当前位置: 仪器信息网 > 行业主题 > >

数显打印气仪

仪器信息网数显打印气仪专题为您提供2024年最新数显打印气仪价格报价、厂家品牌的相关信息, 包括数显打印气仪参数、型号等,不管是国产,还是进口品牌的数显打印气仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数显打印气仪相关的耗材配件、试剂标物,还有数显打印气仪相关的最新资讯、资料,以及数显打印气仪相关的解决方案。

数显打印气仪相关的资讯

  • 最后一周丨超高精度高校建筑模型免费打印
    各位朋友,摩方最新超高精度3D打印的高校建筑模型出炉啦!本轮高校建筑模型有1个,来自中南大学,以下为实拍图分享~ 本轮“免费超高精度3D打印高校建筑模型”活动即将到8月底截止,欢迎感兴趣的朋友抓住最后一周机会参与,免费获取超高精度3D打印母校建筑模型! 中南大学门牌坊活动主题:免费超高精度3D打印高校建筑模型第一轮征集时间:2021年6-8月征集方式:请将您所提供的高校代表性建筑三维模型图(仅限stl格式文件)通过邮件的方式,发送至bmf@bmftec.cn即可。(请留下您的姓名、单位、联系方式)模型要求:模型整体的最大尺寸和内部最小细节,相差在500倍以内。活动流程:①在模型征集期间,对于您所提供的模型图,摩方精密技术团队将在7个工作日内进行内部技术评审;②通过评审的模型,将由技术团队安排在3周内通过摩方精密3D打印设备打印出来,免费赠送给您,同时,所打印高校建筑模型将在摩方精密的公众号进行阶段性公示;③截至8月31日,本轮模型征集结束后,摩方精密团队将针对所有经过评审打印出来的高校建筑模型,通过公众号或合作媒体进行全国投票活动,最终参考实际票数情况,评选出本轮高校建筑模型征集活动的优胜奖一/二/三等奖。活动奖项:一等奖:华为WATCH GT2 智能手表,价值1400元二等奖:Kindle电子书阅读器,价值658元三等奖:华为FreeLace Pro蓝牙耳机,价值500元 注:①摩方精密技术团队将秉承公平公正公开原则认真对待每一个模型的评审;②高校建筑模型图的版权归提供者所有,摩方精密享有对所打印建筑模型进行宣传推广的权力。
  • 恒美电子:农药残留检测仪器直接打印出蔬菜名称
    农药残留检测仪器可对上百种农产品和食品进行检测,分类管理,检测结果直观显示,方便人们清晰了解农产品的安全性,可直接打印出蔬菜名称。近年来,果蔬农产品的交易量较大。但由于农药残留的存在,许多果蔬农产品的质量安全受到了影响。农药残留检测仪器采用酶抑制率法比色法,快速、准确地检测水果、蔬菜等农林产品中有机磷和氨基甲酸酯类农药的含量。农药残留检测仪器具有操作简单、检测速度快、自动化程度高、检测结果准确、可同时检测多个样本、智能化程度高、数据采集方便等特点,不仅适用于企业自身检验、消费者自检等,同样适用于工商执法部门等,只需30分钟左右即可得到检测结果,小巧便携,相当于一个小型实验室并可随时进行现场测试。农药残留检测仪器可对多种蔬菜水果等农副产品进行快速检测筛查,确保上市农产品的食品安全,有效保障食品安全。
  • 数字新浙商专访先临三维李涛:让3D打印走进亿万家庭
    从初生到成熟,3D打印行业走过了短短的三十年。这项新兴技术曾刷爆朋友圈,时至今日人们对3D打印的认识却依旧停留在“盲人摸象”的阶段,众说纷纭,褒贬不一。由于入门级的桌面3D打印机率先在教育领域得到普及,更多人仍将3D打印和“玩具”联系到一起。当我们走进位于杭州湘湖边「先临三维」的展厅内,桌面3D打印机却只是整个展厅的“冰山一角”。眼前大到比人高的金属打印机、用于航空航天的金属器件,小到精密的手持扫描仪器、用于齿科矫正的材料… … 把我们带进了一个3D打印的真实世界。作为国内3D打印行业营收领先的先临三维,从单项技术发展到建立装备、数据、服务集成体系;从单个领域应用拓展到高端制造、精准医疗、创新教育、定制消费等多领域的深度应用,沉浸行业15年。在工大学弟周青的牵线下,我们见到了几乎不曾接受公开采访的先临三维CEO李涛。这位毕业于浙大金融系的80后,低调和冷静背后,暗藏热切的呼喊:“我希望大家能真正认识到3D打印不是噱头,不是玩具,而是一套从数字化的信息采集开始,到面向性能的数字设计,最后到柔性的数字制造业全链条的技术系统。掌握好这套工具,就能突破想象力的束缚,真正带来效率、性能和品质的提升。”最终,李涛和先临三维想实现的,是让设计更加智能化、简单高效,让基于3D打印制造的个性化产品不再昂贵,能像家电一样走进亿万家庭。「数字新浙商」访谈现场洞见消费行为正呈现出“个性化”的新趋势,制造模式也从过去的标准化、规模化向高性能、多品种小批量、个性化方向发展。3D打印行业的未来不是一家独大,一定会有很多企业形成整体生态,整个链条正在经历一轮设计和制造思路的变革。个性化一定是建立在高水平的标准化、模块化和数字化应用的基础上,智能化也同理。3D打印行业会成长为现代制造业生态中不可或缺的一个子系统。它会和当前主流的制造设计生态系统相互融合,并非简单取代。 有一本书叫《跨越鸿沟》,很多新技术在初期很吸引眼球,在初期创新市场向主流规模市场过渡时,中间会经历一段时间的沉寂,3D打印技术现在就在这个鸿沟里,跨越鸿沟,才会走向规模化和普及化应用。——李涛谈行业发展:3D打印正经历设计和制造思路的变革章丰:从全球市场看,目前中国的3D打印产业处于怎样的水平?李涛:从数据来看,还是挺耐人寻味的。根据市场研究机构IDC预计,2019年全球3D打印的市场规模将达到138亿美元,中国预计将花费近20亿美元。从地域看,美国仍是全球最大市场,德国、英国、法国、意大利等国家紧随其后。国内的3D打印市场起步晚于国际市场十几年,但大致上也会沿着国外市场发展的轨迹追赶,从规模上讲还很小,但从增长速度来看,国内市场会超越大部分国家。过去我们大量进口国际先进3D打印设备和技术,现在国内自主研发的设备、材料和软件也纷纷走向国际市场。 章丰:中国是制造大国,而且在大部分细分行业形成了全球领先的产业链,为什么3D打印的市场份额比较小? 李涛:目前3D打印的最大市场是在美国、欧洲等主要的经济发达区域。首先,从产品消费市场来看,经济发达的地方,消费水平会高一些,人工成本也高,对于产品制作效率、品质的要求更高,这助推了对设计和制造工具的高要求。比如在康复和医疗领域,3D数字设计和3D打印的应用在国外的用量明显比国内大,我们只有在解决常规手段或经验完全无法解决的疑难杂症时,医生才会不得已用到3D打印。原因是其中的结构太复杂,需要事先演练、验证,避免出现意外;同时,国内各地因为收费标准不明确,有些医生甚至自己掏腰包来承担这笔打印费用。 章丰:可以这么理解,3D打印行业的发展是由消费市场的成熟度决定的? 李涛:消费市场的成熟度是一方面,还包括认知度和必要性,对3D打印的认知到不到位、是否刚需以及消费水平,几个因素共同形成了消费市场的差异,这是最主要的原因。在业内大家还有其他观点,一些制造业企业用户提出材料的种类不够丰富、性能不够好等原因。但是他们忽略了一点,近年来许多材料巨头把眼光转向了3D打印,纷纷推出专门的3D打印材料,可以说现有材料已经可以广泛应用于各领域,我们可以从设计上进行优化,充分发挥材料的性能。过去我们在制造中遇到高性能要求的时候,习惯从材料上想办法,能不能有更高强度、高耐用度的材料?3D打印提供了一种新的思路——将现有材料通过结构变化来实现目标性能,计算机仿真出物体在实际运行环境中的受力变形和散热状况,优化出最适宜的几何结构,最终得到一样的性能。 我个人认为,设计意识也是一个非常大的瓶颈。很多时候,工程师的思路受限于原有的加工工艺。以我们打印服务中心接到的订单为例,几乎99%以上都是面向开模、切削加工工艺来做设计的产品,只是想在加工前用3D打印来快速验证,缩短开发验证时间。验证迭代以后,产品量产还是用原有工艺,他们没有考虑面向3D打印的特点,做高性能的结构来解决问题。但从我们国外的订单来看,有些零件一看就是非3D打印不能制造,也就是说它是为了将来以3D打印方式来量产做准备。这方面主要靠大公司推动,像航空航天和能源系统的公司。比如说发动机领域,劳斯莱斯、GE航空,包括spaceX开发的火箭推行系统,都在用3D打印开发新一代发动机。最典型的例子,2016年GE开发团队宣布把一款涡轮螺旋桨发动机的845个部件合并为只有11个3D打印部件。不仅成本大大削减,而且减少了复杂性,缩短了生产周期,并且新技术可以把发动机大修时间间隔延长30%以上。 章丰:刚才讲到的几点原因中,设计能力的制约占多大比重? 李涛:我认为设计的瓶颈远远超过材料和其他因素。3D打印是一个风向标,帮助我们看到了当前中国创新所处的阶段。中国确实是制造大国,但和其他制造强国相比,自主创新的企业所占比重仍偏低。在先临三维的用户分布上,国外从大公司、中型公司到小型公司,都在使用3D打印技术。但国内的客户群主要集中在超大型公司和超小型公司。为什么?大型企业在研发下一代新产品和新应用时追求高性能,使用3D打印技术来进行优化迭代。而超小型企业不具备一开始就制造量产的能力,先打印5个、10个,然后投放市场、验证反馈、快速迭代。消费行为正呈现出“个性化”的新趋势,制造模式也从过去的标准化、规模化向高性能、多品种小批量、个性化方向发展。3D打印行业的未来不是一家独大,一定会有很多企业形成整体生态,整个链条正在经历一轮设计和制造思路的变革,所以整个思路都要重构。谈个性化:辩证看待 个性化也基于标准化之上足部3D扫描仪在个性化定制领域,先临三维也积极展开尝试,将3D数字化技术和3D打印技术应用于精准的个性化定制解决方案。比如在“鞋”这件小事上,公司自主研发了固定式足部3D扫描仪及手持式足部3D扫描仪,可以快速获取高精度脚型数据,结合3D打印技术,可应用于个性化定制鞋、医疗支具及矫形器定制等众多领域。章丰:高性能、小规模、个性化也随之带来一个问题,成本造价会不会升高? 李涛:要辩证地看。我们作为制造业企业,习惯性考量某个零件单体制造成本,现在一些公司开发新产品时,不仅考量制造成本,还要联动前期的设计成本、时间成本,后期的维护成本、回收成本。如果以全周期来看,会发现成本和量产规模有关。国外曾有分析表明,某个零件的制造,相比开模,在制造数量低于某个临界点后是3D打印更划算。所以整个3D打印在国外的大型企业的应用,已经覆盖到了整个产品的周期,从前期的概念验证到制造过程中的工装、模具,再到部分产品的直接生产。章丰:随着材料工艺、软件设计能力,包括计算机视觉智能化水平的提高,未来3D打印的成本曲线是否会呈现往下走的趋势?而传统的制造工艺已经成熟,它的成本曲线可能更趋向平滑。这两条曲线在未来的演变过程中,有没有可能在相当程度上实现交叉?李涛:一定会。传统制造方式随着量增加,成本会线性下降,因为它的初期投入会被摊薄。3D打印的成本也是向下的,只是没那么陡,为什么?材料成本、设备成本在下降,设计工艺带来的整体成本也下降了。所以两者一定会在某个目标制造量下出现交叉点。当然最后根据产品是否用金属材料、尺寸大小,成本会有不同。但总得来说,产品尺寸越小、结构越复杂,3D打印的成本越低;越大越简单,用3D打印的相对成本越高。章丰:近两年制造业经常提C2M(Customer-to-Manufacturer,用户直连制造),强调消费者端的定制化生产。鞋子就很典型,因为每个人的脚型都有差异。未来如果C2M模式逐渐普及,在工业制造端的3D打印会是怎样的面貌?李涛:个性化也是分级的,好比我们买车,也有个性化定制,但厂商提供了几个配置组合,这些配置就是相对标准化的,只是通过消费者的选择组合,变成了个性化。拿鞋举例,可能100万人中,按传统的尺码分成10个尺码,经过三维扫描建立起3D足型数据,这100万个数据通过软件自动计算和分类之后,可以归类出100个尺码。如果再往下细分,意义就不大了,就像圆周率的精确度。章丰:个性化也是“优化的个性化”,过度个性化的边际效应已经很小了。 李涛:没错,实际上采用数字化的再分类方式更智能,同样可以提供舒适度。这100万个人当中,和这100个尺码100%吻合的人,会超级合脚舒适,剩下的误差脚感上也是微乎其微。高度的个性化一般应用于康复领域,比如脚受伤了,通过建模打印一双和脚型完全一致的鞋,这类产品随着3D打印材料成本的下降,也可以控制在几百块以内,不再高不可攀。谈研发投入:高薪高水平 胜过人海战术 2018年,先临三维的研发投入高达1.405亿,相对于4.12亿元的营收,占比达到34%,相当之高。财报显示,从2012年开始,公司每年投入研发的资金都维持在较高的水平,超过营收的20%。章丰:多年来研发费用占比保持在20%以上,这在科技公司中也是一个很高的水平。 李涛:主要出于几点考虑。首先,公司的综合毛利相对可观,可以保证这部分研发费用。第二,因为我们所做的是图形图像领域软硬件结合的产品,对于人工智能领域的高端人才是刚需,所以待遇水平占了支出的很大一块。第三,尤其最近三年投入比重特别大,因为我们在做技术结构的调整,建立了一种梯度型的研发投入。我们把研发分成三个层次:底层是面向未来的核心算法和软件技术储备。由我们的首席科学家带着研究院的教授及员工在开发,他们做的是探索性的工作。中间层叫基础研发。基础软件和基础硬件部门负责整个公司的软硬件平台的搭建,把那些可以在近期用到产品中的软件进行架构化和标准化,把研究院的成果做成更加稳健的软件模块和算法模块,供我们的产品部门调用,实现三维扫描跟3D打印共性的技术的平台和成熟组件的开发。最后就是产品层面的开发,各产品线的研发团队面向不同行业应用,面向客户需求的产品功能开发和用户体验优化。我们坚持每年都会发布几款新产品,每年每个产品线都有新产品,现有的成熟产品,最慢两年内会更新一代。章丰:这么高频? 李涛:随着行业发展,用户需求是越来越多样化的。比如有的是拿来做零件,有的用以维修,那么维修就要用到三维视觉,如何识别它维修部位,帮助用户精准地自动定位。再举金属打印的例子,早期我们的金属打印机只有一台。后来我们发现,金属打印机用在不同的领域,有不同的需求——有的侧重效率,有的侧重强度,有的侧重成本,那么就要对它做细致的分类,进行迭代。另一方面,我们的用户结构也在发生变化。以前的设备主要提供给科研型的单位、高端制造业的工程师用,他们经过培训就可以按照流程使用。但是近几年,随之设备的普及,操作者可能是模具厂的工人,那么我们在软件上就要根据用户场景和使用需求做简化和一键式操作。 章丰:3D打印是一种跨学科的交叉技术,对团队人才的要求是复合型的,需要计算机、光学、机械制造、材料等等学科背景,而且很多技术处于行业演进的前端,这样的人好招吗? 李涛:很不好招,所以我们注重高薪高水平胜过人海战术,而且要人尽所长。我们的主管在行业里沉淀了多年的经验,以他们的架构能力,把需要的能力拆分成几种类型的,招相应专业的人才,进公司后还需要培训磨合。我们投入了很大一部分精力,把内部的软件架构做了模块化梳理。我认为,个性化一定是建立在非常高水平的标准化、模块化和数字化应用的基础上才能实现。章丰:这个观点我很赞同,否则个性化很难走得远。李涛:智能化也是同理。智能化如果不是建立在非常高水平的数字化,以及数字化下的高度的数据结构化的基础上,靠散乱的数据、垃圾数据拿去学习,就难以得到准确的结果,就像是我们常说的“Garbage in,Garbage out”(无用输入,无用输出)。谈应用领域:大众的想象真的太高了 短期内打印器官肯定不行目前3D打印技术已经广泛应用于工业及消费领域,但在风口来临之前,先临三维已经在行业内深耕了15年,为高端制造、精准医疗、定制消费、启智教育等领域用户提供 “3D数字化—智能设计—增材制造”智能制造解决方案。作为业务模块之一的3D打印服务,打造 C2M 和线上线下相结合的分布式服务模式,并在全国建立了布局了十几家线下服务中心。 章丰:这些3D打印服务中心分布在哪里? 李涛:一般在制造业相对较发达的地方,我们和地方政府合作,作为块状产业的配套。但这一块现阶段看,尝试并不太成功,原因是我们忽略了当前制造业用户所处的状态。原来我们认为在制造业发达的地方,用户需求会高,现在看需要同时满足设计、创新都发达的条件,而且这些企业的需求还不一定连贯,没有办法保证服务中心的高频运转。所以我们认为当前服务中心的模式还是集中优于分散,相应地我们做了一些调整,加强总部的服务能力,通过物流触达各地。 章丰:未来3D打印会在哪些领域形成较大规模的应用场景? 李涛:根据规模,依次是先进制造、医疗健康、教育文创几大领域。在接下来相当一段时间内,规模也会按照相类似的比重放大。在制造领域,目前主要是一些超大型企业和初创企业在使用,会逐渐形成辐射效应,加上设计软件门槛下降之后,越来越多的工程师可以基于这项技术做一些这种高性能的零件。 章丰:生物3D打印的应用,也是很多人关注的领域。按照你的估计,未来5年生物3D打印能达到什么样的水平? 李涛:我怕让大家失望。因为大众的想象真的太高了。短期内打印器官肯定不行,但是在人体的一些局部个性化修复领域,比如骨骼、皮肤、血管,应该会越来越多。当然这方面也需要相关的制度供给。现有的医疗器械的管理里,3D打印植入体的认证,包括一些个性化的认证,还没有被纳入。国外的认证就会快一些,美国每周都会有相关的认证性产品发出来。如果在制度供给上能跟进的话,推进会更快。谈行业图景:3D打印是制造业生态不可或缺的系统章丰:很多人对3D打印的整个行业没有一个整体认知,包括我,因为这里面有很多角色,能不能解读一下?李涛:这个问题很好,我一直想讲的就是,我们公司虽然是3D打印的一员,但我们不能代表整个行业。因为这个行业未来会是一种新生态,里面会有设计、应用、材料、设备制造单位。光制造设备,根据材料和工艺种类的不同,应用方向的不同,可能都有成百上千家不同类型的专用设备的企业产生。所以3D打印行业以后会成长为现代制造业生态中不可或缺的一个子系统。它会和当前主流的制造设计的生态系统相互融合,并非简单取代,而是解决传统方式做不了的东西,相当于制造业的增量市场。 章丰:相对于你描述的理想生态,目前行业的发展处在哪个阶段?李涛:有一本书叫《跨越鸿沟》,很多新技术在初期很吸引眼球,然后开始应用,在初期创新市场向主流规模市场过渡时,中间会经历一段时间的沉寂,就叫鸿沟,跨越鸿沟才会走向规模化和普及化应用,3D打印技术现在就在鸿沟里。我个人认为,整个行业需要系统的推进,有几大因素可以助推:一是大企业的辐射效应。二是3D数字设计和制造工具会越来越简单,使用体验越来越好,学习成本会低。第三,我认为教育领域所能起到的作用非常大的。我们投入了很多经历和资金在教育上,因为我们希望让大家认识到,3D打印不只是打印制造本身,它实际上是一个从数字化的信息采集开始,到面向性能的数字设计,最后到柔性的数字制造业全链条的技术系统。这一套工具掌握好了之后,你能打破想象力的束缚,创造出很多很好的产品。而这些产品,因为它的复杂性,除了3D打印,没有其他手段能制造和生产。快问快答章丰:你最得意的事情是什么?李涛:我们从2012年开始,能得到董事会股东的认可,支持原创性技术的高投入,而且坚持这么多年,也不会因为财务报表的压力给我们施压。 章丰:最期待发生什么? 李涛:我希望大家能真正认识到3D打印不是噱头,也不是玩具,而是能真正带来效率、性能和品质的提升的一项技术。希望国内也能用好这项技术,从设计层面去跨越鸿沟。 章丰:最害怕发生什么? 李涛:为了3D打印而3D打印。 章丰:你会如何解读“数字新浙商”? 李涛:一直以来,大众对“数字”形成的理念主要是互联网、大数据、云计算、机器学习等等。很多时候,大家不会把我们做的领域认为是跟数字化有关的,但我个人认为,我们在做的事恰恰代表着未来整个数字经济发展的非常重要的支撑力量——3D打印是集数字化的设计、应用和制造一体化发展的行业。 数字化固然重要,它是未来智能化的根基,但未来不单单是数据层面的数字化。互联网完成了人与人之间的连通,未来设备与设备、人与设备的关系连通,也是数字经济非常重要的环节。当然现在很多互联网企业在提工业互联网、云计算,如果说他们做的是“云”是“脑”的部分,完成机器本身的数字化,我们在做的就是“端”和“手脚”,让各种工具也数字化,才能真正实现互联互通。“数字新浙商”既然来采访我,说明你们看到了整个数字化的大生态,未来应该是所有产业无处不数字化,只有无处不数字化,才能无处不智能化。来源: 数字经济发布微信公众号
  • 让你大跌眼镜的十大3D打印术
