当前位置: 仪器信息网 > 行业主题 > >

中红外光谱仪

仪器信息网中红外光谱仪专题为您提供2024年最新中红外光谱仪价格报价、厂家品牌的相关信息, 包括中红外光谱仪参数、型号等,不管是国产,还是进口品牌的中红外光谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合中红外光谱仪相关的耗材配件、试剂标物,还有中红外光谱仪相关的最新资讯、资料,以及中红外光谱仪相关的解决方案。

中红外光谱仪相关的资讯

  • 红外光谱仪在各行业中的应用
    近些年来,随着红外光谱仪的在行业中的广泛应用,给人们的生活带来了很大的变化,下面小编就给大家介绍几个主要的应用领域以便大家参考。一、在化学、化工方面的应用在该方面的应用又可分为表面化学、催化化学和石油化学方面的应用。1、在表面化学研究中的应用红外光谱技术在表面化学研究中的应用具有两个鲜明特征:(1))继续不断地开发表面与薄膜的原位和实时红外分析技术。根据报道已有一种适用于原位和同时红外分析的FT-IR扩散反射室。(2)以红外吸附光谱(IRAS ) ,ATRFT-JR、和R反射光谱为代表的红外光语技术广泛地应用于研究自组织膜和L-B膜。如应用IR反射光谱研究薄膜,测定组织薄膜的厚度、成分和结构,傅立叶变换红外光谱仪在石油化学中的应用是一个十分广泛的领域,如在重油的组成、性质与加工方面,应用R表面自硅胺色谱得到的胶质和沥清质。红外光谱仪在润渭油及其应用方面的进展体现在∶用于鉴别未知油品和标定润滑油的经典协理性质(如贴粘度、总酸值、总碱值) 被纳入以设备状态监测为目的的油液分析计划,用于表征在用油液的降解和污染程度,油润滑表面摩擦化学过程及产物的原位监测与表征。红外光谱仪应用于轻质油品生产控制和性质分析方面的主要进展包括∶应用红外光谱预厕汽油的辛烷值,应用IR测定汽油中含匐化合物的含量。此外,还应用ATRFT-R与GC联用测定汽油中的芳烂的含量。3、在催化化学研究中的应用(1)扩韵反射红外光膳傅立叶变换光港(DRIFTS)的应用报道特别突出,其次是IRAS,DRIFTS用于监控催化剂表面吸附化合物的分解动力学。IRAS的典型应用实例包括研究CO在P催化剂表面的氧化反应动力学,以及研究NO和CO在Pd和Pd-Sio2表面的共吸附现象。(2〉原位红外光道技术除了依然应用普通的原位红外光罐技术研究懂化反应过程外,还应用于原位反射/吸附红外光谱研究催化剂表面的点位阻塞效应,另外产生了大星新的与原位红外光谱技术相配合的附件装置。4、在半导体和超导材料等方面的应用在此方面的应用主要有∶分析抽原子与CO和CO2反应产物的基体红外光增,研究了铀。钴。镍。锡变性锰铝锏强逝性合金的远红外性质。分析C60填料笼形包含物的红外和拉曼光港。用反射傅立叶变换红外显微光谱法测定有机富油页岩中海藻化石。5、在环境分析中的应用用气相色谱﹑傅立叶变换红外联用技术测定水中的污染物,结台了毛细管气相色谱的高分排能力和傅立叶变换红外光谐快速扫描的特点,对C -MS不能鉴别的异构体,提供了完整的分子结构信息,有利于化合物首能团的判定。K1A1KoCk等报道了气相色谱/红外光潜Ⅰ质道联目技术在环境分析中的应用。运用傅立叶变换红外遥感技术,可以测定工业大气空间的特性。由于控制汽油质星与保护环境密切相关,应用美国HP GCIRP Ms测定汽油中的甲醇、乙醇、1-丙醇、2-丙酿、1-丁醇、﹖-丁馥、异丁酿、特丁醇、苯、甲苯、邻二甲苯、间二甲苯、对二甲苯等,其准确度为1%,相对偏差为0.155%。应用傅立叶变换红外法可以定量分析气态经类混和物,对于测定水中的石油怪类,非色散红外法已成为我国环境监测的标准方法。二、在临床医学和药学方面的应用监于每个化合物都有自己独持的红外光谱,除特殊情况外,目前尚未发现两种不同的化合物具有相同的红外光港,所以红外光谱为药品质量的监测提供了快速准确的方法。如药材天麻、阿胶,西药红霉素、环磷酰胺的监测和抗肝炎药联笨双酯同质异晶体的研究。傅立叶变换红外光谱仪在临床疾病检测方面也有广泛的应用,如利用红外光谱法对冠心病、动赫硬化、糖尿病、癌症的检测。红外光道法测定蛋白质基体中的葡萄塘含量。以及用FT- Raman光谱在700 ~ 1900 cm - 1处的差异,对胃、牙齿、血管、肝等人体组织的研究可用于体内诊断。恶性肿瘤是一种严重危害人类身心健康并消耗大星医疗卫生资源的疾病,由于目前缺乏有效的对晚期癌症的治疗手段,肿瘤的早期诊断对延长患者的生存时间和提高生活质量具有重要的意义。傅里叶变换红外光谱可以提供有关分子结构和变化的多种信息,能在分子水平对细胞组织的改变做出反映,是行之有效的肿瘤早期检测的手段,较传统的肿瘤手段而言具有快速,准确,客观等特点 甚至可以通过光纤附件,实现肿瘤的原位、在体、实时检测和诊断。通过胃癌组织与正常组织的FTIR谱图比较,可以发现胃癌组织具有特征性的光谱。此外,傅立叶变换红外光谱仪在其传统领域———物质结构分析、热力学状态分析、热/动力学过程分析与表征也有着不同程度的进展。
  • 港东科技红外光谱仪的“七种武器”
    港东科技红外光谱仪的“七种武器”红外光谱法是鉴别和分析各种有机化合物材料的最佳技术,因每一种有机化合物红外谱图的位置、强度和形状均不相同,具有独一无二的特性,故被誉为“分子的指纹”。红外光谱仪是一款重要的科学分析仪器,随着医药、科研、环保、教学等应用领域需求的日益增多,红外光谱仪越来越普及,从高端分析设备,逐渐“飞入寻常百姓家”,成为各类分析检测实验室的必备仪器。港东科技成立于1999年,自成立之日起,即致力于制造具有中国自主知识产权的光谱分析仪器,并为客户提供高质量的全面解决方案。港东科技目前已成为中国最知名的专业光谱分析仪器制造厂商,是中国最早设计、制造红外光谱仪、荧光分光光度计和拉曼光谱仪的厂商,拥有20年的光谱分析仪器研发和制造历史:中国自主知识产权的第一台双光束红外分光光度计诞生地;中国自主知识产权的第一台傅里叶变换红外光谱仪诞生地;中国自主知识产权的第一台微区激光拉曼光谱仪诞生地;中国自主知识产权的第一台傅里叶红外-热重分析仪联用系统诞生地;国产第一红外光谱仪品牌;国产第一红外光谱仪市场占有率;……在二十年的发展历程中,凭借其优异的仪器性能,强大的技术支持和完善的售后服务,迅速在竞争激烈的分析市场中脱颖而出,始终居于国产红外光谱仪生产公司榜首,红外光谱仪国内客户涵盖高校、研究所、制药、化工、环保、第三方检测等领域,总数已超过4000家,国产红外光谱仪市场占有率超过70%。凭借出色的品质、卓越的性能、优质的服务迅速得到中国专家和广大用户的一致认可和好评!港东科技能够屹立于国产红外光谱仪第一制造商,凭借的就是红外光谱仪拥有的“七种武器”。第一种:优异的稳定性能震动是光学仪器的大敌,仪器的震动可能造成光学部件错位,导致测试结果出现严重偏差。通过使用一体化加工工艺,提高光学系统底座的加工精度和各光学部件间的定位精度,可以保证系统内部的相对稳定性,并可有效降低在外界的影响下产生共振的几率,提高系统的稳定性。港东科技使用DMG微米级机床加工一体成型底座,Precitech单点金刚石车床加工,表面Ra(粗糙度)为纳米级,PV(面形精度)第二种:优异的可靠性能港东科技红外光谱仪,动镜及其定镜采用一体成型镀金角镜,稳定性好,反射率高,抗老化,配合进口精密导轨实现动角镜运动,可以起到消除镜子倾斜并抑制热效应的作用,提高检测精度和系统可靠性。第三种:安全的防潮手段潮湿是红外光谱仪的天敌,潮湿的空气可能损坏分束器,也可能损坏窗片材料。针对这些潜在的风险,港东科技早已为红外光谱仪准备了对抗潮湿的几种武器:(1)整体密封工艺:一次性精密加工底座,一体注塑密封罩,确保设备的整体密封性,有效保护内部部件不受潮湿的影响(2)人性化更换干燥剂:配有可视化湿度提示卡,通过明显的颜色变化提醒用户及时更换干燥剂,同时无需开盖便可自行更换干燥剂(3)高性能分子筛:内部部件仓中配有高性能分子筛,可有效降低水汽和二氧化碳的干扰,同时支持用户自行更换(4)防潮涂层:分束器带有防潮涂层,有效抵御潮解(5)电子防潮箱:可选配电子防潮箱,带有电子自动防潮除湿功能,适用于港东科技红外光谱仪的长期存放,实现防潮功能第四种:精良的生产条件港东科技十万级净化生产车间出厂前进行调试港东科技拥有行业内领先的十万级净化生产车间,经验丰富的生产制造人员,专业的工艺工程师对每一台仪器进行检查和调试,确保每一台出厂的红外光谱仪均达到最佳状态第五种:完备的扩展性能众所周知,红外光谱仪的样品检测,需要使用不同的测试附件,红外光谱仪红外测试附件的适配性,直接决定了客户购买仪器的可扩展性。港东科技红外显微镜附件港东科技热重分析仪-傅里叶变换红外光谱仪联用系统港东科技的红外光谱仪,除了适配基本的固液气体测试附件,还可以适配各种反射附件、平行光附件、宝石附件、原位气体池、红外显微镜等,还可为客户定制开发不同的应用附件。同时还可与热重分析仪联用,进行样品热分解的定量和定性研究。第六种:专业的技术支持港东科技应用开发部门实验室对客户提供的样品进行测试港东科技拥有专业的应用方案开发部门,配有多名专业的应用方案工程师,可以进行前瞻性的应用方案开发,也可以为客户提供免费的样品检测和检测方案开发,并为客户在实际检测中提供技术指导第七种:完善的售后服务港东科技售后工程师为客户进行服务港东科技自开始销售红外光谱仪起,即成立了独立的售后服务部,为客户提供专业、完善、及时的售后服务,目前拥有十余名名专业资深的售后服务工程师。当客户购买仪器后,可在到货后5个工作日内完成安装,并对客户进行仪器使用操作、日常维护、现场测样等培训,直至客户可完全独立操作。当客户反馈售后问题后,工作日8小时内给出处理方案,5-7个工作日内可到达现场进行问题解决。凭借优异及时的服务,解决客户日常使用的后顾之忧。正是有了这保驾护航的“七种武器”,港东科技可向客户提供稳定可靠、性能优良的红外光谱仪,优质、专业的技术支持和售后服务,满足客户的应用需求。
  • 中远红外光谱一气呵成 – 傅立叶红外光谱界多年的梦想终得实现
    p span style=" font-size: 16px "   2014年十月于德国埃特林根,布鲁克集团光学事业部全球同步首发可以一次测试覆盖中红外、远红外和太赫兹光谱范围的傅立叶红外谱仪超宽谱区最新应用技术。继不久前问世的超宽谱区中远红外分束器后,布鲁克又推出了全新的超宽谱区中远红外DTGS检测器。VERTEX 70吹扫型和VERTEX 70v真空型研究级傅立叶红外光谱仪配置这两个新型超宽波段的红外光学部件,促成了VERTEX FM中远红外波段无与伦比的优势:您无需切换分束器或检测器、无需后续拼接谱图,只需一次测量,即可获得一张6,000 cm-1至50 cm-1的完整中远红外光谱。 /span br/ /p p   傅立叶红外光谱仪的光谱范围取决于其所配备的光源、分束器和检测器的综合光学响应范围。中红外标准谱区,由于主要受限于可供选用的分束器的材质,通常截止于350 cm-1 (KBr分束器) 或者200 cm-1 (CsI分束器)。如果想扩展光谱范围至远红外和太赫兹区,通常需要一次甚至多次更换远红外分束器和检测器。而每次更换时,使用者都需手动打开谱仪光学腔。布鲁克最新推出的VERTEX FM功能,结合了新型超宽谱区中远红外分束器、中远红外检测器和标配红外光源,可以单次测量覆盖6,000 cm-1到50 cm-1的完整中远红外谱区,并广泛适用于透射、反射和衰减全反射等测量模式。独一无二的VERTEX FM技术是继几年前布鲁克VERTEX 80v高端研究级真空光谱仪的全自动分束器转换器和全自动检测器切换(多达五个检测器)功能后,布鲁克针对VERTEX 70(v)系列光谱仪的又一创新之举。 /p p style=" text-align: left "   VERTEX 70v真空型光谱仪配置了VERTEX FM功能后,可以结合外接水冷高压汞灯,将远红外/太赫兹谱区进一步延伸至10 cm sup -1 /sup 。 img src=" http://img1.17img.cn/17img/images/201510/noimg/9e2f5d33-8563-488a-a870-d4f50a8c0196.jpg" title=" 未标题-1.jpg" width=" 363" height=" 248" border=" 0" hspace=" 0" vspace=" 0" style=" width: 363px height: 248px float: right " / /p p   从中红外至远红外的谱区扩展,即突破传统中红外400 cm-1的界限,对很多分子振动光谱的应用领域有着至关重要的意义。这些应用领域包括无机和有机金属的化学分析、地质学和医药业,以及各种物理应用,如对多晶型物的筛分、对结晶度的检测和低温基质隔离光谱学。图中所示的是用VERTEX FM功能单次测量所得的维生素C的中远红外ATR光谱图。该谱证明,使用VERTEX 70或VERTEX 70v,并配置VERTEX FM新功能,您可以轻松快捷的获得从4,000 cm-1到50 cm-1的中远红外光谱区域的样品信息。 /p p   布鲁克公司(NASDAQ:BRKR)是世界著名的高科技分析仪器企业,致力于开发领先技术以解决分子材料科研界、诊断学、工业及临床等各种分析问题。 /p p   详情请见官方网站:www.bruker.com /p p   进一步了解VERTEX系列科研型傅立叶红外光谱仪,请访问相关网页:www.bruker.com/vertex /p p br/ /p
  • 能谱:傅立叶变换红外光谱仪是否成为珠宝检测领域中的“利剑“
    随着我国经济水平的提高,在日常的消费中,一些高消费品也越来越受到消费者的亲睐。比如黄金、珠宝之类的,在黄金价格下跌的时候,好多人都在买黄金,还有的爱好珠宝的消费者,都在买卖中,但是关于这些价格比较昂贵的珠宝,真假性需要专业的设备进行检测,偏光显微镜、能谱科技傅立叶红外光谱仪都是专业分析对送检的珠宝玉石里边所含的化学成份作出结论性的判断的有利器,但是珠宝检测市场还存在一定的问题:  不少消费者在买下一件或多件珠宝玉器后,为求保险,往往会先后送往不同的检测机构检测。但是在很多检测机构,为了方便顾客,都会把实验室尽量设在离消费市场更近的地方。然而,在拉近了与商家的距离后,很多消费者又会产生一种无名顾虑,怀疑检测机构会和商家合伙来坑人。当前市场上确实存在大量以假乱真、以次充好的现象,所以,对于顾客这种危机意识,检测机构能够理解,但是很多时候检测的结果不一样,让同行之间很尴尬,这样就造成了利益冲突。还有的就是在检测设备不断升级的时候,那些造假的手段也在使用不正当的手段,对珠宝进行处理,那些检测设备也不能一次检测出来。像宝石、珠宝、翡翠、等这类属于石头类的珠宝完全可以使用由天津能谱生产的iCAN9傅里叶变换红外光谱仪对它们进行了红外反射光谱测试,比较了对应的红外光谱图,红外光谱是宝石 、珠宝在红外光的照射下, 引起晶格( 分子) 、络阴离子团和配位基的振动能级发生跃迁, 并吸收相应的红外光而产生的光谱,用于宝玉石红外吸收光谱的测试方法分为透射法和反射法两种。透射光谱法提供宝玉石4000~ 2000 cm- 1 谱区的信息,主要与宝玉石中的H- O 及C- H 的伸缩振动有关, 如宝石中的结构水、有机物质以及宝石 珠宝优化处理使用的有机填料( 如树脂) 、染料等。反射光谱方法提供宝玉石的基频振动信息, 可以用来判别宝石 珠宝的种属和真伪。  以上这些都是在珠宝检测市场中存在的问题,检测突破困境,必然不可脱离检测设备,【能谱科技】傅立叶红外光谱仪红外光谱仪是这个行业中不可缺少的仪器设备,另外更需要相关的政策法规,严厉打击从事制假珠宝销售的人群,维护好消费者的合法利益。
  • 北分瑞利红外光谱仪快速鉴别食用油中的工业油
    近日有媒体曝光罐车工业油与食用油混装,一些油罐车既承接大豆油等可食用液体,也运送煤制油等化工类液体。食用油一般是从动植物种子中提取或加工而成,具有食用价值,为人体提供能量和必需脂肪酸。煤制油是一种由煤炭加工而来的化工液体,如液蜡、白油等。当食用油与化工油混装后,可能引发严重的食品安全问题,长期摄入含有这些化工残留的食用油,可能导致人体中毒,出现恶心、呕吐、腹泻等症状,甚至对肝脏、肾脏等器官造成不可逆的损害。鉴于此,仪器信息网特此发起“油罐车混装事件:仪器检测如何护航食用油安全?”主题征稿活动。本文特别邀请到了北分瑞利分享食用油中煤制油的鉴别。正常食用油和含有煤制油的食用油,仅从外观上很难判断。想要有效区分的话,必须借助仪器。红外光谱法是一种借助红外光被物质吸收情况,获得被测物质分子内部原子间相对振动和分子转动等信息,并根据所获得信息进行物质分子结构研究的分析方法。红外光谱被誉为“指纹光谱”,每一种化合物红外谱图的位置、强度和形状均不相同,具有独一无二的特性。红外光谱法分析速度快、样品用量少、结果准确可靠,傅立叶变换红外光谱仪是一种可以快速判定食用油中是否含有煤制油的利器。北分瑞利深耕红外光谱仪研发和制造近50年,是国家标准GB/T 21186-2007《傅立叶变换红外光谱仪》的牵头起草单位,早在1977年就作为牵头单位成功研制出国内首台商品化红外分光光度计WFH-400型,1993年又成功研制出中国第一台傅立叶变换红外光谱仪WQF-400型,2003年成功研制中国第一台具有完全自主知识产权的傅立叶变换红外光谱仪WQF-510型。全新的WQF-530A傅立叶变换红外光谱仪,采用以太网/WIFI双模通讯,可以配置双检测器,在仪器性能、软件功能和扩展性能方面都有了较大提升。北分瑞利致力于为客户提供优质的红外光谱仪产品和全套解决方案,可以帮助客户快速鉴别混装油,保障人民群众食品安全。图1和图2给出了使用衰减全反射(Attenuated Total Reflection,ATR)附件测试得到的大豆油和工业白油的红外光谱图,发现它们的吸收峰形状和位置具有明显差异,可以很容易地区分这两种油。当大豆油中混有少量工业白油时,其红外谱图和大豆油的红外谱图非常相似(图3),很难直接从谱图中判断出大豆油中含有工业白油。将混合油的红外谱图进行差减处理后(图4),在图中很明显地发现了工业白油的红外吸收峰,说明大豆油中存在工业白油。图1大豆油的红外光谱图图2工业白油的红外光谱图图3混合油的红外谱图图4混合油的差减谱图北分瑞利WQF-530A傅立叶变换红外光谱仪品牌:北分瑞利型号:WQF-530➢ 主要技术指标及功能特点⚫ 分辨率优于0.85cm-1(可升级到0.4cm-1)⚫ 双检测器设计:可以扩展双检测器(如常规热释电检测器和液氮制冷MCT检测器),实现“一机多用”。热释电检测器用于常规样品的测试(ATR附件、积分球测试、热红联用等),液氮制冷MCT检测器用于高灵敏度测试(红外显微镜、原位红外等)。⚫ 多种通讯方式:以太网/WIFI双模通讯,既可以有线连接电脑进行操作,也可以无线连接平板/笔记本等实现远程无线智能操作。⚫ 定制化服务:软件提供多种开发语言示例代码,满足各种客户对软件的定制化需求;硬件可以根据客户需求进行各种改造和升级。
  • 便携式近红外光谱技术在食品分析中的应用
