当前位置: 仪器信息网 > 行业主题 > >

中物理实验器

仪器信息网中物理实验器专题为您提供2024年最新中物理实验器价格报价、厂家品牌的相关信息, 包括中物理实验器参数、型号等,不管是国产,还是进口品牌的中物理实验器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合中物理实验器相关的耗材配件、试剂标物,还有中物理实验器相关的最新资讯、资料,以及中物理实验器相关的解决方案。

中物理实验器相关的资讯

  • 英国国家物理实验室开发超稳定激光器和光学时钟
    据英国国家物理实验室(NPL)网站报道,NPL、英国空间署(UKSA)和欧洲空间局(ESA)正为未来的太空任务开发超稳定激光器和光学时钟,以改进未来的导航和计时。NPL的立方腔专利设计使光学腔的频率稳定性对振动高度不敏感,具有独特的鲁棒性,可将商业激光系统的谱线宽度从几个MHz降低到1 Hz以下。这提供了超稳定的激光器,既可作为独立的频率参考,也可作为光学原子钟的子组件。这种光学原子钟和超稳定激光技术在未来科学(基础物理学和宇宙学)、地球观测(相对论大地测量学)和导航(未来全球导航卫星系统)计划等方面具有较大应用前景。在NASA/ESA的下一代重力任务中,NPL的立方体空腔可用来测量地球重力场作为地球表面位置的函数。在极地地区,这种技术可比以前的GRACE和GOCE任务更精确地监测冰川变化。在未来NASA/ESA 2030激光干涉仪空间天线(LISA)任务中,可作为空间引力波测量的参考。注:本文摘自国外相关研究报道,文章内容不代表本网站观点和立场,仅供参考。
  • 振动试验中必要的数学和物理基础知识2
    接上文:振动试验中必要的数学和物理基础知识1。5 周期、频率、角速度※周期T完成一次全振动所需要的时间(单位:秒sec)。※频率f单位时间内完成全振动的次数(单位:赫兹Hz)。※角速度ω表示物体或质点回转速度的量,角度除以时间(单位:rad/s 或 °/s)。360° = 2π (rad)三者之间的计算关系,ω = 2πf,f = 1/T,T * f = 1。※习题6 分贝振动参数(加速度、频率等)大小的比较,通常我们使用倍数来表示,比如频率是原来的10倍,位移是原来的0.5倍。在振动中由于涉及的量级范围比较大,比如频率几赫兹到几万赫兹,加速度几m/s2到几百m/s2,所以基本上采用分贝(dB)的表示方式,比如报警上限+3dB,报警下限-3dB。其实是倍数的另外一种对数表达形式而已,是量度两个相同单位之数量比例的计量单位。※定义1 功率类(功率、能量、加速度平方、PSD等)的分贝定义LdB = 10log(P/P0)P0:基准值 P:现在值2 电压类(电压、电流、加速度、速度、位移等)的分贝定义LdB = 20log(A/A0)A0:基准值 A:现在值※常用分贝和倍数比较表(电压类分贝)分贝倍数分贝倍数0dB10dB10.5dB1.059-0.5dB0.9441dB1.12-1dB0.8922dB1.26-2dB0.7953dB1.41-3dB0.7086dB2-6dB0.510dB3.16-10dB0.31620dB10-20dB0.140dB100-40dB0.01※习题1 加速度增加到3倍,对应的分贝是多少?(9.54dB)2 速度增加到4dB,也就是增加到几倍?速度减少到-4dB,也就是减少到几倍?(1.585倍,0.631倍)7 倍频程、十倍频程在振动试验中,对于两个频率比的表示方式还有倍频程(octave)和十倍频程(decade)的方法。这是两个必须理解的概念,十倍频程相对来说用的比较少。7.1 倍频程(octave)※定义指使用频率f与基准频率f0之比等于2的n次方,即f/f0=2n,则称f为f0的n次倍频程。计算式如下:n = log(f/f0)/lg2或n = log2(f/f0)比如,下限频率100Hz,上限频率2000Hz,通过上面的计算式可以得到100~2000Hz之间约有4.3个倍频程(可以简写成4.3oct)。7.2 十倍频程(decade)※定义指使用频率f与基准频率f0之比等于10的m次方,即f/f0=10m,则称f为f0的m次十倍频程。计算式如下:m = log(f/f0)比如,下限频率100Hz,上限频率2000Hz,通过上面的计算式可以得到100~2000Hz之间约有1.301个十倍频程(可以简写成1.301dec)。※习题1 频率范围10~2000Hz之间有几个倍频程?(7.645oct)2 频率范围10~2000Hz之间有几个十倍频程?(2.301dec)3 推导倍频程(oct)和十倍频程(dec)之间的关系。(1oct=3.322dec)总结:本文只罗列了一些振动试验涉及的最基本的经常出现的数学和物理知识,如果不能理解和应用,在技术交流中会比较困难,需要加倍努力才行。当然,振动试验所涉及的数学和物理知识还是很难很复杂的,比如傅立叶变化、PSD计算等。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 振动试验中必要的数学和物理基础知识1
    对于初入振动试验行业的技术人员,个人认为以下几点是必须掌握的数学和物理知识:1对数(logax)、2左手定则(F=IBLsinθ)、3右手螺旋定则、4牛顿第二定律(F=ma)、5周期(T)频率(f)角速(ω)、6分贝(dB)、7倍频程(oct)十倍频程(dec)。这些都是高中求学时期所涉及的,是理解振动试验内容需要的最基本的知识点。现罗列如下并进行说明:1 对数(logarithm)1.1 对数的定义如果,ap = x ( a0,且a≠1 ),即a的p次方等于x,那么数p叫做以a为底x的对数(logarithm),记作:p = loga(x)其中,a叫做对数的底数,x叫做真数,p叫做“以a为底x的对数”。对数是对求幂的逆运算,x=ap ⇔ p=loga(x)[条件:a0,a≠1]例:幂运算对数运算32 = 92 = log3 923 = 83 = log2 810-1 = 0.1-1 = log10 0.153 = 1253 = log5 12530 = 10 = log3 11.2 特殊对数① 常用对数(log或lg)底数为10的对数。log x ⇔ log10 x 、lg x⇔ log10 x② 自然对数(lnx)底数为e= 2.71828‥(自然常数)的对数。lnx ⇔ loge x振动试验中使用的基本上都是对数坐标,如果能掌握一些对数运算法则的话,对很多试验内容的理解和计算将达到事半功倍的效果,比如扫频试验、随机试验中的PSD等。对数坐标简单说明:直线坐标下,X轴100,Y轴大概20,但是X轴为1或10的时候,基本上读不到Y轴的数值。但是在对数坐标中,可以读到Y轴的数值为1和4.5。也就是说,对数坐标下,可以正确的显示最大值的1/100或1/1000。这就是振动试验中经常用对数坐标的理由。2 左手法则※定义下图,磁场(B)中的导体通入电流(I),则产生力(F)。F = IBlsinθF:力[N];I:电流[A];l:磁场中导体的长度[m];B:磁感应强度[T];磁场方向和导体的倾斜角度θ[°]。※F、B、I方向的关系※习题上图所示,导线中电流通过时,导线的A部分会朝哪个方向移动?(b)此法则在理解电动型振动试验机原理(动圈线圈中通入交流电后做什么样的运动)有至关重要的作用。3 右手螺旋法则※定义右手螺旋定则便是通电导体电流(I)和磁场(B)的方向的定则。电流如果是按照右手螺旋前进的方向(大拇指指向)直进的话,那么磁场的方向就是右手螺旋回转的方向。此法则在了解振动试验机励磁线圈(通直流电)产生的磁场方向上有很大的帮助。4 牛顿第二定律※定义物体加速度的大小(单位:m/s2)跟作用力(单位:N)成正比,跟物体的质量(单位:kg)成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。加振推力就是通过此定律来计算的。夸张一点的说,振动试验也基本上都是围绕着这个公式进行的。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 国家重大科技基础设施“仲华”热物理试验装置开建
    12月27日,“十四五”国家重大科技基础设施“仲华”热物理试验装置在青岛西海岸新区举行项目建设推进会,项目正式启动建设。“仲华”热物理试验装置是全国首个获得国家批复、首个启动建设的“十四五”国家重大科技基础设施项目。据悉,“仲华”热物理试验装置主要针对吸气式发动机开展复杂多变条件下的工程热力学及循环系统、气动热力学、燃烧学、传热传质学等热物理学科及其交叉学科基础理论和试验研究。该项目位于青岛西海岸新区古镇口核心区,总投资约29.2亿元,建设单位为中科院工程热物理研究所。“仲华”热物理试验装置的建设与运行,将有效支撑现有吸气式发动机设计体系的完善和未来新原理吸气式发动机设计体系的建立,为我国先进吸气式发动机自主创新发展提供坚实的条件支撑。2021年,经山东省、青岛市积极争取,“仲华”热物理试验装置成功纳入“十四五”国家重大科技基础设施,落地青岛西海岸新区。2022年以来,“仲华”热物理试验装置前期手续加快办理,可行性研究报告、初步设计及概算相继获得国家发改委批复。下一步,青岛市及西海岸新区将不断提升服务效能,推动“仲华”热物理试验装置早建成、早运营、早见效。
  • 锦屏深地核天体物理实验室启动
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 从中国原子能科学研究院(简称原子能院)获悉,在国家自然科学基金重大项目支持下,锦屏深地核天体物理实验室(JUNA)在位于四川西昌的中国锦屏地下实验室(CJPL)正式启动。项目负责人、原子能院副院长柳卫平在现场介绍,项目启动后,将向核天体物理研究领域最关键的“圣杯”反应发起冲击,为理解大质量恒星的演化和元素起源提供新的数据。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 在浩瀚无垠的宇宙中,恒星经历着形成、演化、死亡的缓慢过程。这些星体发光发热的能量来自其内部发生的热核聚变反应。这不断发生的核过程为自然界所有化学元素提供了赖以生成的土壤。核天体物理主要运用核物理的知识和规律阐释宇宙中各种化学元素及其同位素核合成的过程、时间、物理环境及丰度分布和核过程对恒星结构及演化进程的影响。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 在国际上,核天体物理是基础科学研究的前沿领域。柳卫平说,开展关键天体物理核反应的精确测量是核天体物理未来发展不可或缺的重要方向。“圣杯”反应将会影响碳氧丰度比这一核天体物理基本问题。 /p p /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp CJPL实验室是目前世界上最深的地下实验室,垂直岩石覆盖达2400米,可以将宇宙线通量降到地面水平的千万分之一至亿分之一。同时,洞内岩体本身的天然放射性也极低。这些为暗物质探测、核天体物理、中微子实验等重大基础性前沿课题研究提供了得天独厚的良好环境。我国已将该实验室建设列入国家重点研发计划。2014年,我国启动了锦屏实验室二期(CJPL-Ⅱ)扩建工程,实验室空间从4000立方米跃至30万立方米。 实验室建成后,将成为国际上最大的地下实验室,能够同时开展更多的深地科学领域实验项目,有望逐步发展成为面向世界开放的国家级基础研究平台。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 自2011年以来,锦屏一期实验室已经开展了暗物质相关研究。此项目启动标志着CJPL-Ⅱ正式开展多学科研究。& nbsp /p p br/ /p
  • 天宫二号搭载中瑞合作科研仪器开展天体物理研究
    天宫二号空间实验室于2016年9月15日发射成功,瑞士对此高度关注。瑞士主要德语报纸《每日导报》用两个整版篇幅介绍了中国航天最新成就和天宫二号空间实验室。尤其值得注意的是,由瑞士科学家提出和设计的观察太空伽玛射线的仪器“Polar”,由天宫二号送入太空,展开天体物理研究。  伽玛射线暴是来自太空某一方向的伽玛射线强度在短时间内突然增强,随后又迅速减弱的现象,在极短时间内释放出的巨大能量可以超过太阳在几十亿年中所发射能量的总和。发现此现象近50年来,人们对其本质了解还很有限。天体物理学家推测,它发生在恒星爆炸或者中子星碰撞的爆发过程。伽玛射线暴是目前天文学最活跃的研究领域之一,对研究宇宙早期形态具有重要意义。因宇宙伽玛射线穿透地球大气层后大部分被衰减,要获得准确的观测数据,需要将观测装置送入太空。  瑞士保罗-谢尔科研中心设计制造的伽玛射线观测仪器“Polar”,性能居世界领先水平,这台仪器重33公斤,体积与普通打印机相似,主要部分为由 1600多根特殊合成材料制成的微条形成的伽玛射线感应器。瑞方曾尝试将该设备送入国际空间站和俄罗斯米尔空间站,但因各种原因均未成功。  中国科学院与瑞士保罗-谢尔科研中心自10年前就开始这一领域的交流与合作,此次“Polar”由天宫二号送入太空开展科学研究,是中瑞科技合作的重要成果,中瑞双方将共同开展科研数据的分析,瑞方对这一合作研究的成果充满期待。