    与传统技术相比,3D打印技术最突出的优点是无需机械加工或任何模具就能直接从计算机图形数据中生成任何形状的零件,从而大幅缩短生产周期,提高生产效率。 随着3D打印技术的迅速发展,人们对于3D打印的模型、玩具、配件等玩赏性居多的物件早已习以为常。这一技术的应用已经突破人们最初的设想,成为&ldquo 无所不能&rdquo 的&ldquo 造物&rdquo 魔术。  1. 人体器官  法国技术人员采用3D打印技术,帮助一位失去鼻子的病人找回了&ldquo 鼻子&rdquo 。外科医生先使用3D扫描仪扫描了这位病人的脸部,之后以此为基准用计算机重新构建他的鼻子。利用3D打印机和尼龙材料制作出面部外壳模具,再用硅胶为原材料制作出&ldquo 新的&rdquo 鼻子,固定在病人脸上。目前,这位病人已经恢复了正常的生活。  2.假肢  美国的两岁女孩Kate患有先天性的畸指,但Kate的家人不想让她接受外科手术。然而3D打印技术给了他们另外一个选择&mdash &mdash 一只3D打印的手,而且这只&ldquo 高科技&rdquo 的手掌只需5美元。  东京Maker Faire的新闻发布会上,一个团队展示了他们3D打印的义手&mdash &mdash Handie。Handie所有部件都是3D打印的,用户很容易根据自己的需要进行调整或者复制。开发人员还设计了一个独特的手指屈伸系统,为了降低电机的数量,他们开发了由一台电机驱动的三关节手指,可根据物体的形状被动地改变它的轨迹。 Handie能够完成很多手的功能而且它的价格十分吸引人,费用不超过400美元。  3. 食物  英国埃克塞特大学研究人员去年推出了一种3D巧克力打印机,使用者可根据自身喜好,制作出自己的专属形状巧克力。与普通喷墨打印机工作原理类似,3D巧克力打印机在打印物体时也要经过扫描、分层加工成型等步骤。  4. 服饰和鞋子  今年3月,纽约设计师 Michael Schmidt 和建筑师 Francis Bitonti 联合3D打印公司为Dita Von Teese量身定做出世界上第一条完全由3D打印技术制造的礼服。这件礼服由17片3D打印出的织物连接而成并镶有13000多颗施华洛世奇水晶。  这双3D打印的Nike鞋子名为Vapor Laser Talon Boot(蒸汽激光爪),整个鞋底都是采用3D打印技术制造。 官方称该跑鞋不仅具有出色的外观还拥有优异的性能,能提升足球运动员在前40米的冲刺能力。  5.乐器  上个月,新西兰梅西大学的机电一体化教授Olaf用3D打印技术设计制造了一把非常独特的吉他:蒸汽朋克(Steampunk)3D打印吉他。这个吉他有一个3D打印的琴体,上面带有可活动的齿轮和活塞。这些部件都是做为一个整体一次性打印出来的。这款吉他和此前其他利用3D技术打印出的长笛、小提琴等乐器都具有不错的音色。  6. 相机  法国一位名叫Lé o Marius的24岁学生使用3D打印机制作出了一部能够正常工作的单反相机(SLR),不同于数码单反(DSLR),OpenReflex使用胶卷进行拍摄。这款通过3D打印技术制成的单反相机虽然外型很粗糙,但它能够正常工作。  7. 汽车  Urbee 2是世界上第一款完全通过3D打印技术制造的汽车。这款汽车拥有三个车轮,动力7马力(5KW),并且采用的是后轮驱动的方式,预计将会在2015年正式上路。Urbee 2的燃油效率非常高,如果驾驶它横穿美国,行驶4500公里的距离,油耗一共只有38升。第一代的Urbee曾经在2010年诞生,但是受限于设计和安全因素的考虑,Urbee最终只能停留在概念阶段,并没有实际生产。  8. 枪支  近日,美国得克萨斯州一家公司宣布用金属粉末制造并测试了世界上第一支3D打印金属枪。这款全球首支3D打印金属枪依照的模板是美军曾经的经典装备布郎宁1911式手枪,由超过30个3D打印原件组装而成,包括不锈钢和一些特殊合金材料,实际装配时间只需5至7分钟。 截至目前,这支枪已经成功发射了50发子弹,射击距离超过27米,和常规武器一样精准。  9. 火箭部件  今年8月,NASA对用3D打印技术制作出的火箭发动机喷射器进行了测试。一般而言,火箭发动机喷射器是火箭生产中最昂贵的组件之一。通过使用金属3D打印技术的工艺,成本能够减少70%以上,并且极大缩短开发时间。NASA对新型火箭发动机喷射器进行的包括液态氧和气态氢等一系列高压消防测试均取得了成功。NASA有计划继续推动该技术的发展并扩大应用范围。  10. 飞行器   HEX是世界第一款用智能手机控制、与3D打印结合的四轴飞行器,外壳采用3D打印实现个性化定制。用户也可以自行下载定制外壳的3D文件打印,组装方式类似乐高玩具,无需工具,非常简单。这也是目前3D打印在消费类电子产品中的新尝试。
  • 微量树脂打印系统—解决新材料开发阶段的难题
    很多进行新材料研发及相应创新应用研究的用户,使用的打印材料配制难度大且昂贵,或需进行材料快速筛选时,可提供的打印材料量很少(通常只有几十毫升),例如生物医疗材料(如GelMA每克需几百元)、水凝胶、新型功能材料等。对于这类材料的3D打印,通常情况下打印设备配置的标准材料容器相对而言容积过大,用户能够提供的材料由于量少而无法实现打印,或者为了匹配打印设备标准材料容器,增加材料配制量而带来巨大的成本和材料浪费。承装液态光敏材料的树脂槽是PμSL 3D打印系统中的关键组件。通常地,对于面投影光固化打印,特别是自上而下投影方式,树脂槽容量与打印尺寸成正比,即打印系统可实现的最大成型尺寸越大,相应配置的树脂槽容量也越大,因此,打印时所需的材料也越多。如摩方公司的10 μm光学分辨率的3D打印系统S140,最大打印样品尺寸为94 mm × 52 mm × 45 mm,系统标配的树脂槽容量为800 ml。图1 摩方公司S140标准树脂槽规格基于稀贵材料的特殊打印需求,摩方公司自主研发出容量20 ml的微量树脂槽系统,以满足这一材料的打印及相应研究,如图2所示为20 ml树脂槽系统设计。为了匹配设备原有结构设计并简化树脂槽更换程序,微量树脂槽直接配置于设备的标准树脂槽中,安装更换便捷。同时,配备相应的打印平台和打印离型膜,以实现稀贵材料的特殊打印。这一微量树脂槽系统可实现10 mm × 10 mm × 10 mm的最大打印尺寸。图2 摩方公司S140 20ml树脂槽系统图3 摩方公司S140800 ml标准树脂槽和20ml微量树脂槽实物对比利用上述20 ml树脂槽系统,摩方公司做了系列新材料的3D打印及应用研究。如图3所示是使用该微量树脂槽打印的微弹簧阵列结构,所用材料为磁性颗粒复合树脂(单价约10元/mg),材料配比5%质量比,打印弹簧线径约100 μm。图3 磁性颗粒复合树脂打印在实现设备最大打印尺寸的标准树脂槽基础上,新增适用于稀贵新型材料打印的微量树脂槽,解决了初期材料开发量少、材料浪费、成本高、材料筛选周期长等难题,可有效促进新材料的开发及相关应用研究。官网:https://www.bmftec.cn/links/10
  • 科学家利用X射线研究金属3D打印产生缺陷的原因
    p   SLAC国家加速器实验室正在研究如何避免金属3D打印零件的缺陷。其X射线观察过程可以产生更可靠的3D打印部件。 /p p    img src=" http://img1.17img.cn/17img/images/201802/insimg/99c14bab-349e-4813-b9b4-bc025375d2f8.jpg" title=" 1517452728292032405.jpg" / /p p   无论您的3D打印机是在家里、工厂、船上,还是在太空中,您总是希望您的3D打印物尽可能出现少的缺陷,无论是为了审美目的,还是为了确保其功能关键部分。然而,有时候,识别缺陷的原因可能很困难:是3D打印材料还是3D打印机本身?也许这个缺陷来自用于构建零件的CAD 3D模型? /p p   SLAC国家加速器实验室的科学家们同样好奇,为什么3D打印部件(特别是金属3D打印部件)容易出现缺陷,所以他们使用装有X射线的观察台来更好地理解使3D打印出错的原因。科学家们认为这项研究可以使各种3D打印产品制造商受益,例如航空航天、汽车和医疗保健等行业。 /p p   这项研究正在实验室的斯坦福同步辐射光源(SSRL)上进行,并得到美国能源部劳伦斯利弗莫尔国家实验室和艾姆斯实验室的科学家的协助。这些科学家一起使用两种X射线方法来观察金属3D打印过程中发生了什么-这是一项令人难以置信的有用的技术,但尚未完善。 /p p   SLAC工作人员兼项目负责人Johanna Nelson Weker表示:“借助3D打印技术,您可以制作具有复杂几何形状的部件,这些部件不能像普通金属部件那样进行铸造。从理论上说,这可以是一个快速的转变:简单地设计、发送、从远程位置打印。但是我们还没有。我们仍然需要弄清楚所有参与制造坚固零件的参数。” /p p   读者可能非常清楚FDM 3D打印机可能出现的各种缺陷,但是金属3D打印机存在自身的一系列问题。例如,在选择性激光熔化(SLM)过程中,熔化激光束过程在金属冷却和硬化时不均匀地产生坑或弱点,同时建立层。但为什么会发生呢,怎样才能避免呢? /p p   在这些研究过程中,SLAC科学家们正试图深入这个增材制造问题的底部,分析所使用的金属的种类,激光的热量水平,金属加热和冷却的速度以及可能会导致3D打印部件缺陷的其他因素。 /p p   SSRL材料科学部门的科学家Chris Tassone评论说:“我们提供的基础物理研究将帮助我们确定金属3D打印的哪些方面非常重要。” /p p   科学家们认为,使用X射线而不是热成像装置可以揭开矿坑形成的秘密。他们正在使用两种不同的X射线技术,一种是捕获微米分辨率图像,当金属层积聚时会发生什么,另一种是从材料中的原子反射X射线来分析其原子结构,然后冷却。 /p p   目前,研究人员Nelson Weker和Tassone、Kevin Stone、Anthony Fong、Andrew Kiss、Vivek Thampy还没有得到任何明确的答案,但他们相信新的X射线设置可以帮助了解金属3D打印形成坑和弱点的原因。该研究还将用于观察其他种类的金属3D打印,包括定向能量沉积。 /p p   随着研究的不断深入,科学家们还计划在这个过程中引入其他的观测工具,包括一个可以收集制造过程照片和录像的高速摄像机。然后,他们将能够在某些点将他们的图像与他们的X射线数据相匹配,以便更全面地了解金属3D打印部件正在发生的事情。 /p p   Nelson Weker解释说:“我们希望制造商能够将他们在相机上看到的东西与我们在这里测量的东西联系起来,以便他们能够推断出金属材料表面下发生了什么。” /p p br/ /p
  • 北京天星天平数据打印机——助力加快国内疫苗产线建设
    目前全球防疫形势依旧十分严峻,疫苗市场紧缺。为此我国某疫苗产商决定组建新产线,扩大疫苗的产能。 在疫苗的研制生产过程中,为确保各项数据的准确和可追溯,急需采购专业的分析天平和及其配套使用的天平数据打印机。而其中进口的专用天平数据打印机价格十分昂贵,而且供货周期较长,无法应对目前急需建设的疫苗产线。 我司在天平数据打印机已深耕多年,具有广大的用户群体,该疫苗厂商联系我司,希望我司能在短时间内为其提供60余套天平数据打印机,帮助其尽快完成产线建设。我司在接到需求后,迅速派出工程师了解详情,第一时间给出了完整的解决方案,并派出工程师上门帮助其一次性安装调试成功,大大加快了其疫苗产线的建设,并有效的降低了其使用成本。 我们在此次合作中提供的TX-110系列天平数据打印机符合GMP/FDA规范要求,可输出内容包括天平的型号、序列号、校准日期、校准情况、操作员签名等,还具备权限管理,可以禁止非授权人员操作电子天平。可支持所有带数据接口的电子天平,包括梅特勒、赛多利斯、奥豪斯、岛津以及国产全系列电子天平。
  • 3D打印新技术登上《科学》期刊,可实现“多线并行”
    传统的3D打印往往要先设计结构,再选择材料,确定加工工艺,最终打印成形,但因材料、结构和工艺等多因素耦合规律复杂,3D打印的零部件想精确成形需反复试错,想实现金属构件的高性能甚至多功能比较难。南京航空航天大学材料科学与技术学院、江苏省高性能金属构件激光增材制造工程实验室顾冬冬教授团队,联袂德、美、英等国学者,建立了一种新的3D打印模式,能在复杂整体金属构件内部,同步设计、打印多种材料和多类结构,实现构件的高性能和多功能。2021年5月28日,这一研究以《材料–结构–性能一体化激光金属增材制造》之题,登上国际著名学术期刊《科学》。3D打印一个零件,不同部位有不同功能激光增材制造,即3D打印技术,是当前世界科技强国竞相发展的一项战略性关键核心技术,可满足现代工业对难加工金属构件短周期、高精度、高性能制造的重大需求。“传统的3D打印遵循‘串联式路线’,即结构设计–材料选择–加工工艺–实现性能。这种路线需要反复试错,周期较长,成本较高。”论文的第一作者和通讯作者顾冬冬说,基于这一挑战,他和研究团队提出了一种新的3D打印模式,即“材料–结构–性能一体化增材制造”的并行模式。通俗地说,这种模式在设计和打印产品结构时,考虑在零件的不同部位,哪种材料、哪种结构更适合,再确认加工工艺路线,最后打印出来,以确保产品的高性能和多功能。“人们越来越希望金属零件能同时满足多种需求,即使一个零件,也能在不同位置,用不同的材料,打印不同的结构,实现不同功能,例如有的部位能耐热,有的部位能承载受力,而这种3D打印模式可以实现。”顾冬冬说。如何证明这种制造方式更合理?研究团队以“下一代空间探测器着陆器系统的整体化和多功能化发展趋势”为例,反复验证“并行模式”的金属整体结构3D打印的可行性。高性能金属构件是航空、航天、交通、能源等现代工业的基石,且高端装备的服役性能很大程度上取决于构件的高性能。但这些构件多用于极端严苛的环境,对构件的选材、制造工艺、性能、功能均提出了严峻挑战“在论文中,我们设定了一个目标,试图让探测器的着陆器能隔热、防热,能减震、抗冲击、抗空间辐射。”顾冬冬说,在研究之初,自然界一些昆虫、动植物的特殊结构,便引起他们的关注,他们学习自然界天然优化的结构,强调生物启迪、仿生设计,并将之用于空间着陆器系统的“大底”构件的设计。“材料–结构–性能一体化”3D打印的特征之一:适宜材料打印至适宜位置用仿生学+复合材料,设计打印着陆器“大底”整体构件进入研究团队视野的3种生物结构,是鳞脚蜗牛壳的层状复合结构、水蜘蛛的水泡构型、多孔蜂窝。“鳞脚蜗牛生活在海底的热泉附近,蜗牛壳是一种层状复合结构,外壳非常硬,我们‘大底’构件外层设计成鳞脚蜗牛壳结构,让着陆器能坚固地像盔甲一样,可以隔热防热;水蜘蛛在水下构筑住所,其水泡形住所由蛛丝连接水草而成,能长时间承受不同流速、不同方位水流的冲击,具有优异的韧性和抗冲击能力。我们据此设计了‘大底’内部的减震结构,这些结构中‘蛛丝’纵横交错,能让着陆器减震抗冲击;我们在‘大底’的表面,附上了一层类似于多孔蜂窝的高温结构材料,能让着陆器与大气摩擦时防止烧损。”顾冬冬介绍。在设计结构的同时,研究团队根据航空航天的需求,还选择了陶瓷、碳纳米管和铝合金相融合的复合材料。“铝合金很轻,所以在航空航天领域应用较广,但熔点只有600多度,在着陆器着陆时耐受不了这么高的温度,于是我们添加了熔点接近3000度的二硼化钛陶瓷。又例如碳纳米材料具有很多神奇的力学性能和物理化学功能,所以我们又设计了碳纳米管增强金属基复合材料来应对3D打印零件多功能化的需求。”顾冬冬说,研究最大的难点,莫过于将适宜的材料打印到适宜的位置,“目前,单一材料的3D打印已经比较成熟,但多种材料的打印,还有较大挑战,也是研究热点。例如每打印一层,都需要设计不同的结构,打印不同的材料,还要调试激光参数、扫描模式等。从原子尺度的3D打印材料显微组织调控,到打印成看得见摸得着的成品零部件,还要考虑到打印时的变形、开裂等问题。”所以,在实验验证时,他们反复进行多种材料、多类结构的激光3D打印实验,并开展了热传导实验、抗冲击实验等功能验证。顾冬冬在南航3D打印实验室适宜材料打印至适宜位置,独特结构打印创成独特功能最终,团队从合金和复合材料内部多相布局、二维和三维梯度多材料布局、材料与器件空间布局3个复杂度层级,揭示了多材料构件3D打印的科学内涵、成形机制与实现途径。同时,他们实现了“独特结构打印创成独特功能”,揭示了拓扑优化结构、点阵结构、仿生结构3D打印的本质,分别是将优化设计的材料及孔隙、最少的材料、天然优化的结构打印到构件内最合适的位置,提出了基于鳞脚蜗牛壳的层状复合结构、水蜘蛛的水泡构型、多孔蜂窝三类典型结构的创新设计,及利用3D打印实现轻量化、承载、减震吸能、隔热防热等多功能化的原理、方法、挑战及对策。这一成果获得当期《科学》主编的评价,认为“激光增材制造有望变革零部件的设计方式。顾等人建议将串联式设计和成形构件的增材制造策略,变革至更为整体性的方法来优化金属构件。这种更为综合的方法将有助于减少制造所需的工序数量,并扩大可用于最终应用零部件的结构类型。”南京航空航天大学博士生石新宇、德国亚琛工业大学Fraunhofer激光技术研究所Reinhart Poprawe教授、美国德州大学奥斯汀分校David L. Bourell教授、英国卡迪夫大学Rossitza Setchi和西北工业大学朱继宏教授也参与了论文撰写。
  • 南方科技大学葛锜/西安交通大学原超团队《Nature Communications》:陶瓷4D打印研
    4D打印是一种基于3D打印发展的新型制造技术。相比3D打印,4D打印将智能材料和力学设计融入制造过程。因此在外界环境刺激(如光、热、电、磁等)下,4D打印结构可随时间产生形状或功能的改变,在生物医疗、航空航天等领域有着广阔的应用前景。目前,实现4D打印的材料主要局限于水凝胶、形状记忆聚合物和液晶弹性体等智能软材料,而对于陶瓷类材料的4D打印仍存在诸多技术瓶颈。现有的陶瓷4D打印主要基于墨水直写工艺,且需模具实现结构预编程,效率和精度有待提高。数字光处理(DLP)技术是一种通过紫外光面投影成型的高精度3D打印技术,但将该技术用于陶瓷4D打印仍面临以下几个挑战:(i)缺乏具有大变形能力的光固化陶瓷弹性体树脂;(ii)缺乏与陶瓷弹性体树脂匹配的光固化驱动材料;(iii)缺乏可以一体化成型陶瓷弹性体-驱动材料的多材料3D打印技术和装备。2024年1月26日,南方科技大学机械与能源工程系葛锜教授与西安交通大学原超副教授研究团队提出了一种简单高效的陶瓷4D打印制造方法和设计策略。采用团队自主开发的多材料光固化3D打印设备制造水凝胶-陶瓷弹性体层合结构,通过水凝胶失水驱动层合结构由平面图案演化为复杂三维结构,在无需额外形状编程的条件下实现陶瓷结构的直接4D打印。该研究成果以“Direct 4D printing of ceramics driven by hydrogel dehydration”为题,发表在《Nature Communications》期刊上。南方科技大学机械与能源工程系研究助理教授王荣、西安交通大学副教授原超和南方科技大学博士研究生程健翔为论文共同第一作者。西安交通大学原超副教授和南方科技大学葛锜教授为论文共同通讯作者。南方科技大学为论文第一单位。图1展示了陶瓷4D打印的基本流程。采用南科大葛锜教授课题组自主研发的多材料光固化3D打印设备一体化成型界面牢固的水凝胶-陶瓷弹性体层合结构,通过水凝胶失水驱动平面图案演化为复杂三维结构,进而利用高温脱脂和烧结得到纯陶瓷三维结构。图1. 陶瓷4D打印的基本原理和流程。图2展示了研究团队为陶瓷4D打印开发出的低粘度光敏陶瓷弹性体浆料和丙烯酸水凝胶前驱体。固化成型的陶瓷弹性体生坯具有大变形能力,可承受高达700%的拉伸应变,其力学性能可通过改变浆料中交联剂含量来调控。水凝胶作为驱动材料,在失水过程中可实现高达65%的体积收缩率和40倍以上的模量提升,在变形失配诱导下带动层合结构产生整体弯曲变形,其更重要的是,光固化陶瓷弹性体-水凝胶层合结构界面韧性好,保证其在变形过程中不会发生界面剥离。图2. 光固化陶瓷弹性体和水凝胶材料的性能表征。如图3所示,在烧结过程中,弯曲的层合结构发生了曲率回撤现象。通过实验研究和有限元模拟,研究团队将现象归因于烧结过程中层合结构厚度方向的不均匀收缩。综合考虑水凝胶失水过程中层合结构变形以及烧结过程中陶瓷结构曲率回撤现象,研究团队建立了基于相转变的本构模型描述水凝胶脱水的刚度增加和体积收缩,进而结合层合梁理论预测陶瓷弹性体-水凝胶层合结构的脱水弯曲过程,最后将陶瓷烧结过程中变形梯度引发的非均匀收缩引入理论模型,计算最终的结构弯曲变形,理论预测与实验结果取得了很好的一致性。利用理论模型绘制的设计机制图可以定量呈现结构变形与结构参数的映射关系,为水凝胶-陶瓷层合结构设计提供了有效指导。图3. 烧结过程中陶瓷结构曲率回撤现象及其理论模型预测。图4展示了陶瓷4D打印的逆向设计流程:1)通过三维建模提取目标构型特征参数;2)设计平面图案确定待定设计参数;3)理论模型计算待定设计参数;4)有限元模拟预测三维形状;5)多材料打印实现层合结构到目标三维形状的构型转换。以正四面体为例,具体展示了陶瓷4D打印的设计流程,实验结果与最初的设计目标一致。图4. 陶瓷4D打印的逆向设计流程。如图5所示,通过对平面层合结构进行多样化图案设计,可实现如立方体盒子、Miura折纸结构、鹤、三叶风扇和蝎子等各种三维陶瓷结构。与模具辅助变形和手动折叠等方法相比,基于水凝胶失水驱动的陶瓷直接4D打印技术能够更简单、更高效、更精准地制造各三维陶瓷结构,为复杂陶瓷结构的设计和制造开辟了新的途径。图5. 陶瓷4D打印的复杂三维结构。MultiMatter C1基于高精度数字光处理3D打印技术和独家离心式多材料切换技术,MultiMatter C1多材料3D打印装备可实现任意复杂异质结构快速成型,在力学超材料、生物医学、柔性电子、软体机器人等领域具有重要应用潜力。设备亮点离心式多材料切换技术:独家开发的离心式多材料切换技术可实现高效材料切换和残液去除。离心转速可调,最高达8000转/分钟,60秒内即可完成多材料切换,单次打印多材料切换最大次数高达2000次,处于业内领先水平。可打印材料范围广:该设备支持粘度在50-5000 cps范围内的硬性树脂、弹性体、水凝胶、形状记忆高分子和导电弹性体等材料及这些材料组合结构的多材料3D打印,为不同行业和应用领域,提供了材料选择的灵活性。多功能多材料耦合结构实现:该设备可打印高复杂度、高精度、多功能、多材料耦合结构,支持同时打印2种材料,可打印层内多材料和层间多材料,且多材料层内过渡区尺寸在200μm以内,为复杂多材料结构制造提供高精度解决方案。
  • 3D打印材料测试国标正式实施 哪些仪器出圈?
