当前位置: 仪器信息网 > 行业主题 > >

自由基分析仪

仪器信息网自由基分析仪专题为您提供2024年最新自由基分析仪价格报价、厂家品牌的相关信息, 包括自由基分析仪参数、型号等,不管是国产,还是进口品牌的自由基分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合自由基分析仪相关的耗材配件、试剂标物,还有自由基分析仪相关的最新资讯、资料,以及自由基分析仪相关的解决方案。

自由基分析仪相关的资讯

  • 药代动力学领域新突破——小动物活体自由基检测系统助力体内自由基分布和药代动力学研究
    自由基是具有非偶电子的基团或原子,它具有非常强的化学反应活性。在生物体内,自由基高度的化学活性使得它可以与各类生物大分子反应使其变性,这使它成为了一把生物体的“双刃剑”:在炎症反应中自由基可以攻击外来病原体来保护生物体自身,而过度的自由基又会导致DNA变性甚至细胞坏死和凋亡。因此检测自由基的含量,尤其是在体内检测尤为重要。以一氧化氮为代表的自由基药物一直是药物学研究的重点。传统的药代动力学自由基测量,需要从生物体的不同部位提取体液,然后再使用电子顺磁共振波谱仪(electron paramagnetic resonance,EPR)来测量体液样品内的自由基含量。然而如何在生物体内定点、定时、定量地检测释放自由基药物,以及如何在时间、空间、剂量上测量生物体内的自由基药物,一直是药代动力学领域的难题。波兰Novilet公司新推出的小动物活体自由基检测系统ERI TM 600,是一款可对小鼠与大鼠等动物进行活体顺磁成像的商业化仪器。ERI TM 600突破了传统电子顺磁共振波谱仪仅能对体外提取物进行定量分析的局限,实现了对小鼠体内的自由基药物进行长时间的3D/2D实时成像观测。同时ERI TM 600配置了温度控制与呼吸监测仪,有效保证小动物在成像时维系正常的生理活动。ERI TM 600成像原理图ERI TM 600成像非常简单,仅需将小鼠麻醉之后,对荷瘤小鼠与对照小鼠注射OX063自旋探针即可。ERI TM 600在2分钟内可对小鼠进行255个投影扫描(25 cm2,精度500 μm),获得一系列的2D图像,然后通过软件对这些2D图像进行重构,获得小鼠的实时3D图像。ERI TM 600成像结果 近期发表于J. Phys. Chem.C的工作“Dynamic Electron Paramagnetic Resonance Imaging: Modern Technique for Biodistribution and Pharmacokinetic Imaging”表明与荷瘤小鼠相比,对照组小鼠探针(尤其在肿瘤部位)分布均匀。荷瘤小鼠探针的信号强度、峰值时间、流入流出比等药代动力学参数与对照小鼠差异明显。将3D成像图与小鼠体表照片相拟合,可以明显观察到肿瘤部位的ERI探针成像表征的药代动力学参数异常。ERI TM 600所得3D图像可以更加直观、准确、长时间地展现自由基药物在小鼠体内的药代动力学分布。 作为中国与进行先进技术、先进仪器交流的重要桥头堡,Quantum Design中国于2020年初引进了波兰Novilet公司的先进产品小动物活体自由基检测系统——ERI TM 600,欢迎感兴趣的老师咨询!
  • 环境自由基检测难?这项技术的“先天优势”正崭露头角
    环境中自由基检测有多难?自由基化学性质高度活泼,极易发生得失电子的氧化还原反应,是环境水体中降解污染物的重要因素。自由基的环境鉴定和分析对揭示环境污染物降解转化机制具有重要意义。但由于自由基环境浓度极低、反应活性高、寿命短,再加上复杂环境基质的干扰效应,使其环境分析一直是研究的重点和难点。而且,目前的研究主要针对一些已知的自由基展开,对未知自由基的识别和鉴定研究较为匮乏。有学者研究表明,自旋捕获结合质谱分析技术具有特异性和高灵敏性的优点,可同时检测天然水体中多种自由基,并能够识别和鉴定未知自由基,是未来的研究方向。EPR如何检测自由基? EPR的检测对象包括以下几类:(1)在分子轨道中出现不配对电子(或称单电子)的物质。如自由基、双基及多基、三重态分子等。(2)在原子轨道中出现单电子的物质,如碱金属的原子、过渡金属离子(包括铁族、钯族、铂族离子)等。用EPR检测自由基是一种快速的、直接有效的方法,实验中将所得EPR波谱中相应吸收峰的g因子计算出来,通过与标准值比较,便可估算是哪种自由基,再通过化学手段消除自由基以验证上面的推断。哪些科研院所正开展EPR研究?据小编所知,中科大、清华大学、北京大学、四川大学等众多985/211院校,以及中国科学院生态环境中心,均围绕EPR在环境中应用,开展了系列研究,并取得喜人的进展,包括不限于用于大气污染、水处理过程的表征。为了更好地促进EPR技术发展,仪器信息网3i讲堂联合国仪量子,将于2月23日,全网直播EPR技术在环境领域中的应用进展,上述代表院所专家将进行精彩分享,诚邀免费报名参会。点击图片,免费报名:
  • 高分辨QTOF特色技术巡展:自由基诱导解离技术
    前言高分辨QTOF质谱是一种先进的质谱技术,它结合了四极杆和飞行时间质谱的优点,能够提供高分辨率、高质量精度和高灵敏度的质谱分析。高分辨QTOF作为分析领域的高端仪器,始终在技术层面不断推陈出新。LCMS-9050是岛津最新推出的高分辨四极杆-飞行时间质谱仪,运用了多项特色技术,是技术指标优异、仪器性能卓越的产品。本期将为您介绍自由基诱导解离技术,岛津OAD解离源组件新产品已于近期发布。技术介绍岛津的自由基诱导解离(OAD)技术由田中耕一质量分析研究所开发,代表了质谱分析技术在结构解析方面的一个重要进步。这项技术的开发是为了解决传统碰撞诱导解离(CID)技术难以分辨C=C位置的问题,从而提供更详细的分子结构信息。传统碰撞诱导解离(CID)新型自由基诱导解离(OAD)OAD技术通过在质谱分析过程中引入自由基,使得分析物能够在特定条件下发生解离,从而揭示分子内部的结构特征。这种方法特别适用于脂质和其他生物活性化合物的分析,OAD能够提供关于这些化合物中C=C位置的详细信息,这对于理解分子的结构和功能至关重要。主要特点小结岛津的自由基诱导解离(OAD)技术是一种先进的离子解离技术,能够提供分子内部结构的详细信息。该技术为科研人员提供了一个强大的工具,能够更精准地完成复杂分子的分析和鉴定,从而更好地理解其结构和功能。对于生物医学研究、药物开发和疾病研究等领域具有重要的应用价值。本文内容非商业广告,仅供专业人士参考。
  • 清华大学杨海军老师教你如何使用EPR测试自由基
    怎么使用电子顺磁共振波谱仪测试自由基?如何设置电子顺磁工作波谱仪的八个参数?国产仪器与进口仪器的测试结果有何不同?近日,来自清华大学的高级工程师杨海军老师,用一段“微课”为大家详细培训了如何测试自由基。让我们来看看吧!杨老师教你如何使用EPR测自由基国仪量子,赞8为了让大家更清楚地掌握如何测试自由基,杨老师还总结出了一条顺口溜:自由基测试看似难,理解原理是关键。它的寿命分长短,短的小于一微秒;短自由基检测难,捕捉剂加入寿命延;加入时机反应前,弱极性溶剂待你选。顺磁共振波谱仪,原理好比照相机;八个参数好理解,易测氨基自由基。仪器国产或进口,谱图已无大差异。学会测试真不难,掌握原理就实现。个人基础不重要,你来试试就知道!欢迎扫描下方二维码,为杨老师的“微课”投票点赞!(注:投票需登录/注册仪器信息网账号)杨老师在视频中表示,在氨基自由基测试对比实验中,国仪量子的电子顺磁共振波谱仪与进口设备获得的谱图基本没有区别。并且,国仪量子电子顺磁共振波谱仪的微波桥采用了先进的波导技术,机箱内的结构也进行了模块化设计。国仪量子电子顺磁共振波谱仪为直接检测顺磁性物质提供了一种非破坏性的分析方法。可研究磁性分子、过渡金属离子、稀土离子、离子团簇、掺杂材料、缺陷材料、自由基、金属蛋白等含有未成对电子物质的组成、结构以及动力学等信息,能够提供原位和无损的电子自旋、轨道和原子核等微观尺度的信息。在物理、化学、生物、材料、工业等领域具有广泛的应用。X波段脉冲式电子顺磁共振波谱仪EPR100X波段连续波电子顺磁共振波谱仪EPR200-Plus台式电子顺磁共振波谱仪EPR200M
  • 解锁自由基检测难题,北大这个课题组给出新思路
    寿命特别短!活性特别强!自由基的捕获和检测一度成为公认的难题!自由基从哪里来?有什么特征?起到什么作用?种类和浓度是怎样的……对致力于这一研究领域的科研人员来说,他们会面临一连串的问题。如果再遇到复杂基质,自由基捕获和检测的难度会再高一个台阶!如何破局?日前,跟随仪器信息网的镜头,我们走进了北京大学环境科学与工程学院刘文研究员的实验室。刘文研究员课题组主要研究方向是水污染控制,尤其是环境中新污染物的去除。他们基于布鲁克的电子顺磁共振(EPR)波谱仪(EMX plus6-1)构建的原位系统,可以实时、快速、精准的测定水环境中的自由基,为有机污染物的高效去除提供科学支撑。据刘文研究员介绍,在他们这个研究领域,电子顺磁共振是水环境中自由基检测最广泛应用的方法!由仪器信息网和布鲁克联合冠名的宝藏实验室系列活动本期走进了刘文研究员的实验室。跟随刘文研究员的引导,我们不仅了解了他们课题组在新污染物领域做的一系列的杰出成果,更是近距离的观察了电子顺磁共振波谱仪的工作流程和操作细节。详细内容请查看如下视频:
  • 回顾‖疫情下第三届全国有机自由基化学会议圆满落幕
    受新冠疫情冲击,第三届全国有机自由基化学会议终于在2022年8月2日至5日在武汉光谷金盾大酒店如期举办,在坚决做好疫情常态化防控的前提下,作为国内最专业的Flash产品生产和研发企业,三泰科技携SepaBean machine快速制备液相色谱色系统、SepaFlash快速制备液相色谱分离柱等产品亮相14号展台。三泰科技为新老客户准备了精美礼品,现场更有专业工作人员与新老客户热情交流,共同探讨Flash产品的应用与发展。三泰科技华中团队 展会现场三泰科技工作人员与客户沟通交流本次会议主要为科研人员提供一个平台展示其在有机自由基化学领域取得的最新研究成果,加强相关学科科研人员之间的联系、了解与合作,促进我国有机自由基化学及相关领域的研究迈向更高水平。关于三泰三泰科技成立于2004年,专注于分离纯化和合成技术的开发和应用,主要产品包括SepaBean machine快速制备液相色谱系统、SepaFlash快速制备液相色谱柱,ChemBeanGo化学知识共享发布及科研用化学品检索交易平台、“CBG资讯”科研公众号、ChemBeanGo App等,产品和服务主要应用于药物合成化学、天然产物、精细化工和石油产品等领域。
  • 中红外光学反馈腔增强OH自由基探测技术取得新进展
    近日,中科院合肥研究院安光所张为俊研究员团队在腔增强吸收光谱OH自由基探测技术方面取得新突破,相关研究成果以《基于中红外分布反馈二极管激光器的光学反馈腔增强吸收光谱技术应用于OH自由基探测》为题发表于美国光学学会(OSA)学术期刊Optics Express。   OH自由基是大气中最重要的氧化剂,其快速循环反应决定着大气中主要污染物的生成和去除。由于反应活性高,寿命短,在大气中浓度低,准确测量十分困难,是当今大气化学领域非常重要和挑战性的研究内容。   团队赵卫雄研究员和杨娜娜博士等人发展了2.8微米中红外光学反馈腔增强技术,为OH自由基探测提供了一种新的直接探测手段。该技术利用谐振腔的共振光反馈回激光器,可以有效压窄激光器线宽,实现光学自锁定,提高激光入射谐振腔的耦合效率,实现高灵敏度探测。   团队采用波长调制的方法,以腔模的一次谐波为误差信号反馈给压电陶瓷控制器,精确控制距离,从而达到相位实时锁定,在800 米有效光程下获得1.7×10-9 厘米-1探测灵敏度,对应OH自由基探测极限为~2×108 个/立方厘米。该技术进一步与磁旋转吸收光谱(FRS)和频率调制光谱(FMS)等技术相结合,将为大气OH自由基直接探测提供新的途径。   本研究得到国家自然科学基金国家重大科研仪器研制项目、国家自然科学基金优秀青年科学基金项目、第二次青藏高原综合科学考察研究项目、中国科学院青年创新促进会、中国科学院合肥物质科学研究院院长基金资助。
  • 安光所团队在过氧自由基自反应动力学研究方面取得新进展
    近日,中科院合肥研究院安徽光机所张为俊研究员团队在大气过氧自由基自反应研究方面取得新进展,相关论文以《真空紫外光电离质谱结合理论计算研究过氧自由基自反应的二聚体产物:C2H5OOC2H5》为题发表在学术期刊International Journal of Molecular Sciences (IF=6.20)上。   有机过氧自由基(RO2)是大气挥发性有机化合物(VOCs)降解反应中的重要中间体,在大气复合污染形成过程中扮演着关键角色。RO2不仅参与大气中自由基的链循环反应,影响大气氧化性,还控制着臭氧和二次有机气溶胶(SOA)等二次污染物的形成。其中,在低NOx条件下,过氧自由基主要与HO2自由基、以及自身发生化学反应,其产物往往具有低的挥发性容易进入到颗粒相中。但是相关的双自由基反应复杂,化学机制的认识不清,实验和理论研究极具挑战。   近日,团队唐小锋研究员和林晓晓副研究员等与法国里尔大学开展国际合作,面向大气中常见的小质量RO2(C1-C4),以真空紫外放电灯和瑞士同步辐射光源(SLS)作为电离源,采用微波放电流动管反应器和激光光解反应器,结合光电离质谱仪器系统开展了乙基过氧自由基(C2H5O2)的自反应研究,首次通过质谱在线测得乙基过氧自由基自反应过程生成的二聚体产物ROOR(C2H5OOC2H5)。   研究人员实验研究了C2H5O2自反应动力学,获得了通道分支比关键参数,并结合理论计算验证ROOR产物通道的反应机制。此外,通过测量同步辐射光电离效率谱,确定了C2H5OOC2H5的绝热电离能为8.75 ± 0.05 eV,结合Franck-Condon因子模拟计算,揭示其分子离子结构。该研究为直接测量ROOR提供新的思路,并证明了ROOR产物通道在小质量RO2自反应中不可忽略。   本文研究工作得到了国家自然科学基金、中科院国际合作重点项目和合肥大科学中心重点研发项目课题的经费支持。图1. 乙基过氧自由基反应光电离质谱图图2. 二聚体C2H5OOC2H5的光电离效率谱,红线为理论结果
  • 环境持久性自由基的电子顺磁共振检测和污染特征研究——访中科院生态环境研究中心刘国瑞研究员
    电子顺磁共振(EPR)波谱仪是自由基检测的一种仪器分析技术。EPR在医学、生物、量子化学、物理学、环境以及化学领域等都有所应用。环境与健康是一个热门主题,其中,环境污染会导致怎样的健康效应,也是当下亟需回答的重要科学问题。电子顺磁共振在环境与健康研究领域也可能发挥重要作用。除高活性和短寿命的自由基外,环境中还存在寿命较长的自由基,被称为环境持久性自由基(Environmentally Persistent Free Radicals: EPFRs)或长寿命自由基。EPFRs是十多年前提出的概念,它具有较长的半衰期和稳定性,在环境中存留时间长,增加了生物体的暴露时长,易诱发氧化应激反应,引起细胞和机体损伤等,被认为是一类新型的环境污染物。而实际追溯到1900年,冈伯格发现的第一个自由基——三苯甲基自由基,也是长寿命自由基。目前关于环境中EPFRs的存在及其环境效应研究引起国内外科研人员的广泛重视,开展相关研究工作的课题组逐渐变多。中科院生态环境研究中心环境化学与生态毒理学国家重点实验室刘国瑞研究员较早在国内开展了一些EPFRs相关的工作并取得了不错的成果。日前,仪器信息网特别采访到了刘国瑞研究员,他讲述了与EPR、EPFRs的故事。刘国瑞的主要工作集中在两个方面:1.持久性有机污染物(POPs):如二噁英、溴代二噁英、多氯萘和卤代多环芳烃等持久性有机污染物,建立典型POPs的高灵敏分析方法,阐明了POPs在环境中的污染特征,发现一些潜在排放源并开展了机理和控制原理研究;2.环境持久性自由基(EPFRs):主要研究EPFRs的环境污染特征和转化机理相关的工作。被问到当初选择研究EPFRs的原因,刘国瑞介绍到主要有两个因素,一是想要深入了解二噁英等POPs的分子机理,反应过程的中间体检测至关重要,使用顺磁共振技术可以检测反应过程中的自由基中间体,从而推断二噁英的分子机理。另一个原因是2015年基金委启动了重大研究计划项目——大气细颗粒物的毒理与健康效应。“我们重点实验室江老师鼓励我去做大气细颗粒物里的自由基相关的研究工作,”刘国瑞说道,“2015年左右是北京雾霾天气比较严重的时候,我们课题组采集了北京市大气细颗粒物样品,检测了其中的EPFRs,发现不同粒径的颗粒物中EPFRs有不同的分布,越细的颗粒物中吸附的EPFRs含量也越高,由此导致的潜在健康效应值得进一步关注。”该研究工作发表在当时环境领域的国际知名杂志ENVIRONMENTAL SCIENCE & TECHNOLOGY(ES&T)上。刘国瑞在EPFRs相关研究工作中主要使用了电子顺磁共振波谱和色谱/质谱联用两大类分析技术,电子顺磁共振波谱技术可检测未成对电子,即反应过程中的自由基中间体;色谱质谱联用可对反应后产物进行鉴定,用于研究生成机理。刘国瑞表示,未来希望能将电子顺磁共振和色谱/质谱仪器同时与化学反应器连接使用,同时检测反应中的自由基中间体并鉴定反应后的产物。实验室使用的电子顺磁共振波谱仪器来自布鲁克的EMXplus电子顺磁共振波谱仪。更多精彩内容请观看以下采访视频:
  • 苏州大学:基于自由基促进的阳离子RAFT聚合实现快速活性3D打印!
