenevacEZ-24.0系列(左)和HT系列(右)溶剂蒸发工作站eXalt™ 高度控制的结晶技术eXalt™ 结晶工具包可以使多种小分子活性物质同时在相同的时间、相同的缓慢速率和相同的条件下从多种不同的溶剂中产生晶体,例如可以将DCM和甲苯置于同一系统中同时蒸发。eXalt™ 结晶工具包可用于沸点为40°C至165°C–即DCM至DMAc的溶剂(如下图4)。根据该沸点范围内不同溶剂的要求,蒸发时间可控制在6小时至72小时或更长的范围内。▲图4-不同溶剂在同一蒸发结晶速率eXalt™ 结晶包(下图5)由一个特殊的样品瓶支架、样品瓶、不同数量和孔径的挡板组成的塔构成。可以在每个样品瓶的顶部放置一定数量挡板的塔,以减缓挥发性溶剂的蒸发速度,从而使各种溶剂以相同的慢速同时蒸发。▲图5-eXalt™ 结晶工具包挡板组成的塔由4个部分组成:一个基础段(包含密封)和三个顶部段(可自由选择)。挡板的尺寸、数量、排列取决于溶剂的不同,选择原则是最易挥发的溶剂挡板孔径小而数量多以使挥发物质的蒸汽缓慢流动,而对不易挥发的溶剂则相反。举个简单的例子,溶剂上的蒸汽浓度为100ppm,首层挡板的蒸汽浓度为50ppm,第二层25ppm,第三层12ppm。▲图6-不同数量挡板构成的塔然后将支架放置在GenevacEZ-24.0系列或者HT系列溶剂蒸发工作站中,设置温度和压力,通过eXalt™ 软件控制。技术特点☆eXalt™ 可控制多种不同溶剂在同一时间、同一速度、同一条件下做蒸发结晶,以确定最合适溶剂晶种和溶剂条件☆仅需少量化合物(≤5mg)即可快速轻松地筛选API☆提供更多控制,消除结晶研究中的一些变量,获得良好的重现性的同时,使缺少经验的工作人员也能轻松使用☆仪器自动操作,实现无人值守☆为经典工艺提供了晶种和溶剂条件应用案例来自日本的一家制药企业,使用GenevaceXalt™ 控制结晶系统方法筛选多晶型[1]。把20种不同溶剂分别制备了3ml的2mg/ml吡罗昔康溶液分别放入不同样品瓶中,使用装有不同数量的挡板盖住,其中六种溶剂的较低挥发性不需要挡板。另外,为了确保在运行结束时完全蒸发,其中三种溶剂还需要减少初始体积(这些溶液的浓度经过校正,每瓶产量为6mg)。然后将完整的支架放入GenevacHT溶剂蒸发工作站,启动exalt程序工作72小时,结晶后使用X射线衍射仪(XRD)进行分析[2]。▲图7-使用eXalt™ 控制结晶形成的晶体的XRD结果▲图8-通过XRD分析确定的多晶型结果显示,eXalt™ 结晶技术允许使用最少的化合物(每瓶6毫克)快速轻松地筛选API。使用20种溶剂对吡罗昔康进行了筛选,仅使用150毫克的化合物就确定了三种多晶型。此外,该方法是非破坏性的,在没有形成晶体的情况下,可以将化合物重新溶解以供进一步使用。参考文献[1]VrecerF,VrbincM,ModenA(2003).CharacterizationofPiroxicamCrystalModifications.InternationalJouralofPharmaceutics,Vol,256(1-2),3-15.[2]MKAP068_ExaltPiroxicamScreeningIssue.GenevacLtd-partofSPscientific,Ipswich,UK.