  • 2012中科院近代物理研究所采购900万仪器
    2012年,中国科学院近代物理研究所委托东方国际招标有限公司采购仪器设备,目前为止已采购935.72万元的仪器。仪器信息网现将详细中标情况汇总如下:   采购人名称:中国科学院近代物理研究所   采购代理机构全称:东方国际招标有限责任公司   中标或成交结果: 中标编号 包号 设备名称 中标/成交供应商名称 中标/成交金额 OITC-G12022402 1 自动液氮生产装置 Quantum量子科学仪器贸易(北京)有限公司 美元116,400.00(约合人民币72.56万元) 2 液态金属实验回路系统 盛滙(香港)有限公司 美元708,000.00(约合人民币441.36万元) OITC-G12022394 1 液态金属用机械离心泵 盛滙(香港)有限公司 美元278,000.00(约合人民币173.3万元) OITC-G12022388 1 光释光剂量测量系统 北京中检维康技术有限公司 美元148,000.00(约合人民币92.26万元) 2 在线式选择焊系统 安泰斯电子(香港)有限公司 欧元116,716.00(约合人民币93.89万元)
  • 记2012年物理学奖得主:量子物理实验派双杰
    10月9日下午,2012年诺贝尔物理学奖揭晓。瑞典皇家科学院诺贝尔奖评审委员会将奖项授予给了量子光学领域的两位科学家——法国物理学家塞尔日阿罗什与美国物理学家戴维瓦恩兰,以奖励他们“提出了突破性的实验方法,使测量和操控单个量子系统成为可能”。   诺奖官方网站称,塞尔日阿罗什与戴维瓦恩兰两人分别发明并发展出的方法,让科学界得以在不影响粒子量子力学性质的情况下,对非常脆弱的单个粒子进行测量与操控。他们的方式,在此前一度被认为是不可能做到的。   而这就是诺贝尔物理学奖此次垂青于两位实验派物理学家的原因。   进入量子光学的神秘之门   本届物理奖的两位得主戴维瓦恩兰与塞尔日阿罗什是同年生人。   塞尔日阿罗什,1944年出生在摩洛哥卡萨布兰卡,1971年于法国巴黎的皮埃尔与玛丽居里大学取得博士学位,目前在法兰西学院和法国巴黎高等师范学院任教授。在拿到本届诺贝尔物理学奖前,他已被业内誉为腔量子电动力学的实验奠基人。   戴维瓦恩兰,1944年出生于美国威斯康星州密尔沃基,1970年于哈佛大学取得博士学位,目前作为研究团队带头人和研究员,就职于美国国家标准与技术研究院(NIST)与科罗拉多大学波德分校。瓦恩兰亦一直有着“离子阱量子计算实验奠基者”的头衔。   他们两人是量子物理实验派双杰。两人研究的范畴都属于量子光学,这一领域在上世纪80年代中期以后经历了长足发展,而他们的学术生涯一直在与单光子与离子打交道,研究光与物质在最基本层面上的相互作用。   曾经很长时间以来,实验派物理学家们想在一个微观层面上研究光与物质的相互作用,这完全是难以想象的事。因为,对于光或者其他物质的单个粒子而言,经典物理学已不适用,量子力学的法则在此时取而代之。但是单个粒子却很难从周围环境中被分离出来,并且,它一旦和周遭环境发生相互作用,便会立即丧失其神秘的量子特征。   如此让人束手无措的局面,使得很多量子力学理论所预言的怪异现象无法被科学家们直接观察到。于是长期以来,研究人员只能依靠那些法则已证明可能会影响到量子奇异特性的实验来进行观察研究。而这或许让实验派物理学家们感觉一直跟在理论的后边亦步亦趋。   真正改变实验物理学的人   扭转这一窘状的正是阿罗什与瓦恩兰,他们两人带领各自的研究小组,分别发展出理想的方法,用于测量并操控非常脆弱的量子态。   具体而言,两人所采用的方法既有共通特点亦各有精妙之处:瓦恩兰捕获带电原子(离子),随后使用光(光子)对其进行操控和测量,这些离子被放置在超低温中,防止被外界“打扰”。该方法关键在于巧妙的使用激光束以及激光脉冲抑制了离子的热运动,离子因此进入特定的量子叠加态中——叠加态正是量子世界最神秘的特性——从而保持住了单个粒子的量子特征。   而阿罗什虽然同样使实验处于真空和超低温环境,却采用的是完全相反的手段:利用原子对光子进行操控和测量。他将两面特制的、反射能力极强的镜子组成空腔,捕获住光子并让其在空腔中停留0.1秒——这点儿时间已足够光子在消失前绕地球一圈——这时他再让里德伯原子(比一般原子大1000倍的巨大原子)穿过空腔,每次通过一个里德伯原子,原子离开时,会“告诉”他空腔里还有没有光子。   试着分别去操纵一个光子与离子,借以深入洞察一个微观的世界——原本仅仅是理论学派的领域,正是塞尔日阿罗什与戴维瓦恩兰的研究“打开了新时代量子物理学实验领域的大门”。现在,借助他们的新方式,实验物理学家们得以操控粒子或对粒子进行计数。   实验、应用、改变人们的生活   但阿罗什与瓦恩兰的成就并不止于此。   在公布本届物理奖获得者后,诺奖组委会还介绍了两人的成果在应用层面上的意义。据组委会称,阿罗什与瓦恩兰在他们的研究领域采取了突破性的方法,产生其中一个应用是将建立起一种新型的、基于量子物理学的超快计算机,这或将导致极其先进的通信和计算模式。换句话说,这是向着研制具有惊人运算速度的量子计算机迈出了第一个脚步。科学家预想,或许,就在本世纪,量子计算机会彻底改变我们每个人的日常生活——正如经典计算机在上个世纪曾彻底颠覆每个人的生活方式一样。   而阿罗什与瓦恩兰的研究产生的另一个应用是:“会带来一种非比寻常的精准时钟,并在未来成为一个新的计时标准。”这种超高精度钟表的精确度将比今天所使用的铯原子钟高出数百倍。此前,世界最精确的时钟曾经就是瓦恩兰就职的科罗拉多州国家标准与技术研究所制造的量子逻辑钟,它的误差约为每37亿年1秒。   阿罗什与瓦恩兰展示了如何在不破坏单个粒子的情况下对其进行直接观察的方法,但他们做到的却不只是在量子世界控制住粒子,其带给人们生活的改变,将远超今天目力所能够看得到的。   那么,荣摘诺奖桂冠又是否改变了科学家本人的生活呢?据英国广播公司(BBC)在线版消息称,塞尔日阿罗什本人仅仅提前了20分钟被组委会告知自己获奖的消息。   “我很幸运,”塞尔日阿罗什说,但他指的并不是自己得奖这回事,“(接到来电时)我正在一条街上,旁边就有个长椅,所以我第一时间就坐了下来。”他形容那一刻的心情,“当我看到是瑞典的来电区号,我意识到这是真实的,那种感觉,你知道,真是势不可挡。”   不过据诺奖官网的推特称,阿罗什接到获奖的确切消息后,打了个电话给自己的孩子,然后开了瓶香槟庆祝,再然后,他又回实验室工作去了。
  • 红外物理国家重点实验室在纳米结构中电子非平衡特性检测方面取得突破
    p   电子被发现一个多世纪以来,人类社会对它的依赖程度越来越大,如今,它已成为微电子和光电子技术的物理基石。随着微电子器件尺度按摩尔定律不断向纳米尺度减小,对于电子运动规律的认识将面临着从平衡态理论向非平衡态理论的发展。正如美国基础能源科学顾问委员会报告中指出,当前科学上面临的5大挑战之一就是对非平衡态尤其是远离平衡态的表征和操控。 /p p   按平衡态理论,人们预测在微电子器件中电流最大的位置往往会是电子温度最高的地方。中国科学院上海技术物理研究所红外物理国家重点实验室陆卫研究员和复旦大学安正华研究员的科研团队共同合作,利用非平衡输运热电子的实验检测在技术,通过散粒噪声对非局域热电子能量耗散进行空间成像研究,发现在纳米尺度结构中,电子温度最高之处并非局域在电流最大位置,而是明显地向电流的流动方向偏离了,而且电子的温度高于晶格温度很多倍。从理论和实验两方面证实了这种奇异特性就来自热电子的非平衡态特征。 /p p   该研究工作的最大挑战来自于非平衡输运热电子的实验检测技术上。实验室采用了自主研发的超高灵敏甚长波量子阱红外探测器的扫描噪声显微镜(SNoiM)技术,称为扫描噪声显微镜技术。其基本机理是非平衡态电子的电流强烈涨落形成的散粒噪声会直接导致近场甚长波红外辐射,通过高灵敏的红外近场检测可实现仅测量到非平衡态电子特性,从而为直接观察在纳米结构中电子的非平衡态乃至远离平衡态的特性提供了独特的方法。 /p p   相关研究成果“Imaging of nonlocal hot-electron energy dissipation via shot noise”(DOI: 10.1126/science.aam9991)已于2018年3月29日获得《Science》杂志在线发表,将对认识和操控非平衡热电子进而增强器件功能发挥重要作用。 /p p   这项研究工作得到了科技部国家重点研发计划、国家自然科学基金委、上海市科委重大项目、中国科学院海外科学家计划等资助。 /p p    img src=" http://img1.17img.cn/17img/images/201805/insimg/a4df0693-4a72-453f-81b5-9f6fe7165ff9.jpg" title=" 1.jpg" / /p p br/ /p p   应用扫描噪声显微镜(SNoiM)进行的超高频率(~21.3THz)噪声的纳尺度成像,(A)扫描噪声显微镜的实验装置示意图。(B) GaAs/AlGaAs量子阱纳米器件的电子受限区域的SEM图。(C和D)相反偏置电压(6V)下二维实空间的近场噪声强度信号成像,近场信号由针尖高度调制模式获得,其中彩色表达了电子的等效温度。(E) 近场信号与针尖高度关系,近场信号是由电压调制模式获得。 /p p    img src=" http://img1.17img.cn/17img/images/201805/insimg/8edf4c2f-af08-4a76-9da3-10ee26f8f1fb.jpg" title=" W020180506601359218862.jpg" / /p p br/ /p p   噪声强度随偏置电压增大的演变。(A-F)由针尖高度调制模式获得的二维成像图。(G)y方向(平行于[100])一维近场信号随位置变化图。(H)近场(圆和三角形点表达)和远场(方形点表达)探测到的噪声强度随着偏置电压的变化规律。 /p p br/ /p
  • 促医疗仪器国产化 医学物理与技术重点实验室获建
    p   为提高我国新型医疗技术与装备,推动医疗仪器国产化,促进安徽省高端医疗器械产业化水平的提升,该省加大科研投入,先后开展相关实验室建设工作。近日,安徽省科技厅公布2017年第一批安徽省重点实验室认定结果,由中国科学院合肥物质科学研究院申报的医学物理与技术安徽省重点实验室获批建设。 /p p   拟建设的医学物理与技术安徽省重点实验室,面向我国重大及常见疾病诊疗和防控需求,以“早期诊断-精准治疗-系统康复”医疗健康应用为牵引,发展先进物理技术,开展分子影像、粒子医学和健康信息技术等前沿科学研究,探索物理新方法与新技术的诊疗机制,开发新型医疗技术与装备,进行医学应用与技术转移转化,推动医疗仪器国产化,促进安徽省高端医疗器械产业水平的提升。 /p p   实验室近期目标是:努力建成国内领先的医学物理与技术综合研究平台,形成一支高水平、跨学科、结构合理的研究队伍,成为安徽省医学物理与技术研究、开放合作与医学转化、医学物理人才培养的重要基地。取得一批创新成果,为安徽省医疗健康产业发展做出贡献。 /p p style=" TEXT-ALIGN: center"    img title=" 呼气检测.jpg" src=" http://img1.17img.cn/17img/images/201704/noimg/c6d0f221-f2a8-48b9-8ca4-2ea5f9d59d57.jpg" / p   4月9日,来自解放军总医院的顾瑛院士主持召开了重点实验室建设计划论证会,来自中国科学技术大学、合肥工业大学、中国医科大学、安徽医科大学以及合肥研究院等单位的十位专家,通过听取报告、实验室现场考察、质询和讨论,一致同意并通过重点实验室建设计划的可行性论证。 /p p   安徽省科技厅基础奖励处处长李银安,研究院副院长江海河、万宝年,研究院科研规划处处长屈哲,以及实验室各研究方向负责人参加了论证会。 /p /p
  • 让微通道板成为更多科学仪器的检测器——访中国科学院高能物理研究所实验物理中心刘术林