    基于可逆失活自由基聚合(RDRP) 的3D 打印技术为制备具有“活性”的聚合物材料提供了有效手段。该类材料由于保留有活性位点,可进一步用于聚合后修饰及功能化,以制备多种多样的刺激响应性材料,目前正成为该领域的研究热点。然而,相较于商用体系,已有技术的打印速率通常较低,限制了其实际应用。同时,已报道工作主要基于RDRP方法,机理较为单一。近期,苏州大学朱健教授团队探索了基于阳离子可逆加成断裂链转移(RAFT)聚合的立体光刻蚀(SLA)3D打印(ACS Macro Lett. 2021, 10, 1315)以及阳离子/自由基RAFT聚合联用的数字光处理(DLP)3D打印(Macromolecules 2022, 55, 7181)。拓宽了活性3D打印的聚合机理及单体适用范围,为调控材料性能提供了丰富手段。相较于自由基RAFT聚合,阳离子RAFT聚合通常具有更快的聚合速率。在本文中,该研究团队考察了基于自由基促进的阳离子RAFT(RPC-RAFT)聚合的DLP 3D打印体系,实现了较为快速的打印速率(12.99 cm/h)。首先,作者设计了模型聚合来研究该方法的聚合行为,其机理如图一所示。商业可得的光引发剂(TPO)与二苯基碘鎓盐(DPI)被用于产生初始的阳离子引发种,随后聚合由一种二硫代氨基甲酸酯RAFT试剂(图3 B)通过阳离子RAFT过程调控。图1. 推测的聚合机理。如图2A所示,聚合呈现一级线性动力学,聚合物分子量与理论值吻合较好,分子量分布窄,符合活性聚合特征。图2. 在405 nm波长光源下IBVE的聚合动力学结果:A) 单体转化率半对数与聚合时间的关系曲线;B) 分子量(Mn)和分子量分布(Ɖ )与单体转化率的关系;C)IBVE聚合物的SEC曲线。随后研究团队详细研究了交联体系的聚合行为(图3),对双官能度单体二乙二醇二乙烯基醚(DDE),单官能度单体异丁基乙烯基醚(IBVE),RAFT试剂以及TPO/DPI引发体系不同配比进行了考察。结果显示没有IBVE时,聚合速率与单体最终转化率降低,这可能是由过高的交联密度导致。DDE与IBVE的比例在3:1到1:3之间变化时对聚合速率影响较小。进一步提高IBVE含量则会导致鎓盐析出。改变RAFT试剂的比例对聚合速率影响较小,这与传统的自由基RAFT聚合不同,可能是由于在阳离子RAFT聚合中不存在阻聚效应。图3. A)商用DLP 3D打印机模型示意图;B) 用于RPC-RAFT聚合3D打印的树脂配方; 聚合树脂在405 nm波长光源照射以及不同反应条件下单体的转化率与时间曲线:C) 不同光催化剂浓度;D)不同官能度乙烯基醚配比;E)不同RAFT试剂浓度。利用优化后的打印树脂与商业可得的DLP 3D打印机,研究团队成功打印出具有较好分辨率的物体(图4)。然而,打印速率最高为6.77 cm/h。当进一步优化打印条件提高速率时,由于IBVE相对较低的沸点(83 °C),释放的聚合热使树脂出现了沸腾现象。 图4. 具有不同形状的3D物体数字模型以及相应的3D打印实体模型。于是研究人员将低沸点的IBVE替换为高沸点(179.09 °C)的环己基乙烯基醚(CVE),成功将打印速率提升至12.99 cm/h,该速率为目前活性打印体系的最高值。在该打印条件下,成功打印出具有不同形成的三维物体(图5)。 图5. 具有不同形状的3D物体数字模型以及相应的3D打印实体模型。最终,研究人员通过荧光单体(TPE-a)的聚合后修饰证明了所打印物体的活性特征。如图6所示,在利用该树脂所打印的薄膜表面涂上荧光单体溶液并用打印机形成的图案光照射,随后洗去溶液。经过照射的部分由光引发RAFT聚合扩链成功实现了荧光单体的接枝,因此在紫外光下呈现出荧光图案(图6 F)。在对比实验中,打印的薄膜由不含RAFT试剂的树脂制备,经过相同操作后在紫外光下则无荧光图案(图6 D),证明了该方法所打印物体具有活性特征。 图6. A) DLP 3D打印机中进行3D打印物体后功能化修饰示意图;B)3D打印物体后功能化修饰机理图;C) 未经后功能化修饰的3D打印物体在可见光下的数字图像;D) 未经后功能化修饰的3D打印物体在紫外光下的数字图像;E) 经后功能化修饰的3D打印物体在可见光下的数字图像;F) 经后功能化修饰的3D打印物体在紫外光下的数字图像。该工作以“Fast Living 3D Printing via Free Radical Promoted Cationic RAFT Polymerization”为题发表在《Small》上 。论文第一作者是苏州大学在读博士生赵博文,通讯作者为苏州大学朱健教授和李佳佳博士后。该工作获得了国家自然科学基金,中国博士后科学基金以及江苏省优势学科基金的资助。后续工作敬请关注。原文链接:https://doi.org/10.1002/smll.202207637摩方精密作为微纳3D打印的先行者和领导者,拥有全球领先的超高精度打印系统,其面投影微立体光刻(PμSL)技术可应用于精密电子器件、医疗器械、微流控、微机械等众多科研领域。在三维复杂结构微加工领域,摩方团队拥有超过二十年的科研及工程实践经验。针对客户在新产品开发中可能出现的工艺和材料难题,摩方将持续提供简易高效的技术支持方案。
  • 一文了解化学电离质谱如何测量大气环境中OH自由基
    p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " span style=" line-height: 150% " 1. /span span style=" line-height: 150% font-family: 宋体 " 大气 /span span style=" line-height: 150% font-family: " times=" " new=" " · OH /span span style=" line-height: 150% font-family: 宋体 " 活性自由基的来源与作用 /span /span /strong /p p style=" margin-left: 24px text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " strong /strong /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 大气 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 、 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · HO sub 2 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 活性自由基是大气光化学反应的引发剂和催化剂,对于城市灰霾的形成和对流层中 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " O sub 3 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的平衡起关键作用,其浓度等级可作为衡量大气自身氧化水平的重要指标。 /span /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 其中 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基是大气化学中最活跃的氧化剂,能与大气中绝大多数组分发生化学反应。例如大气中的甲烷( /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CH sub 4 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " ),可以快速与 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基反应生成可溶解氧化物 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CH sub 2 /sub O /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 、 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CH sub 3 /sub COOH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 发生沉降,因此,虽然每年有 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 5.15× 10 sup 14 /sup g /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CH sub 4 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 排入地球大气层,但 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基可将其中的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 4.45× 10 sup 14 /sup g /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 氧化,占 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CH sub 4 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 总量的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 80% /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 以上,这使得 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CH sub 4 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 对全球温室效应的影响比排放量估算整整低了一个量级。从某种程度来看, /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基决定了这些组分在地球大气层中的寿命和浓度。不仅如此,酸雨、对流层臭氧平衡、城市光化学烟雾以及二次气溶胶形成等过程都有 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的参与。除此之外, /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 、 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " O sub 3 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 还可以与大气中的烯烃反应生成醛,后者再与 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基反应从而产生光化学烟雾中有毒且具有强烈刺激性的化合物过氧乙酰硝酸酯( /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " PANs /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " )。 /span /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 在低空对流层中, /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的主要来源有两个:一是 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " O sub 3 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 在 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 320 nm /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 光波条件下光解产生的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " O( sup 1 /sup D) /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 与空气中水分子的反应,二是 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · HO sub 2 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 与氮氧化物以及臭氧的反应。但是, /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基的平均寿命通常为几秒甚至更短,它在对流层的最大浓度仅有 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 10 sup 6 /sup ~10 sup 7 /sup /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 个 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " /cm sup 3 /sup /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " ,且变化十分剧烈。 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 、 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · HO sub 2 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基在大气光化学反应和光化学烟雾形成过程中的作用如图 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 1.1 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 所示。 /span /span /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" font-size: 16px line-height: 150% font-family: 微软雅黑 " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 385px " src=" https://img1.17img.cn/17img/images/202006/uepic/948b92d1-12cb-472e-a61b-c0944df80ea3.jpg" title=" 1.png" alt=" 1.png" width=" 500" height=" 385" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em font-family: 黑体 " 图 /span span style=" text-indent: 2em font-family: " times=" " new=" " 1.1& nbsp · OH /span span style=" text-indent: 2em font-family: 黑体 " 、 /span span style=" text-indent: 2em font-family: " times=" " new=" " · HO sub 2 /sub /span span style=" text-indent: 2em font-family: 黑体 " 在大气光化学反应和光化学烟雾形成过程中的作用 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong span style=" line-height: 150% " 2. /span span style=" line-height: 150% font-family: 宋体 " 常见大气活性自由基 /span span style=" line-height: 150% font-family: " times=" " new=" " · OH /span span style=" line-height: 150% font-family: 宋体 " 的检测手段 /span /strong /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 直到 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 20 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 世纪 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 90 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 年代,测量对流层大气中 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 浓度的技术才逐渐成熟。英国 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Leed /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 大学的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Heard /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 和 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Pilling /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 教授在 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Chem. Rev. /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 上撰写综述文章,全面评述了对流层中 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的各项测量技术,包括:化学电离质谱技术( /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CIMS /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " )、气体扩张激光诱导荧光技术( /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " FAGE /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " )、激光差分吸收光谱技术( /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " DOAS /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " )、 /span sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 14 /span /sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CO /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 示踪技术、水杨酸吸收技术以及自旋捕获技术。表 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 1.1 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 给出了这几种测量方法的主要技术指标。 /span strong /strong /span /p p style=" text-indent: 2em line-height: 1.75em text-align: center " span style=" font-family: 微软雅黑 " span style=" font-family: 黑体 " 表 /span span style=" font-family: " times=" " new=" " 1.1& nbsp · OH /span span style=" font-family: 黑体 " 浓度测定的各种技术及指标 /span /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border-collapse: collapse border: none margin-left: 9px margin-right: 9px " align=" center" tbody tr style=" height:31px" class=" firstRow" td width=" 95" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center" strong span style=" font-size:16px font-family:宋体" 测量技术 /span /strong strong /strong /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center" strong span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" LOD( /span /strong strong span style=" font-size:16px font-family:宋体" 个 /span /strong strong span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" /cm sup 3 /sup ) /span /strong /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center" strong span style=" font-size:16px font-family:宋体" 准确度 /span /strong strong /strong /p /td td width=" 59" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center" strong span style=" font-size:16px font-family:宋体" 单次测量时间 /span /strong strong /strong /p /td td width=" 34" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center" strong span style=" font-size:16px font-family:宋体" 机载 /span /strong strong /strong /p /td td width=" 130" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center" strong span style=" font-size:16px font-family:宋体" 研究团队 /span /strong strong /strong /p /td /tr tr style=" height:23px" td width=" 81" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" CIMS /span /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 2 /span span style=" font-size:16px font-family:Symbol" span ´ /span /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 sup 5 /sup /span /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 20% /span /p /td td width=" 64" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 30 s /span /p /td td width=" 43" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" Y /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 3+3 /span /p /td /tr tr style=" height:23px" td width=" 81" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" FAGE /span /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 2 /span span style=" font-size:16px font-family:Symbol" span ´ /span /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 sup 5 /sup /span /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 20% /span /p /td td width=" 64" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 30 s /span /p /td td width=" 43" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" Y /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 6 /span /p /td /tr tr style=" height:23px" td width=" 81" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" DOAS /span /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 5~10 /span span style=" font-size:16px font-family:Symbol" span ´ /span /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 sup 5 /sup /span /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 7% /span /p /td td width=" 64" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 300 s /span /p /td td width=" 43" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" N /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 4 /span /p /td /tr tr style=" height:23px" td width=" 81" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" sup span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 14 /span /sup span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" CO /span span style=" font-size:16px font-family:宋体" 示踪法 /span /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 2 /span span style=" font-size:16px font-family:Symbol" span ´ /span /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 sup 5 /sup /span /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 16% /span /p /td td width=" 64" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 300 s /span /p /td td width=" 43" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" Y /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 1 /span /p /td /tr tr style=" height:23px" td width=" 81" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:宋体" 自旋 /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" - /span span style=" font-size:16px font-family:宋体" 捕获法 /span /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 5 /span span style=" font-size:16px font-family:Symbol" span ´ /span /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 sup 5 /sup /span /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" & lt 30% /span /p /td td width=" 64" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 20 min /span /p /td td width=" 43" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" N /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 1 /span /p /td /tr tr style=" height:23px" td width=" 81" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:宋体" 水杨酸吸收法 /span /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 /span span style=" font-size:16px font-family:Symbol" span ´ /span /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 sup 5 /sup /span /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 30~50% /span /p /td td width=" 64" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 90 min /span /p /td td width=" 43" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" N /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 2 /span /p /td /tr /tbody /table p style=" line-height: 1.75em text-indent: 2em " span style=" text-indent: 2em font-family: " times=" " new=" " span style=" line-height: 24px font-family: 宋体 " FAGE是一种在低压条件下测量大气活性自由基的激光诱导荧光技术( /span span style=" line-height: 24px font-family: " times=" " new=" " LIF /span span style=" line-height: 24px font-family: 宋体 " ),自其被提出以来,已经广泛应用于自由基的检测,成为测量大气自由基的有效方法之一。正常工作时, /span span style=" line-height: 24px font-family: " times=" " new=" " FAGE /span span style=" line-height: 24px font-family: 宋体 " 利用特定波长的激光束,使低能级的 /span span style=" line-height: 24px font-family: " times=" " new=" " · OH /span span style=" line-height: 24px font-family: 宋体 " 自由基发生跃迁,通过检测其从高能级回落过程中产生的荧光,从而实现对于 /span span style=" line-height: 24px font-family: " times=" " new=" " · OH /span span style=" line-height: 24px font-family: 宋体 " 自由基浓度的测量。 /span /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" text-indent: 2em font-family: " times=" " new=" " DOAS /span span style=" text-indent: 2em font-family: 宋体 " 是利用空气中气体分子的窄带吸收特性及强度来鉴别气体成分、推演气体浓度的一种技术,其测量原理基于 /span span style=" text-indent: 2em font-family: " times=" " new=" " Beer-Lambert /span span style=" text-indent: 2em font-family: 宋体 " 定律: /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" text-indent: 2em font-family: 宋体 " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/766f80ed-bfa1-4612-b47e-bf2f50094303.jpg" title=" 化学式1.png" alt=" 化学式1.png" / span style=" text-indent: 0em font-family: 微软雅黑 " span style=" line-height: 150% font-family: " times=" " new=" " color:=" " E /span /span span style=" text-indent: 2em text-align: right font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 /span span style=" text-indent: 2em text-align: right font-family: 宋体 " ( /span span style=" text-indent: 2em text-align: right font-family: " times=" " new=" " 1.1 /span span style=" text-indent: 2em text-align: right font-family: 宋体 " ) /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em line-height: 24px font-family: 宋体 " 进而得到 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-size: 16px font-family: 微软雅黑 " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/98f4fc65-35a4-4751-a3df-6df88f1f708c.jpg" title=" 化学式2.png" alt=" 化学式2.png" / span style=" text-indent: 2em text-align: right font-family: " times=" " new=" " position:=" " top:=" " & nbsp /span span style=" text-indent: 2em text-align: right font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 /span span style=" text-indent: 2em text-align: right font-family: 宋体 " ( /span span style=" text-indent: 2em text-align: right font-family: " times=" " new=" " 1.2 /span span style=" text-indent: 2em text-align: right font-family: 宋体 " ) /span /p p span style=" text-indent: 2em text-align: right font-family: 宋体 " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7d7e75da-8bc5-47f5-982a-14f4e5ec72a8.jpg" title=" 微信截图_20200618164858.png" alt=" 微信截图_20200618164858.png" / /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 14 /span /sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CO /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 示踪技术最早由华盛顿州立大学于 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 1979 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 年报道,它是一种基于光稳态技术对 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基进行研究的方法,利用 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基对 /span sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 14 /span /sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CO /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的强氧化性,从而实现了对于 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基的高灵敏度检测。 /span /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 对于自旋捕获技术和水杨酸吸收技术,则由于其在检测中所需的时间均大于 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 20 min /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " ,从而不适合应用于 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基的连续在线检测。 /span /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CIMS /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 是一种利用 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的化学特性对其进行检测的技术,其原位测量 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的浓度是 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Georgia Institute of Technology /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Eisele /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 和 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Tannar /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 在 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 1989 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 年发明的。 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CIMS /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 对 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 进行测量的关键在于通过过量的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " SO sub 2 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 将其滴定,从而把 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 全部转化为 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " H sub 2 /sub SO sub 4 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " ,再用 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " NO sub 3 /sub sup - /sup /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 离子通过化学电离方法把 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " H sub 2 /sub SO sub 4 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 电离为 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " HSO sub 4 /sub sup - /sup /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 离子,最终利用测量得到的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " NO sub 3 /sub sup - /sup /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 与 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " HSO sub 4 /sub sup - /sup /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 离子的强度,完成对 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的检测。其基本原理如下: /span /span /p p style=" text-align: right text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " /span /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 23px " src=" https://img1.17img.cn/17img/images/202006/uepic/5db3950c-6bb1-429f-a5dc-74721da12853.jpg" title=" 化学式3.png" alt=" 化学式3.png" width=" 200" height=" 23" border=" 0" vspace=" 0" / span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " & nbsp /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ( /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " 1.3 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ) /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em " & nbsp /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 26px " src=" https://img1.17img.cn/17img/images/202006/uepic/5fd7a534-5c7d-4f54-8c3a-b3664554a285.jpg" title=" 化学式4.png" alt=" 化学式4.png" width=" 200" height=" 26" border=" 0" vspace=" 0" / span style=" text-align: right text-indent: 2em line-height: 150% font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ( /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " 1.4 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ) /span /p p style=" text-align: right text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " position:=" " top:=" " /span /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 22px " src=" https://img1.17img.cn/17img/images/202006/uepic/23d266a5-b30f-41b8-b389-5fe3b01adda6.jpg" title=" 化学式5.png" alt=" 化学式5.png" width=" 200" height=" 22" border=" 0" vspace=" 0" / span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " position:=" " top:=" " & nbsp /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 ... /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ( /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " 1.5 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ) /span /p p style=" text-align: right text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " /span /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 21px " src=" https://img1.17img.cn/17img/images/202006/uepic/8bde4373-fe29-4b3a-8810-266a5776b2ec.jpg" title=" 化学式6.png" alt=" 化学式6.png" width=" 200" height=" 21" border=" 0" vspace=" 0" / span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " & nbsp /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ( /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " 1.6 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ) /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 进而可以得到 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的计算公式: /span /span /p p style=" text-align: right text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " /span /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 44px " src=" https://img1.17img.cn/17img/images/202006/uepic/1d1e9059-1c2a-4c7e-a908-8c34733ab6b9.jpg" title=" 化学式7.png" alt=" 化学式7.png" width=" 200" height=" 44" border=" 0" vspace=" 0" / span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " & nbsp /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ( /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " 1.7 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ) /span /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong span style=" line-height: 150% " 3. /span span style=" line-height: 150% font-family: 宋体 " 自主研发化学电离质谱测量 /span span style=" line-height: 150% font-family: " times=" " new=" " · OH /span /strong /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 中科院大连化物所李海洋研究员带领的“快速分离与检测”课题组( /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 102 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 组)基于质谱检测核心技术,致力于发展用于在线、现场、原位快速分析的质谱新仪器和新方法,聚焦于化工生产、环境监测和临床医学精确诊断对高端在线质谱的迫切需求,注重技术创新,以“做有用的仪器”为至高追求,先后攻克了新型软电离源、高分辨质量分析器等在线质谱多项关键技术,并于 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 2017 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 年与金铠仪器(大连)有限公司共同建立质谱发展事业部,携手推动高端质谱技术的发展。