  • 2023药物化工结晶技术研究暨工艺开发技术应用研讨会圆满收官
    2023药物化工结晶技术研究暨工艺开发技术应用研讨会圆满收官 疫情散去,春暖花开,南京齐聚,大咖云集,2023药物化工结晶技术研究暨工艺开发技术应用研讨会于3月26日圆满收官。药物晶型研究在制药化工企业具有极其重大的意义,如何通过科学合理地设计和控制多晶型原料药结晶工艺,重复生产出满足质量要求的晶型成为了制药企业研发药品研发工作者面临的难题,本次会议由中国化工企业管理协会主办,旨在促进国内医药化工结晶技术的研究进程与推广,交流结晶新技术、新工艺、新设备应用、推动国内结晶技术研究、改进结晶新工艺、节约能源、提升产物质量,为学术研究机构与制药化工相关企业应用开发提供了良好的沟通交流平台,解决了实际生产当中遇到的各种问题。 部分专家报告图会议现场,各结晶领域大咖做了精彩学术报告,结晶相关企业与院校研究机构人员齐聚一堂,认真聆听专家报告,并对专家进行现场提问,专家一一进行答疑解惑,现场沉浸在一片浓浓的学术氛围中。海菲尔格展位参观图北京海菲尔格科技有限公司很荣幸地作为协办单位参加了此次盛会,并现场进行实验演示,展示了芬兰Pixact公司PCM在线结晶监测系统,PCM在线结晶监测系统清晰的成像功能和强大的数据分析能力,致在场专家学者、企业研发人员纷纷前来沟通交流,展位前人流攒动。 PCM结晶监测系统采用透射光原理设计,由仪器探头末端发出的激光透过测试样品,由探头另一端的高分辨率CCD相机接收透射光并对晶体成像。对于微小晶体也可以清晰成像,并保证图像质量。PCM结晶监测系统利用功能强大的图像算法,可以得到高准确度的晶体颗粒度数据:晶体尺寸D10、D50、D90等、晶体尺寸分布、晶体尺寸变化趋势、晶体形态、晶体径长比、晶体生长速率等数据。PCM结晶监测系统不需要离线取样,可以原位在线实时监测晶体成核、生长、聚结、破碎、晶型转变等过程。测试过程清晰直观,既大大提高了结晶工艺研究效率和准确性,又可以避免传统显微镜结晶研究的取样问题、以及取样后由于条件变化导致的样品变化问题,可帮助用户优化与控制结晶工艺流程,以及排除工艺过程故障。本着为用户提供最先进的仪器设备,加快提高我国结晶技术水平,提供用户之所需,解决用户之所急的初心,北京海菲尔格科技有限公司将会继续不断完善自我,提高自我,在结晶技术研究进步的道路上献一份力。
  • 固液界面(SLIM)蛋白质结晶方法及新型结晶板研制
    成果名称 固液界面(SLIM)蛋白质结晶方法及新型结晶板研制 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 合作方式 □技术转让 □技术入股 &radic 合作开发 □其他 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 在结构生物学领域,晶体学是获得蛋白质原子结构的最普遍方法。近年来,尽管人们对蛋白质结晶原理的认识逐步深入,并且在方法研究方面不断有新的突破,但是国际上尚没有一个通用的可以获得蛋白质晶体的方法,蛋白纯化及晶体生长是一个劳动密集、成功率比较低的工作。在这种情况下,蛋白质晶体制备技术的自动化、并行化、小型化创新将大大简化蛋白晶体生长步骤,从而提高工作效率,十分必要。 在此背景下,苏晓东课题组提出一个新的蛋白质结晶概念,即固体液体界面方法(SLIM),该方法可降低蛋白结晶筛选时对蛋白质浓度及量的要求。SLIM主要基于提前滴加池液使其干燥便于储存运输,而后在&ldquo 干滴板&rdquo 上生长晶体时滴加蛋白溶液到&ldquo 干池液&rdquo 中,这为蛋白晶体生长提供了不同的动力学途径。这个方法的一个突出优点是可以利用自动化的多通道的移液设备大批量的准备许多&ldquo 干滴板&rdquo ,从而大大简化蛋白结晶过程并增加通量。为了使这个方法能够实用化,课题组需要尝试及采用各种高通量、自动化移液系统来制造大量低成本&ldquo 干滴板&rdquo ,同时还要设计并制备合适的结晶塑料板材。 作为&ldquo 仪器创制与关键技术研发&rdquo 基金首批支持的项目,在项目资金的支持下,通过结晶&ldquo 干滴板&rdquo 制备仪器的购置,以及结晶板材生产模具的试制,苏晓东教授这一新型蛋白质结晶板的研制工作得以顺利推进。目前,苏晓东课题组已经成功制备了蛋白质结晶&ldquo 干滴板&rdquo 样品,并已获得良好的效果,相关专利申请已进入国家阶段。接下来,课题组将继续与相关公司及厂家合作,进一步研制&ldquo 干滴板&rdquo 的大批量、高通量生产技术,实现该技术成果的转化。 应用前景: 蛋白质晶体制备技术的自动化、并行化、小型化创新将大大简化蛋白晶体生长步骤,从而提高工作效率,应用前景广阔。
