当前位置: 仪器信息网 > 行业主题 > >

制剂矿物化仪

仪器信息网制剂矿物化仪专题为您提供2024年最新制剂矿物化仪价格报价、厂家品牌的相关信息, 包括制剂矿物化仪参数、型号等,不管是国产,还是进口品牌的制剂矿物化仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合制剂矿物化仪相关的耗材配件、试剂标物,还有制剂矿物化仪相关的最新资讯、资料,以及制剂矿物化仪相关的解决方案。

制剂矿物化仪相关的资讯

  • 卓立汉光激光拉曼光谱助力矿物包裹体研究
    引言包裹体(inclusion)是指矿物中由一相或多相物质组成的并与宿主矿物具有相的界限的封闭系统,包裹体中的物质成分是研究相关地质过程中的密码,它可以揭示不同时期成岩成矿的物化条件和物质来源。激光拉曼光谱作为一种高精度、原位、无损和便捷的分子谱,现已成为研究包裹体的重要手段[1]。利用激光拉曼光谱,可以获得包裹体中分子和化学基团信息,了解其成分、结果和对称性;也可以对包裹体进行一些定量分析,比如利用特征峰与浓度、内压之前的线性关系,对其盐度和压力等性质进行分析[2]。此外激光拉曼光谱系统与其他设备联用还可以获得更多的材料信息。卓立汉光的应用团队成功地将拉曼光谱技术应用于矿物包裹体的鉴定与分析中,获得了以下研究成果:利用拉曼光谱技术,实现对天然绿辉石包裹体的组分鉴定,其中不仅可以对裸露在外的包裹体进行光谱测量,而且还可以对隐藏在样品内部的包裹体进行光谱测量;利用Mapping自动分析功能,实现矿物包裹体的空间结构分析。实验方案  实验设备采用的是卓立汉光“Finder930”全自动化拉曼光谱分析系统,测量过程均为共聚焦检测;激发波长为532nm;激发功率:~6.5mW;光谱仪参数:320mm焦长,600g/mm光栅刻线;物镜:50X长焦物镜;针孔大小:50μm;狭缝宽度:100μm。图1 “Finder930”全自动化拉曼光谱分析系统实验主要对绿辉石(主晶)的矿物包裹体进行拉曼光谱研究。选取了3个包裹体进行单点检测和Mapping扫描,采集时间依样品的实际拉曼光谱而定。结果分析1、包裹体的单点拉曼光谱分析天然绿辉石会因为其无序-有序的相变而表现出不同的拉曼光谱特征。一般而言,绿辉石的拉曼光谱可以分成四个部分:100cm-1~300cm-1区域内存在一些低强度的拉曼峰;300cm-1~450cm-1区域内会出现一组重叠峰;在600cm-1~800cm-1区域内存在一个强的非对称特征峰(~680cm-1);在800cm-1~1300cm-1区域内会出现一个强的非对称特征峰(~1010cm-1)[3]。当绿辉石内部的有序性发生变化时,其特征拉曼光谱也会产生些许变化。图2为绿辉石(主晶)和其包裹体的拉曼光谱图,与之相对的包裹体图像也附在图中。图2 绿辉石(主晶)和包裹体1-3的拉曼光谱图2、包裹体的Mapping拉曼光谱分析从包裹体的拉曼光谱可以发现,包裹体的谱图区别在于主晶(绿辉石)的特征峰(具体已在图中使用蓝色三角进行标识),因此我们可以选取这三个特征峰,对不同包裹体的共焦拉曼光谱数据进行处理,得到如图3所示的Mapping图像。图3 包裹体1-3的Mapping结果从以上结果可以看出,“Finder930”全自动化拉曼光谱分析系统可以持续稳定地对样品材料进行Mapping扫描。结论拉曼光谱作为一种无损的分子检测光谱,可以简单快速地对样品进行定性定量分析。通过以上实验研究,可以看到通过搭配透射式光源,“Finder930”全自动化拉曼光谱分析系统可以非常好地对岩石包裹体进行检测,在这一过程中我们不仅可以对裸露在外的包裹体进行检测,而且可以对隐藏在岩石切片内部的包裹体进行检测;此外还可以对相应的包裹体进行持续稳定的共聚焦拉曼成像扫描,得到更为丰富的数据信息。共聚焦拉曼成像数据是一个多维数据,一般包含样品点位置(X、Y轴坐标点)、光谱、强度和时间等信息,无法直观地对空间样品进行显示,但可以针对性地对拉曼成像数据进行选取,即降低成像数据维数以显示信息。在这一过程中,一般会选取位置、波数、强度信息来进行二维Mapping成像,比如上文中的Mapping成像便是以样品的位置、特征峰波数、特征峰强度等信息实现的。
  • 地底深处的生命探索——矿物中的化学反应分析 | 前沿应用【下篇】
    发现地底生命的关键——矿物在发现生命的轨迹【上篇】——化石中的碳元素分析(点击链接查看文章)中,我们了解了古生物化石中的碳元素对探究生命存在的重要作用。除了碳元素外,是否还有其他办法探索远古生命的存在呢?其实地质学体系中的矿物也是发现生命的关键,科学家把通过研究矿物中发生过的化学反应,以寻找地底微小生命存在的痕迹。埃里克埃里森是科罗拉多大学波尔得分校--显微拉曼光谱实验室的管理员和应用,他的重要工作之一,就是利用拉曼光谱来分析从地底深处采集的岩石样本,研究其中的矿物成分、结构和相互关系,从而了解那些人类足迹难以到达的地底,生命是如何演化发展的。埃里克埃里森(Eric Ellison)科罗拉多大学波尔得分校探寻地底生命的生存环境铁遇水生锈的化学反应再普通不过了,然而在矿物中,这样的化学反应就有可能为地底生命创造适合的生存环境。埃里森就是通过这些反应来探寻地底生命的存在痕迹,他主要研究的是橄榄岩中的矿物。橄榄岩是一种存在于地幔中的岩石,在地球深处高温、高压和缺氧的环境下形成,这与地表多水且低温的环境相去甚远。当这些岩石通过地质活动移动到地球表面时,会与环境发生反应,这个过程称为“蛇纹石化作用”。“这些岩石的化学反应就像生锈”埃里森形象地表示。“橄榄岩中的矿物富含铁,与水发生化学反应后导致铁被氧化,水则被分解并释放出氢气。对于寄生在岩石中的细菌以及古生菌类单细胞微生物来说,氢气就是它们的能量来源,它们能够将氢与二氧化碳结合起来, 终转化为自身所需要的能量。通俗的来说,这些细菌及单细胞生物是以气体为食。当我们发现岩石的矿物中发生过这些化学反应,就意味着微生物很有可能存在过。地底矿物-水晶(图片来源:Pixabay)研究矿物成分的绝佳工具——拉曼光谱既然知道了矿物中的反应是探寻生命存在痕迹的重要方式,那么,如何判断这些化学反应是否发生过呢?“拉曼光谱能够告诉我们矿物中的化学成分和结构变化,并了解它们之间的相互关系,从而判断岩石中发生的化学反应,以及这一反应环境是否适合微生物的生存。”埃里森如是表示。埃里森将岩石切割成透明薄片放置在显微镜下,然后使用HORIBA LabRAM HR Evolution 显微共焦拉曼光谱仪,对其进行成像分析。LabRAM HR Evolution的焦长为800mm,在单级拉曼光谱仪中具有高的光谱分辨率,能够在亚微米尺度对矿物进行表征,获得高质量的拉曼光谱成像图和精细的峰位信息,同时还可对矿物进行2D和3D共焦成像。由此,研究人员能够在微观尺度了解矿物是否曾经被“消耗”过。注:如需了解该研究中HORIBA LabRAM HR Evolution光谱仪的详细介绍及使用问题,欢迎点击左下角“阅读原文”留言,我们的技术专家会尽快联系您进行答疑解惑。“拉曼是一种强有力的分析技术,它对晶体结构非常敏感,可以展示出矿物结构。科学家们就是通过这些来判断相关的化学反应是否发生过,从而破译深层地下找到的岩石如何为微生物生命创造栖息地。”下图就是利用拉曼光谱确定的透明岩石薄片中各种矿物的分布情况,这片已经部分蛇纹石化的岩石来自阿曼的萨梅尔蛇绿岩。拉曼光谱分析岩石薄片中各种矿物得到的高质量拉曼光谱图除此之外,拉曼光谱还能帮我们识别隐藏的稀少且细小的矿物。揭示能量流动的秘密——行星的生命痕迹生命的探寻总是一步一步,循序渐进。远古生态系统是否存在过?是否普遍的存在?其中有多少可供生命利用的能量?拉曼光谱正在为我们一步步揭开谜底。除了研究地底深处的岩石,科学家们还可以通过这种方式揭秘其他星球上是否存在类似的岩石宿主环境。除了橄榄岩等矿物的研究,埃里森就开展了名为 "推动生命的岩石(Rock Powered Life)"项目,致力于揭示从岩石圈(地壳和地幔)到生物圈的能量流动机制。该项目由NASA的天体生物学研究所支持,目的是为了进一步寻找其他行星上可能存在的生命痕迹。科罗拉多大学波尔得分校显微拉曼光谱实验室中使用的HORIBA LabRAM HR Evolution拉曼光谱仪生命轨迹探寻的方式并不局限,从之前介绍过的南冰下湖沉积物研究(点击链接查看文章),到上篇中化石的研究(点击链接查看文章),科学家们通过研究那些经过几百年甚至上千年的演变而形成的生命载体——岩石,来寻找生命遗迹。在如今气候日益恶化的环境下,这一探索也许能为我们探寻人类发展的进程给出可供参考的案例。至于如何为人类发展给到可供参考的信息,欢迎在往期文章中寻找答案。今日话题矿物研究无论是在生命科学还是考古、地质,抑或是珠宝行业等等,都是重要研究课题,你在科研中又研究过哪些新奇有趣的矿物呢?留言分享给大家吧,我们会在下一篇前沿应用中将您的研究分享给大家,点赞人数多的还可获得星巴克咖啡券一份噢~ 点击查看更多往期精彩文章发现生命的轨迹——化石中的碳元素分析 | 前沿应用严峻环境下的自救——探寻端气候下的生命存续 | 前沿应用【上篇】牛津大学开创单细胞水平微生物代谢研究新方法|海外用户简讯复旦巧用增强拉曼“识”雾霾 | 前沿用户报道瞪你一眼,就能“看透”你 | 用户动态青岛能源所实现毫秒级单细胞拉曼分选,"后液滴"设计功不可没|前沿用户报道表面增强共振拉曼光谱探究细胞色素c在活性界面上的电子转移新型荧光探针——细胞膜脂变化无所遁形! HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。点击下方“阅读原文”,了解HORIBA Scientific更多信息。
  • 合力推动中国矿物油分析发展 ——“矿物油分析测试技术研究合作实验室”揭牌仪式 暨矿物油分析技术最新进展学术交流
    p style=" text-indent: 2em " strong 仪器信息网讯 /strong 2019年8月27日,北京市理化分析测试中心与德国Axel Semrau公司的“矿物油分析测试技术研究合作实验室”揭牌仪式暨矿物油分析技术最新进展学术交流成功召开。北京市科学技术研究院副院长刘清珺、北京市粮食和物资储备局副局长阎维洪、中国分析测试协会汪正范、北京市科学技术研究院技术转移处处长郭鲁钢和科研处副处长李彦雪,北京市理化分析测试中心副主任高峡、研究员武彦文,以及德国Axel Semrau公司执行总监Dr. Andreas Bruchmann、仪真分析仪器有限公司技术总监朱丽敏、安捷伦大中华区战略规划总监何峻等20多人参加了合作实验室揭牌仪式和矿物油分析技术最新进展学术交流活动。& nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/b6953265-6131-47f1-a5c3-6ed3461420f3.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 活动现场 /strong /span /p p style=" text-indent: 2em " 从各自未来发展战略需求出发,北京市理化分析测试中心与德国Axel Semrau公司成立了“矿物油分析测试技术研究合作实验室”。合作实验室将开展仪器应用、方法培训与标准验证等方面的工作。双方希望通过合作,优势互补,共同推动液相色谱-气相色谱联用的矿物油分析技术在中国的本土化应用,特别是食品中矿物油的测定方法标准的建立,为中国食品安全出力,为未来具备矿物油在国内食品中分布的筛查、降低膳食中有害物质含量等,提供技术储备和方法支持。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/9933b358-d5da-4070-9b37-c1a9fae3b75a.jpg" title=" 1_副本.jpg" alt=" 1_副本.jpg" / /p p style=" text-align: center " strong style=" font-size: 14px text-indent: 2em " 北京市科学技术研究院副院长刘清珺博士 /strong /p p style=" text-indent: 2em " 北京市科学技术研究院是北京市属的大型多学科高水平科研机构,立足应用基础研究、战略高技术研究、重大公益研究和科技服务发展定位。刘清珺简介了北京科学技术研究院的六大中心三大平台的概况,其中检测分析与测试平台即以北京市理化分析测试中心为主,形成了仪器设备开放共享的新型运行机制,加强应用研究、高新技术研究和重大科技攻关,不断提高科研开发和自主创新能力,形成竞争领先优势。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/32d335da-719a-4300-bcce-9dcd20990b76.