    在2013年11月举行的第四届网络质谱研讨会上,中国科学院高能物理研究所实验物理中心研究员级高级工程师刘术林作了《质谱仪器中的离子探测器》的报告,报告中刘术林介绍了一种可用于质谱仪中的低噪声、高增益、脉冲计数能力好、动态范围大、响应速度快、抗磁场、寿命长的探测器(探测器在仪器行业更多的被称为检测器。仪器信息网注)&mdash &mdash 微通道板,报告当时引起了业内一些质谱仪器厂商的关注。   近日,仪器信息网编辑特别采访了刘术林,请他介绍了微通道板的特点,在质谱仪器当中的应用,以及目前我国微通道板的研制情况。 中国科学院高能物理研究所实验物理中心研究员级高级工程师刘术林   微通道板(简称MCP)是由106-107根规则排列的毛细玻璃管阵列熔合而成的电真空器件,该毛细玻璃管是由特种玻璃制作的,经过氢还原处理后,在其通道的内表面和一定深度内,获得了连续的二次电子发射层和半导体层,当在其两端加上电压时,即可实现二次电子的倍增。对于一块MCP而言,当其两端的电压为其长径比的22倍左右时,其增益可以达到104量级。由于该材料对荷电粒子和特定能量的光子(UV和软X射线)有一定的量子探测效率,再加上其具有体积小、重量轻、空间和时间分辨力好、增益高、噪声低、抗电磁场干扰等优点,因而在微光像增强器、光电倍增管、以及科学仪器中(如质谱仪、俄歇电子能谱仪、X射线光电子能谱仪等)得到了广泛的应用。 微通道板   微通道板用作质谱仪的探测器件发展已比较成熟   在1990年代研究生业后,刘术林进入中国兵器工业第205研究(西安应用光学研究所)所工作,该研究所从1970年代开始从事微光夜视仪的研究,微通道板是其中的一个核心器件。就这样,刘术林开始了微通道板的研制。   工作中刘术林常常阅读一些有关微通道板研制和应用的论文,他发现从1990年代初期开始,IEEE T INSTRUM MEAS、IEEE T NUCL SCI、REV SCI INSTRUM等期刊中就陆续有文章提到微通道板在质谱仪当中的应用。   刘术林说:&ldquo 早期的质谱仪中一般采用的是单通道的倍增器(即Channeltron),但随着生物大分子、药物分子分析需求的提升,产生更多的离子碎片,要求分辨率更高、探测面积更大、响应时间更快的探测器件,微通道板能很好的满足这些需求。目前主要是飞行时间质谱中采用这种类型的探测器。&rdquo   经过几十年的发展,目前国外微通道板在质谱仪中的应用已经比较成熟,有单片型的微通道板,也有模块化的微通道板(微通道板组件),而且针对不同型号的质谱仪可以配置不同规格的微通道板。但国内微通道板在质谱仪中的应用才刚刚起步。刘术林说:&ldquo 之前我和国内的一些仪器厂商接触过,大家不是很感兴趣。近年来这种情况有所改变,国内禾信,还有复旦大学、中国科学技术大学、吉林大学、大连化物所、长春应化所等企业、大学和科研院所都在研究使用微通道板作为质谱仪的探测器。&rdquo   刘术林介绍说,虽然微通道板应用于质谱仪有诸多优点,但也存在一定的缺点:如操作使用困难,非专业训练的人员使用时,失效率高。而且还需要特殊处理,如合适的真空烘烤和电子清刷等。   除了在质谱仪中的应用外,微通道板还在X射线光电子能谱仪、俄歇电子能谱仪等仪器中有所应用。沈阳科学仪器厂(即现在的中国科学院沈阳科学仪器股份有限公司,仪器信息网注)、北京科学仪器厂(即现在的北京中科科仪股份有限公司,仪器信息网注)、中科院西安光机所曾采购微通道板用于场离子显微镜,高速示波器等仪器的研制,刘术林介绍说。   目前,我国微通道板每年的产量达到10万片左右,其中绝大部分还是用在光电成像领域,科学仪器领域的需求量还很小。&ldquo 但在科学仪器领域,还有可以开发的应用空间,比如将微通道板用作电镜中二次电子成像用的探测器等,从微通道板的原理和特点来说,完全可以满足,但是具体应用还是得和从事电镜研制的专业人员进行交流。&rdquo 刘术林说道。   俗话说&ldquo 隔行如隔山&rdquo ,尤其是高技术领域。刘术林说:&ldquo 我们应该主动走出去跟别人交流,让别人了解我们在做的东西。微通道板要使用好,都有许多的技术和经验在里面,我们要教会别人更好的使用。而其他行业的技术人员可以提出要求,我们可以结合自己的技术特点为大家提供相应的技术和产品。通过合作,许多问题或许能够更好的解决。&rdquo   国产微通道板性能处于国际领先地位并大量出口   近年来,国家对于国产科学仪器的发展给予了高度的关注和资金支持,而核心零部件性能对于仪器整体性能的提升至关重要。许多业内人士都曾呼吁大家关注仪器核心零部件的研制。可喜的是,我国在微通道板的研制和生产方面目前已处于国际领先地位,并已大量出口。   刘术林介绍说:&ldquo 由于微通道板在光电成像方面的重要用途,它的整个工艺,包括材料,国外都对我国进行封锁。所以我国是完全从零开始,研发的具有自主知识产权的产品。就拿制作微通道板的基本材料玻璃来说,它对于玻璃材料的二次电子发射系数要求很高,同时对玻璃管的椭圆度、壁厚等的一致性要非常高,但是我们很难找到合适的企业和人才。当年光是为了制作合适的玻璃管,我们几乎找遍了全国各个角落,后来碰到一个老师傅,要是没有他,说不定我们的微通道板产业都发展不起来。&rdquo   制作微通道板一共有几十道工艺,每一道工艺都不能有偏差,哪怕只差一点点,最终的累积误差也会很大。所以许多关键设备稳定性一定要好,然而当时在国内找不到合适的设备,也没有足够的经费采购进口的设备,为了研制微通道板,刘术林和同行们只好自己搭建设备来完成研究。他说:&ldquo 电真空器件行业不同于半导体行业。在半导体行业,做设备的企业对制造厂家的关注十分密切,厂家有新的生产需求,做设备的企业就会研制相应的设备,双方的配合十分紧密。而电真空器件行业可以说是一个夕阳产业,很少有人关注,其对制造设备要求很高,我们向厂家提出设计要求,由于数量少、要求高,一般也很难实现,或者做出来的效果大打折扣。&rdquo   正是由于这些经历,让刘术林认识到作为一个大国,配套的一些产业一定要跟上。他说:&ldquo 一些核心的技术和产品,外国往往会设卡不卖给我们。或者卖的价格特别贵,还不说明具体如何使用,等我们摸索很长时间终于弄清楚了,到下一次采购时人家又不愿意卖给我们了。作为一个大国,我们必须在各个行业都要有技术积累,哪怕再偏的行业也要支持一两家企业存活下来,这样才不会受制于人。&rdquo   &ldquo 虽然微通道板是很小的产品,但它确实代表着一个国家的整体工艺水平。现在除了我们也只有几个发达国家,如美国、法国、日本、俄罗斯能够做。&rdquo 刘术林说道。   令刘术林感到十分欣慰的是,实践证明我国研制的微通道板的性能已经接近或达到国外先进水平。中国科学技术大学的一位老师在同步辐射光电离质谱中采用了我国研制的微通道板。在一次拜访中,这位老师告诉刘术林:&ldquo 谢谢你为我们提供的微通道板,已经用了5年时间还在使用。我们用过国外一家公司的微通道板,但用了大概3年时间就坏了。&rdquo   刘术林说:&ldquo 其实国外产品有时候未必如他们所宣传的那么好,以前在一些国际会议中,我们看到他们对外提供的指标非常不错,所以一直认为我们的微通道板技术不行。后来我们把自己研制的微通道板拿到国外去让用户试用,他们说你们的微通道板非常不错,比其他几家公司的性能还好,不仅板寿命长,视场清晰度也高。之后荷兰的一家公司开始大批量订购,俄罗斯也有订购。目前,在成像性能方面,国产的微通道板和国外技术水平非常接近了。&rdquo   至于微通道板接下来的研究方向,刘术林说:&ldquo 主要是孔径更小、噪声因子要低、高增益、长寿命、容易除气等几个方面。每一个小的改动,往往都会涉及到一系列的参数的改变,可谓是牵一发而动全身。比如噪声因子是评价放大器放大性能的一个重要指标,这一个参数的改进就涉及到孔径、开口面积比、玻璃壁厚等多个参数的控制,而且有些参数之间还互为矛盾关系,所以特别难处理。&rdquo   虽然在几十年的研究生涯中,刘术林经常碰到各种困难,但他依然对自己所从事的工作充满了热情,因为在他看来,科研虽然苦,但也乐在其中。&ldquo 有时候我们会碰到一些问题,一时解决不了,会特别难受。但当一天天过去,在我们的努力之下,最终解决了这个问题,我们又会特别开心。其实人每天不论怎样都是过,还不如就踏踏实实的做些事情。而且在研究中,我们还会结识到许多志同道合的朋友。&rdquo 也许正是这份认真和乐观的态度,让刘术林克服了一个个困难,不断地将我国微通道板的制造工艺提到一个新的高度。 采访编辑:秦丽娟   刘术林个人简历   刘术林,男,中共党员,研究员级高级工程师。1990年于华东理工大学获得硕士学位,同年供职于西安应用光学研究所的特种光纤研究室和光电成像研究室,主要从事微通道板和微光像增强器的研制工作,2000年-2011年,先后在北方夜视技术股份有限公司西安分公司、南京分公司工作,主要从事微通道板的研发、工程化和批生产等工作,2011年底至今,在中国科学院高能物理研究所从事大尺寸微通道板光电倍增管的研制、工程化和日后的批量生产等工作。
  • 兰州重离子加速器:物理学家的“金刚钻”
    p /p p style=" text-align: center" & nbsp & nbsp & nbsp img src=" http://img1.17img.cn/17img/images/201608/insimg/7ac10c22-0aec-4a39-b6ee-7552784002c5.jpg" title=" 1.jpg" / /p p & nbsp & nbsp & nbsp “束流是强大的工具,如果科研工作者是匠人,兰州重离子加速器提供的束流就是我们的‘金刚钻’。”中科院近代物理研究所研究员张玉虎说。 br/ /p p & nbsp & nbsp & nbsp & nbsp 利用这个“金刚钻”,科学家们研发出重离子治癌装置、精确称重原子核、合成新核素、培育更优品种的农作物。近日,《中国科学报》记者走进大科学装置——兰州重离子加速器,体验它的运行状态,剖析它为科学研究重器作出的贡献。 /p p & nbsp & nbsp & nbsp strong 庞然大物藏在半地下 /strong /p p & nbsp & nbsp & nbsp 兰州重离子加速器体积庞大,放在半地下的隧道中。走进加速器冷却储存环主环大厅,仿佛走进了一个彩色的磁铁世界,黄色的四极磁铁用于控制束流粗细,蓝色的二级磁铁用于改变束流的运动方向,红色的校正磁铁用于校正束流的局部轨道。肉眼看不见、摸不着的重离子束就在这些彩色磁铁中的橙色超高真空管道中“奔跑”。 /p p & nbsp & nbsp & nbsp “冷却储存环周长161米,离子束1秒钟在环中可以跑100万圈。”近代物理所加速器总体室研究员冒立军介绍说。 /p p & nbsp & nbsp & nbsp 简单地说,重离子加速器像是由许多磁铁块堆积连接起来的庞然大物,包含了磁铁、高频、真空、电源、控制等多学科的设备,离子在真空环境中被磁场控制运动方向、电场加速,并通过引出系统,将加速了的离子束输送到实验物理学家需要的地方。这个庞大的“铁家伙”重1500吨,但安装与设计精度却是0.1毫米。如果这些“铁家伙”安装不精细,高速运行的重离子束就不稳定。 /p p & nbsp & nbsp & nbsp 近代物理研究所于上世纪60年代开始建设1.7米扇聚焦回旋加速器(SFC),2008年建成冷却储存环(CSR)。经过50多年的发展与积累,如今,兰州重离子加速器已成为我国能量最高、规模最大的重离子研究装置。目前,加速器每年运行7000小时,其中5000小时为用户提供束流。 /p p & nbsp & nbsp & nbsp 顺着冷却环继续向前走,管道在一堵铅块垒成的墙面消失,冒立军介绍说,这背后是深层治癌终端,束流从这里输送过去。除此之外,重离子加速器还有三个输送终端,分别是材料和强子物理、用于测量原子核质量等原子物理的实验物理中心、用于核子物理的外靶实验中心。 /p p & nbsp & nbsp & nbsp strong 科学家远控给束流看病 /strong /p p & nbsp & nbsp & nbsp 冷却储存环里“奔跑”的重离子束从哪里产生?加速器运行负责人杨维青带记者来到主磁铁所在的主加速器大厅。这里平时大门紧闭,在无束流且确认安全的前提下需要刷卡才能使门向左平行移动打开。同时,门口墙上悬挂的大显示屏为即时辐射区剂量监测,数据显示为绿色,说明此时该区域的辐射几乎为零。 /p p & nbsp & nbsp & nbsp 进入大厅,迎面是一道金属活动墙,这是一道防护水门,墙里充满了水。经过一个90度的直角转弯,由4扇巨大的蓝色磁铁构成的庞然大物出现在记者眼前。