  • 祝贺“2012结晶技术在医药工业中的应用培训会”圆满举行
    由梅特勒托利多自动化化学部联合上海医药工业研究院共同举办的&ldquo 2012结晶技术在医药工业中的应用培训会(药物研发与生产中的晶体工程)&rdquo ,于2012年5月10日在浙江台州一鼎大酒店顺利召开。 来自浙江苏泊尔制药有限公司、江苏汉斯通药业有限公司、浙江银河药业有限公司、浙江省台州市华南医化有限公司、浙江沙星医药化工有限公司、浙江手心医药化学品有限公司、江苏三联生物工程有限公司、江苏徐州万邦金桥制药有限公司、浙江燎原药业有限公司、浙江景岳堂药业有限公司、浙江耐司康药业有限公司、浙江省台州联化科技股份有限公司、浙江昌海生物有限公司生产技术部、浙江新东港药业股份有限公司技术中心、赛诺菲唐山工厂、浙江天新药业有限公司技术中心、台州市托利仪器设备有限公司(梅特勒-托利多经销商)、浙江京新药业股份有限公司、浙江尖峰海州制药有限公司、浙江华海药业股份有限公司、浙江医药股份有限公司新昌制药厂研究院、浙江天宇药业股份有限公司、江苏万邦生化制药有限公司、浙江车头制药、浙江东新药业、浙江海正药业、浙江仙琚制药股份有限公司、浙江雅赛利(台州)制药有限公司、浙江九洲药业股份有限公司29个单位,104人参加了此次研讨会。 图片1:与会者认真听讲 会上,上海医药工业研究院药物晶体工程研究实验室任国宾博士、梅特勒托利多自动化化学部技术应用顾问万欢先生以及郑乾女士针对药物多晶型的挑战、结晶工艺开发和晶型控制等各种关键技术展开深入探讨和交流。主要涉及的议题包括:药物研发与生产中的晶体工程&mdash &mdash 从处方前研究到工程化,EasyMax/OptiMax快速筛选和优化&mdash &mdash 提高R&D效率,应用PAT工具快速开发和优化结晶工艺。与会代表对会议主办方提供这样一个交流平台表示感谢,并期待举办下次培训会。 图片2:大会代表发表讲话 作为主办方之一,梅特勒托利多公司长期与药物结晶工艺方面具有国内高学术水平的研究单位和机构保持良好的合作关系,例如上海医药工业研究院、天津大学、华东理工大学等。希望通过培训会的方式,让国内更多相关人士了解国内外先进的技术,同时提供量身定做的解决方案,为研发人员解决实际的问题。
  • 2012 中国工业结晶科学与技术研讨会将举办
    近年来,工业结晶的广泛应用引起很多业界人士的关注,并对其技术及发展非常感兴趣。 作为新一代的结晶研究自动化解决方案专家,为了推动国内结晶技术的研究进程与应用,力扬企业将会出席由天津大学国家工业结晶技术研究推广中心举办的「2012 中国工业结晶科学与技术研讨会」,与一众参加者分享结晶研究的心得。 这次会议的主题是 「工业结晶技术及其产业化应用的现状与未来发展」,其宗旨在于研讨医药、食品、化工、材料等领域的工业结晶科学与工程技术方面的最新进展,推进相关产业的技术升级,加强学术界与工业界之间的联系与交流。为了配合主题,大会更邀请力扬的技术工程师作为讲者之一,讨论高输出结晶技术在医药研发中的应用,并通过具体实例为大家展现客户使用 Avantium 平行结晶仪的研究成果。 Avantium Crystal16 与 Crystalline 平行结晶仪提供了高输出实验效能,透过将平行反应技术、自动化控制技术与 PAT 技术组合在一起,让研究人员快速获取实验信息,大大提高实验效率、重现性和可控性。想了解更多仪器信息,请登入http://www.instrument.com.cn/netshow/SH100245/C117978.htm# 或 联系力扬,查询更多产品信息http://www.instrument.com.cn/netshow/SH100245/office.asp活动信息:日期:2012 年 7 月 28 –30 日 (其中安排一天会议交流或培训)地点:黄山 (香茗国际会议中心酒店)活动网站:www.srcict.com
  • 盛泰仪器全自动结晶点仪通过万华化学验收