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-indent: 2em text-align: center " strong span style=" font-size: 14px " 北京市理化分析测试中心副主任高峡博士 /span /strong /p p style=" text-indent: 2em " 经过近40年的发展,北京市理化分析测试中心成为了首都地区唯一的综合性分析科学研究机构、最大的开放共享分析测试平台。目前,中心综合实力在全国地方分析测试中心中位居第2,进入全国第三方理化分析检测机构前10名,中心连续四年实现经济总量超亿元。 /p p style=" text-indent: 2em " 北京市理化分析测试中心围绕着食品药品安全、环境监测、材料分析、生物技术、国产科学仪器应用示范等主要领域开展分析测试科学研究和技术服务工作,形成了食品药品质量安全检测技术、水土气环境监测与检测技术、未知物成分分析与鉴别技术等技术品牌。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/0b03a027-e367-49f7-b0ba-6fe69288b4a0.jpg" title=" 13.jpg" alt=" 13.jpg" / /p p style=" text-indent: 2em text-align: center " span style=" font-size: 14px " strong 德国Axel Semrau公司执行总监Dr.Andreas Bruchmann /strong /span /p p style=" text-indent: 2em " 在过去的35年里,Axel Semrau及其员工一直致力于样品制备、色谱、化学合成以及应用优化工作站的开发、销售和支持。Axel Semrau公司正在开发自己的硬件和软件,以便能够提供独特、强大的食品分析特别是粮油在线全自动样品前处理和多维色谱联用的解决方案。Axel Semrau的目标是以优秀的应用解决方案结合基于自身开发的优秀软件而闻名于世。此外,Axel Semrau这个名字将与卓越的客户服务和客户关系密切相关,包括客户、供应商或合作伙伴。 /p p style=" text-align: center " span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/f6d8ceb5-aea2-41d4-9b9b-d88b2fbf10f7.jpg" title=" 16.jpg" alt=" 16.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 仪真分析仪器有 span style=" font-size: 14px " 限公司技术 /span 总监朱丽敏博士 /strong /span br/ /p p style=" text-indent: 2em " 上海仪真分析仪器有限公司(仪真分析)成立于2005年,具备研发、集成、生产、代理、销售和技术服务的仪器供应商,为环境监测、食品安全和临床检测等分析实验室提供样品前处理到分析测试全方位解决方案。仪真分析的技术团队由多位留学博士及硕士和专业培训的工程师组成,在上海、北京及广州设有主要的办公室,上海设有研发试验和培训实验室。 /p p style=" text-indent: 2em " & nbsp 仪真分析与Axel Semrau& nbsp 公司合作,应用Axel Semrau的软件平台,与仪器公司合作开发适合中国应用的包含软件与硬件的解决方案。2018年,仪真分析成为了安捷伦VAR合作伙伴,推出食品中矿物油检测的解决方案。 /p p style=" text-align: center " span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/01eab20c-b922-482a-83d1-c1dbb5245aaf.jpg" title=" 14.jpg" alt=" 14.jpg" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/0e392f1d-f066-4b4e-8bda-3353c882bbce.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 德国Axel Semrau公司执行总监Dr. Andreas Bruchmann和 /strong /span br/ /p p style=" text-align: center " span style=" font-size: 14px " strong 北京市理化分析测试中心副主任高峡签署合作协议 /strong /span /p p style=" text-align: center " span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/c7422c93-8773-442a-aab6-d804de491c30.jpg" title=" 11.jpg" alt=" 11.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 北京市粮食和物资储备局副局长阎维洪和北京市科学技术研究院副院长刘清珺为合作实验室揭牌 /strong /span /p p style=" text-align: center " span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/1af6c700-d21b-4b3a-b7f4-7965fe8fad38.jpg" title=" 12.jpg" alt=" 12.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 向北京市理化分析测试中心武彦文、仪真分析仪器有限公司技术总监朱丽敏颁发证书仪式 /strong /span /p p style=" text-align: center " span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/c9d190e2-168a-4fa8-8006-67e474ec655a.jpg" title=" 9_副本.jpg" alt=" 9_副本.jpg" / img src=" https://img1.17img.cn/17img/images/201908/uepic/2afede2e-9415-477f-a40c-f07069dcadb9.jpg" title=" 7_副本.jpg" alt=" 7_副本.jpg" style=" max-width: 100% max-height: 100% " / /p p style=" text-align: center " span style=" font-size: 14px " strong 嘉宾致辞(北京市科学技术研究院技术转移处处长郭鲁钢、中国分析测试协会汪正范、安捷伦大中华区战略规划总监何峻) /strong /span br/ /p p span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/df342eba-ec56-4282-9c99-c4b7f9944b3f.jpg" title=" 2_副本.jpg" alt=" 2_副本.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 北京市科学技术研究院科研开发处副处长李彦雪主持活动 /strong /span /p p style=" text-indent: 2em " 矿物油源于石油,是C10~C50的烃类化合物的总称,主要包括直链、支链烷烃和烷基取代的环状饱和烷烃(MOSH)以及烷基取代的芳香烃(MOAH)两个类型,而如今普遍认为MOAH 具有可能致癌和致突变的隐患,而 MOSH(特别是C16~C35) 容易在身体器官中积累并可能造成损伤,所以对矿物油的检测显得至关重要。 /p p style=" text-indent: 2em " 近年来,食品中的矿物油污染问题备受关注。食品接触材料特别是回收或再生包装纸中的残留油墨,食品原料在收割、晾晒、加工过程中接触的发动机润滑油、未完全燃烧的汽油、轮胎和沥青碎屑,食品加工使用的白油,以及环境污染等,都是食品中矿物油污染的主要来源。然而,由于组成复杂、数量巨大、基质干扰严重,使得矿物油的检测是行业公认的技术难题。德国联邦风险评估研究所(BfR)明确要求用于食品包装的接触材料MOSH迁移量小于2mg/kg, MOAH小于0.5mg/kg。2017年,欧盟发布了关于“监测食品以及食品接触材料和物品中矿物油烃类”的建议性指导文件,指出矿物油可以通过环境污染、收获和食品生产等残留在食品中。随后,欧盟推出了EN16995矿物油分析方法,大力推动欧盟内部或输欧食品中矿物油污染调查。北京理化分析测试中心的武彦文团队从2015年开始开展矿物油分析方法的研究,目前其开发的方法及测试水平均已步入国际前列。 /p p style=" text-indent: 2em " 合作实验室揭牌仪式后,与会人员就矿物油分析技术最新进展展开了学术交流。德国Axel Semrau公司执行总监Dr. Andreas Bruchmann、北京市理化分析测试中心武彦文博士分别就国内外矿物油分析研究进展及标准制定等内容进行了分享。关于该项技术的推广应用与会者进行了热烈的讨论,期待互相合作、共同推动该技术的进一步发展。 /p p style=" text-align: center " span style=" font-size: 14px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/1d28b593-14b0-4622-8649-727425cb392f.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 国际矿物油分析技术的最新进展 /strong /span br/ /p p style=" text-align: center " span style=" font-size: 14px " strong 德国Axel Semrau公司执行总监Dr. Andreas Bruchmann /strong /span /p p style=" text-indent: 2em " Axel Semrau公司优化了原始 LC-GC 方法,成功推出CHRONECT LC-GC 食品中矿物油分析系统,与欧盟方法EN16995完全一致,通过特殊的阀设置将LC和GC分离互相结合,使得在一次分析中测定 MOSH 和MOAH 馏分成为可能。 /p p style=" text-indent: 2em " 通过独立的大体积进样系统进行GC进样,进样量可达450μL;2通道GC进行两次平行和正交分离,随后进行FID检测。因此,样品中MOSH和MOAH含量的结果在30分钟后即可获得。CHRONOS软件控制采样、LC、GC、阀门连接,从而构成对方法和样品制备的完全自动控制。该解决方案应用于快速检测不同基质中的矿物油污染物,如化妆品、食品、油脂、饲料和包装材料。 /p p style=" text-align: center " span style=" font-size: 14px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/cf5aa040-5566-482d-bd91-2ef1bdd54e52.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 我国矿物油分析方法的研究进展 /strong /span br/ /p p style=" text-align: center " span style=" font-size: 14px " strong 北京市理化分析测试中心武彦文博士 /strong /span /p p style=" text-indent: 2em " 气相色谱-氢火焰离子化检测器(GC-FID)是目前公认的矿物油检测方法,FID对所有烃类化合物的响应几乎完全一致,可以无需标准品对照对矿物油进行准确定量。但同时也存在着对鼓包峰的灵敏度仅为尖峰的百分之一、作为通用检测器也意味着没有选择性这两大需要解决的问题。而On-line HPLC-GC技术,由于HPLC柱的填料颗粒小、柱效高,分离效率好;LC-GC将分离、浓缩和测定联为一体,避免了人工操作,自动化程度高,方法重现性好等优点,使得LC-GC成为了测定矿物油的理想技术。 /p p style=" text-indent: 2em " 北京市理化分析测试中心武彦文研究员于2015年开始了矿物油分析方法的研究。