    2021年6月1日起,GB/T 39251-2020《增材制造 金属粉末性能表征方法》等14项增材制造领域国家标准正式实施,填补了多项国内空白。本文整理了《增材制造 金属粉末性能表征方法》标准中提到的金属粉末性能参数及表征方法,以及主流的3D打印技术和材料,供大家参考(文末附标准全文下载)。3D打印用金属粉末性能参数及检测技术检测项目检测仪器外观质量目视检查化学成分ICP粒度及粒度分布激光粒度仪、筛分仪粒形粒度粒形分析仪流动性粉末流动性测试仪密度振实密度仪夹杂物体视显微镜、扫描电镜、工业CT纯净度体视显微镜空心粉工业CT、光学显微镜、扫描电镜除以上检测项目外,在金属3D打印过程中,金属重熔后元素以气体形态存在,可能在局部生成气眼等缺陷,影响工件致密性及力学性能。所以,对不同体系的金属粉末,氧含量均为一项重要指标,业内对该指标的一般要求在1500ppm以下,在航空航天等特殊应用领域,客户对此指标的要求更为严格。同时,部分客户也要求控制氮含量指标,一般要求在500ppm以下。针对这些复杂元素及其含量,可通过氧/氮元素分析仪等进行检测。另外,孔隙度也是评估3D打印过程的重要指标,孔隙度是表征部件或粉体致密程度的指标,为材料中孔隙的体积占总体积的百分比。金属粉末的孔隙度会严重影响成型过程及成品部件的机械强度和表面质量,通常,孔隙度低的粉体成型后部件致密度高,表面光洁度更好。金属粉末的孔隙度可通过压汞仪等进行表征。3D打印技术分类3D打印又称增材制造 ,是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。该技术具有精度高、周期短、省材料、能制备复杂一体成型零件等优点,已经成为国内外最新关注的研究重点。根据成型原理及工艺类型,3D打印技术可分为很多种,目前比较成熟的有以下几种:3D打印技术打印材料特点光固化成形(SLA)液态树脂精度高、表面质量好激光选区烧结(SLS)高分子、金属、陶瓷、砂等粉末材料成形材料广泛,应用范围广激光选区熔化(SLM)金属或合金粉末可直接制造高性能复杂金属零件熔融沉积制造(FDM)低熔点丝状材料零件强度高、系统成本低电子束选区熔化(EBSM)金属粉末可成形难熔材料分层实体制造(LOM)片材成形速率高、性能不高立体喷印(3DP)光敏树脂、粘接剂喷粘接剂时强度不高、喷头易堵塞3D打印材料是3D打印技术发展的重要物质基础,在某种程度上,材料的发展决定了3D打印能否得到更广泛的应用。目前,3D打印材料主要包括主要包括金属材料、无机非金属材料、有机高分子材料以及生物材料等几类。随着技术的发展和进步,材料的种类还会越来越丰富。3D打印材料的分类和应用领域3D打印材料分类材料名称应用领域金属增材制造材料钛合金、高温合金、铝合金等金属粉末、液态金属材料等航天航空、船舶工业、核工业、汽车工业、轨道交通等高性能、难加工零部件与模具的直接制造非金属增材制造材料高性能陶瓷,非金属矿、宝玉石材料、树脂砂、覆沙膜、硅砂、硅酸盐类等航天航空、汽车发动机等制造用模具开发及功能零部件制造;工业产品原型制造及创新创意产品生产有机高分子增材制造材料树脂类:光敏树脂;丝材类:PLA、ABS、PC、PPSF、PETG 等;粉末工/模具制造、原型验证、科研教学、文物修复与保护、生物医疗等生物增材制造材料生物可降解材料、生物相容性材料、活细胞等药物控制释放、器官移植、组织和软骨质结构再生与重建等GB∕T392512020增材制造金属粉末性能表征方法.pdf
  • 西安交大:3D打印超宽带太赫兹超材料吸波器
    太赫兹波,指频率为0.1-10 THz的电磁波,位于微波和红外之间,属于电子学与光子学的过渡区间。由于具有光子能量低、穿透力强、特征光谱分辨能力好等属性,太赫兹技术在生物传感、无损检测以及高速无线通讯等领域具有重要的应用前景。然而,由于自然界中的天然材料在太赫兹频段没有电磁响应,导致太赫兹频段的功能材料和器件非常匮乏,这也是造成太赫兹技术尚未广泛应用的重要原因。THz超材料,一种新型的周期性人工电磁材料,其性质主要取决于所设计的结构,通过特定的结构设计,可获得与自然界已知材料截然不同的电磁性质,从而实现丰富的功能器件,如吸波器、调制器和偏振转换器等。目前常见的太赫兹超材料,主要由光刻工艺制备得到,存在制备工艺复杂、加工成本高的问题。此外,目前宽带吸波器常采用上下重叠式多层结构设计,其在太赫兹频段所需的多步光刻工艺更是进一步提高了加工难度及成本。因此,探索太赫兹器件的无光刻、低成本、简单高效的制备方法获得超宽带太赫兹吸波器,将有利于促进太赫兹技术的繁荣发展。 近日,西安交通大学张留洋教授课题组提出了一种偏振不敏感的超宽带太赫兹吸波器设计及其制备方法,该超宽带吸波器由叠堆于类宝塔基底表面的多层环形谐振器构成,通过相邻谐振器共振模式的重叠实现带宽的扩展,最终通过叠堆12层圆形和环形谐振器实现1.07-2.88 THz频段的近完美吸收。该研究结合微尺度3D打印技术(nanoArch S130,摩方精密)制备得到实验样件,实验测试结果验证了宽带吸收机理的准确性。该成果以“Three-Dimensional Printed Ultrabroadband Terahertz Metamaterial Absorbers”为题发表于国际期刊Physical Review Applied上,该研究工作由西安交通大学机械工程学院博士生沈忠磊与硕士生李胜男共同合作完成。图1 具有面外形态的太赫兹吸波器结构示意图图2 太赫兹超宽带吸收谱 通过结合微尺度3D打印技术,超宽带太赫兹吸波器可由简单的三步工艺制备得到。其中,周期性阵列的三维类宝塔结构采用面投影微立体光刻3D打印技术(nanoArch S130,摩方精密)加工得到。实验结果表明:得益于高精度的微尺度3D打印技术,测试所得的宽带吸收谱谐振频率和吸收幅值均与数值模拟结果较为吻合。图3 太赫兹超宽带吸波器实验验证(其中单元周期Px=Py=185μm,顶层圆形谐振器半径r12=10μm, 叠堆环形谐振器宽度w=6μm,叠堆层厚Dt=10μm) 此外,文章进一步证明了该制备方法之于常见太赫兹窄带吸波器制备的适用性。实验结果表明:两种太赫兹窄带吸波器的吸收谱测试结果与数值模拟结果和理论结果均较为吻合,表明基于微尺度3D打印技术的制备方法同样可实现对常见太赫兹窄带吸波器的高质量制备。图4 太赫兹窄带吸波器实验验证原文链接:https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.16.014066官网:https://www.bmftec.cn/links/10
  • 3D打印应用大全 这些仪器来助阵
    p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 2em font-family: 宋体 " 科技时代的“鲁班”非 /span span style=" text-align: justify text-indent: 2em " 3D /span span style=" text-align: justify text-indent: 2em font-family: 宋体 " 打印莫属,飞天遁地、怪异嶙峋,无论怎样的物件似乎都能够被 /span span style=" text-align: justify text-indent: 2em " 3D /span span style=" text-align: justify text-indent: 2em font-family: 宋体 " 制造。从零部件到跑车、从子弹到住房,从指纹手套到心脏模型,只要需要模型和原型, /span span style=" text-align: justify text-indent: 2em " 3D /span span style=" text-align: justify text-indent: 2em font-family: 宋体 " 打印(增材制造)就有用武之地,刚刚结束的亚洲文明对话大会,其会徽就是由 /span span style=" text-align: justify text-indent: 2em " 3D /span span style=" text-align: justify text-indent: 2em font-family: 宋体 " 打印所制造。 /span span style=" text-align: justify text-indent: 2em font-family: 宋体 color: rgb(51, 51, 51) background: white " 工信部装备工业发展中心主任瞿国春在 /span span style=" text-align: justify text-indent: 2em font-family: Arial, sans-serif color: rgb(51, 51, 51) background: white " 5 /span span style=" text-align: justify text-indent: 2em font-family: 宋体 color: rgb(51, 51, 51) background: white " 月 /span span style=" text-align: justify text-indent: 2em font-family: Arial, sans-serif color: rgb(51, 51, 51) background: white " 10 /span span style=" text-align: justify text-indent: 2em font-family: 宋体 color: rgb(51, 51, 51) background: white " 日接受采访时称,去年全球增材制造( /span span style=" text-align: justify text-indent: 2em font-family: Arial, sans-serif color: rgb(51, 51, 51) background: white " 3D /span span style=" text-align: justify text-indent: 2em font-family: 宋体 color: rgb(51, 51, 51) background: white " 打印)产业产值已经达到 /span span style=" text-align: justify text-indent: 2em font-family: Arial, sans-serif color: rgb(51, 51, 51) background: white " 97.95 /span span style=" text-align: justify text-indent: 2em font-family: 宋体 color: rgb(51, 51, 51) background: white " 亿美元,同比增长了 /span span style=" text-align: justify text-indent: 2em font-family: Arial, sans-serif color: rgb(51, 51, 51) background: white " 33.5% /span span style=" text-align: justify text-indent: 2em font-family: 宋体 color: rgb(51, 51, 51) background: white " 。其中,增材制造零部件的产值占比达 /span span style=" text-align: justify text-indent: 2em font-family: Arial, sans-serif color: rgb(51, 51, 51) background: white " 12% /span span style=" text-align: justify text-indent: 2em font-family: 宋体 color: rgb(51, 51, 51) background: white " ,增材制造应用方式逐步从设计走向了直接制造,这意味着到了真正的产业化阶段。 /span /p p style=" text-align:center" span img style=" max-width: 100% max-height: 100% width: 400px height: 225px " src=" https://img1.17img.cn/17img/images/201905/uepic/ac1c8a0d-822d-43e4-96ca-c2943d9919f0.jpg" title=" 651b572355ec6e3c0561c3b69baf5dc7_timg_image& amp quality=80& amp size=b9999_10000& amp sec=1558701122811& amp di=2bf92ea853bfccd10216f49d2b6c2fdc& amp imgtype=0& amp src=http%3A%2F%2Fupload.art.ifeng.com%2F2015%2F0825%2F1440466909651.jpg.jpg" alt=" 651b572355ec6e3c0561c3b69baf5dc7_timg_image& amp quality=80& amp size=b9999_10000& amp sec=1558701122811& amp di=2bf92ea853bfccd10216f49d2b6c2fdc& amp imgtype=0& amp src=http%3A%2F%2Fupload.art.ifeng.com%2F2015%2F0825%2F1440466909651.jpg.jpg" width=" 400" height=" 225" border=" 0" vspace=" 0" / /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family:宋体" 目前, /span span 3D /span span style=" font-family:宋体" 打印技术的技术分类有 /span span SLA /span span style=" font-family:宋体" 、 /span span CLIP /span span style=" font-family:宋体" 、 /span span 3DP /span span style=" font-family:宋体" 、 /span span FDM /span span style=" font-family:宋体" 、 /span span PolyJet /span span style=" font-family:宋体" 、 /span span NPJ /span span style=" font-family:宋体" 、 /span span SLM /span span style=" font-family:宋体" 、 /span span SLS /span span style=" font-family:宋体" 、 /span span LMD /span span style=" font-family:宋体" 、 /span span EBM /span span style=" font-family:宋体" 等,大多已得到了广泛应用,并且随着技术自身的发展,其应用领域也在不断拓展。仪器信息网将通过本文重点对 /span span 3D /span span style=" font-family:宋体" 打印在以下几个领域的应用进行介绍: /span /p p style=" line-height: 150% text-align: justify text-indent: 2em " strong span 3D /span /strong strong span style=" font-family:宋体" 打印汽车行业中应用浅谈: /span /strong /p p style=" text-align:center" span img style=" max-width: 100% max-height: 100% width: 400px height: 217px " src=" https://img1.17img.cn/17img/images/201905/uepic/c74de4ed-5455-4f52-a732-cad77fb5bdb6.jpg" title=" 123.jpg" alt=" 123.jpg" width=" 400" height=" 217" border=" 0" vspace=" 0" / /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family:宋体" 根据 /span span SmarTech /span span style=" font-family:宋体" 调研报告预测, /span span 3D /span span style=" font-family:宋体" 打印技术在汽车行业的总市场到 /span span 2023 /span span style=" font-family:宋体" 年有望达到 /span span 22.7 /span span style=" font-family:宋体" 亿美金。除了零部件设计与制造,汽车外观造型、内部结构或汽车内饰为汽车制造业注入了新鲜血液,不仅是汽车零部件的设计与制造,而且汽车外观造型、内部结构或汽车内饰功能上的设计,不同程度地应用了 /span span 3D /span span style=" font-family:宋体" 打印技术。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family:宋体" 世界首辆 /span span 3D /span span style=" font-family:宋体" 打印汽车 /span span — /span span style=" font-family:宋体" 原型机 /span span Urbee /span span style=" font-family:宋体" 于 /span span 2013 /span span style=" font-family:宋体" 年问世,整个车身采用 /span span 3D /span span style=" font-family:宋体" 打印技术一体成型,整车的零件打印只需 /span span 2500 /span span style=" font-family:宋体" 小时即可完成,生产周期远远快于传统汽车制造周期。目前 /span span 3D /span span style=" font-family:宋体" 打印技术在汽车设计中的应用主要集中在概念模型开发、功能验证原型制造、工具制造及小批量定制型成品生产四个阶段。近年来 /span span 3D /span span style=" font-family:宋体" 打印在造型评审、设计验证、复杂结构零件、多材料复合零件、轻量化结构零件、定制专用工装、售后个性换装件等方面的应用逐渐被越来越多的汽车厂家采用。 /span /p p style=" line-height: 150% text-align: justify text-indent: 2em " strong span 3D /span /strong strong span style=" font-family:宋体" 打印医疗行业应用浅谈 /span /strong /p p style=" line-height: 150% text-align: center text-indent: 2em " span img style=" max-width: 100% max-height: 100% width: 400px height: 170px " src=" https://img1.17img.cn/17img/images/201905/uepic/03c5c181-d6b8-4c29-bf39-d2fe15ff1d9a.jpg" title=" 456.jpg" alt=" 456.jpg" width=" 400" height=" 170" border=" 0" vspace=" 0" / /span strong /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family:宋体" 救死扶伤需要充分发挥医疗资源潜能,而 /span span 3D /span span style=" font-family:宋体" 打印已经成为了医生的左膀右臂。时至今日,医疗行业已经有了从器械、器官到手术的全方位 /span span 3D /span span style=" font-family:宋体" 打印而成的产品以及以及应用。