这就是分离扇回旋加速器,简称主加速器,它们每扇重500吨,从底部到顶部有近30个台阶。杨维青介绍,束流由离子源产生,经过扇聚焦回旋加速器(简称注入器)进行加速,可以进行科学实验,也可以输送到主加速器或者冷却储存环进行再加速,将束流输送到各个实验终端进行科学实验。机器运行时,工作人员不能进入辐射区域,采用远控的方式控制加速器运行,这些工作都在中央控制室完成。 /p p & nbsp & nbsp & nbsp 从主加速器大厅出来,记者进入中央控制室,这里是一个大平台,30多台电脑好似加速器的眼睛,集中反映加速器的运行状态、运行参数、设备监测、设备控制、束流种类及强度、安全联锁等诸多内容。而重离子加速器的工作人员好似“驾驶员”和“医生”,时刻注视着加速器的运行状况。比如前几年进行重离子治癌临床试验时,他们要操控加速器,为其提供六种能量的束流,流强要足够大、保持束流光斑和病灶的大小一致、均匀度达90%以上。杨维青对记者说,每次开始治疗病人,他和同事们精神高度紧张,眼睛一刻不离电脑屏幕,保证束流稳定可靠。 /p p 中央控制室的墙边,悬挂着一张边角发黄,背面横七竖八粘满胶带的加速器总体结构图。杨维青说,科学实验需要什么离子,我们就加速什么离子。但每种离子都有自己的特性,加速过程常遇到意想不到的问题。由于加速器是由成百上千的设备组成,束流在真空中看不见也摸不着,每当遇到问题,工程师们就会集中于此,讨论问题出在哪里,因此,这张图被翻过无数次。 /p p & nbsp & nbsp & nbsp strong 研究成果具有国际竞争力 /strong /p p & nbsp & nbsp & nbsp “束流是强大的工具,如果科研工作者是匠人,兰州重离子加速器提供的束流就是我们的‘金刚钻’。据此,我们有了可以拿到国际舞台的研究成果,很自豪。”近代物理所精细核谱学研究组组长张玉虎研究员说。 /p p & nbsp & nbsp & nbsp 2015年2月,兰州重离子加速器为超重终端提供氩离子束流,连续240小时保持稳定,最终合成了两种新核素——铀-215和铀-216。回忆那“打仗”一般忙碌的10天,近代物理所原子核结构研究组组长周小红研究员说,束流好似炮弹,一秒钟可以打出100万个不稳定的原子核,科研人员用束流轰击靶,使其与靶中的原子核碰撞,发生核反应,产生新的原子核。但是,能打出想要的极短寿命原子核的概率很低。 /p p & nbsp & nbsp & nbsp “运气好的话,一天能打出一个新原子核。”周小红说。接下来,科研人员需要从1000亿个原子核中找出一个有用的,相当于在银河系中找到一个星体,在腾格里沙漠里找到一根针。为此,科研人员建立了单个原子核灵敏的实验鉴别技术,首创了“质子—伽马”符合鉴别核素方法。 /p p & nbsp & nbsp & nbsp 制造出新的原子核并精确测量它们的质量是各国科学家的不懈追求和梦想。然而,不稳定原子核的质量很难称量,因为他们的重量很轻,寿命也相当短。以钴-51为例,2万亿个钴-51比一粒小米还轻,寿命只有100毫秒。 /p p & nbsp & nbsp & nbsp “这相当于在一架满载乘客的飞机上,称重一个乘客呼吸产生的重量。”张玉虎说。从2009年开始,研究小组利用兰州重离子加速器冷却储存环制造出了可以测量短寿命原子核质量的“秤”——等时性质量谱仪。通过实验获取海量数据,再经过一年的数据处理和分析,得到了稀有核素的质量。 /p p & nbsp & nbsp & nbsp 张玉虎说,近代物理所历时60年,三代科研人员,使用了三代加速器提供的实验条件,发现了27种新核素,首次测量出20个原子核的质量。 /p p & nbsp & nbsp & nbsp strong 可应用于多个领域 /strong /p p & nbsp & nbsp & nbsp 重离子加速器提供的束流可以进行核物理基础研究,也可以为材料、生物科学等其他学科所用,还可以直接应用,比如治疗癌症,对农作物、经济作物的诱变育种。 /p p 中科院近代物理所产业处处长蔡晓红介绍,重离子束穿越物质时,其动能主要损失在射程的末端,会呈现急剧增强的Bragg峰,使得这一局部细胞的DNA产生双断裂的几率非常高,可有效杀死乏氧肿瘤细胞。治疗时通过调节重离子能量和扫描角度,使Bragg峰的位置准确落在病灶上,精度达毫米量级,以保证对肿瘤杀伤作用最大,而对健康组织损伤小。与常规放疗射线相比,重离子束具有对健康组织损伤最小、对癌细胞杀伤效果最佳、可在线监控照射位置及剂量等优势,被誉为当代最理想的放疗用射线。 /p p & nbsp & nbsp & nbsp 目前,利用重离子束辐照诱变生物具有突变率高、变异谱宽、稳定周期相对较短的特点。在农作物及微生物育种的研究中得到了广泛应用,开辟了新的交叉学科领域。 /p p 近代物理所承建的三代国家重大科学工程项目完成了数批航天元器件单粒子效应考核检测,重离子装置成为航天器件地面安全评估的重要基地,为我国的卫星和星载设备的安全运行提供了保障;研制了一批特殊的功能材料和纳米材料;成功治疗了213例浅层和深层肿瘤患者,疗效非常显著,使我国成为世界上第四个实现重离子临床治疗的国家;用重离子辐照诱变技术培育的春小麦、甜高粱、当归、党参、黄芪、棉花等的优良新品种和阿维菌素、黑曲霉等微生物菌种已经获得不同程度的推广;研发了多个系列多个型号的电子仪器和传感器设备;自主研发的工业电子辐照加速器、电线电缆辐照处理技术、精密筛分膜技术、食品真空冻干技术、环保用高压静电除尘技术和原油多项分析技术等已经产业化,成为相关企业的支撑技术。 /p p & nbsp & nbsp & nbsp strong 后记 /strong /p p & nbsp & nbsp & nbsp 在中科院兰州分院的大院子里,近代物理所显得特别高冷。为了保证安全,兰州重离子加速器被单独隔开。每每经过,无论白天夜晚、工作日还是节假日,里面机器嗡鸣的声音呼之欲出。 /p p & nbsp & nbsp & nbsp 与中科院近代物理研究所接触近5年,多次采访,能感受到他们的工作压力极大。科学实验难免失败,但在重离子加速器上的每一次失败都要消耗大量的财力。曾有研究员私下告诉我,“国家投入这么多钱,老百姓都看着呢,我们心理压力大啊!”在这里,没有朝九晚五,24小时轮班工作,机器不停人不断。我曾眼睁睁看着一位研究员的头发在几年间从乌黑变得花白,而他的孩子才上幼儿园。 /p p & nbsp & nbsp & nbsp 杨维青来自甘肃农村。在乡亲们眼中,在省城兰州、在中科院近代物理研究所上班是一份高大上的工作。可是,每当街坊邻居问起,“你是干什么工作的?”他总是笑而不答。因为,跟朴实的乡亲们说不清楚,重离子加速器是干什么的,重离子束又是干什么的。 /p p & nbsp & nbsp & nbsp 现在不一样了,重离子治癌,在甘肃乃至全国家喻户晓,乡亲们终于知道,科学可以为老百姓解决关系身家性命的大事。 /p
  • 大连化学物理研究所-岛津组学研究创新实验室正式启用
    仪器信息网讯2021年10月12日,中国科学院大连化学物理研究所(以下简称:大连化物所)与岛津企业管理(中国)有限公司(以下简称:岛津)组学研究创新实验室启用仪式在大连化物所成功举办。中科院大连化学物理研究所所党委副书记/纪委书记毛志远、科技处副处长曹恒、生物技术研究部常务副主任许国旺研究员以及1808组成员,岛津企业管理(中国)有限公司董事长丸山秀三、分析计测事业部副事业部长李军波、中国创新中心中心长李晓东、中国创新中心资深顾问曹磊、分析计测事业部市场部经理侯艳红、分析计测事业部业务部经理李硕等人员出席本次活动。活动现场组学研究是近年来的研究热点,其中,代谢组学是继基因组学、转录组学及蛋白质组学之后发展起来的一门新兴组学。相比于其他组学,代谢组学反映生命体已经发生的生物学事件,因此能够更准确直接地反映生命体终端和表型信息,对于临床诊断及疾病治疗有着重要作用。大连化学物理研究所许国旺研究员课题组是国内最早开展代谢组学领域相关研究的团队之一,是相关领域研究的佼佼者。作为分析仪器行业全球知名的生产商,近年来,岛津一直致力于与全球尖端研究机构进行合作,携手创新。尤其是,2019年10月在岛津中国质谱中心基础上成立的岛津中国创新中心,更是致力于帮助中国科学家更好地实现“科研成果孵化”。为了进一步加强与中国科学家在科学研究、人才培养等领域的持续合作,岛津与大连化学物理研究所双方决定通过强强合作,开展代谢组学领域相关的创新研究,并在2020年10月举办了大连化学物理研究所-岛津组学研究创新实验室签约仪式。同时岛津还特别为许国旺研究员颁发了首届“卓越分析化学家奖”,祝贺他在极端复杂体系分析的方法学研究及其应用,代谢组学方法及其应用研究和转化医学等方面做出的卓越贡献。历经一年的建设时间,如今,大连化学物理研究所-岛津组学研究创新实验室举办了启用仪式。活动由大连化学物理研究所科技处副处长曹恒主持,大连化学物理研究所党委副书记/纪委书记毛志远、岛津企业管理(中国)有限公司董事长丸山秀三分别致辞。大连化物所党委副书记/纪委书记毛志远毛志远在致辞中表示,分析技术与临床应用结合,推进组学分析在转化医学的研究,实现转化医学更大的进展和突破,精准服务人民健康是我们共同追求的目标。在此过程中,分析所用的仪器设备是解决科学问题的基础。此次,岛津与大连化学物理研究所许国旺研究员所在的实验室建立的组学创新实验室,可以使岛津先进的仪器设备及优质的服务与大连化学物理研究所的优秀人才与技术形成互补,希望通过强强合作,产生新的方法和技术,并将其推广到临床、环境、食品营养等实际应用中去。生命健康领域是大连化学物理研究所未来长期规划中的核心方向之一,衷心希望岛津与大连化学物理研究所的生命科学、环境科学、分离分析科学等团队紧密合作,期待产出更多更加丰硕的合作成果,成功实现服务人民健康的愿景。岛津企业管理(中国)有限公司董事长丸山秀三丸山秀三在致辞中谈到,中国科学院大连化学物理研究所是一个基础研究与应用研究并重、应用研究与技术转化相结合的综合性研究所,在中国的相关领域走在前列。岛津自1875年创业以来,已经走过了146年的历程,始终坚持着实现人类与地球健康的经营理念。在面对当今世界的地球环境问题、人口老龄化问题、全球信息网络发展愈加复杂问题,岛津在生命科学、环境保护、数字信息领域不断钻研,为世界范围内的广大用户提供优质的产品和高效的服务。丸山秀三回顾了岛津与大连化学物理研究所的合作历程。其中, 2006年岛津香港与大连化学物理研究所成立了代谢组学联合实验室;2013年岛津又在大连化学物理研究所设立了岛津奖学金,为人才培养事业贡献一己之力;2019年岛津与大连化学物理研究所催化研究室成立合作实验室,助力催化以及材料学科的创新发展。2020年10月,双方基于大健康理念合作共建组学研究创新实验室。大连化物所科技处副处长曹恒主持实验室启用仪式毛志远副书记和丸山秀三董事长为实验室揭牌,标志着大连化学物理研究所-岛津组学研究创新实验室正式启用。组学研究创新实验室揭牌仪式岛津分析计测事业部副事业部长李军波、岛津中国创新中心中心长李晓东、中科院大连化学物理研究所生物技术研究部常务副主任许国旺研究员分别介绍了相关情况。岛津分析计测事业部副事业部长李军波李军波介绍中特别提到岛津“DNA” 的核心——稳定的营业团队,坚实的市场支持,完善的售后服务,“老友,可信;匠心,精品”,岛津成为客户工作上坚强的后盾和老朋友;岛津制造奉行工匠精神,注重细节,根据市场的需求不断推陈出新,同时将内部的多种大型仪器及工业制造设备资源进行有效整合,向客户提供了更加详细和完备的解决方案。岛津中国创新中心中心长李晓东李晓东介绍到,岛津中国创新中心定位为携手用户研发最尖端的应用与技术、迅速应对用户的需求及法规的变化、基于市场需求开发新的系统三个方向;聚焦临床诊断、科研与组学、营养与安全、生物与制药、环境与能源五大行业;加速科研成果孵化,进一步加深和中国科学家之间的合作。许国旺研究员代谢组学及转化医学的研究方向非常契合岛津中国创新中心所聚焦的领域,也使得本次合作得以顺利开展。大连化物所生物技术研究部常务副主任许国旺研究员 许国旺研究员介绍了中科院大连化学物理研究所1808组的定位和研究方向、组学研究创新实验室的建设目的和长远规划等概况。他也对本次合作表达了期待,希望通过本次的强强合作,一起开发更适合于代谢组学和临床使用的质谱方法或试剂盒,推广到临床、环境、食品营养等实际应用中去。揭牌仪式后,特邀东北大学副校长王建华教授、中科院化学研究所聂宗秀研究员分别进行了学术报告交流,交流会由许国旺研究员主持,两位专家报告非常精彩,讨论问答环节气氛十分热烈。在参观实验室环节中,与会专家及嘉宾对实验室的设计及功能化给出了高度评价。报告题目:生物大分子分离分析的探索研究报告人:东北大学副校长王建华教授报告题目:纳米材料的生物组织亚器官质谱成像研究报告人:中科院化学研究所聂宗秀研究员参观实验室与会嘉宾合影今天,大连化学物理研究所-岛津组学研究创新实验室正式启用了,未来该实验室将在特征代谢物的质谱数据库开发、质谱成像、慢性疾病生物标志物发现、诊断试剂盒研发等方面展开合作,共同招收博士后开展科研工作,并最终将研发成果转化到临床应用中,为疾病相关的早期筛查和诊断提供创新检测技术以及应用方法,为人类健康做贡献。