2018年国内第一台“全自动在线LC-GC二维色谱联用矿物油分析系统”落户武彦文的实验室,使得她的研究实现了由手动向全自动化的转变。 /p p style=" text-indent: 2em " 仪器安装使用不到两个月的时候,武彦文团队即参加了国际能力验证,获得了“with great success”的成绩。经过1年多的时间,武彦文团队在将国际先进分析方法本土化实现的同时,在样品前处理方面,尤其是在提取技术方面实现了多项创新。短短的时间内,该团队已经发布了10多篇高水平论文,并且计划制定3项方法标准。如:行标“粮油检验& nbsp 大米中矿物油的测定”,采用了SPE结合普通GC以及HPLC-GC联用的方法;行标“粮油检验& nbsp 动植物油脂中饱和烃和芳香烃矿物油的测定”采用了HPLC-GC联用的方法。除了食用油中矿物油污染物的研究,武彦文团队还进行了婴幼儿配方乳粉、巧克力和咖啡中的矿物油分析等研究工作。下一步,武彦文计划在继续拓展不同基质食品中矿物油研究的同时,还将开展将该方法应用于环境领域的探索工作。 /p p style=" text-align: center " span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/b7041e77-aee3-4026-8ae1-d55b1986d51e.jpg" title=" 15.jpg" alt=" 15.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 合影 /strong /span /p p strong 附录 /strong : /p p style=" text-indent: 2em " 北京市理化分析测试中心(理化中心)成立于1979年,隶属于北京市科学技术研究院,是公益性大型综合分析测试科学事业机构,围绕着食品药品安全、环境监测、材料分析、生物技术等主要领域开展分析测试科学研究和技术服务工作。理化中心坚持以分析测试为核心业务,以公益技术支持、公共技术服务和科学技术创新为立足点的发展定位,依靠高素质的分析方法开发与检验检测队伍,采用先进的分析测试技术和手段,为全社会提供全方位多层次的分析测试服务。 /p p style=" text-indent: 2em " 德国Axel Semrau公司致力于开发,销售和支持样品制备和色谱自动化专业解决方案的,如在线SPE,以及LC,LCMS,GC和GCMS其他高效前端解决方案,还包括基于LC-GC和GCMS-系统的应用优化的工作站。Axel Semrau公司开发的产品如专业色谱软件解决方案和LC-GC系统,已在全球上市和销售。 /p p style=" text-indent: 2em " 上海仪真分析仪器有限公司(仪真分析)是一家专业的,具备研发,集成,生产,代理,销售和技术服务的仪器供应商,为环境监测、食品安全和临床检测等分析实验室提供样品前处理到分析测试全方位解决方案。仪真分析拥有一流的由多位留学博士及硕士和专业培训的工程师组成的技术团队,销售团队覆盖大中国区的整个区域;致力于市场研究与应用开发,将世界领先的分析技术与行业标准与中国分析技术发展相结合,将先进分析技术及解决方案本土化。 /p p style=" text-align: right "   采访撰稿编辑:刘丰秋 /p p span style=" text-indent: 2em " /span br/ /p p br/ /p
  • 如何选择好的矿物分析仪
    这些年来我国矿产分析研究行业全面进步的情况下各方面保持进步的品牌商进入大家眼帘,一些惊艳市场的矿物分析仪设备确实在实际使用中展现出现代科技的魅力。不得不说市场当中销量好的矿物分析仪设备确实很适合相关领域的技术研究人员们体验使用。那么选择矿物分析仪设备一般值得好好考虑的要点有哪些? 1、仪器的适用环境  大家都知道任何的矿产资源勘查及分析工作面临的相关工作环境是较为复杂的,这些年来大家可以深切感受到各类高技术低成本的矿物分析仪可以适用于多种复杂的环境,尤其是在一些专业度要求非常高的情况下,这类矿物分析仪总能达到技术人员的应用要求。  2、仪器的测试准确性  当然关键的一点在于矿物分析仪作为一款测量分析仪器其分析的准确性是人们很关注的,这些年来技术不断进步的情况下各方面都很出色的矿物分析仪的准确度确实可以达到较高的要求。当然这一切都离不开相关技术上多年来对这类矿产行业专用分析仪设备的研究。  3、仪器的操作便捷性  一直都在保持进步的品牌商开发出来的矿物分析仪设备使用起来让人感到很省心,主要是因为这类矿物分析仪设备的操作便捷性以及效率都位于行业比较先进的水准。当然关于矿物分析仪便捷性的评估可以通过一些相关行业专业人士的口中获得答案。 莱雷科技发展有限公司本着“诚信、创新、沟通”的企业宗旨,以“技术、服务”为立业之本的企业精神,为广大有需求的群体提供可靠的矿物分析仪。矿物分析仪在全国内深受广大合作客户的满意认可,我们会更加努力的为有需求的群体提供质量更高、品种更全的矿物分析仪产品。  在日益激烈的市场竞争中,莱雷科技将继续加大科技投入,严格规范企业管理,力争以优异的矿物分析仪,树立优异企业形象,并且去争取更广阔的市场。莱雷科技勇于跨越,追求,诚挚欢迎各个企业用户与我司携手合作。
  • 现代地质及矿物分析测试技术与应用网络研讨会将于8月24日召开
    矿产资源是自然资源的重要组成部分,是经济发展和科技进步的重要物质基础。运用现代分析测试技术能够获取详实准确的矿石和矿物数据信息,掌握区域内矿石和矿物的分布情况,阐明岩石矿物的经济价值和应用价值,进而为矿产资源的开发和利用提供科学决策,为保障国家能源安全和实施新一轮找矿突破战略行动提供技术支撑。 为促进学术交流和思想碰撞,国家地质实验测试中心主办期刊《岩矿测试》携手仪器信息网于2023年8月24日组织召开新一期“现代地质及矿物分析测试技术与应用”网络研讨会,邀请多位致力于地质、环境等领域理论技术与应用创新的实践者,围绕国内外研究前沿和发展方向开展研讨。欢迎大家积极参会。点击此处链接报名听会注:本次会议不收取任何注册或报名费用 会议日程 8月24日,现代地质及矿物分析测试技术与应用(上)时间报告题目报告嘉宾09:00--09:30地质实验测试支撑新一轮找矿突破战略行动的思考刘大文(国家地质实验测试中心 副主任/研究员)09:30--10:00LA-MC-ICP-MS微区硫化物Fe-Cu-S同位素测试技术研究进展张文(中国地质大学(武汉) 副研究员)10:00--10:30牛津仪器显微分析技术在地质及矿物分析中的应用陈帅(牛津仪器 应用科学家)10:30--11:00正确认识电子探针分析技术的优势与局限性李小犁(北京大学 高级工程师)11:00--11:30发射光谱和原子吸收光谱技术在矿产样品分析中的应用赵伟(山东省地质科学研究院 所长/研究员)8月24日,现代地质及矿物分析测试技术与应用(下)时间报告题目报告嘉宾14:00--14:30激光原位微区U-Pb和Lu-Hf定年技术吴石头(中国科学院地质与地球物理研究所 高级工程师)14:30--15:00光学显微镜在地质及矿物分析中的应用姚永朋(徕卡显微系统(上海)贸易有限公司 应用工程师)15:00--15:30扫描电子显微镜及联用技术在岩矿分析中的应用宋文磊(西北大学 副教授)15:30--16:00短脉宽超快速准分子激光剥蚀系统在地质及矿物分析中的应用栗斌(上海仪真分析仪器有限公司 产品经理)16:00--16:30电子探针分析稀土矿物的难点与重点陈振宇(中国地质科学院矿产资源研究所 研究室主任/研究员) 报告嘉宾 (按报告顺序)刘大文,国家地质实验测试中心副主任(副局级)。理学博士,研究员,物化遥正高级工程师,国际勘查地球化学家协会(AEG)会员,中国地质大学(北京)兼职教授。科技部科学技术奖评审专家,《地质与勘探(中文)》审稿人。2012年被授予“国土资源部优秀青年科技人才”称号。现为中国地质调查局健康地质调查工程首席专家。专业方向:应用地球化学,国际地球化学填图,区域成矿学,地质调查国际合作。获国土资源部科学技术奖二等奖3项、地理信息科技进步二等奖1项、中国地质调查局成果二等奖6项、中国矿业大会组委会优秀组织奖1项。中国地质调查局记三等功一次。2017年2月获苏丹矿业部颁发的表彰证书,2018年11月局获老挝矿业部颁发的合作奖状。累计发表中英文文章20余篇,出版专著3部。张文,博士,中国地质大学(武汉)副研究员。2015年博士毕业于中国地质大学(武汉),现工作于中国地质大学(武汉)地质过程与矿产资源国家重点实验室。致力于全岩整体元素测试前处理和微米级尺度下地质样品元素和同位素组成精细、准确、高效表征的新技术、新设备和新参考物质。创新性地提出氟化氢铵地质样品消解法,建立高效准确分析地质样品中主微量元素含量新技术;开发以锆石Zr稳定同位素为代表的高精度微区原位分析新方法,为地学研究提供了新的技术支撑;革新传统微区原位Pb同位素和Sr同位素分析技术,使分析测试精度提高2-4倍。开展微区元素及同位素参考物质人工合成技术,力图解决本学科长期缺乏基体匹配参考物质的瓶颈问题。作为负责人或技术骨干参加基金委或科技部项目6项。以第一作者或通讯作者发表论文30篇,与他人合作发表SCI论文50余篇,以上论文共他引2182次。获得国家发明专利授权10项,软件著作权1项。现任国际SCI期刊《Atomic Spectroscopy》编委、《Frontiers in Chemistry》编委、《地球科学》(中英文版)青年编委。陈帅,博士,牛津仪器应用科学家。2015年3月毕业于日本京都大学材料工学专攻,获工学博士学位,博士期间主要研究超细晶亚稳态奥氏体钢的相变诱发塑性和马氏体相变。毕业后先后在钢铁公司和材料分析公司从事钢铁产品开发以及高纯材料分析等工作。2018年加入牛津仪器,主要负责EDS、WDS、EBSD、OP的推广及技术支持。李小犁,博士,北京大学地球与空间科学学院高级工程师。2005年本科毕业于中国地质大学(武汉)和莫斯科国立大学(中俄联合培养),2007年硕士毕业于莫斯科国立大学,2010年博士毕业于莫斯科国立大学,2013年在北京大学地球与空间科学学院完成博士后工作留校任职至今。主要研究方向为变质岩石学、成因矿物学和电子探针分析技术。主持国家自然科学基金委项目3项。发表SCI论文26篇,其中第一作者(通讯作者)18篇。出版俄文学术专著1部。赵伟,博士,研究员,山东省地质科学研究院测试与应用研究所所长。研究方向:金属、非金属矿产分析测试标准化。主持及承担国家重点研发计划课题研究工作4项、国家公益性科研专项及山东省科研项目近10余项;主持研制国家级标准物质10类共计50余个;制定自然资源行业标准3项,其中钛铁矿等标准物质及标准方法填补了国内外此类标准物质的空白,成果达到同类研究的国际先进水平。吴石头,博士,中国科学院地质与地球物理研究所高级工程师。2017年博士毕业于德国哥廷根大学,2018年入职中国科学院地质与地球物理研究所,主要从事LA-(MC)-ICP-MS分析方法研发及其应用研究。主要研究成果:(1) 在国内率先建立了磷钇矿、磷灰石和石榴石等富镥矿物的激光微区Lu-Hf定年方法,极大地拓宽了微区可定年矿物的范围;(2) 通过系统优化和改进质谱仪硬件,使得仪器灵敏度提升5-10倍。基于此,开发了激光微区方解石U-Pb定年技术,将锆石U-Pb定年空间分辨率提升至5-16mm,建立了微区超低含量元素分析方法;(3) 研制了3个安山岩微区元素/同位素标准物质(ARM-1、ARM-2、ARM-3)和3个天然玻璃元素/Pb同位素标准物质(OJY-1、OH-1、OA-1),丰富了现有微区分析标准物质数据库。主持国家自然科学基金面上项目1项,青年基金1项,获批中国科学院青年创新促进会会员人才称号(2022)。担任《地球化学》青年编委(2022—2025),以第一作者/通讯作者发表论文19篇。授权中国发明专利3项、美国发明专利1项。主持翻译英文著作1部。姚永朋,材料工程硕士,现为徕卡显微系统工业显微镜应用工程师。负责徕卡工业显微镜技术支持工作,在制样及显微观察等方面经验丰富。宋文磊,博士,西北大学地质学系副教授,博士生导师,主要从事稀土稀有金属成矿作用研究。2007年本科毕业于中国地质大学(武汉),2010年硕士毕业于中国科学院地球化学研究所。2014年博士毕业于北京大学。2014—2016年在北京大学和2016—2019年在捷克孟德尔大学从事博士后研究,兼职捷克布尔诺理工大学助理研究员(2016—2019年),2019年入职西北大学地质学系(大陆动力学国家重点实验室)。曾为德国地学中心(GFZ)访问学者和欧盟地平线计划稀土稀有金属成矿项目组(Horizon 2020 HiTech AlkCarb)成员。现为中国稀土学会第七届稀土矿产地质与勘查专业委员会委员。发表国际SCI论文40余篇,论文总被引1500余次(据谷歌学术数据)。栗斌,毕业于中国科学院福建物质结构研究所,物理化学专业硕士。目前在上海仪真分析仪器有限公司担任产品经理一职,负责多条仪器产品线的技术支持工作,从事原子光谱仪及相关产品的技术研究和应用工作有超过10年以上的经验。陈振宇,博士,中国地质科学院矿产资源研究所研究员,博士生导师。主要从事矿物学与微束分析技术应用研究。主持、参与多项国家自然科学基金项目和中国地质调查项目,参加多项国家重大基础研究项目(973项目)和科技部条件平台的研究工作。发表论文40余篇。主持或参与编写微束分析国家标准5项。中国地质学会矿物学专业委员会秘书长,中国矿物岩石地球化学学会新矿物及矿物命名专业委员会秘书,全国微束分析标准化技术委员会副主任委员。 参会指南 1、进入会议官网(https://www.instrument.com.cn/webinar/meetings/geoanalysis230824/)进行报名。扫描下方二维码,进入会议官网报名2、报名开放时间为即日起至2023年8月23日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:张老师(电话:010-51654077-8309 邮箱:zhangjy@instrument.com.cn)