    盛泰仪器全自动结晶点仪通过万华化学验收 万华化学集团股份有限公司是一家全球化运营的化工新材料公司,起步于1978年,2001年在上海证券交易所上市(股票代码600309)。公司以技术创新为第一核心竞争力,拥有极具竞争力的MDI制造技术和产业链完整的ADI制造技术,以及C2/C3/C4完整石化产业链。业务聚焦聚氨酯、石化、精细化学品、新兴材料四大产业平台,相关产品广泛应用于生活家居、运动休闲、汽车交通、建筑工业、电子电气、个人护理和绿色能源等涉及国民生活的方方面面、 万华化学始终坚持以科技创新为第一核心竞争力,持续优化产业结构,业务涵盖MDI、TDI、聚醚多元醇等聚氨酯产业集群,丙烯酸及酯、环氧丙烷等石化产业集群,水性PUD、PA乳液、TPU、ADI系列等功能化学品及材料产业集群。 因为万华化学的其中一个产品的特殊性,国内其他普通的结晶点满足不了产品要求,通过实验、对比、比较,他们很快把目光锁定在盛泰仪器的全自动结晶点测定仪,因为盛泰仪器拥有智能化仪器的定制能力,盛泰凭借其定制优势获得了万华化学的认可。能与万华化学合作,我们深感荣幸。在未来的合作中我们将更好的做好售后服务,我们也为能为更多的化工科研做出一份绵薄之力而自豪,期待为更多的化工企业服务。
  • 四川大学绿色磷化学工程技术研究开发中心喜添PCM结晶监测系统
    四川大学绿色磷化学工程技术研究开发中心喜添PCM结晶监测系统 绿色磷化学工程技术研究开发中心(以下简称“磷工程中心”)是依托于四川大学化学工程学院,从事磷化学工程技术开发的一个研究集群。中心现拥有“化学工程”国家重点学科、教育部“磷资源综合利用与清洁加工”工程研究中心,四川省“先进磷化工技术与装备”协同创新中心,四川省“磷化工技术与装备”工程实验室和四川省“磷化学与工程”重点实验室。在几代磷化工人的努力下,经过半个多世纪的发展,磷工程中心成功开发了料浆法磷铵技术、饲料级磷酸氢钙技术、湿法磷酸净化技术、湿法磷酸制工业级磷酸一铵技术、硫磺分解磷石膏制硫酸技术等,完成了从湿法磷酸生产到各种磷复肥及精细磷酸盐产品的实验室研究开发及工程转化,提供了我国磷化工领域多项关键技术。磷工程中心具有突出的人才优势,形成了以高级专家、教授为核心,中青年专业人员为骨干的磷化工科研工程开发100余人的团队。中心配备有较为完善的实验研究、中试转化条件,一直致力于解决磷化工领域所面临的挑战。近日,四川大学-绿色磷化学工程技术研究开发中心与北京海菲尔格科技有限公司达成合作,喜添芬兰Pixact公司PCM结晶监测系统,PCM结晶监测系统的引进犹如锦上添花,为推动中心的工程转化研究添一把力。 PCM结晶监测系统采用透射光原理设计,由仪器探头末端发出的激光透过测试样品,由探头另一端的高分辨率CCD相机接收透射光并对晶体成像。对于微小晶体也可以清晰成像,并保证图像质量。PCM结晶监测系统利用功能强大的图像算法,可以得到高准确度的晶体颗粒度数据:晶体尺寸D10、D50、D90等、晶体尺寸分布、晶体尺寸变化趋势、晶体形态、晶体径长比、晶体生长速率等数据。 PCM结晶监测系统不需要离线取样,可以原位在线实时监测晶体成核、生长、聚结、破碎、晶型转变等过程。测试过程清晰直观,既大大提高了结晶工艺研究效率和准确性,又可以避免传统显微镜结晶研究的取样问题、以及取样后由于条件变化导致的样品变化问题,可帮助用户优化与控制结晶工艺流程,以及排除工艺过程故障。 PCM结晶监测系统,非常适合结晶工艺的开发与优化,速度快,效率高;帮助工艺问题原因被快速发现及快速解决,可以实现生产质量稳定性监控,原料杂质监控,补料时间确定,晶体颗粒度监控,二次成核控制,晶体颗粒度分布宽度监控,出料时刻判定,加晶种方案优化,晶体颗粒形状调整等。PCM结晶监测系统是结晶工艺研究与控制的强有力工具,是结晶过程的眼睛,代表了当前结晶成像及颗粒度监控领域的国际最高水平。芬兰Pixact公司除了PCM结晶监测系统,还有PPM颗粒监测系统、PDM液滴监测系统、PBM微气泡监测系统等。PPM颗粒监测系统是为在线分析不同形态颗粒而设计,广泛应用于微颗粒、颗粒、纤维、团块、絮状物等;PDM液滴监测系统是为在线分析液滴和乳液而设计;PBM微气泡监测系统是为在线分析气泡悬浮液和泡沫体系而设计,可以得到:气泡尺寸分布、平均气泡尺寸、索特平均直径、体积平均直径、数量平均直径和累积分布参数(D10、D50、D90等);磷工程中心始终紧密围绕磷资源的综合利用和清洁加工开展工作,旨在解决磷化工行业技术难题,引领现代磷化工的发展,相信经过磷化工人的努力和先进技术设备的助力,磷工程中心必将突破一个个难题,取得一个个技术创新,支撑和引领磷化工行业的可持续发展,建成具有国际先进水平的磷化工产业化技术研究和应用平台,成为国际领先的磷化工技术研究中心。