近年来,团队先后获得在线质谱仪从设计、生产到应用全链条认证,成功搭建了台式质谱仪、便携式质谱仪、毒品现场鉴别离子阱质谱仪等多个系列产品线,并实现了定型产品“高灵敏光电离飞行时间质谱仪”出口美国、团队成功入选辽宁省兴辽英才计划“高水平创新创业团队”等多项创举。 /span /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " /span /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 455px height: 600px " src=" https://img1.17img.cn/17img/images/202006/uepic/65377ae1-b7f4-4dc3-9cd4-fe11db074f89.jpg" title=" f962b4b3bb4bb46555334acec7d0997_副本.png" alt=" f962b4b3bb4bb46555334acec7d0997_副本.png" width=" 455" height=" 600" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em line-height: 150% font-family: 宋体 " 针对大气活性自由基 /span span style=" text-indent: 2em line-height: 150% font-family: " times=" " new=" " · OH /span span style=" text-indent: 2em line-height: 150% font-family: 宋体 " 的检测难题,质谱发展事业部科研工作者基于垂直加速和双场加速聚焦技术,完全自主研发了一台大气压负离子直线式 /span span style=" text-indent: 2em line-height: 150% font-family: " times=" " new=" " TOFMS /span span style=" text-indent: 2em line-height: 150% font-family: 宋体 " 用于大气活性自由基 /span span style=" text-indent: 2em line-height: 150% font-family: " times=" " new=" " · OH /span span style=" text-indent: 2em line-height: 150% font-family: 宋体 " 在线监测,其结构示意图如图 /span span style=" text-indent: 2em line-height: 150% font-family: " times=" " new=" " 1.2 /span span style=" text-indent: 2em line-height: 150% font-family: 宋体 " 所示。 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 14px font-family: 黑体 " /span /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/99cdf405-749e-4743-989c-4cc3c7893cf3.jpg" title=" 88.jpg" alt=" 88.jpg" / /p p style=" text-indent: 2em line-height: 1.75em text-align: center " span style=" text-align: center text-indent: 32px font-size: 14px font-family: 黑体 " 图 /span span style=" text-align: center text-indent: 32px font-size: 14px font-family: " times=" " new=" " 1.2& nbsp & nbsp /span span style=" text-align: center text-indent: 32px font-size: 14px font-family: 黑体 " 自行研制的大气压负离子直线式 /span span style=" text-align: center text-indent: 32px font-size: 14px font-family: " times=" " new=" " TOFMS /span span style=" text-align: center text-indent: 32px font-size: 14px font-family: 黑体 " 的结构示意图 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em font-family: 宋体 " 基于 /span span style=" text-indent: 2em font-family: " times=" " new=" " CIMS /span span style=" text-indent: 2em font-family: 宋体 " 技术的基本原理,针对大气活性自由基浓度低、寿命短等自身特点,利用 /span sup style=" font-family: 微软雅黑 text-indent: 2em " span style=" font-size: 16px font-family: " times=" " new=" " 63 /span /sup span style=" text-indent: 2em font-family: " times=" " new=" " Ni /span span style=" text-indent: 2em font-family: 宋体 " 放射源作为电离源,采用自由基转化反应管、试剂离子产生管与化学电离反应区相互平行同轴设计的结构,对自由基进行测量。如图 /span span style=" text-indent: 2em font-family: " times=" " new=" " 1.3 /span span style=" text-indent: 2em font-family: 宋体 " 所示为同轴式自由基进样系统及电离源的反应原理图与结构设计图。 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em font-family: 宋体 " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 614px " src=" https://img1.17img.cn/17img/images/202006/uepic/0e654476-5bf0-4572-bc19-9a0e78fb151e.jpg" title=" 99.jpg" alt=" 99.jpg" width=" 600" height=" 614" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em line-height: 1.75em text-align: center " span style=" text-align: center text-indent: 2em font-family: 黑体 " 图 /span span style=" text-align: center text-indent: 2em font-family: " times=" " new=" " 1.3& nbsp /span span style=" text-align: center text-indent: 2em font-family: 黑体 " 同轴式 /span span style=" text-align: center text-indent: 2em font-family: " times=" " new=" " · OH /span span style=" text-align: center text-indent: 2em font-family: 黑体 " 自由基进样系统及电离源的反应原理图 /span /p p style=" margin: 10px 0px text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px font-family: 宋体 " 基于上述 /span span style=" font-size: 16px font-family: " times=" " new=" " CIMS /span span style=" font-size: 16px font-family: 宋体 " 检测方法,科研人员于 /span span style=" font-size: 16px font-family: " times=" " new=" " 2018 /span span style=" font-size: 16px font-family: 宋体 " 年 /span span style=" font-size: 16px font-family: " times=" " new=" " 4 /span span style=" font-size: 16px font-family: 宋体 " 月 /span span style=" font-size: 16px font-family: " times=" " new=" " 30 /span span style=" font-size: 16px font-family: 宋体 " 日对大连市沙河口区中山路 /span span style=" font-size: 16px font-family: " times=" " new=" " 457 /span span style=" font-size: 16px font-family: 宋体 " 号生物楼楼顶平台环境空气中 /span span style=" font-size: 16px font-family: " times=" " new=" " · OH /span span style=" font-size: 16px font-family: 宋体 " 自由基进行了连续在线监测,时间范围为 /span span style=" font-size: 16px font-family: " times=" " new=" " 6:00 ~18:00 /span span style=" font-size: 16px font-family: 宋体 " 。测试过程中每张质谱图采集 /span span style=" font-size: 16px font-family: " times=" " new=" " 5 s /span span style=" font-size: 16px font-family: 宋体 " ,经过计算,得到环境空气中 /span span style=" font-size: 16px font-family: " times=" " new=" " OH /span span style=" font-size: 16px font-family: 宋体 " 自由基浓度在一天内随时间的变化趋势如图 /span span style=" font-size: 16px font-family: " times=" " new=" " 1.4 /span span style=" font-size: 16px font-family: 宋体 " 所示,所得监测结果与相关文献报道规律保持一致,且分析速度更具优势,展现了所发展 /span span style=" font-size: 16px font-family: " times=" " new=" " CIMS /span span style=" font-size: 16px font-family: 宋体 " 的巨大应用潜力。 /span /span /p p style=" margin: 10px 0px text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px font-family: 宋体 " /span /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 449px " src=" https://img1.17img.cn/17img/images/202006/uepic/fb123cb4-f106-42c3-8e9e-13bd104b1612.jpg" title=" 10101.png" alt=" 10101.png" width=" 600" height=" 449" border=" 0" vspace=" 0" / /p p style=" margin: 10px 0px text-indent: 2em line-height: 1.75em text-align: center " span style=" font-family: 微软雅黑 text-align: center text-indent: 2em " 图 /span span style=" text-align: center text-indent: 2em font-family: " times=" " new=" " 1.4& nbsp /span span style=" font-family: 微软雅黑 text-align: center text-indent: 2em " 环境空气中 /span span style=" text-align: center text-indent: 2em font-family: " times=" " new=" " · OH /span span style=" font-family: 微软雅黑 text-align: center text-indent: 2em " 自由基浓度在一天内随时间的变化 /span /p p style=" margin: 10px 0px text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong style=" font-family: 微软雅黑 text-indent: 2em " span style=" line-height: 150% font-family: 宋体 " 4.结语 /span /strong /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 由中科院大连化物所“快速分离与检测”课题组与金铠仪器(大连)有限公司共建的质谱发展事业部,采用 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CIMS /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 技术设计研制了一套基于 /span sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 63 /span /sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Ni /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 放射源的大气压化学电离源及进样系统,利用自行研制的大气压负离子 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " TOFMS /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 实现了对于大气中的超痕量 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基的原位、实时、在线、连续测量,展现了其在大气环境领域的巨大应用前景。 /span /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " br/ /span /span /p p style=" text-indent: 2em line-height: 1.75em text-align: right " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 供稿来源:金铠仪器(大连)有限公司 /span /span /p p br/ /p
  • QL3580在线总有机碳(TOC)分析仪上市
    QL3580在线总有机碳(TOC)分析仪上市哈希公司 3 days ago产品应用污染源,工业废水,地表水准确测量污染源排口地表水和工业废水中的有机物含量QL3580 在线TOC分析仪采用UV过硫酸盐和羟基自由基相结合的氧化方法(纯氧做载气时),与传统UV过硫酸盐氧化法相比,氧化能力更强,氧化效率更高,提高了TOC测量时的准确度。内置TOC/COD转换功能,满足EPA的管控要求。低维护量低维护费用QL3580 TOC分析仪具有4mm内径的进样管路,可以测量高达2mm内径的软颗粒,且自带流通池,常规样品无需过滤处理。节约预处理成本及减少管路维护。简洁的仪器设计和仪表配备的两点自动校准功能减少操作人员的额外维护量,序批式测量减少试剂的消耗。且因为分析过程不使用碱性试剂,有效的降低了操作人员制备药剂的难度。准确测量水中有机物含量具有TOC/COD转换功能QL3580 TOC分析仪内置TOC/COD转换功能,满足污染源排口监控的需求。分析过程不使用碱性试剂,排除因二氧化碳溶入碱性试剂造成的测量干扰。在使用氧气作为载气时,为羟基自由基提供稳定的来源,提高了水中总有机碳的氧化效率,确保在低浓度时也具有较高的准确度。友好的人机界面QL3580 TOC分析仪配备高清触摸屏,具有人性化的操作界面和仪表接口,可快速便捷进行数据下载和软件更新,多级管理模式方便用户对仪表进行管理。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取便携乐扣弹跳杯哦!
  • QL3550在线总有机碳(TOC)分析仪上市
    QL3550在线总有机碳(TOC)分析仪上市哈希公司 1 week ago产品应用反渗透水 /冷凝水 /补给水等准确测量低浓度TOC应用范围广QL3550 在线TOC分析仪采用UV过硫酸盐和羟基自由基相结合的氧化方法(纯氧做载气时),与传统UV过硫酸盐氧化法相比,氧化能力更强,氧化效率更高,提高了低浓度TOC测量时的准确度。可广泛应用于电子、电力等工业行业的反渗透水、冷凝水、补给水等。低维护量低维护费用QL3550 TOC分析仪具有4mm内径的进样管路,可以测量高达1.5mm内径的软颗粒,且自带流通池,常规样品无需过滤处理。节约预处理成本及减少管路维护。简洁的仪器设计和仪表配备的两点自动校准功能减少操作人员的额外维护量,序批式测量减少试剂的消耗。且因为分析过程不使用碱性试剂,有效的降低了操作人员制备药剂的难度。高准确度检测低至ppb级的TOC浓度QL3550 TOC分析仪可准确测量低至10ppb的TOC浓度。分析过程不使用碱性试剂,排除因二氧化碳溶入碱性试剂造成的测量干扰。氧气作为载气,为羟基自由基提供稳定的来源,提高了水中总有机碳的氧化效率, 确保在低浓度时也具有较高的准确度。友好的人机界面QL3550 TOC分析仪配备高清触摸屏,具有人性化的操作界面和仪表接口,可快速便捷进行数据下载和软件更新,多级管理模式方便用户对仪表进行管理。END
  • 1分钟短视频带你了解哈希QL3550/3580 TOC分析仪
    1分钟短视频带你了解哈希QL3550/3580 TOC分析仪哈希公司 00:51TOC分析仪测量的是液体样品中溶解或者未溶解的有机物中碳元素的含量。哈希QL系列在线TOC产品采用UV过硫酸盐+羟基自由基氧化技术(纯氧做载气),应用于反渗透水、补给水、冷凝水、污染源、简单工业工程水等领域。通过准确稳定的测量,及时反映生产过程中的泄露和物料损失,为后期控制提供有效监测结果。
  • Ellutia 热能分析仪帮助英国大型食品集团进行食品分析
    卓越食品集团(Premier Foods Group)是英国的一家闻名的食品企业,也是英国大型的食品生产商。在英国,几乎每家每户都在用Premier Foods的产品,例如面包、面粉、蛋糕、速食食品、调味酱、点心和调味肉汁等。企业的承诺是为大家提供最好的英国食品。卓越分析服务(PAS)由卓越食品集团设在海威康比(High Wycombe)的一个研究机构,由大约75名科学家组成,他们主要研究食物中的各种成分。英国食品标准局(FSA)与PAS进行了联络,希望对生产和加工过程中直接形成的N-亚硝基化合物(NOC)含量进行鉴定和测定。在此之前,英国食品中NOC的大部分数据都是对表观亚硝基化合物(ATNC)的检测,没有关于NOC类型、水平或存在的详细信息,很难确定对于人体健康的潜在风险;且ATNC测试结果普遍偏高,实际中NOC的含量要低得多。食品中NOC的分析检测历来具有挑战性,热能分析仪(TEA)的应用改变了这一现象。热能分析仪(TEA)作为高灵敏度的NOC特异性检测器,基于与臭氧反应产生的化学发光信号对N-NO键的选择性热裂解和对被释放的NO自由基的检测。TEA可与气相色谱仪(GC)联用,用于特定种类亚硝胺的检测,具有特异性强、灵敏度高(检测限为pg级)等特点。TEA的诞生为食品中NOC前体物质的分析检测提供了极大便利,自上个世纪八十年代问世以来一直是亚硝胺分析的行业标准。Ellutia 800 系列热能分析仪TEA关于卓越分析服务(PAS)自1963年成立以来(伦琴数的研究,2007年总理食品集团收购了),主要分析服务已经成为最受尊敬的食品检测中心在欧洲和提供专业研究、开发和测试服务所有的食品工业领域,给客户的内外总理食品集团关于通用实验通用实验科技(中国)有限公司(Labcare Scientific China Limited)是一家专注于通用实验室配件耗材、设备仪器和工程项目服务的高科技公司。我们依托团队在生命科学和化学分析仪器行业的专业背景以及在材料系统筛选和加工生产及质量管理领域丰富的经验,在欧洲、北美和亚太地区都设立了代表处。致力于专业、严格地筛选了大量国内外直接原厂生产商作为协议供应商,以委托制造式进行并实现全球采购。通过专业的库存和物流管理体系, 致力于为目标地域的生命科学和化学分析实验室用户提供质优价廉的各种通用实验室配件耗材、仪器设备和服务。更多信息请咨询通用实验科技(中国)有限公司。