  • 油+油,鬼见愁|食用油中矿物油检测难点一文解读
    仪器信息网讯2024年7月17日,食用油中矿物油的检测——Easy选型直播活动圆满落幕!本次活动由仪器信息网携手上海仪真分析仪器有限公司(以下简称“仪真分析”)联合主办,特别邀请了矿物油检测领域的资深专家,深入探讨了食用油中矿物油检测的技术动态及未来趋势,并展示了全自动矿物油分析解决方案及真机操作。此次线上活动现场累计超4000人观看,专家互动答疑环节观众提问踊跃。主题圆桌——食用油中矿物油检测技术难点及发展趋势近期,“罐车混用”事件再次引发公众对食品油安全的深切关注,使得“矿物油”问题成为社会焦点。在此背景下,本次论坛紧密追踪热点话题,专门设立了“食用油中矿物油检测技术及其未来发展趋势”的圆桌讨论环节。此环节特别邀请到在矿物油检测领域深耕多年的北京市科学技术研究院分析测试研究所矿物油分析测试研究室武彦文研究员和仪真分析仪器有限公司技术总监朱丽敏博士两位行业专家,共同探讨矿物油检测技术、食用油中矿物油的检测难题以及矿物油检测技术所面临的挑战,圆桌论坛主持由仪器信息网编辑蔡小芳担任。圆桌对话矿物油(MOH)源自石油与合成油,主要包含饱和烃(MOSH)及芳香烃(MOAH)两部分,它们或容易蓄积在人体,或有致癌和致畸毒性。矿物油会通过环境污染、种(养)殖采收、生产加工、包装储存等多种途径迁移进入食物,给人类健康带来风险。北京市科学技术研究院分析测试研究所矿物油分析测试研究室武彦文研究员对于开展矿物油分析研究工作的契机,武彦文老师分享到:当初我在研究食用油脂时发现,我国矿物油污染物的分析技术与国外差距很大,特别是由于我国的标准方法远远落后于国外,给油脂企业特别是出口企业造成很大困扰。于是,她迅速转变科研方向,开启矿物油分析测试技术的研发工作。她首先研读了几乎所有相关文献,发现我国在这个细分领域的研究几乎处于空白,不仅在理论理解上偏差,检测仪器也相去甚远,因此她开启了“精彩”的矿物油分析研究之路。仪真分析仪器有限公司技术总监朱丽敏博士仪真分析在矿物油检测始于对食品新型污染物检测技术的关注。2015年,朱丽敏博士在瑞士参观了一家专注于矿物油检测的实验室,意识到国内在该领域缺乏成熟的解决方案。2018年,仪真分析便凭借其技术实力和良好的商业信誉,获得了德国Axel Semrau公司的青睐,成为其在中国地区的独家技术合作伙伴。达成合作后,仪真分析坚持将技术本土化,来更好地满足中国客户的需求。2018年,仪真分析成功改装了第一台本土化的LC-GC在线分析平台,并将其推广到国内市场。获得了国家粮油检测部门、国际食品企业和第三方检测机构的广泛认可,并成功应用于食用油、食品接触材料、婴幼儿配方奶粉多个细分领域。两位老师在分享了开启矿物油检测的契机后,针对矿物油分析检测技术和食用油中矿物油检测难点展开讨论。武老师指出,矿物油分析检测技术包括GC-FID、LC-GC、GCxGC-MS等,其中LC-GC被誉为“金方法”,尤其适用于复杂样品如食用油,并通过在线溶剂挥发技术实现大体积进样,提高灵敏度。但食用油中矿物油检测仍面临诸多挑战,如样品基质复杂、干扰物众多、谱图解析困难、标准品缺乏和溯源难度大等。为解决上述难点,研究人员和企业积极探索解决方案,例如LC-GC全自动分析平台、在线净化技术、LC-GC-MS/MS、数据库建设和标准化等方法。在谈到矿物油分析检测未来的发展趋势,朱博士认为,矿物油检测技术正朝着更精细的成分分析、标准化方法和精确溯源的方向发展。将通过LC-GC-MS/MS联用技术将毒性更强的MOAH实现更精确的定性和定量分析;针对不同食品基质,如婴幼儿配方奶粉和食用油,将制定标准化的检测方法,以确保结果的可比性和一致性;此外,建立和完善矿物油溯源数据库,并开发先进的溯源技术,将有助于实现对矿物油来源的精准定位,从而更好地保障食品安全。精彩报告——《全自动矿物油分析解决方案》报告人:上海仪真分析仪器有限公司高级产品经理 张鸿矿物油检测长期以来一直是非常有挑战的难点,首先要将样品中矿物油与复杂的介质分离,再通过气相色谱检测。由于矿物油无处不在,获得干净的仪器很重要。为了达到足够的灵敏度,需要大体积进样技术。矿物油在2011年被报道发现以来,欧洲的分析化学家经过多年努力,终于实现了矿物油可靠分析方法(在线LC-GC-FID)。仪真分析在过去的20多年来一直关注食品分析方面的研究,在2018年开始涉足矿物油检测,并推出了全自动在线LC-GC二维色谱联用矿物油分析系统。全自动矿物油分析系统全自动矿物油分析系统以其卓越的性能优势显著提升了矿物油检测效率和质量。系统采用了清洁和改装技术,有效去除了背景干扰,确保了分析结果的准确性。通过液相色谱和硅胶柱的高效分离技术,矿物油能够从油脂等复杂介质中被精确提取。部分溶剂蒸发技术保证了样品在气相色谱中的超低量分析,而双通道双FID技术则实现了对MOSH和MOAH的同时定量检测,大大缩短了分析时间。全自动氧化铝和全自动环氧化技术的应用,也进一步增强了样品分析的灵敏度和准确度。最后,软件的兼容性能够与市场上所有主要品牌的LC和GC实现无缝对接,为用户提供了极大的便利。最后,张鸿还介绍了仪真分析的FAT/SAT服务,仪真分析提供的FAT服务(Factory Acceptance Test)确保了在实验室内使用标样对系统进行彻底测试,以确认其良好运行。在完成测试并拆卸包装后,仪真分析能够保证用户现场快速安装并投入试用。SAT服务(Site Acceptance Test),仪真分析提供详细的产品安装准备条件书,其中包括化学试剂的选择和前处理的准备工作等。仪真分析还为用户提供培训,详细讲解矿物油分析过程中的注意事项,确保用户能够熟练操作并维护系统。真正实现交钥匙工程!真机演示——走进仪真分析,进一步体验上机操作除了精彩纷呈的专家讲座和深入浅出的技术解析,本次直播活动还特别设置了“真机演示”环节,张鸿老师带领观众走进仪真分析,亲身感受全自动矿物油分析平台的强大功能。平台选用性能优良的安捷伦气液相色谱部件给客户带来了更好的体验,仪真分析和安捷伦的专家强强联合在现场进行专业讲解,详细介绍了系统各个组件的功能和工作原理,并针对观众可能遇到的操作疑问进行解答。精彩内容之外,直播间还进行了丰富多样的互动抽奖活动,贴心的准备了精美礼品回馈积极参与答题互动的用户们,也将直播间的热度推向高潮。
  • 新矿物+2!我国科研人员发现两种新矿物
    人民政协网北京8月16日电(记者 王硕)记者16日从中国地质调查局获悉,由我国科研人员发现、命名并申报的新矿物“氟碳钙钕矿”以及“菊兴铜矿”近日分别获得国际矿物学协会-新矿物命名及分类委员会批准通过,这意味着我国科研人员发现两种新矿物。其中,氟碳钙钕矿由国家地质实验测试中心范晨子研究员联合中国地质科学院矿产资源研究所、中南大学等单位科研人员发现于内蒙古白云鄂博矿。它的发现对丰富稀土氟碳酸盐矿物学基础理论知识,认识白云鄂博稀土元素赋存状态和替代机制,了解矿床的形成与演变、元素赋存状态、元素迁移、富集机制等具有重要的意义。内蒙古白云鄂博矿是世界最大的稀土矿床,也是我国矿物资源的宝库,迄今已发现210余种矿物,在我国新矿物发现地中占据首要位置。此次发现的氟碳钙钕矿是在该矿床发现的第21种新矿物。钕作为当今稀土元素家族中的佼佼者,对促进稀土在永磁材料、激光材料等高新技术领域中的应用,发挥着极为重要的作用。此次新发现的氟碳钙钕矿属于钙稀土氟碳酸盐系列矿物,是常见的稀土矿物氟碳钙铈矿的富钕类似矿物,也是钕资源的重要矿物原料。氟碳钙钕矿呈黄褐色至褐色,与方解石、萤石、霓石、钠闪石、磁铁矿等矿物共生,钕氧化物平均含量约为30%,稀土氧化物平均含量约为60%,且具有多型、体衍交生等复杂晶体微结构特征。菊兴铜矿由中国地质科学院矿产资源研究所顾枫华助理研究员、中国地质大学(北京)章永梅副教授,联合江西应用科技学院/中南大学谷湘平教授和核工业地质研究院范光研究员等发现于西藏甲玛世界级斑岩-矽卡岩型巨型铜多金属矿床中。初步研究表明,菊兴铜矿是一种重要的载金载银矿物,结构复杂,其形成与中高温热液贵金属矿化密切相关。该矿物的发现不仅为硫化物矿物家族增添了新的一员,而且对于研究斑岩-矽卡岩型矿床的成矿物理化学条件与成矿作用过程具有重要的科学意义。菊兴铜矿主要产出于下白垩统林布宗组与中新世斑岩接触带形成的矽卡岩型铜多金属矿体中,共伴生金属矿物主要包括黄铜矿、方铅矿、辉钼矿、黄铁矿、蓝辉铜矿、辉铜矿,以及少量金-银矿物和含铋矿物(如硫铋铜矿)。该新矿物常在斑铜矿中呈固溶体产出,粒径多变化于数至100微米之间。菊兴铜矿为复杂金属硫化物,不透明,具金属光泽;反射色为浅黄白色,均质性,无双反射和反射多色性;其晶体结构由硫、 硫-铋原子层和不同比例空位的铜-铁原子层组成,与斑铜矿、黄铜矿的结构存在联系。
  • 人大代表质疑“矿物质水”为“添加剂水”
    小小的一瓶再普通不过的饮用水,却成为两位全国人大代表挂在嘴边的话题。   吉林森工集团董事长柏广新代表与湖北省十堰市委书记陈天会代表,在今年两会都提交了一份关于禁止在饮用水中加入食品添加剂的建议。   “在饮用水中添加食品添加剂完全没有必要.”柏广新代表说。他曾向专家请教过,在所谓的“矿物质水”中添加的人工矿物质主要有氯化钠、氯化钾和硫酸镁,少数水中还添加氢氧化钠、碳酸氢钾等,其添加量仅为天然矿泉水中矿物质含量的十分之一,种类也与人体需要的21种矿物质相差甚远。   食品安全法规定,食品添加剂应当在技术上确有必要且经过风险评估证明安全可靠,方可列入允许使用的范围。国家卫生行政部门应当根据技术必要性和食品安全风险评估结果,及时对食品添加剂的品种、使用范围、用量的标准进行修订。“因此,必须禁止在饮用水中加入食品添加剂,或把市场上的‘矿物质水’标明为‘添加剂水’。”柏广新代表说。   陈天会代表在两会前曾调查过,各个品牌的“矿物质水”一般取自自来水,先制成纯净水,再添加两三种添加剂制成。目前,市场上有相当一部分“矿物质水”有人工加入的食品添加剂。虽然厂家自称这样做是为了“调节纯净水的口味”,其实质是为了经济利益。有必要对这些人工“矿物质水”喊停。   据柏广新代表介绍,在国外,美国的联邦法规明确规定,在饮用水中禁止添加任何食品添加剂。而英国的“天然矿泉水、泉水、瓶装饮用水法案”中不仅禁止将饮用水软化成纯净水,同时明确规定为避免与天然矿泉水相混淆,不允许产品冠以“矿物质水”的名称。美国一家大型饮料企业在国外生产的添加矿物质的饮用水产品只被允许称为“调味纯净水”,而在中国却称为“矿物质水”。   柏广新代表与陈天会代表都建议,在饮用水中加入添加剂,无论从技术上还是营养上讲均无必要。国家有关部门应该开展饮水与健康的相关性基础研究,依法对饮用水中的添加剂重新进行安全性风险评估,严格杜绝哗众取宠、误导消费者的情况出现。
  • 矿物油、氯丙醇酯和缩水甘油酯、真菌毒素、农残检测要点一网打尽!