  • 梅特勒托利多联合天津大学国家医药结晶工程研究中心共同举办“2012中国工业结晶
    2012中国工业结晶科学与技术研讨会将于2012年7月27-30在黄山召开,会议的主题是&ldquo 工业结晶技术及其产业化应用的现状与未来发展&rdquo ,会议宗旨在于研讨医药、食品、化工、材料等领域的工业结晶科学与工程技术方面的最新进展,推进相关产业的技术升级,加强学术界与工业界之间的联系与交流。 本次研讨会由天津大学(国家工业结晶技术研究推广中心-国家医药结晶工程研究中心)和全国医药技术市场协会主办,梅特勒-托利多公司协办,会议将邀请包括美国FDA、国家医药食品主管部门、国内外学术界和企业界等专家作会议报告,共同探讨我国工业结晶技术及其产业化应用的现状和未来发展思路。 国际工业结晶专家王静康院士担任本次会议主席,会议语言为中文。 一、会议研讨内容 1、工业结晶科学与技术基础研究(结晶热力学、结晶动力学、功能化学品多晶型行为及构效关系、晶体产品分子组装规律、晶体产品形态表征等) 2、工业结晶过程分析与模拟(反应结晶、溶析结晶、冷却结晶等典型结晶过程分析,耦合结晶过程分析,结晶过程关键影响因素分析与工艺优化,结晶过程在线监控分析技术,结晶过程信息化控制等) 3、工业结晶过程设计与放大(反应结晶、溶析结晶、冷却结晶等典型结晶过程设计与放大,间歇与连续结晶过程设计与放大,过程集成与耦合技术,计算流体力学在工业结晶装置放大与设计中的应用等) 4、新型工业结晶技术在医药、食品、化工、材料等领域中的应用(药物晶型优化,盐、共晶、溶剂化合物和水合物制备,物理场协同结晶过程强化,手性拆分,高通量筛选以及纳米结晶技术等) 5、质量源于设计在制药工业结晶中的应用与发展 二、会议安排 1、邀请工业结晶领域的专家代表报告工业结晶技术领域的研究进展、应用专题等共性课题,并安排多种形式的会议交流; 2、邀请美国FDA以及国家医药食品主管部门等专家作特邀报告。 3、天津大学结晶中心研究人员与企业技术人员现场讨论有关工业结晶中存在的实际问题; 4、研讨会报告论文以及会议研讨成果编入&ldquo 2012中国工业结晶科学与技术研讨会论文集&rdquo 。 三、会议时间、地点及费用 1、时间:7月27号报到,28号~30号正式会议,其中安排一天会议交流或培训; 2、地点:黄山(香茗国际会议中心酒店); 3、会议费:1200元/人,包括餐饮费、会务费、资料费等;住宿费自理。 四、注意事项 1、会议期间无其它补助; 2、请参会人员务必尽早确定人数和房间数,并请在联系方式中注明邮箱地址和联系电话,方便会务组安排好住宿。 3. 有关研讨会情况,请浏览天津大学结晶中心网站http://www.srcict.com 五、会务联系人: 徐敏 Celline Xu 单位:梅特勒-托利多国际中国(上海)有限公司 地址:上海市桂平路589号 邮编:200233 电话:(021)64850435转1100 13524692289 E-mail:Min1.Xu@mt.com
  • 中国化学会第五届高分子结晶研讨会第一轮通知
    主办单位:中国化学会高分子学科委员会、中国科学院长春应用化学研究所承办单位:高分子物理与化学国家重点实验室协办单位:吉林省仲合聚业会务会展服务有限公司时间:2021年7月23日报到,7月24、25日学术研讨会,7月26日离开地点:吉林省国盛大酒店福运厅 长春 高分子结晶过程及结构演变是高分子物理领域的基础科学问题,且与高分子加工及应用等工程问题密切相关,是理论与实践相交融的复杂科学问题。由于高分子材料自身的结构特征,该领域尚有许多科学问题未能很好解决。我国目前针对高分子结晶科学问题的研究虽已取得长足进步,但高分子结晶的基础理论与应用水平仍亟待提高。本次会议由中国化学会高分子学科委员会,中国科学院长春应用化学研究所共同主办,高分子物理与化学国家重点实验室承办。会议将邀请国内高分子物理和高分子加工研究领域专家学者进行学术前沿研讨,会议包含5个专题,会议设有邀请报告及墙报展出,欢迎投稿并进行学术交流。会议还将为企业界提供技术成果介绍、仪器展示及操作与应用介绍平台。研讨会涉及内容:1. 高分子结晶的理论与模拟;2. 高分子结晶的实验表征;3. 通用高分子结晶行为;4. 功能高分子结晶行为;5.天然和生物可降解高分子的结晶行为等。 重要日期:2021年4月12日,第一轮通知2021年6月15日之前,返回参会回执与论文摘要2021年7月1日,第二轮通知会议主席:胡文兵,李良彬,门永锋(以姓氏为序)会议执行主席:陈全会议联系人:张吉东会务组联系方式:Email: pcs2021@ciac.ac.cn负责人:张吉东 Email: jdzhang@ciac.ac.cn, Tel:13674306963组员:张志杰、曹晓、李龙彪、宋新月通讯地址:中国科学院长春应用化学研究所,长春市人民大街5625号,邮编130022