    HAMAMATSU(滨松) PHOTONICS近红外光谱在食品分析中的作用近红外光谱(NIR)是指在750至2500 nm的电磁光谱近红外区域内研究物质和光之间的相互作用[1]。当红外光与样品分子相互作用时,每个波长反射、透射和吸收的电磁能的量取决于样品中存在的键类型[1]。C-H、N-H和OH振动键在近红外区域最普遍,决定了给定物质的光谱形状。近红外光谱通常用于测量和量化样品的近似成分,如蛋白质、水分、干物质、脂肪和淀粉。此外,近红外光谱反映了其物理性质或特性[1]。因此,当应用于食品时,样品的近红外光谱不仅可以提供有关食品化学成分的信息,还可以通过不需要使用试剂的无损、快速和清洁的方法提供有关其功能的信息[2]。便携式仪器的影响直到最近,近红外技术才向小型化设备发展,使近红外分析从实验室进入现场成为可能。便携式近红外光谱是监测作物质量、确定最佳种植条件和收获时间的绝佳工具。鉴于食品易受含量变化的影响,需要保持新鲜以防止质量损失,以及非法掺假的可能性,控制食品质量的重要性怎么强调都不为过。此外,食品生产、配送链的复杂性以及将分析时间降至最低的需要,使便携式光谱仪在该领域向前迈出了革命性的一步[5][6]。用于食品分析的近红外光谱示例Parastar等人将计算技术应用于近红外分析仪获得的吸收光谱,能够准确区分新鲜肉和解冻肉,并根据鸡的生长条件对鸡柳进行正确分类[3]。使用类似的工具,Kucha和Ngadi能够评估猪肉末的新鲜度[4]。这些计算方法,通常被称为“化学计量学”,使用多种算法和统计技术,如多元线性回归、偏最小二乘回归和主成分分析来分析来自光谱仪的数据。这些方法将光谱信息转化为与样品相关的化学和功能特性[2]。便携式近红外分析仪改善奶牛健康,优化灌溉和收割时间便携式近红外分析仪已被用于饲料和牧草的农场监测,以评估其质量。在这个过程中,将饲料样本放在扫描仪前进行分析,并将结果提供给农民或营养学家。这使他们能够及时做出有关提要的管理决策,将获得结果所需的时间从几天缩短到几秒钟。例如,牛饲料中玉米青贮饲料的干物质含量每天变化很大,在六个月内高达41%。通过现场调整,奶牛可以获得更一致的口粮,从而改善牛群的总体健康状况。这是通过血液参数的变化和乳腺炎的减少来观察的,从而增加了产奶量。此外,这项技术可以潜在地减少饲料浪费,从而降低成本并增加收入[7]。便携式近红外光谱法的另一个有价值的应用领域是对作物生长各个阶段的实地评估。Tardaguila等人研究了在不同环境条件下生长的八个不同品种的160片葡萄叶片的吸收波长。他们专门针对含水量评估来确定葡萄酒行业灌溉的优化策略[8]。在收获季节,近红外光谱已被用于评估橄榄果实[9]、葡萄[10]和番茄[11]在树上的成熟度,从而优化收获时间,甚至使用农业机器人实现自动化水果采摘。收获后,近红外光谱技术有助于农民、消费者和质量控制官员对产品质量进行快速无损检测。这项技术还允许检测由于将传统生产的水果错误标记为有机水果而导致的菠萝欺诈[12]。FTIR光谱提供更高的通量和更好的灵敏度在近红外光谱中,分析有机材料的吸收光谱主要有两种方法。第一种方法是基于二极管阵列的光谱学。该技术使用色散光栅将从样品反射或透射的光分离为其波长分量。然后将每个分量聚焦在线性检测器阵列的不同像素上。这种方法速度相当快,可以用于实时测量。然而,二极管阵列光谱仪的光通量与其光谱分辨率成反比,这限制了其有效性。此外,在近红外区域敏感的线性阵列的高成本可能会限制其在某些应用中的应用,特别是在农业和食品中。获得吸收光谱的第二种方法是傅立叶变换干涉测量法。在这种方法中,入射光被分成两条路径,一条指向固定反射镜,另一条指向可移动反射镜。当这些路径被重新组合时,就会得到干涉图。通过对该干涉图进行傅立叶变换,可以获得入射光的光谱,并且通过适当的校准,可以确定样品的吸收光谱。使用这种技术,可以同时测量所有波长,在不影响光谱分辨率的情况下提供更好的吞吐量和更高的灵敏度(通常被称为“Fellgett的优势”)。在该技术中,仅使用单个NIR光电探测器而不是阵列,从而保持低成本。滨松光子的FTIR引擎为食品行业带来了新的曙光滨松的FTIR引擎C15511-01是一个紧凑的傅立叶变换红外光谱模块,对1.1µm至2.5µm范围内的近红外光具有灵敏度,并具有USB连接。该设备的特点是在手掌大小的外壳中有一个迈克尔逊光学干涉仪和控制电路。为了补偿元件小型化造成的光损失,滨松光子公司的工程师为FTIR引擎配备了一个大型可移动MEMS反射镜和一个高灵敏度InGaAs PIN光电二极管。这种MEMS元件的特殊设计抵消了外部振动和器件内部杂散光反射的影响。可移动MEMS反射镜的位置使用专用激光系统进行连续和精确的监测,以确保最高的波长再现性。一般来说,滨松的FTIR引擎可以提供与更大、更昂贵的台式设备相当的高灵敏度、高分辨率和高速测量。使用FTIR引擎进行红外光谱分析有两种测量方法:“反射测量”和“透射测量”。使用这些方法,我们测量了坚果(杏仁、腰果、核桃)和酒精饮料(啤酒、清酒和白兰地)的光谱。透射测量:酒精饮料吸收光谱的比较及其酒精浓度的估计FTIR引擎C15511-01用于观察几种酒精饮料产生的吸收光谱的差异。将液体放入对近红外透明的石英池中,提供1mm的光路长度。使用卤素灯作为本实验的光源。来自灯的宽带光部分被液体吸收,并通过光纤部分传输到FTIR引擎。图中所示的吸收光谱是在室温下获得的,平均128次扫描,并减去参考测量值。这些光谱的形状主要受水中的OH基团(吸收波长:1450 nm和1900 nm)和醇中的CH基团(吸收光谱波长在2100 nm和2500 nm之间)的影响。还测量了纯水和乙醇的光谱,并将其添加到图中进行比较。此外,使用2300nm处的吸收峰来估计每种饮料中的酒精浓度。该测量显示的值与液体中酒精的实际存在一致,证实了使用这种紧凑的设备和方法进行精确估计的可能性。漫反射测量:使用近红外光谱对坚果进行分类当照射到样品上的光的一部分被其表面颗粒有规律地反射时,其余的则穿透样品。在这里,光通过折射透射、光散射和表面反射反复散射,直到它离开待测量的样品。通过该测量获得的漫反射光谱与样品的吸收光谱相似。漫反射信号通常比通过透射获得的信号弱。因此,使用这种方法的主要挑战之一是提高照明效率。在传统配置中,使用光纤将来自单个卤素灯的宽带光引导到样品。滨松光子最近设计了L16462-01,这是一种针对漫反射测量进行优化的创新光源。该装置配备了多个灯,以特定角度靠近样品。通过光纤收集从样品散射的光,并将其引导至NIR光谱仪。这种配置可测量信噪比,最大限度地减少杂散光的影响。e照射到样品上的部分光被其表面颗粒规则反射,其余部分穿透样品。在这里,光通过折射透射、光散射和表面反射反复散射,直到它离开待测量的样品。通过该测量获得的漫反射光谱与样品的吸收光谱相似。食物过敏是一种遗传易感个体在食用某些食物成分后出现不利免疫反应的情况。这种反应可能导致立即或延迟的症状,可能是严重或致命的[13]。在过去的几十年里,这种免疫紊乱已经成为全世界关注的一个重要问题,在西方国家,至少有8%的儿童和5%的成年人受到影响。它给医疗系统带来了相当大的压力,并可能严重限制日常甜梅干动[14]。许多种类的坚果,包括核桃(胡桃)、腰果(西方腰果)和杏仁(甜梅干),都被欧洲法规1168/2011列为过敏原,只要存在于食品中,就需要添加到成分表中[15]。出于这些原因,坚果的检测和分类对于食品工业来说是必要的。滨松利用近红外光谱对杏仁、腰果和核桃的吸收光谱进行了研究和分类。使用FTIR引擎C15511-01和新的灯L16462-01获得测量结果。将坚果放置在光源上,无需任何预先准备,平均进行128次扫描以获得每个样品的吸收光谱。所获得的光谱的特征在于1600-1800nm处的峰,这是由从脂质和蛋白质拉伸的CH的第一泛音引起的。当观察光谱的二阶导数时,各种光谱之间的差异更加明显。通过主成分分析法可以对不同种类的坚果进行分类。结论近红外光谱在食品工业中的潜在应用已经被许多科学出版物广泛记录了几年。便携式仪器的出现正在将分析从实验室转移到现场,将结果的时间从几天大幅缩短到几秒钟。最值得注意的是,这种由滨松MEMS技术驱动的硬件小型化在不影响灵敏度或分辨率的情况下实现。新的计算技术正在不断发展,以分析和比较吸收光谱,并估计食品中特定化合物的含量。这些方法使整个行业的非技术用户越来越容易访问该技术。便携式FTIR分析仪是解决食品行业许多重大挑战的宝贵工具。例如,它们可以帮助提高作物产量,从而在面临粮食需求增加时提供一种替代毁林的方法。将这些技术融入农业可以在优化灌溉和限制整个供应链的食物浪费时限制水浪费。最后,FTIR分析仪可以帮助改善我们的食物质量,使其对我们和所有依赖我们的动物更安全、更健康。参考文献[1] K. B. Beć, J. Grabska, and C. W. Huck, “Near-Infrared Spectroscopy in Bio-Applications”, Molecules, vol. 25, no. 12, p. 2948, Jun. 2020, doi: 10.3390/molecules25122948.[2] D. Cozzolino, “The Ability of Near Infrared (NIR) Spectroscopy to Predict Functional Properties in Foods: Challenges and Opportunities”, Molecules, vol. 26, no. 22, p. 6981, Nov. 2021, doi: 10.3390/molecules26226981.[3] H. Parastar, G. van Kollenburg, Y. Weesepoel, A. van den Doel, L. Buydens, and J. Jansen, "Integration of handheld NIR and machine learning to 'Measure & Monitor' chicken meat authenticity" in Food Control, vol. 112, pp. 107149, 2020. doi: 10.1016/j. foodcont.2020.107149. [4] Kucha, C.T., Ngadi, M.O. “Rapid assessment of pork freshness using miniaturized NIR spectroscopy”. Food Measure 14, 1105–1115 (2020). https://doi.org/10.1007/s11694-019-00360-9 [5] J.-H. Qu, D. Liu, J.-H. Cheng, D.-W. Sun, J. Ma, H. Pu, and X.-A. Zeng, "Applications of Near-infrared Spectroscopy in Food Safety Evaluation and Control: A Review of Recent Research Advances" Critical Reviews in Food Science and Nutrition, vol. 55, no. 13, pp. 1939-1954, 2015. doi: 10.1080/10408398.2013.871693.[6] K. B. Beć, J. Grabska, and C. W. Huck, “Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives,” Foods, vol. 11, no. 10, p. 1465, May 2022, doi: 10.3390/foods11101465.[7] "Can On-Farm NIR Analysis Improve Feed Management?", Penn State Extension. [Online]. Available: https://extension.psu. edu/can-on-farm-nir-analysis-improve-feed-management.[8] J. Tardaguila, J. Fernández-Novales, S. Gutiérrez, and M.P. Diago, "Non-destructive assessment of grapevine water status in the field using a portable NIR spectrophotometer", J. Sci. Food Agric., vol. 97, pp. 3772-3780, 2017. doi: 10.1002/jsfa.8241.[9] A. J. Fernández-Espinosa, "Combining PLS regression with portable NIR spectroscopy to on-line monitor quality parameters in intact olives for determining optimal harvesting time", Talanta, vol. 148, pp. 216-228, 2016. doi: 10.1016/j.talanta.2015.10.084.[10] G. Ferrara, V. Marcotuli, A. Didonna, A. M. Stellacci, M. Palasciano, and A. Mazzeo, “Ripeness Prediction in Table Grape Cultivars by Using a Portable NIR Device”, Horticulturae, vol. 8, no. 7, p. 613, Jul. 2022, doi: 10.3390/horticulturae8070613.[11] H. Yang, B. Kuang, and A.M. Mouazen, "In situ Determination of Growing Stagesand Harvest Time of Tomato (Lycopersicon Esculentum) Fruits Using Fiber-Optic Visible—Near-Infrared (Vis-NIR) Spectroscopy", Applied Spectroscopy, vol. 65, no. 8, pp. 931-938, 2011. doi: 10.1366/11-06270.[12] C. L. Y. Amuah, E. Teye, F. P. Lamptey, K. Nyandey, J. Opoku-Ansah, and P. O. Adueming, "Feasibility Study of the Use of Handheld NIR Spectrometer for Simultaneous Authentication and Quantification of Quality Parameters in Intact Pineapple Fruits", Journal of Spectroscopy, vol. 2019, Article ID 5975461, 9 pages, 2019. doi: 10.1155/2019/5975461.[13] Z. Husain and R.A. Schwartz, "Food allergy update: more than a peanut of a problem", International Journal of Dermatology, vol. 52, pp. 286-294, 2013. doi: 10.1111/j.1365-4632.2012.05603.x.[14] S. H. Sicherer and H. A. Sampson, "Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment", The Journal of Allergy and Clinical Immunology, vol. 133, no. 2, pp. 291-307.E5, Feb. 2014. doi: https://doi.org/10.1016/j.jaci.2013.11.020 [15] A. Luparelli, I. Losito, E. De Angelis, R. Pilolli, F. Lambertini, and L. Monaci, “Tree Nuts and Peanuts as a Source of Beneficial Compounds and a Threat for Allergic Consumers: Overview on Methods for Their Detection in Complex Food Products”, Foods, vol. 11, no. 5, p. 728, Mar. 2022, doi: 10.3390/foods11050728.本文来源:HAMAMATSU PHOTONICS(滨松电子),Applications for portable NIR spectroscopy in food analysis,www.hamamatsu.com供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 火星探测中的近红外光谱矿物表征
    北京时间2月19日凌晨4时55分,在“天问一号”进入火星轨道一周后,“毅力”号(Perseverance)火星车不经变轨直接突入火星大气层,并成功着陆。本轮火星探测季也进入了新的阶段。毅力号火星车毅力号的着陆地点是位于北纬18度的耶泽罗陨击坑(Jezero crater)。有证据表明曾经有河流流入耶泽罗陨击坑,形成了一个早已干涸的三角洲。而毅力号在此处着陆,一项重要目标便是识别和收集该地区的沉积岩和土壤样本,探寻可能存在的火星生命迹象,同时测试人类在火星生存的技术。火星表面矿物分布提供了火星起源、地质及环境演化线索,火星表面卤水种类及分布提供了火星气候/水文演变信息。此外,毅力号还将通过对表面岩石、土壤物理化学特征的分析,帮助人类理解火星地质以及大气环境。Raman(拉曼)与NIR(近红外)光谱技术是从分子层面识别火星表面及次表面物质成分、丰度及分布特征的重要手段,是多国火星车的必备科学设备。位于毅力号火星车桅杆单元的SurperCam(超级相机)搭载了Raman和NIR光谱仪对火星进行巡视探测,将Raman与NIR数据融合进行联合矿物表征分析,并开展火星表面卤水及其它与水相关物质的分析具有重要科学意义。对地外行星探测来说, 近红外光谱技术具有几乎无需样品制备、信号易获取、探测矿物种类丰富、对H2O/OH探测响应灵敏等特点。马尔文帕纳科(Malvern Panalytical)旗下ASD TerraSpec Halo矿物近红外光谱分析仪以其宽广的光谱范围(350-2500nm)、超高光能动态范围、高光谱分辨率及重现性及体积小巧坚固结实等特性被选择使用于为人类重返月球、探測火星准备的多项重要研究中,以提高人类勘探行星资源的能力。其中之一是由NASA赞助的研究项目,地理发现操作策略测试(GeoHeuristic Operational Strategies Test-GHOST),选择了由马尔文帕纳科赞助和提供的涵盖VIS-NIR-SWIR波段的ASD TerraSpec HALO,以提高火星车样品收集的速度、效率和科学回报。该项目使用光谱仪模拟火星科学实验室(MSL)的ChemCam和2020火星车的SuperCam.SurperCam(超级相机)于毅力号火星车位置示意图分子在红外光谱内的吸收产生于分子振动或转动的状态变化或分子振动或转动状态在不同的能级间跃迁。能量跃迁包括基频跃迁(对应分子振动状态在相邻振动能级之间的跃迁)、倍频跃迁(对应于分子振动状态在相隔一个或几个振动能级之间的跃迁)和合频跃迁(对应于分子两种振动状态的能级同时发生跃迁)。由于近红外光谱谱峰较宽,实际样品中各种成分的吸收峰重叠严重,需要用化学计量学方法对近红外光谱进行化学成分的定量分析。蒙脱石/黑色,伊利石/亮蓝色,白云母/深蓝色的可见-近红外光谱曲线SuperCam超级相机桅杆单元内部(装配前)TerraSpec Halo矿物近红外光谱分析仪是勘探地质市场上最便携的近红外(NIR)仪器,它是手持一体式全量程的仪器。扣动一下扳机,这款创新性的仪器可以即时在仪器上获得矿物分析结果。这些近乎实时显示的结果极大地加快了勘探的工作力度,提高了效率,有助于进行分析和决策,最终为采矿经营者节省了宝贵的时间和金钱。TerraSpec HALO还被广泛地应用于例如考古和采矿行业中,包括陶瓷、陶器的成份分析,艺术品的鉴定和修复,矿藏的勘探,开采和加工等等。TerraSpec HALO矿物分析近红外光谱仪TerraSpec HALO光谱库内置超过150种矿物质的700种以上的光谱,来源于大学、个人采集、国际研究所、以及美国地质勘探局(USGS)的矿物质目录,并可由客户自定义添加光谱库,以进行矿物质的快速识别,且具有GPS和语音备忘录功能。TerraSpec HALO采用专利的矿物质匹配算法,通过将未知物质光谱与内置矿物质谱库匹配,计算匹配矿物后,将其从未知物质光谱中被扣除。使用扣除后的未知物质光谱,继续匹配,最多可以生成7种相关矿物成份的识别。将获取光谱导入计算机Halo Manager软件中可分析多达9种矿物成份。随机自带矿物质评级显示于屏幕右侧,描述矿物结晶程度或构成性质,允许地质学家了解地质或地热的情况,以指引潜在的矿物。参考文档:1. https://mars.nasa.gov/mars2020/spacecraft/instruments/supercam/2. https://finance.sina.com.cn/tech/2021-02-19/doc-ikftssap6896673.shtml3. http://www.globenewswire.com/news-release/2019/07/16/1883283/0/en/Renowned-Researchers-Leverage-Malvern-Panalytical-s-ASD-TerraSpec-Halo-Mineral-Identifier-to-Advance-Investigation-of-Life-on-Mars.html4. https://www.materials-talks.com/blog/2019/07/10/asd-terraspec-halo-used-in-space-based-research/5. 徐伟杰 火星表面模拟矿物和卤水的光谱鉴别研究[D] 山东大学 2018年