    为了促进粮油行业分析测技术交流,研讨国内外最新研究应用进展,仪器信息网在8月1-2日举办第三届“粮油食品质量安全及品质检测新技术”主题网络研讨会。我们特别邀请了行业专家及相关厂商技术人员参与本次网络研讨会,把最新的科研成果和检测技术呈现给大家。会议紧密关注时事热点和技术市场动态,于8月1日聚焦粮油质量安全检测技术,深入探讨了粮油中矿物油、氯丙醇酯、缩水甘油酯、真菌毒素和农药残留等关键议题,进行了精彩的技术交流。8月2日会议针对近两年来备受关注的粮油品质检测技术,特邀国内顶尖研究专家,分别就食品多组学技术在粮油研究中的应用、橄榄油中生物酚精确定量技术难题、纯油体系中抗氧化剂界面活性研究等多个领域进行了深入研讨。点击图片 免费回看01矿物油检测武彦文老师指出,矿物油分析检测技术包括GC-FID、LC-GC、GCxGC-MS等,其中LC-GC被誉为“金方法”,尤其适用于复杂样品如食用油,并通过在线溶剂挥发技术实现大体积进样,提高灵敏度。但食用油中矿物油检测仍面临诸多挑战,如样品基质复杂、干扰物众多、谱图解析困难、标准品缺乏和溯源难度大等。为解决上述难点,研究人员和企业积极探索解决方案,例如LC-GC全自动分析平台、在线净化技术、LC-GC-MS/MS、数据库建设和标准化等方法。02氯丙醇酯和缩水甘油酯检测氯丙醇酯以及缩水甘油酯在消化过程中会水解并高效释出游离氯丙醇和缩水甘油。氯丙醇酯水解产物3-MCPD是公认的食品污染物,具有潜在的致癌性、神经毒性、免疫毒性、遗传毒性和生殖毒性;缩水甘油酯降解产物缩水甘油同样具有致癌风险。GB 5009.191-2024《食品安全国家标准 食品中氯丙醇及其脂肪酸酯、缩水甘油酯的测定》将替代原有的GB 5009.191-2016标准并在8月8如正式实施。值得注意的是,新标准中新增了气相色谱-三重四极杆质谱(GC-MS/MS)的检测方法,并且首次将缩水甘油酯纳入检测范围,标志着我国食品安全检测技术的进一步提升。张鸿老师向听众深入解析了标准中提及的三种检测方法,并逐一阐述了每种方法的独特优势和应用特点。“食品5009”标准作为中国的一套食品卫生检验方法标准,是保障食品安全的重要手段之一。该标准涵盖了多种食品卫生检验方法,包括食品中各种成分的测定方法,以及食品接触材料的环保测试等。在这样的背景下,仪器信息网特别策划了“2024年食品检测标准全面解读——GB 5009系列”主题约稿,诚邀各位专家和仪器厂商踊跃投稿,共同探讨和分享食品及农产品行业分析检测技术的最新研究与应用。03真菌毒素检测真菌毒素是真菌在适宜环境条件下产生的次级代谢产物,在农作物、食品、饲料及中药中污染较为普遍。真菌毒素是天然存在而非人为添加的,尽管污染量小,但危害性大。在适宜的环境因素(如温度、湿度)条件下,食品可以直接感染真菌并被其产生的毒素污染,且这种污染可以发生在食品链的任何阶段如生产、加工处理、运输和储藏过程等。据联合国粮农组织(FAO)统计,全球每年有25%的食品会受到不同程度的真菌毒素污染。许多真菌毒素还可在体内积累后产生致癌、致畸、致突变和免疫毒性,这些均对人和动物的生命与健康造成重大威胁。我国食品安全限量标准《食品安全国家标准 食品中真菌毒素限量》(GB 2761-2017)中规定了6种真菌毒素在不同类别食品中的限量值。董恒涛老师介绍了岛津LC-MS/MS生物毒素数据库,包含了谷物、水果、水产品中常见的100余种生物毒素的化合物信息、MRM参数、分析方法及操作指南,帮助用户快速建立分析各种毒素的方法。同时董老师还分享了多个LC-MS/MS法测定真菌毒素的应用案例。黄曲霉毒素B1是真菌毒素中的一种,也是国际卫生组织认定的一类致癌物。耿旭辉老师介绍了以紫外LED替代氙灯为光源(寿命是氙灯的6~7倍),自研制基于光电二极管(PD)的微光探测器替代光电倍增管(PMT)探测荧光,设计“紧贴式”荧光光路和首创的微池光衍生化器,研制出我国首套黄曲霉毒素荧光检测器,对黄曲霉毒素B1检测限2.4 ng/L,灵敏度比国际同类仪器高数倍。微光探测器已出口美国,经中国仪器仪表学会成果鉴定为动态范围和长期稳定性达国际领先水平。黄曲霉毒素荧光检测器已在中粮集团、美国Agilent公司等多家权威机构长期应用示范,经中国仪器仪表学会分析仪器分会成果鉴定为填补国内空白、性能达国际领先水平。04农药残留检测在粮谷种植过程中合理使用农药能够防治病虫害、清除杂草,保障粮食的产量和质量。不合理使用农药可能导致终端产品中存在农药残留,带有农残的粮食进入食物链后,可能会对人体健康造成潜在风险。为共同提升粮谷中农残检测的技术水平,确保食品安全,王李平老师介绍了粮谷中农药的作用、各种农药残留的限量要求和检测方法、相关农产品检测技术及注意事项和有效的质量控制措施等内容。《食品安全国家标准 食品中农药最大残留限量》 (GB 2763) 是目前我国统一规定食品中农药最大残留限量 (MRLs) 的强制性国家标准。2022 年 11 月 11 日, 国家卫生健康委员会、农业农村部和国家市场监督管理总局联合发布《食品安全国家标准食品中 2, 4-滴丁酸钠盐等112 种农药最大残留限量》 (GB 2763. 1-2022) 标准, 自 2023 年 5 月 11 日起正式实施。GB 2763. 1-2022是GB 2763-2021的 增补版,可以配套使用。近日,农业农村部 公布 了 《食品中2甲4氯异辛酯等83种农药最大残留限量(征求意见稿)》和《动物源产品中胺苯吡菌酮等57种农药最大残留限量(征求意见稿)》实施后也将于GB 2763配套使用。
  • 利用微尺度3D打印和矿物涂层技术助力功能性微流控研究
    多孔材料(如岩石)及其与流体的相互作用广泛存在于油气资源开采、地热能提取、二氧化碳封存、甚至行星探测中的地外资源利用(水提取)等应用中,然而,大多数岩石内部孔喉形态不规则,表面物理化学特性如表面润湿性也比较复杂。因此,探索岩石内部液体的流动过程,尤其是微尺度下的流固交互作用,仍然具有挑战性。近年来,高精度3D打印技术的迅速发展使得复现这种复杂的多孔结构变得可能。借助流动可视化手段,3D打印的微流控模型可以用于直接观察流体流动的动态过程。但是,目前打印材料仅限于光固化聚合物及其衍生物,其理化特性包括其矿物化学、晶体结构、表面润湿性等与天然岩石(如碳酸岩)存在显着差异。所有这些特性都对多孔介质中的流体相变和多相流动过程有着重要影响。近日,哈利法大学的张铁军教授团队基于面投影微立体光刻3D打印技术(PμSL,深圳摩方材料科技有限公司nanoArch S130), 通过表面矿物涂层的方法制备出一种岩石微流控模型。这种新颖的制备方法包括三个主要步骤,如图1所示:(i)使用纯光敏树脂(HDDA)打印具有三维岩石孔隙结构的微模型;(ii)在微模型的内表面植入碳酸钙纳米颗粒;(iii)以植入的纳米颗粒为核,在微模型内部原位生长碳酸盐晶体。该模型可以成功复现天然岩石的三维孔隙结构和表面矿物学特性。该成果以“Empowering Microfluidics by Micro-3D Printing and Solution-based Mineral Coating”为题发表在Soft Matter上,第一作者是哈利法大学李红霞博士。图1. 岩石微模型的制备过程在该工作中,张教授的团队利用高精度3D打印技术制备了不同用途的微模型,包括微流控器件和岩石微模型。微流控器件由三个平行通道组成(请参见图2a):每个通道的宽度分别为116±2、174±2和305±2 µm。在图2b中,岩石微模型是根据天然碳酸岩的CT扫描照片打印而成。在扫描电镜下,我们可以看到岩石微模型可以很好的复现真实岩石中狭窄的孔喉结构,并且也可清晰地观测到在微模型表面原位生长的碳酸盐晶体。此外,XRD光谱也证实该微模型表面的矿物成分是碳酸钙晶体,与天然碳酸岩相同。这种碳酸盐涂层厚度大约在2~10微米,仍然使微流控器件保持了一定的透光性,有利于流体的可视化研究。图2. 3D打印的微模型在表面涂层后的形貌 (a,b)扫描电镜下微模型的孔喉结构及表面碳酸盐晶体:(a)在微流控模型内表面以及(b)三维岩石微模型内表面。(c)表面涂层的XRD光谱。图3. 利用微流控模型的流动可视化研究:案例(a)水-油/水-气在岩石微模型内部的驱替过程;案例(b,c)水在孔喉内部的蒸发过程。基于所制备的微模型,该团队通过对水/气和水/油的驱替过程进行直接成像(如图3a), 表征了固体表面润湿性对流体交界面和流动路径的影响等。此外,他们还观测到液体在多孔介质里面的蒸发相变过程(图3b),包括不同大小空隙内蒸发的难易程度、喉部液膜的渐薄和破裂过程等。总之,该工作为制备功能性多孔材料开辟了一条新途径。据我们所知,这是第一次结合高分辨率3D打印和基于溶液的内部涂层方法,制备“真实的”岩石微模型。这种方法也具有很强的通用性:通过更改涂层材料和三维空隙结构,此类功能性微模型也可以很好地推广到生物医学、软体机器人、航空航天和其他新兴应用。论文链接:https://pubs.rsc.org/en/content/articlelanding/2020/sm/d0sm00958j/unauth#!divAbstract(以上相关介绍内容由阿联酋哈利法大学李红霞博士提供) 上述研究工作涉及的微尺度3D打印技术由深圳摩方材料科技有限公司提供,因此摩方公司就这一创新型成果对李红霞博士进行了更进一步的访谈,以下为部分内容:1、BMF:能概括分享一下近期在《Soft Matter》发布的岩心微流控案例吗?(开发过程、应用情况、行业影响等)BMF高精密3D打印在其中发挥了什么样的作用?李博士:在近期发表的这项工作中,我们提出了一种制造功能性微流控器件的新颖方法--通过集成微型3D打印和内表面涂层技术。在这项工作中,我们利用该方法已成功制备出广泛出现在油气研究中的人造岩心。利用高精密的3D打印系统,我们可以很好的复现岩石的孔隙结构,但是打印材料多数是光敏树脂,其物理化学性(包括表面润湿性、矿物学特性等等)能跟真正自然界的岩石差很多。于是,在我们的人造岩心制备过程中,我们首先通过3D打印技术复制由微CT扫描得到的碳酸盐岩的多孔几何结构,然后通过在打印的模型内部空隙表面生长碳酸盐晶体来模拟岩心真实的表面特性。这种功能性碳酸盐涂层只有几个微米,所以很好的保持了模型的光学透明度。所以,我们能够通过流动可视化方法,利用这些透明的模型帮助我们表征油水气等流体与岩石表面的交互作用,包括润湿性、毛细作用等流动和变化过程的影响等。这种利用表面功能性涂层结合微3D打印的制备方法,有利于打破打印材料的局限性,通过调节3D微结构和涂层配方等可以轻松地推广到其他新兴应用如生物医学等。2、BMF:您如何评价我们摩方的3D打印系统?对于您所在的科研领域所取得的科研/工作成果,发挥了多大的助力?李博士:摩方的打印系统可以提供高精度打印的同时实现大幅面打印。微流控器件的整体尺寸能到两厘米,可以很好的嵌入到流动可视化的实验系统当中,实用性很强。高精密3D打印系统可以轻松实现复杂三维结构,给我们提供了很大的设计和研究的自由度。在我们的研究当中,可以加工不同的表面微结构,进而控制流体与固体界面的交互作用。官网:https://www.bmftec.cn/links/7
  • 布鲁克收购新一代矿物鉴定软件商 增强矿质表征能力
    p span style=" FONT-FAMILY: times new roman"    /span span style=" FONT-FAMILY: times new roman" 布鲁克在2016年6月20日宣布已经收购了澳大利亚布里斯班的Yingsheng Technology公司。此次收购主要内容是Yingsheng的第三代高级矿物鉴别系统(AMICS)软件包系统。相关的收购财务细节并未揭露。 /span /p p span style=" FONT-FAMILY: times new roman"   AMICS是一款自动鉴别和定量矿物和其合成相的创新软件平台。无论是扫描电镜(SEM)、能量散射X-ray分光计(EDS),还是最新的微X射线荧光(& amp #181XRF)分析,都可以应用到此软件平台中来。全能的AMICS具有自动化和前瞻性的定量分析能力,是地质学和材料学研究的理想选择。能够为矿业、石油和天然气、煤炭、水泥、精炼与重复利用等工业和探测应用提供快速、有效的精确分析。 /span /p p span style=" FONT-FAMILY: times new roman"   “对于AMICS软件的加入,我们非常高兴。”布鲁克纳米分析总裁Thomas Schuelein说,“伴随AMICS的加入,我们的QUANTAX EDS系统更加全面,使我们能够更好的为土壤和材料学的研究者和OEM合作伙伴提供更全面的矿质表征能力。” /span /p p span style=" FONT-FAMILY: times new roman"   Schuelein继续说:“另外,有AMICS助力的布鲁克& amp #181XRF系统M4 TORNADO无疑会增强在矿产勘探领域的工作流,如在简单样品前处理条件下进行岩石、岩心切面等大型样品的微尺度分析。” /span /p p span style=" FONT-FAMILY: times new roman"   作为收购约定的一部分,Yingsheng Technology创始人兼首席执行官Ying Gu博士带领开发AMICS的关键工程师们一同加入了布鲁克,他们将继续致力于AMICS的进一步开发和商业化。 /span /p
  • 2021中国矿物加工大会(CMPC) 第三轮通知