  • “第六届中国工业结晶科学与技术研讨会(2012)”圆满举行
    由天津大学(国家工业结晶技术研究推广中心-国家医药结晶工程研究中心)和全国医药技术市场协会主办,梅特勒托利多公司协办的“第六届中国工业结晶科学与技术研讨会(2012)”,于7月27日至7月30日在安徽黄山顺利召开。 来自全国各地87家单位133位代表参加了本次会议。 其中包括:重庆博腾制药科技股份有限公司、上海医药工业研究院、南方医科大学、山东新华制药有限公司、常州国药公司、浙江海正药业、中山大学、广州白云山制药股份有限公司广州白云山化学制药厂、国家专利局化学部、华东理工大学、杭州领业医药科技有限公司、苏州诺华制药科技有限公司、河北科技大学、天津工业生物技术研究所、中北大学化工与化境学院等单位。 梅特勒托利多公司作为协办单位长期与药物结晶工艺方面具有国内高学术水平的研究单位和机构保持良好的合作关系,例如上海医药工业研究院、天津大学、华东理工大学等。希望通过研讨会的方式,让国内更多相关人士了解国内外先进的技术,同时提供量身定做的解决方案,为研发人员解决实际的问题。 本次会议主要涉及的议题包括: 王静康,中国工程院院士中国现代工业结晶技术发展前沿 刘桂明,国家知识产权局专利局处长药物结晶专利在药物研发中的应用 Shi Bing,美国Gilead科学公司资深研究员 药物研发过程中晶型的选择、控制、及其工业实践 Wu Huiquan, 美国FDA科学家Science and Regulation of PAT and QbD for Pharmaceutical Crystallization Process and Product Characterization Lai Chiajen, Bristol-Myers Squibb CompanyEnabling Desired Particle Morphology and Polymorphism via Crystal Agglomeration 与会代表对会议主办方提供这样一个交流平台表示感谢,并期待举办下次研讨会。
  • 水产品中孔雀石绿和结晶紫的岛津LCMSMS检测方案
    孔雀石绿是一种带有金属光泽的绿色结晶体,又名碱性绿、严基块绿、孔雀绿,其既是杀真菌剂,又是染料,易溶于水,溶液呈蓝绿色;溶于甲醇、乙醇和戊醇。长期以来,渔民都用它来预防鱼的水霉病、鳃霉病、小瓜虫病等,而且为了使鳞受损的鱼延长生命,在运输过程中和存放池内,也常使用孔雀石绿。科研结果表明,孔雀石绿在鱼内残留时间很长,且其具有高毒素、高残留和致癌、致畸、致突变等副作用,鉴于此,许多国家均将孔雀石绿列为水产养殖禁用药物。我国于2002年5月也将孔雀石绿列入《动物食品禁用的兽药及其化合物清单》中。但是,因为其价格便宜,而且其治疗水霉病等的功效是其他药物所&ldquo 不能替代&rdquo 的,所以利益的驱动使得孔雀石绿并没有退出渔业市场。本方案依据国标《GB/T 19857-2005 水产品中孔雀石绿和结晶紫残留的测定》,使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用快速测定了水产品中孔雀石绿和结晶紫。 本方案为快速测定水产品中孔雀石绿、隐色孔雀石绿、结晶紫和隐色结晶紫的方法。样品经提取后,用超高效液相色谱LC-30A分离,三重四极杆质谱仪LCMS-8030进行内标法定量分析。样品在2分钟内得到快速分离和检测。孔雀石绿和隐色孔雀石绿在0.5~200 &mu g/L,结晶紫在0.5~500 &mu g/L,隐色结晶紫在0.1~200 &mu g/L浓度范围内线性良好,标准曲线的相关系数均在0.999以上;对1 &mu g/L、50 &mu g/L和200 &mu g/L混合标准溶液进行精密度实验,连续6次进样保留时间和峰面积相对标准偏差分别在2.925%和0.160%之下,系统精密度良好;方法定量限为0.1 &mu g/kg,优于国标《GB/T 19857-2005 水产品中孔雀石绿和结晶紫残留的测定》中0.5 &mu g/kg的要求。 了解详情,请点击&ldquo 超高效液相色谱三重四极杆质谱联用法测定水产品中的孔雀石绿和结晶紫&rdquo 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 不讲套路,只讲实力——生物科技公司洁净室案例