  • 中国近红外光谱分会苏沪工作站共同举办近红外光谱技术论坛
    2017年11月30日,中国近红外光谱分会苏沪工作站与上海市化学化工学会分子光谱协作组共同发起的近红外光谱技术论坛在华东理工大学分析测试中心成功举办。本次论坛在中国近红外光谱分会苏沪工作站副主任、上海市化学化工学会分子光谱协作组组长杜一平教授团队和倪力军教授团队的精心组织下,由中国近红外光谱分会苏沪工作站、上海市化学化工学会分子光谱协作组、华东理工大学分析测试中心和上海市功能性材料化学重点实验室共同举办。无锡迅杰光远科技有限公司、必达泰克光电科技(上海)有限公司、赛默飞世尔科技(中国)有限公司、铂金埃尔默企业管理(上海)有限公司、上海昊量光电设备有限公司和上海复享光学股份有限公司等六家近红外光谱厂商为本次论坛提供了支持。并在会上介绍它们有关近红外光谱的仪器研发和应用方面的最新发展情况。本次论坛云集了江浙沪等地近红外光谱分析检测领域的专家学者、仪器生产单位的技术人员,以及从事近红外光谱技术研究与应用的一大批专业人士,参会人员近百人。论坛邀请了本领域著名的专家学者和行业精英做了精彩的学术报告,包括南开大学邵学广教授、江苏大学陈斌教授、上海棱光公司蔡贵民高工、上海创和亿公司石超先生、大连达硕公司陈爱明先生,以及华东理工大学杜一平教授和倪力军教授。与会人员对本次论坛给予了极大的关注,会议期间整个报告厅座无虚席,气氛十分热烈。论坛由杜一平教授主持,他首先简要介绍了本次论坛的筹备情况和此次论坛期望达到的效果,并介绍了各赞助单位。 邵学广教授是近红外光谱和化学计量学领域的著名学者,他对整个近红外光谱技术的发展广泛而深入地进行了分析,提出了今后该技术的发展方向。他还详细介绍了他的课题组近年来利用近红外光谱的温度效应研究开发的新型分析检测技术和方法,为与会者展示了近红外光谱技术独特的魅力。陈斌教授从微型近红外光谱仪的角度详细论述了仪器的发展现状,他还结合其课题组的工作介绍了近红外光谱与互联网技术携手实现近红外光谱快速检测的工作,为人们展示了微型近红外光谱仪在快速检测领域美好的应用前景。倪力军教授的报告题目是天然产物领域近红外光谱技术+互联网共享的现状和展望,她重点介绍了她的课题组在中药、食品等行业应用近红外光谱实现产品和原料的快速鉴定和检测,以及在在线监测中的应用。她也非常看好互联网技术引入近红外光谱分析领域,认为这是今后近红外光谱发展的一个重要方向。无锡迅杰光远科技有限公司的兰树明经理介绍了微型近红外光谱仪的研发状况,同时宣布其公司的IAS-5000产品已经正式上线,欢迎各位老师、学者参与免费试用。 石超先生对其单位多年来在近红外光谱对烟叶加工过程中质量稳定性评价方面的工作做了详细介绍。蔡贵民高工结合他十余年来研发近红外仪器的切身体会,详细报告了该类仪器开发的技术要点和难点,以及解决方案,对于仪器研发人员来说这个报告具有非常重要的参考价值。陈爱明先生做了题为化学大数据分析的报告,从化学大数据分析方法的开发和应用的角度探讨近红外光谱今后的发展方向。最后杜一平教授给大家做了“如何获得合理的近红外光谱模型”的报告,针对近红外光谱技术推广中的技术难点,即建立近红外光谱模型的建立这一主题,深入讨论了难点问题的本质、建模中可能出现的风险等话题,并介绍了其课题组最新的解决方案。 为期一天的本次论坛,围绕近红外光谱这一主题,通过6位专家学者和5位仪器厂商代表带来的专业技术报告,从学术研究、应用研究、仪器研发等全方位地为与会者分享了近红外光谱领域的方方面面,集合了专家们在理论基础和实践应用,以及仪器制造中的宝贵经验。报告以技术创新为亮点,引起了与会人员的强烈反响,大家纷纷表示参加此次论坛受益匪浅。本次论坛的成功举办,是中国近红外光谱分会苏沪工作站在分子光谱技术交流上的又一次盛会,将有力地促进苏沪区域以及长三角一带分子光谱技术人员之间的技术交流。
  • 西南大学280.00万元采购红外光谱仪,近红外光谱仪
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 (AZF202300009)西南大学近红外光谱仪竞争性磋商公告 (2023年3月30日 磋商) 重庆市-北碚区 状态:公告 更新时间: 2023-03-15 项目概况近红外光谱仪 采购项目的潜在供应商应在《中国政府采购网》(http://www.ccgp.gov.cn/)或西南大学采购与招投标管理中心网页(https://ecaigou.swu.edu.cn:30910/bid/index?redirect=%2F)获取采购文件,并于2023年03月30日 10点00分(北京时间)前提交响应文件。 一、项目基本情况项目编号:AZF202300009项目名称:近红外光谱仪采购方式:竞争性磋商预算金额:280.0000000 万元(人民币)最高限价(如有):280.0000000 万元(人民币)采购需求: 设备名称 数量 最高限价(万元) 采购标的对应的中小企业划分标准所属行业 成交人数量(名) 近红外光谱仪 1套 280 工业 1 注:1.供应商报价不得超过本项目 最高限价 ;2.以上采购项目内容的具体要求,见 第二篇 采购需求 ;3.本项目允许采购进口产品(指通过中国海关报关验放进入中国境内且产自关境外的产品)。 合同履行期限:自合同生效之日起至合同全部权利义务履行完毕之日止。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无 3.本项目的特定资格要求:进口产品须提供生产制造商的经销授权函或具有授权权限的代理商对投标产品的授权,且需提供该代理商具有有效授权权限的相关证明文件,证明文件需能显示产品制造厂家对投标产品授权链条的完整性(进口产品制造商参与投标的,不需要提供该授权)。三、获取采购文件时间:2023年03月15日 至 2023年03月22日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:《中国政府采购网》(http://www.ccgp.gov.cn/)或西南大学采购与招投标管理中心网页(https://ecaigou.swu.edu.cn:30910/bid/index?redirect=%2F)方式:凡有意参加本项目磋商的供应商,请于 2023 年3月15日起在《中国政府采购网》(http://www.ccgp.gov.cn/)或西南大学采购与招投标管理中心网页(https://ecaigou.swu.edu.cn:30910/bid/index?redirect=%2F)网上下载本项目磋商文件、图纸(如果有)、补遗等磋商前公布的所有项目资料,无论供应商领取或下载与否,采购人和采购组织机构(采购代理机构)都视为供应商全部收到以上资料并全部知晓有关磋商过程和事宜,由此产生的一切后果由供应商自行负责。售价:¥400.0 元(人民币)四、响应文件提交截止时间:2023年03月30日 10点00分(北京时间)地点:重庆市北碚区天生路2号西南大学文俊楼(南区行政楼)二楼采购与招投标管理中心开标1室(西南大学二号门内400米处)。五、开启时间:2023年03月30日 10点00分(北京时间)地点:重庆市北碚区天生路2号西南大学文俊楼(南区行政楼)二楼采购与招投标管理中心开标1室(西南大学二号门内400米处)。六、公告期限自本公告发布之日起3个工作日。七、其他补充事宜 八、凡对本次采购提出询问,请按以下方式联系。1.采购人信息名 称:西南大学 地址:重庆市北碚区天生路2号 联系方式:柳老师 杨老师,023-68250945 68251032 2.采购代理机构信息名 称:中招国际招标有限公司重庆分公司 地 址:重庆市渝北区黄山大道中段53号5-1(双鱼A座5楼) 联系方式:秦佑琼、寿云凤、雷九红,023-68881331-9071、18502305170 3.项目联系方式项目联系人:柳老师 杨老师电 话: 023-68250945 68251032 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:红外光谱仪,近红外光谱仪 开标时间:2023-03-30 00:00 预算金额:280.00万元 采购单位:西南大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中招国际招标有限公司重庆分公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 (AZF202300009)西南大学近红外光谱仪竞争性磋商公告 (2023年3月30日 磋商) 重庆市-北碚区 状态:公告 更新时间: 2023-03-15 项目概况近红外光谱仪 采购项目的潜在供应商应在《中国政府采购网》(http://www.ccgp.gov.cn/)或西南大学采购与招投标管理中心网页(https://ecaigou.swu.edu.cn:30910/bid/index?redirect=%2F)获取采购文件,并于2023年03月30日 10点00分(北京时间)前提交响应文件。 一、项目基本情况项目编号:AZF202300009项目名称:近红外光谱仪采购方式:竞争性磋商预算金额:280.0000000 万元(人民币)最高限价(如有):280.0000000 万元(人民币)采购需求: 设备名称 数量 最高限价(万元) 采购标的对应的中小企业划分标准所属行业 成交人数量(名) 近红外光谱仪 1套 280 工业 1 注:1.供应商报价不得超过本项目 最高限价 ;2.以上采购项目内容的具体要求,见 第二篇 采购需求 ;3.本项目允许采购进口产品(指通过中国海关报关验放进入中国境内且产自关境外的产品)。 合同履行期限:自合同生效之日起至合同全部权利义务履行完毕之日止。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无 3.本项目的特定资格要求:进口产品须提供生产制造商的经销授权函或具有授权权限的代理商对投标产品的授权,且需提供该代理商具有有效授权权限的相关证明文件,证明文件需能显示产品制造厂家对投标产品授权链条的完整性(进口产品制造商参与投标的,不需要提供该授权)。三、获取采购文件时间:2023年03月15日 至 2023年03月22日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:《中国政府采购网》(http://www.ccgp.gov.cn/)或西南大学采购与招投标管理中心网页(https://ecaigou.swu.edu.cn:30910/bid/index?redirect=%2F)方式:凡有意参加本项目磋商的供应商,请于 2023 年3月15日起在《中国政府采购网》(http://www.ccgp.gov.cn/)或西南大学采购与招投标管理中心网页(https://ecaigou.swu.edu.cn:30910/bid/index?redirect=%2F)网上下载本项目磋商文件、图纸(如果有)、补遗等磋商前公布的所有项目资料,无论供应商领取或下载与否,采购人和采购组织机构(采购代理机构)都视为供应商全部收到以上资料并全部知晓有关磋商过程和事宜,由此产生的一切后果由供应商自行负责。售价:¥400.0 元(人民币)四、响应文件提交截止时间:2023年03月30日 10点00分(北京时间)地点:重庆市北碚区天生路2号西南大学文俊楼(南区行政楼)二楼采购与招投标管理中心开标1室(西南大学二号门内400米处)。五、开启时间:2023年03月30日 10点00分(北京时间)地点:重庆市北碚区天生路2号西南大学文俊楼(南区行政楼)二楼采购与招投标管理中心开标1室(西南大学二号门内400米处)。六、公告期限自本公告发布之日起3个工作日。七、其他补充事宜 八、凡对本次采购提出询问,请按以下方式联系。1.采购人信息名 称:西南大学 地址:重庆市北碚区天生路2号 联系方式:柳老师 杨老师,023-68250945 68251032 2.采购代理机构信息名 称:中招国际招标有限公司重庆分公司 地 址:重庆市渝北区黄山大道中段53号5-1(双鱼A座5楼) 联系方式:秦佑琼、寿云凤、雷九红,023-68881331-9071、18502305170 3.项目联系方式项目联系人:柳老师 杨老师电 话: 023-68250945 68251032
  • 能谱科技:红外光谱中官能团区和指纹区是如何划分的?有何实际意义?
    红外光谱中官能团区和指纹区是如何划分的?有何实际意义?红外光谱法是鉴别物质和分析物质结构的有用手段,已广泛用于各种物质的定性鉴定和定量分析,以及研究分子间和分子内部的相互作用。红外光谱仪已成为化学分析中应用最广泛的仪器之一,到目前为止红外光谱仪已发展了四代。di一代是最早使用的棱镜式色散型红外光谱仪,对温度、湿度敏感,对环境要求苛刻。60年代出现了第二代光栅型色散式红外光谱仪,由于采用先进的光栅刻制和复制技术,提高了仪器的分辨率,拓宽了测量波段,降低了环境要求。70年代发展起来的干涉型红外光谱仪,是红外光谱仪的第三代,具有宽的测量范围、高测量精度、极高的分辨率以及极快的测量速度。傅立叶变换红外光谱仪是干涉型红外光谱仪器的代表,具有优良的特性,完善的功能。70年代末出现的激光红外光谱,能量高,单色性好,灵敏度极高,可调激光既作为光源又省去了分光部件,作为第四代红外光谱仪,将成为今后研究的重要方向将红外光谱中4000—1300Cm的区域称为官能团区;1300—670Cm的区域称为指纹区。在官能团区每一个红外吸收峰都和一定的官能团相对应,可以根据红外光谱找出化合物中存在的官能团;在指纹区,各种单镇伸缩振动之间及与C—H弯曲振动之间会发生偶合,使该区域的吸收带很复杂,与已知物图谱比较,可得出未知物与已知物结构相同或不同的结论。能谱科技致力于傅立叶红外光谱仪,红外测油仪,粉尘游离二氧化硅分析仪的研发生产销售多元化gao新技术企业;无论是常规检查,还是用于前沿科学研究,在这您一定能找到合适您的理想工具。
  • 中仪标化红外光谱分析技术与应用培训班7月21日将于青岛举办
    中仪标化(北京)技术咨询中心,是专业从事光谱、色谱、质谱等仪器分析培训、实验室培训、高级化学检验员培训的专业培训机构。 是中国分析测试协会、中国仪器仪表学会分析仪器学会团体会员单位,国家质检总局质量技术监督行业国家资格取证委托培训单位。中仪标化目前已在全国各地成功举办100多期相关培训班,每年培训来自全国各地仪器分析测试人员及实验室管理人员近千名。   中仪标化将于2014年7月21日青岛再次举办&ldquo 红外光谱分析技术与应用&rdquo 培训班,邀请孙素琴教授、周群博士两位专家系统地讲授红外光谱相关知识与相关应用。   【培训详情】   培训时间:2014年7月 21日-7月26日   培训地点:青岛   培训对象:各企事业单位负责化学分析及ICP质谱仪器的负责人及工程技术人员   授课专家: 孙素琴 教授 清华大学化学系教授。主要研究领域为红外光谱法在复杂混合物体系中的应用,建立了&ldquo 多级红外光谱宏观指纹分析法&rdquo 等用于混合物体系分析的理论。兼任北京市理化测试技术协会常务理事和光谱分会副理事长,中国物理学会光散射专业委员会委员,《光谱学与光谱分析》和《中华中西医杂志》常务编委,《光散射学报》和《现代仪器》编委。目前已发表学术论文200余篇,获发明专利3项,出版专著三部。 周 群 博士 清华大学化学系副教授。研究领域为分子光谱。多年来一直从事红外、拉曼光谱的研究工作。主要研究重点为中药材的快速无损分析和中药材稳定性的研究,以及采用分子光谱法结合二维相关技术对中药和食品进行宏观质量控制的研究。兼任《计算机与应用化学》常务编委、《光谱学与光谱分析》编委等。   培训内容:详见培训通知   【报名详情】   报名官网:http://www.fxyqpx.org/Spetrain/19_1101.html   本网报名:http://www.instrument.com.cn/training/training_info.asp?TRI_No=101109   咨询电话:010-52573244 手机:15718847789   报名传真:010-61772365 报名QQ:1518048166   报名邮件:fxyq06@126.com
  • 在线近红外光谱技术在中药生产过程中的应用