    矿冶科技集团有限公司有研科技集团有限公司北京科技大学中国矿业大学(北京)中国矿物加工大会理事会____________________________2021中国矿物加工大会(CMPC)第三轮通知各有关单位:为深入贯彻落实“十四五”规划,探讨我国矿物加工技术发展中的新趋势,交流新发展理念背景下我国矿物加工科学研究中的新成果,分享矿物加工技术发展的新进展,进一步推动我国矿物加工专业的科学、可持续发展,助力我国资源领域“碳达峰”“碳中和”目标的实现,矿冶科技集团有限公司、有研科技集团有限公司、北京科技大学、中国矿业大学(北京)、中国矿物加工大会理事会定于2021年11月19-21日在北京市举办“2021中国矿物加工大会(CMPC)”。本届会议的主题是:绿色、智能、共享、创新。旨在探讨新形势下矿物加工科学技术的绿色智能发展,推动矿物加工领域的技术创新。会议专题涵盖选矿理论与技术、选矿装备及智能化、矿冶环保、城市矿山、工艺矿物学与分析检测、矿物材料等技术领域的基础和应用研究;会议内容包括大会特邀报告、分会场邀请报告、口头报告和专题学术论坛等,还将组织与矿物加工有关的知名厂商作相关产品展示与技术交流。会议期间学术委员会将颁发“2021中国矿物加工优秀青年论文奖”。大会将邀请院士、专家、学者就我国矿物加工基础和应用研究方面的前沿问题进行研讨与交流,提出发展建议和重点研究方向,推动中国矿物加工科学与技术的自主创新。欢迎相关高等院校、研究设计院所、矿业企业、设备制造厂家等科学研究和工程技术人员积极参会;欢迎各大企业和厂商踊跃参加并提供支持。现将有关事项通知如下:一、会议主题绿色、智能、共享、创新二、会议时间、地点时间:2021年11月19-21日,其中19日报到,20-21日交流。地点:北京国际会议中心(地址:北京市朝阳区北辰东路8号)。三、组织机构1.指导单位中国矿业联合会中国有色金属学会中国煤炭学会2.主办单位矿冶科技集团有限公司有研科技集团有限公司北京科技大学中国矿业大学(北京)中国矿物加工大会理事会3.承办单位中国矿业联合会选矿委员会中国有色金属学会选矿学术委员会矿冶科技集团有限公司选矿研究设计所矿冶科技集团有限公司信息研究中心有研资源环境技术研究院(北京)有限公司北京科技大学土木与资源工程学院中国矿业大学(北京)化学与环境工程学院矿物加工科学与技术国家重点实验室中低品位磷矿及其共伴生资源高效利用国家重点实验室矿冶过程自动控制技术国家重点实验室矿冶过程自动控制技术北京市重点实验室中国-南非矿产资源可持续开发利用“一带一路”联合实验室金属矿山高效开采与安全教育部重点实验室生物冶金国家工程实验室国家有色金属及电子材料分析测试中心北方中冶(北京)工程咨询有限公司4.协办单位江西耐普矿机股份有限公司北矿机电科技有限公司山东华特磁电科技股份有限公司赣州金环磁选设备有限公司兰州鑫盛机械厂沈阳隆基电磁科技股份有限公司威海海王旋流器有限公司北京凯特破碎机有限公司北矿化学科技(沧州)有限公司北矿检测技术有限公司湖南有色金属研究院有限责任公司5.支持单位(排名不分先后)中南大学、东北大学、中国矿业大学、昆明理工大学、郑州大学、贵州大学、广西大学、武汉科技大学、武汉理工大学、武汉工程大学、中国地质大学(北京)、江西理工大学、太原理工大学、西南科技大学、山东科技大学、辽宁科技大学、华北理工大学、西安科技大学、西安建筑科技大学、长安大学、安徽工业大学、安徽理工大学、河南理工大学、山东理工大学、黑龙江科技大学、桂林理工大学、辽宁工程技术大学、内蒙古科技大学、沈阳理工大学、赣南科技学院、福州大学、广东省科学院、贵州科学院、长沙矿冶研究院有限责任公司、中国瑞林工程技术股份有限公司、中国恩菲工程技术有限公司、中钢集团马鞍山矿山研究院有限公司、昆明冶金研究院、中国地质调查局郑州矿产综合利用研究所、中国地质调查局成都矿产综合利用研究所、中国五矿集团有限公司、中国铝业集团有限公司、中国有色矿业集团有限公司、国家能源投资集团有限责任公司、中国黄金集团有限公司、山东黄金集团有限公司、江西铜业集团有限公司、铜陵有色金属集团控股有限公司、金川集团有限公司、瓮福(集团)有限责任公司、湖南柿竹园有色金属有限责任公司、西部矿业集团有限公司、中金岭南有色金属股份有限公司、广西华锡集团股份有限公司、陕西有色金属控股集团有限责任公司、中国煤炭科工集团有限公司、煤炭科学技术研究院有限公司、晋能控股集团有限公司、山东能源集团有限公司、中国有色金属学会钒资源清洁利用专业委员会、中国硅酸盐学会矿物材料分会、有色金属产业技术创新联盟6.支持媒体(排名不分先后)《国家能源报》《中国矿业报》《中国有色金属报》《中国冶金报》《中国黄金报》《中国环境报》《Transactions of Nonferrous Metals Society of China》《International Journal of Minerals Metallurgy and Materials》《Rare Metals》《International Journal of Mining Science and Technology》《中国有色金属学报》《工程科学学报》《矿业科学学报》《材料与冶金学报》《稀土学报》《稀有金属》《有色金属(选矿部分)》《有色金属工程》《矿冶》《金属矿山》《矿冶工程》《矿产保护与利用》《非金属矿》《黄金》《选煤技术》《煤炭加工与综合利用》《洁净煤技术》《黄金科学技术》《世界金属导报》《洲际矿山》、矿库网、上海有色网、冶金技术网、仪器信息网、矿道网、矿权资源网、中国粉体网、科学出版社、中国粉体技术网四、会议组织高级顾问:王淀佐、陈清如、余永富、刘炯天、邱冠周、桂卫华、黄小卫、邵安林、柴立元、余艾冰、徐政和、宋少先会议主席:孙传尧、韩龙执行主席:夏晓鸥执行副主席:车小奎、孙春宝、刘文礼1.学术委员会主 任:夏晓鸥副主任:胡岳华、车小奎、孙春宝、刘文礼、邱显扬、沈政昌、张一敏、赵跃民、邱廷省、马少健、李茂林、池汝安、倪 文、韩跃新、孙 伟、童 雄、吴熙群、陈代雄、董宪姝委 员(按姓氏笔画为序):卜显忠、马永宁、马志军、马 骁、马鹏程、邓朝安、牛福生、王书礼、王兆连、王周和、王 勇、王毓华、王德煜、文书明、尹文新、代淑娟、付 峰、冯安生、印万忠、吕一波、吕宪俊、刘亚川、刘有智、刘江浩、刘晓明、任瑞晨、孙忠梅、孙炳泉、朱金波、闵凡飞、陈 伟、陈典助、陈建华、陈炳炎、陈 健、陈 雯、何东升、何发钰、何建璋、何桂春、李跃林、吴启明、吴彩斌、肖仪武、肖春桥、杨华明、杨绍斌、杨海龙、余军霞、张冬松、张传祥、张海军、张琰图、张 覃、范志鸿、罗仙平、尚衍波、岳铁兵、周连碧、郑水林、郑 伦、郑 晔、郝 兵、胡明振、姚 俊、钟 宏、柴垣民、陶东平、徐志高、徐志强、曹亦俊、黄万抚、韩秀丽、程新朝、覃文庆、温建康、谢广元、谢甲文、谢 杰、简 胜、雷存友、管建红、缪建成、熊 英2.会议组委会秘 书 长:朱阳戈副秘书长:曾 红、卢烁十、王卫东、李正要、武 彪、魏国生会务秘书:宋振国、章连香、刘水红、汪东芳、寇 珏、张瑞洋、李根壮、徐宏祥、孙志明、邓久帅、尚 鹤、赵福刚、陈 斌、王丽红、周 欣、文雪玉、赵 丽、邢志斌、许 飞、邹时运、王辉辉、唐福新五、大会日程安排2021年5月15日 第一轮(征文)通知2021年7月30日 第二轮通知2021年8月30日 第三轮通知2021年9月30日 论文中英文摘要截止2021年10月15日 论文全文提交截止2021年10月20日 第四轮通知六、会议专题分会场分会场主题召集人1破碎、磨矿与分级赵跃民、杨松荣、孙春宝、吴彩斌、潘永泰、肖庆飞2浮选理论与界面化学罗仙平、张覃、孙伟、刘文礼、文书明、陶东平、陈建华、张海军3浮选工艺与药剂邱显扬、车小奎、钟宏、吴熙群、陈代雄、童雄、何桂春、印万忠4物理分选(重、磁、电)李茂林、魏德洲、熊大和、刘永振、王化军、袁致涛、刘旌5选冶联合与化学选矿张一敏、姜涛、邱廷省、池汝安、韩跃新、陈雯、温建康6选矿装备与智能化沈政昌、周俊武、曹亦俊、杨任新、杨义红、王卫东7固废资源综合利用与环境保护郭学益、倪文、何发钰、陈伟、周连碧、吕宪俊、申士富、包申旭8工艺矿物学与分析检测肖仪武、李华昌、刘英、梁冬云、韩秀丽9非金属矿物加工与矿物材料董发勤、马少健、冯安生、郑水林、杨华明、吕国诚、张传祥10固液分离与尾矿工程董宪姝、闵凡飞、寇珏、周兴龙、周汉民七、会议论文及评奖1.会议将征集论文(含摘要、全文),并出版论文中英文摘要集。投稿论文选题应围绕本次会议主题。论文(摘要)撰写要求见附件。2.已公开发表过的优秀论文,本次会议只收录摘要;未公开发表过的优秀论文,组委会将择优推荐至《中国有色金属学报》《工程科学学报》《矿业科学学报》《稀土学报》《稀有金属》《有色金属(选矿部分)》《有色金属工程》《矿冶》《金属矿山》《矿冶工程》《非金属矿》《选煤技术》等相关期刊优先发表,论文格式要求请参照各期刊投稿要求;录用论文产生的费用按期刊编辑部标准收取。3.论文(摘要)请发送至:ysgc@china-mcc.com;邮件名称请按如下格式注明:CMPC2021+分会场数字+第一作者姓名+单位+职务+电话+已(未)发表。4.大会奖励委员会评选出最优秀的20篇青年论文,授予“2021中国矿物加工大会青年优秀论文奖”,不分等级,并颁发证书和奖金。特别指出,候选人为论文的最重要贡献者(一般为第一作者或通信作者),在参会当天不满35周岁。5.本次会议以学术成果、论文、口头交流为主,大会分为特邀报告与分会场报告(主题邀请报告30分钟、一般报告15-20分钟),并设有提问与讨论环节。八、关于会议说明及其它1.本次会议委托承办单位负责全面组织、酒店协调、费用收取、发票开具等会务工作。会议收取正式代表会务费2000元/人,在校全日制学生1200元/人,该注册费包括会务、论文审稿、摘要集出版、专家演讲资料费、餐费、场地费等。2.食宿安排:会议统一安排用餐;由于会议期间参会人员较多,组委会推荐协议酒店以供参考,参会代表自行选择预定酒店(具体酒店信息见第四轮通知);现场临时注册的无法保证住宿,需自行解决住宿,敬请谅解!九、会务费账户信息开户行:中国建设银行北京右安门支行 户 名:北方中冶(北京)工程咨询有限公司 账 号:1100 1071 6000 5300 3870十、组委会联系方式关于会议报名、宣传、赞助,请联系:联系人:许 飞电 话:13811291451(微信同号)邮 箱:1947972025@qq.com
  • 2021中国矿物加工大会(CMPC) 第二轮通知
    各有关单位:为深入贯彻落实“十四五”规划,探讨我国矿物加工技术发展中的新趋势,交流新发展理念背景下我国矿物加工科学研究中的新成果,分享矿物加工技术发展的新进展,进一步推动我国矿物加工专业的科学、可持续发展,助力我国资源领域“碳达峰”、“碳中和”目标的实现,矿冶科技集团有限公司、有研科技集团有限公司、北京科技大学、中国矿业大学(北京)、中国矿物加工大会理事会定于2021年10月15-17日在北京市主办“2021中国矿物加工大会(CMPC)”。本届会议的主题是:绿色、智能、共享、创新。旨在探讨新形势下矿物加工科学技术的绿色智能发展,推动矿物加工领域的技术创新。会议专题涵盖选矿理论与技术、选矿装备及智能化、矿冶环保、城市矿山、工艺矿物学与分析检测、矿物材料等技术领域的基础和应用研究;会议内容包括大会特邀报告、分会场邀请报告、口头报告、墙报展示和专题学术论坛等,还将组织与矿物加工有关的知名厂商作相关产品展示与技术交流。会议期间学术委员会将颁发“2021中国矿物加工优秀青年论文奖”。大会将邀请院士、专家、学者就我国矿物加工基础和应用研究方面的前沿问题进行研讨与交流,提出发展建议和重点研究方向,推动中国矿物加工科学与技术的自主创新。欢迎相关高等院校、研究设计院所、矿业企业、设备制造厂家等科学研究和工程技术人员积极参会;欢迎各大企业和厂商踊跃参加并提供支持。现将有关事项通知如下:一、会议主题绿色、智能、共享、创新二、会议时间、地点时间:2021年10月15-17日,其中15日报到,16-17日交流。地点:北京雁栖湖国际会展中心(地址:北京市怀柔区雁栖湖西路16号)。