最简单的应用是使用金属、塑料等非活体组织材料定制化假肢、牙科、骨科植入物、助听器外壳等医疗器械,这方面的应用已然非常普及,进阶一点,还可以用 /span span 3D /span span style=" font-family:宋体" 打印制造血管、软骨等活体组织,更有甚者,甚至可以打印人工肝脏、心脏等。 /span /p p style=" text-align: justify text-indent: 2em " span 3D /span span style=" font-family:宋体" 打印在医疗领域还有一项让人垂涎的应用就是辅助手术,通过 /span span 3D /span span style=" font-family:宋体" 打印的三维形状构建,可以在手术前看到病变处之外的其他区域,并可以在真正的手术之前展开多次模拟训练,减少手术实施的风险。 /span /p p style=" line-height: 150% text-align: justify text-indent: 2em " strong span 3D /span /strong strong span style=" font-family:宋体" 打印食品行业应用浅谈 /span /strong /p p style=" text-align:center" span img style=" max-width: 100% max-height: 100% width: 400px height: 250px " src=" https://img1.17img.cn/17img/images/201905/uepic/13828ef6-eb3a-4ea9-9f33-6b9232f6d65e.jpg" title=" 789.jpg" alt=" 789.jpg" width=" 400" height=" 250" border=" 0" vspace=" 0" / /span /p p style=" text-align: justify text-indent: 2em " span 3D /span span style=" font-family:宋体" 打印在食品行业的应用仍处于初级阶段,但利用多材料食品 /span span 3D /span span style=" font-family:宋体" 打印技术解决膳食平衡问题是其中的热点应用之一。通过对材料盒中的食物原料进行科学合理的配置, /span span 3D /span span style=" font-family:宋体" 打印技术可以打印出适用于不同营养需求的青少年、老人、孕妇和病人食品。这其中 /span span 3D /span span style=" font-family:宋体" 打印食品材料配方及成型工艺、食品 /span span 3D /span span style=" font-family:宋体" 打印平台的设计与制造、食品打印专用喷头的研发、温度和压力控制系统的研发、 /span span 3D /span span style=" font-family:宋体" 食品打印软件的研发,所研发的新装备标志着智能 /span span 3D /span span style=" font-family:宋体" 打印在膳食平衡和新食品开发领域的发展方向。利用 /span span 3D /span span style=" font-family:宋体" 打印技术制造食品,不仅生产流程简化,成本降低,还可以进行个性化定制外形。特别在航空食品领域, /span span 3D /span span style=" font-family:宋体" 打印可以用于制作保质期可长达 /span span 30 /span span style=" font-family:宋体" 年的航空食材。 /span /p p style=" line-height: 150% text-align: justify text-indent: 2em " strong span 3D /span /strong strong span style=" font-family:宋体" 打印航空航天应用浅谈 /span /strong /p p style=" text-align:center" span img style=" max-width: 100% max-height: 100% width: 400px height: 227px " src=" https://img1.17img.cn/17img/images/201905/uepic/753c9b85-ce36-4cff-a886-07dbc3ecc0e5.jpg" title=" qwe.jpg" alt=" qwe.jpg" width=" 400" height=" 227" border=" 0" vspace=" 0" / /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family:宋体" 在航空航天领域, /span span 3D /span span style=" font-family:宋体" 打印正在进入产业化生产,以下几种零部件及设备的应用非常普及:涡轮叶片的铸造型芯、发动机支架、燃料喷嘴、其他零部件,甚至嵌入式二维码,利用 /span span 3D /span span style=" font-family:宋体" 打印可以形成高复杂的内部冷却通道结构。航空航天正在利用 /span span 3D /span span style=" font-family:宋体" 打印来改善资产的分配,减少维护费用,并通过制备更轻的部件节省燃料成本。 /span /p p style=" line-height: 150% text-align: justify text-indent: 2em " strong span 3D /span /strong strong span style=" font-family:宋体" 打印建筑行业应用浅谈 /span /strong /p p style=" text-align:center" span img style=" max-width: 100% max-height: 100% width: 400px height: 196px " src=" https://img1.17img.cn/17img/images/201905/uepic/4ac0ad20-d5d2-4b3c-ae8b-77b249a5a924.jpg" title=" rty.jpg" alt=" rty.jpg" width=" 400" height=" 196" border=" 0" vspace=" 0" / /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family:宋体" 与传统建筑方式相比, /span span 3D /span span style=" font-family:宋体" 打印建筑技术不仅速度快,不需要使用模板,可以大幅度节约成本,而且还具有绿色、环保、低碳的特点,并且可以降低安全隐患。 /span span 3D /span span style=" font-family:宋体" 打印在建筑领域的应用主要集中在建筑设计阶段和工程施工阶段。在建筑设计阶段,设计师们能够通过 /span span 3D /span span style=" font-family:宋体" 打印实现更多天马行空的创意,其次,运用 /span span 3D /span span style=" font-family:宋体" 打印技术能够对部分特殊设计提前做出有效的预估。在工程施工阶段, /span span 3D /span span style=" font-family:宋体" 打印技术可以极大的缩短工期,提供高质量的应急住房。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family:宋体" 从功能技术层面来讲:未来打印机可能朝着多功能方面发展,成为能够独立打印建造轮廓、打印钢筋、打印装饰面、安装管道、刷漆、贴瓷砖等多功能建造机;能够打印无需临时支承的悬空或挑空结构,这对建筑结构的选取提供了更大的灵活性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family:宋体" 除上述几个领域之外, /span span 3D /span span style=" font-family:宋体" 打印在武装设备、服装、教育、工业设计、文化艺术、机械制造(汽车、摩托车)、军事、影视、家电、轻工、考古、雕刻、首饰等领域都有广泛的应用。具体来说可以影响到包括设计方案评审、制造工艺与装配检验、功能样件制造与性能测试、快速模具小批量制造、建筑总体与装修展示评价、科学计算数据实体可视化、医疗工程、首饰及日用品快速开发与个性化定制、动漫造型评价、电子器件的设计与制作等。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family:宋体" 科学仪器如何助飞 /span span 3D /span /strong strong span style=" font-family:宋体" 打印 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family:宋体" 遵循着马太效应,如今热度越来越高的 /span span 3D /span span style=" font-family:宋体" 打印,也迎来了越来越多科学仪器的助阵,仪器信息网编辑汇总整理了本网和网络与 /span span 3D /span span style=" font-family:宋体" 打印相关的仪器解决方案,以飨读者: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family:宋体 color:red" 扫描电镜 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family:宋体" 扫描电镜是检测 /span span 3D /span span style=" font-family:宋体" 打印物品表面缺陷的有效工具, /span span 2016 /span span style=" font-family:宋体" 年, /span span Walczak /span span style=" font-family:宋体" 等人( /span span Applied Computer Science, vol. 12, no.3, pp 29-36 /span span style=" font-family:宋体" )通过 /span span 3D /span span style=" font-family:宋体" 打印方法,对 /span span 17 /span span style=" font-family:宋体" – /span span 4PH /span span style=" font-family:宋体" 钢制品的特性进行了研究。结果表明,扫描电镜分析显示激光烧结后的焊接表面的结构中存在缺陷,这种现象是不合需要的,降低了打印物品的质量。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family:宋体 color:#00B0F0" 行业应用方案入口: /span /strong span a href=" https://www.instrument.com.cn/netshow/SH102613/s870740.htm" strong span style=" font-family:宋体 color:#00B0F0" span 扫描电镜在 /span /span /strong strong span style=" color:#00B0F0" 3D /span /strong strong span style=" font-family:宋体 color:#00B0F0" span 打印行业中的应用 /span /span /strong /a strong /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family:宋体 color:red" 粉体流变仪 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体 background: white" 增材制造也称 /span span style=" font-family: & #39 Times New Roman& #39 , serif background: white" 3D /span span style=" font-family: 宋体 background: white" 打印,是一种潜在的高效制造技术。通常涉及按严格的技术规范 /span span style=" font-family: & #39 Times New Roman& #39 , serif background: white" “ /span span style=" font-family: 宋体 background: white" 打印 /span span style=" font-family: & #39 Times New Roman& #39 , serif background: white" ” /span span style=" font-family: 宋体 background: white" 复杂组件,具体方法是逐层堆积粉体,然后选择性地熔结。控制粉体性能对于过程效率和成品质量至关重要。当形成粉层时,粉体流动和装填方式决定了该性能的各个方面。原料的多变性会导致松装密度不一致、粉层不均匀、抗张强度低以及表面光洁度差。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family:宋体 color:#00B0F0 background:white" 行业应用方案入口: /span /strong span a href=" https://www.instrument.com.cn/netshow/SH100677/s897367.htm" strong span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 color:#00B0F0 background:white" FT4 /span /strong strong span style=" font-family:宋体 color:#00B0F0 background:white" span 在增材制造中的应用 /span /span /strong /a /span strong /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family:宋体 color:red background: white" 元素分析仪 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family:宋体" 目前 /span span 3D /span span style=" font-family:宋体" 打印金属粉末制备技术主要以雾化法为主(包括超音速真空气体雾化和旋转电极雾化等技术),粉末存在大的比表面积,容易产生氧化。因此,对不同体系的金属粉末,氧含量均为一项重要指标,对于普通的金属粉末,如不锈钢,含氧量要求在 /span span 800-900ppm /span span style=" font-family:宋体" 以下,对于活泼金属,如钛合金,一般要求在 /span span 1300-1500ppm /span span style=" font-family:宋体" ,在航空航天等特殊应用领域,客户对此指标的要求更为严格。此外,部分客户也要求控制氮含量,一般要求在 /span span 500ppm /span span style=" font-family:宋体" 以下。 /span span style=" font-family:宋体 color:#444444 background:white" 大多数增材制造的方法都是基于同样的工艺步骤。激光光束会局部融化金属粉末上层,使其固化进而形成一层固态材料。这一步骤重复一遍又一遍直到最终产品被生产出来。所要使用的金属粉品质由粒度分析方法(如筛分法)测定,某些情况下,元素分析也可以在增材制造过程之前用于检测其品质。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family:宋体 color:#00B0F0" 行业应用方案入口: /span /strong span a href=" https://www.instrument.com.cn/netshow/sh101146/down_899611.htm" strong span style=" font-family:宋体 color:#00B0F0" span 对增材制造金属粉末和金属部件的元素分析 /span /span /strong /a strong /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family:宋体 color:red" 粒度粒形分析仪 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family:宋体" 金属 /span span 3D /span span style=" font-family:宋体" 打印常用的粉末粒度范围是 /span span 15-53μm /span span style=" font-family:宋体" (细粉), /span span 53-105μm /span span style=" font-family:宋体" (粗粉),部分场合下可放宽至 /span span 105-150μm /span span style=" font-family:宋体" (粗粉)。目前市场上主流 /span span SLM /span span style=" font-family:宋体" 成形设备要求的铺粉层厚是 /span span 20-50μm /span span style=" font-family:宋体" 。而 /span span GBT1480-2012 /span span style=" font-family:宋体" 《金属粉末 /span span style=" font-family:宋体" 干筛分法测定粒度》适用于大于 /span span 45 /span span style=" font-family:宋体" 微米的粉末颗粒,所以已不太能满足金属 /span span 3D /span span style=" font-family:宋体" 打印粉末粒度测试要求。激光粒度仪适用于 /span span 0.1μm /span span style=" font-family:宋体" 到 /span span 2mm /span span style=" font-family:宋体" 的粒度分布分析,但激光粒度仪存在如折射率难以确定,进样量少,没有颗粒形态信息,将颗粒等效成球形导致不规则样品的测量准确度不高等一些瓶颈。 /span span SLM /span span style=" font-family:宋体" 成形专用金属粉末是通过气雾化法制备得到的,颗粒一般呈球状,但也会出现形状不规则的颗粒,颗粒球形度直接影响粉末的流动性和松装密度。粒度粒形仪可以测量球形度,并且解决电镜耗时长,无法进行质监检测的不足。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family:宋体 color:#00B0F0" 相关仪器链接: a href=" https://www.instrument.com.cn/netshow/C279218.htm" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" font-family: 宋体 color: rgb(0, 176, 240) " 多功能粒径及形态分析仪CAMSIZER X2 /span /a /span /strong /p p style=" text-align: justify text-indent: 2em " 还有哪些科学仪器可以助力3D打印行业,欢迎读者朋友们在下方评论区探讨补充~ /p
  • 发挥您的想象力!一起见证生物打印的力量!