    1.中药生产过程现状中药是我国独具特色和优势的民族产业,其在生物医药领域中具有重要的战略地位,并已逐渐发展成为我国制药经济的重要支柱之一。中药工业化生产流程融合了原料控制、生产控制、质量检测等多个步骤流程,具有工艺过程复杂、步骤繁琐、影响因素多、非线性及交互作用效应显著等技术特点。对于中药质量控制,国内的重点大多聚焦于药材和成品上,却忽略了生产过程及其中间体的质量控制;长期以来一直依靠人工抽样分析和离线检测对中间产品和最终产品的质量进行评估。这种检测方式具有耗时长、主观因素强、检测结果滞后于生产过程等缺点,难以依据实时质量波动情况来指导生产过程,进行及时调整。据了解,近年来由于质量问题,导致中间产物或最终产品的返工或报废的现象常有发生。2.近红外(NIR)在中药生产过程中的发展近年来,在线检测、过程分析技术(PAT)、质量控制体系等技术逐渐深入生产过程中,通过合理的过程设计、分析与控制,增强对工艺过程的理解,降低过程不确定性和风险,以此来保证最终产品的质量。目前常用的过程分析技术有近红外光谱在线分析技术、拉曼光谱在线分析技术、在线紫外等,其中,近红外光谱分析技术具有快速、高效、无需样品预处理等优势。由于无需样品预处理且近红外光谱可以通过光纤进行传输,近红外光谱分析技术十分适合复杂中药的原料药材质量快速分析以及体系生产过程的在线检测,包括药材产地鉴别、有效组分含量测定和制药过程的在线检测和监控。自“十三五”规划以来,泽达兴邦医药科技有限公司在中药生产领域已与众多“医药工业百强”企业合作成功实施了众多案例,如表1所示。表1 PAT在中药生产监测过程中的实施实例(泽达兴邦)客户单位实施品种说明扬子江蓝芩口服液离线、在线上药杏灵银杏酮酯离线、在线九芝堂六味地黄丸、驴胶补血颗粒在线、离线江苏康缘热毒宁、桂枝茯苓离线、在线华润三九(本溪)气滞胃痛颗粒离线、在线华润三九(枣庄)感冒灵颗粒离线、在线绿叶制药罗替戈汀离线、在线太极集团藿香正气口服液离线、在线北大维信血脂康离线、在线广东众生复方脑栓通离线、在线翔宇制药复方红衣补血口服液离线、在线… … 图1 中药生产过程近红外在线检测系统3.近红外在中药生产中的应用实例3.1华润三九感冒灵颗粒——浓缩、总混工段感冒灵颗粒功效为辛热解表,清热镇痛,其由三叉苦、野菊花、马来酸氯苯那敏、咖啡因等组成,被广泛用于因感冒引起的头疼、发热、鼻塞、流涕、咽痛等症状。野菊花中的蒙花苷等有效成分是感冒灵颗粒质量的重要检测指标,其生产过程复杂,因此保证每一个工艺环节产品质量的稳定是最终产品有效的依靠。但是目前的分析方法存在耗时、信息滞后等缺点,严重影响了产品的质量和生产成本,亟待开发一种快速、准确的检测技术。目前,近红外光谱检测技术已经逐渐从离线实验或者小规模的模拟实验向大生产过程的在线监测发展,与前者相比,近红外在线监测技术更具有实际指导意义,在保证对象中的指标可以用于建立准确的定量模型之上,还能够对生产过程的质量进行监控。泽达兴邦医药科技有限公司在国家工信部智能制造新模式应用课题的项目中,以华润三九的感冒灵颗粒、感冒清热颗粒、小儿感冒颗粒等公司重点产品,建立关键生产工艺环节生产过程快速检测和在线质量检测系统,并与SCADA系统集成,建立质量数据库。其中,包括对感冒灵颗粒、感冒清热颗粒和小儿感冒颗粒三种药物中流浸膏中有效成分和固含量、半成品中有效成分、原药材的水分和浸出物、浓缩液有效成分和浸出物等物质的快速测定和实时监测。在项目实施过程中,近红外检测系统能够有效应用于感冒灵颗粒的生产过程,实现了产品关键工艺环节中间体质量的实时动态在线监测,降低了工艺运行过程中间体质量波动性,提高了中成药生产全过程的质量控制水平。下图展示的是近红外技术与感冒灵颗粒制粒总混工序的结合应用,以其半成品为例,针对蒙花苷、对乙酰氨基酚、咖啡因、马来酸氯苯那敏含量所建立模型预测结果令人满意,其相关系数R分别为0.9757、09523、0.9705、0.9803,RMSEP分别为0.0115、0.219、0.202、0.126,均能够满足感冒灵颗粒半成品实时分析的精度要求。图2 小儿感冒颗粒浓缩固含量在线检测效果图3.2上海上药集团银杏酮酯——柱层析工段银杏酮酯为银杏叶的提取物,为棕黄色至黄棕色的粉末,其主要活性物质为黄酮醇苷及萜类内酯,临床上主要用于血瘀型的胸痹、冠心病心绞痛以及血瘀型的轻度脑动脉硬化引起的眩晕,能增加脑血流量,降低脑血管的阻力,改善脑血管的循环功能,保护脑细胞,稳定细胞膜,使脑细胞避免缺血所致的损害。还可扩张冠状动脉,增加冠状动脉的血流量,改善心脏的供血,防止心绞痛以及心肌梗死的形成。但是其原料药材来源广泛,品种繁多,同一品种药材因其生长条件、采收季节、加工方式及贮藏条件的不同而在质量上存在差异,从而使中药制剂成品存在一定的质量差异。传统的质量评价方法步骤较为繁琐,耗时较长,不利于大批量的快速质量检测。因此,选取一种快速分析、样品无损、方法简单的分析技术将能够大大减少生产过程质量检测时间与人工成本,减少产品等待放行时间。为了实现银杏酮酯生产过程的智能监测,泽达兴邦医药科技有限公司与上海上药集团合作了银杏酮酯PAT项目,在项目实施过程中建立了实现大品种银杏药材、中间体(提取液、浓缩液、醇沉液、层析液、干燥物)及成品质量指标的在线及离线快速检测方法,实现全生命周期质量快速检测与控制,解决了现有检测模式存在的结果滞后、分析时间长、效率偏低等问题。以大品种银杏酮酯层析过程为例,将层析过程与在线检测技术相结合,实现了层析过程药液质量指标的实时快速检测,可用于生产过程实时采集药液质量数据,图3展示了层析过程的在线检测安装图以及层析过程在线监测结果。结合DCS系统采集的工艺数据,为构建工艺和质量数据库提供数据来源,同时为后期中生产线进行工艺与质量信息的数据挖掘奠定技术基础。图3 层析工段在线检测安装图图4 层析工段在线监测结果图4.经济效益近红外在线检测技术的应用可以减少检化验人员的岗位设置与劳动强度,提高数据的处理量与准确性并能实时指导生产操作,在一定程度上降低了加工生产能耗,缩短了中药的生产周期,为企业带来良好的经济效益,具有非常广阔的应用前景。以上述银杏酮酯为例,醇沉、柱层析的生产过程终点判断是中药制药过程中的常见问题,传统的中药生产过程终点判断方法主观性强且无实际理论依据。通过建立银杏酮酯层析工段的MBSD定性模型追踪不同生产批次,可以得到银杏酮酯层析工段洗脱过程的实时预测图。结合工艺,可将模型分为静置工段、水洗工段、洗脱阶段、乙醇回收阶段,其中明显可以看出洗脱工段的起点与终点,说明该模型可以判断洗脱起点与终点。利用近红外光谱技术对中药生产过程进行终点判断有助于及时、准确地识别过程终点,减少了收集时间,大大降低了能源损耗,提高原料利用率,保证产品质量的均一稳定,为银杏酮酯产品质量的提升奠定了理论基础。5.展望针对中药生产领域,近红外光谱技术的应用还存在一些局限。近红外作为一种分析技术,对所建立的模型依赖性较高,生产批次间的差异以及生产时间的不同均会影响模型的可靠性,因此模型的更新以及不同近红外设备之间的模型传递仍是目前需要解决的问题之一。同时,中药制药过程涉及的化学物质种类相对较多,原料可能存在较大变异,常需要监控多个CPP或CQA,过程监测难度大,工艺控制相对复杂,不可控因素较多;而且目前中药原料的近红外检测过程往往需要对原料进行打粉处理,能否实现完全无需预处理的近红外在线检测也是值得研究的问题。连续制造作为未来药品制造的发展趋势,药品开发者和制造商们对此表现出极大的兴趣,下图为中药颗粒的连续制造概念图,设计连续配料、连续制软材、连续制粒、连续干燥、连续总混工序,通过设备和控制系统设计,使得每一单元操作之间物料/产品不间断通过。通过实时监测和控制将制软材颗粒、干燥颗粒、总混颗粒后测得的水分、对乙酰氨基酚、马来酸氯苯那敏、咖啡因构成实时联动的反馈控制系统,并结合物料的物理和化学性质,生成模拟出用于放行的数据模型,并对包装后的制剂进行实时放行检验。图5 颗粒剂的连续制造概念图与西药相比,中药的药材原产物具有质量波动较大的特点,不同批次中药质量差异在一定程度上影响了中药临床药效的稳定发挥,“均化”指导原则的提出旨在为不同批次的合格处方药味等按适当比例投料并到达预期质量目标。此外,随着数据技术和网络技术的发展,数据智能化概念与近红外节点进行联合应用是未来近红外技术发展的重要方向之一,通过近红外在线监测技术为连续制造过程中药品关键质量属性的在线实时监测提供了更多选择,支撑中药生产制造逐步向连续制造方向发展。(作者:王钧)作者简介王钧,2013年参加工作,现任苏州泽达兴邦医药科技有限公司过程分析控制部技术总负责人,苏州市姑苏紧缺人才,苏州高新区重点产业人才引进,同时担任中国仪器仪表学会近红外分会协会理事。近年来主要从事过程分析技术及其应用研究,先后参与国家工信部智能制造新模式项目5项、工业转型升级(中国制造2025)1项。先后完成多个中药上市企业的制药过程质量控制技术研究与工业应用项目,包括山东绿叶制药有限公司“罗替戈汀”生产过程质量控制技术研究、扬子江药业集团江苏龙凤堂中药有限公司国家工信部智能制造新模式应用项目子课题:“蓝芩口服液”生产过程质量控制技术及产业化应用研究、江苏康缘药业股份有限公司工信部智能制造试点示范项目“中药生产智能工厂”项目-热毒宁注射液生产全过程质量控制体系构建、重庆天圣制药集团股份有限公司国家工信部智能制造新模式应用项目子课题“银参通络等中药单品种生产过程分析技术研究及系统构建”及国家重大新药创制课题“中药新药地贞颗粒先进制造与信息化技术融合示范研究”。发表相关论文23篇,其中SCI 5篇,申请发明专利3项,团体标准1项(在线近红外)。单位简介:泽达兴邦成立于2011年,是依托浙江大学苏州工业技术研究院和浙江大学药学院的科研创新体系孵化出来的医药领域高水平科技创新企业,是国内医药制造大健康方向既有竞争力的信息化解决方案供应商和系统集成商。公司联合浙江大学主导制定了国际首个中药生产工艺语义关联的ISO国际标准并于2020年1月出版,先后荣获中国科协“智能制造十大科技进展”、中华中医药学会“科学技术奖一等奖”、荣登中国科协2020年度“科创中国”先导技术榜单等荣誉,入选工信部2019年智能制造系统解决方案供应商。公司专注于新一代信息技术与医药健康领域的创新融合,致力于中药、疫苗等制药全产业链智能制造解决方案,推动具有行业示范效应的核心技术应用,开发了一系列具有核心竞争优势的信息化技术及软件产品。已在国内近百家中药制药企业进行产业化应用,为国内中药领军企业开展中药全产业链智能制造整体解决方案设计与实施服务,核心在于PAT系统的构建。
  • 赛默飞紫外/红外光谱仪代理商招募活动火热进行中!
    导读作为科学服务领域的世界领导者,赛默飞从未停止过合作共赢的脚步。公司一直致力于开发渠道销售,增强代理商实力,尊重和依靠广大合作伙伴。为了更好地满足如今日益增长的市场需求,赛默飞紫外可见分光光度计&傅里叶红外光谱仪现面向全国范围内诚邀代理商加入我们合作伙伴行列。我们采用灵活多变的渠道合作模式,欢迎广大朋友前来咨询,携手并进,共创共赢!产品介绍紫外篇作为全球知名的仪器制造商,赛默飞旗下拥有众多脍炙人口的仪器品牌。其中UV-vis生产历史可追溯到20世纪40年代的Unicam公司。从1940年推出世界上第一台商用紫外可见分光光度计Unicam SP500开始,已有长达70多年的发展历程。在此期间赛默飞分光光度计产品和配套服务一直致力于加速客户在研究领域的进程、解决客户在分析过程中遇到的各种复杂问题与挑战,我们的产品也随之经历了无数次的优化和革新,生产出一代又一代享誉世界的产品,服务于众多的实验室,并配备专业的服务团队,解决客户的后顾之忧。如今赛默飞的分光光度计可为客户提供从液体到固体、从手动到自动、从离线到在线、从基础到研发等多种情况的解决方案。使用场地也覆盖了实验室,移动车辆及户外。并继续走在优化创新的路上。目前我们在售的紫外主要分为:Genesys、Evolution两大系列。 红外篇赛默飞傅里叶红外光谱仪(FT-IR)前身为美国尼高力(Nicolet)仪器公司,世界上最大的傅立叶红外光谱仪和拉曼光谱仪专业生产厂家。美国《分析消费者》杂志评选 10 种分析仪器最佳供应商,其中 FT-IR 最佳供应商是 Nicolet。世界著名咨询公司 SDI 撰写的关于化学分析仪器“市场分析与前景报告”,其中列出了 FT-IR 光谱仪世界前五名生产厂家,Nicolet 名列第一。美国《分析仪器制造商水准研究报告》,美国《光谱学》等杂志均将 Nicolet 评为 FT-IR 市场领导者和购买首选厂家。Nicolet 在中国开展业务已有 30 年历史,设有健全的销售咨询和技术支持机构,广泛应用于诸如制药、化工、化妆品、珠宝等众多行业和领域。凭借优异的产品性能和表现,Nicolet傅里叶红外已在中国获得了众多行业和领域客户的信赖和认可,很多世界知名的高校,科研院所,大型企业和政府单位都是我们的客户和忠实粉丝。目前我们诚招代理的型号包括:iS5和Summit系列产品。 以上两类产品,采用渠道销售的模式,由赛默飞授权符合资质的代理商进行指定区域/行业销售业务,每年签发一次正式授权书。赛默飞的合作伙伴必须资质完善、诚实守信、共同遵守业务合作规则。我们也会提供丰富的产品培训、应用支持和技术服务。报名方式欢迎在展台留言或致电我们,我们将会第一时间与您取得联系!
  • 红外光谱的测量极限在哪里?
    [导读] Quantum Design公司一直致力于引进先进的红外光谱技术,其中neaspec纳米傅里叶红外光谱仪、微秒时间分辨超灵敏红外光谱仪在探寻红外光谱测量限上展现了特的魅力,先后获得科学仪器“新品奖”。近年来,在多领域大发展及各类新技术不断进步的形势下,传统的红外光谱技术已经从单纯的红外光谱仪、显微镜与红外光谱联用,发展到了红外成像系统,并在信噪比、空间分辨率、时间分辨率、测量模式等方面呈现了新的发展活力。同时,在新技术的助力下,红外光谱在应用方面也得到了很大的拓展。   Quantum Design公司一直致力于引进先进的红外光谱技术,其中neaspec纳米傅里叶红外光谱仪、微秒时间分辨超灵敏红外光谱仪在探寻红外光谱测量限上展现了特的魅力,先后获得科学仪器“新品奖”。业界评价:Quantum Design在产品的选择上颇具眼光! 为了多方位展现我国在红外光谱领域的新成果,仪器信息网特别策划制作《稳中求新红外光谱技术及应用进展》网络专题,特别邀请Quantum Design中国表面光谱销售总监韩铁柱博士为大家介绍红外光谱仪的新技术及应用情况,并探寻红外光谱的测量限。   红外光谱技术发展需求:高敏感度、高空间和高时间分辨率 仪器信息网:从仪器发展及应用的角度分析,您认为目前红外光谱仪器及技术走到了哪一个阶段?韩铁柱博士:人类对红外光的认识已经超过两个世纪,1800年,英国科学家W.?Herschel在研究温度计对紫色到红色光照射变化时,就已经意识到红色末端区域外仍然存在着看不到的辐射区域。九十年后,瑞典科学家Angstrem利用CO和CO2次证明了不同分子具有不同的红外谱图,并在此基础上进一步建立了现代分子光谱学。在此之后的一个多世纪里,人类科学家已经可以利用红外光手段,对大量的分子振动和转动信息进行谱学分析和鉴别。上世纪50年代,双光束红外光谱仪的问世,意味着红外检测已无需由经过专门训练的光谱学家进行操作,也能轻易获取数据。该设备的商业化及畅销普及标志着红外谱学门槛的大降低,在科学研究、社会实践及工业控制等领域将迎来飞跃式发展。现代红外光谱议主要指由上世纪80年代发展建立的以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。与更早期的双光束红外仪器相比,傅立叶红外光谱仪具有快速、高信噪比等特点,并且随之催生了许多新技术,诸如步进扫描、时间分辨和红外成像等,从而拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。然而,随着科学技术的不断发展和应用领域的进一步细分,特别近年来纳米材料、拓扑材料、二维材料等新材料的兴起,传统傅立叶红外光谱仪光源亮度弱、光斑范围大、迈克尔逊干涉仪平动速度慢等缺陷开始显现,逐渐不能满足红外光谱科学研究中高敏感度、高空间和高时间分辨率的需要。仪器信息网:目前红外光谱的测量限发展到了什么程度?可以给大家带来什么样的体验?韩铁柱博士:目前,传统红外光谱的空间分辨测量限在几微米到几十微米,时间分辨测量限在几十毫秒的量,这主要是由于光源本身及步径位移机制限制。20世纪60年代开始,随着台红宝石激光器的问世,科学领域得益于激光技术的广泛应用,对光谱研究的空间分辨和时间分辨也得以大幅提高。由于激光器的高线性特点,非接触式的红外光谱技术空间分辨率可达500nm,如果进一步搭配近场探针突破衍射限,空间分辨可进一步提升至10nm。利用QCL激光的双光梳设计,目前激光base的红外光谱可以完全抛弃步径位移,将时间分辨提高到us,如果将超快激光引入pump-probe体系,时间分辨可以达到fs别。仪器信息网:相对于其它的分析仪器,红外光谱的应用市场活力如何?哪些应用领域会有大的发展空间?为什么?韩铁柱博士:相对于其他分析仪器,红外光谱分析技术具有使用成本低、操作和维护简单、灵敏度和分辨率较高、特征性强等优点,能提供包含化合物官能团、类别、立体结构、取代基种类和数目等多种信息。近年来计算机技术的迅猛发展带来了分析仪器数字化和化学计量学科的同步发展,加之红外光谱技术有特点,使得其应用范围进一步拓宽。红外光谱既可以用于定性分析,也可以用于定量分析,还可以对未知物进行剖析,广泛应用于化工、制药、农业和食品、半导体、宝石鉴定、质检、地矿和环境等领域,是科学研究的有力技术手段,也是常规应用分析和生产不可缺少的分析技术。譬如在中医药领域,作为一个复杂的混合体系,中药的鉴别和质量控制,以及有效成分的确定和质量分析,一直是个难题,红外光谱技术的特点使得其作为指纹分析手段并结合化学计量学方法,成为中药研究不可或缺的工具 在农业和食品领域,近年来得益于焦平面阵列检测器、可调谐滤光器、化学计量学方法和计算术的提升,红外光谱和成像技术有机结合发展成为一种多信息融合检测技术。除了进行农产品和食品的品质分析外,红外光谱的应用还扩展到了污染物检测、产品分类和来源鉴别、土壤的物理和化学变化、以及食品加工过程中组成变化的监控和动力学行为等。Quantum Design红外产品着眼红外光谱测量限仪器信息网:请介绍贵公司在红外光谱产品的定位及发展历史?有哪些具优势(里程碑式)的技术(技术,有技术)? 韩铁柱博士:我们公司一直贴合新研究前沿和热点课题,结合红外光谱的应用与现代科学研究的需要,专注新、先进红外光谱技术和产品的引进,先后引进了德国neaspec公司的nano-FTIR 10纳米超高空间分辨的新型傅里叶红外光谱仪、美国PSC公司的mIRage非接触式亚微米分辨触红外拉曼同步测量系统,2019年又引进了瑞士IRsweep公司的IRis-F1微秒时间分辨超灵敏红外光谱仪。这三款主推产品从空间分辨率、非接触测量、时间分辨等维度,大推动了红外光谱测量限。 nano-FTIR纳米傅里叶红外光谱技术是由德国neaspec公司基于其创的散射型近场光学技术发展出来的、具有10纳米超高空间分辨的新型傅里叶红外技术,使得纳米尺度下的化学鉴定和成像成为可能。这一技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,实现对几乎所有材料的化学分辨和成分分析。它不受被检测样品厚度制约,可广泛适用于有机物、无机物、半导体材料、二维范德华材料的纳米分辨红外光谱分析,并同时提供纳米空间分辨的红外吸收谱和反射谱。 全新一代mIRage非接触式亚微米分辨触红外拉曼同步测量系统,是美国PSC公司基于的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500nm的空间分辨率 它具备非接触式/反射模式测量,对样品表面无严格要求,可直接对厚样品进行测试 可搭配液体模式和与拉曼联用,直接观察液体生物样品,并对样品进行同时同地同分辨率下的红外拉曼同步光谱和成像分析,无荧光风险。 瑞士IRsweep公司推出的IRis-F1微秒时间分辨超灵敏红外光谱仪,荣获了由仪器信息网主办2019年度科学仪器“新品奖”,它是一种基于量子联激光器频率梳的红外光谱仪,突破了传统光谱仪需要几秒钟或者更长的测量时间来获取一个完整的光谱的限制,能实现高达1μs时间分辨的红外光谱快速测量。它测量数据信噪比高,易于微量及痕量光谱分析,兼容常用红外光谱仪插件,方便易用、可靠性高。仪器信息网:贵公司红外光谱仪应用具优势的领域?主推的解决方案?韩铁柱博士:我们公司近几年在红外光谱领域销售保持持续地稳定增长,针对不同的应用领域和具体的技术需求,我们推出了对应的解决方案。1、nano-FTIR是我们针对傅里叶红外光谱空间分辨率在10nm量,所推出的成熟技术方案,它利用AFM探针突破红外光斑的限制,并利用激光光源的高亮度和稳定性可进超高空间分辨下的物质微纳组分研究和表征。