三、组织机构1、指导单位中国矿业联合会中国有色金属学会中国煤炭学会2、主办单位矿冶科技集团有限公司有研科技集团有限公司北京科技大学中国矿业大学(北京)中国矿物加工大会理事会3、承办单位中国矿业联合会选矿委员会中国有色金属学会选矿学术委员会矿冶科技集团有限公司选矿研究设计所矿冶科技集团有限公司信息研究中心北京科技大学土木与资源工程学院中国矿业大学(北京)化学与环境工程学院有研资源环境技术研究院(北京)有限公司矿物加工科学与技术国家重点实验室中低品位磷矿及其共伴生资源高效利用国家重点实验室矿冶过程自动控制技术国家重点实验室矿冶过程自动控制技术北京市重点实验室中国-南非矿产资源可持续开发利用“一带一路”联合实验室金属矿山高效开采与安全教育部重点实验室生物冶金国家工程实验室国家有色金属及电子材料分析测试中心北方中冶(北京)工程咨询有限公司4、协办单位江西耐普集团有限公司山东华特磁电科技股份有限公司威海海王旋流器有限公司沈阳隆基电磁科技股份有限公司5、支持单位(排名不分先后)中南大学、东北大学、中国矿业大学、昆明理工大学、郑州大学、贵州大学、广西大学、武汉科技大学、武汉理工大学、武汉工程大学、中国地质大学(北京)、江西理工大学、太原理工大学、西南科技大学、山东科技大学、辽宁科技大学、华北理工大学、西安科技大学、西安建筑科技大学、长安大学、安徽工业大学、安徽理工大学、河南理工大学、山东理工大学、黑龙江科技大学、桂林理工大学、辽宁工程技术大学、内蒙古科技大学、沈阳理工大学、赣南科技学院、广东省科学院、长沙矿冶研究院有限责任公司、中国瑞林工程技术股份有限公司、中国恩菲工程技术有限公司、中钢集团马鞍山矿山研究院有限公司、湖南有色金属研究院、昆明冶金研究院、中国地质调查局郑州矿产综合利用研究所、中国地质调查局成都矿产综合利用研究所、中国五矿集团有限公司、中国铝业集团有限公司、中国有色矿业集团有限公司、国家能源投资集团有限责任公司、中国黄金集团有限公司、山东黄金集团有限公司、江西铜业集团有限公司、铜陵有色金属集团控股有限公司、金川集团有限公司、瓮福(集团)有限责任公司、湖南柿竹园有色金属有限责任公司、西部矿业集团有限公司、中金岭南有色金属股份有限公司、广西华锡集团股份有限公司、陕西有色金属控股集团有限责任公司、中国煤炭科工集团有限公司、煤炭科学技术研究院有限公司、晋能控股集团有限公司、山东能源集团有限公司、中国有色金属学会钒资源清洁利用专业委员会、中国硅酸盐学会矿物材料分会、有色金属产业技术创新联盟6、支持媒体(排名不分先后)《Transactions of Nonferrous Metals Society of China》《International Journal of Minerals Metallurgy and Materials》《Rare Metals》《International Journal of Mining Science and Technology》《国家能源报》《中国矿业报》《中国有色金属报》《中国冶金报》《中国黄金报》《中国环境报》《中国有色金属学报》《工程科学学报》《矿业科学学报》《材料与冶金学报》《稀土学报》《稀有金属》《有色金属(选矿部分)》《有色金属工程》《矿冶》《金属矿山》《矿冶工程》《矿产保护与利用》《非金属矿》《黄金》《选煤技术》《煤炭加工与综合利用》《洁净煤技术》《矿库网》《黄金科学技术》矿库网 《黄金科学技术》 世界金属导报、上海有色网 冶金技术网 冶金邦 仪器信息网 矿道网 矿权资源网 中国粉体网四、会议组织高级顾问:王淀佐、陈清如、余永富、刘炯天、邱冠周、桂卫华、黄小卫、邵安林、柴立元、余艾冰、徐政和、宋少先会议主席:孙传尧、韩龙执行主席:夏晓鸥执行副主席:车小奎、孙春宝、刘文礼1、学术委员会主 任:夏晓鸥副主任:胡岳华、车小奎、孙春宝、刘文礼、邱显扬、沈政昌、张一敏、赵跃民、邱廷省、马少健、李茂林、池汝安、倪 文、韩跃新、孙 伟、童 雄、吴熙群、陈代雄、董宪姝委 员(按姓氏笔画为序):卜显忠、马永宁、马志军、马 骁、马鹏程、邓朝安、牛福生、王书礼、王兆连、王周和、王 勇、王毓华、王德煜、文书明、尹文新、代淑娟、付 峰、冯安生、印万忠、吕一波、吕宪俊、刘亚川、刘有智、刘江浩、刘晓明、任瑞晨、孙忠梅、孙炳泉、朱金波、陈典助、陈建华、陈炳炎、陈 健、陈 雯、何东升、何发钰、何建璋、何桂春、李跃林、吴启明、吴彩斌、肖仪武、肖春桥、杨华明、杨绍斌、杨海龙、余军霞、张冬松、张传祥、张海军、张琰图、张 覃、范志鸿、罗仙平、尚衍波、岳铁兵、周连碧、郑水林、郑 伦、郑 晔、郝 兵、胡明振、姚 俊、钟 宏、柴垣民、陶东平、徐志高、徐志强、曹亦俊、黄万抚、韩秀丽、程新朝、覃文庆、温建康、谢广元、谢甲文、谢 杰、简 胜、雷存友、管建红、缪建成、熊 英2、会议组委会秘 书 长:朱阳戈副秘书长:曾 红、卢烁十、王卫东、李正要、武 彪、魏国生会务秘书:宋振国、张行荣、章连香、刘水红、汪东芳、寇 珏、张瑞洋、李根壮、徐宏祥、孙志明、邓久帅、尚 鹤、赵福刚、陈 斌、王丽红、周 欣、文雪玉、赵 丽、邢志斌、许 飞、邹时运、王辉辉、唐福新五、大会日程安排2021年5月15日 第一轮(征文)通知2021年7月30日 第二轮通知2021年8月31日论文中英文摘要截止2021年9月15日 论文全文提交截止2021年9月20日 第三轮通知六、会议专题分会场分会场主题召集人1破碎、磨矿与分级赵跃民、杨松荣、孙春宝、吴彩斌、潘永泰、肖庆飞2浮选理论与界面化学罗仙平、张覃、孙伟、刘文礼、文书明、陶东平、陈建华、张海军3浮选工艺与药剂邱显扬、车小奎、钟宏、吴熙群、陈代雄、童雄、何桂春、印万忠4物理分选(重、磁、电)李茂林、魏德洲、熊大和、刘永振、王化军、袁致涛、刘旌5选冶联合与化学选矿张一敏、姜涛、邱廷省、池汝安、韩跃新、陈雯、温建康6选矿装备与智能化沈政昌、周俊武、曹亦俊、杨任新、杨义红、王卫东7固废资源综合利用与环境保护郭学益、倪文、何发钰、周连碧、吕宪俊、申士富、包申旭8工艺矿物学与分析检测肖仪武、李华昌、刘英、梁冬云、韩秀丽9非金属矿物加工与矿物材料董发勤、马少健、冯安生、郑水林、杨华明、吕国诚、张传祥10固液分离与尾矿工程董宪姝、闵凡飞、寇珏、周兴龙、周汉民七、会议论文及评奖1、会议将征集论文(含摘要、全文),并出版论文中英文摘要集。投稿论文选题应围绕本次会议主题。论文(摘要)撰写要求见附件。2、已公开发表过的优秀论文,本次会议只收录摘要;未公开发表过的优秀论文,组委会将择优推荐至《中国有色金属学报》《工程科学学报》《矿业科学学报》《稀土学报》《稀有金属》《有色金属(选矿部分)》《有色金属工程》《矿冶》《金属矿山》《矿冶工程》《非金属矿》《选煤技术》等相关期刊优先发表,论文格式要求请参照各期刊投稿要求;录用论文产生的费用按期刊编辑部标准收取。3、论文(摘要)请发送至:ysgc@china-mcc.com;邮件名称请按如下格式注明:CMPC2021+分会场数字+第一作者姓名+单位+职务+电话+已(未)发表。4、大会奖励委员会评选出最优秀的20篇青年论文,授予“2021中国矿物加工大会青年优秀论文奖”,不分等级,并颁发证书和奖金。特别指出,候选人为论文的最重要贡献者(一般为第一作者或通信作者),在参会当天不满35周岁。5、本次会议以学术成果、论文、口头交流及墙报为主,大会分为特邀报告与分会报告(主题邀请报告30分钟、一般报告15-20分钟),并设有提问与讨论环节。八、关于会议说明及其它1、本次会议委托承办单位负责全面组织、酒店协调、费用收取、发票开具等会务工作。会议收取正式代表会务费2000元/人,在校全日制学生1200元/人,该注册费包括会务、论文审稿、摘要集出版、专家演讲资料费、餐费、场地费等。2、食宿安排:会议统一安排用餐;由于会议期间参会人员较多,组委会推荐协议酒店以供参考,参会代表自行选择预定酒店(具体酒店信息见第三轮通知);现场临时注册的无法保证住宿,需自行解决住宿,敬请谅解!九、会务费账户信息开户行:中国建设银行北京右安门支行 户 名:北方中冶(北京)工程咨询有限公司 账 号:1100 1071 6000 5300 3870十、组委会联系人1、朱阳戈 矿冶科技集团有限公司电话:18701689731 邮箱:zhuyangge@bgrimm.com2、卢烁十 矿冶科技集团有限公司电话:13466708714 邮箱:lushuoshi@bgrimm.com3、李根壮 北京科技大学电话:18613869640 邮箱:ligenzhuang@ustb.edu.cn4、孙志明 中国矿业大学(北京)电话:13466774499 邮箱:zhimingsun@cumtb.edu.cn5、尚 鹤 有研科技集团有限公司电话:15210903181 邮箱:shanghe@grinm.com6、许 飞 北方中冶(北京)工程咨询有限公司电话:13811291451 邮箱:1947972025@qq.com
  • 《Soft Matter》:利用微尺度3D打印和矿物涂层技术助力功能性微流控研究
    多孔材料(如岩石)及其与流体的相互作用广泛存在于油气资源开采、地热能提取、二氧化碳封存、甚至行星探测中的地外资源利用(水提取)等应用中,然而,大多数岩石内部孔喉形态不规则,表面物理化学特性如表面润湿性也比较复杂。因此,探索岩石内部液体的流动过程,尤其是微尺度下的流固交互作用,仍然具有挑战性。近年来,高精度3D打印技术的迅速发展使得复现这种复杂的多孔结构变得可能。借助流动可视化手段,3D打印的微流控模型可以用于直接观察流体流动的动态过程。但是,目前打印材料仅限于光固化聚合物及其衍生物,其理化特性包括其矿物化学、晶体结构、表面润湿性等与天然岩石(如碳酸岩)存在显着差异。所有这些特性都对多孔介质中的流体相变和多相流动过程有着重要影响。近日,哈利法大学的张铁军教授团队基于面投影微立体光刻3D打印技术(PμSL,深圳摩方材料科技有限公司nanoArch S130), 通过表面矿物涂层的方法制备出一种岩石微流控模型。这种新颖的制备方法包括三个主要步骤,如图1所示:(i)使用纯光敏树脂(HDDA)打印具有三维岩石孔隙结构的微模型;(ii)在微模型的内表面植入碳酸钙纳米颗粒;(iii)以植入的纳米颗粒为核,在微模型内部原位生长碳酸盐晶体。该模型可以成功复现天然岩石的三维孔隙结构和表面矿物学特性。该成果以“Empowering Microfluidics by Micro-3D Printing and Solution-based Mineral Coating”为题发表在Soft Matter上,第一作者是哈利法大学李红霞博士。图1. 岩石微模型的制备过程在该工作中,张教授的团队利用高精度3D打印技术制备了不同用途的微模型,包括微流控器件和岩石微模型。微流控器件由三个平行通道组成(请参见图2a):每个通道的宽度分别为116±2、174±2和305±2 μm。在图2b中,岩石微模型是根据天然碳酸岩的CT扫描照片打印而成。在扫描电镜下,我们可以看到岩石微模型可以很好的复现真实岩石中狭窄的孔喉结构,并且也可清晰地观测到在微模型表面原位生长的碳酸盐晶体。此外,XRD光谱也证实该微模型表面的矿物成分是碳酸钙晶体,与天然碳酸岩相同。这种碳酸盐涂层厚度大约在2~10微米,仍然使微流控器件保持了一定的透光性,有利于流体的可视化研究。图2. 3D打印的微模型在表面涂层后的形貌 (a,b)扫描电镜下微模型的孔喉结构及表面碳酸盐晶体:(a)在微流控模型内表面以及(b)三维岩石微模型内表面。(c)表面涂层的XRD光谱。图3. 利用微流控模型的流动可视化研究:案例(a)水-油/水-气在岩石微模型内部的驱替过程;案例(b,c)水在孔喉内部的蒸发过程。 基于所制备的微模型,该团队通过对水/气和水/油的驱替过程进行直接成像(如图3a), 表征了固体表面润湿性对流体交界面和流动路径的影响等。此外,他们还观测到液体在多孔介质里面的蒸发相变过程(图3b),包括不同大小空隙内蒸发的难易程度、喉部液膜的渐薄和破裂过程等。 总之,该工作为制备功能性多孔材料开辟了一条新途径。据我们所知,这是第一次结合高分辨率3D打印和基于溶液的内部涂层方法,制备“真实的”岩石微模型。这种方法也具有很强的通用性:通过更改涂层材料和三维空隙结构,此类功能性微模型也可以很好地推广到生物医学、软体机器人、航空航天和其他新兴应用。论文链接:https://pubs.rsc.org/en/content/articlelanding/2020/sm/d0sm00958j/unauth#!divAbstract(以上相关介绍内容由阿联酋哈利法大学李红霞博士提供) 上述研究工作涉及的微尺度3D打印技术由深圳摩方材料科技有限公司提供,因此摩方公司就这一创新型成果对李红霞博士进行了更进一步的访谈,以下为部分内容:1、BMF:能概括分享一下近期在《Soft Matter》发布的岩心微流控案例吗?(开发过程、应用情况、行业影响等)BMF高精密3D打印在其中发挥了什么样的作用?李博士:在近期发表的这项工作中,我们提出了一种制造功能性微流控器件的新颖方法--通过集成微型3D打印和内表面涂层技术。在这项工作中,我们利用该方法已成功制备出广泛出现在油气研究中的人造岩心。利用高精密的3D打印系统,我们可以很好的复现岩石的孔隙结构,但是打印材料多数是光敏树脂,其物理化学性(包括表面润湿性、矿物学特性等等)能跟真正自然界的岩石差很多。于是,在我们的人造岩心制备过程中,我们首先通过3D打印技术复制由微CT扫描得到的碳酸盐岩的多孔几何结构,然后通过在打印的模型内部空隙表面生长碳酸盐晶体来模拟岩心真实的表面特性。这种功能性碳酸盐涂层只有几个微米,所以很好的保持了模型的光学透明度。所以,我们能够通过流动可视化方法,利用这些透明的模型帮助我们表征油水气等流体与岩石表面的交互作用,包括润湿性、毛细作用等流动和变化过程的影响等。这种利用表面功能性涂层结合微3D打印的制备方法,有利于打破打印材料的局限性,通过调节3D微结构和涂层配方等可以轻松地推广到其他新兴应用如生物医学等。2、BMF:您如何评价我们摩方的3D打印系统?对于您所在的科研领域所取得的科研/工作成果,发挥了多大的助力?李博士:摩方的打印系统可以提供高精度打印的同时实现大幅面打印。微流控器件的整体尺寸能到两厘米,可以很好的嵌入到流动可视化的实验系统当中,实用性很强。高精密3D打印系统可以轻松实现复杂三维结构,给我们提供了很大的设计和研究的自由度。在我们的研究当中,可以加工不同的表面微结构,进而控制流体与固体界面的交互作用。
  • 地球科学中自动化矿物学的未来