    洁净室是指将一定空间范围内空气中的微粒子、有害空气、细菌等污染物排除,并将室内温度、洁净度、室内压力、气流速度与气流分布、噪音振动及照明、静电控制在某一需求范围内,而所给予特别设计的房间。不论外在空气条件如何变化,其室内均能俱有维持原先所设定要求之洁净度、温湿度及压力等性能之特性。(洁净室的内部图) 洁净室设计特点:是一个不受外界干扰的空间,以:“封闭、安全、环保”为出发点,综合考虑各种仪器设备的安全操作要求,配置相应实验设备。 上海泰坦科技股份有限公司(以下简称“泰坦科技”)承接的上海漕河泾园区某生物科技公司的洁净室工程项目,包含洁净室规划、布局、洁净室暖通系统、照明系统、门禁系统、气体管路系统建设等,目前,此洁净室已经顺利完工。经过一段时间的体验和使用,该生物科技公司对本项目给予了高度评价,同时与泰坦科技(Titan)达成长期合作协议。细节介绍彩钢板双开门特点:密封性强、稳定性高、防沙尘、防静电、易清洁。照明设施特点:不会释放污染物,并且面板与底盘之间用进口优质硅胶条粘结,密封可靠。气路装备特点:气路系统主要由气源切换系统、管道系统、调压系统、用气点、监控及报警系统组成。安全性高且能实现集中分配供气的系统,完成从气源向仪器的供气。圆弧收边 特点:结构简单、美观大方。 多年以来,【泰坦科技】实验室建设作为科学实验室“整体解决方案”服务理念的倡导者,一直致力于为客户打造实验室“钥匙”工程,从实验室的需求分析、整体规划设计、家具设备安装到实验室的日常维护运营,【泰坦科技】能为您提供全面服务,确保您拥有健康的实验室环境,把精力专注于您的科学事业。 如有实验室建设需求,欢迎垂询【泰坦科技】实验室建设项目总监 范亚平:139 1680 7870(详情请点击图片查看)
  • 共晶筛选应用报告|自动化结晶工站助力药物共晶筛选制备提质增效
    药物共晶是近几十年来兴起的一种新型药物制剂固体形态。通过制备共晶,能够显著改善 API 的理化性质,如熔点、溶解度、渗透性、稳定性、生物利用度和机械性能等,另外,共晶在掩蔽药物味道、改善药物压片性能、扩大生产等方面也有不错的应用。在进行共晶研究时可按照所研究化合物的溶解特性、化学结构、药用疗效、靶向等有效筛选。药物共晶指的是活性药物成分(Active Pharmaceutical Ingredient,API)和共晶配体(CoCrystal Former,CCF)以固定的化学计量比在非共价键的作用下结合而成的晶体。常见的药物共晶制备方法主要分为溶液法(溶液挥发法、反应结晶法和冷却结晶法)和研磨法(干法研磨、湿法研磨)两大类。其中反应结晶法的工艺流程如下图所示:图1 工艺流程图晶泰科技的自动化工站能够进行模块化配置,根据实验流程进行工站模块的设计与排布,实现实验流程的自动化。在药物共晶的制备过程中,首先可以通过自动化工站进行固体、液体加样,进一步利用视觉模块和智能算法进行液体溶清判断,完成 API(表1)和 CCF(表2)在不同溶剂中的溶解度测试;根据溶解度判断的结果,接着通过自动化工站进行共晶的制备,包含了悬浊液配制、控温搅拌等步骤。表1. API在不同溶剂中的溶解度测试表2. CCF在不同溶剂中的溶解度测试&bull 高精度移液确保实验数据的准确性;&bull 自动化固体称量加样,准确度可达 0.5mg;&bull 视觉模块配合算法完成液体的溶清判断。图2 晶泰科技自动化工站与溶清判断算法利用自动化工站,在溶解度测试环节高效筛选了 10 种 CCF 和 6 种 API 分别在 14 种溶剂中的溶解度情况,并完成共晶的制备,为后续表征鉴定提供样品。图3 通过自动化工站筛选得到的药物共晶的拉曼谱图&bull 反应只需 1 步完成,且产率高达 66%&bull 反应催化剂的用量降低至 2mmol%&bull 反应成功放大至 20g初步实验结果证明,晶泰科技的自动化工站十分适用于药物共晶的实验筛选。自动化工站通过标准化的机械臂操作,能够保证共晶筛选的可重复性;结合溶清判断算法,无需人工干预可完成溶解度测试以及共晶析出的判断。更多产品信息、电子版应用报告可发送需求至bd@xtalpi.com获取。
  • 梅特勒托利多2007年3月结晶研讨会顺利召开!