并后期结合飞秒激光器,可实现fs的红外光谱测量表征。美国NASA于2014年从太空带回了直径约为10um的彗星碎片。由于传统红外分辨率受制于光斑大小,该样品内部成分无法进一步检测。利用上述内容提到的纳米傅里叶红外技术10nm空间分辨率,科学家可以很好的对彗星碎片内主要5种矿物进行有效分析,并能就其组分的空间分布进行具体的表征。进一步地,在10nm超高空间分辨率的基础上,nano-FTIR还可以与50fs的时间分辨超快激光技术进行结合,同时达到红外设备的“超高空间分辨”和“超高时间分辨”。该工作在2014年由Eisele等人在实验室实现,作者利用pump激光和我们的纳米傅立叶红外光谱进行同步,在InAs纳米线上由-5ps到1050fs分别延迟激发样品,得到了纳米线上载流子形成和衰减的全过程红外光谱图。2、当红外光谱空间分辨率要求在亚微米量,且传统傅里叶变换红外光谱和ATR技术应用受限或者样品制备困难情况下,mIRage非接触式亚微米分辨触红外拉曼同步测量系统无疑是一个好的选择。它的高空间分辨率、非接触式的测量方法以及可与拉曼联用的特点,可以快速获取材料的二维红外光谱和组成分布信息。越来越多的塑料产品的使用引发了人们对于其在环境中累积所引发的环境和生态污染问题的担忧,迫使科学家尽快找到可替代性的新型材料。而生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),在适当条件下可发生生物降解,成为近研究的热点话题。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组使用mIRage系统对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究了这两种材料结合的方式和内在扩散机制,为未来研究生物微塑料的演变和降解过程提供数据和理论上的支持。3、为描述生物医学、化学动力学等许多变化过程中的红外光谱情况,我们推出了IRis-F1微秒时间分辨超灵敏红外光谱仪解决方案。斯坦福大学的Nicolas H.Pinkowski研究团队利用IRis-F1实现了高能气相反应中的微秒分辨单次测量。他们在压力驱动下的高温、高压反应釜中研究了一种剧烈的丙炔氧化化学反应,以4μs时间分辨测量速率,解析了丙炔与氧气之间1.0 毫秒高温反应的详细动力学光谱。来自IRis-F1的量子联激光的双梳状光谱仪(DCS)测试数据表明:在反应早期(0-0.6 ms)能观察到宽带丙炔吸收特征峰,而在0.75 ms之后可以观察到水的精细特征光谱。未来:通用型和专用型红外光谱协同发展 仪器信息网:目前国内外红外光谱仪的技术及市场发展态势有什么不同?您如何看待未来中国市场的需求及发展潜力? 韩铁柱博士:当前市场上红外光谱仪可以大致分为通用型和专用型两大类,体现了红外光谱仪的发展与工业化需求以及科学研究需求是密切相连的。进口通用型红外光谱仪市场主要以傅立叶变换红外光谱仪(FTIR)为主,制造厂家主要来自于欧美等国,而色散型红外光谱仪比较少见 近些年来国产的FTIR厂家逐渐崭露头角,尽管技术和主流公司相比还有一定差距,但差距正在不断缩小。其新型干涉光路的搭建,有效降低了振动和导轨偏移引发的干涉变形,结合众多新型红外附件的开发,目前国内红外光谱议产品正在走出国门,远销欧美和东南亚 专业的研究型红外光谱仪主要在一些科研机构使用,存在一定的定制化,它可以与红外显微镜、热分析、气相色谱等外联附件联合使用,实现多种分析手段的同步进行和数据交叉对比。作为普适性的一种分析手段,红外光谱仪在国内有较大的潜在市场,未来红外光谱仪技术,无论是智能化程度、产品联用、应用领域专业化还是小型化上都存在很强的发展潜力。另外,红外光谱与成像相结合的多信息融合检测技术,也是当前红外技术的主要发展方向。未来随着应用领域的不断扩展,制造技术的不断变革以及计算机技术的发展,更多成本更低的研究型和专用型红外成像光谱仪预计将会陆续出现,被更多的应用于过程分析和高通量分析中,如制药,农业,食品,高分子和催化材料等领域,成为传统红外光谱技术的一种有力互补技术。仪器信息网:针对当前的市场格局,贵公司在红外光谱产品方面有什么样的布局?重点拓展的新领域有哪些? 韩铁柱博士:针对当前的市场格局,我们公司继续结合科研用户的技术需求,引进一系列红外产品引入中国市场,比如基于AFM探针技术的超高纳米空间分辨率的近场光学显微系统、散场式光学显微镜、纳米傅里叶红外光谱仪等 同时,我们也将开展通用型红外光谱仪的布局,引入适合普通科研用途和工业应用的光谱仪,拓展其应用领域范围,解决一系列应用中的实际问题,具体体现在:1)针对传统傅里叶变换和衰减全反射红外光谱限制的亚微米分辨光学光热红外显微技术,提高其空间分辨率;2)简化样品制备过程,避免样品污染和接触引发的红外赝相;3)拓展红外样品的适用范围,包括一些常规红外无法检测的厚样品,透明样品,液体样品等;4)努力发展与其他技术的联用,实现多种技术的交叉互补使用,全面了解样品表面的化学信息,如红外和拉曼光谱技术联用,对有机无机样品的各种分子振动进行全面的分析和相互验证。通过以上布局,我们一方面注重拓展高新技术领域的红外光谱应用,如纳米红外光谱和成像,超快/时间分辨红外光谱等,用于纳米材料的高分辨表征和化学过程的监测 另一方面拓展实际应用领域的红外技术应用,包括制药、化工、半导体、农业和食品、地质和环境、法医鉴定等,解决科研和生产过程中遇到的一系列实际问题,推动红外光谱技术的应用。后记:习近平总书记非常重视科技创新能力,他在重要讲话中指出“自主创新是我们攀登科技高峰的必由之路”,“当今科技革命和产业变革方兴未艾,我们要增强使命感,把创新作为大政策,奋起直追、迎头赶上”。Quantum Design中国也以此为己任,在公司的建设和发展过程中,致力于为中国科研工作者的成功提供专业支持和服务。韩铁柱博士介绍说,“我们深深理解国内科学家和学者们从不缺乏创新性的科研想法和构想,如何借助先进仪器帮助科学家将这些想法付诸于实践,是Quantum Design中国一直在思考的问题。”据悉, Quantum Design中国建立了超过300万美元的样机实验室,为国内科学家尝试自己的想法提供了舞台和施展的空间。就红外光谱分析仪器而言,Quantum Design中国样机实验室引进了德国neaspec公司的nano-FTIR 10纳米超高空间分辨的新型傅里叶红外仪,以及美国PSC公司的mIRage非接触式亚微米分辨触红外拉曼同步测量系统,并向国内科学家开放。截至2020年6月,Quantum Design中国样机实验室测量的数据已经协助科学家在Nature正刊、Nature子刊、ASC等著名国际期刊上发表多篇创新性的科研成果,得到了广大科学家的认可和赞誉。
  • 近红外光谱仪相关企业走访调研
    仪器信息网讯 作为“科学仪器自主创新政策保障体系研究”专项课题调研活动的一部分,2012年4月9日-11日,该课题调研组走访了江苏、上海两地的国内外近红外相关仪器厂商。   调研组成员包括了中国仪器仪表学会、近红外专业技术委员会的相关负责人,近红外光谱仪器研发专家以及应用方法开发的专家,北京科学学研究中心该课题具体负责人,业内专家等,如中国仪器仪表学会的科学仪器学术工作委员会执行副主任燕泽程、总后油料研究所刘慧颖研究员、浙江大学的戴连奎教授、江苏大学食品学院陈斌教授、华东理工学院倪力军教授、中石化石油化工科学研究院褚小立博士、业内资深人士李云济博士、北京科学学研究中心杨丽及常静 同时仪器信息网亦参加了此次调研活动。 调研组部分成员 (上排从左至右分别是:燕泽程、刘慧颖、戴连奎; 下排从左至右分别是:陈斌、倪力军、褚小立)   “科学仪器自主创新政策保障体系研究”专项课题此次选择的调研对象包括:近红外光谱关键零部件生产企业、即将进入或正在进入近红外光谱仪器领域的企业,以及国内外知名的近红外光谱仪器生产企业等。   在调研过程中,中国仪器仪表学会的科学仪器学术工作委员会执行副主任燕泽程向各企业介绍了中国仪器仪表学会的基本情况,并指出,“作为一个立体式的服务平台,学会希望在人才流、资金流、信息流等方面为企业提供全方位的支持。”   北京科学学研究中心的杨丽、常静向各企业介绍了专项课题的设立背景和目的,“科学仪器自主创新政策保障体系研究”专项课题由科技部设立,北京科学学研究中心、中国仪器仪表学会联合开展研究。为了推动2011年科技部、财政部首次设立的国家重大科学仪器设备开发专项的有效实施,此专项课题构建了相关政策保障体系,确保能够促进我国科学仪器设备自主创新能力的有效提升。   江苏飞格光电:半导体激光器生产企业 人均产值高达200多万   江苏飞格光电有限公司成立于2009年,坐落于江苏镇江科技新城。江苏飞格光电拥有最先进的激光器技术和封装技术,主要经营光通信用半导体激光器组件、光发射/接收模块、光收发一体模块等,具备光器件、光模块的全系列产品的研究开发和生产加工能力。经过3年的发展,目前江苏飞格光电年产值已达9000万,而其员工则不到40人,其人均产值高达200多万,是一家具有潜力的企业。 江苏飞格光电有限公司总经理 詹敦平先生   江苏飞格光电主要产品之一的半导体激光器,可作为近红外光谱仪的光源。半导体激光器应用在光纤通信领域的波段是从760nm—2900nm,而近红外光谱(780—2526nm)区域与光通信用的光谱波段有很大的交集面,因此,半导体激光器在激光光谱学中具有广泛的应用,包括从分子光谱、等离子物理、高阶谐波产生的应用到大气污染的监测及癌症的诊断等。半导体激光器在光谱仪器中优势主要有可调谐性、高灵敏度、高选择性、波长易调制性、高单色性、价格低且寿命长及高可靠性。780nm、850nm、980nm、1270—1610(20nm间隔)波长范围的半导体激光器可以直接应用到近红外光谱仪器上。   江苏惠通:国产基于MEMS技术近红外光谱仪将产业化   江苏惠通集团主要产品为遥控器、显像管插座、连接器、控制系统装置、其它电子产品五大类,专业开发生产遥控器已有十余年,拥有40条遥控器专业生产线,年生产能力达4500万只。为飞利浦、东芝、夏普等国际知名公司及国内名牌厂家配套。 江苏惠通集团工程技术中心主任 龙涛先生   江苏惠通集团工程技术中心龙涛主任热情接待了前来调研的专家们,并介绍了公司研发中心的情况以及近红外光谱仪研发过程中的问题等。惠通几年前就开始研发近红外光谱仪技术,于2010年3月,该公司的《MEMS内嵌式、便携式智能红外光谱探测器研发》项目通过了验收。但是,该仪器的一致性、光学效率等性能的提高还需要时间解决。目前,该仪器正在多个应用单位使用,通过用户的反馈不断完善仪器技术,相信不久该产品将实现产业化。   集团拥有60多人的省级技术开发中心,用于生产的技术支持 同时又内建由30多人组成的电子产品研究中心,专门致力于尖端领先产品的研究开发,具有较强的自主研发RF产品及其它各类智能化产品的能力,包括近红外光谱仪、压电陶瓷触摸按键等的研发。   福斯:为客户提供世界上最好的专业的分析解决方案   1956年,Nils Foss先生在丹麦成立福斯公司。目前,公司在世界各地约有1155名员工,在四个国家建立了研究和开发中心、在四个国家设立了制造工厂、在20多个国家成立了销售和服务公司、世界各地拥有超过75个专用经销商。2011年福斯公司销售额约1.9亿欧元,98%的业务产生在丹麦以外。 福斯赛诺分析仪器(苏州)有限公司总经理 Rikard先生 福斯赛诺分析仪器(苏州)有限公司商务经理 田毅先生   在全球范围内,福斯公司有40000多个用户,几乎包括了所有食品和农业方面的前100强的跨国公司,和一些中小型的企业。全世界85%的牛奶生产、80%的粮食交易和75%的啤酒生产都是使用福斯的解决方案进行测试。   福斯公司是一家致力于技术创新的企业,拥有超过200名的高级工程师和科学家组成的研发部门,每年将销售额的11%投资于产品创新和开发。在福斯公司研发部门中,有一个专门进行“概念设计”的团队——研发未来10年用户会用的技术 而且福斯公司新产品研发的流程控制严格,有效规避了研发风险 同时在整个开发过程中,还积极邀请了客户参与,保证了所开发的新产品能够满足客户需求。   上海棱光:步履艰难的国产近红外厂商   上海棱光技术有限公司成立于1993年,是由上海分析仪器总厂研究所的一部分改制而成,至今已有近半个世纪研制光谱及其他分析仪器的历史。目前,公司共有员工60多人,年销售收入1000多万元,其中出口量达18%。 上海棱光原总经理 吴树恩先生 上海棱光总经理 李兵先生   吴树恩先生介绍了一些上海棱光技术创新的例子,和专家一起分析探讨了其中成功、失败的原因。李兵先生介绍了上海棱光的发展概况。   上海棱光以勇于创新为企业精神,公司技术人员比例达70%,大学以上学历达到95%,技术开发人员在分光光度计领域都有着数十年的开发经验,研发力量雄厚,并与中国农大、复旦大学等多所高校建立长期合作与开发关系。上海棱光还承担了上海科技发展基金项目、国家级火炬计划、国家创新基金、国家科技部攻关项目及上海市高新技术成果转化项目。   上海棱光主要产品有分子光谱仪器、物理光学仪器、生命科学仪器等,公司产品全部为拥有自主产权的新型仪器。目前,上海棱光根据国内行业及市场的需要,将主要精力集中于中高端荧光分光光度计的开发与应用。其中,F97系列荧光分光光度计代表了国内一流水平。近红外系列仪器是国家科技部“九五”攻关项目,已于2002年通过部级专家验收,自主开发研制,包括两项专利,其中S400为农产品品质快速测定仪,是针对农产品、种子、饲料工程等行业收购检测分析所用。   赛默飞:提供实验室、在线、手持式近红外光谱仪全线产品   赛默飞世尔科技年销售额120亿美元,员工约39000人。借助于Thermo Scientific、Fisher Scientific和Unity™ Lab Services三个首要品牌,赛默飞将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。   1982年,赛默飞在中国建立第一个销售办公室。经过三十年的发展,目前赛默飞在中国拥有1900名员工,服务于第一线的专业人员超过1000名 6家生产工厂,苏州在建的大规模工厂2012年也将投产 在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务 位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品 在北京、上海、广州、成都、沈阳等多个城市设有分公司或销售办公室,2012年还将在武汉、西安成立分公司。 赛默飞中国区市场传播总监 毛君玲女士 赛默飞中国区市场便携式光学分析销售经理 徐征宇先生   赛默飞近红外光谱仪产品和技术包括来自尼高力的研究型、在线型傅里叶变换近红外光谱仪产品,以及来自于Polychromix公司的手持式近红外光谱仪。Polychromix公司利用提供给NASA(美国宇航局)的MEMS技术,开发出了首款实现真正意义上的手持式近红外分析仪,应用于医药、海关、食品安全、农业、饲料、塑料回收、织物回收、以及烟草等行业,为使用者带来了方便快捷的检测方式。   海洋光学:创新20年 定位于Key Components Provider   1989年,Michael J.Morris博士获得了美国能源部资助项目——测量海水中酸度、颜色的变化。1992年Morris博士发明了世界上第一台微型光纤光谱仪,创立了海洋光学公司。2004年海洋光学被豪迈集团收购。海洋光学加入豪迈集团后,制定了正确的市场战略和定位、完善了产品线、获得了充裕的资金和经验丰富的职业经理人等,市场快速扩张,保持了市场份额第一。海洋光学涉及到的技术和产品线包括光谱仪、化学传感器、度量仪器、光纤、薄膜及光学元件。至2011年,海洋光学在全球累积售出了180000套光纤光谱仪。 海洋光学亚洲分公司首席顾问 龚雅谦先生   2006年,海洋光学在上海成立亚洲分公司 2009年,成立了蔚海光学仪器公司,开始中国本地化生产和研发 2010年,部分产品线从美国转移到中国 2011年,海洋光学亚洲销售额比2006年增长了20倍,占全球的四分之一。海洋光学在上海主要生产组装光纤和部分光谱仪产品,并且已经开始为中国客户量身定做一系列解决方案。   海洋光学的愿景——Powered byOcean Optics,即公司主要发展方向是提供微型光纤光谱仪这个“心脏”。其大部分产品都隐藏在合作伙伴的环保仪器里面,因此大家很少能直接在市面上看到海洋光学的产品,就好像Intel的CPU一样。而其中也包括多款用于近红外光谱中的光学器件和可独立使用的近红外光谱仪。   在技术创新方面,近期,海洋光学投入10000美金设立创新奖“Blue Ocean”,“Blue Ocean”的设置旨在积聚创造性的创意和技术,激发有志之士发掘潜能改造世界,实现最终的市场商品化。Blue Ocean 奖项分为两阶段,第一阶段的奖项发布旨在为新创意新技术的评估及开发提供资金,进行概念的考证。   瑞士步琪:推动近红外光谱技术的专业性与应用性   1939年,瑞士步琪公司创始人Walter Buchi先生创立了一间玻璃工厂,即瑞士步琪公司前身 1957年,瑞士步琪公司推出世界上首台旋转蒸发仪,有效地解决了化学实验室中有机溶液的快速回收问题,至今已经成为全球旋转蒸发技术的市场领导者 1961年,瑞士步琪公司推出凯氏定氮仪、熔点仪 1999年,瑞士步琪公司收购了瑞士布勒集团的分析技术部门,主要引入了近红外光谱仪产品线和整个技术团队。   2005年,瑞士步琪公司在中国成立子公司——步琦实验室设备贸易(上海)有限公司,全面负责瑞士步琪公司在中国(含香港、澳门)的市场、销售及售后服务在内的一切业务。 步琦实验室设备贸易(上海)有限公司总经理 邱世章先生   目前,瑞士步琦近红外光谱仪主要有两款,如,2005年上市的NIRFlex N-500,2010年上市的IP 54防尘防水NIRMaster近红外以及2012年推出的IP65防尘防水的NIRMaster近红外。瑞士步琦近红外技术采用了专利的偏振干涉仪,将傅里叶变换近红外的抗震性提高了40倍 其NIRCal化学计量软件,可自动建模、评估模型优劣。   国产近红外光谱仪器发展探讨   在此次近红外光谱仪器相关厂商走访活动中,专家与厂商负责人通过深入交流,探讨了近红外光谱仪器发展所面临的问题:   近红外光谱仪器的光源、探测器等工艺需要保障其稳定性、一致性、可靠性等 稳定且具有一致性的近红外光谱仪是标准化所要求的基础,同时模型传递方法的应用是以重复性极好的仪器设备为前提的   小型化、便携式、单一性专用仪器与通用性共同发展,未来可与环境保护、食品安全相结合,发展专用仪器   近红外光谱技术对软件的维护较其他分析仪器的要求更多一些,所以,近红外光谱要发展,最终需要有用户企业组建应用团队   专注1~2个具体的应用领域,面不要太广,即选好用户   近红外光谱市场前景很好,但是需要培育,以及思想观念的转变   国产近红外光谱仪新产品开发中缺乏快捷的科技信息沟通、最新的元器件等   近红外光谱原理创新的难度大,其新产品技术的研发需要人力、技术的积累   应将更多的、有一定规模的国内仪器公司拉入近红外光谱领域   “做”仪器是一个非常复杂的事情,对市场需求、国家政策、标准、上下游企业、知识产权等需要深入了解、并且要与之相符合。
  • 红外光谱的测量极限在哪里