  • 中国建全球唯一可调波极紫外自由电子激光器
    摘要:3月12日,总预算达1.4亿元的国家重大科研仪器设备专项“基于可调极紫外相干光源的综合实验研究装置”在大连正式启动。它将成为国际上唯一一套工作在50~150纳米区间且波长可调的全相干高亮度的自由电子激光器。   对原子、分子的探测是物理化学研究的基础,但由于现有仪器设备的限制,大多数分子和自由基难以被单光子电离,使很多研究无法深入,成为困扰科研工作者的一大难题。   一项旨在解决该难题的实验装置即将在我国建设。3月12日,总预算达1.4亿元的国家重大科研仪器设备专项“基于可调极紫外相干光源的综合实验研究装置”在大连正式启动。它将成为国际上唯一一套工作在50~150纳米区间且波长可调的全相干高亮度的自由电子激光器。   项目总负责人、中科院院士杨学明表示,该装置的研制将极大提升我国在能源等相关基础科学领域的实验水平,并极有希望成为国际上相关领域的一个重要研究基地。   强强联合   项目负责人之一、中科院大连化物所研究员戴东旭介绍说,能源研究中,煤的热解等燃烧过程的中间产物往往以原子、分子、自由基的形式存在,这些微观粒子被电离为离子后才能变成电信号被测试到。因此,对微观粒子的高灵敏度、高时间分辨率和物种分辨的探测和研究至关重要。   但是,大多数分子或自由基的激发电离波长都处于极紫外波段(50~150纳米),而传统激光器产生的基本波长一般在近紫外到近红外波段(300~1000纳米)。这造成了传统激光激发电离微观粒子需要吸收多个光子,其效率和灵敏度会呈几何量级的降低,并且容易把产物打碎。   为解决该问题,科学家提出了利用自由电子激光产生极紫外波段相干光的技术。该技术被认为是探测微观粒子最有效的途径。自由电子激光的波长可涵盖从硬X射线到远红外的所有波段,特别是利用高增益谐波产生(HGHG)技术产生的自由电子激光具有超高峰值亮度、超快时间特性和良好的相干性,应用价值巨大。   但该技术直到近十年才在实验中得到验证。其中,中科院上海应用物理所在几年前建设了我国第一个自由电子激光,并成功进行了相关实验。   而在大连,一位在科研中多年受困于粒子探测难题的科学家坐不住了。他就是以自己研发仪器进行实验而著名的杨学明。杨学明找到上海应用物理所,希望双方能够合作开发新设备。   上海方面通过经验积累后也意识到,有把握将自由电子激光的波长从200纳米降到150纳米以内,并实现波长可调。于是双方一拍即合,经过几年论证,在2011年联合申请了国家自然科学基金委国家重大科研仪器设备专项。   1月20日,上海应用物理所宣布:由该所研究员赵振堂领导的自由电子激光研究团队在国际上率先实现了HGHG自由电子激光大范围波长连续可调。   “在这个项目中,大连化物所和上海应物所是完美结合。”戴东旭表示,上海光源的建成使上海应物所拥有了大科学工程的建设与管理经验,并掌握了大量的关键技术。   从“敢想”到“敢做”   据戴东旭介绍,自由电子激光在进入21世纪之后才开始兴旺发展起来。目前,几家研发自由电子激光的相关单位各有所长,其中一些在波长等指标方面较为领先,技术难度很高,但还没有一家可实现波长可调。   位于合肥的国家同步辐射实验室目前能提供国内真空紫外最好的实验条件,在过去曾协助杨学明课题组做出很好的实验成果。但同步辐射光源毕竟不是激光,在相干性、峰值功率和时间特性上尚存差异。   针对这些问题,大连化物所从实际需求出发提出要求,上海应用物理所在设计中将目标瞄准解决实验中的实际问题。   据悉,该项目的设备将主要由我国自主研发。“这项技术国外也处在发展阶段,有些特殊指标只能自己制造,从国外买设备也需要从头研制。”戴东旭说。   在1.4亿元的项目总预算中,国家自然科学基金委资助1.03亿元用于自由电子激光和实验装置的研制,中科院大连化物所自筹约0.4亿元用于基建和公用设施。该项目的科学目标是研制一套基于HGHG模式的波长可调谐的极紫外相干光源以及利用这一性能优越的光源的实验装置。这也将成为世界上独特的相关基础科学问题的实验平台。   据悉,目前经费已经到位,装置计划将于2015年年底前建成。而且会在全国实现仪器共享,可应用于物理、化学、生物、能源等多个领域。戴东旭说:“装置建成后,以前测不到的将能测到,以前不好的信号将变清晰,以前做不了的实验也敢做了。”
  • 我国学者研制出世界首台聚合物燃烧过程实时在线分析仪器与系统
    12月16日记者获悉,四川大学完成的“聚合物燃烧过程实时在线分析仪器与系统”项目日前通过成果鉴定,这是世界首台套能同时实时在线检测与分析聚合物阻燃性能、真实燃烧行为与阻燃机理的科研仪器。  有机高分子材料目前正广泛应用于国民经济和人民生活。与金属材料和无机非金属材料相比,有机高分子材料具有易燃性,易被引燃引发火灾。赋予有机高分子材料阻燃性,是从源头上解决易燃高分子材料引发火灾的有效措施。但由于缺乏能够实时在线精确分析聚合物燃烧过程的仪器,已有阻燃机理研究则仅是在非真实火环境下得到,不能有效指导阻燃化设计。鉴定现场。四川大学供图  为此,四川大学化学学院王玉忠院士团队经过近40年在高分子材料无卤阻燃领域系统的基础研究与应用研究,提出和发展了阻燃新理论和新方法,并开发出各种无卤阻燃高分子材料体系与阻燃技术,已在国内外企业中得到广泛应用。研究团队创制出的聚合物燃烧过程实时在线分析仪器与系统,能够科学表现聚合物真实燃烧行为,实时在线分析聚合物热释放、烟释放、瞬态自由基、官能团、精细化学结构、采集烟尘颗粒、表征燃烧和阻燃性能等,并同时原位分析燃烧行为和机理,填补聚合物燃烧实时在线分析检测领域空白。  日前,由中国仪器仪表学会组织的专家团队鉴定认为,该聚合物燃烧过程实时在线分析仪器和系统,技术难度大、创新性强、具有自主知识产权,各种性能及功能指标优于现有国内外用于阻燃研究的商品化仪器,整体技术处于国际领先水平。
  • 锂电行业专家深度剖析:十大成分分析仪器技术全攻略
    在安全性与高能量密度双重目标追求下,锂电检测技术的发展与深入应用愈发凸显其重要意义。仪器信息网自2019年举办首届“锂离子电池检测技术与应用”网络会议以来,该年度系列会议累计吸引超8000业内人士报名参会,参会人员广泛涵盖了从锂电上游原材料/设备、中游电池系统、下游应用等锂电产业环节。2024年5月28-31日,仪器信息网将联合国联汽车动力电池研究院有限责任公司举办第六届“锂离子电池检测技术与应用”网络会议,按主要检测技术、热点应用分设六个专场,邀请锂电检测领域研究应用专家、相关仪器技术专家等,以网络在线报告交流的形式,针对当下锂电研究热点、锂电检测新技术及难点、锂电检测市场展望、锂电回收等进行探讨,为锂电检测应用端与仪器设备供应端搭建交流平台,为我国锂电产业市场健康快速发展助力。5月28日全天,锂电成分分析技术主题专场,12位锂电科研与仪器技术专家将分别为大家介绍色谱、质谱、原子光谱、拉曼光谱、核磁共振、分子光谱、元素分析、电子顺磁共振技术、电化学仪器技术、X射线荧光光谱、ICP-OES和ICP-MS等主流成分分析技术在锂电产业中的最新应用与进展。一、 主办单位仪器信息网国联汽车动力电池研究院有限责任公司二、 会议时间2024年5月28日-31日三、 参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.co m .cn/webinar/meetings/ldc2024/ 四、 锂电成分分析技术专场(注:以最终日程为准)05月28日 锂电成分分析技术专场报告时间报告题目报告嘉宾09:30德国耶拿超高分辨率高耐受性助力锂电行业高质量发展陈瑛娜德国耶拿分析仪器有限公司 应用工程师10:00PerkinElmer ICP-MS在锂电行业元素分析的解决方案梁少霞珀金埃尔默企业管理(上海)有限公司 高级技术支持10:30HORIBA技术在锂电成分分析中的应用研究代琳心HORIBA(中国) 拉曼应用工程师11:00电子顺磁共振(EPR)技术在锂离子电池研究中的应用方勇布鲁克(北京)科技有限公司 EPR应用工程师11:15核磁共振(NMR)在锂离子电池分析中的应用任萍萍布鲁克(北京)科技有限公司 核磁共振应用专员11:30单波长X射线荧光光谱仪与全息基本参数法对锂电池材料(含Li元素)的快速准确定量刘晓静安科慧生 应用工程师14:00耐高压金属有机框架电解质的结构调控与性能研究董盼盼西南交通大学 特聘副研究员14:30锂电池材料检测解决方案文桦钢研纳克检测技术股份有限公司 产品经理15:00赛默飞原子光谱技术助力新能源材料元素分析贺静芳赛默飞世尔科技(中国)有限公司 高级应用工程师15:30锂电池元素分析挑战与安捷伦解决方案尹红军安捷伦科技(中国)有限公司 AE - 应用工程师16:00雷磁锂电成分分析解决方案李新颖上海仪电科学仪器股份有限公司 产品应用16:30X射线荧光光谱仪在锂电材料分析中的应用刘建红岛津企业管理(中国)有限公司 应用工程师 应用工程师五、 嘉宾简介及报告摘要(按分享顺序)陈瑛娜 德国耶拿分析仪器有限公司 应用工程师【简介】毕业于浙江海洋大学,食品工程硕士,发表SCI文章2篇,中文期刊6篇,发明专利10项。长期专注金属与总有机碳等分析技术的方法开发与技术支持工作,主要负责光谱类及总有机碳仪器实验方法优化和新行业新领域的应用拓展工作,有丰富的应用研发经验。【摘要】锂电池分析中经常存在痕量杂质元素测试时光谱干扰严重、主含量和杂质元素需采用不同仪器测试、基体复杂、维护频率高等问题,给分析人员带来很大的挑战,德国耶拿0.003nm超高分辨率使常见的光谱干扰问题迎刃而解;双向观测+Plus功能,高低浓度元素一次进样即可完成;耐盐性高达85g/L的multi N/C 总有机碳分析仪,使原料品质控制更得心应手。梁少霞 珀金埃尔默企业管理(上海)有限公司 高级技术支持【简介】毕业于中山大学化学与工程学院,现任珀金埃尔默原子光谱高级技术支持,有多年原子光谱(AAS/ICP-OES/ICP-MS)应用开发经验,熟悉锂电池材料中元素定量的分析难点及应用解决方案。【摘要】结合锂电池材料前处理的要点,讲解电感耦合等离子体质谱仪(ICP-MS)测定锂电池正极材料、原材料、磁性异物、负极材料、常用有机溶剂和电解液元素以及颗粒异物的难点和注意事项,为锂电池材料中元素分析提供充足的解决方案。代琳心 HORIBA(中国) 拉曼应用工程师【简介】毕业于中国林业科学研究院,硕士期间在Industrial Crops and Products 、International Journal of Biological Macromolecules、Coatings期刊发表论文。现任HORIBA科学仪器事业部拉曼应用工程师,为用户提供各领域的应用解决方案。【摘要】拉曼光谱、X射线荧光分析以及激光粒度分析等多项技术是研究锂电池相关材料结构性质的重要内容。本报告将介绍HORIBA技术,在锂电池研发、质控中不同材料成分分析的相关应用案例以及解决方案。方勇 布鲁克(北京)科技有限公司 EPR应用工程师【简介】方勇博士毕业于南京大学化学化工学院,博士期间主要从事具有新颖结构及性质的(元素)有机双自由基物种的合成及表征,并负责课题组内一台布鲁克 EMXplus 电子顺磁共振波谱仪的常规测试、简单维护及谱图解析。2020年年底博士毕业以后,随即加入布鲁克担任EPR应用工程师一职,目前主要致力于向具有不同行业基础和学术背景的顺磁用户推广EPR的多方面应用,同时针对用户各异的研究需求协助提出基于顺磁共振的高效解决方案,助力于他们的研究工作和生产活动。【摘要】对于工作状态下的锂离子电池而言,锂化-脱锂过程中金属锂的微结构改变,富锂金属氧化物正极材料本身的结构缺陷或过渡金属离子的变价、涉及自由基中间体的寄生化学反应等,都适于利用EPR技术来进行表征及机理推定,以助于电池的性能评估和优化,本次报告将援引一些相关的研究实例来展示EPR技术在锂离子电池研究领域的应用。任萍萍 布鲁克(北京)科技有限公司 核磁共振应用专员【简介】任萍萍,博士,布鲁克核磁共振应用专员。毕业于中国科学院武汉磁共振中心,在核磁共振和分析化学领域发表SCI十余篇,参编2019年科学出版社出版的分析检测类教材一部。【摘要】核磁共振与生俱来的定性定量属性,使得它成为锂离子电池分析的强大工具,可应用于快速的卤水定量检测、电解液降解产物和机理研究、锂离子扩散速率测量、电极浆料的分散性和相稳定性分析,常用的分析核包括1H、7Li、19F、31P、11B、23Na等。此外,原位固体检测探头可实时观测锂电池中的电化学过程,还可研究枝晶和死锂的形成机制。刘晓静 安科慧生 应用工程师【简介】毕业于天津大学化学专业硕士学位,现就职北京安科慧生科技有限公司应用市场部经理。精通元素分析方法开发、XRF与基本参数法理论研究、数值分析 参与国家、行业等标准制订5项;国内外核心期刊发表论文7篇。【摘要】单波长X射线荧光光谱仪与全息基本参数法对锂电池材料(含Li元素)的快速准确定量董盼盼西南交通大学 特聘副研究员【简介】董盼盼,西南交通大学前沿科学研究院特聘副研究员,博士及博后在美国Washington State University完成,主要从事先进功能复合材料在储能领域的基础与应用研究,具体包括:高比能锂金属电池电极与电解液、复合固态电解质、金属有机框架准固态电解质等方向。迄今为止,在Adv. Mater.(1), Energy Stor. Mater.(2), Nano Energy(1)等国际知名期刊发表论文20余篇,美国专利申请1项,PCT国际专利申请1项,中国授权专利2项,主持中央高校基本科研业务费科技创新项目。现为中国化学会会员,受邀担任Adv. Mater., ACS Nano等国际知名SCI期刊审稿人。文桦 钢研纳克检测技术股份有限公司 产品经理【简介】目前为钢研纳克ICP-OES产品经理,一直从事光谱质谱的元素分析的应用和市场开发工作,擅长多种化学成分分析技术,在材料和环境等领域的ICP-OES和ICP-MS应用研究上有丰富的经验。贺静芳 赛默飞世尔科技(中国)有限公司 高级应用工程师【简介】赛默飞世尔科技(中国)有限公司原子光谱团队高级应用工程师,2013年加入赛默飞,负责AA/ICPOES/ICPMS仪器及应用研究,具有十多年锂电池行业各类样品原子光谱仪器分析经验。【摘要】新能源行业近年来迎来爆发式增长,新能源材料的原材料、研发、生产、以及环保排放都离不开元素分析。本次报告将围绕使用赛默飞ICPOES/ICPMS技术以及IC-ICPMS联用技术对新能源材料进行主成分和杂质元素分析,以及元素形态分析,旨在为新能源行业提供最有力的分析工具。尹红军 安捷伦科技(中国)有限公司 AE - 应用工程师【简介】尹红军,硕士研究生,毕业于成都理工大学应用化学专业。安捷伦公司资深应用工程师,负责电感耦合等离子体质谱仪ICP-MS,电感耦合等离子体发射光谱仪ICP-OES,原子吸收光谱仪AAS的方法开发和技术支持。十五年的原子光谱应用支持工作,擅长石化、环境、锂电池、材料行业样品的样品测试和仪器的方法开发研究。【摘要】针对锂电材料无机元素检测的难点,例如主含量元素、碱金属、电解液和未知样品元素分析等难点,安捷伦将会提供完善的应对方法与解决方案,助力客户在锂电材料元素分析中实现高效快速的分析。李新颖 上海仪电科学仪器股份有限公司 产品应用【简介】李新颖,博士,任上海仪电科学仪器股份有限公司技术支持,多年的分析实验室经验,熟悉实验室各类设备操作、检测标准和相关应用,致力于实验室设备的技术支持和应用方法开发。【摘要】根据锂电行业上下游不同的测量需求,报告包括电池原料分析,正极材料分析,负极材料分析,电解液分析。刘建红 岛津企业管理(中国)有限公司 应用工程师【简介】岛津公司分析中心应用工程师,2007年加入岛津企业管理(中国)有限公司,长期从事EDX应用支持工作,在EDX应用于珠宝分析中积累了丰富的使用经验。【摘要】磷酸铁锂电池和三元电池仍为当前动力电池的主流,电池材料中的组成元素是电池的基本构成要素,是研发和生产过程的控制指标之一。X射线荧光光谱仪具有前处理简单、分析速度快、分析过程无损、运行成本低、分析结果准确度高、稳定性好的优点。本报告介绍了岛津EDX在磷酸铁锂、三元正极材料中主次元素含量分析的案例。六、 会议联系1. 会议内容:杨编辑 15311451191(同微信) yanglz@instrument.com.cn2. 会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 重庆大学预算783万元采购纳米颗粒跟踪分析仪等仪器设备
    项目编号:CQU-SS-HW-2023-003   项目名称:重庆大学医学公共实验中心实验设备(Ⅱ)采购   预算金额:783.0000000 万元(人民币)   最高限价(如有):729.0000000 万元(人民币)   采购需求:序号产品名称(设备名称)※数量单位备注1细胞能量代谢分析仪1套(核心产品)该设备经批准可以采购进口产品2纳米颗粒跟踪分析仪1套(核心产品)该设备经批准可以采购进口产品3活细胞工作站1套该设备经批准可以采购进口产品4大容量落地式离心机1套该设备经批准可以采购进口产品5大型灭菌器1套该投标产品必须为中国关境内生产,若为进口产品将按无效投标处理。6组合式全温振荡培养箱1套该投标产品必须为中国关境内生产,若为进口产品将按无效投标处理。   技术需求:序号设备名称技术需求1细胞能量代谢分析仪▲1.1平行检测样品量:一次可满足≥20个样品的平行检测;1.2数据采集:可在同一孔同时检测线粒体功能与无氧代谢,即时反应样本生理状态变化;1.3采用超敏感的惰性光学微传感器和非接触式设计,真正实现检测样本零损伤,在最接近样本的真实状态下,测量出反映样本能量代谢情况的动态数据;1.4实时多因子参数检测:同时分析02/H+,得到实时OCR/ECAR值,侦测有氧与无氧代谢途径;1.5可检测项目:基础代谢率、极限呼吸率、呼吸储备能力、质子漏水平、产氧自由基等有害物的情况等参数;1.6探针类型:检测探针为固态荧光探针,两种独立反应底物;※1.7检测器:配有≥20个独立的光电二极管检测器;1.8传感器:传感器为独立于每个孔的固态光纤传感器;※1.9自动加药槽:每个样品孔配有≥3通道自动加药槽,可按需设定加药程序;※1.10可在实验进程中加药,可调的混合系统,气体驱动的药物传递,自动混匀。整合了自动化药物注入系统,实验进程中可定时定量加入≥3种不同药物。2纳米颗粒跟踪分析仪2.1设备需要满足功能要求:2.1.1在主机内集成了高灵敏度传感器,温控单元以及不同波长的激光选择。便于移动、清洁,适合高通量检测;2.1.2采用整体设计,具有荧光增强检测能力。可以对于悬浮体系中的纳米颗粒进行粒径、散射光强、计数、zeta电位和荧光检测。检测能力使其在蛋白质团聚,外泌体、微泡、药物传递等领域具有广泛的应用。还可以利用荧光标定特定颗粒,单独对这些颗粒检测,而不受到复杂环境的影响;※2.1.3必须具备zeta电位测试功能。2.2技术指标:2.2.1粒径检测范围:0.01-2微米;※2.2.2浓度检测范围:106-109粒子/mL;2.2.3具有单个颗粒跟踪功能的激光散射视频技术,自动准直和自动聚焦;※2.2.4激光光源:双激光一体化配置,软件控制激光选择,无需拆卸;※2.2.5激光光源和相机同步移动,可自动测量样品至少10个测量位置达到有效统计点;2.2.6在1分钟内至少可测量样品1000个以上的颗粒,保证样品数据采集的有效性;※2.2.7仪器具备荧光测量功能,不同位置点的测量必须具有快速测试模式,在荧光淬灭前测量到样品10个不同位置的荧光数据;2.2.8光学系统:高灵敏度的CMOS相机,相机速度25fps;※2.2.9测量池必须是石英玻璃测量池,插入式设计,无需拆卸即可自动冲洗;2.2.10激光光源和检测器的位置必须全自动调节,无需人工操作;※2.2.11 Zeta电位测量范围:-400mV—400mV;2.2.12自动提示样品浓度与相机设定的匹配程度;※2.2.13可自动判断数据可靠性,并给出离散原因;2.2.14软件功能:提供布朗运动可视视频,提供平均粒径和分布宽度参数,提供颗粒浓度信息,提供粒径-数量分布和体积分布曲线,提供 Zeta 电位分布,可以在不同粒径范围进行分段计算,提供颗粒分布累积曲线,数据管理:可视频、文本、PDF、单一或叠加输出。3活细胞工作站※3.1系统包括高分辨荧光显微镜成像模块和活细胞培养模块,可通过电脑调用预设实验程序自动进行成像实验。3.2全电动荧光高分辨成像系统:3.2.1研究级全自动倒置荧光显微镜,可具备明场、荧光、相差、彩色明场成像功能;▲3.2.2相差具有立体浮雕效果,兼容塑料底耗材;3.2.3电动载物台,XY行程≥114mm×73mm;▲3.2.4物镜:至少四个,其中高倍物镜为水镜,NA≥1.2,可以自动添加水;3.2.5配有防震台;▲3.2.6配备硬件自适应焦面控制系统,兼容明场和荧光,可实现自动样品寻找和焦面寻找,并且可以在活细胞实验中维持焦平面的稳定;3.2.7机身预留灌流接口,可外置灌流系统;3.2.8配有用于76×26mm玻片、多孔板、35mm培养皿、腔室载玻片的适配器;※3.2.9拥有至少4色激发光,能同时激发DAPI,GFP,RFP,CY5等染料;※3.2.10至少配置4个高灵敏度荧光检测器,并可以4个通道同时成像;※3.2.11配备实时高分辨成像技术,最佳光学分辨率XY≤140nm;※3.2.12分辨率不低于400万像素条件下,同时4色成像速度≥20fps;▲3.2.13 4个荧光检测器QE量子效率:≥45%。※3.3环境控制模块:通过成像软件进行环境控制,温度、CO2控制及湿度控制均可由系统软件实现。3.4电脑工作站与软件系统:▲3.4.1电脑主机一台:处理器:不低于Intel Xeon Gold 5222;内存≥128GB,硬盘≥10TB;独立显卡≥8GB;显示器:≥32寸高对比度广视角液晶显示器,Win10专业版操作系统;含DVD刻录光驱;3.4.2配置UPS不间断电源一台;▲3.4.3软件功能:灵活的实验设计功能,可以针对实验需求灵活设置实验参数和自动化实验流程;多维图像成像功能,控制显微镜进行Time-lapse拍摄、多点拍摄、细胞跟踪、Z轴整合、自动对焦、样品的三维重建;图像处理和分析工具:包括可进行蛋白表达的定量分析、共定位分析、细胞内目标观测物的定量测定、动态示踪、量化参数列表和运动趋势/模式作图和视频制作等;3.4.4仪器可为后续信息化和智能化管理预留接口。4大容量落地式离心机※4.1最高转速不低于:29,000rpm,最大离心力不低于:100,605×g,最大容量≥4,000mL;▲4.2转速控制精度不高于:±50rpm;4.3具备密码保护功能;▲4.4程序保存不低于:99个;▲4.5加速至少可设定档位:9档,减速至少可设定档位:10档;4.6热输出<2.0kw,噪音<62dB;※4.7控制系统:微电脑控制,可简单快捷设定运行条件和运行参数,触摸屏液晶显示界面;4.8驱动系统:能有效降低升降速时间;▲4.9运行监测:实时显示运行曲线图,动态惯量检测功能,提高运行中的安全性;4.10转头识别与锁定:自动识别,自动锁定,具备转头管理功能,提高操作安全性;4.11温度设定范围:-20至+40℃,温度步升±1℃,温度精准度±2℃,最高转速下可保持4℃;※4.12安全系统:门互锁,对位不平衡检测(容忍度5%),超速和超温保护。5大型灭菌器▲5.1执行标准:中国标准GB8599;※5.2基本需求:采用脉动真空灭菌技术,300L≤容积≤400L,提供压力容器质量证明书、竣工图证明;▲5.3设计压力至少:0.25Mpa(-0.1),设计温度至少:139℃;▲5.4设计年限至少:8年(16000次灭菌循环);▲5.5运行时间:85min;※5.6程序最少包含:121℃塑料物品灭菌、134℃金属物品灭菌、134℃织物灭菌、121℃开口容器液体灭菌、121℃固体废弃物灭菌、121℃快速液体程序、BD测试、真空测试、自定义程序;5.7外形尺寸:尺寸1:1215×1880×1190mm;5.8夹套、门板、门档材质:304不锈钢或同类型档次材质;5.9管路:304不锈钢或同类型档次材质卫生级管路,卡箍连接;▲5.10工艺:至少满足手工焊接、无下沉工艺水平;5.11安装方式:地上安装;5.12主体结构:环形加强筋结构,内腔强度和稳定性更高;▲5.13生产厂家至少为:专业灭菌设备生产厂家,国家认定的企业技术中心,通过ISO9001、ISO13485、环境管理体系、职业健康安全管理体系认证,并提供相应证明;※5.14安全性能:压力容器安全联锁装置、超压自动泄放功能、夹套、内室各1个安全阀、漏电过载保护、经过电磁兼容检测。6组合式全温振荡培养箱6.1外形尺寸:一层、二层或三层叠加组合,以最小的占地面积为用户提供最大的使用空间;6.2三维一体的偏三轮驱动,运转平滑、稳定、耐久、可靠;▲6.3具有超温报警功能及异常情况自动断电功能;▲6.4具有断电恢复功能,避免因停电、死机而造成的数据丢失问题;6.5流线型外观,美观大方;内衬采用圆弧角镜面不锈钢设计,便于清洁,不容易滋生细菌、防腐蚀;外壳采用静电喷塑;▲6.6中空钢化玻璃门,方便随时在不开门情况下在各个角度观察箱体内部情况;6.7人性化设计,下两层为下翻式开门,第三层为上翻式开门,摇板可自由抽出,方便装卸摇瓶,每层可独立控制,各层可在不同温度转速下同时运转或根据需要运行一层、两层或三层;▲6.8精选优质进口压缩机、无氟环保制冷剂,噪音低、制冷效果好,确保设备在低温状态下长时间稳定运行;6.9配备滤波器磁环,减少外界和自身对机器稳定性的干扰;6.10人性化设计的开门即停功能,使用更加安全快捷;※6.11具有紫外线灭菌功能;▲6.12产品升级方案:可选配光照系统,光照强度可高达16000LX,高效节能,光效率高,1%—100%步进1%可调(1%、2%、3%—100%)使用寿命超长(可升级多种光源);6.13拥有数据记录功能,每分钟记录一次数据,可记录近三个月的数据,并且可显示温度、速度曲线,方便数据的分析;▲6.14配备高质伺服电机,控制速度精确、高速性能好、稳定性强;6.15特殊的制冷工艺,制冷量可调节,温度控制更加精准;▲6.16独特定时除霜功能,1—89分钟可自由设定,除霜间隔30—600分钟可调,能确保长时间在低温状态下运行时蒸发器不结冰;※6.17 LCD触摸屏,设定温度、转速、时间和实测温度、转速、剩余时间在同一界面显示,不用相互切换界面,观察更直观;6.18操作界面加密锁定功能,杜绝重复操作和人为误操作;可自由设定摇板正转或反转;强制对流的风扇常开或自动;※6.19振荡频率:可到达300rpm;※6.20温控范围:5~60℃;※6.21恒温精度:±0.5℃;※6.22温度均匀度:±0.8℃。   设备配置清单:序号设备及配件名称数量单位1细胞能量代谢分析仪1套1.1细胞能量代谢分析仪主机1台1.2数据处理和控制工作站(内置操作及分析软件一套)1套1.3微孔板套装(每套含6个探针板,10个细胞培养微孔板)2套1.4实时ATP速率测定试剂盒(6包/套)1套1.5细胞线粒体压力测试试剂盒(6包/套)1套2纳米颗粒跟踪分析仪1套2.1纳米颗粒跟踪分析仪主机(包含双激光模块,zeta电位模块和CMOS相机)1台2.2石英测量池1个2.3长通荧光滤光片1套2.4测量分析软件1套2.5标准样品1个2.6控制及数据采集系统1套3活细胞工作站1套3.1全自动活细胞显微成像系统主机,含全套适配器1台3.2采集与分析软件1套3.3计算机工作站1套3.4防震台1个3.5电脑桌2个3.6UPS不间断电源保护1个3.7除湿器2台3.8数据分析用电脑(含免费版软件、刻录光盘)1台3.9共聚焦皿1箱4大容量落地式离心机1套4.1离心机主机1台4.28×50mL定角转头,最高转速≥25,000rpm,最大相对离心力≥75,000×g1个4.34×1000mL定角转头,最高转速≥9,000rpm,最大离心力≥16,000×g1个4.450mL聚丙烯(PP)离心瓶≥50个4.510mL离心瓶≥50个4.61000mL聚碳酸酯(PC)离心瓶≥12个4.7250/500mL聚碳酸酯(PC)离心瓶≥12个4.810mL适配器8个4.9250/500mL适配器4个5大型灭菌器1套5.1大型灭菌器(设备包含压缩气、软化水等配套设备)1套6组合式全温振荡培养箱1套6.1三层组合式全温振荡培养箱1套   合同履行期限:中标人应在采购合同签订后90日内交货,交货后30日完成安装调试。   本项目( 不接受 )联合体投标。   获取招标文件   时间:2023年01月30日 至 2023年02月06日,每天上午9:00至12:00,下午12:00至18:00。(北京时间,法定节假日除外)   地点:采购代理机构领取或在中国政府采购网(http://www.ccgp.gov.cn)或重庆大学政府采购与招投标管理中心网(http://ztbzx.cqu.edu.cn)网上下载   方式:采购代理机构领取或在中国政府采购网(http://www.ccgp.gov.cn)或重庆大学政府采购与招投标管理中心网(http://ztbzx.cqu.edu.cn)网上下载   售价:¥0.0 元,本公告包含的招标文件售价总和   提交投标文件截止时间、开标时间和地点   提交投标文件截止时间:2023年02月20日 09点30分(北京时间)   开标时间:2023年02月20日 09点30分(北京时间)   地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层)