  • W玻色子质量:新物理隐藏在精确测量中
    费米实验室的对撞机探测器记录了1985年至2011年间由Tevatron对撞机产生的高能粒子碰撞情况。来自23个国家54个机构的约400名科学家仍在研究该实验收集的大量数据。图片来源:费米实验室4月7日,《科学》以封面文章的形式刊发一项重要成果:美国费米实验室对撞机探测器(CDF)合作组的389位科学家,共同完成了迄今为止对W玻色子质量的最精确测量,其精度达到了前所未有的0.01%。这一令全球实验与理论物理学家们振奋和激动的结果,可能将挑战粒子物理学的“标准模型”。在中国科学院理论物理研究所研究员于江浩看来,比结果更重要的是,这是“实验物理学家坚持在旧的金矿中挖掘、‘十年磨一剑’终于淘得的金子”。“旧的实验设备仍有获得新发现的能力和优势,只要坚持在正确的方向上,依然可以做出领先世界的成果。”于江浩告诉《中国科学报》。标准模型之上的追求基本粒子之间存在4种基本的相互作用:引力、电磁力、强力和弱力,每种相互作用都是由某一种媒介粒子传递的,它们被称为玻色子。在标准模型里,W玻色子就是一种传递弱力的媒介粒子。这里的W就是weak(弱)的缩写。2012年,著名的“上帝粒子”希格斯粒子的发现,标志着标准模型取得了极大的成功。标准模型也被称为粒子物理学的基本理论模型。“但是,标准模型不能解释什么是暗物质、什么是暗能量,也不能解释宇宙中物质与反物质的不对称。因此,它只是一定能量标度下的有效理论,也就是说必定存在更加普适的理论,这是粒子物理学所要追求的目标。”北京大学物理学院技术物理系研究员李强告诉《中国科学报》。也因此,寻找超出标准模型预言的“新”物理现象成为众多物理学家毕生追求的目标。李强进一步解释,寻找新物理通常有“直接”和“间接”两种途径,测量W玻色子的质量属于后者。通过精确测量W玻色子质量,科学家可以以之检验标准模型的自洽性,提供揭示可能的新物理迹象的重要途径。于江浩介绍,W玻色子质量是标准模型的重要基本参数,W玻色子质量的精确测量本身十分有意义。W玻色子质量经常被选为标准模型理论计算的输入参数,很多物理过程的预言敏感依赖于W玻色子质量的输入值。基于粒子物理标准模型的高度可预言性,W玻色子质量的改变牵一发而动全身,会影响到已有物理测量的自洽性。“W玻色子质量的精确测量是间接探测新粒子的一种手段,如果对其质量测量十分精确,就可能检测到某些新粒子、新物理产生的影响。”于江浩说。“最精确的测量”“我们知道,W玻色子的质量十分重要,因为其直接影响了原子核弱衰变,以及太阳中轻核聚变的速率。如果其质量远轻于80倍的质子质量,那么太阳的寿命就会比现在短很多,甚至可能已燃烧殆尽。”于江浩表示。W玻色子的质量精度是如何一步步提高的?1983年,研究人员在欧洲核子中心的SPS质子反质子对撞机上发现了W玻色子,第一次测量显示其质量为80.4GeV(10亿电子伏特)左右,误差为0.8。美国费米实验室的Tevatron质子反质子对撞机基于部分结果数据,在2012年公布结果,误差为0.016。从上世纪90年代开始,欧洲核子中心的大型正负电子对撞机持续改进W玻色子的质量测量精度,在2013年将误差缩至0.033。2010年以来,欧洲核子中心的大型强子对撞机实验持续开展W玻色子的质量测量工作,但精度提高得并不多。“W玻色子的质量精确测量是所有对撞机实验上的旗舰式课题, 需要对探测器、物理对象重建、软件计算、理论预言等有很深刻的理解和掌控。”李强表示。直到近日,美国费米实验室CDF合作组分析了对撞机在2002年至2011年间第二轮运行时的所有数据,得到了W玻色子质量目前最精确的测量(80.4335 +- 0.0094 GeV),其精度达到了前所未有的0.01%。“这是非常精确的结果。”于江浩介绍,需要对实验误差(比如丢失能量等的测量精度)进行进一步控制,同时大大降低部分子分布函数的误差等——这直接影响横向动量的分布——计算到很高的精度,这些CDF都做到了。于江浩进一步表示,虽然此次测量结果与2012年的测量结果相比偏离不大,但是由于误差的极大压低,测量的结果比标准模型的预期结果(80.357 +- 0.006 GeV)偏离高了7个标准偏差。“在粒子物理领域,通常高于5个标准偏差就意味着确信和现有理论不符合,这是这个实验结果让很多人激动的原因。”于江浩说。偏差是如何产生的?于江浩说,这一偏差有可能是超出标准模型的新物理引起的,但是由于这一偏差体现在W玻色子质量的高阶修正上,新物理的效应只是间接体现,因此无法直接敲定是何种新物理。此外,实验的系统误差、部分子分布函数因子化误差、非微扰的理论输入的模型依赖依然存在;标准模型的预期主要是来自于电弱整体拟合,这一理论拟合也许存在偏差。“所以虽然偏离达到7个标准偏差,对其是否是新物理的贡献仍需持谨慎态度,需要通过减小实验和理论误差以及其他实验比如LHC来进一步验证,以确定是否是由新物理导致的,并且从相关新物理的直接寻找来排除一部分可能的新物理。”于江浩表示。“旧矿”淘得真“金子”这是在一台已经拆除的仪器上作出的成果。事实上,2011年,Tevatron实验装置在关闭后逐渐被拆除,很多实验物理学家投入到了新仪器LHC的怀抱,希望在新的金矿中淘金。于江浩曾于2012年访问费米实验室,参观了即将拆解的实验装置。他问道,“CDF实验组成员还剩多少?”“很大一部分都去做LHC物理的分析了,只有少量实验物理学家还在整理目前的数据。”费米实验室科研人员有些“悲壮”地告诉他。而10年之后,CDF的研究结果“一鸣惊人”。这也让于江浩意识到,还是有一部分物理学家选择继续在旧的金矿中挖掘,终于淘得金子,真的是“十年磨一剑”。这种坚持,连同实验和理论物理学家紧密无私合作的科学精神,都非常值得学习。目前,我国也有一些科学家在LHC和未来对撞机的多玻色子物理研究上作出了一系列重要的原创性贡献。李强介绍,2012年,我国科学家首先提出高能环形正负电子对撞机方案(CEPC)。环形对撞机造价较低,却能在240GeV能区达到更高的亮度,并能产生大量W、Z粒子来精确检验标准模型。因此,环形对撞机对于研究希格斯粒子与精确检验标准模型更具优势。未来,CEPC与欧洲核子中心未来环形对撞机的项目,均计划在91GeV的对撞能量(Z pole)以及W玻色子对的质量阈值附近取数,用于电弱物理的精确测量,将大大改进W玻色子质量测量精度。“我希望自己能坚持在一个领域做到极致。”于江浩一直记得著名W玻色子理论研究工作者、美国密歇根州立大学教授袁简鹏告诉他的话——“一个理论家等到退休的时候,一定要能留下比较坚实的工作,而不应该一直盲目追逐热点。”相关论文信息:https://doi.org/10.1126/science.abk1781
  • 物理实验教学成果 | 基于金刚石NV色心的量子调控教学实验拓展
    量子信息技术作为一项对传统技术体系产生冲击、进行重构的重大颠覆性创新技术,如何在日常教学中让学生理解量子信息科学的基本原理并进行基础的实验实践,成为了当前物理实验教学中的热点与难点。近期,来自复旦大学物理学系的周诗韵老师与赵铮阳同学在《物理实验》杂志上联合发表了“基于金刚石NV色心的量子调控教学实验拓展”的研究成果,基于国仪量子开发的金刚石量子计算教学机,介绍了基于金刚石NV色心体系进行量子计算的基础内容,即量子比特的初始化、调控及读出,设计并拓展了拉比振荡相关教学内容。该研究获得了教育部产学合作协同育人项目与国仪量子(合肥)技术有限公司的支持。01PHYSICS教学实验量子计算实验理论内容丰富,操作难度较大,顺利完成实验并不代表学生真正理解其内涵。因此,讨论量子计算实验内容的教学设计与拓展十分必要。研究人员以国仪量子生产的基于金刚石NV色心的量子计算实验仪为基础开展量子计算教学实验,包含两部分内容:a.学习基础的量子调控,了解量子计算基本知识,如量子比特的初始化、操控和读出等;b.进行实际应用,学生通过实现经典的量子D-J算法,理解量子算法的优越性。研究人员基于复旦大学的教学实践,着重讨论该实验的第一部分,即量子调控部分的教学内容与方法。02PHYSICS实验拓展为更好地帮助学生理解,研究人员设计并拓展了拉比振荡相关教学内容:通过拉比振荡实验,了解微波与自旋的相互作用,熟悉量子态的初始化及读出方法;讨论拉比振荡实验中微波频率的影响,从而引出测量共振频率的方法;通过连续波实验测量共振频率,并讨论测量过程中微波时长参量对测量结果的影响;改变磁铁位置,定性展示了NV色心的系综特性,让学生了解实际仪器中如何进行参量优化。通过该教学设计,老师们可对学生进行启发式教学,引导学生主动思考,帮助学生对量子调控的原理和技术理解得更加全面,为进一步实现量子计算打下良好的基础。量子信息科学是一项由物理学、信息科学等多学科交叉融合在一起形成的新兴科学技术,具有广基础、重交叉、注重科研实践、理论实验相结合等特点。所以,在日常教学实践中让学生参与量子信息科学的实验实践,对帮助学生全面理解量子信息科学的基础——量子调控的原理和技术具有重要价值。03PHYSICS论文全文04PHYSICS《物理实验》杂志介绍《物理实验》杂志创刊于1980年,是教育部主管、东北师范大学主办的学术期刊(物理类),是教育部物理学与天文学教学指导委员会的会刊,主要刊载物理实验成果,交流物理实验教学改革的新思想、新方法、新动态。金刚石量子计算教学机专注量子信息科学实验教学金刚石量子计算教学机是一台基于金刚石中NV色心和自旋磁共振为原理,通过控制激光、微波、磁场等物理量,对NV色心的自旋进行量子操控和读出,从而实现量子计算功能的教学仪器。该仪器在室温大气条件下运行,无需低温真空环境,使得设备有着几乎为零的运行成本,桌面型的设计让它能适应各种不同的教学环境,无论是课堂还是实验室,都能轻松进行量子力学与量子计算实验教学。金刚石量子计算教学机今年8月,金刚石量子计算教学机在第十一届全国高等学校物理实验教学研讨会上,荣获教学仪器评比一等奖。 获奖证书与现场评比情况扫描下方二维码获取论文原文注:本文部分内容摘自赵铮阳,周诗韵.基于金刚石NV色心的量子调控教学实验拓展[J].物理实验,2022,42(04)
  • 山东高校物理实验研讨会顺利召开
    为了满足山东高校物理实验教学的需求,&ldquo 山东高校物理实验研讨会暨天津港东科技发展股份有限公司答谢会&rdquo 于3月29日下午在山东省青岛市青岛大学国际学术交流中心召开。与会代表来自山东省24所高校。 天津港东科技发展股份有限公司的销售副总李经理作会议致辞,并代表全体港东人对广大老师给予的支持表示了衷心的感谢。然后中国海洋大学张爱军教授、山东师范大学高铁军教授以及聊城大学张山彪教授分别就基础物理以及近代物理实验教学方面的问题作了专题讲座。&ldquo 已评为省级物理实验中心&rdquo 的青岛大学徐建元老师作了经验介绍。然后技术副总杜经理向各位老师详细讲解了天津港东系列产品的结构原理、仪器操作及应用范围等内容。专家讲座十分精彩,与会老师全神贯注听讲并讨论积极,会议学术交流氛围十分浓烈。会后各位老师参观了仪器产品展示厅。工作人员对老师的提问进行了详细的解答。 当天会议结束后,天津港东在宴会厅举办了答谢晚宴,感谢各位老师多年来对港东的关心和支持。晚宴气氛轻松活跃,让各位老师在工作学习之余得到了放松。次日上午,大会组委会组织各位老师参观了&ldquo 国家级实验教学示范中心&rdquo --青岛大学物理实验教学中心。 会议圆满成功,与会老师对本次会议十分满意,并衷心希望此种学术交流会能够得到更广泛的开展。我公司就实验教学内容对教学仪器需求不断发展的现状听取了广大老师尤其是实验老师的意见和建议,为产品设计和开发提供了信息。同时本次会议为山东高校的物理实验教学尽了一份力量,对提高山东高校物理实验仪器水平,促进高校物理实验教学改革起到非常积极的作用。 副总致辞以及企业介绍 专家学术报告 工作人员为老师讲解仪器 参观国家级实验教学示范中心
  • 中科院粒子加速物理与技术重点实验室成立