    发挥您的想象力!如果我可以让盲人恢复视力、重见光明。如果我可以提供癌症病患更好的治疗。如果我可以使脊柱再生、恢复行走能力。如果我可以拯救更多心脏病患者。如果可以。。。如果可以 我想。。。捕捉每一个心跳利用3D生物打印重建活体心脏组织 所面临的挑战 心脏病发作和心力衰竭等心血管疾病是全世界死亡的主要原因之一。心脏是血液在全身循环的重要器官。开发3D模型以了解这些疾病的原因和机制将有助于治疗方法的发展。从干细胞生成的生物打印心脏组织模型可以在体外成熟,以了解各种刺激下的心肌细胞功能,以模拟疾病条件。 解决方案 通过获取iPSC衍生的心肌细胞簇并在层粘连蛋白生物墨水中打印它们,CELLINK的研究人员创造了一种长期培养的有效载体,使心肌细胞能够发展并表现出体内行为,如一致收缩。心脏病是现代世界最普遍的疾病之一。通过开发此类成熟模型以及在BIONOVA X上开发的模型,研究人员在他们的武器库中拥有更多生理相关模型。可用于准确洞察细胞对药物的反应的模型,加速救生治疗的发展。培养三周后,生物打印心脏组织模型显示CELLINK的LAMININK 521 生物墨水中心脏聚集物的钙的细胞内动员。 医学影响 心脏病是现代世界最普遍的疾病之一。通过开发此类成熟模型以及在BIONOVA X上开发的模型,研究人员在他们的武器库中拥有更多生理相关模型。可用于准确洞察细胞对药物的反应的模型,加速救生治疗的发展。 那么我可以拯救更多心脏病患者。 个性化癌症治疗方法打印稳定球体以模拟癌症侵袭 所面临的挑战 为了成功地治疗世界上最致命的疾病之一,必须建立有效的模型。模型再现了体内条件,展示了癌症如何进展和在体内移动,同时也为个性化方法提供了选择。 解决方案 CELLINK的科学家验证了一项方案,该方案利用液滴中液滴的方法来研究不同水凝胶浓度的影响。该测定需要嵌入细胞的中心核心液滴,由无细胞外液滴覆盖。医学影响 通过以高通量方式开发此类模型,可以在癌症治疗中取得更快的进展。创建可复制的模型,可以轻松添加到药物筛选和图像分析的自动化工作流程中,从而在全球范围内实现更好的治疗,描绘健康的未来。 如果我可以提供癌症病患更好的治疗。 ———————————————— 出版物《聚光灯》感谢我们的客户德克萨斯大学埃尔帕索分校,他们使用BIO X 3D 生物打印机制造了更坚固的心脏组织支架。与对照组相比,他们所新制造的生物打印平台产生的心脏类器官在长期维持细胞活力和功能方面表现得更好。组织模型还促进了肌细胞和成纤维细胞之间的异细胞耦合,帮助研究人员分析疾病进展过程中的细胞行为、信号和功能。希望这些生物标志物能对导致心脏功能不全有更好的理解并起到能够的早期检测的作用。 长按以下二维码阅读完整的出版物 释放生物打印的力量———————————————— 未来的医学影响将有无限的可能 “如果可以 我想。。。” 已经有研究家把他们曾经的“如果” 转变成现实!他们都在用自己的努力迈向创造更佳的医疗方式的道路。希望通过他们的研究能确保患者安全,促进现代医疗个性化发展为医学未来创造更多奇迹! 希望阅读到这里的你也有自己对医学未来的憧憬与目标!你也有想发展的 ”如果“ 吗?
  • 西安交通大学张留洋课题组《Optics Letters》:3D打印的基于环偶极子的高性能太赫兹传感器
    在各种各样的超表面应用中,太赫兹传感凭借着高灵敏度和太赫兹波的非电离性质为分析物的无损检测提供了强大的潜力,尤其受到了广泛的关注。为持续提高太赫兹传感器的灵敏度,基于多种物理机制,包括Fano共振、连续域束缚态共振和环偶极子共振,科研人员开发了多款太赫兹传感器。其中,环偶极子谐振传感器因其微弱的辐射特性,使得电磁能量在近场范围内受到高度的局域,因此受到广泛的关注。然而,目前的环偶极子谐振传感器的灵敏度受到分析物和局域增强电磁场之间有限的空间重叠的极大限制。此外,加工这些微米级的结构也是一个挑战。近日,基于上述问题,西安交通大学张留洋老师课题组提出了一种面外太赫兹传感器,通过面外结构,增强了光和物质的空间重叠,从而增强传感性能。该传感器通过摩方精密提供的nanoArch S130设备进行了加工,并通过实验验证了传感器的高灵敏度。相关成果以“Highly sensitive terahertz sensing with 3D-printed metasurfaces empowered by a toroidal dipole”为题发表在光学期刊《Optics Letters》上。图 1 (a)三步制备法示意图,包括(1)衬底制备,(2)3D打印,和(3)金属膜沉积 最右边的面板描绘了设计的传感器的原型。(b)所制传感器的SEM图像。沿传感器x轴(c)和y轴(d)的表面轮廓。图1(a)显示了基于面投影微立体光刻(PµSL)3D打印技术(nanoArch S130,摩方精密)的三步制备方法示意图。与传统的微纳制造技术相比,这种方法简单有效,是面外微结构通用制造的实用候选方法。采用这种三步制备方法,成功制备了具有30×30个超分子阵列的太赫兹传感器,其扫描电镜图像如图1(b)所示。为了表征所制作传感器的三维轮廓,分别沿x轴[图1(c)]和y轴[图1(d)]测量了其表面轮廓,数据表明打印样品的测得轮廓总体上与设计模型吻合较好。此外,分别通过阻抗匹配理论(图2)和近场分析、多偶极子散射理论(图3)解释了传感器的共振机理。 图 2 (a)传感器在x偏振和y偏振入射下的模拟(实线)和实验(虚线)反射谱。(b)y偏振入射下传感器阻抗。 图 3(a)归一化散射功率。(b)电场分布(轮廓轮廓)和表面电流分布(箭头)。(c)磁场的分布。在传感器的应用方面,选择了三种类型的粉末——乳糖,半乳糖和葡萄糖——作为检测分析物。首先,将粉末经过适当研磨后均匀撒在传感器上,如图 4(a)显微镜图像所示。然后通过THz-TDS测量了相应的反射谱,如图 4(b)给所示,可观察到半乳糖的共振频率与其他分析物相比有明显的红移。此外,为避免测量误差,采用C扫描获得面积为6×6 mm2的区域的反射谱曲线,分别提取各点对应谐振频率处的强度和谐振频率。然后,随机选择每种分析物的500个点的计算平均谐振频率,重复此过程10次,结果如图 4(f)所示。实验结果表明,所提出的传感器能够准确地检测出葡萄糖、乳糖和半乳糖粉末。 图 4 (a)被分析物粉末覆盖的传感器的显微镜图像。(b)测定的三种分析电解质粉末的反射光谱。(c)有或没有传感器下的乳糖粉末的反射谱。(d)乳糖粉加载时各点电场(传感器)的共振强度和(e)共振频率。(f)三种分析物的频移分布。
  • SLA / DLP / LCD三种光固化树脂3D打印机该如何选择?来听听业内专家的建议!
    随着3D打印技术的成熟发展,各种类型的3D打印机已深入人们的生产生活之中。其中,光固化树脂3D打印机已成为大多数想要制作高精度模型的热门选择,用途也多种多样,如公司用,工厂用,创客用,家用等等。现如今市面上光固化3D打印机种类多而杂,如何挑选成为一个难题。本期,小编请到一位光固化3D打印技术行业专家来给大家讲讲该如何选择一台适合自己的树脂3D打印机。Q可以简单介绍一下自己吗?A: 大家好,我是庞博,目前是先临三维的3D打印产品经理。我是从2015年进入3D打印行业的,主要的工作内容集中在光固化3D打印机的技术研发和产品管理。QSLA, DLP, LCD之间的主要区别是什么?庞博: SLA / DLP / LCD都属于光固化的范畴,使用光敏树脂进行打印,但技术之间各有优劣。SLA 采用激光来固化树脂,是最传统、应用也最广泛的3D打印技术,对打印尺寸的限制很少,但打印速度、精度和细节,一般不如DLP / LCD 3D打印机好。SLA 3D打印机通常尺寸比较大,比较适合打印大尺寸的样件,或大规模生产的场景。SLA 3D打印技术原理示意图DLP 3D打印技术最早出现在2000年,DLP 3D打印技术主要是利用UV投影器将产品截面图形投影到液体光敏树脂表面,使被照射的树脂逐层感光固化。区别于SLA 3D打印技术的单点曝光,DLP 3D打印技术采用面曝光,可以极大地提高打印速度,同时DLP 3D打印技术在精度、表面质量上,一般也会优于SLA 3D打印机。DLP 3D打印技术原理示意图大多数DLP 3D打印机都采用下照式技术方案,光源在树脂槽的下方。这种方案的优势是只需要很少的树脂就可以开始打印,但由于离型的限制,打印尺寸也受到了制约。DLP 3D打印机通常机型尺寸较小,可以轻松部署在办公室环境内,在齿科、产品开发验证、科研和教育领域都得到了比较广泛的应用。LCD (mSLA)类似于DLP 3D打印技术,但其不使用投影仪来产生图像,而是通过LCD液晶的偏转产生特定的图像。LCD 3D打印技术原理示意图得益于LCD 3D打印技术成熟的上游产业链,LCD 3D打印机通常可以达到比DLP 3D打印机更高的分辨率和更小的像素点尺寸。但由于技术局限性,LCD 3D打印机的光功率一般低于DLP 3D打印机,从而导致打印速度较慢。然而,LCD 3D打印机的价格更低于DLP 3D打印机,因此在市场上非常受欢迎。Q当我们在选择树脂3D打印机时,需要考虑哪些问题?庞博: 打印尺寸(拥有大幅面打印尺寸的设备,能够实现设计原型的快速迭代以及小批量快速生产。)打印精度(分辨率越高、像素点尺寸越小,打印物体表面细节和纹理更清晰;光学设计越先进,打印物体精度就越高,能够准确呈现设计原型。)打印速度(在评估打印速度时,一般我们需要限定材料和层厚。即使在同一台机器上,不同的层厚、不同的材料也会导致打印速度的巨大差异。)材料开放(有些3D打印机只允许用户使用专用树脂材料,这是一个非常大的限制,而拥有开放系统的3D打印机可以兼容使用更多第三方材料。)排版/切片软件(排版和切片是3D打印的第一步,一个好的软件可以使预处理快速而简单。大多数3D打印机公司都提供免费的软件试用,用户可以在购买前先进行简单试用。)后处理 (树脂3D打印样件需要清洗和后固化。经过后固化的样件强度更高、变形更小。因此配备完整的清洗机、固化箱可以有效地提高效率、降低人力成本。)QDLP和LCD技术特别适用于哪种类型应用?庞博: 第一种是齿科应用,几乎所有的齿科应用都可以从树脂3D打印中受益,如正畸、修复和种植,一些顶级正畸牙套制造商每天打印制作模型超过700,000个。第二种是应用在产品原型开发验证中,受益于3D打印材料的进步,越来越多的工程师开始在办公室使用高精度3D打印机进行产品原型开发。树脂3D打印机是快速验证产品原型的理想选择,目前有许多高性能的树脂材料,其性能可与ABS、PC或硅橡胶相媲美。传统外包制作原型有可能要等待数周时间,而使用树脂3D打印机则可以在数小时内完成原型制作。第三种是教育方向的应用,LCD和DLP 3D打印机通常结构紧凑,使用方便,越来越多的学校开始使用树脂3D打印机进行教育或研究。珠宝首饰也是树脂3D打印的一个重要应用,DLP和LCD 3D打印技术可以打印出非常丰富的细节特征,甚至比头发还小。目前已有很多珠宝设计工作室在使用3D打印机和蜡质树脂进行产品开发。Q除了打印设备之外,在选择树脂材料时需要关注那些方面?庞博: 首先关注的总是安全问题,尽管光敏树脂本身是十分安全的,但在购买树脂前应向制造商索取MSDS(材料安全数据表),以应对在使用过程中可能出现的意外情况。此外树脂材料的种类非常多,我们应该根据用途来选择材料。例如,牙科模型的应用应选择具有低变形的刚性材料,而手术指南的应用应选择具有良好的生物相容性和韧性的材料。权威认证 安全放心Q最后,您能给想投资树脂3D打印机的人提供一些其他建议么?庞博: 目前3D打印行业正处于快速发展期,产品也逐渐成熟,但因为不同的厂家在产品的研发、测试和品控等方面投入的差异,导致用户在使用的过程中可能会遇到各种各样的问题。因此我们应该尽量选择质量有保障,且能够提供良好培训、售后服务的公司,来选购3D打印机。基于以上选机技巧,小编在这里要特别推荐一款兼具高精度和稳定性的易用型3D打印机——AccuFab-L4K 高精度光固化3D打印机。这款由先临三维自主研发的高品质3D打印机,拥有4K高分辨率、192×120×180mm的成型尺寸,具备稳定、准确的打印精度,并支持连续稳定打印,能够实现设计原型的快速迭代以及小批量快速生产,可应用于工业设计、零配件/手办/医疗辅具打印等众多专业领域。
  • 世界3D打印大会开幕 国内3D打印产值三年将达百亿
    世界3D打印大会开幕 全球顶尖专家畅想3D梦   备受瞩目的“2013世界3D打印技术产业大会”将于29日正式开幕。上证报记者从在昨日召开的媒体见面会上获悉,本次大会邀请了全世界从事3D打印行业的知名专家和重要企业,与会代表共500多人,媒体约60余家,规格之高为业界罕见。   28日的媒体见面会由亚洲制造业协会首席执行官、中国3D打印技术产业联盟秘书长罗军主持,一同出席的还有全球3D打印行业享有盛誉的专家之一Terry Wohlers,英国增材制造联盟主席、中国3D打印技术产业联盟首席顾问Graham Tromas,华中科技大学教授史玉升等知名专家。   本次会议将讨论全球3D打印技术的发展现状和趋势,并对3D打印在文化创意、生物医学、工业制造等领域的应用前景进行展望和分析,同时也为国内外企业3D打印合作项目对接、洽谈搭建一个高端平台。   作为全球最知名的3D打印行业研究机构,Wohlers Associates公司已连续18年发表年度Wohlers报告,该报告被视为全球3D打印行业的风向标。媒体见面会上,公司主席Terry Wohlers介绍了刚于上周发表的2013年Wohlers报告。   该报告汇集了包括中国在内的全球70余个国家3D打印公司的相关数据。2012年,全世界3D打印行业总产值增长了28%,达22亿美元。3D打印机的全球销量同比增长25%,其中38%产自美国,中国占8.5%。   英国增材制造联盟主席Graham Tromas表示,3至5年内,中国有潜力成为世界最大的3D打印市场。关于3D打印的发展方向,Graham Tromas认为,从机型上说,真正能够推动生产力发展的是大型打印机,“中国想达到世界领先水平,应在此方向上取得突破。”   作为国内最早从事工业3D打印技术研发的专家,史玉升教授认为,中国制造业产值居世界首位,但想要长期保持优势地位,依靠传统技术难以为继,必须借助3D打印等先进技术。他甚至认为,在中国制造业中,能够从起步阶段就与世界处于同一水平的只有3D打印。   史玉升坦言,中国工业级3D打印技术和设备与国际先进水平还存在差距,主要体现在两方面:一是,设备功能的可靠性较低 二是,从材料的性能到品种,都与国外有一定差距。不过,他乐观认为,随着国家近期启动一系列科技支撑计划, 国内3D打印设备在可靠性、材料性能和品种等方面,将逐步与国际水平并驾齐驱。   中国3D打印技术产业联盟秘书长罗军:未来三年 国内3D打印市场力争上百亿   如能顺利跨上百亿台阶,此后几年,3D打印技术无论是在国内市场,还是国外市场都有望保持几何级数增长   当业内企业、科研机构“各自为战”、一盘散沙之际,   他发起倡议成立了中国3D打印技术产业联盟,以期扭转国内3D打印市场“小而散”的格局   当国内众多企业嗅到3D打印技术的巨大商机、蜂拥而入之际,他以“业内人”的身份呼吁大家保持理性,给予3D打印产业健康、良性的发展环境   当业界为“如何实现3D打印产业化”愁眉不展之际,他适时提出“建设3D打印技术产业创新中心”的良策,集结成员单位充分发挥自身优势,共谋产业发展之路。   亚洲制造业协会首席执行官、中国3D打印技术产业联盟秘书长罗军,就这样闯入了公众的视野。在首届“世界3D打印技术产业大会”召开前夕,罗军在百忙之中接受了上证报记者的独家专访,就外界关注的诸多热点话题进行了详尽阐述。   谈“3D打印热”:盲目介入不可取   记者:随着3D打印技术在各领域的应用逐步成熟,国内众多企业也嗅到了背后的潜在巨大商机,以各种方式进入以期抢占市场先机,其中不乏一些上市公司的身影。您如何看待资本涌入3D打印产业的现象?   罗军:任何一项新兴技术在发展初期都需要激情的推动,但单靠激情是远远不够的,还需要切实可行的思路和措施。3D打印技术作为一项前沿性、先导性很强的技术,的确具有很好的发展前景,上下游相关配套企业尽早涉足这个产业,是为了抢占先机,做好战略布局,这种思路是值得充分肯定的。上市公司具有较强的融资能力,抢先进入新兴技术领域,有利于加快新兴技术产业化进程。   但必须指出,作为公众企业,出于对投资者负责的角度考虑,上市公司进入一个新兴领域还需结合实际,发挥自身优势,盲目冒进与自身产业关联度不强的产业,很可能得不偿失。   