  • 年会专题报告:《中国药典》2010年版的解读及分析仪器在药品检测中的应用
    由中国仪器仪表行业协会、中国仪器仪表学会分析仪器分会、仪器信息网(www.instrument.com.cn)联合主办,中国分析测试协会协办的“2010年中国科学仪器发展年会(ACCSI 2010)”于2010年4月9日在北京京仪大酒店隆重召开。会议有400多位嘉宾出席,同时吸引了30多家国内外权威媒体参与报道。 国家药典委员会业务综合处副处长韩鹏女士   国家药典委员会业务综合处副处长韩鹏女士在会上作了题为“《中国药典》2010年版的解读及分析仪器在药品检测中的应用”的报告,主要介绍了《中国药典》2010年版概况、附录方法的主要变化及仪器的应用,并对科学仪器在药品研发和质量控制中的应用前景作了展望。   2010年版《中国药典》收载品种共计4567种,总量大幅增加   《中国药典》2010年版是按照第九届药典委员会所确立的编制大纲开展工作的,为建国以来第九版药典,经卫生部颁布,将于2010年10月1日正式实施。   据韩鹏女士介绍,《中国药典》2010年版有如下主要特点:收载品种共计4567种,总量大幅增加,基本覆盖了国家基本药物目录品种的范围;进一步扩大了现代分析技术的应用;药品的安全性保障得到进一步加强;药品有效性、质量可控性的技术保障得到进一步提升;药品标准内容更趋科学、规范、合理;鼓励技术创新,积极参与国际协调;保护野生资源,倡导绿色化学。   附录中扩大了药品质量控制的技术和方法   韩鹏女士在报告中重点提到,《中国药典》2010年版中的药品检验技术向仪器检测方式发展,一方面表现在附录中扩大了收载成熟可靠、符合“国情、药情”、充分反映国内外药品质量控制的技术和方法。例如,新版药典中收录了5种分光光度法、9种色谱法、8种理化性质测定法、4种滴定法、11种指示性杂质的限量检查方法、质谱法等药检方法和仪器,其中,电感耦合等离子体发射光谱法(ICP-AES)、核磁共振波谱法(NMR)、拉曼光谱法指导原则、离子色谱法、制药用水电导率测定法、锥入度测定法等为新增的药检方法。   另一方面,药品标准中扩大了对新技术的应用,提高了分析灵敏度和专属性,增强了药品标准质量可控性,科学、实用、简单、规范。除了传统的色谱、光谱技术外,新版药典还增加了薄层-生物自显影技术、色谱指纹图谱和特征图谱、DNA分子鉴定技术等新技术的应用。薄层-生物自显影技术是一种薄层色谱分离和生物活性测定相结合的分析方法,可用于鉴别,并获知哪些成分有清除自由基和抗氧化等活性,在新版药典中的乌药、熟地、紫苏梗等标准中有所应用;新版药典中收录了高效液相色谱特征图谱13项,指纹图谱9项,使整体性控制中药质量的方法学和实际应用方面有了大幅度的提高,确保了中药质量的均一稳定;DNA分子鉴定技术可用于蛇类药材和川贝母药材物种的基源鉴定。   最后,韩鹏女士总结道,《中国药典》2010年版进一步扩大了分析方法的收载范围及在药品标准中的应用,鼓励了新技术的应用,使药品质量可控性、有效性方面得到保障,随着技术的成熟和仪器的普及,现代分析技术将在药品质量控制中发挥更大的作用。同时,韩鹏女士也希望仪器生产企业和研究单位更加关注科学仪器在药品研发和质量控制中的应用。
  • 总有机碳TOC分析仪对挥发性化合物的回收率
    1、挑战总有机碳(TOC,Total Organic Carbon)分析技术能够有效测量样品中的杂质,提供有机污染物的简明、非专属、全面的测量结果,为用户提供宝贵的工艺监测数据。准确地检测和量化低TOC浓度,对工艺控制、产品质量、资产保护来说至关重要。有机物的污染会影响生产工艺、污染制成品,导致整个产品批次不合格,甚至损坏生产设备。有机污染物的来源之一是挥发性化合物。挥发性和半挥发性化合物常来源于清洁剂或冷却剂。挥发性污染物也可能来自源水和化学分解产物。能够有效检测挥发性和半挥发性化合物,对于城市用水和工业用水处理工艺的全面检漏来说非常关键,我们可以用TOC分析技术来完成这项检测任务。先将有机物氧化成CO2,然后检测CO2的含量,从而完成TOC分析。有些常用的TOC分析方法会在过程中添加酸剂并进行气体吹扫。向液体样品中添加酸剂降低其pH值,可以确保将所有以碳酸根或碳酸氢根形式存在的碳转化为溶解CO2。气体吹扫就是使气泡通过液体样品,去除样品中的其它溶解气体或挥发性液体的过程。有些分析方法很难有效检测挥发性化合物,这是因为挥发性化合物会消失在气体吹扫过程中,或者需要用特殊方法才能检测到。这些局限性会造成监测数据不准确,从而导致应对决策延误甚至错误。本文比较了以下三种TOC氧化法对挥发性化合物的回收效率:高温催化燃烧法两级先进氧化法紫外-过硫酸盐氧化和膜检测法(此技术用于 Sievers® M系列TOC分析仪)2、实验在实验中,我们用上述几种TOC氧化方法对不同的挥发性化合物进行测试,以了解这些氧化方法的分析性能。我们测量了TOC浓度分别为0.25 ppm、1.0 ppm、5.0 ppm的标准品的TOC值。本次研究根据以下化合物特性,选用4种化合物【丙酮、甲醇、甲乙酮(MEK)、异丙醇(IPA)/2-丙醇】进行测试:具有挥发性或半挥发性是水系统中常见的污染物可能影响制成品质量,或长期损坏生产设备催化燃烧(CC,Catalytic Combustion)式分析仪在本次研究中使用的催化燃烧式分析仪用铂催化剂和高温燃烧法进行TOC氧化,然后进行非色散红外(NDIR,Non-Dispersive Infrared)检测。在TOC或POC(Purgeable Organic Carbon,可吹除有机碳)模式下运行分析仪来分析挥发性化合物,工作流程见图1和图2。POC模式是分析仪的可选配置,不在本次研究中讨论。图1:催化燃烧式分析仪的NPOC(Non-Purgeable Organic Carbon,不可吹除有机碳)模式图2:催化燃烧式分析仪的TOC模式图1和图2是催化燃烧式分析仪的两种常见操作模式。图1显示,在NPOC模式的吹扫过程中,IC(Inorganic Carbon,无机碳)和POC被去除,因而不包含在测量结果中。图2显示了TOC分析的两步过程。在TC测量中,由于未吹扫就进行氧化,TC(Total Carbon,总碳)测量结果中包括了POC。在IC测量中,样品和酸剂经过吹扫,产生的CO2被载气送到NDIR部分进行测量。两级先进氧化(TSAO,Two-Staged Advanced Oxidation)式分析仪在本次研究中使用的两级先进氧化式分析仪用氢氧化钠和臭氧(能够产生羟基自由基)进行TOC氧化,然后进行NDIR检测 。在TC或VOC(Volatile Organic Carbon,挥发性有机碳)模式下操作分析仪来分析挥发性化合物,TC模式和VOC模式均为分析仪的可选配置。本次研究不评估TC模式。两级先进氧化式分析仪的VOC模式类似于催化燃烧式分析仪的POC模式,这两个术语可以互换使用。图3是两级先进氧化式分析仪的标准操作模式【TIC(Total Inorganic Carbon,总无机碳)+TOC模式】。在这两步操作模式下,在NDIR测量之前先进行IC和POC吹扫。由于未进行氧化,POC不包含在测量结果中。此模式的两个步骤使用同一样品,TOC代表样品中的NPOC。*注意:在 IC 测量步骤中,已通过吹扫去除了样品中的 POC 和 IC。图3:两级先进氧化式分析仪的TIC+TOC模式图4是两级先进氧化式分析仪的附加TC模式。在此模式下,用氢氧化钠和臭氧来预氧化样品,以便在吹扫之前氧化全部POC。分析仪的VOC模式是TC分析和TIC+TOC分析的结合。计算实测的“TC”与实测的“TIC和NPOC之和”之间的差值,即可得到VOC。VOC=TC–(TIC+NPOC)。图4:两级先进氧化式分析仪的TC模式Sievers M系列分析仪Sievers M系列TOC分析仪用紫外-过硫酸盐进行TOC氧化,然后进行膜电导(MC,Membrane Conductimetric)检测。分析仪可以在普通操作模式下检测挥发性有机物。图5是M系列分析仪所采用的TOC分析方法的流程。图5:M系列分析仪的标准操作图5显示了Sievers M系列TOC分析仪的普通分析模式。样品在被加入酸剂后,分流到分析仪中相互独立的TC通道和IC通道中。TC通道中的样品被加入氧化剂,然后在紫外线照射下,样品中的有机物被氧化。IC通道中的样品则跳过上述过程。各通道中的样品通过CO3、结果
  • 哈希上海制药用户齐聚浦东 共同探讨水质分析仪应用
    p    strong 仪器信息网讯 /strong & nbsp 2017年6月,绿动中国—哈希水质分析解决方案全国巡演(上海浦东站)在上海博雅酒店成功举办。此项活动是哈希公司经典系列活动,将哈希绿色解决方案带到用户的身边:贴近用户,现场聆听用户的声音,与用户面对面交流 仪器试用环节,让用户现场体验测量 70周年线下特别活动,让用户与哈希有更多互动。来自制药行业的20余名客户参加了此次活动。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201707/insimg/29cb14f9-cdfe-45cc-a932-f2bf92d07583.jpg" title=" 11_副本.jpg" / /p p style=" text-align: center " strong 活动现场 /strong /p p   “十三五”初期,我国医药工业经济规模保持稳步发展,主营业务收入和利润总额均持续增长。2016年医药工业企业主营业务收入近3万亿元,医药工业企业主营业务收入累计增速为10.3%,利润总额累计增速为15.6%。以药品类型细分市场来看,我国药品市场上化学制剂的销售额占比最大,而以从业企业类型细分市场看,以中成药作为主营产品的企业数量最多。 /p p   我国医药市场规模在扩大,我国药企的研发力度也在加大,同时国家发布一系列政策对医药行业监管升级,这些都促进了我国医药行业仪器使用量的增加,其中很重要的一类是水质分析仪。对于水质分析仪,药企主要用来控制工艺用水,同时监测排放废水。 /p p   此次哈希绿动中国上海浦东站由哈希工程师潘振江主讲,潘工为现场客户讲解了制药行业常用的水质分析仪器,包括在线氨氮分析仪、总磷在线分析仪、在线重金属分析仪和TOC分析仪。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201707/insimg/af5e60fa-a6d6-4d0e-b046-4780c4bd3ff9.jpg" title=" C168660.jpg!w300x300.jpg" / /p p style=" text-align: center " strong HACH AMTAXCOMPACTII第二代在线氨氮分析仪 /strong /p p   此款仪器的工作原理是将分析的样品和反应试剂混合后,将溶液中的 NH4离子转化成氨气(NH3),氨气从被分析的样品中释放出来。然后将氨气转移到装有指示剂的测量池中,重新溶解在指示剂之中。这将引起溶液颜色的改变,利用比色计进行比色法测量,最后计算并得出氨氮的浓度值。此款仪器可以消除悬浮物和浊度的干扰,并且通过更换试剂及设置更换量程,可选择的量程包括0.2-12mg/L、0.2-30mg/L、2-120mg/L、20-1200mg/L。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201707/insimg/776444be-2e27-4a9a-b314-96857b1b880d.jpg" title=" 22.jpg" / /p p style=" text-align: center " strong BIOTECTOR TOC B7000i分析仪 /strong /p p   虽然目前市场上在线TOC分析仪产品已经很成熟,但大部分用来分析较干净的水,对于高盐、高油的复杂废水,由于氧化效率低,实际检测中存在较大问题。哈希针对此种情况,专门开发了BIOTECTOR TOC B7000i,此款产品采用两级氧化技术,通过羟基自由基氧化和臭氧氧化两级氧化,氧化效率大大提高 由于不使用固体催化剂和紫外线,所以水样可以不用过滤,对于含油脂、膏状物、颗粒物的废水的检测具有明显优势。除此之外,潘工还重点介绍了TOC分析仪载气要求,此款仪器需要1.5bar,露点为-20℃以下(无水、无油、无尘)的仪表风,如果现场无法连接仪表风或者风压不够,可采用BioTector空气压缩机。 /p p style=" text-align: center " img style=" width: 450px height: 333px " src=" http://img1.17img.cn/17img/images/201707/insimg/732b4837-b008-4d3a-b84c-a09b56aa4987.jpg" title=" asset-get.class_.image__1.jpg" height=" 333" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " strong DR3900 /strong /p p   此次活动,哈希还带来了其DR3900,供用户现场体验,用户反应良好! /p
  • 人工智能助力创新型光谱分析仪器研发与应用——《寻找光谱仪器创新的力量》系列约稿
    俗话说,工欲善其事,必先利其器。仪器仪表是国民经济(GDP)的“倍增器”、“拉动器”,诺贝尔物理和化学奖中的约1/4-1/3与分析仪器相关。科学仪器是认识世界的重要工具,人类科学发展史上任何一次大的飞跃都离不开科研工具的巨大创新和根本变革,科学仪器的发展和创新往往是催生科技创新的重要要素。长期以来,科学仪器研制是我国科技发展的短板和弱项。面对美国和其它发达国家对中国高端科学仪器(特别是高端测量仪器)、部分关键器件的禁售,我国科学研究必须解决基础关键器件、部件、材料研制和系统设计等卡脖子问题,不断从源头上增强国家自信自立与守正创新的能力。近年来,我国对科学仪器的创新和研发高度重视,先后设立了“科学仪器基础研究专项”、“国家重大科研仪器设备研制专项”、“国家重大科学仪器设备开发专项”、“基础科研条件与重大科学仪器设备研发专项”等科研计划,旨在支持具有自主知识产权的科学仪器以及关键部件等的研发。经过多年的努力,先后成功研制了单细胞时空分辨分子动态分析系统、超高分辨离子迁移谱、超高灵敏光谱流式检测系统、小型质谱仪器、微流控芯片-质谱系统、高通量测序仪、微流控芯片与检测仪器、双向凝胶电泳成套设备和电化学成像等一系列原创仪器。分析仪器一直致力于发展高灵敏度、高通量、高效快速的分析检测方法,为各种产品质量的检测提供强有力的手段。近年来,我国的食品安全重大事件、公共安全、环境污染等事件中,分析仪器都能及时组织科技攻关,开发了相关检测技术和设备,建立了相应的国家标准,为维护国家利益和保障人民生命安全及健康做出了重要的贡献。光谱分析仪器作为富有活力的科学仪器之一,具有功能齐全、操作简便、快速分析等优点,已经发展成为诸多领域的理想检测设备。现如今,光谱分析仪器行业发展迅速,市场需求日益凸显。微型光谱仪具有重量轻、体积小、探测速度快、操作便捷、可集成化、可批量制造以及成本低廉等显著优势,已经成为现代科技必不可少的精密检测和分析手段,为深空探测、航空航天、科技考古、智能制造、精准医学、环境监测、智慧农业等领域的发展提供了理论基础与技术支撑。随着分析仪器研究,特别是光谱仪器研究的日益深入和技术手段的革新,现代多维、高通量化学测量系统已经从小数据发展到大数据,亟需完成从大数据、再到小智能、深度智能的质的蜕变,其对应的哲学也要扩展。大数据必须依靠多维、高通量的化学测量学系统产生,再用智能技术把测量大数据凝练成小智能、深度智能、精准化学知识。随着数据的海啸性增长,数据密集型科学已经发展成为第四科学研究范式,数据是这个新范式的核心。科研范式变革的新时代即将到来,我们需要主动拥抱变革、积极谋划变革、适应变革。当前,全球正在兴起新一轮科技革命和产业变革,人工智能是引领这次产业变革的战略先导性技术。人工智能已经发展成为化学研究的新帮手,比如化学AlphaGo、人工智能机器人、机器人化学家等。人工智能对内融合统一、对外交叉拓展的趋势为学科大交叉、大融合提供了现实的可能。通用人工智能势将成为今后国际前沿争夺的焦点,并将产生巨大的社会影响。 在人工智能时代,分析仪器如何迎接科学研究第四范式的机遇与挑战,发展为服务于化学与其它领域的现代数据密集型科学?化学、生物等传统依赖实验数据的学科,正逐渐引入大数据和计算机仿真模拟技术。数据密集型科学研究能够突破过去很多由于维度过多而造成的瓶颈问题。智能化、自动化与微型化已经成为分析仪器的主要发展趋势。复杂体系解析是生命、材料、能源、环境、食品等科学对现代分析科学提出的重大课题之一,针对复杂生命过程、先进材料创制、新型能源、食品安全、环境问题和特种空间等物质信息的精准挖掘与分析,发展复杂体系精准分析的化学计量学、机器学习以及人工智能新策略,进一步指导创新型分析仪器的设计与研发。隶属西北大学化学与材料科学学院/西安石油大学化学化工学院的化学信息学与绿色能源化学及过程分析研究团队,主要依托分析化学和应用化学学科。研究团队长期从事化学计量学与化学信息学及过程分析化学、含能材料和能源化工等的研究工作,致力于解决分析化学、材料科学、环境科学与生命科学等领域的关键科学问题与技术瓶颈。近年来,一方面,研究团队围绕含能材料分子设计与筛选、绿色精准合成、性能表征与大数据分析等的关键科学和技术问题,利用化学信息学及人工智能技术实现了含能材料合成过程高通量表征、性能预估与智能筛选,建立了含能材料的基本性能、性能退化和谱学等一系列专属型数据库,有效提高了含能材料数据的共享与利用效率,大大缩短了新型含能材料的研发周期;另一方面,面向国家安全的分析检测新方法和关键智能化仪器装置研发,建立了基于化学信息学及机器学习策略的系列性能优良且易于实现的现场激光诱导击穿光谱(LIBS)智能化测量技术,研发了集光谱预处理、定性定量分析与数据库为一体的LIBS分析软件系统,并应用于能源、环境和稀土材料领域。团队先后承担国家自然科学基金、科技部国家重大仪器设备开发专项子课题、国防科工委重大专项及国防973子课题等20余项研究课题,在《Chem. Sci.》、《Anal. Chem.》、《Chem. Commun.》等国内外学术刊物发表SCI论文200余篇,合作出版专著四部,授权国家发明专利5项,计算机软件著作权8项。先后获陕西省科学技术奖一等奖、中国仪器仪表学会科学技术奖一等奖等科技奖励十项。近年来,研究团队面向“大气复合污染综合防治,打赢蓝天保卫战”的国家重大战略目标,以针对复合大气污染物精准溯源与环境潜在风险预估的实际需求,借助人工智能与多谱融合策略,发展并建立了LIBS-IR多谱融合、机器学习与集成学习协同策略的复合污染物精准溯源与环境潜在风险预估方法,以揭示大气污染物的时空分布和污染特征,期望为复合区域大气污染的精准防治提供理论依据与技术支撑。大气污染源与其化学组分密切相关,可借助污染物组分信息追溯污染物来源。一次颗粒物在空气中会迅速转化为复杂的二次颗粒物,而颗粒物化学组成以及转化过程中自由基的实时监测有助于准确获取大气转化过程中的微观信息。由于颗粒物的粒径小且处于快速运动状态,大气颗粒物的原位操控是实现其化学组成精准测量面临的首要技术难题。激光捕获(又称光镊)是一种借助激光动力学效应将一束激光高度会聚并作用于微小目标(通常为μm量级)上产生三维势阱,进而实现单细胞、生物大分子等微粒的非接触、无损伤稳定操控和捕获技术,并于1997年获得了诺贝尔物理学奖。基于激光捕获的大气颗粒物原位操控技术为单颗粒精准测量提供了新思路和新方法,并成功应用于悬浮炭黑颗粒表面非均相氧化反应和化学成分变化过程监测、单纳米颗粒多元素原位同时分析等。激光捕获与LIBS相结合的单颗粒在线分析技术具有结构简单、成本低、灵敏度高等优势。然而,由于LIBS光谱强度更容易受到激光能量波动、粒子运动、样品的异质性以及光-物质相互作用的复杂性的影响,微米级单颗粒分析仍存在信噪比低、重现性差、难以准确定量分析等问题,需要进一步深入研究。研究团队针对微米级单颗粒精准定量分析的关键技术瓶颈,以碳颗粒为研究对象,借助人工智能、变量选择与机器学习等策略,研究了基于空心光束的单颗粒原位捕获与LIBS技术协同测量的策略,建立了基于随机森林的微米级单颗粒中重金属元素定量分析方法(如图1所示),获得了较好的分析结果。该成果发表在分析化学顶级期刊《Analytical Chemistry》(Anal. Chem. 2022, 94, 17595−17605)。图1 微米级炭黑单颗粒中金属元素的定量分析方法示意图首先开展了大气单颗粒物的稳定捕获与LIBS光谱原位测量方法研究,以悬浮大气颗粒物--微米级碳颗粒为研究对象,开展了基于热致非线性效应的空心光束形成方法研究,探索了捕获效率随不同实验条件的变化规律,通过单颗粒物的光场受力特性分析,获得最优化的大气单颗粒稳定捕获策略;进一步探索了微米级碳颗粒特征信息随外界条件的变化规律,确定了最优化的微米级单颗粒原位测量策略,有效降低了由于颗粒物抖动带来的误差,一定程度上提高了LIBS光谱的信噪比。针对采集到的单颗粒LIBS光谱,通过吸附法制备了不同金属(Zn、Cu和Ni)浓度的微米级炭黑颗粒样品,研究了不同光谱预处理方法对RF校正模型预测性能的影响,重点探究了RF校正模型预测性能随着不同变量选择方法(变量重要性投影(VIP)和变量重要性测量(VIM)以及阈值的变化规律,在最优化的光谱预处理方法、变量选择方法和模型参数等条件下,建立了基于变量选择策略的RF校正模型。结果表明,基于VIP或VIM的RF校正模型表现出了优异的预测性能(如图2所示)。对于Cu和Ni两个元素的分析,最优化的预测模型为VIM-RF校正模型(Cu和Ni的相关系数R2分别为0.9596和0.9548,均方根误差RMSE分别为126.2和142.5 ppm,平均相对误差MRE分别为0.0746 和0.0986);对于Zn元素分析,优化的预测模型为VIP-RF校正模型(它的R2、RMSE和MRE分别为0.9662、84.0 ppm和0.0584)。该方法在准确度、重复性和稳健性方法均具有优异的预测性能,有效提高了微米级单颗粒定量分析的准确度。因此,空心光捕获辅助LIBS技术结合随机森林算法成功应用于微米级单颗粒中三种金属元素定量分析,可为复合大气污染物的精准测量与溯源提供理论基础与技术支撑。在未来的研究工作中,将借助多光谱协同测量、信号增强、机器学习与集成学习、自适应建模、模型迁移等策略,发展并建立多尺度单颗粒物以及复合污染物的定量分析方法,进一步揭示大气污染物的时空分布和污染特征,期望为复合区域大气污染的精准防控提供理论依据与技术支撑。在未来,我们团队将进一步聚焦国家重大社会需求和科技前沿热点问题,助力光谱技术及其分析仪器研发的持续创新发展。图2 基于不同随机森林校正模型对微米级碳颗粒中3种元素的预测性能(a:Zn b:Cu c:Ni)作者简介李华,西北大学、西安石油大学二级教授、理学博士、博士生导师,西安石油大学学术委员会主任。中国化工教育学会常务理事、中国化学会计算机化学专业委员会委员、中国石油企业协会专家委员会委员、中国光学工程学会激光诱导击穿光谱专业委员会常务委员,陕西省石油学会能源化工专业委员会主任,陕西省石油标准化技术委员会主任委员,陕西省工科类学科评议组(研究生教指委)成员,“新能源和新材料研究院”院长。主要从事过程分析与化学信息学、含能材料、绿色能源化学与过程等的教学与研究工作。分别于1988年和1996年在中国科学院长春应用化学研究所师从中科院院士苏锵研究员等获硕士和博士学位,后师从中科院院士高鸿教授从事博士后研究工作。1998-2001年,先后在美国华盛顿大学、美国海军实验室(NRL)、捷克Masaryk大学和德国Reutlingen大学担任访问、客座教授。主持国家自然科学基金9项、科技部国家重大仪器设备开发专项子课题和国防科工委重大专项及国防973子课题等研究项目,近年来在《Chem. Sci.》、《Anal. Chem.》、《Chem. Commun.》等国内外学术刊物发表SCI论文200余篇,合作出版专著四部,授权中国发明专利5项,计算机软件著作权8项。曾获1998年第二届陕西青年科技奖,2001年陕西省优秀留学回国人员,2006年获陕西省科学技术奖一等奖(排名第一)、2008年获陕西省科学技术奖二等奖(排名第二)和2019年中国仪器仪表学会科学技术奖一等奖等科技奖励。