    2月27日至28日,中国科学院粒子加速物理与技术重点实验室成立大会暨2015学术年会在中科院高能物理研究所成功召开。来自北京大学、清华大学、中国工程物理研究院、美国劳伦兹伯克利实验室,中科院近代物理研究所、上海应用物理研究所、高能物理研究所的9位实验室学术委员会专家,及中科院前沿科学与教育局重点实验室处处长侯宏飞,高能所所长王贻芳,党委书记潘卫民,副所长陈刚等及实验室成员140余人参加了年会。潘卫民主持成立大会。   侯宏飞首先宣读了成立院级重点实验室的文件,陈刚宣布实验室室务委员会主任及学术委员会聘任名单,王贻芳为学术委员会委员颁发聘书,并邀请侯宏飞共同为实验室揭牌。侯宏飞代表中科院对实验室成立表示祝贺,高度肯定了近几年实验室建设与申请工作的成效,对实验室的建设与发展提出了期望与建议。王贻芳指出实验室成立的重要性,做好重点实验室工作将对加速器物理与技术的发展起到很好的推动作用,强调实验室发展要瞄准本领域国际前沿、依托学科建设,多出学术成果,更好地服务于未来基于加速器的大科学装置及先进技术转化。   重点实验室主任秦庆对实验室近几年的建设和发展历程进行了简要回顾,提出了实验室的管理方针与规划目标。重点实验室学术委员会委员、上海应用物理研究所研究员冷用斌作年会特邀学术报告,介绍了逐束团诊断技术研究方面的前沿进展,引发与会人员热烈讨论。实验室粒子加速物理、超导高频、低温技术、束流测控技术、功率源与电源技术、微波技术等重点学科方向的报告人也分别介绍了各自领域2014年度的研究进展以及2015年的科研计划。   2月28日,重点实验室学术委员会主任陈森玉主持召开了实验室第一届学术委员会第一次会议。大家首先对各重点学科的报告进行了总结和讨论,认为各个学科目前都有不错的发展,特别是有些学科跻身于国际前沿,取得了不俗成绩。但各个重点学科未来的发展要有清晰的规划,或跻身国际前沿,或进行成熟产品的产业化,要有所侧重。针对重点实验室未来的发展规划,委员们进行了热烈的讨论。委员们一致认为,实验室未来的发展方向需要排出优先级,突出重点,争取培养出能够在本领域内引领世界前沿发展的重点学科。
  • 功能材料物理与化学重点实验室成立
    8月21日上午,内蒙古自治区功能材料物理与化学重点实验室揭牌仪式在内蒙古师范大学体育馆隆重举行。   自治区政府副主席连辑、自治区人事厅厅长赵世亮、自治区教育厅厅长李东升、自治区科技厅副厅长马强、中国科学院院士、南京大学都有为教授及自治区有关厅局、部分兄弟院校的代表参加了揭牌仪式。内蒙古师范大学副校长云国宏主持仪式,亚新副校长致辞。自治区功能材料物理与化学重点实验室主任特古斯就实验室的情况进行了简要汇报。   自治区政府副主席连辑,中国科学院院士、南京大学都有为教授为实验室揭牌并讲话。   连辑在揭牌仪式上讲话,他指出,功能材料物理与化学重点实验室定位准确,特别是该实验室学科研究方向凝炼准确,切合自治区经济社会发展的实际。在谈到实验室今后的发展时,连辑着重讲了四点意见:一是政府、学校要积极支持实验室的发展 二是要充分引导,进一步凝炼学科研究方向,整合各种优质资源,从而使实验室的研究成果最大限度地满足自治区材料产业的现实需求 三是要支持实验室按照科学研究的客观规律搞好自身建设 四是实验室要实施“走出去、请进来”的战略,积极寻求政府、社会、企业的支持,充分与社会各界进行有效的交流合作,走产、学、研相结合的路子。   据悉,自治区功能材料物理与化学重点实验室是以内蒙古人才基金400万元为启动基金,整合学校相关实验室并配套投资建设而成。实验室现有骨干研究人员26人,面积2000平方米,仪器设备总值1500余万元,实验室学术委员会主任由中国科学院院士、南京大学都有为教授担任。实验室自成立以来,在整合队伍建立科研团队、承担课题凝练科研方向、加强学术交流紧跟学术前沿、培养人才加快学科建设等方面做了大量的工作,取得了显著成绩。2007年,实验室被正式批准为自治区重点实验室,2008年,功能材料物理与化学学科被列为自治区重点学科。目前,“自治区功能材料物理与化学重点实验室”和“功能材料物理与化学学科”已经成为内蒙古师范大学的新亮点和新品牌。近三年来,实验室人员共发表学术论文110余篇,其中52篇被SCI收录。
  • 中科院生物物理、微生物所中日联合实验室启动新一轮合作
    6月11日上午,中国科学院生物物理研究所、微生物研究所与日本东京大学医学研究所三方领导在生物物理所举行了第二个五年合作的签字仪式,标志着双方合作进入一个崭新的阶段。   为了共同促进SARS、禽流感、艾滋病等新型传染病的预防与研究,中国科学院与日本东京大学强强联合,于2005年在生物物理研究所和微生物研究所分别成立“中日结构病毒学与免疫学联合实验室”和“中日分子免疫学与分子微生物学联合实验室”。联合实验室提供了一个相互协作、共同研究的科研创新平台,双方在第一个五年合作周期中通过人才培养、学术交流、设备共享等开展了广泛实质性的合作,取得了丰硕的成果。有了这样一个良好的开端,中日双方都对第二期的合作充满期待。   在签字仪式上,生物物理所所长徐涛、微生物所常务副所长黄力、东京大学医学研究所所长Motoharu Seiki分别讲话,都充分肯定了过去五年里联合实验室所取得的进展,并表示将在第二期合作中一如既往地大力支持联中日的合作研究,从人员、设备、实验室空间上提供良好的保障。此次签字仪式得到了中国科学院国际合作局的特别关注,国际合作与交流处和中日联合实验室筹划委员会所有成员共同见证了这一历史性时刻。   签字仪式结束之后,中日联合实验室筹划委员会召开了第9次筹划委员会会议。东京大学医学研究所所长Motoharu Seiki和东京大学医科所附属医院院长岩本爱吉介绍了日方研究所目前的情况,以及中日联合实验室作为“亚非地区新发再发传染性疾病合作研究机构的项目”之一得到了日本教育、文化、运动、科学与技术部(MEXT)的资助。他们希望在今后的合作中加强双方青年科学家之间的交流,并进一步拓展合作领域到癌症、细胞生物学、蛋白质科学、神经科学等多个方面。   许瑞明副所长进行发言,介绍了生物物理所蛋白质科学中心大楼的投入使用、多种先进设备的购置、近年来人才引进情况,充分表明生物物理所在硬件和软件配备上将为中日联合实验室的研究工作提供各种有力条件。高斌研究员也代表微生物研究所向大家介绍了该所最新的进展情况,包括建设P3实验室和病原微生物学和免疫学新楼,引进了细菌研究领域5位科研人才,以及将加强对感染和免疫学的研究所发展战略。随后,两个联合实验室的阎锡蕴、秦志海、高斌研究员,松田教授、北村教授等分别汇报了近期的研究进展。大家一致希望今后要通过定期召开研讨会等形式进一步加强交流与合作研究,并对双方合作的细节提出了许多很好的建议。   两个中日联合实验室的第一个五年合作有了一个很好的开端,从最初的建设、人员招募、设备购置、双方共同申请项目、学术交流,逐步建立了协作的默契。有了一期合作的基础,相信二期中日联合实验室一定会发展得更好,创造出更多新成果,为人类抗击各种新发再发传染性疾病的做出贡献。
  • 河北省分子生物物理重点实验室通过验收
    p   2018年5月19日,河北省科技厅组织专家组我校河北省分子生物物理重点实验室进行现场验收。验收专家组对实验室建设工作给予高度评价,一致同意通过验收。 /p center img style=" width: 450px height: 300px " title=" " alt=" " src=" http://xww.hebut.edu.cn/images/content/2018-05/20180522090511727023.png" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p style=" text-align: center "   strong  汇报会现场 /strong /p p   河北农业大学校长申书兴教授、中国航天员训练中心李英贤研究员、郑州大学研究生院院长李玉晓教授、同济大学生命科学与技术学院副院长汪世龙教授,中国原子能科学研究院顾建中研究员,中国农业大学于福同教授、副校长段国林,省科技厅平台与基础处处长李志平出席验收会议。我校科学技术研究院、分子生物物理实验室负责人参加会议。会议由省科技厅平台与基础处副处长梁超主持。 /p p   副校长段国林代表学校对莅临指导的专家、领导表示欢迎和感谢。他介绍了学校的学科建设发展、人才引进培养、科研平台建设尤其是河北省分子生物物理重点实验室建设发展等情况,希望各位专家、学者对实验室及我校的发展建设多提宝贵意见,以进一步加快实验室的发展建设,提高办学水平,更好地服务经济社会发展。 /p p   实验室主任展永教授介绍了在主管部门和建设单位的指导和大力支持下,实验室的发展建设情况。在三年的建设期内,实验室建成了一支具有物理、数学、生物、材料、信息、农学等不同学科背景、结构合理、团结协作的34人交叉科研团队 培养博士研究生4人、硕士研究生78人 主持各类科研项目38项,其中包括国家自然科学基金重点项目在内的国家级基金项目17项,省部级科研项目16项,科研经费达1745万元 在国内外重要期刊发表学术论文106篇,其中三大检索论文83篇,JCR一区论文15篇,二区论文13篇 申请国家发明专利14项,获得授权5项 新增仪器设备值1733.43万元,新增实验办公用房面积3000平方米,仪器设备总值达2595.88万元,实验室总面积达4800平方米 “生物科学与生物技术”学科群入选天津市特色学科群建设序列,生物物理学硕士学位点以优秀成绩通过评估,生物物理学硕士学位授权点升格为生物学一级硕士学位授权点。实验室各项建设指标均超额任务书所承诺的预期目标,圆满完成了建设任务。 /p center img style=" width: 450px height: 346px " title=" " alt=" " src=" http://xww.hebut.edu.cn/images/content/2018-05/20180522090626238157.png" height=" 346" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p style=" text-align: center "    strong 与会专家实地考察分子生物物理重点实验室 /strong /p p   听取汇报后,验收组专家实地考察了分子生物物理重点实验室。从原实验室及辐射生物技术研究基地,到新楼合成实验室、光化学材料室、离子注入机室、分子生物实验室、测序室、细胞室、微生物实验室,从流式细胞仪、基因测序仪到核酸纯化系统等大型仪器设备……专家组成员认真核实相关验收材料,并与实验室工作人员进行了深入交流。 /p p   验收会上,经质询与讨论,专家组一致认为:实验室学科特色鲜明,研究方向合理,队伍建设与人才培养成效显著,科研成果突出,全面完成了建设目标,一致同意实验室建设项目以高标准、高水平的样板工程通过验收。 /p p   李志平处长对实验室建设与发展给予了高度评价。他希望实验室进一步凝练特色,多出成果,积极服务河北省的经济建设与社会发展。 /p p   科研院副院长赵少伟对各位领导和专家的到来表示感谢。他希望省领导继续关注我校实验室的发展建设,多多给予支持 希望实验室再接再厉,更上层楼。 /p p   展永教授代表实验室对省科技厅和各位专家长期以来的帮助和支持表示衷心的感谢,并表示实验室将以验收为契机,继续努力,争取取得更大成绩。 /p
  • 112.8万!青州市物理实验室设备采购