记者:那么,您认为哪些行业内的企业开展3D打印比较有先发优势?   罗军:由于3D打印技术与激光制造、材料等领域关联度很大,这方面优势明显的企业,其涉足3D打印产业或具有一定的先发优势。如中航激光便掌握了大型金属结构件直接制造方面的技术,并在钛合金等特殊金属材料方面取得重大突破。另外,据我了解,一直密切关注各类激光应用技术的光韵达,在客户积累和市场应用方面积聚了许多经验,并且在红外、紫外等各种激光的加工特性,金属、非金属等各种材料的加工方面取得了突破,加之其与电子、通信和汽车等领域众多客户建立的长期合作关系,该类公司若介入3D打印领域的门槛应不会太高。   记者:如今3D打印热,不由让我们联想到前几年的光伏产业,彼时光伏产业前景也是一片光明,但短短几年过后,随着各路资本涌入,产能过剩问题凸显,光伏景气度也急转直下。未来,3D打印行业是否也会重蹈覆辙?如何促进这一产业健康、有序发展?   罗军:其实,作为清洁能源,光伏产业的发展前景还是比较乐观的,糟糕的是产能严重过剩,短期内难以消化,而成本居高不下、市场需求不旺,导致光伏业内外交困。在我看来,关键原因在于光伏产业在起步阶段缺乏行业组织的引导,企业间互不沟通甚至互相排斥,等到大家认为行业需要规范自律的时候为时已晚。3D打印产业应该不会重蹈覆辙,原因在于起步阶段就有了一个产业联盟来引导并促进行业自律。在对话合作的框架下,各方加强沟通维护行业整体利益,促使行业健康、可持续发展。   谈产业化:建创新中心是关键   记者:不可否认,3D打印技术有很多优点,如耗时短、成本低等,但反过来看,这项技术目前是否也存在一些缺陷或瓶颈?若要实施大规模产业化,需要克服哪些障碍?   罗军:任何一项技术都不可能十全十美,优势和劣势往往是并存的。3D打印技术具有节约材料、节省时间、节能环保等诸多优点。但与传统制造技术相比也有许多缺点,比所用材料限制较多、精度不够,尚不能规模化生产等。   要推动3D打印技术规模化、产业化运用,我认为,首先需要打开用户市场,使更多传统制造业企业增进对3D打印技术的认识。只有市场打开了,3D打印产业才有发展的基础 其次,要攻克材料难关,使更多材料能够满足3D打印技术的需求,只有市场需求起来了,3D打印技术得到广泛应用以后,材料价格才可能降下来 第三,加工服务和配套服务业务也要跟上。   记者:围绕上述目标,我们是否已经着手制定一些切实可行的对策?   罗军:目前,我们正在通过联盟的力量组织成员企业,集中优势资源在国内主要工业城市建设10家中国3D打印技术产业创新中心,首批选择在南京、青岛等重点城市运行,并计划明年将产业创新中心扩至10家。由于我们成员单位都是国内3D打印的佼佼者,以此为支撑,产业创新中心未来将主要发挥四项功能:一是3D打印产品的集中展览展示中心 二是3D打印技术的科普、教育、培训中心 三是3D打印技术加工服务中心 四是,3D打印技术研发中心。若产业创新中心能按照上述目标稳步推进,那么市场需求弱、应用空间窄的难题将迎刃而解。在我看来,产业创新中心大规模成功运行,将是国内3D打印机实现产业化的强力助推剂。   记者:能否大胆设想一下,比如5年后的今天,国内3D打印产业将呈现怎样一番景象?   罗军:我国目前尚处于3D打印产业化的起步阶段,今明两年将是产业发展的关键时期,将直接影响到3D打印的未来走向。今明两年的发展核心是要推动3D打印与传统产业的深度结合,把3D打印技术的应用市场快速开拓。总体而言,我们要把握以下几点:一是必须改变当前“小而散”的产业状况,抱团发展,集群发展,这样行业才有希望、才会得到市场的认可。二是3D打印技术必须与加工服务结合起来,通过服务来拓展市场 三是必须加强与国际间的对话合作。   以3D打印技术产业创新中心为平台,乐观预测,我们力争3年时间将3D打印市场规模扩至100亿元人民币,将3D打印技术更广泛地与传统制造业、文化创意产业、生物医学等产业结合。如果我们能够顺利跨上百亿台阶,此后几年3D打印技术无论是在国内市场还是国外市场都有望保持几何级数的增长。
  • 先临三维重磅推出高精度光固化3D打印机,助力原型设计和柔性生产
    5月26日,TCT亚洲展现场,先临三维正式发布AccuFab-L4K 高精度光固化3D打印机。AccuFab-L4K 高精度光固化3D打印机是先临三维自主研发的高品质3D打印机,拥有4K高分辨率、192*120*180mm的成型尺寸,具备稳定、准确的打印精度,并支持连续稳定打印,能够实现设计原型的快速迭代以及小批量快速生产,可应用于工业设计、零配件/手办/医疗辅具打印等众多专业领域。AccuFab-L4K 的发布,进一步推进了先临三维“3D扫描-设计-3D打印”系统解决方案的普及化应用。 AccuFab-L4K 高精度光固化3D打印机主要优势: l 高精度打印,准确呈现设计原型l 4K分辨率,还原细节,实现终端打印l 大幅面,快速成型,高效率打印l 连续打印,稳定性强,实现小批量快速生产l 适配多种工程树脂,满足不同品质要求l 软硬件人性化设计,使用高效便捷 合作巴斯夫,进一步提升高精度打印品质 高质量的3D打印设备+高质量的3D打印材料,可以为应用者提供稳定、高质量的打印服务,得到优质的打印产品。为进一步提升AccuFab-L4K的打印性能,先临三维在进行良好硬件设计的同时,也在材料上投入大量研发精力,部分自主研发的树脂材料,已通过医疗器械认证备案,可应用于医疗专业场景。 同时,先临三维也与巴斯夫3D打印解决方案品牌Forward AM取得合作,将巴斯夫Ultracur3D® 光固化树脂纳入AccuFab-L4K打印材料库。基于巴斯夫在聚氨酯研究和生产方面数十年的经验,Ultracur3D® 光固化树脂拥有以下优势: l 使3D打印零件具有长期的紫外稳定性l 使3D打印零件具有良好的力学性能l 打印精度高l 表面质量优良l 抗变形能力强l 环保,对环境影响小“我们非常荣幸此次和化工巨头巴斯夫进行合作。L4K打印机研发之初,我们便十分注重设备稳定性,作为高稳定性的3D打印机,对于设备的各项性能要求均比较高。巴斯夫的材料种类众多且性能稳定,使用巴斯夫的材料,为我们L4K打印机的性能又增加一项加持。” ——先临三维3D打印研发部经理 庞博 “我们很高兴与先临三维达成此次合作,实现‘AccuFab-L4K 高精度光固化3D打印机+ Ultracur3D® 系列光固化树脂’的解决方案,该方案能帮助客户更高效,更稳定的实现高性能功能性原型和小批量零件的制造。” ——巴斯夫3D打印解决方案(Forward AM)亚太区业务及运营总监 陈立博士 在3D打印领域,先临三维拥有多年的行业经验,所研发的打印机在齿科领域已得到良好应用。此次,先临三维发布AccuFab-L4K 高精度光固化3D打印机,是将3D打印技术在工业领域扩展的又一项实践——使用3D打印技术助力工业设计以及小批量柔性生产,推进智能制造的发展。先临三维也将持续努力,不断致力于高精度3D数字化技术的普及化应用。 关于先临三维 先临三维成立于2004年,公司专注高精度3D数字化及3D打印技术十余年,主营3D数字化与3D打印设备及相关智能软件的研发、生产、销售。公司是全球为数不多的拥有自主研发的“从3D数字化到智能设计到3D打印直接制造”的软硬件一体化产品解决方案的科技创新企业,致力于成为具有全球影响力的3D数字技术企业,持续推动高精度3D数字技术的普及化应用。 关于巴斯夫3D打印解决方案有限公司 巴斯夫3D打印解决方案有限公司总部位于德国海德堡,是巴斯夫新业责任有限公司的全资子公司。通过Forward AM品牌,专注于3D打印领域先进材料、系统解决方案、组件和服务的开发和业务拓展。公司凭借灵活、充满初创活力的内部结构,满足多变的3D打印市场中的客户需求。该公司与巴斯夫全球研究平台和应用技术部门紧密合作,以及科研机构、高校、创业公司以及行业合作伙伴开展密切合作。其潜在客户主要是致力于将3D打印用于工业制造的企业,所服务的典型行业包括汽车、航空航天和消费品。
  • 哈工大(深圳)魏军团队 AFM综述:3D打印超级电容器 - 技术、材料、设计及应用
    便携式、柔性和可穿戴电子设备的发展促进了高性能的电化学储能设备的快速发展。与电池和燃料电池相比,超级电容器表现出显著的优势,具有优异的倍率性能、杰出的循环寿命和卓越的安全性。然而,超级电容器的能量密度相对较低,不足以为电子设备提供连续且稳定的电源。为了提高能量密度,厚电极设计是有效的手段。而在传统的三明治结构的超级电容器中,平面电极的活性材料质量负载是相当有限的。设计三维多孔电极可以有效地提高活性物质的质量负载,同时保持较短的离子/电子传输距离和快速的反应动力学。但传统的制备三维多孔电极的方法通常复杂、昂贵、耗时,并且很难精确控制电极的结构。3D打印技术,通过计算机辅助设计/制造模型,对预定义的3D模型进行数字化控制,使得在短时间内精确控制和制造复杂结构成为可能。区别于传统的等材和减材制造技术, 3D打印技术可以实现几乎任何所需的立体几何形状,不需要所谓的模具或光刻掩模。这使得打印的超级电容器具有可调整的几何结构、高度集成、节省时间和低成本、以及卓越的功率和能量密度。为了总结这一领域的最新进展并为未来的研究提供设想,来自哈尔滨工业大学(深圳)的魏军教授团队,在Advanced Functional Materials上发表题为“3D Printed Supercapacitor: Techniques, Materials, Designs and Applications”的综述文章,回顾了3D打印超级电容器的最新进展,如图1所示。 图1. 3D打印超级电容器研究进展首先,介绍了用于制备超级电容器的代表性的3D打印技术,不同技术的原理图和特点如图2所示。 图2. 制备超级电容器的各种3D打印技术的原理图和特点接下来,文章重点介绍了超级电容器的可打印模块,包括电极、电解液和集流体,如图3所示。 图3. 用于3D打印超级电容器的材料在研究合适的可打印材料的同时,制造中的打印设计对于优化超级电容器的性能也是重要的。因此,文章总结了电极的设计(图4)、打印电极的后处理,并概括了3D打印超级电容器的不同构型(图5)。图4. 3D打印电极的不同结构设计 图5. 3D打印超级电容器的构型此外,还总结了3D打印超级电容器的各种应用,包括柔性可穿戴电子设备(图6)、自供电集成电子设备和传感系统(图7)。 图6. 不同类型的智能响应型超级电容器 图7. 3D打印的自供电集成系统,和超级电容器驱动的传感器系统。如图8可知,目前制备的3D打印超级电容器的能量密度与铅酸、镍氢电池和锂电池相当,有的甚至更高。 图8. 3D打印超级电容器的 (a)质量Ragone图, (b) 面积Ragone图最后,总结了目前3D打印技术的局限性和未来3D打印超级电容器的研究面临的挑战,并提出了一些可能的研究方向。 图9. 3D打印超级电容器的未来展望文章信息:Mengrui Li, Shiqiang Zhou, Lukuan Cheng, Funian Mo, Lina Chen,* Suzhu Yu,* Jun Wei,* 3D Printed Supercapacitor: Techniques, Materials, Designs and Applications, Advanced Functional Materials, 2022, 202208034.原文链接:https://doi.org/10.1002/adfm.202208034
  • 新发展 新局面丨摩方精密再添3D打印服务中心
    2022年3月,重庆摩方精密科技有限公司正式入驻位于深圳市龙华区观光路银星科技园的新办公地,标志着摩方精密继红山科技创新中心、锦绣科学园之后,又一生产基地的盛大启用。始创于2016年的重庆摩方精密科技有限公司,是全球微纳3D打印领域的先行者和领导者,作为微纳3D打印技术和精密加工解决方案的资深提供商,公司始终致力于三维复杂结构微加工技术领域的深度探索。拥有二十余年科研及工程实践经验的摩方创新团队,不仅在短短几年的时间内,就积累了包括发明专利、实用新型、外观设计、国际专利和软件著作权在内的77项自主知识产权,也为来自全球30多个国家超过一千个客户提供了满意的微纳3D打印技术方案。摩方精密发展的步伐,一步一个脚印。现深圳分公司已拥有三条核心生产线和三大实验室,红山科技创新中心总面积1400平方米,其中设备生产区域400平米,能够同时满足40台设备的生产调试需要;银星科技园基地总面积1300平米,其中设备生产面积200平方米,能够同时进行15台设备的生产调试,打印服务区生产面积400平方米,可容纳45台打印设备;锦绣科学园,总面积1250平方米,为材料研发生产基地。这些都为公司进一步提升研发和生产能力,提供了强有力的保障。银星科技园打印服务场地的启用,也让公司的发展迈上新的台阶,摩方精密将不断开辟新疆土、开创新局面,实现公司全面可持续发展!摩方精密,将为每位客户提供优质的服务,打印中心已全面升级,以全新的姿态,静候您的光临!官网:https://www.bmftec.cn/links/7
  • 金属3D打印上市企业铂力特定增募资超30亿元扩产
    8月29日晚,铂力特发布定增预案,拟募资总额不超过31.09亿元,投向金属增材制造大规模智能生产基地项目及补充流动资金。铂力特同日披露半年报,上半年实现营业收入2.77亿元,同比增长92.83%;归母净利润亏损3896.12万元。当日,公司股票上涨6.32%,收于222.2元/股。扩产动作频频定增公告显示,铂力特本次募投项目中,金属增材制造大规模智能生产基地拟投入25.09亿元,余下6亿元拟用于补流。何谓“金属增材制造技术”?简单来说,即通过二维逐层堆叠材料的方式,直接成型三维复杂结构的数字制造技术。瞄准产业化发展需求,积极加码生产基地。铂力特此次拟建造生产车间、厂房,总建筑面积约16.32万平方米;并配套金属3D打印粉末自动生产线、产品检验检测设备、大尺寸/超大尺寸3D打印设备和后处理设备等合计505台/套。铂力特智能制造工厂(来自铂力特)围绕主业做文章,铂力特的上市募投项目亦为金属增材制造智能工厂建设。截至目前,上述项目实际投入资金5.78亿元,项目投建的生产车间、研发大楼及主要生产设备已于去年12月达到预定可使用状态。铂力特曾在2021年年报中表示,随着增材制造产品批量化带来的产业链成熟化、成本降低和制造模式转变,下游客户群体将会不断扩大。早前,公司也已完成钛合金以及高温合金粉末材料制备以及应用验证,实现批量化生产,产能达到400吨以上。而关于本次进一步扩产的原因,铂力特表示,此举将大幅提升公司金属增材定制化产品和原材料粉末的产能,满足航空航天、医疗齿科及汽车等应用领域对增材制造快速增长的需求,同时满足公司和行业对金属增材制造粉末的需求。资金方面,铂力特坦言,增材制造行业属于技术及资金密集型行业,公司经营过程中对营运资金的需求较为明显。实施定增有助于为公司发展提供资金支持,扩大客户群体和业务规模,推动公司持续稳定发展。增材制造前景广阔尽管全球增材制造产业的增速在2020年有所放缓,但至2021年,行业又恢复了快速增长态势。《Wohlers Report 2022》报告显示,2021年全球增材制造市场规模(包括产品和服务)达到152.44亿美元,同比增长19.5%。近年来,3D打印技术不断成熟。随着材料和设备的国产化,金属3D打印在替代传统工艺,并在装备领域降本增效上优势显现,产品应用的深度和广度大幅提升。尤其是在以智能制造为核心的“工业4.0”战略提出后,3D打印作为自动化和信息化的结合,可实现从设计到生产全数字化的制造过程。与此同时,增材制造技术的应用领域也逐步拓宽,越来越多的企业将其作为技术转型方向,用于突破研发瓶颈或解决设计难题,助力智能制造、绿色制造等新型制造模式。目前,金属增材制造产品已被广泛应用于航空航天、模具制造、医疗研究、汽车制造、能源动力、轨道交通、船舶制造、电子工业等各领域,并已在多个应用领域中实现工业化批量生产。铂力特现与多家高端装备制造企业保持紧密的合作关系,包括中航工业下属单位、航天科工下属单位、航天科技下属单位、航发集团下属单位、空客公司、中国商飞下属单位、国家能源集团下属单位、中核集团下属单位、中船重工下属单位以及各类科研院校等。
  • 西安交通大学张辉课题组《Materials & Design》:PμSL 3D打印花瓣状微结构表面实