    p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   近年来,在多领域大发展及各类新技术不断进步的形势下,传统的红外光谱技术已经从单纯的红外光谱仪、显微镜与红外光谱联用,发展到了红外成像系统,并在信噪比、空间分辨率、时间分辨率、测量模式等方面呈现了新的发展活力。同时,在新技术的助力下,红外光谱在应用方面也得到了很大的拓展。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   Quantum Design公司一直致力于引进先进的红外光谱技术,其中neaspec纳米傅里叶红外光谱仪、微秒级时间分辨超灵敏红外光谱仪在探寻红外光谱测量极限上展现了独特的魅力,先后获得科学仪器“优秀新品奖”。业界评价:Quantum Design在产品的选择上颇具眼光! /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   为了多方位展现我国在红外光谱领域的最新成果,仪器信息网特别策划制作《稳中求新红外光谱技术及应用进展》网络专题,特别邀请Quantum Design中国表面光谱销售总监韩铁柱博士为大家介绍红外光谱仪的最新技术及应用情况,并探寻红外光谱的测量极限。 /span /p p    span style=" color: rgb(255, 0, 0) " strong 红外光谱技术发展需求:高敏感度、高空间和高时间分辨率 /strong /span /p p    strong 仪器信息网:从仪器发展及应用的角度分析,您认为目前红外光谱仪器及技术走到了哪一个阶段? /strong /p p strong   韩铁柱博士 /strong :人类对红外光的认识已经超过两个世纪,1800年,英国科学家W.?Herschel在研究温度计对紫色到红色光照射变化时,就已经意识到红色末端区域外仍然存在着看不到的辐射区域。九十年后,瑞典科学家Angstrem利用CO和CO2首次证明了不同分子具有不同的红外谱图,并在此基础上进一步建立了现代分子光谱学。在此之后的一个多世纪里,人类科学家已经可以利用红外光手段,对大量的分子振动和转动信息进行谱学分析和鉴别。上世纪50年代,双光束红外光谱仪的问世,意味着红外检测已无需由经过专门训练的光谱学家进行操作,也能轻易获取数据。该设备的商业化及畅销普及标志着红外谱学门槛的极大降低,在科学研究、社会实践及工业控制等领域将迎来飞跃式发展。 /p p   现代红外光谱议主要指由上世纪80年代发展建立的以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。与更早期的双光束红外仪器相比,傅立叶红外光谱仪具有快速、高信噪比等特点,并且随之催生了许多新技术,诸如步进扫描、时间分辨和红外成像等,从而拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。 /p p   然而,随着科学技术的不断发展和应用领域的进一步细分,特别近年来纳米材料、拓扑材料、二维材料等新材料的兴起,传统傅立叶红外光谱仪光源亮度弱、光斑范围大、迈克尔逊干涉仪平动速度慢等缺陷开始显现,逐渐不能满足红外光谱科学研究中高敏感度、高空间和高时间分辨率的需要。 /p p    strong 仪器信息网:目前红外光谱的测量极限发展到了什么程度?可以给大家带来什么样的体验? /strong /p p strong   韩铁柱博士: /strong 目前,传统红外光谱的空间分辨测量极限在几微米到几十微米,时间分辨测量极限在几十毫秒的量级,这主要是由于光源本身及步径位移机制限制。20世纪60年代开始,随着第一台红宝石激光器的问世,科学领域得益于激光技术的广泛应用,对光谱研究的空间分辨和时间分辨也得以大幅提高。由于激光器的高线性特点,非接触式的红外光谱技术空间分辨率可达500nm,如果进一步搭配近场探针突破衍射极限,空间分辨可进一步提升至10nm。利用QCL激光的双光梳设计,目前激光base的红外光谱可以完全抛弃步径位移,将时间分辨提高到us级,如果将超快激光引入pump-probe体系,时间分辨可以达到fs级别。 /p p    strong 仪器信息网:相对于其它的分析仪器,红外光谱的应用市场活力如何?哪些应用领域会有大的发展空间?为什么? /strong /p p strong   韩铁柱博士: /strong 相对于其他分析仪器,红外光谱分析技术具有使用成本低、操作和维护简单、灵敏度和分辨率较高、特征性强等优点,能提供包含化合物官能团、类别、立体结构、取代基种类和数目等多种信息。近年来计算机技术的迅猛发展带来了分析仪器数字化和化学计量学科的同步发展,加之红外光谱技术独有特点,使得其应用范围进一步拓宽。 /p p   红外光谱既可以用于定性分析,也可以用于定量分析,还可以对未知物进行剖析,广泛应用于化工、制药、农业和食品、半导体、宝石鉴定、质检、地矿和环境等领域,是科学研究的有力技术手段,也是常规应用分析和生产不可缺少的分析技术。譬如在中医药领域,作为一个复杂的混合体系,中药的鉴别和质量控制,以及有效成分的确定和质量分析,一直是个难题,红外光谱技术的特点使得其作为指纹分析手段并结合化学计量学方法,成为中药研究不可或缺的工具 在农业和食品领域,近年来得益于焦平面阵列检测器、可调谐滤光器、化学计量学方法和计算术的提升,红外光谱和成像技术有机结合发展成为一种多信息融合检测技术。除了进行农产品和食品的品质分析外,红外光谱的应用还扩展到了污染物检测、产品分类和来源鉴别、土壤的物理和化学变化、以及食品加工过程中组成变化的监控和动力学行为等。 /p p    span style=" color: rgb(255, 0, 0) " strong Quantum Design红外产品着眼红外光谱测量极限 /strong /span /p p strong   仪器信息网:请介绍贵公司在红外光谱产品的定位及发展历史?有哪些独具优势(里程碑式)的技术(专利技术,独有技术)? /strong /p p strong   韩铁柱博士: /strong 我们公司一直贴合最新研究前沿和热点课题,结合红外光谱的应用与现代尖端科学研究的需要,专注最新、最先进红外光谱技术和产品的引进,先后引进了德国neaspec公司的nano-FTIR 10纳米超高空间分辨的新型傅里叶红外光谱仪、美国PSC公司的mIRage非接触式亚微米分辨触红外拉曼同步测量系统,2019年又引进了瑞士IRsweep公司的IRis-F1微秒级时间分辨超灵敏红外光谱仪。这三款主推产品从空间分辨率、非接触测量、时间分辨等维度,极大推动了红外光谱测量极限。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C377717.htm" target=" _blank" img style=" max-width: 100% max-height: 100% width: 600px height: 183px " src=" https://img1.17img.cn/17img/images/202006/uepic/34a71ded-e469-47c6-8f17-0f6442a01553.jpg" title=" 01.png" alt=" 01.png" width=" 600" height=" 183" border=" 0" vspace=" 0" / /a /p p style=" text-align: center " ( a href=" https://www.instrument.com.cn/netshow/C377717.htm" target=" _blank" 点击仪器图片查看更多详情 /a ) /p p   nano-FTIR纳米傅里叶红外光谱技术是由德国neaspec公司基于其首创的散射型近场光学技术发展出来的、具有10纳米超高空间分辨的新型傅里叶红外技术,使得纳米尺度下的化学鉴定和成像成为可能。这一技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,实现对几乎所有材料的化学分辨和成分分析。它不受被检测样品厚度制约,可广泛适用于有机物、无机物、半导体材料、二维范德华材料的纳米分辨红外光谱分析,并同时提供纳米空间分辨的红外吸收谱和反射谱。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C363244.htm" target=" _blank" img style=" max-width: 100% max-height: 100% width: 600px height: 193px " src=" https://img1.17img.cn/17img/images/202006/uepic/d719a770-b45f-494a-822b-1bfb8d6976f2.jpg" title=" 02.png" alt=" 02.png" width=" 600" height=" 193" border=" 0" vspace=" 0" / /a /p p style=" text-align: center " ( a href=" https://www.instrument.com.cn/netshow/C363244.htm" target=" _blank" 点击仪器图片查看更多详情 /a ) /p p   全新一代mIRage非接触式亚微米分辨触红外拉曼同步测量系统,是美国PSC公司基于专利的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500nm的空间分辨率 它具备非接触式/反射模式测量,对样品表面无严格要求,可直接对厚样品进行测试 可搭配液体模式和与拉曼联用,直接观察液体生物样品,并对样品进行同时同地同分辨率下的红外拉曼同步光谱和成像分析,无荧光风险。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C305345.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/03b21d48-652a-4150-8caf-f5c21c9855c7.jpg" title=" 03.png" alt=" 03.png" / /a /p p style=" text-align: center " ( a href=" https://www.instrument.com.cn/netshow/C305345.htm" target=" _blank" 点击仪器图片查看更多详情 /a ) /p p   瑞士IRsweep公司推出的IRis-F1微秒级时间分辨超灵敏红外光谱仪,荣获了由仪器信息网主办2019年度科学仪器“优秀新品奖”,它是一种基于量子级联激光器频率梳的红外光谱仪,突破了传统光谱仪需要几秒钟或者更长的测量时间来获取一个完整的光谱的限制,能实现高达1μs时间分辨的红外光谱快速测量。它测量数据信噪比高,易于微量及痕量光谱分析,兼容常用红外光谱仪插件,方便易用、可靠性高。 /p p    strong 仪器信息网:贵公司红外光谱仪应用最具优势的领域?主推的解决方案? /strong /p p strong   韩铁柱博士: /strong 我们公司近几年在红外光谱领域销售保持持续地稳定增长,针对不同的应用领域和具体的技术需求,我们推出了对应的解决方案。 /p p   1、nano-FTIR是我们针对傅里叶红外光谱空间分辨率在10nm量级,所推出的成熟技术方案,它利用AFM探针突破红外光斑的限制,并利用激光光源的高亮度和稳定性可进超高空间分辨下的物质微纳组分研究和表征。并后期结合飞秒激光器,可实现fs级的红外光谱测量表征。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 316px " src=" https://img1.17img.cn/17img/images/202006/uepic/69125e72-499a-4ced-b257-9bdb7b3a4f00.jpg" title=" 04.png" alt=" 04.png" width=" 600" height=" 316" border=" 0" vspace=" 0" / /p p   美国NASA于2014年从太空带回了直径约为10um的彗星碎片。由于传统红外分辨率受制于光斑大小,该样品内部成分无法进一步检测。利用上述内容提到的纳米傅里叶红外技术10nm空间分辨率,科学家可以很好的对彗星碎片内主要5种矿物进行有效分析,并能就其组分的空间分布进行具体的表征。进一步地,在10nm超高空间分辨率的基础上,nano-FTIR还可以与50fs的时间分辨超快激光技术进行结合,同时达到红外设备的“超高空间分辨”和“超高时间分辨”。该工作在2014年由Eisele等人在实验室实现,作者利用pump激光和我们的纳米傅立叶红外光谱进行同步,在InAs纳米线上由-5ps到1050fs分别延迟激发样品,得到了纳米线上载流子形成和衰减的全过程红外光谱图。 /p p   2、当红外光谱空间分辨率要求在亚微米量级,且传统傅里叶变换红外光谱和ATR技术应用受限或者样品制备困难情况下,mIRage非接触式亚微米分辨触红外拉曼同步测量系统无疑是一个最好的选择。它的高空间分辨率、非接触式的测量方法以及可与拉曼联用的特点,可以快速获取材料的二维红外光谱和组成分布信息。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 331px " src=" https://img1.17img.cn/17img/images/202006/uepic/35ecedb1-5d4e-431a-b8a1-043e5acec657.jpg" title=" 05.jpg" alt=" 05.jpg" width=" 600" height=" 331" border=" 0" vspace=" 0" / /p p   越来越多的塑料产品的使用引发了人们对于其在环境中累积所引发的环境和生态污染问题的担忧,迫使科学家尽快找到可替代性的新型材料。而生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),在适当条件下可发生生物降解,成为最近研究的热点话题。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组使用mIRage系统对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究了这两种材料结合的方式和内在扩散机制,为未来研究生物微塑料的演变和降解过程提供数据和理论上的支持。 /p p   3、为精准描述生物医学、化学动力学等许多变化过程中的红外光谱情况,我们推出了IRis-F1微秒级时间分辨超灵敏红外光谱仪解决方案。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 280px " src=" https://img1.17img.cn/17img/images/202006/uepic/adaa6cec-04b2-4a33-8145-bdb8a4376d43.jpg" title=" 06.jpg" alt=" 06.jpg" width=" 600" height=" 280" border=" 0" vspace=" 0" / /p p   斯坦福大学的Nicolas H.Pinkowski研究团队利用IRis-F1实现了高能气相反应中的微秒分辨单次测量。他们在压力驱动下的高温、高压反应釜中研究了一种剧烈的丙炔氧化化学反应,以4μs时间分辨测量速率,解析了丙炔与氧气之间1.0 毫秒高温反应的详细动力学光谱。来自IRis-F1的量子级联激光的双梳状光谱仪(DCS)测试数据表明:在反应早期(0-0.6 ms)能观察到宽带丙炔吸收特征峰,而在0.75 ms之后可以观察到水的精细特征光谱。 /p p    span style=" color: rgb(255, 0, 0) " strong 未来:通用型和专用型红外光谱协同发展 /strong /span /p p    strong 仪器信息网:目前国内外红外光谱仪的技术及市场发展态势有什么不同?您如何看待未来中国市场的需求及发展潜力? /strong /p p   strong  韩铁柱博士: /strong 当前市场上红外光谱仪可以大致分为通用型和专用型两大类,体现了红外光谱仪的发展与工业化需求以及科学研究需求是密切相连的。进口通用型红外光谱仪市场主要以傅立叶变换红外光谱仪(FTIR)为主,制造厂家主要来自于欧美等国,而色散型红外光谱仪比较少见 近些年来国产的FTIR厂家逐渐崭露头角,尽管技术和世界主流公司相比还有一定差距,但差距正在不断缩小。其新型干涉光路的搭建,有效降低了振动和导轨偏移引发的干涉变形,结合众多新型红外附件的开发,目前国内红外光谱议产品正在走出国门,远销欧美和东南亚 专业的研究型红外光谱仪主要在一些科研机构使用,存在一定的定制化,它可以与红外显微镜、热分析、气相色谱等外联附件联合使用,实现多种分析手段的同步进行和数据交叉对比。 /p p   作为普适性的一种分析手段,红外光谱仪在国内有较大的潜在市场,未来红外光谱仪技术,无论是智能化程度、产品联用、应用领域专业化还是小型化上都存在很强的发展潜力。另外,红外光谱与成像相结合的多信息融合检测技术,也是当前红外技术的主要发展方向。未来随着应用领域的不断扩展,制造技术的不断变革以及计算机技术的发展,更多成本更低的研究型和专用型红外成像光谱仪预计将会陆续出现,被更多的应用于过程分析和高通量分析中,如制药,农业,食品,高分子和催化材料等领域,成为传统红外光谱技术的一种有力互补技术。 /p p    strong 仪器信息网:针对当前的市场格局,贵公司在红外光谱产品方面有什么样的布局?重点拓展的新领域有哪些? /strong /p p strong   韩铁柱博士: /strong 针对当前的市场格局,我们公司继续结合科研用户的技术需求,引进一系列红外产品引入中国市场,比如基于AFM探针技术的超高纳米空间分辨率的近场光学显微系统、散场式光学显微镜、纳米傅里叶红外光谱仪等 同时,我们也将开展通用型红外光谱仪的布局,引入适合普通科研用途和工业应用的光谱仪,拓展其应用领域范围,解决一系列应用中的实际问题,具体体现在: /p p   1)针对传统傅里叶变换和衰减全反射红外光谱限制的亚微米分辨光学光热红外显微技术,提高其空间分辨率 2)简化样品制备过程,避免样品污染和接触引发的红外赝相 3)拓展红外样品的适用范围,包括一些常规红外无法检测的厚样品,透明样品,液体样品等 4)努力发展与其他技术的联用,实现多种技术的交叉互补使用,全面了解样品表面的化学信息,如红外和拉曼光谱技术联用,对有机无机样品的各种分子振动进行全面的分析和相互验证。 /p p   通过以上布局,我们一方面注重拓展高新技术领域的红外光谱应用,如纳米红外光谱和成像,超快/时间分辨红外光谱等,用于纳米材料的高分辨表征和化学过程的监测 另一方面拓展实际应用领域的红外技术应用,包括制药、化工、半导体、农业和食品、地质和环境、法医鉴定等,解决科研和生产过程中遇到的一系列实际问题,推动红外光谱技术的应用。 /p p   strong   span style=" font-family: 楷体, 楷体_GB2312, SimKai " 后记: /span /strong /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   习近平总书记非常重视科技创新能力,他在重要讲话中指出“自主创新是我们攀登世界科技高峰的必由之路”,“当今世界科技革命和产业变革方兴未艾,我们要增强使命感,把创新作为最大政策,奋起直追、迎头赶上”。Quantum Design中国也以此为己任,在公司的建设和发展过程中,致力于为中国科研工作者的成功提供专业支持和服务。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   韩铁柱博士介绍说,“我们深深理解国内科学家和学者们从不缺乏创新性的科研想法和构想,如何借助先进仪器帮助科学家将这些想法付诸于实践,是Quantum Design中国一直在思考的问题。”据悉, Quantum Design中国建立了超过300万美元的样机实验室,为国内科学家尝试自己的想法提供了舞台和施展的空间。就尖端红外光谱分析仪器而言,Quantum Design中国样机实验室引进了德国neaspec公司的nano-FTIR 10纳米超高空间分辨的新型傅里叶红外仪,以及美国PSC公司的mIRage非接触式亚微米分辨触红外拉曼同步测量系统,并向国内科学家开放。截至2020年6月,Quantum Design中国样机实验室测量的数据已经协助科学家在Nature正刊、Nature子刊、ASC等著名国际期刊上发表多篇创新性的科研成果,得到了广大科学家的认可和赞誉。 /span /p p br/ /p