    2007年3月13日由梅特勒托利多公司自动化化学部主办、天津大学药物结晶中心和华东理工大学化学工程联合国家重点实验室联合协办的结晶研讨会顺利落下帷幕。会议邀请了国内外近百位经验丰富的专家、学者、技术顾问就共同关心的制药行业中结晶过程的原理及其应用等问题展开了深入讨论。 会上,来自天津大学药物结晶中心的卫宏远教授、Mettler-Toledo 美国 市场经理 Dr. Gregor Hsiao、Mettler-Toledo 瑞士 技术应用顾问 Dr. Freiner Daniel以及Mettler-Toledo 中国 技术应用顾问郑乾等做了精彩演讲。重点围绕:结晶过程在制药行业的研究概述、优化控制工艺参数、实时在线分析技术在结晶过程的应用、与结晶相关的过程分析技术应用实例⑷绾胃咝范ㄈ芙舛惹吆徒槲惹纫樘庹箍致郏镏俳鳳AT技术在结晶过程和制药行业的应用与发展。 本次研讨会为结晶方面的专业人士提供了一个技术交流平台,使大家近距离接触和沟通,加深了彼此之间的了解,并建立相互信赖与合作。会议气氛和谐而热烈,各方人士都对本次会议给予了充分肯定和广泛好评。 需要更多信息请点击:www.mt.com/lasentec 或者请联系: 技术应用顾问 郑乾 电话:+86 (021) 6485 0435转1757 邮件 cathy.zheng@mt.com
  • 梅特勒托利多中国:2007石家庄结晶技术交流会
    尊敬的先生/女士: 感谢您参加梅特勒托利多公司自动化化学部2007年11月26日在石家庄举办的“2007结晶技术交流会”。 screen.width-300)this.width=screen.width-300" screen.width-300)this.width=screen.width-300"本次研讨会由梅特勒托利多公司自动化化学仪器部主办,天津大学药物结晶专家卫宏远教授、梅特勒托利多公司在线颗粒分析专家Gregor Hsiao 博士以及梅特勒托利多公司技术应用顾问郑乾女士分别在会上作了报告。报告内容主要围绕:在药物结晶工艺过程中的晶形转变、实时原位在线颗粒分析技术介绍、利用实时在线颗粒分析技术理解和提高配方工艺等展开。本次技术交流会吸引了来自河北、山东、天津、山西、上海等地,18家单位81名与会代表。大家就共同关心的结晶工艺等相关问题展开了广泛讨论和深入交流。 screen.width-300)this.width=screen.width-300"会议始终在和谐而热烈的气氛中进行,大家充分利用茶歇时间相互吸取经验和提出宝贵见解。从客户的反馈表上可以看到,大家对这次研讨会都给予了充分肯定,并表示今后乐意参加类似活动。 本次研讨会的圆满结束为各位专家、学者、专业人士提供了一个交流平台,让大家近距离接触和沟通,加深了彼此间的了解,更快的建立相互信赖与合作。为此,今后我们将不定期地在全国各地举办类似的研讨会,帮助大家分享与交流,从而为您和您的企业创造更大的价值! screen.width-300)this.width=screen.width-300" 感谢您长期以来对我们的支持、信任和理解!
  • 客户故事分享|庆祝点晶板数量达10,000 块:莫纳什大学大分子结晶平台的一个里程碑
    在实验科学领域,有许多领域需要探索大量条件以进入下一步。大分子结晶是一个很好的例子,它需要采用近乎原始的方法:进行数百甚至上千次点样实验以获取衍射晶体,而这并样的情况并不少见。在此我们很高兴与大家分享莫纳什大学大分子结晶平台(MMCP)在2023年8月初使用FORMULATRIX仪器取得了他们使用第1万块结晶板的重要里程碑。这一成就的获得归功于2021年以来由Geoffrey Kong博士的指导(之前是Danuta Maksel博士),而这代表了他们完成了近百万次单独的结晶实验。这是MMCP团队奉献和专业知识的明证。他们从第一块结晶板到第1万块的实验旅程无疑为结构生物学领域做出了重要贡献,包括快速确定导致 COVID-19 的 Sars-CoV-2 病毒中可能的药物靶标的结构。超越结晶的合作网络作为莫纳什研究基础设施的一部分,MMCP成立于2009年,为全球研究界(包括学术界和工业界)提供结晶和蛋白稳定性测试服务。MMCP也与莫纳什研究基础设施的其他平台密切合作,包括蛋白质组学和代谢组学、冷冻电子显微镜和X射线平台。这种协作方式使MMCP能够提供全面的蛋白质表征技术。MMCP地理位置优越,距离澳大利亚同步加速器(Australian Synchrotron)仅有不到十分钟步行路程,客户也可以选择使用那里的高分子晶体学 (MX) 光束线。图片由莫纳什大学提供创新科技推动科学进步在2016年,MMCP购置了四台ROCK IMAGER 1000(RI1000)仪器,一台NT8 蛋白结晶点样工作站,以及一台FORMULATOR。这一次的仪器升级巩固了MMCP作为全球大分子结晶研究设备最先进的机构之一。FORMULATRIX仪器自此成为MMCP大分子结晶的得力实验助手。配备结晶板复制点样头的NT8 能自动化点样结晶板,确保了从筛选溶液点样至实验板的精确性。在NT8 封闭环境和严格湿度控制的情况下,环境条件对结晶实验的影响降至最小。RI1000 最多能容纳 970 块结晶板,配有可见光成像和UV荧光成像(EX280 nm),可实现蛋白质晶体的无标记识别。其中两台RI1000甚至配备了SONICC(手性晶体的二阶非线性成像),能够检测掩埋的晶体、极薄的晶体、小于1微米的微晶体以及在双折射LCP中模糊的晶体。FORMULATRIX:大分子研究的开创性解决方案自2002年成立起,FORMULATRIX一直是结晶自动化领域的先驱,提供了覆盖整个工作流程的解决方案,从预筛选蛋白质样品到通过同步加速器跟踪晶体。FORMULATRIX还生产了用于实验室规模浓缩和大分子样品缓冲交换的最低体积超滤仪器。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制