    受自然生物学启发制备的具有不同润湿特性的功能性表面在液体收集、液滴操纵、减阻及油水分离和药物输送系统等领域蓬勃发展。值得注意的是,功能性拒水表面成为其中一个热门议题。荷叶上的超疏水现象表明由亲水材料制成的具有特殊微纳结构的表面可以实现疏水甚至超疏水特性。因此,越来越多的研究人员致力于设计和制造独特的微纳结构使得由亲水材料组成的表面呈现出超疏水的特性,进而实现更多特定的功能。随着3D打印技术的逐步发展,越来越多的复杂结构如蘑菇头状、重入蘑菇头状、打蛋器状及仿弹尾虫表面等被设计和制备以实现一定的拒水效果。尽管相关研究提出了具有各种形状的拒水微结构,但这些形状大多具有蘑菇状形式。设计3D 微结构并深入探索机理,从而进一步提高拒水及液滴承载性能仍然是一个挑战。最近,对猪笼草的研究表明,猪笼草口缘区域微腔结构的锐利边缘和弓形曲线具有将液体钉扎在弯曲结构上的超强能力,该能力甚至可以克服重力。据此,西安交通大学机械工程学院张辉副教授等提出了一种新型 3D 打印仿生超疏水花瓣状微结构表面,其灵感来自猪笼草口缘区域的水钉扎效应。该团队利用高精度3D打印技术(nanoArch P140,摩方精密)实现了花瓣状微结构表面的制备。具有花瓣状微观结构的亲水性树脂具有宏观超疏水性和优异的拒水性。与普通蘑菇形结构相比,优化后的花瓣状结构承载力最大增加率为58.3%。相应的机理分析表明,锋利的边缘效应和弓形曲线效应是造成这种超排斥性能的原因。然后团队进行了对几何特征(花瓣数量P、结构间隙S及花瓣结构占比K)对花瓣状微结构表面液滴承载能力影响的实验研究。覆盖微结构数、接触角变化和最大崩溃体积参数反映了不同参数表面的液滴承载能力。优化后的微结构阵列(花瓣数量P为4,结构间隙S为100 μm,花瓣结构占比K为0.5)与普通蘑菇形微结构相比,液滴承载力的最大增加率为58.3%。当滴加液滴至 3D 打印花瓣状微结构表面上时,液滴将覆盖多个花瓣状微结构组成的方形阵列区域。微结构顶面上的液滴呈现锯齿形边界。弓形曲线和花瓣状结构的锋利边缘的协同作用作为能量屏障,限制了水滴的铺展和崩溃。由于花瓣微结构材料本身具有亲水性,液滴沿花瓣拉伸形成凹形液体边界曲线,类似于液体在平行侧壁中的流动情况。相似的液体边界曲线形状和具有锐角边缘的弓形曲线导致花瓣状微结构表面具有较高的水约束力。花瓣状微结构表面具有优异拒水性可用于超大液滴承载、微反应器、无损液滴搬运、倾斜表面液滴快速脱附、油水分离、气泡保持和减阻等领域。图1 a 猪笼草口缘区域及其微腔结构;b 花瓣状微结构表面设计及3D打印模型;c 3D打印的平面表面接触角约为55°,具有花瓣状微结构的表面具有宏观超疏水性,其接触角约为160°,即使表面倒置,水滴也会粘附在表面上。图2 a 液滴在花瓣状微结构阵列的顶部沿微结构边缘呈现锯齿形边界;b 液滴与微结构之间的接触边界示意图;c 亲水花瓣微结构拉伸液滴以及平行侧壁间液体的粘附和拉伸效果。 图3 花瓣状微结构表面应用a超大液滴承载;b 微反应器;c 无损液滴搬运;d 倾斜表面液滴快速脱附;e 油水分离;f 气泡保持和减阻实验
  • 西安交大《Physical Review Applied》:3D打印超宽带太赫兹超材料吸波器
    太赫兹波,指频率为0.1-10 THz的电磁波,位于微波和红外之间,属于电子学与光子学的过渡区间。由于具有光子能量低、穿透力强、特征光谱分辨能力好等属性,太赫兹技术在生物传感、无损检测以及高速无线通讯等领域具有重要的应用前景。然而,由于自然界中的天然材料在太赫兹频段没有电磁响应,导致太赫兹频段的功能材料和器件非常匮乏,这也是造成太赫兹技术尚未广泛应用的重要原因。THz超材料,一种新型的周期性人工电磁材料,其性质主要取决于所设计的结构,通过特定的结构设计,可获得与自然界已知材料截然不同的电磁性质,从而实现丰富的功能器件,如吸波器、调制器和偏振转换器等。目前常见的太赫兹超材料,主要由光刻工艺制备得到,存在制备工艺复杂、加工成本高的问题。此外,目前宽带吸波器常采用上下重叠式多层结构设计,其在太赫兹频段所需的多步光刻工艺更是进一步提高了加工难度及成本。因此,探索太赫兹器件的无光刻、低成本、简单高效的制备方法获得超宽带太赫兹吸波器,将有利于促进太赫兹技术的繁荣发展。 近日,西安交通大学张留洋教授课题组提出了一种偏振不敏感的超宽带太赫兹吸波器设计及其制备方法,该超宽带吸波器由叠堆于类宝塔基底表面的多层环形谐振器构成,通过相邻谐振器共振模式的重叠实现带宽的扩展,最终通过叠堆12层圆形和环形谐振器实现1.07-2.88 THz频段的近完美吸收。该研究结合微尺度3D打印技术(nanoArch S130,摩方精密)制备得到实验样件,实验测试结果验证了宽带吸收机理的准确性。该成果以“Three-Dimensional Printed Ultrabroadband Terahertz Metamaterial Absorbers”为题发表于国际期刊Physical Review Applied上,该研究工作由西安交通大学机械工程学院博士生沈忠磊与硕士生李胜男共同合作完成。图1 具有面外形态的太赫兹吸波器结构示意图图2 太赫兹超宽带吸收谱 通过结合微尺度3D打印技术,超宽带太赫兹吸波器可由简单的三步工艺制备得到。其中,周期性阵列的三维类宝塔结构采用面投影微立体光刻3D打印技术(nanoArch S130,摩方精密)加工得到。实验结果表明:得益于高精度的微尺度3D打印技术,测试所得的宽带吸收谱谐振频率和吸收幅值均与数值模拟结果较为吻合。图3 太赫兹超宽带吸波器实验验证(其中单元周期Px=Py=185μm,顶层圆形谐振器半径r12=10μm, 叠堆环形谐振器宽度w=6μm,叠堆层厚▲t=10μm) 此外,文章进一步证明了该制备方法之于常见太赫兹窄带吸波器制备的适用性。实验结果表明:两种太赫兹窄带吸波器的吸收谱测试结果与数值模拟结果和理论结果均较为吻合,表明基于微尺度3D打印技术的制备方法同样可实现对常见太赫兹窄带吸波器的高质量制备。图4 太赫兹窄带吸波器实验验证原文链接:https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.16.014066
  • 3D打印技术将“颠覆”仪器制造模式?
    仪器信息网讯 近期,各大媒体都在热议“3D打印技术”,同时北京第一家3D打印体验馆也正式落成。这项诞生于上世纪80年代的技术如今正经历着从萌芽期进入成长期的转折点,不少人士认为3D打印技术将颠覆传统制造业模式,引发第三次工业革命。   3D打印技术是利用光固化和纸层叠等一系列快速成型技术的统称,其基本原理都是叠层制造。与普通打印机的工作原理基本一致,打印机内装有液体或粉末等“打印材料”,与电脑连接后,通过电脑控制把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物。   据报道3D打印技术应用已经渗入到生物医疗、航空、汽车、工业设计等多个行业,那究竟3D打印技术会给仪器制造带来哪些好处?它是否会“颠覆”目前的仪器制造模式?目前,国内仪器厂商是否已经使用了该项技术?   多年从事仪器研发工作的中科院大连化物所关亚风研究员告诉笔者,其课题组2011年就从美国购买了一台3D打印机,主要用于零配件及仪器外壳的制作。谈及3D打印机所带来的好处,关亚风表示,“有了3D打印机,我现在可以很快地把想法变成现实,一个零配件模块最多只需24小时就能够完成制作,研发周期大大加快。另外,做仪器研发,有些零配件因为量小很难找到加工工厂,利用3D打印机就可以解决此方面的问题。”   不过,关亚风也表示,“目前,3D打印机用于批量生产还不太现实,成本太高,打印机本身价格就较高,中端大概10万美元,高端20万美元,而原材料也全部需要进口,以一个仪器普通零配件为例,如果传统模加工成本是100元,而3D打印机的成本则是3000元。3D打印机在仪器行业主要还是应用于仪器研发及制作样机阶段。”   关亚风还告诉笔者,“目前,他课题组的3D打印机只能制作塑料模块,武汉华中理工大学已经研制出可以制作金属件的3D打印机,而他最想拥有的是可以制作陶瓷件的打印机。”   笔者同时还采访了国内多家仪器制造商,了解到目前各厂商都未使用到3D打印技术。上海光谱仪器有限公司总经理陈建钢表示,“对于3D打印技术有关注,在上海光谱获批的重大仪器专项研制项目中,公司计划购买一台3D打印机,不过也还处于前期了解和调研阶段。”对于该技术的普及,他认为,3D打印技术也只能用于前期研发,并且目前仪器厂家对于3D打印机和原材料价格还不能接受。(撰稿:杨娟)   相关新闻:   3D打印机选购指南:总有一款适合你   科技部十几年前已开始推广“3D打印”   海源机械拟建3D打印实验室   分析称3D生物打印技术即将快速成长并创收   3D打印袭来 或将引发第三次工业革命(图)
  • 科技部十几年前已开始推广“3D打印”
    最近,随着“3D打印照相馆”的出现,“3D打印”愈发成为很多人关注的新鲜名词。不过记者从天津大学得知,3D打印技术听起来十分新潮,实际上早在1998年,科技部就在国内设立了5个推广中心推广这项技术,天津大学是其中之一,当时就拥有了3D打印设备。   天津大学的“3D打印快速制造基地”看上去与普通复印店区别不大。30多平方米房间内放置着两台两米多高的机器,外形看起来十分普通。工作人员掀开一台机器的罩子,记者看到,一块边长0.5米的正方形白板上,一束红色的激光来回扫描,激光扫过后的区域颜色瞬间变深。初看起来,完全看不出能做出3D效果来。   工作人员陈光辉说,能够用于3D打印的材料主要有石蜡粉、金属粉、高分子材料粉、树脂等。以打印一个“人”来说,3D打印技术首先是通过软件,在电脑中建立一个人的三维立体图形,将图形传输到打印设备上。打印的过程是把人从脚底到头顶横切为上千个薄层,逐个层打印定形,并依次叠加在一起,最后出来一个3D立体模型。   据介绍,每个薄层的打印,先是如同刷墙,涂上厚度为0.06mm的粉体材料,随后激光扫过需要打印的区域,该区域的粉体瞬间被高温凝固,同时紧接着下一薄层接力赛般再被激光定形。前后两个薄层之间由于激光的“过烧”,能够实现无缝连接,不会存在缝隙。如此往复叠加,最终成形的固体部分实物,完全如同电脑制作的三维立体图。而人经过扫描建模后,激光最终能“烧”出个一模一样的模型,如同照相一般。   制造基地负责人崔国起告诉记者,目前该基地的打印机单次能打印的最大体积是边长为0.5米的正方体。他们打印过的最大物体是两米多长的“游艇”。要想打印出超出单次最大体积的物体,可以把物体分成几个部分打印后再拼装成整体。   崔国起说,如果按1∶1的比例打印一个1.7米高的成人模型,仅需3天时间,费用为1万多元。如果仅为巴掌大的模型,几小时就能完成,费用也仅需几百元。至于3D打印的技术精度,据他介绍,目前该基地打印过的最小部件只有0.4毫米长。如果打印比例1∶1的真人,能分辨出人的毛孔 如果脸上有青春痘的话,也能够清楚地“照”出来。   “3D打印技术”目前应用非常广泛,早已影响了我们的生活。如人们熟知的神舟飞船中宇航员的坐垫,就是天津大学利用这项技术制造模型,并最终造出成品。在医疗领域,每个人的骨关节不同,利用这项技术能够实现快速制造个性化模型,并制造出与病人需求一致的关节。该技术还在军工装备、家电等领域有广泛应用。   据崔国起介绍,2012年底,天津大学组建了一支科研团队,将在当前的技术基础上,争取让3D打印速度更快,材料应用更广,费用更低。这是目前该领域努力的重要方向。至于公众目前接触的3D照相,只是这项技术应用中非常小的一部分。
  • 3D打印多仿生槽锥刺结构实现跨气-液界面微油滴高效定向操控
    复杂环境下的低表面能液滴操控对于混合液相分离、化学微反应废物处理等能源、环境与健康领域的应用发展具有重要指导意义。具有液体靶向运输控制功能的仿生结构表面为微滴操控提供了一种能耗更低、制备工艺更简单的解决策略。目前实现基底表面液滴智能运输主要依赖于材料润湿性梯度和结构的不对称性,且相关研究均集中于水处理。油等低表面能液滴的低接触角滞后和接触线滑移使其相比水运动路径更难控制,尽管具有亲油表面的传统圆锥形结构可以实现微油滴的自运输,但复杂环境下的实用性、大容量自发连续低表面张力微液滴输送系统是亟待解决的行业难题与挑战。如何突破现有微滴操控不对称性结构的功能局限实现微油滴气-液界面跨相传输提取更是鲜有研究。近日,西南科技大学微纳仿生系统与智能化研究团队李国强教授与海河实验室曹墨源研究员合作,受鱼刺微油滴操控功能、水稻叶表面各向异性液滴滑动现象启发,利用PμSL高精密3D打印(摩方精密,nanoArch S140,P150)技术制备了一种多仿生槽锥刺结构(BGCS)实现水下油滴的逆重力高效运输与收集。在非对称拉普拉斯压力和表面毛细力的协同作用下,所设计的2-BGCS结构具备在水下、空气以及跨气-液两相界面超快、连续传输油滴的功能,运输速度最高可达70.2 mm/s。与传统圆锥形结构相比,倾斜角20°时,2-BGCS结构的输送速度提高9倍。在逆重力传输油滴时,2-BGCS结构能够提升超过22 μL的重油滴,通量提升5倍,极大的改善了圆锥结构的功能与性能,且具有输运大体积油滴的潜力。仿生槽锥刺集油阵列装置表现出在水环境下连续、自发地收集油滴的性能。该研究为复杂环境下的油滴从输送到收集提供了一种集成、通用的新策略,在水下微油滴收集系统、生物分析及污染治理等领域具有广阔的应用前景。评审人对该工作给予高度评价:基于锥形结构和沟槽结构的巧妙结合和功能设计为微流控等领域提供新的仿生策略。该工作以“Directional and Adaptive Oil Self-transport on a Multi-bioinspired Grooved Conical Spine”为题发表在国际著名期刊《Advanced Functional Materials》上。西南科技大学机械工程2019级硕士生李耀霞和中国科学技术大学仪器科学与技术2021级博士生崔泽航为共同一作,通讯作者为李国强教授和曹墨源研究员。图1 仿生槽锥刺结构的设计与性能对比。受鱼刺和水稻叶启发,利用精密3D打印制备了不同槽个数的仿生锥形结构。梯度槽和锥形结构的结合,使仿生结构具备水下超快逆重力定向传输功能,对比不同槽数的仿生结构以及传统锥形结构,2-BGCS结构的运输效果最佳。图2 不同结构连续输送油滴及理论机制的比较。对仿生槽锥形结构、传统锥形结构以及对称圆柱结构在水下进行连续逆重力输送实验对比,微油滴在不同结构上连续运输的高度对比说明仿生槽锥形结构上的微油滴能够不断连续输送,且不影响下一次循环。基于不同结构对比实验,对油滴沿结构运输的模型进行机理分析。图3 仿生槽锥刺结构在不同环境下油滴运输的应用。基于仿生槽锥形结构水下逆重力油滴运输的优异性能,进一步探讨了在多环境下的油滴运输功能,不仅能够实现微油滴在空气中的超快输送,还可以实现气-液界面跨相油滴传输,集成收集装置能够实现水下油滴的大通量收集。小结综上所述,受鱼刺空中油滴定向输送以及水稻叶各向异性槽的启发,作者借助精密3D打印制备新型仿生功能结构,由锥形结构产生的非对称拉普拉斯压力和凹槽结构产生的表面毛细力的共同作用下,提高了油滴在水下传输能力,极大的改善了传统圆锥结构的功能与性能。同时,利用不对称结构实现油滴跨气-液两相界面的精准高效传输,仿生槽锥刺集油阵列装置实现在水环境下超快、连续收集油滴,为复杂环境下的油滴从输送到收集提供了新的方法。微纳仿生系统与智能化团队一直致力于超快激光微纳精密制造和超精密3D/4D打印制造的基础研究与应用研究,以开发微纳功能结构、芯片、器件及集成系统为目标,服务于能源、环境、健康等重点领域。近年来,该团队报道了一系列高水平研究成果,包括水平振动模式高性能微滴定向驱动(Adv. Mater., 2020, 2005039),飞秒激光诱导自生长蘑菇头凹角结构微柱(Nano Lett., 2021, 21, 9301−9309 ACS Nano2022, 16, 2730-2740),激光3D打印和飞秒激光直写构筑仿鱼骨微液滴多相分流器、仿荻草叶保水功能“即插即用”式高效集水灌溉装置(J. Mater. Chem. A, 2021, 9, 9719 J. Mater.Chem. A, 2021, 9, 5630 Nano-Micro Lett., 2022,14:97),精密3D打印构建仿生麦芒分级系统用于高效雾水收集、受蚊眼启发的激光织构化仿生多功用玻璃(Chem. Eng. J, 2020.125139 Chem. Eng. J,2021.129113),一种用于微样分析的仿生微滴操控器(ACS Appl. Mater. Interfaces 2021, 13, 14741−14751)等40余篇。这些重要成果体现了机械工程学科在科学研究和人才培养方面的新成就。该研究受到国防科工局十四五基础科研计划项目、装备预研领域基金项目、国家自然科学基金项目、四川省科技创新基金等项目的支持。