  • 近红外光谱厂商齐聚第四届近红外光谱学术会议
    仪器信息网讯 2012年9月12-15日,由中国仪器仪表学会分析仪器分会近红外光谱专业委员会主办,桂林电子科技大学协办的全国第四届近红外光谱学术会议在桂林举行,来自近红外光谱相关领域的专家学者、仪器用户等200多人参加了会议。仪器信息网作为支持媒体对本次会议进行了专题报道。   在本次会议中,国内外著名的近红外光谱仪生产商纷纷前来展示了本公司在近红外光谱分析中所能提供的仪器及解决方案。以下是本次展会中部分参展仪器厂商的展位照片。   同时,在本次会议上多家厂商做报告介绍了最新的近红外光谱仪器和技术,如赛默飞的《ThermoFisher近红外产品及其应用简介》;布鲁克的《最新产品及其应用介绍》;福斯的《近红外网络化技术及应用》;聚光科技的《近红外应用影响因素解析》;凯元盛世的《基于MEMS技术的Axsun近红外光谱仪》;JDSU的《线性可变滤光片近红外光谱仪》;珀金埃尔默的《近红外成像系统最新进展与行业应用》;济南金宏利的《AOTF近红外现代技术》。   另外,在本次会议中,布鲁克特别举办了招待晚宴,答谢广大用户的支持。 布鲁克招待晚宴
  • 量子关联上转换新方案,实现超灵敏中红外光谱探测
    中红外(2.5-25 μm)波段能够覆盖复杂分子的振动和转动能级跃迁,揭示多种分子的基础吸收带和复杂化合物独特的光谱特征。因此,高效分析工具——超灵敏中红外光谱探测,成为智能生化传感、新兴材料研究、环境气体监测、高精度医学层析成像等领域的重要测量手段。近年来,随着非线性频率上转换技术的进步,基于频率上转换的中红外光谱探测技术表现出显著的科研潜力。该技术利用强泵浦光场作用于非线性光学材料,将中红外光子耦合转换至近红外或可见光波段进行探测,从而规避了现有中红外探测器噪声大的不足,成为了一种有效的中红外直接光谱探测的替代方案,有望在中红外光谱探测灵敏度、探测效率、响应速度、成本效益等方面取得重要突破。现有对中红外光谱探测系统的研究成果表明,进一步扩大中红外频率上转换技术的超灵敏、宽频段的优势,可使其更广泛适用医学、生物、国防等领域的应用。然而,基于多种非线性光学材料的宽带中红外频率上转换系统往往需要强泵浦场来提升宽带转换效率,且系统在短波泵浦模式下工作,强泵浦场导致的非线性参量噪声将覆盖中红外波段,使得实现超灵敏的宽带中红外光谱探测极具挑战。为解决上述问题,华东师范大学精密光谱科学与技术国家重点实验室武愕、陈昱、蔡羽洁等研究团队基于非简并光子对的时间-光谱量子关联技术,提出了一种低功耗、强鲁棒性的高灵敏中红外单光子光谱探测方案,实验验证了单光子水平光子通量下的中红外样品光谱测量。相关研究成果发表于Photonics Research 2022年第11期。该文章报道了一种极低光子通量条件下的中红外上转换光谱测量方案。该方案利用结合同步频率上转换技术的非简并关联光子、对时间-光谱量子关联特性实现了单光子水平的中红外上转换光谱探测,降低了强泵浦非线性噪声和环境噪声对中红外光谱测量的影响,大幅度提高单光子水平下的中红外光谱测量灵敏度和鲁棒性。图(a)展示了基于时间-光谱量子关联的宽带中红外单光子上转换光谱探测系统光路图。利用啁啾极化铌酸锂晶体中的非线性过程,自发参量下转换产生非简并宽频带的关联光子对,光子对产生率6.76×106 counts s-1 mW-1。其中,中红外信号光子覆盖3.14-3.80 μm中红外波段,提供了大于660 nm的光谱探测波长窗口。图(a)单光子频率上转换量子光谱系统图;(b)38 μm厚聚苯乙烯薄膜透射光谱实验基于同步脉冲泵浦技术实现了中红外信号光子的非线性频率上转换,验证了中红外上转换光子(0.78-0.81 μm)与共轭的近红外预报光子之间的非经典相关性得以保留,展示了基于时间-光谱量子关联的中红外单光子上转换光谱测量的可行性。利用该系统对38 μm厚的聚苯乙烯样品进行透射光谱的测量,如图(b)所示。入射样品的中红外光子通量低至每脉冲0.09光子。实验表明,中红外单光子上转换光谱与傅里叶变换红外光谱仪(FTIR)的测量结果吻合,系统的光谱分辨率约为11.4 nm(10.5 cm−1)。相比于传统FTIR光谱探测方案,基于时间-光谱量子关联技术的宽带中红外单光子上转换光谱系统,既能够利用光子对的时间关联、频率关联量子特性降低频率上转换过程中多种噪声的影响,将中红外光谱测量灵敏度推进至单光子水平;又能使单光子探测器和单色仪等元件工作在其最优的工作波段,无需受待测样品特征波长的限制,拓展了系统的应用场景。系统高灵敏、低噪声、强鲁棒性、结构简单的优势,为光敏生化样品的中红外光谱测量提供了新的技术方案。后续将进一步开展更宽中红外带宽、更高灵敏度、更高信噪比的上转换光谱成像研究。
  • 【瑞士步琦】近红外光谱分析技术在玉米品质检测中的应用
    近红外光谱分析技术在玉米品质检测中的应用近红外应用”1介绍玉米是我国重要的粮食作物。根据国家统计局数据显示,我国 2021 年玉米播种面 4332 万 hm2,玉米产量达 2.7 亿 t。玉米中的水分、蛋白质、脂肪、糖类等主要化学成分含量会直接影响到玉米的经济效益。化学成分含量的测定已成为原料品质评价中的重要环节。玉米种子作为生产中最基本的资料,其质量的好坏直接影响玉米的产量及品质。玉米品质指标(水分、蛋白质、淀粉等)的检测常用理化方法,安全指标(毒素等)的检测使用液相等物理或化学方法,可用冷浸法等对种质品质进行分析,但这些方法均会对样本本身造成破坏,存在处理时间较长以及需要专业人员操作、仪器成本高等缺点。因此,探究一种可以对玉米进行无损、快速检测技术显得尤为重要。近红外光谱分析技术具有样品不需复杂耗时的前处理、无损耗、多成分同时分析、无污染的检测优势,近年来得到了广泛关注。近红外光谱分析技术是利用物质对光的吸收、散射、反射与透射等特性对待测物进行分析的检测技术,通过样品的吸收光谱及理化分析结果可对样品进行定性或定量分析。近红外光谱分析技术的检测步骤为使用化学计量法对近红外光谱数据进行预处理及建立模型,将样本的预测集通过模型进行检测,验证模型是否精准,并对模型进行评价及优化。近红外光谱技术常用处理方法,由于近红外光谱中强大的背景信息造成的噪声干扰和存在冗余变量,导致从样品的近红外光谱中提取与检测目标相关的信息较困难,因此,需对光谱数据进行预处理。常用的光谱预处理方法有去噪自编码器(DAE)、正交信号校正法(OSC)、标准正态变换(SNV)、多元散射校正(MSC)等。2近红外光谱技术模型评价指标定量模型评价指标 评价近红外光谱定量模型预测准确性的实质是模型的预测结果与样品结果的接近程度,评价预测模型一般采用校正决定系数(R2c)、验证决定系数(R2v)、校正相关系数(Rc)、验证相关系数(Rv)、校正均方根误差(RMSEC)、验证均方 根 误 差(RMSEV) 和 相 对 分 析 误 差(RPD)等参数,决定系数与相关系数是预测值与使用化学方法检测出的真值样本集相关性的标准,通常 R2c、R2v、Rc、Rv 越大时,认为所建模型效果越好;RMSEC 和 RMSEV 是校正集与验证集的预测值和使用化学方法检测出的真值之间差异大小的量度,RMSEC 和 RMSEV 越小,认为所建模型性能越优;RPD 是衡量模型可靠性的指标,当 RPD3,认为所建立的预测模型可靠性较高,3RPD2.5,认为模型可用于分析;RPD定性模型评价指标 近红外光谱技术在定性分析中多用于样品分类,常用判定指标有正确率、敏感性、特异性等。相关检测设备从采样现场到实验室快速无损检测样品的指标,主要包括水分、脂肪、蛋白、灰分等。可以帮助企业优化生产过程,控制最终产品质量,提高利润。近红外光谱仪检测过程无需化学试剂,可大大降低实验室湿化学成本。检测快速,可大大减少操作人员的劳动力,降低使用门槛,节约管理费用。▲ 步琦近红外光谱仪 ProxiMate防水型不锈钢外壳,入口防护等级为 IP69,可进行高压管冲洗,即使是最苛刻的工作环境也能满足多种即时可用的预校准,适用性广泛直观的现触摸屏界面,简单、明了样品使用磁耦合驱动装置旋转器,分析完成后该装置可拆除,轻松清洁允许用户利用近红外光,可见光或将两种信号结合来提高测量性能和全面评估样品,从而使其测量性能达到最大化3相关模型参数ProductParameterRangeSpectraSEPMaizeStarch16-76%6553.5MaizeFat3.14 -5.352980.2MaizeProtein6-21%6821.3MaizeMoisture7-13%6820.5MaizeAsh1-8%3070.04步琦公司为您提供完整的玉米检测解决方案,同时提供定制化服务和使用,欢迎用户前往我司实地参观考察。
  • 【瑞士步琦】基于近红外光谱在酒醅中总酯含量的检测方法
    总酯含量的检测方法酯类是中国白酒的主要风味物质,其含量约占白酒风味物质总量的 75%~95%。酒中的风味物质是决定白酒香气、口感和风格的关键。除了原料中含有酯类外,大量的酯类物质是在酒醅发酵过程中由微生物代谢产生的。酒醅中总酯的含量在一定程度上反映了其发酵情况,通过测定酒醅的总酯,结合水分、酸度、淀粉、糖份和酒精度等指标的分析,可以了解酒醅发酵过程的变化以及发酵效果,从而有效的调整酿酒工艺。酒醅检测是白酒生产过程中监测日常生产的重要环节,一般检验的指标有:水分、酸度、淀粉、糖份和酒精度。在 2004 年我国已成功将近红外光谱技术应用于酒醅成分的分析,实现了水分、酸度、淀粉、糖份和酒精度的快速定量检测。但目前一些酒企使用近红外光谱仪检测酒醅总酯的很少。本文着重介绍一下酒醅中总酯的近红外检测方法如下:01收集湿化学数据,酒醅总酯化学值的测定参考《T/CBJ 004-2018 固态发酵酒醅通用分析方法》中规定了使用近红外光谱仪快速测定酒醅中总酯的化学检测方法。02光谱采集:使用瑞士步琦傅里叶变换偏正干涉仪 N-500 和固测量池和自动旋转采样系统,利用配套软件 NIRWare Operator 采集酒醅的漫反射近红外光谱。仪器自动扣除内外参比;分辨率:8cm-1;扫描次数:32 次。酒醅样品光谱采集前都进行相同的混匀、装样,且每个样品平行测量三次。03模型的建立:采用 NIRCal 定量分析软件将酒醅样品的近红外光谱与国标法测得的成分含量进行关联,建立酒醅样品中总酯的定量预测模型。近红外定量分析模型的建立使用偏最小二乘法(PLS)算法。04模型的评价:模根据模型的校正集的决定系数(R2)、交互验证均方根误差(RMSECV)、检验集的决定系数(R2)、预测均方根误差(RMSEP)来判断模型的质量,从而筛选出酒醅中总酯的最佳近红外定量预测模型。05在验证集浓度范围相同的前提下,相关系数越接近 1,回归或预测效果越好;SECV 和 SEPC 越小,预测结果越准确。06建立及验证酒醅的近红外模型后,在实验室或者车间测定未知样品只需要在 10 几秒即可得出样品的近红外预测值。07模型验证 验证使用近红外光谱仪检测酒醅总酯的可靠性,可以将预测值和实测值进行 t 检验分析,结果表明在 0.05 显著性水平下,传统化学值测量方法与近红外光谱法不存在显著性差异,说明这两种方法不存在系统误差,因此证明了所建立的酒醅总酯近红外模型具有良好的预测能力,可以达到常规分析方法的精度要求。近红外光谱分析技术与现有检测方法相比,该检测方法具有快速准确、绿色无损等优点,能够实现酒醅中总酯的快速准确测量。步琦近红外一直以来都是光谱技术的市场领导者,其产品实验室,旁线以及在近红外光谱仪广泛应用于各行各业。
  • 2022年红外光谱市场将达12.6亿美元 近红外增长显著
    p   根据最新市场调查报告显示,红外光谱市场(包括近红外、中红外、远红外)预计将在2022年达到12.6亿美元,2016年至2022年之间复合年增长率为6.5%。推动红外光谱市场增长的主要因素包括制药行业过程分析技术的监管框架,以及生命科学领域研发投资的增加,还有就是红外光谱技术的不断进步。 /p p    strong 预测期内制药行业占有最大市场份额 /strong /p p   2015年,制药行业占有红外光谱市场的最大份额。而且,在预测期内,生物和化学品市场预计将以显著的速度增长。在药用辅料的生产过程中,红外光谱起到了关键作用。不断被接受的新的国际cGMP & amp cGDP认证,将有望增加红外光谱仪器的使用,从而推动市场的增长。 /p p    strong 中红外光谱在红外光谱市场中扮演着重要角色 /strong /p p   红外光谱市场按照波长被分为近红外、中红外和远红外。其中,由于广泛的应用于科研和工业领域,中红外光谱预计在预测期间占有最大的市场份额。另外,在预测期内,近红外光谱市场预计将会以显著的速度增长。 /p p    strong 北美有望在不久的将来拥有最大的市场份额 /strong /p p   在不久的将来,预计北美拥有最大的市场份额,并主导红外光谱市场,原因主要包括严格的药物开发法规和政府研发资金的增加。市场增长也可以归因于逐渐增多的蛋白质组学研究和提供关键重要展示新产品新技术的各种会议。 /p p   红外光谱的主要公司包括的赛默飞、珀金埃尔默、布鲁克、安捷伦、福斯等。 /p p style=" text-align: right " 编辑:刘丰秋 /p p & nbsp /p
  • 二手红外、近红外光谱仪器市场达1900万美元
    二手实验室分析仪器的转售正成为科学仪器市场的一个日益重要的部分,红外(IR)和近红外(NIR)光谱市场提供了一个很好的例子。二手仪器的可靠性和性能促进了市场对它们的需求,预计在不久的将来会出现显著增长。   实验室红外光谱技术是一种非常成熟的技术,并且拥有相对较大的使用基础。许多已有的模型已经被证明是非常可靠的,仍然能够提供广大最终用户所要求的性能,导致大量二手仪器市场的崛起。虽然最近几年近红外光谱技术的总体需求增长已经相当强劲,但是还远不能和红外光谱相比。因此,相比红外或其他实验室技术,近红外光谱二手仪器市场相对较小。   2012年,实验室红外和近红外光谱二手仪器的市场总额约1900万美元,占整个红外和近红外光谱市场规模的比例不到2%。然而,按照销售的台数统计,二手仪器占全新销售台数的近8%的比例。二手仪器的经纪人将继续发展他们的销售和保障能力,随着用户规模的扩张,在未来几年,对红外和近红外光谱二手仪器的需求将继续增长。 编译:刘丰秋
  • 多向奔赴 近红外光谱拥抱智能化生产和生活 ——“近红外光谱拥抱智能化生产和生活”主题论坛暨“近红外光谱实战宝典”新书发布会成功召开
    仪器信息网讯 2023年9月6日,“近红外光谱拥抱智能化生产和生活”主题论坛 暨“近红外光谱实战宝典”新书发布会于BCEIA2023同期(北京中国国际展览中心(顺义馆))成功召开。本届会议由中国仪器仪表学会近红外光谱分会和仪器信息网联合举办,吸引150余位近红外行业的专家、用户、厂商等相关人员参加。 会议现场随着人工智能、物联网、云技术、机器人、5G等先进技术的发展,近红外光谱技术在智能化生产方面的优势不断凸显,并在化工、制药等多个行业创造了客观的经济价值。同时,随着相关技术的进步以及应用的拓展,近红外光谱技术也正在逐渐走入大众视野,不断推进着智能化生活的发展方向。本次会议旨在展示近红外光谱在智能化生产和生活中的技术和应用进展,共同探讨面临的问题以及解决方案。会议中,近红外光谱领域的专家及厂商代表分别围绕主题开展报告,分享了各自的研究进展及最新研发成果,让大家对近红外光谱在智能化生产与生活的作用和地位有了更深层次的认识。多向奔赴下,近红外光谱技术前景可期!中石化石油化工科学研究院 褚小立教授级高工报告题目:近红外光谱分析技术的发展现状与未来褚小立在报告中综述了近红外光谱分析技术的发展现状,以及在炼油工业、石化工业、可再生能源等多领域的应用进展。其展望道,便携现场应用和工业在线应用是现代光谱技术腾飞的坚强两翼;机器学习算法和人工智能算法是现代光谱技术腾飞的超强大脑;光谱数据库是现代光谱技术腾飞的动力源泉;快速、高效、安全、绿色是现代光谱技术腾飞的永久发动机。而对近红外技术而言,仪器微型化、标准化、算法的高效和维护方便、光谱数据库的扩充与共享,自感知、互联、分析、自学习、预测、决策、控制的智能工厂、智慧农业等都将是未来发展的重要方向。奥谱天成(厦门)光电有限公司销售总监 张玉光报告题目:国产中短波红外光谱仪的研制及其应用奥谱天成以仪器生产国产化为目标,张玉光主要介绍了国产中短波近红外光谱仪器的研发与应用。报告首先对中短波近红外光谱仪的原理、内部构造与配置、性能指标等方面进行科普;然后,分别介绍了ATP8000、ATP8600、ATP8080、ATP8730、ATP7810、ATP7330等型号的产品及应用案例,并结合产品展现出奥谱天成对于仪器国产化的美好愿景。晨光生物科技集团股份有限责任公司质量主管 石文杰报告题目:近红外技术在植物提取物智能化生产中的应用石文杰先以辣椒为例,详细介绍植物提取物的概念及提取步骤;接着,以晨光生物的工作内容为例,分享了近红外光谱技术在生产过程中的应用,如植物提取物的辨别、生产中的水份在线监测和提纯工艺的优化等;最后,其指出近红外技术在植物提取物领域中还将不断提升应用水平、提高性价比、提升智能化水平。天津中医药大学 李文龙副研究员报告题目:从过程分析技术到药物智能制造21世纪是智能制造的世纪,中药智能制造是未来必然的发展趋势。报告中,李文龙详细介绍了过程分析(PAT)技术及在中药生产领域的应用,并以痰热清注射液和复方阿胶为例说明PAT是中药智能制造的关键,近红外光谱技术在生产工艺过程中的具有重要应用价值。不过,李文龙也指出,中药过程分析和智能制造还处于初级阶段,需要做大量的基础性工作。中国农业大学 杨增玲教授报告题目:近红外光谱传感技术在绿色循环农业中的应用研究杨增玲以自身科研经历为例,报告了近红外光谱技术在农业中的应用进展。报告中,杨增玲介绍了新型粪肥多养分同步光谱速测技术的原理及数据库、光谱库的构建,该技术手段与传统养分测试方法相比具有时间快、操作简便、准确率高、成本低等优点。此外,她还介绍了光谱速测技术的开发与应用,展现出光谱技术在农业科研领域的实际应用价值。中国农业大学 孙红教授报告题目:土壤-作物近红外传感器开发及智慧农业应用孙红以感知、移动互联、云计算、大数据、智慧与智能为关键词,结合自己科研成果分享报告。报告介绍了近红外光谱和人工智能相结合在智慧农业发展中应用,并详细介绍了其课题组在作物信息感知关键技术与装备及土壤信息感知关键技术与装备方面开展的一系列工作以及取得的成果。仪器信息网 李亚辉报告结束后,论坛进入《近红外光谱实战宝典》新书发布会环节,各位编委共同为新书揭幕,并在现场进行了赠书活动。新书发布会之后,无锡迅杰光远科技有限公司还为参会代表安排了晚宴环节,给大家创造了再次交流的机会。各位代表就近红外光谱技术的进一步发展深入沟通,并建言献策。
  • 三星要让红外光谱仪“民用化”?