  • 海尔欣发布高精度大气氨本底激光开路分析仪新品
    开路气体分析技术:不同于常见的抽取式采样+闭路气体池技术,开路气体分析技术对浓度变化的响应时间可达0.1秒,不存在采样和预处理通道管壁对分子的吸附和滞后现象。低功耗、部署范围广:无需采样泵降低了整机功耗和质量,方便携带,结合太阳能电池板,有利于在无供电电网地区部署,提高了用户选择研究地点的自由度。波长调制技术:采用预设的程序,在目标气体的吸收范围内选取波长进行扫描式复合测量,以此获得更佳的峰型(用于光谱积分反演),排除非目标气体的干扰。信号噪音屏蔽:优化的模拟电子技术,极低噪声激光电流源,探测器前放,结合锁相放大数字信号处理算法,避免了自然环境中的电磁干扰,以及光电子噪声的影响,以此获得更准确的测量结果。中心波长控制器:通过参考光路以及自动反馈将激光器中心波长锁定在特征吸收谱中心,确保获得更准确的特征波谱。稳定的温度控制:通过被动散热和半导体制冷,保证激光器温度的精准控制。在外界不断变化的温度条件下获得更准确的测量结果。稳定的环境气压和温度测量补偿:对环境温度和压力实时精准测量,结合内置的温度和压力补偿算法,确保在环境条件不断变化下获得更准确的测量结果。冬季/夏季两种工作模式:冬季,夏季模式可根据环境温度进行切换,拓展仪器工作温度范围,提高测量准确度。创新点:海尔欣公司自主研发的大气氨激光开路分析仪采用红外激光吸收光谱技术(LDIR),结合开路式多次反射气体池,使得测量有效光程达数十米,实现了对大气氨分子进行10Hz,亚ppb精度的高速测量,该大气氨开路分析仪采用车辆移动平台搭载的形式,形成一整套车载巡检系统。 1、避开了传统的闭路氨分析仪器由于采样管路的传输时间和吸附效应,响应速度很慢的缺点,创新性的采用开路测量方案,无需采样,响应速度非常快,由高浓度恢复至零点时间小于1秒,尤其适合车载平台高速运动中收集到瞬时浓度变化,避免漏检氨排放源; 2、开路分析仪无需采样泵,依靠大气的自然流动经过光路分析,大大降低了整机功耗(50W)和质量(5kg),因此可使用小型车载电源或电池供电,适合多种巡检车型。海尔欣的分析仪甚至结合太阳能电池板可在无电网覆盖区域部署,提高了用户选择测量点的自由度。
  • 清源创新实验室2155.00万元采购电化学工作站,热机械分析仪,电导率仪,流变仪,核磁共振,锥形量热...
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 清源创新实验室测试中心2023年仪器设备采购意向公告 福建省-泉州市-泉港区 状态:预告 更新时间: 2023-04-03 清源创新实验室测试中心2023年仪器设备采购意向公告 2023年04月03日 15:27 公告概要: 公告信息: 采购项目名称 清源创新实验室测试中心2023年仪器设备采购意向公告 品目 货物/专用设备/专用仪器仪表/其他专用仪器仪表 采购单位 清源创新实验室 行政区域 泉州市 公告时间 2023年04月03日 15:27 开标时间 预算金额 ¥2155.000000万元(人民币) 联系人及联系方式: 项目联系人 张先生 项目联系电话 张先生 采购单位 清源创新实验室 采购单位地址 王老师,0595-36160016 采购单位联系方式 福建省泉州市泉港区前黄镇学院路1号 代理机构名称 厦门市公物采购招投标有限公司 代理机构地址 福建省泉州市丰泽区东海街道东海滨城马可波罗豪园C栋308室 代理机构联系方式 张先生0595-22193717 厦门市公物采购招投标有限公司受清源创新实验室 委托,根据《中华人民共和国政府采购法》等有关规定,现对清源创新实验室测试中心2023年仪器设备采购意向公告进行其他招标,欢迎合格的供应商前来投标。 项目名称:清源创新实验室测试中心2023年仪器设备采购意向公告 项目编号: 项目联系方式: 项目联系人:张先生 项目联系电话:张先生 采购单位联系方式: 采购单位:清源创新实验室 采购单位地址:王老师,0595-36160016 采购单位联系方式:福建省泉州市泉港区前黄镇学院路1号 代理机构联系方式: 代理机构:厦门市公物采购招投标有限公司 代理机构联系人:张先生0595-22193717 代理机构地址: 福建省泉州市丰泽区东海街道东海滨城马可波罗豪园C栋308室 一、采购项目内容 详见下方补充事宜。 二、开标时间: 三、其它补充事宜 为便于供应商及时了解政府采购信息,根据《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)、《福建省财政厅关于开展政府采购意向公开工作的通知》(闽财购函〔2020〕21号)等有关规定,现将(清源创新实验室) 2023年4(至)5月采购意向公开如下: 序号 采购项目名称 采购需求概况 预算金额(万元)预留面向中小企业采购金额(万元) 预计采购日期 备注1台式X射线吸收精细结构/发射谱仪 购买1套台式X射线吸收精细结构/发射谱仪用于在无需同步辐射光源条件下在常规实验室环境中实现X射线吸收精细结构测量和分析,提供XAFS和XES两种测量模式。至少1年免费质保,终身维修。 500 2023-5 无 2 三维重构冷冻真空传输样品杆 购买1套三维重构冷冻真空传输样品杆开展锂电池、催化剂、钙钛矿、二维材料及高分子材料等方面的研究。至少1年免费质保,终身维修。 115 2023-5 无 3 TEM能量过滤器(EELS谱仪) 购买1套TEM能量过滤器(EELS谱仪)用于表征、分析材料的组分、含量、元素价态以及表界面电子结构等。至少1年免费质保,终身维修。 710 2023-5 无 4 原位STM-TEM多场测量样品杆 购买1套原位STM-TEM多场测量样品杆用于研究材料在单一或多重外场耦合激励下(包括力、热、光、电等)的物化过程和相关机制。至少1年免费质保,终身维修。 140 2023-5 无 5 原位TEM双倾加热杆 购买1套原位TEM双倾热电杆用于研究材料在高温以及电场环境下形貌、结构、成分的转化过程和机制。至少1年免费质保,终身维修。 100 2023-5 无 6 锥形量热仪 购买1台锥形量热仪用于对可燃材料的燃烧参数包括释热速率、总释放热、有效燃烧热等进行分析。至少1年免费质保,终身维修。 50 2023-5无 7 椭圆偏振光谱仪 购买1台椭圆偏振光谱仪用于微纳薄膜的厚度以及材料光学参数测量。光谱范围包含400-800 nm。至少1年免费质保,终身维修。 20 2023-5 无 8 电化学工作站 购买1台电化学工作站用于电化学机理、物质定性定量、金属腐蚀、电池和电镀等领域分析。含双恒电位仪模块和旋转盘环电极。至少3年免费质保,终身维修。 60 2023-5 无 9 导热系数仪 购买1台导热系数仪用于物质热物性参数表征,包括包括高分子、涂层、塑料、油品等材料导热系数的测量和分析。至少2年免费质保,终身维修。 50 2023-5 无 10 顺磁共振波谱仪 购买1台顺磁共振波谱仪用于材料中未配对电子如自由基以及缺陷的检测。含液氮变温系统。至少3年免费质保,终身维修。 200 2023-5 无 11 旋转流变仪 购买1台旋转流变仪用于材料黏度、储能模量、损耗模量等流变学参数。含动态热机械分析和高温控制模块。至少3年免费质保,终身维修。 100 2023-5 无 12 绝热加速量热仪 购买1套绝热加速量热仪用于精细化工反应安全风险评估平台,要求能够在绝热条件下测试化学物质的热稳定性和化学反应的放热效应,提供HWS模式,ISO恒温模式,EXO绝热模式、具有可选配的样品池。至少1年免费质保,终身维修。 110 2023-5 无 注: 预留面向中小企业采购金额 栏按照财政部、工业和信息化部《关于印发的通知》(财库[2020]46号)的规定执行。 本次公开的采购意向是本单位政府采购工作的初步安排,具体采购项目情况以相关采购公告和采购文件为准。 清源创新实验室 发布时间:2023-4-3 四、预算金额: 预算金额:2155.0000000 万元(人民币) × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:电化学工作站,热机械分析仪,电导率仪,流变仪,核磁共振,锥形量热仪,X射线衍射仪,量热仪,顺磁共振波谱,导热仪,电镜部件 开标时间:null 预算金额:2155.00万元 采购单位:清源创新实验室 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:厦门市公物采购招投标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 清源创新实验室测试中心2023年仪器设备采购意向公告 福建省-泉州市-泉港区 状态:预告 更新时间: 2023-04-03 清源创新实验室测试中心2023年仪器设备采购意向公告 2023年04月03日 15:27 公告概要: 公告信息: 采购项目名称 清源创新实验室测试中心2023年仪器设备采购意向公告 品目 货物/专用设备/专用仪器仪表/其他专用仪器仪表 采购单位 清源创新实验室 行政区域 泉州市 公告时间 2023年04月03日 15:27 开标时间 预算金额 ¥2155.000000万元(人民币) 联系人及联系方式: 项目联系人 张先生 项目联系电话 张先生 采购单位 清源创新实验室 采购单位地址 王老师,0595-36160016 采购单位联系方式 福建省泉州市泉港区前黄镇学院路1号 代理机构名称 厦门市公物采购招投标有限公司 代理机构地址 福建省泉州市丰泽区东海街道东海滨城马可波罗豪园C栋308室 代理机构联系方式 张先生0595-22193717 厦门市公物采购招投标有限公司受清源创新实验室 委托,根据《中华人民共和国政府采购法》等有关规定,现对清源创新实验室测试中心2023年仪器设备采购意向公告进行其他招标,欢迎合格的供应商前来投标。 项目名称:清源创新实验室测试中心2023年仪器设备采购意向公告 项目编号: 项目联系方式: 项目联系人:张先生 项目联系电话:张先生 采购单位联系方式: 采购单位:清源创新实验室 采购单位地址:王老师,0595-36160016 采购单位联系方式:福建省泉州市泉港区前黄镇学院路1号 代理机构联系方式: 代理机构:厦门市公物采购招投标有限公司 代理机构联系人:张先生0595-22193717 代理机构地址: 福建省泉州市丰泽区东海街道东海滨城马可波罗豪园C栋308室 一、采购项目内容 详见下方补充事宜。 二、开标时间: 三、其它补充事宜 为便于供应商及时了解政府采购信息,根据《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)、《福建省财政厅关于开展政府采购意向公开工作的通知》(闽财购函〔2020〕21号)等有关规定,现将(清源创新实验室) 2023年4(至)5月采购意向公开如下: 序号 采购项目名称 采购需求概况 预算金额(万元) 预留面向中小企业采购金额(万元) 预计采购日期 备注 1 台式X射线吸收精细结构/发射谱仪 购买1套台式X射线吸收精细结构/发射谱仪用于在无需同步辐射光源条件下在常规实验室环境中实现X射线吸收精细结构测量和分析,提供XAFS和XES两种测量模式。至少1年免费质保,终身维修。 500 2023-5 无 2 三维重构冷冻真空传输样品杆 购买1套三维重构冷冻真空传输样品杆开展锂电池、催化剂、钙钛矿、二维材料及高分子材料等方面的研究。至少1年免费质保,终身维修。 115 2023-5 无 3 TEM能量过滤器(EELS谱仪) 购买1套TEM能量过滤器(EELS谱仪)用于表征、分析材料的组分、含量、元素价态以及表界面电子结构等。至少1年免费质保,终身维修。 710 2023-5 无 4 原位STM-TEM多场测量样品杆 购买1套原位STM-TEM多场测量样品杆用于研究材料在单一或多重外场耦合激励下(包括力、热、光、电等)的物化过程和相关机制。至少1年免费质保,终身维修。 140 2023-5 无 5 原位TEM双倾加热杆 购买1套原位TEM双倾热电杆用于研究材料在高温以及电场环境下形貌、结构、成分的转化过程和机制。至少1年免费质保,终身维修。 100 2023-5 无 6 锥形量热仪 购买1台锥形量热仪用于对可燃材料的燃烧参数包括释热速率、总释放热、有效燃烧热等进行分析。至少1年免费质保,终身维修。 50 2023-5 无 7 椭圆偏振光谱仪购买1台椭圆偏振光谱仪用于微纳薄膜的厚度以及材料光学参数测量。光谱范围包含400-800 nm。至少1年免费质保,终身维修。 20 2023-5 无 8 电化学工作站 购买1台电化学工作站用于电化学机理、物质定性定量、金属腐蚀、电池和电镀等领域分析。含双恒电位仪模块和旋转盘环电极。至少3年免费质保,终身维修。 60 2023-5 无 9 导热系数仪 购买1台导热系数仪用于物质热物性参数表征,包括包括高分子、涂层、塑料、油品等材料导热系数的测量和分析。至少2年免费质保,终身维修。 50 2023-5 无 10 顺磁共振波谱仪 购买1台顺磁共振波谱仪用于材料中未配对电子如自由基以及缺陷的检测。含液氮变温系统。至少3年免费质保,终身维修。 200 2023-5 无 11 旋转流变仪 购买1台旋转流变仪用于材料黏度、储能模量、损耗模量等流变学参数。含动态热机械分析和高温控制模块。至少3年免费质保,终身维修。 100 2023-5 无 12 绝热加速量热仪 购买1套绝热加速量热仪用于精细化工反应安全风险评估平台,要求能够在绝热条件下测试化学物质的热稳定性和化学反应的放热效应,提供HWS模式,ISO恒温模式,EXO绝热模式、具有可选配的样品池。至少1年免费质保,终身维修。 110 2023-5 无 注: 预留面向中小企业采购金额 栏按照财政部、工业和信息化部《关于印发的通知》(财库[2020]46号)的规定执行。本次公开的采购意向是本单位政府采购工作的初步安排,具体采购项目情况以相关采购公告和采购文件为准。 清源创新实验室 发布时间:2023-4-3 四、预算金额: 预算金额:2155.0000000 万元(人民币)
  • 药物分析进展和应用专栏|植物甾醇分析技术介绍
    植物甾醇是常见的植物活性成分,同时也是人类饮食中的主要脂类成分组成部分。其结构与胆固醇类似,均具有环戊烷多氢菲母核,图1中的β-谷甾醇、菜油甾醇、和豆甾醇为较为常见的植物甾醇。由于植物甾醇与胆固醇具有相似的结构,二者均需溶于胶束后才能被人体吸收,植物甾醇能与膳食来源的胆固醇竞争进入混合胶束从而减少肠道对于胆固醇的吸收,因此有助于控制血液中的总胆固醇、低密度脂蛋白和甘油三酯水平,从而减少心血管疾病的风险(图2)[1]。近年来,随着人们对健康饮食的日益重视,越来越多的科研人员开始关注到含植物甾醇的食品及植物的分析技术的开发与运用,本文将重点介绍基于气相色谱-氢火焰离子化检测器联用技术及液相色谱-大气压化学电离质谱联用技术的植物甾醇分析方法。图1. 常见的三种植物甾醇结构图2. 植物甾醇降低血清胆固醇的示意图[1]1. 植物甾醇的分析技术食物与植物中的甾醇类成分经过前处理并富集后,可采用不同的分析技术与手段开展分析与鉴定。目前最常用于植物甾醇定量分析的技术为气相色谱法(Gas Chromatography,GC)。液相色谱法(Liquid chromatography,LC)、薄层扫描法(Thin Layer Chromatography Scanning,TLCS)等也可以进行植物甾醇组分的分离与定量分析。1.1 气相色谱-氢火焰离子化检测器联用技术(GC-FID)技术原理:氢火焰离子化检测器(Flame Ionization Detector,FID)的工作原理是基于有机化合物能够在火焰中发生自由基反应而被电离从而对待测物进行分析[2]。如图3所示,FID离子室中火焰分为A层预热层;B层点燃火焰;C层温度最高,为热裂解区,有机化合物CnHm在此发生裂解而产生含碳自由基CH:CnHm→CH含碳自由基进入反应层D层,与外面扩散进来的激发态原子或分子氧发生反应,生成CHO+及e-:CH+O→CHO++e-形成的CHO+与火焰中大量水蒸气碰撞发生分子-离子反应,产生H3O+离子:CHO++H2O→H3O++CO化学电离产生的正离子(CHO+,H3O+)和电子(e-)在外加直流电场作用下向两极移动而产生微电流,收集极与基流补偿电路间的电流作为微电流放大器的输入,微电流放大器输出的电流信号(或电压信号)经A/D转换器,将模拟信号转换成数字信号,由计算机记录下来并进行数据处理从而获得色谱峰。图3. 氢火焰离子化检测器(FID)的示意图技术特点:火焰离子化检测器(FID)是气相色谱常用的检测器,它对几乎所有有机物均有响应,特别是对于烃类化合物灵敏度高且其响应与碳原子数成正比。与此同时,它对于气体流速、压力、温度变化的细微差异相对不敏感,不易受到外界环境改变影响。通过该法对植物甾醇进行分析时,需要对样品进行衍生化处理,将游离的植物甾醇转化为适合GC分析的疏水性衍生物,如生成三甲基硅醚(TMS)衍生物。目前广泛使用于植物甾醇分析的衍生化试剂包括有:含N-甲基-N-三甲基硅烷基三氟乙酰胺(N-methyl-N-trimethylsilylfluoroacetamide,MSTFA)无水吡啶溶液、含1%的三甲基氯硅烷(Trimethylchlorosilane,TMCS)的双三甲基硅基三氟乙酰胺(Bis-trimethylsilyltrifluoroacetamide,BSTFA)等。通过GC-FID对植物甾醇进行定量时,常使用的内标包括有白桦脂醇(Betuline)、5α-胆甾烷醇和5α-胆甾烷-3β-醇等。分析仪器:1957年,澳(大利亚)新(西兰)帝国化学工业公司(Imperial Chemical Industries of Australia and New Zealand,ICIANZ)中央研究实验室的McWilliam和Dewar开发了第一台FID。目前FID检测器已经成为应用最广泛的气相色谱检测器之一,其获取、操作成本、维护要求均相对较低。市面上的气相色谱仪基本上均可配置FID检测器,包括安捷伦9000、8890、8860和7890气相色谱系列,赛默飞 TRACE 1300、1100系列,岛津Nexis GC-2030,珀金埃尔默 2400等进口气相色谱系统以及福立 GC9790、GC 9720,常州磐诺GC1949,上海仪电分析GC 128、北分瑞利 GC3500系列等国产气相色谱仪。1.2 液相色谱-大气压化学电离质谱联用技术(LC-APCI-MS)技术原理:大气压化学电离化(Atmospheric Pressure Chemical Ionization,APCI)原理与化学离子化相同,但离子化在大气压下进行。流动相在热及氮气流的作用下雾化成气态,经由带有几千伏高压的放电电极时离子化,产生的试剂气离子与待测化合物分子发生离子-分子反应,形成单电荷离子,正离子通常是(M+H)+,负离子则是(M-H)-。大气压化学离子化能在流速高达2 ml/min下进行,常用于分析分子质量小于1500道尔顿的小分子或弱极性化合物,主要产生的是(M+H)+或(M-H)-离子,很少有碎片离子,是液相色谱-质谱联用的重要接口之一。图4. 大气压化学电离源(APCI)的示意图技术特点:植物甾醇的发色团数量少,因此不适合通过紫外检测器检测;同时植物甾醇质子亲和力较小、酸性较弱、不宜在溶液中形成质子化的离子或去质子化生成阴离子,因此通过电喷雾电离(Electron Spray Ionization,ESI)的电离效率相对较差。由于植物甾醇亲脂性较强,分子量一般小于1000 Da,采用APCI离子源可以提供更高的植物甾醇检测灵敏度,且无需对样品进行衍生化,极大地缩短了分析所需的时间。研究人员还发现植物甾醇分析过程中,采用正离子模式能够提供了比负离子模式更高的灵敏度,且易于生成准分子离子峰[M+H]+、[M+H-H2O]+ [4]。分析仪器:目前国内外均有大量厂商生产搭配有APCI离子源的液相色谱质谱联用系统,已运用于药物研究、食品安全检测、生命科学和分子生物学等多个领域。Agilent 6470、6490系列三重四极杆液质联用系统,Bruker EVOQ LC-TQ液相色谱质谱联用系统,PerkinElmer QSight 400系列三重四极杆质谱仪,SHIMADZU LCMS-2020、LCMS-2050液相色谱质谱联用系统以及国产的江苏天瑞LC-MS 2000液质联用系统,杭州谱育科技EXPEC 5310LC-MS/MS、EXPEC 5250 气相/液相色谱-三重四极杆质谱联用仪、EXPEC5510LC-MS/MS、禾信仪器LC-TQ5100等均配置有APCI离子源。国产的江苏天瑞LC-MS 2000液质联用系统,杭州谱育科技EXPEC 5310系列质谱仪等均配置有APCI离子源。2. 应用实例2.1 基于GC-FID快速分析橄榄油中的植物甾醇在对特级初榨橄榄油样本进行皂化处理后,国际橄榄理事会(International Olive Council,IOC)方法采用乙醚对皂化样本多次液液萃取以提取植物甾醇;研究人员优化后前处理方法采用反相聚合物基质固相萃取柱对皂化样品中的植物甾醇进行提取。同时研究人员基于GC-FID建立了同时快速定量17种脂质(含内标胆甾烷醇)的分析方法,其中包括16种植物甾醇,这17种脂质的GC-FID色谱图如图4所示[5]。通过分析比对不同前处理方法结果,研究人员发现优化后前处理方法简单、省时,并减少了溶剂的使用量,但是与IOC官方方法获得的结果较为一致。通过GC-FID快速定量17种脂质的分析方法也有助于评估高价值且容易掺假的特级初榨橄榄油的真实性。图5. 特级初榨橄榄油样品采用IOC方法(A)及优化前处理方法(B)处理后,分别经由GC-FID分析得到色谱图。(1)胆固醇;(2)菜籽甾醇;(3)24-亚甲基胆固醇;(4)菜油甾醇;(5)菜油烷甾醇;(6)豆甾醇;(7)Δ7-菜油甾醇;(8)赪桐甾醇; (9)β-谷甾醇;(10)谷甾烷醇;(11)Δ5-燕麦甾醇;(12)Δ5,24-豆甾二烯醇;(13)Δ7-豆甾醇;(14)Δ7-燕麦甾醇;(15)高根二醇;(16)熊果醇;(IS)胆甾烷醇。2.2 基于LC-APCI-MS/MS快速分析饲料中的植物甾醇相较于GC-FID或GC-MS,LC-APCI-MS/MS无需进行样品衍生化即可完成植物甾醇的定量分析,极大地缩短了样品前处理时间。研究人员建立了基于LC-APCI-MS/MS的植物甾醇分析方法,并可在8分钟内快速定量6种目标植物甾醇[6],图6为胆固醇与6种植物甾醇混合标准溶液(500 ng/mL)的MRM提取离子流色谱图。该方法提供了一种适用于大豆、向日葵、草料、犊牛成品饲料和上述饲料混合物在内的不同类型饲料中的植物甾醇定量的方法。同时将实验结果与其他相关研究结果进行比较,显示出良好的一致性。该方法简单、快速,可以将其应用于其他饲料和食品中的植物甾醇分析。图6. 不同研究化合物混合标准溶液的MRM提取离子流色谱图。①麦角甾醇;②胆固醇;③岩藻甾醇;④Δ5-燕麦甾醇;⑤菜油甾醇;⑥豆甾醇;⑦β-谷甾醇3.小结与展望植物甾醇是植物中的生物活性化合物,同时因其在降低血液胆固醇水平方面有着重要意义,植物甾醇可作为保健食品中的功效成分用于调节人体机能。在这种情况下,有必要建立适合于保健食品中植物甾醇类化合物的分析方法,以评估保健食品质量。同时随着分析技术的发展和相关研究的不断深入,更多快捷、灵敏的分析技术也将成为植物甾醇分析的有力工具,并为更多不同的植物甾醇类化合物在降低血脂、预防心血管疾病等健康领域的运用提供支持与保障。参考文献:[1] Zhang R, Han Y, McClements D J, et al. Production, characterization, delivery, and cholesterol-lowering mechanism of phytosterols: A review[J]. Journal of Agricultural and Food Chemistry, 2022, 70(8): 2483-2494.[2] 胡坪, 王氢. 仪器分析(第五版)[M]. 北京:高等教育出版社,2019.[3] 国家药典委员会. 中华人民共和国药典(2020版):四部[M]. 北京:中国医药科技出版社,2020.[4] Mo S, Dong L, Hurst W J, et al. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography–tandem mass spectrometry[J]. Lipids, 2013, 48: 949-956.[5] Gorassini A, Verardo G, Bortolomeazzi R. Polymeric reversed phase and small particle size silica gel solid phase extractions for rapid analysis of sterols and triterpene dialcohols in olive oils by GC-FID[J]. Food chemistry, 2019, 283: 177-182.[6] Simonetti G, Di Filippo P, Pomata D, et al. Characterization of seven sterols in five different types of cattle feedstuffs[J]. Food Chemistry, 2021, 340: 127926.
  • 综述:现代分析仪器及其应用发展的六大特点和有关问题