    项目概况物理实验室设备采购项目 招标项目的潜在投标人应在山东省济南市槐荫区经十路24586号凯旋中心5楼获取招标文件,并于2022年01月12日 09点00分(北京时间)前递交投标文件。一、项目基本情况项目编号:2021-JJ13-W1049项目名称:物理实验室设备采购项目预算金额:112.8000000 万元(人民币)采购需求:采购物理实验室主要仪器设备(磁悬浮动力学实验仪32台、静电场描绘仪32台、霍尔效应与螺线管组合实验仪32台、互感系数测量实验仪32台、单摆自由落体实验仪32台)及配套环境建设(智慧黑板2套、储物柜6套、系统集成1宗),具体详见需求文件。合同履行期限:/本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无3.本项目的特定资格要求:1.具有独立法人资格、在中华人民共和国境内注册登记并合法运营的非外资(含港澳台)独资或非外资(含港澳台)控股企(事)业单位;2.单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得同时参加同一包的招标采购活动。生产型企业生产场地为同一地址的,销售型企业股东有关联的,一律视为有直接控股、管理关系。与招标人存在利害关系可能影响招标公正性的法人、其他组织或者个人,不得参加本项目的投标。投标人之间有上述关系的,应主动声明,否则将给予列入不良记录名单,1-3年内不得参加军队采购活动的处罚;3.投标人应当具备下列条件:(1)具有独立承担民事责任的能力;(2)具有良好的商业信誉和健全的财务会计制度;(3)具有履行合同所必需的设备和专业技术能力;(4)有依法缴纳税收和社会保障资金的良好记录;(5)参加本次招标活动前三年内,在经营活动中没有重大违法记录;(6)法律、行政法规规定的其他条件。4.本项目不接受联合体投标。三、获取招标文件时间:2021年12月15日 至 2021年12月21日,每天上午8:00至11:30,下午14:00至18:00。(北京时间,法定节假日除外)地点:山东省济南市槐荫区经十路24586号凯旋中心5楼方式: 2.获取方式:获取招标文件时请携带第五项第3条要求的所有证件复印件加盖公章一套,并发送扫描件一套,方可获得招标文件,逾期不候。(也可网上报名) 3.获取招标文件时须携带以下资料原件的复印件加盖公章一套(复印件简单装订),并发送以下资料原件的扫描件一套: (1)营业执照; (2)基本账户开户许可证或基本存款账户信息表; (3)法定代表人证明书、法人授权委托书(加盖投标人公章,法人参加时无须提供授权委托书); (4)投标人非外资企业或非外资控股企(事)业单位的书面声明(格式自拟)(加盖投标人公章); (5)投标人主要股东或出资人信息(格式自拟)(加盖投标人公章); (6)投标人原件与复印件相一致的承诺(加盖投标人公章); (1)招标文件的获取方式:登录诚E招电子采购交易平台(www.chengezhao.com)通过网上支付方式购买招标文件。 1) 注册:通过诚E招电子采购交易平台完成注册(免费),在注册中请按照要求提供真实有效的合法信息及证件(已注册单位可跳过此步骤); 2) 购买:注册审核通过后,找到此项目,通过网上支付方式购买文件; 所有报名、缴费、发票等业务均须在平台操作完成(平台注册过程中技术支持电话:020-89524219); (2)获取招标文件时的资料查验不代表资格审查的最终通过或合格,投标人最终资格的确认以资格后审为准。 4.招标文件每套售价200元,售后不退。售价:¥200.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年01月12日 09点00分(北京时间)开标时间:2022年01月12日 09点00分(北京时间)地点:山东省潍坊市青州市将军山路1666号江南温泉酒店三楼会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜招标项目的用途、数量、简要技术要求等详见招标文件。1.本项目发布媒介为:中国招标投标公共服务平台、军队采购网、中国政府采购网。2.投标人资格评审阶段,招标代理机构通过“信用中国”、“中国政府采购网”、“军队采购网”等渠道协助评标委员会查询投标人信用记录,对查询时列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的投标人,拒绝其参与本次招标活动。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:物理实验室设备采购项目     地址:青州市        联系方式:庄先生 18053696833      2.采购代理机构信息名 称:公诚管理咨询有限公司            地 址:山东省济南市槐荫区经十路24586号凯旋中心5楼            联系方式:仇国超 18906361108            3.项目联系方式项目联系人:仇国超电 话:  18906361108
  • 【在危机中育新机,于变局中开新局】工业物理中国2020经销商年中会议顺利召开
    2020年5月28日,相会在孔乡曲阜的书香与暖阳之下,工业物理同经销商伙伴一起,顺利召开了2020经销商年中会议。 除了全国各地远道而来的50余名经销商伙伴外,此次经销商大会,还增加了几十位“云观众”。针对由于种种原因未能出席的经销商伙伴,工业物理也准备了基于企业微信平台的会议直播分享,帮助各位经销商伙伴远程参会,实时观看正在进行中的会议议程。 历史上的曲阜,历经风雨始终勃兴,孕育了最正统的中华传统文化。而今天的工业物理,在疫情形势下逆势勃发,并致力与经销商共同携手,齐心协力面对市场挑战与机遇,群策群力度过难关。 大会在掌声中开幕,在探讨中升华,在展望中落幕。工业物理很荣幸为大家带来一场意义深远的盛会,也将在此总结会议精华,分享给每一位志同道合的伙伴。 此次会议,工业物理将重心放在关键词“协同推进”上。不仅总结了工业物理上半年各部门的成果,更推动各位经销商与我们踏出一致的步伐——同面对、共思考、齐发展。因此本次经销商大会,除了进行各部门总结与“协同推进”计划外,更增设分会场座谈会议,针对不同业务板块,各位经销商对业务、项目及具体推进内容进行了各抒己见的探讨。 5月28日九点整,在热烈掌声中,工业物理中国2020经销商年中会议准时开始。会议伊始,远在美国马萨诸塞州的工业物理集团首席执行官Jim Neville通过远程连线的方式向各位经销商的参与表达了衷心的感谢,并诚挚表达了工业物理集团将继续对中国区投入大力支持,与各位共克时艰的意愿。作为结语,Jim Neville对工业物理中国的发展前景表达了信心与展望。简单的远程开场祝福表达了工业物理集团总部对中国区的重视、信心与期许,也让会场气氛变得惊喜而热烈。而后,工业物理中国总经理谢轶伦先生发表正式开幕致辞。 首先,谢轶伦对各位经销商“顶压”参会表达了热烈的欢迎与诚挚的感谢,并与大家分享了工业物理上半年取得的一些突破、创新与成就。尽管上半年新冠疫情使全球经济都跌入泥潭,但危机与机遇并存,工业物理中国在上半年里实现了业务的显著增长。他表示,这来之不易的增长归功于工业物理与在座各位经销商的共同努力,建立了适应中国市场的积极进取的整体战略。 而后,总经理谢轶伦简单总结了工业物理中国逆势发展的两大因素,即不断优化的、高素质且强有力的人员团队;及逐步建立的、覆盖面广且专业性强的经销商队伍。正是各位的同学习、共交流、互促进、相支持,才让工业物理中国取得了目前逆势上扬的战绩。 作为结语,援引总书记的发言,谢轶伦以“在危机中育新机,于变局中开新局”为方向,从网络营销转型、应用售后保障及渠道营销盈利新模式三大方面,详细阐述了工业物理中国在今后的市场战略。面对前方未知的市场局势,工业物理已作出充足应对挑战的准备,也有信心与经销商一同共克时艰、逆势上扬。 紧随着总经理谢轶伦的开幕致辞,进入了本次会议的核心议题——“协同推进”。 工业物理中国市场主管杨颖针对工业物理与经销商市场工作的协同推进展开了专题演讲。首先,她从必要性、针对性与契约性三方面分析了协同推进工作的必要原因,鼓励经销商重视多渠道市场推广,并与工业物理携手推进。 其次,杨颖从线上渠道的推广、文档资料的完善、线下活动的开拓及对经销商的沟通与支持四个方面,为各位经销商展示了工业物理目前的市场工作方向,并针对各推广方式下经销商如何协同推进展开了自己的理解与建议。工业物理的目标是通过线上营销与线下铺展并行,在长期内提升工业物理及旗下品牌在国内市场的知名度。这正是工业物理迫切需要与各经销商协同推进才能实现的“双赢”成果。 而后,杨颖就市场推广内容进行了基础的视觉规范。工业物理的目标是与各位经销商携手并进,在市场推广工作上实现节奏一致、实施一致、内容一致,共同建立并完善中国区市场工作体系,将“IP”这个IP做得更专业,更有市场号召力,能够为更多的客户所知晓。 紧随着市场部门的专题演讲,应用与售后经理王大为先生带来了应用与售后部门的经销商协同推进演讲。与市场部略有不同,应用部门是今年工业物理全新开创的部门,并建立了崭新的“IP Demo”实验室,满足客户多样化的制样需求,大大提升了设备应用的体验。针对崭新的应用部门,王大为对经销商进行了详细的部门结构、实验室及工作内容介绍。 此外,针对售后部门,王大为表示,过去的疫情期间,工业物理已为各经销商准备了20余场定制化的线上培训课程,也相信通过培训,很大程度上地提升了各经销商销售人员对产品的认知与熟悉。将来,工业物理也将定期开展各类线上产品与应用培训,以及网络研讨会,帮助经销商提高销售与服务能力,在技术层面实现与工业物理的共同发展。 此次经销商会议的一大亮点,正是业内特邀知名专家、浙江大学郦剑教授带来的工业物理专题授课。 郦教授今年70有余,是国内材料学、热处理及材料测试方面的知名专家,此次会议,他受邀为各位经销商进行了以“工业物理在工业领域的专项应用及解决方案”为主题的专题授课。针对工业物理UTS拉力设备在金属材料测试拉伸试验方面的应用、及C&W盐雾腐蚀试验设备在表面腐蚀的应用,郦教授进行了详细的知识阐述与应用举例。凭借清晰的专业详解及六十年深厚的知识底蕴,在座经销商纷纷潜心学习,专注听讲。会后大家均表示收获满满,信心十足。 结束了上午的倾听与学习,在下午的议程中,工业物理特别按照各个业务部门,开设了三个分会场,供经销商自由洽谈。各渠道与销售经理首先针对品牌及产品进行了升级版的应用培训,并就个别案例进行了具体的解析。而后,各经销商针对主要计划、进展中的重要项目、相关报备制度及新经销商业务等方面开展了热烈的自由讨论。各位行业内资历丰富的经销商伙伴就如何推进销售工作及共创工业物理品牌积极提出了深刻实际的意见与建议。工业物理与经销商一起,为如何在新形势下打造共同发展、共克时艰的良好局面而共同努力。 “在危机中育新机,于变局中开新局”。 工业物理愿为各位经销商提供尽可能多的支持,也需要各位伙伴携手并进,共谋发展。 同回顾,共展望。放眼2020下半年,工业物理定能与各位经销商伙伴一同,共克时艰,逆势上扬!
  • 如何防止食品中的物理污染物
    如何防止食品中的物理污染物作者:Please localize食品中的物理污染物是一个全球性食品安全问题。 如果让金属、骨头、塑料、玻璃碎片或者任何其他异物进入食品生产-供应链,则有可能造成严重的损害。 而这并不仅仅是保护消费者健康的问题。 物理污染物引起的产品召回还会对品牌声誉构成巨大风险,并会在极短的时间内破坏品牌价值。 食品中的异物污染物是全世界面临的严重问题。 在最近几年,欧盟与美国等重要市场已经发生了多起预防性产品召回事件和物理污染物进入生产-供应链的食品安全事件。 例如,英国一家烘焙食品供应商最近因担心玻璃碎片造成污染,因此召回了多种肉类和蔬菜馅饼产品——将产品从大型知名连锁零售店下架。 这种召回事件能够轻轻松松给生产企业造成上千万元的损失,并且经常会在整个企业的整个生产线里产生连锁反应。 因此,食品生产与加工企业必须不惜一切代价避免出现物理污染物的风险。预防物理污染物 幸运的是,随着产品检测技术的不断进步,大多数类型的物理污染物都能被检测出来。 产品检测设备的性能取决于多种因素——这些因素都能对灵敏度产生影响。 包括物理污染物的大小、位置、生产线的速度、污染物的密度以及所使用的产品包装材料的类型。 食品类型也是一个重要因素。 在许多食品生产过程中,原材料与进料都是以液态、糊状和浆状到达的,并通过管道系统泵送后进行混合和搅拌。 在生产过程的早期检测此类进料中的污染物具有诸多优点。 液态、糊状与浆状产品通常更具同质性且更容易检测;污染物也更大、更容易发现。 此外,早期检测还会保护昂贵的加工设备不会在生产线下游遭到污染物的破坏;还能在产品因进一步加工增加生产价值之前消除污染物,最大程度地减少浪费。 检测未包装散料或松散颗粒状产品中的污染物时,无论是应用于安装在水平输送机上的检测设备,还是应用于安装在重力下落式输送机上的检测设备,都是发现并剔除受污染产品的有效方法。 可以使用此类检测方法的典型散料产品包括糖、面粉、谷物、麦片和豆类;不过同样适用于小零食、糖果、肉类、禽类、鱼类和海鲜。 加工和包装环节之后和发货之前,在生产线末端对产品进行最终检测是检测物理污染物的最后一道防线。在此环境下,包装类型和潜在的污染类型决定了产品检测系统的选择类型。 确保严格评估大体而言,有两种主流的物理污染物检测技术——金属检测技术和 X 射线检测技术。 现代金属检测系统可以识别包括铁(铬、钢等)、非铁(铜、铝等)在内的所有金属,以及磁性和非磁性不锈钢。 而 X 射线检测系统也能够检测金属以及非金属污染物,例如:玻璃、矿石、钙化骨、高密度塑料和橡胶化合物。 X射线检测系统选择金属检测还是 X 射线检测最简单的方法是从应用开始。 首先要进行危险分析和关键控制点 (HACCP) 审核或危害分析与基于风险的预防性控制 (HARPC) 审核。 HACCP 审核将识别生产过程中进入污染物的风险和可能会遇到的污染物类型。 应确立关键控制点 (CCP) 来降低风险,并且需要在这些点安装产品检测设备,以便将污染风险降至可接受的水平。 HARPC 审核还涵盖了生产过程中的污染,但也会考虑其他安全性,如访客访问和控制。 金属检测机此外,一些知名品牌超市也在越来越多地实施着各自的行为准则,其严格程度经常更甚于国际食品安全法规。 