    p style=" text-indent: 2em text-align: justify " a href=" https://www.instrument.com.cn/zc/31.html?IMShowBigMode=& IMCityID=& AgentSortId=& SampleId=& IMShowBCharacter=& sidstr=" target=" _blank" style=" color: rgb(84, 141, 212) font-family: 宋体, SimSun text-decoration: underline " span style=" color: rgb(84, 141, 212) font-family: 宋体, SimSun " strong 红外光谱技术(点击进入红外光谱仪专场) /strong /span /a span style=" font-family: 宋体, SimSun " 是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析,广泛应用于环境科学、生物学、高分子化学、催化、石油工业、生物医学、生物化学、药学、日用化工等领域。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 随着仪器行业的高速发展, strong 各类分析仪器小型化和民用化的趋势日益明显 /strong ,安捷伦、赛默飞等厂家也纷纷推出了手持式的红外光谱仪,但你觉得红外光谱仪可以做到多小?红外光谱仪距“民用化”还有多远?只有仪器企业才能生产红外光谱设备么? /span /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/zc/31.html?IMShowBigMode=& IMCityID=& AgentSortId=& SampleId=& IMShowBCharacter=& sidstr=" target=" _blank" style=" font-family: 宋体, SimSun text-decoration: underline " span style=" font-family: 宋体, SimSun " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/da7698d3-ce95-4e0a-8085-8dba07b40573.jpg" title=" aaedbb91-ef78-4c79-8741-04e8c6407c2d.jpg!w300x300.jpg" alt=" aaedbb91-ef78-4c79-8741-04e8c6407c2d.jpg!w300x300.jpg" / /strong /span /a /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/zc/31.html?IMShowBigMode=& IMCityID=& AgentSortId=& SampleId=& IMShowBCharacter=& sidstr=" target=" _blank" style=" font-family: 宋体, SimSun text-decoration: underline " span style=" font-family: 宋体, SimSun " strong span style=" font-family: 宋体, SimSun color: rgb(84, 141, 212) " 赛默飞Trudefender 手持红外光谱仪(点击进入红外光谱仪专场) /span /strong /span /a /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 近日,著名手机巨头 span style=" font-family: 宋体, SimSun color: rgb(255, 0, 0) " strong 三星电子向USPTO(美国专利商标局)和WIPO(世界知识产权组织)申请了一项的专利,其名为“包括各种光源的电子设备” /strong /span 。该专利于2019年9月26日发布,专利中描述了一种 strong span style=" font-family: 宋体, SimSun color: rgb(255, 0, 0) " 具有红外光谱仪的设备或红外光谱仪的智能手机 /span /strong 。 /span /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 488px height: 280px " src=" https://img1.17img.cn/17img/images/201910/uepic/17a4d9c9-ebd7-4f7f-b2b8-83b4329ac5f4.jpg" title=" TIM图片20191002185758.jpg" alt=" TIM图片20191002185758.jpg" width=" 488" height=" 280" / /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 根据专利图显示,这个设备位于手机背部摄像头侧边,使用时需将三星手机对准目标,红外光谱仪将发送红外光和可见光,然后接收反射的信号,基于该信号可以生成光谱数据。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 据三星介绍,这项技术可以检测用户皮肤是否足够湿润等,此外还可以测量水果的新鲜度和其他营养价值,例如脂肪,蛋白质和碳水化合物等。 /span /p p style=" text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " strong span style=" font-family: 宋体, SimSun color: rgb(255, 0, 0) " 三星这项举措可能将红外光谱仪民用化变为现实 /span /strong ,虽然达不到科研、检测级红外光谱仪的性能,但可以为大众对生活用品的认识提供一个有力的参考依据。 /span /p
  • 270万!同济大学热重-红外光谱-气相色谱质谱联用仪采购项目
    项目编号:3109-234Z20233011 (项目编号:Z20230357)项目名称:同济大学热重-红外光谱-气相色谱质谱联用仪采购项目预算金额:270.0000000 万元(人民币)最高限价(如有):270.0000000 万元(人民币)采购需求:序号产品名称数量简要技术规格1热重-红外光谱-气相色谱质谱联用仪 1套1. *温度范围:RT~1200 ℃(可拓展至-20 ℃);2. *系统结构:天平置于炉体上方;3. 样品重量范围:大于等于1.2 g;(详见采购需求)合同履行期限:合同签订之日起120个工作日内完成并验收合格交付使用本项目( 不接受 )联合体投标。获取招标文件时间:2023年02月20日 至 2023年02月27日,每天上午9:00至11:00,下午13:00至16:00。(北京时间,法定节假日除外)地点:上海市静安区天目中路380号11楼方式:现场或邮件获取售价:¥500.0 元,本公告包含的招标文件售价总和对本次招标提出询问,请按以下方式联系。1.采购人信息名称:同济大学地址:中国上海四平路1239号联系方式:段老师 86-21-659826702.采购代理机构信息名称:上海政采项目管理有限公司地址:上海市静安区天目中路380号11楼联系方式:戴小军、朱逸元 8621-620912733.项目联系方式项目联系人:戴小军、朱逸元电话:8621-62091273
  • 近红外光谱在食品安全中的应用研讨会召开
    仪器信息网讯 2013年8月27日,由中国仪器仪表学会主办的&ldquo 第24届中国国际测量控制与仪器仪表展览会(原名:多国仪器仪表展览会)MICONEX 2013&rdquo 在北京中国国际展览中心开幕。   为了进一步提升食品生产企业检测能力的建设,推动近红外光谱分析技术的应用发展,搭建产、学、研、用学术交流和协作平台,中国仪器仪表学会近红外分会特别于MICONEX 2013期间召开&ldquo 近红外光谱分析技术在食品安全中的应用研讨会&rdquo ,吸引了来自全国各地的100余位代表参加。 会议现场   与传统检测技术相比,近红外检测技术具有高效、简便、无损等特点,既可实现现场检测,亦可用于实验室检测,可极大节省生产和人工成本,近30年来得到了长足的发展,并在食品质量监测领域得到了越来越广泛的应用。本次会议特别邀请到了国内外食品领域从事近红外分析技术研究的专家、企业代表、仪器制造技术人员等做专题报告。   其中,(株)相马光学Okura Tsutomu从硬件和软件等多方面详细介绍了近红外光谱仪器研发和应用中的一些技术问题。Okura Tsutomu指出,鉴于现场检测的需求,小型化是未来发展的一个方向。此外,Okura Tsutomu还分析了近红外光谱仪器商业化的难点,他说当前有关近红外光谱仪器硬件设计的介绍书籍很少,而且在研发和应用过程中建模工作量也很大,近红外技术的商业化不仅需要技术,还需要工作人员的经验。同时,企业、用户等所单位的相互协助也是很重要的一个方面。   在应用方面,中国农业科学院北京畜牧兽医研究所苏华维、Kasetsart 大学Sumaporn Kasemsumran、Bruker公司Joerg Hauser以及中国食品发酵工业研究院张英分别介绍了近红外光谱技术在食品、农产品质量安全控制方面的应用进展。   此外,新希望六和集团质量安全检测中心隋莉以新颖的思路介绍了近红外技术预测结果评价及应用价值分析,将近红外技术揉入原料存放等生产管理环节中,进一步拓宽了应用范围。 报告题目:Evaluation of Food by NIR spectroscopy and Instrumental Technology 报告人:(株)相马光学 Okura Tsutomu 报告题目:近红外分析技术在牛肉品质检测中的应用研究 报告人:中国农业科学院北京畜牧兽医研究所 苏华维 报告题目:Applications of Near-Infrared Spectroscopic Analysis in the Agriculture and Food Product Quality and Safety Control 报告人:Kasetsart University Sumaporn Kasemsumran 报告题目:FT-NIR Analysis of Food Products from Lab to the Process 报告人:Bruker Joerg Hauser 报告题目:白酒、葡萄酒加工质量监测应用现状和需求 报告人:中国食品发酵工业研究院 张英 报告题目:NIR预测结果评价及应用价值分析 报告人:新希望六和集团质量安全检测中心 隋莉 现场讨论
  • 能谱知识学堂:乙醇红外光谱图测试会用到哪些红外附件?
    天津能谱科技红外光谱仪部门培训近日专门对乙醇的测试方法进行了探讨研究,使用了各种窗片材料及膜层厚度在ican9傅立叶红外光谱仪上进行了反复多次红外测试,最终得出了一个极为满意的结果。具体的测试方法及膜层厚度数据都在密封池的使用说明书中有极为详细的叙述,保证您用这种标准密封池测试出你满意的图谱。2010版国家药典规定了乙醇必须用红外光谱仪绘制谱图,以鉴定其真伪及纯度。乙醇属于液体,一般是95%的酒精度,里面含有5%的及其他物质,在红外光谱仪上制图时样品膜层厚度要求尽量的薄,厚了是绘制不出峰来的。对于经常需要对乙醇进行测试的用户,可以使用天津能谱科技为你准备的长久使用的密封池,乙醇专用硒化锌密封池。其优点是:可以反复长久使用。缺点是:波长范围4000-440cm-1基本符合但稍短于药典规定的4000-400cm-1,透过率稍低,在70%左右。损失了红外光谱仪30%的能量,对于那些使用多年能量降低的仪器来说是致命的缺陷,会降低仪器的分辨能力而影响图谱质量。对于真正只想对乙醇进行测试结果,而不是为了上交图谱的用户,可以使用天津能谱科技为你准备的只看结果密封池乙醇专用氟化钙密封池。其优点是:可以反复长久使用,而且完全可以测试出乙醇的特征峰,因为乙醇的特征峰均在4000-1200cm-1而氟化钙可以在4000-1100cm-1,透过率高,在90%左右而不会损失仪器能量。缺点是:波长范,4000-1100cm-1不能符合药典规定4000-400cm-1,所以不能作为国家药典规定的标准图谱。对于正规的乙醇红外光谱图,国家药典要求在4000-400cm-1的波数范围内测试,那么必须使用天津能谱科技为你准备的低成本溴化钾密封液体池乙醇标准密封池。配备有4片溴化钾窗片。尤其是对于一般不是经常需要对乙醇进行测试的用户,一般是一两个月才需要测试一次的用户更是合适,其优点是:波长范围符合药典规定4000-400cm-1,透过率高,大于90%,不会损失仪器能量,图谱完全符合国家标准。缺点是:溴化钾窗片容易潮解,对密封防潮保管的要求较高。使用次数濒繁时透过率降低太快。只是经常使用会消耗较多的溴化钾窗片,增加了使用成本。延伸阅读:红外光谱仪测试样品送检要求?为了保护红外光谱仪仪器和保证样品红外谱图的质量,送本仪器分析的样品,必须做到:(1)样品必须预先纯化,以保证有足够的纯度 (2)样品须预先除水干燥,避免损坏仪器,同时避免水峰对样品谱图的干扰 (3)易潮解的样品,请用户自备干燥器放置 (4)对易挥发、升华、对热不稳定的样品,请用带密封盖或塞子的容器盛装并盖紧,同时必须在样品分析任务单上注明 (5)对于有毒性和腐蚀性的样品,用户必须用密封容器装好。送样时必须分别在样品瓶标签的明显位置和分析任务单上注明。 能谱科技作为国内先进的红外光谱仪制造商,生产的ican9傅立叶红外光谱仪具有先进的红外光源系统、稳定的光学系统、高性能的电子系统、人性化的操作系统、极强的防潮处理、丰富的扩展性等特点广泛应用于医药、化工、高校、环保等领域,得到了广大用户的好评。
  • 热分析/红外光谱联用的数据分析方法 第6部分 在Origin软件中GS曲线、FGP曲线以及实时红外光谱图(EGS图)的作图法
    p   本文转载自微信公众号热分析与吸附,作者为中国科学技术大学丁延伟老师,并已获转载授权。 /p p strong    /strong 在《热分析/红外光谱联用的数据分析方法第4部分 仪器分析软件中热重部分的数据处理与作图》和《热分析/红外光谱联用的数据分析方法第5部分 仪器分析软件中红外光谱部分的数据处理与作图》中以实验室在用的美国PerkinElmer公司的热重/红外光谱/气相色谱质谱联用仪为例简要介绍了在仪器的数据分析软件中与热重部分和红外光谱部分相关的数据处理与作图相关的内容,在本部分内容中将简要介绍在Origin软件中GS曲线、FGP曲线以及实时红外光谱图的数据处理与作图相关的内容。由于在Origin软件中不同时刻/温度下的三维红外光谱作图十分繁琐,将在本系列内容第7部分中进行介绍。 /p p   为了保持本系列内容的完整性,以下介绍的大部分内容主要来自本公众号2019年10月6日发布的《在Origin软件中热分析/红外光谱联用的数据作图方法》一文,其中做了相应的修改并增加了实时红外光谱图(EGS图)的内容。 /p p   1. GS曲线的作图法 /p p   一般来说,在由红外光谱分析软件Timebase得到的Excel格式的文件中主要有EGP曲线(即通常所说的GS曲线)文件和不同时刻温度下的逸出气体红外光谱图(即EGS)文件,一共两个文件。 /p p   GS曲线可以直接由导出的Excel格式的GS曲线文件得到,通常说的官能团剖面图(即FGP曲线)可以由EGS文件中导出。 /p p   在Origin软件中对GS曲线的作图十分简单,在Origin软件中导入曲线所对应的Excel文件(图1至图3)。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/1db6881e-d64f-41b6-8671-0ae37784c440.jpg" title=" 图1.jpg" alt=" 图1.jpg" / /p p style=" text-align: center " 图1 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 308px " src=" https://img1.17img.cn/17img/images/202001/uepic/62609940-652e-42c0-967b-5e4165a0c4eb.jpg" title=" 图2.jpg" alt=" 图2.jpg" width=" 500" height=" 308" border=" 0" vspace=" 0" / /p p style=" text-align: center " 图2 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 543px height: 750px " src=" https://img1.17img.cn/17img/images/202001/uepic/54de575b-3929-471b-ad4f-c5b07c3b38ce.jpg" title=" 图3.jpg" alt=" 图3.jpg" width=" 543" height=" 750" border=" 0" vspace=" 0" / /p p style=" text-align: center " 图3 /p p   选中A、B列,点击图4中plot选项,即可得到图5,即为EGP曲线。可以在图5中根据需要改变曲线的粗细、形状和颜色,在此不作详述。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/947a9618-194f-4302-aff3-fd6c2fa954a0.jpg" title=" 图4.jpg" alt=" 图4.jpg" / /p p style=" text-align: center " 图4 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 557px height: 464px " src=" https://img1.17img.cn/17img/images/202001/uepic/e4ce67e8-3c64-471d-8782-d1ece89f1798.jpg" title=" 图5.png" alt=" 图5.png" width=" 557" height=" 464" border=" 0" vspace=" 0" / /p p style=" text-align: center " 图5 /p p   2. 官能团剖面图(即FGP曲线)的作图法 /p p   下面介绍由逸出气体红外光谱图(即EGS)文件得到FGP曲线的方法。通常在Timebase软件中,可以按照图6的方法,选中Save Time Resolved Data选项导出在实验过程中得到实验范围内不同时刻/温度的Excel格式的所有的红外光谱图。按照图1至图3的方法打开文件,得到如图7所示的界面。图7中,第1行“Long Name”中所对应的数值为温度值(即该行为温度行),1.98e+001即为19.8℃,其他以此类推。A列对应的为波数值(单位为cm-1),其他B、C、D...列所对应的为不同温度下的吸光值。也就是说,在图7中,由除A列以外的其他列作为纵坐标轴对A列按照图4的方法作图,可以得到在不同温度下的红外光谱图。另外,在图7中,如果选中温度行和特定的官能团(即特定的波数值)所对应的行进行作图,则可以得到FGP曲线。下面介绍FGP曲线的作图方法。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/f42afe19-16bd-432f-980f-506780617eab.jpg" title=" 图6.jpg" alt=" 图6.jpg" / /p p style=" text-align: center " 图6 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/16d2682f-cb11-4132-8b1b-3be6cd40f10c.jpg" title=" 图7.jpg" alt=" 图7.jpg" / /p p style=" text-align: center " 图7 /p p   按照图8的方法分别选中2358cm-1所对应的行和温度行,复制整行。 br/ /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/dcdf9257-47da-4d8b-ad2d-df3abf22d3cc.jpg" title=" 图8.jpg" alt=" 图8.jpg" / /p p style=" text-align: center " 图8 /p p   新建一个空白的Book文件,将温度行和对应波数(2358cm-1)的数值粘贴这两行,选中,点击Worksheet菜单下的Transpose选项(图9),将这两行转换为两列,转换后的表格如图10所示。删除图10中的第一行数据,按照图4的方法作图,即可得到CO2分子的特征官能团在2358cm-1处的FGP曲线(图11)。可以根据需要改变图中曲线的粗细、形状和颜色,在此不作详述。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/98c364bc-5af7-4f17-b010-d6c6e9ef31df.jpg" title=" 图9.jpg" alt=" 图9.jpg" / /p p style=" text-align: center " 图9 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/3fe819c4-81c9-4309-8fa2-eebc7492a9da.jpg" title=" 图10.jpg" alt=" 图10.jpg" / /p p style=" text-align: center " 图10 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/8c655662-483b-4efa-9b6e-86d7e8f314c3.jpg" title=" 图11.png" alt=" 图11.png" / /p p style=" text-align: center " 图11 /p p   3. 实时红外光谱图(EGS图)的作图法 /p p   在本部分第2节中提到“在图7中,由除A列以外的其他列作为纵坐标轴对A列按照图4的方法作图,可以得到在不同温度下的红外光谱图。”也就是说,在导出的Excel格式的在实验温度/时间范围内的所有红外光谱文件中,选中A列和所对应的一列和/或多列时间/温度列即可得到不同温度/时刻下的实时红外光谱图。 /p p   以下举例说明。图12是不同温度下的一水合草酸钙在加热过程中产生的气体产物的红外光谱图。图中第五行为不同的温度值,第A列为红外光谱的波数值。例如,需要比较第100℃、200℃、500℃和700℃下的红外光谱图的变化,则同时选中这些温度和波数(A列)所对应的列,复制并粘贴到新建的表格文件中,并定义相应列的名称(图13)。同时选中图13中A-E列,点击图4中plot选项,即可得到图14,即为不同温度下的红外光谱图。可以在图14中根据需要改变曲线的粗细、形状和颜色,在此不作详述。由图14可以看出,(1)样品在100℃时样品没有发生分解 (2)在200℃时产生了水,对应于结晶水的失去过程 (3)在400℃时产生了一氧化碳,少量一氧化碳被氧化为CO2 (4)700℃时的气体产物以CO2为主。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 220px " src=" https://img1.17img.cn/17img/images/202001/uepic/a6b0f4c1-4385-4184-8530-572cc84c0cce.jpg" title=" 图12.jpg" alt=" 图12.jpg" width=" 600" height=" 220" border=" 0" vspace=" 0" / /p p style=" text-align: center " 图12 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 557px height: 285px " src=" https://img1.17img.cn/17img/images/202001/uepic/b989ef36-1508-4bde-b282-9029ef1766ff.jpg" title=" 图13.jpg" alt=" 图13.jpg" width=" 557" height=" 285" border=" 0" vspace=" 0" / /p p style=" text-align: center " 图13 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202001/uepic/128d4fc6-623a-479c-9cdb-4f3865f22608.jpg" title=" 图14.png" alt=" 图14.png" / /p p style=" text-align: center " 图14 /p p br/ /p
  • 有了红外防潮箱,红外光谱仪还怕受潮么?
    红外光谱仪容易受潮一直是大家比较关注,也是长期以来困扰客户的一个问题,我公司生产的红外防潮箱很大程度上可以解决红外光谱仪受潮的问题,目前该产品已经投入使用,并受到了客户的一致好评。 天津恒创立达科技发展有限公司公司生产的HOX系列电子防潮箱是傅里叶红外光谱仪专用的防潮电子产品。适用于国产、进口的中、小型傅里叶变换红外光谱仪。产品特点: 1.HOX系列电子防潮箱设置为三档可调,取件范围:20%-50%。2.内部有再生干燥剂,再生干燥剂吸湿一段时间会饱和,再生干燥剂的干燥箱内部阀门会关闭,同时,连接外面的阀门会打开,仪器会通过电加热的方式将水分加热为水蒸气挥发,除湿完成后,外部阀门关闭,内部阀门打开,此过程保持通电即可自动完成。
  • 科学岛团队发展一种近红外光谱新算法鉴定作物品种真实性
    近日,中科院合肥研究院智能所作物品质智能感知团队发展了一种近红外光谱技术方向的新算法,该算法适用于高通量鉴定作物品种的真实性。相关工作被Infrared Physics & Technology接收并在线发表。   作物品种真实性在品种保护及品种选育方面具有重要意义,传统的作物品种真实性鉴定方法如DNA分子鉴定、同工酶鉴定、田间鉴定等方法存在操作复杂、检测结果耗时、损伤样品、污染环境、结果滞后等缺点,亟需一种快速有效的方法实现作物品种真实性鉴定。近红外光谱是一种快速无损检测技术,基于近红外光谱仪开发的光谱采集系统,可实现高通量采集作物单籽粒光谱。近年来,由于人工智能和深度学习的快速发展,卷积神经网络(CNN)已逐渐应用于分子光谱学,相比于传统的化学计量学算法,CNN在识别方面表现出更高的准确性和鲁棒性,这为近红外光谱技术的应用和发展提供有力支撑。   为此,研究人员提出了一种改进的CNN:InResSpectra网络,用于小麦和水稻品种真实性的高通量鉴定。该网络对Inception网络进行改进,删除1×1卷积分支降低模型复杂度,同时增加ResNet网络的残差元素,加速了神经网络的训练,同时提升模型的准确率;同时,实验中对比研究了多种分类算法,不断优化模型参数,提高模型预测的稳健性。在此次研究中,研究人员将开发的系统应用于鉴定24个小麦品种和21个水稻品种上,分别取得95.35%和93.07%的准确率(图1),为近红外鉴定作物品种真实性提供了有效方法。   李晓红硕士和徐琢频博士为该论文第一作者,王琦副研究员和张鹏飞副研究员为通讯作者。该工作得到国家自然科学基金、安徽省科技重大专项、以及安徽省重点研究与开发计划等项目的支持。InResSpectra网络识别小麦和水稻样本集的混淆矩阵热力图
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制