    李昌厚(中国科学院上海生物工程研究中心 上海 200233)  由于科学仪器是“四两拨千斤”的产业,发展前景非常广阔。基于它在国家的科技、经济、国防、民生和社会发展中战略地位的重要性,在“农、轻、重、海、陆、空、吃、穿、用”各行各业,无所不在,无所不有。所以,加速科学仪器产业发展已成为世界各国关注的重点之一。本文简单介绍我国科学仪器和应用发展的有关情况。  一、分析仪器的主要发展趋势和方向(潮流)  近10多年来,由于纳米级的精密机械研究成果、分子层次的现代化学研究成果、基因层次的生物学研究成果、特种功能材料研究成果和全球网络技术推广应用成果等一大批当代最新技术成果竞相问世,使得全球科学仪器领域发生了根本性的变革。  1、分析仪器发展的趋势(方向):  目前国际上的科学仪器发展总体上呈现出以下的发展趋势:  1)检测原子、分子和组份的仪器向多功能、智能化、网络化方向发展   2)进行分离、分析的仪器向多维分离和分析方向发展   3)生命科学仪器向原位、在体、实时、在线、高灵敏度、高通量、高选择性方向发展   4)检测复杂组份样品的仪器向联用分析仪器方向发展   5)用于环境、能源、农业、食品、临床检验的仪器向专用、小型化方向发展   6)样品前处理仪器向专用、快速、自动化方向发展   7)用于国防和生命科学的仪器向集成化、微型全分析系统方向发展   8)监控工业生产过程的分析仪器向小型化、在线分析、原位分析方向发展。  2、分析仪器的发展潮流  微型、微量、快速、专用、在线检测是目前国际上分析仪器的主要发展方向或发展潮流:  微型:应用需求 便携、占地方小   微量:应用需求 兔子耳窝2微升液体要求做一个方法研究   快速:应用需求 疾控应急、食物中毒、车载、网络实验室   专用:应用需求 流水线、环保、食品   在线:自动化仪器发展的需要 特别是水质检测,每年10亿RMB的市场   因为研发出的仪器是给使用者用的,所以,分析工作者的需求是:微型、微量、快速、专用、在线;所以,分析仪器的发展方向也是微型、微量、快速、专用、在线。  这些方向或潮流,是现代分析仪器研发工作者应该重视的问题之一。  科学仪器是一种高科技产品,它受益于采用各种前沿技术的最新成果,同时也面临各种前沿技术不断地创新和发展的挑战。可以预测,随着信息科学、生命科学、材料科学、能源科学、海洋科学、空间科学、环境科学、民生科学和公共安全科学的发展,以及新技术的不断出现,科学仪器会在微型、微量、快速、专用、在线等方面将不断的创新、不断发展。  二、分析仪器及其应用发展的特点  1、分析测试对象发生了战略转移,对分析仪器提出了更高的要求  众所周知,五十年代以前的分析测试,主要是无机化学领域的定量分析,七十年代前后的分析测试,则以成分分析为主,同时结合结构分析。目前的分析测试,已发生了很大变化,已突破了传统的分析测试专业界限,涉及到现代科学技术的各个领域。  近几年来,国际上高新技术的发展日新月异,令人眼花缭乱,其中最有代表性、最核心和最能代表未来方向的高新技术有六个方面,它们被科学家们称之为六大技术群,即信息技术群、新材料技术群、新能源技术群、生物技术群、海洋技术群和空间技术群。这六大技术群,都离不开现代分析测试技术。  1)信息技术群:它是新兴技术群体的核心和先导,是未来世界的中枢神经系统。但信息技术群中所有仪器设备材料的光、机、电、磁学等性能和成分、结构分析测试都离不开现代分析测试仪器   2)新材料技术群:它是新兴产业的基础,被称为技术发展的骨骼的肌肉组织,但不论有机材料还是无机材料,其结构分析,特别是微观、亚微观结构分析、功能材料分析、微量杂质含量的分析等,都必须依靠现代分析测试仪器。  3)新能源技术群:是替代传统石油、煤等燃料能源的途径,是未来社会物质运作的动力源泉,相当人体的心血管系统,但它的每一细小环节,都少不了分析测试。  4)生物技术群:是前沿科学中的前沿,是利用生物体及其组织和功能的全新领域,开发前景广阔。但生物体及其组织和功能的开发研究、复杂体系的分离、生物大分子的测试、生物活性的测试、空间构象的测试等都必须要有分析测试仪器。  5)海洋技术群:是充分利用和开发占地球表面71%的海洋和海底资源的现代手段,但海洋和海底物质资源的提纯、分离等,都涉及到现代分析测试仪器。  6)空间技术群:是当今科技发展的伟大象征,是探索地球、太阳系、银河系、乃至整个宇宙的新起点,但空间技术中的新材料和太空物质资源的开发研究等,都与分析仪器发展密切相关。  综上所述,纵观当今世界上科技发展的现状和世界分析测试技术发展的历史,人们会深深认识到现代分析测试技术领域已发生了巨大变化,出现了一个明显的特点,那就是分析对象已经发生了战略性的转移,已经从过去的成分分析和一般的结构分析,发展到了趋向于从微观和亚微观结构这两个层次上去寻找物质的功能与物质结构之间的内在关系,寻找物质分子间相互作用的微观反应规律。同时,要求进行快速、准确的定性和定量分析。可以说,分析对象的战略转移对分析仪器的要求进一步提高,或者说分析仪器必须适应分析对象的战略转移,这是现代分析仪器和应用发展的第一个特点。  2、分析测试技术的难度明显增大,分析仪器必须相适应  随着现代分析测试对象的战略转移,分析测试研究的深度、广度和难度都发生了很大的变化,特别是当今的分析测试技术的难度,比过去有明显增大。纵观世界上分析测试技术领域的现状,可以明显看出,当今世界上分析测试技术的主要难点集中反映在以下三个方面:第一,大分子的分析测试 第二,复杂体系的分析测试 第三,动态分析测试。  所谓大分子的分析测试,主要指生物分子的微量提纯和分离、结构的测定(一级、二级、三级结构测定)、表征生物大分子活性的空间构象的测定、细胞的骨架、细胞膜、受体细胞等的测定等等。这些都是当代分析测试技术中的难点。  所谓复杂体系,主要指材料科学。材料科学本身就是复杂体系,再加上添加剂、辅助剂等就更加复杂。有时只要万分之几或十万分之几的添加剂,就可以改变材料的全部特性,如离子束注射技术就是如此,只需在材料中注入极少量的离子,材料的机械、电子、光学、磁学等特性就会发生极大的变化。例如,目前全世界一致公认,人工心脏瓣膜的最好材料是热解碳,但它有凝血性。热解碳做成的人工心脏瓣膜装入人体后,病人必须长期每天吃药,以使血液流过人的心脏时,不产生血栓,否则会导致生命危险!但吃药后,又有副作用,尤其对有生育能力的人影响极大。为此,我国的科技工作者,用离子束注射热解碳,再用它做成人工心脏瓣膜,就可提高抗凝血性,所以装入人体后,可以不吃药。这是一个有重大意义的课题,但其分析测试工作的难度很大,既要作离子束注射后热解碳的材料分析,又要作动物乃至人体的血液相溶性分析测试,工作量巨大,要求很高 又如无机大分子,有机高分子和簇类物质(原子、分子簇,即人们所讲的纳米材料)的聚合态结构研究,特别是其三维分子结构、低维分子结构、分子取向度、表面结构等的分析测试,都属于材料科学的难点。并且,这些方面的分析测试工作都属于当代材料分析测试技术中的热点。人们正在开展纳米结构半导体发光材料的研究,这是材料科学中一个有重大意义的课题,但其分析测试非常困难。因要寻找晶粒在一定程度上可控的纳米薄膜,以制备高致密度、与衬底有高结合力的纳米晶粒薄膜,故分析测试工作量很大,且难度非常大。这项工作在微电子学中有重大意义。  还有,现代分析测试技术中,往往要求快速、准确的解决被测对象中某些组分的含量,如钢铁、冶金、机械等行业中最普遍,而又是最重要的C、S、Mn、Si、P等含量的现场、快速、实时的分析测试就是如此,这些实时的现场快速分析测试,也是相当难的。  所谓动态测试,主要指的是反应动力学。在对亚稳态、分子、离子、自由基等物质的实时分析测试时,全部要求在动态过程中进行。就拿一个简单的化学反应来讲,一般我们知道的是反应后的结果产物,分析测试的也是反应结束后的最终产物。但若要知道反应过程中,任何一个△t时间上的具体细微信息,就相当困难了。如果是一个复杂体系的动态测试,那就更难了。  综上所述,分析测试的难度明显增大,对分析仪器的要求就会提高。这是现代分析仪器和应用发展的第二个特点。  3、现代分析测试技术涉及的专业面越来越广  随着分析对象的战略转移,分析测试技术涉及的专业也发生了变化。因为要寻找物质的功能与物质的结构间的内在关系,要寻找物质分子间相互作用的微观反应规律,要快速、准确的测定成分和结构,首先要解决的就是要得到物质的有关信息。因此,如何获得信息,是解决分析测试问题的首要前提,信息获得就成了分析测试的重要基础。而现代科学仪器是信息的源头,它包含许多基础科学和应用学科方面的内容,包含许多边缘科学、交叉学科、实验技能知识。现代分析测试技术必须依赖于现代科学仪器。分析技术涉及的面越广,对仪器的要求就越高。这是现代分析仪器和应用发展的第三个特点。  4、要求分析仪器制造者和使用者,越来越重视仪器学理论  由于分析对象转移、难度增大、涉及的面更广,做仪器和用仪器的人就需要有理论支撑,这个理论就是仪器学理论。仪器学理论是一种综合性学科的理论,是一门涉及到多个领域的、复杂的、交叉的、边缘学科的理论,是涉及到光学、机械学、电子学、计算机、应用等各个领域的理论,特别是现代分析仪器,都离不开这些方面。  仪器学理论是一切科学仪器研发者、生产者、使用者,是最基本、最重要的理论之一。  目前,很多仪器设计者没有重视仪器学理论,往往出现数据不准确或发生疑虑时、分析数据与文献值不一致时,大家就不知所措!如:当试样很稀或很浓时,分析误差很大!但是中等浓度时,分析误差就正常,为什么?这个问题很多人不清楚!因为,从仪器学理论来讲,所有根据比耳定律设计的分析仪器,都只能适用于一定浓度 噪声N都是限制被分析样品浓度下限的。根据仪器学的S/N理论:信号S一定,噪声N大,则仪器S/N就小、灵敏度就低。同时仪器的分析测试误差就会大。而杂散光SL是限制被分析样品浓度上限的,试样很浓时,浓度与吸光度不成正比、就偏离比耳定律,分析误差就会很大。如果有人要求用UVS检测0.0004Abs的样品,这是违背仪器学理论的。目前世界上最好的UVS,美国Varian的6000i,其BF(基线平整度,表征仪器全波长范围内的每个波长上的噪声)为± 0.001 Abs,仪器的噪声都比0.0004Abs大几倍,根本不能检测0.0004Abs的样品。所以,懂了一点仪器学理论,你才会知其然,也知其所以然,才会当仪器出现误差大、不稳定、重复性差等问题时,能够解释或顺利解决。所以,越来越需要和重视仪器学理论是现代分析仪器和应用发展的需要,也是现代分析仪器和应用发展的第四个特点。  5、分析仪器制造者和使用者结合越来越紧密  分析仪器是给仪器分析工作者使用的,因此仪器分析工作者对分析仪器的要求是“好用” 所谓“好用”,就是分析仪器要稳定可靠 而所谓稳定,就是漂移小、重复性好 所谓可靠,作者在30年前提出,应分为狭义和广义两种。狭义可靠性主要指分析仪器的故障率,它不能全面完整的表达可靠性的内涵。仪器故障不出,但是,分析测试的数据不准,这是最大的不可靠。所以作者提出了广义可靠性的定义,即指分析仪器的可靠性,主要指分析测试数据的准确度高、稳定性好、故障率低和售后服务好。因此,分析仪器的优劣,要在分析测试工作中检验,应由仪器分析工作者来评价。使用者是裁判员,分析仪器的好坏,必须要经过分析测试实际使用的检验后才能下结论!由于许多分析仪器研发、制造工作者,不了解使用者如何使用分析仪器,不了解使用者的思路,导致做仪器和用仪器的人脱节,互不沟通。所以,做出的分析仪器有时不大好用,甚至不好用,这是造成我国分析仪器落后的主要原因之一。所以,分析仪器制造者如果离开使用者,就没有目标。  一台(或一种)新的分析仪器问世,必定是来自仪器分析工作的需要或仪器分析工作的实践。许多分析仪器都来自应用实践的需求。如:八十年代中期,中科院上海有机化学研究所的知名有机化学家汪猷教授在核酸的研究中发现:五种核苷中有的对UVS有吸收,有的对UVS没有吸收 有的有天然荧光,有的没有天然荧光 国外用HPLC分析测试时,往往用两种检测器(紫外、荧光)串连检测,这样,会使峰形扩散,降低灵敏度。当时,汪猷教授提出,能否研制一种紫外/荧光同时检测(记谱)的HPLC检测器?作者根据他的要求(实践需要),在他的启发下,与他紧密结合,很快发明了一种紫外可见分光光度计和荧光光度计一体化设计、一机两用的多功能新型仪器。它作为HPLC检测器,只需要8微升样品,一次进样,就可得到试样的紫外和荧光两种信息。该仪器大大减少了试样的扩散,具有很高的灵敏度。并且一次进样,可将五种核苷中的发荧光和不发荧光、有紫外吸收和没有紫外吸收的核苷区分开。该仪器1988年获得了国家发明奖,至今还未见国外报道过同类仪器。这就是分析仪器来自分析测试工作实践的一个很好的典型例子。我们的仪器研发人员应该重视研发仪器与使用仪器的关系。要走出去,向用户学习。从他们那里吸取营养、拓宽思路。  还有,诺贝尔化学奖得主之一是日本岛津公司的田中耕一,他之所以能得诺贝尔化学奖,主要是他提出了“基体辅助激光解吸质谱法”,这是一种对生物分子进行确认和结构分析的新方法。他用激光照射成团的生物大分子,成功的将生物大分子完整地相互分开,并电离,再用飞行时间质谱来测量。这一发明解决了世界上两大难题:第一,解决了成团的生物分子的结构和成份不受破坏地拆成单个分子的难题 第二,解决了用飞行时间质谱来测量分子量大到50-60万的生物大分子的难题。这一发明,使人类可以通过对蛋白质的详细分析,从而加深对生命进程的了解,使新药开发发生了革命性的变化,并在食品控制、癌症的早期诊断等领域有广泛的应用!我们可以设想一下:如果没有先进的激光仪器和先进的飞行时间质谱仪器,田中耕一能发明“MALDI-TOF-MS”方法吗?他能得诺贝尔化学奖吗?回答是不能。  以上事实,足以说明仪器分析工作者(用仪器)与分析仪器(生产仪器)之间的关系。更能说明分析仪器与仪器分析必须紧密结合、相互沟通、相互促进,这个问题,必须引起广大分析仪器工作者的极大关注。这是当前世界分析仪器和应用发展的显著特点之五。  6、正在朝着联用技术方向大发展  联用技术的迅速发展,是当前国际上分析仪器及其应用发展的热门话题之一。很多工作,某一种技术解决不了,但是,两种或多种技术联用就迎而解了。例如:单纯一台薄层扫描仪器或单纯一台拉曼光谱仪器都不能解决的问题,二者联用(薄层扫描仪起分离作用,拉曼光谱仪起检测作用),问题就很容易解决了,这对复杂体系、中药的分析等特别有意义。又如:FIA(流动注射分析)与AAS联用、ICP-MS、LC-MS、GC-MS等等均系如此。所以,联用技术发展,在集成创新方面将有广阔的前景,它是现代分析仪器及其应用发展的显著特点之六。  三、有关问题  1、再次希望分析仪器和应用行业的广大科技工作者注重学习,要特别重视仪器学理论、要不断注意扩大自己的知识面、多参加各类专业学术会议、多看文献、重视与同行之间的交流、不断提高和充实自己。特别是仪器使用者,一定要注意研究影响分析误差的五大主要因素及其排除方法(作者将另文论述)。  2、建议大家参考以下几本书。这些书的内容都具可操作性。因为作者在大学里学仪器,毕业后,50多年来一直使用仪器、研发仪器、维修仪器。这些书是作者的经验教训总结,既有仪器学理论内容,又有应用实践的内容 对研发仪器、生产仪器、使用用仪器、维修仪器和管理者都有参考意义。这五本书都是著的,而不是编的。它们是:  (1)李昌厚著,《紫外可见分光光度计》,北京:化学工业出版社,2005。  一般科技新书首印2000册 这本书首印4000册,后来重印过两次,总共销售1万多册。内容都具有可操作性。  (2)李昌厚著,《紫外可见分光光度计及其应用》,北京:化学工业出版社,2010。  这本书有很多设计、使用的具体例子,都具有可操作性。  (3)李昌厚著,《原子吸收分光光度计仪器及其应用》,北京:科学出版社,2006  这本书很多科技工作者作为起蒙书籍在读。特别是分析行业的研发生产仪器、使用仪器、维修仪器、销售仪器的人,都有参考价值。  (4)李昌厚著,《仪器学理论与实践》(仪器学理论与光学类分析仪器整机及关键核心部件的设计、制造、测试、使用和维修),北京:科学出版社,2008  仪器学理论是研发仪器、生产仪器、使用仪器、维修仪器的科技工作者必须了解的基础理论 它可以保证你掌握仪器指标与分析误差的关系、使你做出优质仪器 可以使你把仪器用到最佳水平、得到最佳的、最可靠分析数据。  (5)李昌厚著,《高效液相色谱仪器及其应用》,北京:科学出版社,2014  此书三位院士作序。第六章“HPLC一百问”得到了很多读者青睐。  目前分析仪器类的书很多,特别是光谱、色谱仪器方面的书更多。但大多都是专讲仪器或专讲应用,真正将仪器和应用有机结合起来介绍作者的科研成果的书比较少。上述5本书在仪器及其应用的结合方面有独到之处,建议读者参考。  主要参考文献从略。仪器信息网特约撰稿人招募中,丰厚稿酬等您来!!!  投稿人职称在副研/副教授以上,喜欢以文会友 稿件要求原创 内容完整,无需修改,单篇1000字以上 一经录用,单篇稿件稿费500-1000元!  内容:聚焦科学仪器及分析测试行业(拒绝广告),包括但不限于:仪器及技术发展综述 仪器/技术/应用/方法等重大成果研究进展 相关政策、法规、标准解读 仪器技术发展趋势/方向展望/预测 仪器行业“观点”分享… …   投稿邮箱:yej@instrument.com.cn
  • 德国耶拿公司2010年慕尼黑上海分析生化展精彩展现
    第五届慕尼黑上海分析生化展于2010年9月15&mdash 17日在上海新国际博览中心开幕。现已在分析仪器界具有举足轻重地位的德国耶拿公司如往年一样参加了本次展会。 德国耶拿公司在展会上展出了contrAA700连续光源原子吸收光谱仪、ZEEnit700高级原子吸收光谱仪、总有机碳/总氮(TOC/TN)和总有机卤素(AOX)分析仪、EA5000元素分析仪、顶级样品消解技术&ndash TOPwave 微波消解仪,还推出了全新升级的产品Specord PLUS紫外分光光度计,德国耶拿公司本次展会比往年又多了一个亮点---生化展区,展出了自动核酸纯化系统、超微量紫外分光光度计、快速PCR仪、抗氧化自由基分析仪等。参会嘉宾纷纷对德国耶拿公司全系列产品的杰出技术表示了浓厚的兴趣,连续光源一如继往的吸引了众多的眼球,生化仪器和新品紫外分光光度计也让参观者大开眼界,人们对耶拿的技术给予了美好的赞誉,展会期间,德国耶拿公司的总经理赵泰和市场总监张海蓉还接受 多家媒体的现场采访,介绍了先进的耶拿技术和产品。 和往年一样,今年的上海国际分析化学研讨会上依然汇聚了重量级的演讲嘉宾。来自德国耶拿公司的元素分析仪资深应用专家Ms. Birgit wittenburg就是其中一位。她就&ldquo 元素分析的最新技术和应用以及趋势前瞻&rdquo 作了生动的演讲。演讲吸引了大批的参观者,大家对德国耶拿的元素分析仪技术很感兴趣。 2010年正值德国耶拿公司成立20周年及在法兰克福成功上市10周年之际,全新的&ldquo SPECORD PLUS系列&rdquo 高性能紫外分光光度计隆重推出之时,为答谢广大用户的厚爱,德国耶拿公司在展会上还举办了&ldquo 争分夺秒,追精求准 &ndash 2010全球名表抽奖活动&rdquo 。展会上参观者纷纷参加了抽奖活动。我们真诚地预祝各位嘉宾在德国耶拿缤纷多彩的全球庆祝活动当中能够夺得头筹,获取价值丰厚的欧洲名表,让德国耶拿继续以精湛的德国技术,优秀的产品品质和全方位的贴心服务来回馈我们在全球超过200,000的用户。
  • 多孔材料表征分析技术研讨会
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪;1978年首次将连续扫描注汞技术应用到压汞仪中;1982年发明世界第一台多站自动比表面和孔隙度分析仪......;至2005年,研制出最新一代、也是目前唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪&mdash Autosorb系列。2010年3月1日,正式推出了至今最先进的双站微孔分析仪&mdash &mdash Autosorb-iQ。美国康塔,一直走在粉体及多孔物质分析技术的前列。 为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司将于2011 年9 月15 日在哈尔滨市黑龙江大学举办&ldquo 粉体和多孔材料表征分析技术研讨会&rdquo ,欢迎光临指导。  日 期:2011 年9 月15 日(星期四)  时 间:9:30 ~ 16:00  地 点:黑龙江省哈尔滨市黑龙江大学化工学院2楼报告厅  内 容: 你的孔径分析结果准确吗? --多孔材料的孔分析技术进展  背景知识  吸附理论  气体吸附法测量比表面和孔径大小  如何正确应用BET 理论计算微孔样品比表面  孔分析模型及非定域密度函数理论在孔径分析中的应用  化学吸附的应用以及对仪器的要求  新产品介绍:Autosorb-iQ 全自动双站微孔吸附分析系统 比表面和孔径分析操作中应特别注意的问题及曲线分析(NOVAe 系列测试技术培训) 主讲人:杨正红(美国康塔仪器公司 中国区首席代表) 诚邀相关领域的专家、同行莅临交流! 联系报名方式: 黑龙江大学化工学院 吴伟教授 13936133828 美国康塔仪器公司北京代表处 宋绪东先生 18611382329 邮箱: songxudong@quantachrome-china.com 杨正红,美国康塔仪器公司北京代表处首席代表,中国区经理 毕业于今天的北京大学药学院,之后,留校任教并完成硕士学业。主要从事自由基生命科学研究,先后发表及合作发表论文三十余篇,获得国家教委科技进步二等奖及北京市卫生局科技进步二等奖各一项。在校任教期间,担任天然药物及仿生药物国家重点实验室仪器组组长,负责仪器的验收、维护、开发、服务及科研。 1993年10月,加入美国Bio-Rad公司在北京的子公司,负责分析仪器的销售及技术支持。1997年4月,被聘为瑞士华嘉公司分析仪器部产品专家,销售经理,负责颗粒特性分析仪器的技术支持及销售,在推广英国马尔文粒度分析仪和美国康塔仪器公司比表面及孔隙度分析仪等方面取得了突出成绩。凭借对用户高度负责的敬业精神在用户中有极佳的口碑,也受到了厂家的赞誉。 2004年起,杨正红先后被英国马尔文仪器公司聘为市场部经理,北方区经理,并同时担任美国康塔仪器的中国区经理。2008年1月,美国康塔仪器公司北京代表处进行迁址、并独立开展在华的全部业务,杨正红辞去在马尔文公司的职务,专注于新代表处的业务开拓工作。 虽然离开学校讲坛十余年,但杨正红始终没有中断学术研究。这期间,先后发表或合作发表涉及粒度测定,纳米技术与纳米科学,吸附理论及氢吸附的论文10余篇,多次被邀请作为国家标准审查专家组成员。2007年11月,被中国化学会催化分会邀请为特聘教授,从事吸附理论及其应用的讲授。2008年被选为北京市粉体技术协会的理事。
  • 德国耶拿公司”2012年慕尼黑上海分析生化展”精彩展现
    10月16日,上海新国际博览中心,为期3天的第六届慕尼黑上海分析生化展(analytica China)盛大揭幕。analytica China是分析、诊断、实验室技术和生化技术领域的顶级盛会,自2002年首度进入中国以来已经走过了辉煌的十年。来自22个国家及地区的580家国内外知名企云集本次盛会,展示包括分析仪器、生命科学、生物技术等在内的最新产品及应用。 作为分析仪器界具有举足轻重地位的德国耶拿公司,从第1届慕尼黑展会至今,已经连续参加了6届。德国耶拿公司,此次携多款世界领先技术的分析和生化仪器,盛装亮相2012 Analytica china盛会。 具有世界领先和创新技术的contrAA700连续光源原子吸收光谱仪、ZEEnit700高级原子吸收光谱仪、总有机碳/总氮(TOC/TN)和总有机卤素(AOX)分析仪、EA5000元素分析仪、顶级样品消解技术&ndash TOPwave 微波消解仪,全新升级的产品Specord PLUS紫外分光光度计等,吸引到大批专业观众参观,参会嘉宾们纷纷对德国耶拿公司全系列产品的杰出技术表示了浓厚的兴趣,从专家学者到年轻的科技工作者纷纷驻足耶拿展台,就耶拿仪器的性能与最新应用等话题,与耶拿公司的技术专家,展开热烈的讨论。 生化展区是耶拿公司本次展会的另一个亮点!自动核酸纯化系统、超微量紫外分光光度计、快速PCR仪、抗氧化自由基分析仪、移液工作站等,也吸引了参观者的众多眼球,人们对耶拿的技术给予了美好的赞誉。 展会期间,德国耶拿公司的总经理赵泰先生,接受多家媒体的现场采访,介绍了先进的耶拿技术和产品。 和往年一样,今年的慕尼黑上海分析生化展上,还同期举办了多场精彩学术研讨会,汇聚了很多重量级的演讲嘉宾。德国耶拿公司,在&ldquo 第六届上海国际分析化学研讨会&ldquo ,&ldquo 2012上海国际食品安全研讨会&rdquo ,&ldquo 移动实验室与检测发展论坛&rdquo 上,与广大分析工作者,分享了世界领先的分析、生化技术,以及最新的应用进展,探讨各类难题的最佳的解决方案,获得与会人员的一致赞赏和好评! 第六届上海国际分析化学研讨会(The 6th Shanghai International Symposium on Analytical Chemistry), 中国区总裁:赵泰,演讲题目&ldquo 原子吸收光谱前沿技术&mdash &mdash 连续光源+固体直接进样技术&ldquo 2012上海国际食品安全研讨会(2012 Shanghai International Forum on Food Safety), 资深应用专家&ldquo 张萍,吴潇韫&ldquo ,演讲题目&ldquo 食品安全重金属和微生物整体解决方案&rdquo 移动实验室与检测发展 论坛(The Forum on Testing Technologies of Mobile Laboratories), 资深应用专家&ldquo 吴潇韫&ldquo ,演讲题目&rdquo 食品微生物现场快速检测系统MobiLab&ldquo 关于耶拿: 德国耶拿分析仪器股份公司,是德国最大的分析仪器制造商之一,在光学制造领域拥有超过160年的历史,在发展高质量精密仪器和发明创造方面有着悠久的传统。前身为久负盛名的卡尔蔡司公司分析仪器部。公司总部设在世界光学精密仪器制造中心的德国耶拿市,目前在全球90多个国家设有分支机构。 以&ldquo 品质造就非凡,创新成就梦想&rdquo 为企业信条,公司的宗旨是不断创新和追求活力,始终保持领先的技术水准。耶拿公司凭借其在光学和光谱技术领域内的优势,凭借其历史上的传统和经验,一直不间断地研究新的技术,并且和应用紧密联系, &ldquo 技术&rdquo 与&ldquo 品质&rdquo 是耶拿公司核心的竞争力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制