主要零售商 Marks and Spencer 就是一个这样的例子。 他们制定了非常全面的技术中国条款*,其中规定了供应商为了履行向客户提供安全、合法和优质产品的承诺而需要达到的最低技术要求。选择最佳技术如果审核过程能够确定,金属是唯一可能被发现的污染物,那么金属检测机便是最好的解决方案。 但是,如果确定可能会遇到玻璃、石头或高密度塑料等其他污染物,那么 X 射线检测系统或者是更合适的解决方案。 在任何情况下,始终建议通过产品测试来确定最适合的技术。 尽管金属检测和 X 射线检测具有各种功能,但任何一种方法都不是万无一失的。 例如,对于非金属包装内的铝制污染物,金属检测机会被视为最适合的检测设备。 铝是一种质量很轻的金属,也是一种良好的导电体,但是其吸收射线的性能相比于铁或不锈钢等金属而言较低。 这会导致 X 射线检测系统的灵敏度下降——相同条件下,铝制污染物需要比铁或不锈钢污染物大一倍才能被检测到。 另一方面,由于铝具有出色的导电性,因此即使较小尺寸的铝也能够被金属检测机检测到——于是金属检测机在这一方面成为了更好的解决方案。 通过比较,当尝试检测铝箔包装中的金属污染物时,金属检测机在识别包装中的污染物方面较为吃力。 由于 X 射线系统的工作方式,铝包装材料对检测水平的影响可忽略不计。 X 射线检测可以直接透视低密度箔纸,以更好地检测包装内的金属污染物,在这种情况下会提供更好的解决方案。 展望:数字化将提高效率食品行业的变化——产品种类增多、在更高效的工厂生产以及零售商和消费者的更高预期——正显著地推动着产品检测技术的快速发展。 现代金属检测设备和 X 射线检测设备的功能正在不断完善,能够检测形状和尺寸更小、种类更多的污染物,而且分辨率更高。 随着更先进的软件和更直观触摸屏的开发,这种技术的适用性也得到了大幅改进,从而可在生产线上进行更快速和更自动化地设置。 数字化是一个重要趋势,食品生产商越来越多地着眼于改进各自工厂的自动化与可追溯性。 通过网络基础设施相互连接,能够提高生产线效率和管理控制,简化各个工序间的污染检查,实现质量控制的标准化。 数字化趋势能够通过实时数据采集得以实现——事实证明,这些数据采集在出现可疑的污染事件时非常有用。 发生产品召回时,食品生产企业和品牌拥有者需要向权威机构展示他们已经进行了严格评估。 为此,最有效的方式是实时报告所有污染物检查。 产品检测系统现在附带了完整的数据采集功能,用于支持合规性和尽职调查。 这使得食品生产和加工企业能够自证——他们在生产过程中进行了严格评估,说明他们采取了所有预防措施来最大限度降低污染风险。关于梅特勒-托利多梅特勒-托利多是全球领先的精密仪器和服务供应商。 该公司在各种市场具有强大的领导地位,并且在其中许多市场排名全球第一。 梅特勒-托利多是最大的称量和分析仪器提供商,用于在实验室和严苛的工业和食品零售应用中进行在线测量。梅特勒-托利多产品检测部门在自动化检测技术领域首屈一指。 该分部结合了梅特勒-托利多金属检测、X 射线检测、Garvens 自动检重秤、 CI Vision 和 PCE Track & Trace 等品牌。 我们的解决方案不仅可提高制造商的过程效率,而且支持符合行业标准与法规。 系统还可改进产品质量,从而帮助保护消费者福利和生产商名誉。自动检重秤
  • 清华举行低维量子物理国家重点实验室揭牌仪式
    7月15日,清华大学低维量子物理国家重点实验室揭牌仪式在理科楼举行。来自教育部、科技部、国家自然科学基金委员会的领导和嘉宾,低维量子物理实验室学术委员会成员,清华大学校长顾秉林以及物理系重点实验室成员出席揭牌仪式。清华大学副校长邱勇和实验室学术委员会副主任张泽共同为实验室揭牌。揭牌仪式由物理系党委书记王青主持。   揭牌仪式上,顾秉林校长回顾了物理系筹备国家重点实验室的历程,并代表学校对各级领导和学术委员会委员们长期以来给予清华大学低维量子物理国家重点实验室建设工作的支持表示感谢,学校将结合清华大学科研发展规划,支持并推进实验室的战略规划与发展。   揭牌仪式后,实验室学术委员会召开了学术委员会议,实验室主任薛其坤院士向学术委员会汇报了实验室建设和发展规划情况。学术委员们对实验室的发展战略和建设工作进行了详细讨论并给出了指导性意见。   低维量子物理实验室依托清华大学物理系,是在原子分子纳米科学教育部重点实验室的基础上,整合了量子信息与测量教育部重点实验室、科技部新材料模拟设计实验室、原子分子纳米科学研究中心、富士康纳米研究中心以及凝聚态物理、光学和原子与分子物理三个二级学科在量子物理研究方面的骨干力量,依据国务院颁布的国家中长期科学和技术发展规划纲要 (2006━2020年)的精神和清华大学建设世界一流大学的总体发展规划,按照科技部国家重点实验室建设的要求于2007年成立的实验室。   实验室建设的指导方针是立足当前物理学发展前沿,结合国家中长期科学和技术发展规划纲要,瞄准国家经济建设中的相关科学技术问题,开展量子物理研究。目前的研究主要集中在低维量子材料与结构的制备和控制动力学研究,精密极端条件实验技术和方法研究,低维量子体系的新奇量子现象研究和应用,低维量子体系的设计与基础理论研究四个方向。
  • 创新联结未来——海洋光学助力实验物理教学
    2017年1月7日,2016年湖北省高等学校实验物理教学研究会暨湖北省物理实验示范中心联席会年会在华中科技大学文华学院人文学部学术报告厅举行。本次会议由华中科技大学文华学院,湖北省高等学校实验物理教学研究会和物理实验示范中心联席会主办,蔚海光学仪器(上海)有限公司协办,共邀请了湖北省内负责物理教育的专家共65人,为物理实验示范创造了自由沟通交流的平台。孙玲博士在此次会议上也就“创新”做了专题演讲。首先为在场的专家和老师们介绍了海洋光学---拥有一套完整的微型光谱仪产品线,包括近红外光谱仪,高分辨率光谱仪、教学用光谱仪等一套完整的产品线,提供从深紫外、可见光到近红外的光谱测量方案,用于吸光度、透射率、反射率及荧光拉曼光谱测量。“创新”意识一直根植于企业内---众多行业里都能看到海洋光学的光纤光谱仪,包括能源、环保,食品、农业、自动化控制、地质、生物制药、材料科学、航空航天、国防安全等。海洋光学也专注于与高校之间的紧密合作,协助基础教学,协助高校老师产学研,提供海洋光学特色的服务平台,从实验室应用到社会应用的转变。同时为高校老师提供强大的市场支持,并提供新应用和新方向的合作机会。在此次会议上孙玲博士还被授予华中科技大学文华学院科艺联创团队创新创业导师。创新创业导师是帮助青年学生创业就业,指导就业上岗的高端人才。通过各种思路的引导,多种正规渠道来激励与帮助创业者实现创业和就业,提高创业的信心,为学生提供交流服务平台,增强学生与企业之间的互动,也实现企业家的社会责任。海洋光学--- 一家以创新为核心竞争力的公司,从微生物到环保,再到科研航空,旨在为各行各业提供帮助。海洋光学作为微型光纤光谱仪的发明者,二十年来一贯保持全球领先地位。值此新年伊始,我们也期待与更多科研院所平台有更多深入合作。
  • 中科院山西省联合成立大气物理实验室
    记者11月26日从山西省气象局获悉,由中科院大气物理研究所与山西省气象局共同承建的大气物理联合实验室日前在太原成立。   据介绍,该联合实验室将以气溶胶监测、云降水物理特征、云物理探测仪器研发为研究重点,并进行科研项目的联合申报、高级访问学者和研究生的联合培养。
  • 华南理工组建“发光物理与化学国家重点实验室”
    科技日报4月15日讯(华轩)科学技术部网站于日前正式发布新建国家重点实验室的名单,全国共计新增49个国家重点实验室,以华南理工大学为依托单位的“发光物理与化学国家重点实验室”榜上有名,获批立项建设。   据了解,该国家重点实验室的获批,使华南理工在已有2个国家重点实验室、4个国家工程(技术)研究中心、3个国家工程实验室(与企业共建)的基础上,又新增1个国家级科技创新平台。截至目前,华南理工国家级科研机构的总数已达10个,位居全国高校前列和广东高校首位。   新组建的“发光物理与化学国家重点实验室”,是针对我国战略性新兴产业中光电信息、能源领域的发光显示、光纤通信与传感、节能照明等方面的重大需求,瞄准发光学的国际研究前沿,围绕发光动力学过程、发光、光伏材料与器件的关键科学问题,开展发光物理与化学的基础研究和应用基础研究。该国家重点实验室聚集了包括1位中科院院士、6位国家杰出青年科学基金获得者、2位教育部长江特聘教授在内的优秀科研团队,在科学源头创新方向取得了国际公认的学术成绩,开创了多个新的研究方向,得到了国际同行的高度认可。   该国家重点实验室的建设,必将提升华南理工在材料学科方面的基础研究能力,显著提高广东省乃至我国光电功能材料与器件研究的国际地位和影响力,增强我国在平板显示、绿色照明等基础与前沿学科领域的自主创新能力和核心竞争力,对我国国民经济和社会可持续发展都具有重要意义。
  • 久滨仪器发布建筑外窗综合物理三性能试验机新品
    品牌:久滨 型号:JB-C5建筑外窗综合物理三性能试验机久滨仪器.中国创造一、概述随着技术进步和产品升级,国家标准对建筑外门窗气密、水密、抗风压三项物理性能的分级和检测方法,也同步进行了升级,现行标准GB/T7106-219,是2008年颁布的升级版。该标准对于门窗抗风压的能力提高到8000Pa;对气密性的检测方法做了较大的修改,增加了气密性检测扣箱,检测试件通过气密性扣箱泄漏的空气量来确定试件的气密性。这些要求给门窗物理性能检测设备提出了更高的要求,其结构也发生了相应的改变。我公司生产的JB-C5系列建筑外窗综合物理性能试验机完全符合即将颁布的国家标准GB/T7106-2019各项技术指标的要求。二、技术参数:(1)风压测量范围:-8000Pa~8000Pa(抗风压压力);-300Pa~300Pa(气密压力);精度:0.25级;(2)空气流量范围:0~540m3/h;精度:3级; (3)喷淋量范围:2~3L/m2min;精度:2.5级;(4)位移量范围:0~50mm;精度:0.2级;(5)试件尺寸: 0.8×0.8m~3.0×3.0m;(6)额定电压、功率:AC380V 50Hz 20KW;(7)使用空间:6m×5m×3.6m。创新点:建筑外门窗气密水密抗风压性能检测,满足GB/T 7106-2019最新标准 建筑外窗综合物理三性能试验机
  • 北京凝聚态物理国家实验室
    北京凝聚态物理国家实验室是经国家科技部批准筹建的六个国家实验室之一,于2003年11月25日正式开始筹建。北京凝聚态物理国家实验室以中国科学院物理研究所为依托单位,研究方向以凝聚态物理为主,包括凝聚态物理、光物理、原子分子物理、等离子体物理、软物质物理、凝聚态理论和计算物理等。
  • 中科院大气物理所获2011重大科研仪器设备专项支持
    2012年3月23日,基金委国家重大科研仪器设备研制专项“多波段多大气成分主被动综合探测系统”项目启动大会在湖北省咸宁市召开。会议由项目负责人中科院大气物理所吕达仁院士主持。   基金委计划局郑永和副局长、中科院资环局常旭副局长应邀出席会议并发表重要讲话。基金委地学部综合与战略规划处刘羽处长、大气科学处张朝林处长、中科院资环局任小波处长、中科院基础局孔明辉副处长、中科院大气物理所副所长陈洪滨、所长助理浦一芬、中科院武汉物数所副所长邱衍军、中科院合肥研究院院长助理江海河、北京大学毛节泰教授、西安交大张淳民教授等领导和专家也参加了本次启动会。   吕达仁院士首先详细介绍了项目的立项背景、拟解决的关键科学问题、主要研究内容、实施方案的总体思路。紧接着七位课题负责人(中科院大气物理所潘蔚琳研究员、中科院武汉物数所李发泉研究员、中国科技大学李陶教授、中科院安徽光机所胡顺星研究员、武汉大学龚威教授、中科院紫金山天文台姚骑均研究员、安徽四创电子公司高仲辉研究员)分别就各自承担课题的研究内容、实施方案和准备情况作了详细汇报。与会人员就项目研制工作中的重点和难点以及项目实施过程中可能出现的各种问题展开了深入的交流与讨论,并推举中科院武汉物数所龚顺生研究员担任本项目的技术总体组组长。   本项目将通过五年研制周期构建一个全(中性)大气层多要素、高垂直分辨率、准连续探测系统,以期获得大气温度和风场、温室气体与污染气体、云、气溶胶和水汽的垂直分布与多时空尺度变化,并通过集成反演算法实现对全大气层垂直结构、运动变化与成分输送的研究。拟研制的多波段多大气成分主被动综合探测系统将包含以下核心单元:大气温度风场探测激光雷达、臭氧探测激光雷达、二氧化碳探测激光雷达、污染气体探测激光雷达、气溶胶-云-水汽探测激光雷达、W波段测云雷达、太赫兹超导辐射波谱仪、综合集成与反演验证平台及组合望远镜系统。系统建成后计划在青藏高原开展长期观测。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制