  • 西安交大张留洋老师课题组《Laser & Photonics Reviews》:3D打印的反射式手性
    手性是一种有趣的几何概念,指物体不能通过平移、旋转和缩放等变换与其镜像重合的特性,其应用范围涉及光学、生物学、化学、医药和生命科学等领域。在光学领域,当手性介质被不同旋向的圆极化光激发时,表现出不同的手性光学效应:当左旋圆极化 (LCP) 光和右旋圆极化 (RCP) 光经过手性介质后的透射率或反射率不同,从而显示出圆二色性(Circular dichroism, CD);若这两种光在手性介质中的折射率不同,导致透射光相比于入射光的偏振面发生旋转,则显示出旋光性(Optical activity, OA)。尽管光学手性在自然界中无处不在,但天然材料中的手性响应极其微弱,且难以灵活控制,这严重阻碍了极化相关器件的微型化和集成化应用。由于具有比自然材料高几个数量级的手性光学响应,由人工设计的亚波长单元结构阵列构成的手性超材料/超表面为实现可控手性光学响应提供了一条途径。然而,尽管常见多层手性超表面具有很强的本征光学手性,但其设计过程相对复杂,且加工所需的多步光刻工艺存在技术要求和加工成本高的问题。近日,西安交通大学张留洋老师课题组提出了一种反射式手性超表面的简单、通用的设计方法及其低成本、无光刻的制备策略,该工作与深圳大学范殊婷老师课题组合作完成。通过结合新型微立体光刻技术实现了手性超表面的3D打印,实验测试结果验证了手性响应机理的准确性相关成果以“Chiral Metasurfaces with Maximum Circular Dichroism Enabled by Out-of-Plane Plasmonic System”为题发表于国际期刊Laser & Photonics Reviews上, 影响因子10.9。 图1. 反射式手性超表面通用设计流程示意图对于任意的谐振器,跟随提出的通用设计流程,仅需简单两步即可打破其n重旋转对称性(n 1)和镜像对称性,从而获得一个具有面外形态的反射式手性超表面。以工作于太赫兹频段的U型手性超表面为例,其圆极化反射谱和圆二色性谱如图2所示。不同的面外形态方向,可获得具有相反手性响应的对映体A和B。 图2. 基于U型共振器的太赫兹手性超表面及其手性响应通过调控超表面的偏置高度可实现对其损耗的调控,根据耦合模理论可知,当其辐射损耗等于耗散损耗时,此时一种圆极化波被近完美的选择性吸收,而另一种圆极化波被非共振地反射,从而可获得最强的圆二色性值(图3(d))。 图3. U型太赫兹手性超表面圆极化反射谱和圆二色性谱通过结合微尺度3D打印技术,提出的手性超表面可由简单的三步工艺制备得到。其中,周期性阵列的面外形态结构采用面投影微立体光刻3D打印技术(nanoArch S130,摩方精密)加工得到。实验结果表明:得益于高精度的微尺度3D打印技术,加工得到的手性超表面具有良好的表面质量和形状精度,测试所得的太赫兹反射谱与圆二色性谱与数值模拟结果较为吻合。 图4. 太赫兹手性超表面制造策略及表征结果 图5. 太赫兹手性超表面实验验证
  • 2019年全球3D打印医疗市场销售将达9.66亿美元
    3D打印正在多个垂直行业颠覆制造过程,尤其是在医疗领域,3D打印技术的应用导致了更多创新、高效的产品出现。日前,市场研究机构Transparency Market Research在其最新的研究报告中,分析了全球3D打印医疗垂直应用市场,预测从2013年至2019年该市场的年复合增长率将达15.4%。而全球3D打印医疗市场的总销售额也将从2012年3.545亿美元增至9.655亿美元。该报告的题目是《3D打印在医疗应用市场——全球行业分析,大小、份额、增长、趋势和预测,2013年—2019年(3D Printing in Medical Applications Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013 - 2019)》。该报告称,全球3D打印技术医疗应用市场主要受到一下几个因素的推动:各种3D打印医疗应用不断增加、定制化3D打印医疗产品的增长趋势、来自私人和政府机构的资金、能够扩大医疗应用的技术进步,以及3D打印应用所带来的成本和时间的缩短以及相应的病人护理的改善等。该报告同时显示,3D设计软件公司的并购也将在该市场的未来发展中占据重要地位。然而,缺乏训练有素的专业人员和材料相关的问题有可能阻碍到3D打印在医疗应用市场上的扩展。如果将3D打印技术在医疗领域的应用进一步细分的话,按照基本的应用可以分为手术器械、手术指南、生物工程和植入物等。而手术指南和植入物可以进一步分成牙科、骨科和颅骨-颌面部等。而按照原材料则可以分为聚合物、生物细胞、金属和陶瓷等。而按照3D打印技术来分,3D打印医疗应用市场则可以分为光固化(SLA)、电子束熔融(EBM)和液滴沉积制造等。其中,EBM技术占据了市场主导,这一部分还包括了光聚合反应和激光束熔化(LBM)。这两种技术都能够精准而高效地制造各种生物模型,而后者在3D打印市场上的需求十分强烈。除此之外,光固化还可以进一步分解成数字光处理和双光子聚合等,液滴沉积制造则包括多相射流固化、 熔融沉积建模和喷墨打印等。从区域上分,该市场则可以划分为北美、亚太、欧洲和世界其他地区。在2012年,北美地区占据全球市场的主导地位,但欧洲地区的预计增长速度最快,估计到2019年将超越北美成为全球最大的区域市场,其中的主要原因是扶植政策、有利的经济条件、为实现技术进步而出现的并购,以及政府投资等。该研究报告认为,从竞争角度看,这个市场更偏向于寡头垄断,3D Systems、Voxeljet、EnvisionTEC、Eos、Electro Optical Systems、Stratasys、Nanoscribe、Materialise将是其中处于领先位
  • 中国3D打印行业前景可期 2023年规模将破百亿美元
    p   中国3D打印产业已经发展二十年左右,如今已然成为国内各大企业争相投资的热点,并被多家媒体和业界人士标榜为“第三次工业革命”的领头羊。然而“盛名之下,其实难副”,在3D产业发展如火如荼的今天,中国3D打印产业仍处于产业发展的初始阶段。虽然潜力巨大,但市场规模仍然较小,在商业模式、产品耗材、与传统工业结合等多个方面,都有待进一步探索。 /p p   目前,国内的3D打印主要集中在家电及电子消费品、模具检测、医疗及牙科正畸、文化创意及文物修复、汽车及其他交通工具、航空航天等领域。2012年中国3D打印机市场规模达到1.61亿美元,至2016年,中国3D打印产业规模达到11.87亿美元(约80亿元人民币),复合增长率为49%。 /p p style=" text-align: center "   图表1:2012-2017年中国及全球3D打印产业规模分析(单位:亿美元,%) /p center img alt=" 中国3D打印行业发展前景预测 2023年市场规模将破百亿美元" src=" http://editerupload.eepw.com.cn/201805/87391527031830.jpg" height=" 347" width=" 517" / /center p   目前中国3D打印技术发展面临诸多挑战,总体处于新兴技术的产业化初级阶段,未来3D打印技术最有可能在美国和中国率先大规模产业化。3D打印技术产业发展已经上升为美国的国家战略。中国虽然至今还没有出台国家战略,但主管部门在积极制定相关产业扶持政策,科技部已经将3D打印技术纳入国家863计划。 /p p style=" text-align: center "   图表2:中国3D打印处于初级阶段的主要表现 /p center img alt=" 中国3D打印行业发展前景预测 2023年市场规模将破百亿美元" src=" http://editerupload.eepw.com.cn/201805/50401527031831.jpg" height=" 283" width=" 457" / /center p    strong 2017年中国3D打印行业应用情况 /strong /p p   3D打印应用的领域广泛,3D打印在下游应用行业和具体用途领域的分布反映了这一技术具有的优势和特点,同时也反映了这一技术的局限和在发展过程中尚需完善的地方。 /p p   目前,随着国内对于3D打印技术的相应成熟,在生物医药行业、航空航天行业、机械设备行业、汽车行业等行业的许多应用领域的对于3D打印的需求较高,就目前而言,从国内3D打印行业行业的下游应用情况来看,3D打印设备主要在消费品/电子、医疗、工业设备、汽车领域、航天航空等行业应用的比较广泛。 /p p style=" text-align: center "   图表3:2016年我国3D打印行业下游应用情况(单位:%) /p center img alt=" 中国3D打印行业发展前景预测 2023年市场规模将破百亿美元" src=" http://editerupload.eepw.com.cn/201805/84721527031831.jpg" height=" 300" width=" 420" / /center p   strong  2020年中国3D打印发展前景预测 /strong /p p   我国对3D打印的政策支持突出:《国家增材制造发展推进计划(2015-2016年)》重点提出形成2-3家具有较强国际竞争力的增材制造企业,建立 5-6家增材制造技术创新中心,完善扶持政策,形成较为完善的产业标准体系。鉴于产业政策与财政政策的支持,初步预计,2018年我国3D打印市场规模可达到22.5亿美元,2022年达到80亿美元左右。 /p p style=" text-align: center "   图表4:2017-2023年中国3D打印市场规模预测图(单位:亿美元) /p center img alt=" 中国3D打印行业发展前景预测 2023年市场规模将破百亿美元" src=" http://editerupload.eepw.com.cn/201805/22941527031831.jpg" height=" 301" width=" 445" / /center p    strong 综合3D打印产业的技术特点和发展现状,我们认为未来行业发展存在以下趋势特点: /strong /p p   1、3D打印个人消费保持高速增长 /p p   随着“个人制造”的兴起,在个人消费领域,3D打印行业预计仍会保持相对较高的增速。有助于拉动个人使用的桌面3D打印设备的需求 同时也会促进上游打印材料(主要以光敏树脂和塑料为主)的消费。 /p p   2、3D打印金属材料应用程度不断加深 /p p   在工业消费领域,由于3D打印金属材料的不断发展,以及金属本身在工业制造中的广泛应用。前瞻预计,以激光金属烧结为主要成型技术的3D打印设备,将会在未来工业领域的应用中,获得相对较快的发展。中短期内,这一领域的应用仍会集中在产品设计和工具制造环节。 /p p   3、产业链上的专业分工会进一步深化 /p p   现阶段,主要的3D打印企业一般以材料供应,设备制造和打印服务的综合形式存在。这是由产业发展初期技术推广和市场规模的限制所致。长期来看,产业链的各环节会产生专业化的分离:专业材料供应商和打印企业会出现,产品设计服务会独立或向下游消费企业转移。3D打印有望转化为一个真正意义上的工具平台。 /p p   4、国内3D打印市场前景广阔 /p p   国内3D打印技术的推广与应用尚在起步阶段,无论是工业应用,还是个人消费领域都存在广阔的发展前景。对于工业领域而言,国内在激光熔覆方面的技术具有一定优势,这有助于在以激光烧结为成型技术的3D打印设备制造和打印服务领域进行发展。对于个人消费领域,应用的推广速度取决于对于3D打印这一技术认知的提高,以及相关辅助平台,如软件设计,制作文件库的发展。 /p p   综合上述特点趋势,从行业发展的角度来看,整个3D打印产业链都存在巨大的潜在发展空间。就未来的长期的需求增长而言,前瞻产业研究院相对看好上游打印材料和个人3D打印设备的制造企业。就前者而言,在通用化的技术标准不断推广的基础上,专业化的材料供应企业的发展是大势所趋。从个人消费到工业制造,无论是哪个领域引来快速增长,对于耗材的需求都必不可少。 /p
  • 上海交大:通过3D打印实现刚柔复合超疏水界面的制备
    近日,上海交大机械与动力工程学院胡松涛副教授课题组提出了刚柔微结构复合的超疏水界面设计思想,解决了冲击定位要求苛刻的难题,相关研究成果在机械装备抗液防冰等领域具有重要的应用前景。瑞士苏黎世联邦理工学院Andrew J. deMello教授课题组和英国帝国理工学院Daniele Dini教授课题组为合作单位。该成果以“Flexibility-Patterned Liquid-Repelling Surfaces”为题作为封面论文发表于ACS Applied Materials & Interfaces期刊。刚柔复合界面设计与制备(杆径10μm的柔性网格结构及刚性支柱)面向低温冲击液滴的超疏水界面需要递进满足两个条件:1)基于微纳几何结构和低能化学修饰的抗刺穿性以反弹冲击液滴;2)极短的固液接触时间以避免液滴在界面成核结冰。现有的相关界面设计工作遵循刚性和柔性两类策略,可有效缩短固液接触时间,但受限于苛刻的固液冲击定位要求。研究团队借鉴蹦床公园,提出了刚柔微结构相结合的超疏水界面设计,通过融合刚性和柔性设计策略,期望消除界面润湿性能对固液冲击定位的依赖。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述刚柔复合界面设计的样机制备。液滴冲击行为 研究团队利用高速相机记录液滴在冲击不同界面以及界面内不同局部区域的动力学行为,证明可以利用刚柔复合界面设计来调整液滴冲击行为。固液接触时间液滴冲击实验进一步表明,当液滴冲击柔性界面区域时,将触发结构振动来缩短固液接触时间;而当液滴冲击刚性界面区域时,将触发液滴的非对称再分布来缩短固液接触时间。官网:https://www.bmftec.cn/links/10
  • 上海交大:通过3D打印实现刚柔复合超疏水界面的制备
    近日,上海交大机械与动力工程学院胡松涛副教授课题组提出了刚柔微结构复合的超疏水界面设计思想,解决了冲击定位要求苛刻的难题,相关研究成果在机械装备抗液防冰等领域具有重要的应用前景。瑞士苏黎世联邦理工学院Andrew J. deMello教授课题组和英国帝国理工学院Daniele Dini教授课题组为合作单位。该成果以“Flexibility-Patterned Liquid-Repelling Surfaces”为题作为封面论文发表于ACS Applied Materials & Interfaces期刊。原文链接:https://pubs.acs.org/doi/10.1021/acsami.1c05243。刚柔复合界面设计与制备(杆径10μm的柔性网格结构及刚性支柱)面向低温冲击液滴的超疏水界面需要递进满足两个条件:1)基于微纳几何结构和低能化学修饰的抗刺穿性以反弹冲击液滴;2)极短的固液接触时间以避免液滴在界面成核结冰。现有的相关界面设计工作遵循刚性和柔性两类策略,可有效缩短固液接触时间,但受限于苛刻的固液冲击定位要求。研究团队借鉴蹦床公园,提出了刚柔微结构相结合的超疏水界面设计,通过融合刚性和柔性设计策略,期望消除界面润湿性能对固液冲击定位的依赖。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述刚柔复合界面设计的样机制备。液滴冲击行为 研究团队利用高速相机记录液滴在冲击不同界面以及界面内不同局部区域的动力学行为,证明可以利用刚柔复合界面设计来调整液滴冲击行为。固液接触时间液滴冲击实验进一步表明,当液滴冲击柔性界面区域时,将触发结构振动来缩短固液接触时间;而当液滴冲击刚性界面区域时,将触发液滴的非对称再分布来缩短固液接触时间。官网:https://www.bmftec.cn/links/10
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制