    随着 2021 年 11 月 Mineralogic 3D 的推出,自动化矿物学刚刚见证了其技术的最大转变。这是一项广泛的开发计划,旨在定义 X 射线吸收对比断层扫描 (ACT) 数据的校准和标准化,以实现一致和准确的识别矿物相直接来自 3D 成像。这对于自动化矿物学来说是真正的新领域,不仅可以非破坏性地进行相识别,而且只需极少或无需样品制备。3D 测量具有许多优点,包括识别次要相位、无立体效应以及对珍贵样品(例如陨石)进行无损分析。介绍几十年来,“自动化矿物学”一词一直是地球科学中电子显微镜的代名词。使用能量色散光谱 (EDS) 快速绘制样品图和识别感兴趣的相已逐渐从其最初的行业应用转移到学术研究环境中。对于希望利用这一强大工具的学者来说,一个主要问题是原始平台在其行业设计的输出方面是僵化的,并且能够提供自动化输出的软件和硬件都缺乏开发。蔡司矿物学一直采用不同的方法,2D 和 3D 的持续发展意味着我们现在拥有有史以来设计的最全面和最先进的岩石学研究平台,重新定义了自动化矿物学这一短语。使用定量 EDS 分析,EM 的矿物学一直领先一步。这使得它在自动化矿物学系统中独树一帜,成为真正的地球化学工具,能够计算薄片等区域的矿物和整体成分。然而,这种能力仍然在传统的自动化矿物学软件的框架内,用户如何访问和使用地球化学信息的灵活性有限。在 Mineralogic 1.8 中,这一切都发生了变化,自动化矿物学的使用方式发生了重大转变,特别是在工作流程高度可变的学术环境中。在最新版本中,地球化学信息被放在首位,与软件设计的阶段 ID 一样重要(图 1)图 1:大颗粒观察器 (LPV) 用于可视化苏格兰西北部路易斯安杂岩中的麻粒岩相超长岩的完整薄片。单击即可从 BSE 和矿物分类图更改为定制的范围元素热图,所有这些都来自同一次扫描。图像显示 a) 灰度 BSE,b) 矿物分类,以及 c) 和 d) 定量 Fe 和 Mg 热图。新的大粒子查看器可以将完整的薄片查看为定量元素热图,并且收集的所有地球化学数据都可以导出为简单的 .csv 文件格式。这种简单的数据导出允许将定量地球化学测量值直接导入为地球科学家专门设计的第三方软件,例如 XMapTools。技术上最大的转变是在 2021 年 11 月推出 Mineralogic 3D。这是在一项广泛的开发计划之后定义 X 射线吸收对比断层扫描 (ACT) 数据的校准和标准化,以允许直接从3D 成像。这对于自动化矿物学来说是真正的新领域,不仅可以非破坏性地进行相识别,而且只需极少或无需样品制备。3D 测量具有许多优点,包括识别次要相位、无立体效应以及对珍贵样品(例如陨石)进行无损分析。现代、灵活的自动化矿物学技术可以应用于地球科学以外的许多材料,包括金属、陶瓷,甚至是根和骨头等有机物质。然而,矿物物种在主要元素化学、结构和密度方面的全球一致行为使其成为此类自动化工作流程的理想候选者。完整的蔡司矿物学软件包现在提供最全面的矿物学和岩石学解决方案,这只是对地球科学界长期投资的开始。突破二维自动化矿物学的极限自动化矿物学在四个十年的使用中几乎没有变化。对严格的行业应用程序进行粒子分析的一致输出的要求导致看似相似的软件环境在输出方面几乎没有灵活性。该设置非常适合设计自动化矿物学的常规工作流程、矿物学处理的长期一致性以及破碎样品的地质冶金学,这些样品在数月和数年内在单个地点几乎没有变化。最大的挑战是在学术环境中越来越多地使用自动化矿物学平台。吸引力非常明显,能够将传统的颗粒分析方法转化为 SEM 中的各种样品的映射,从环氧树脂安装的颗粒分离器到完整的薄片和抛光的芯板。能够用模态丰度、纹理信息等绘制矿物学图,对于构建大型数据集、拥有“大数据”和了解我们个体样本的统计相关性的现代科学来说似乎是完美的。然而,在一个依赖灵活性的研究环境中,这个看似理想的工具却受到为工业应用设计的输出的刚性所阻碍。在蔡司,我们对地球科学界做出了承诺,不仅包括推动仪器的功能和为社区量身定制我们的显微镜解决方案,而且投资于地球科学专业知识以帮助推动技术进步。因此,该软件现在是 SEM 自动化矿物学最全面、最灵活的平台,是定量地球化学分析与定量结构分析的独特组合。 从头到尾的灵活性地球科学家是多产的显微镜用户,他们的 SEM 系统通常以具有多种成像模式和用户要求的探测器“圣诞树”而闻名。结果是集成解决方案的必要性,并最大限度地减少操作员和/或技术人员实现目标的时间,因为在一个会话中需要多种成像技术是很常见的。Mineralogic 并不固定在某个平台上,因此从一开始您就可以从钨丝 (CSEM) EVO 系列到 FESEM Sigma 和 GeminiSEM 系列中选择适合您需求的 SEM。无论对成像分辨率、可变压力和探测器组合有什么要求,使用 Mineralogic 的自动化矿物学都可以成为您设置的一部分。定量 EDS 分析的使用始终使该软件有别于其他自动化矿物学解决方案。通过校准和标准化化学分析,它不仅仅是一种识别矿物种类的简单机制,而是将自动化矿物学转变为真正的地球化学工具,提供真实的矿物成分,以及测绘区域的“整体成分”。在研究环境中,能够获得定量的主要元素化学是许多工作流程的关键方面。通过在单一技术中以内在连接的方式将不同的信息组合在一起,在纹理分析的同时获取这些信息可以简化项目。定量地球化学还提供了另一个明显的优势,因为矿物分类库基于每种元素的 wt% 元素值,而不是定性的峰值强度值。这意味着矿物库更易于理解,并且可以在实验室之间和可变光束条件下立即转移,从而改善协作并减少操作员处理新样品或困难样品的时间。与大多数行业工作流程相比,研究项目的可变性要大得多,并且涉及定制的、采集后的图像和数据分析。很难准确预测数据将如何在研究环境中使用,不仅不同的研究小组有不同的要求,而且即使是同一个项目也可能需要根据样本灵活地询问信息。为了充分利用 Mineralogic 定量矿物学的强大功能,收集的数据必须不锁定在专有数据格式中,假设看似不灵活的输出适合所有人。为此,在可视化和导出方面,数据灵活性被置于软件的核心。自动矿物学的图像输出通常涉及两种图像类型,一种是背散射电子 (BSE) 图,另一种是基于自动矿物学分类的假彩色相图。与其将定量地球化学简化为数值输出,不如将这些信息带到最前沿,能够生成以完全数据拼接格式检测到的任何元素的定量元素热图(图 2)。现在可以通过单击导出在屏幕上查看的任何这些图像,为报告和手稿创建即时数据。图 2:a) 苏格兰格莱内尔格变质岩的全薄片扫描。Ca 热图突出显示分区的石榴石,然后以更高的分辨率重新分析。
 图 2: b) 石榴石图显示了元素和浓度范围选择的周期表用户界面。 比灵活的可视化更重要的是能够决定您希望如何处理数据本身,如果软件平台中的数据库无法访问,这是不可能的。Mineralogic 允许以最简单、最灵活的格式导出所有地球化学热图。这允许在任意数量的通用外部数据和可视化平台中查看数据集,作为电子表格或图像,或合并到定制的图像分析程序和脚本中。特别值得注意的是伯尔尼大学的 Pierre Lanari 设计的 XMapTools (xmaptools.ch/) 的使用。XMapTools 专为地球科学家设计,可从元素图中提取信息,这些信息已通过额外的电子探针样品分析步骤进行量化。将定量 EDS 图直接从 Mineralogic 导入 XMapTools 避免了这一额外的校准步骤,并允许使用矿物数据即时计算有用的参数,例如元素氧化物、末端成员成分和每个公式单位的阳离子,以及进行热力学计算。Mineralogic-to-XMapTools 工作流程最大限度地利用了灵活的数据输出,并为石油学家提供了一个出色的集成工具。通过采用定量地球化学并使其与自动矿物分类本身一样易于访问和重要,该软件现在在一个平台上提供了矿物学和岩石学应用的一站式商店,该平台可以结合许多其他图像和分析技术,如 EBSD 、WDS 和 CL。3D 自动化矿物学 - 新领域数十年来,通过微型计算机断层扫描 (µCT) 进行的非破坏性 3D 成像已被用于研究材料科学样品。这些仪器的性质意味着它们长期以来一直停留在成像领域,并没有被大量用于除分割等操作之外的定量分析。CT 平台通常设计用于增强对比度以可视化样本中的特征,从而导致信噪比抑制复杂的异质样本(如岩石)的详细分析,这一事实进一步阻碍了这一点。长期以来,能够完全基于 X 射线衰减值直接从 CT 吸收对比断层扫描 (ACT) 中识别矿物一直是一个目标,然而,由于校准、标准化和信噪比问题的多重障碍,直到现在这种量化仍然遥不可及。随着 2022 年 11 月 Mineralogic 3D 的推出,这个梦想现在已成为现实(图 3)。图 3: a) X 射线数据的自动矿物分割允许对矿物质地和丰度进行非破坏性分析。这些数据为您的岩石样本提供最可靠和最具代表性的 3D 分析,并指导相关工作流程。
图 3:b) 3D X 射线断层扫描的最新进展已使其超越成像并进入定量分析 (1) DeepRecon Pro 机器学习图像增强,(2) 非破坏性晶体取向分析,现在 (3) 自动化矿物学和定量样品分析。
 Mineralogic 3D 是一种突破性的新软件解决方案,旨在同时在 ZEISS Context (µCT) 和 Versa X 射线显微镜 (XRM) 上运行。预计 3D 自动化矿物学将迅速在工业的常规工作流程应用中找到一席之地,它非常适合识别硫化物和氧化物等矿物种类,计算它们的丰度,并确定它们彼此之间的关系以及脉石矿物. X 射线平台在这方面具有显着优势。ACT 的样品制备很少或根本不存在,整个或粉碎的样品可以在提取后立即加载,并且不需要环氧树脂底座的制作、固化和抛光。获取 3D 数据也消除了抛光表面的立体效应,显着提高数据质量,同时减少获取数据的时间。然而,以最少的样品制备或损坏获得如此详细的定量信息的能力意味着各种研究工作流程很可能也将采用该技术。Mineralogic 3D 将许多单独的解决方案组合到一个软件包中,利用校准和量化蔡司 X 射线平台从源到探测器的各个方面的能力,这意味着可以克服以前所有矿物识别的障碍。为了始终如一地识别矿物相并量化它们的关系,3D 重建需要具有尽可能高的信噪比,必须考虑 X 射线衰减伪影,并且必须分割 100% 的感兴趣体积。这些问题以及许多其他技术挑战已通过最近针对蔡司 CT/XRM 的高级开发计划得到解决。Mineralogic 3D 中最重要的并行进展之一是 DeepRecon Pro 的开发,它是最新的 Advanced Reconstruction Toolbox (ART) 的一部分。DeepRecon Pro 于 2021 年推出,是一种深度学习图像增强算法包,利用神经网络将 ACT 的信噪比提高到前所未有的水平(图 4)。图 4:借助 DeepRecon Pro 的图像增强功能,可以以更快的速度对样本进行成像,以清晰地显示复杂的特征。这里是c的增生lapilli。苏格兰西北部的 1 Ga Stac Fada 撞击喷射层在分割富含氧化铁的边缘后可以清楚地看到。 这对执行自动化矿物学的能力有两个积极影响,扫描时间显着减少,加快了常规分析的过程,并且类似的矿物通过其衰减值变得可区分。将这种“日常人工智能”组件纳入显微镜工作流程现在已成为公司在光、电子和 X 射线显微镜方面的理念的一个组成部分,使用户能够最大限度地提高仪器的输出,同时将对其时间的影响降至最低。量化分析工作流程的每一步的能力对于保持跨平台每次分析的同一矿物的一致价值至关重要,而且该价值本身与分析材料本身的内在特性相关,因此是有意义的. 与此相关的是考虑光束硬化的影响,即随着不同能量的 X 射线被样品吸收,通过材料的信号变化。该伪影通常被视为图像处理问题,需要在分析后进行校正,这对于简单的单相材料来说是一项可以完成的任务,但对于复杂的异质岩石样品却充满了问题。通过使用定量平台,并直接从第一原理应用这些和其他修正,在确定了 3D 断层扫描中存在的矿物质后,自动矿物学过程的一个重要组成部分就是能够计算矿物质比例及其关系(图 5)。图 5:完整的 Mineralogic 3D 工作流程可用于提高图像质量、自动分类矿物和分割样品的全部体积以计算 3 维的定量矿物模式和关系。图 1 中的示例是在 DeepRecon Pro 增强(灰度)和分割(彩色体积)之后看到的。全 3D 分段重建可以提供比 2D 更准确和详细的信息,并且几乎不需要样品制备。这意味着 100% 的分析体积必须被分割,矿物之间没有重叠,即体积的任何部分都不会被计算两次。这意味着所有标准输出,例如解放和锁定关系都可以以真正的 3D 形式计算。专门为此目的设计的智能分割例程,可快速生成用于定量纹理分析的 3D 体积,旨在确保忠实地表示微量矿物质,而不会被更大比例的矿物质吞噬。Mineralogic 3D 是一项改变游戏规则的技术,将 40 年历史的自动化矿物学概念带入一个全新的维度,允许对自然 3D 状态下的岩石样本进行全面定量分析。虽然 3D 分析相对于岩石中矿物和结构的复杂性有明显的好处,但 ACT 的非破坏性和完全定量分析可能是处理珍贵样品(如陨石和博物馆标本)工作流程中的关键步骤。 总结和结论/未来发展能够跨多种成像模式生成大型数据集是解决地质问题的理想选择,自动化流程以减少用户时间、建立统计相关性并为大型项目带来一致性至关重要。自动化矿物学的这些新发展也突出了相关显微镜的方向。越来越多的数据集被放置在云环境中,数据可以存储在大型、可访问的服务器中,为协作项目共享,并使用强大的在线处理工具进行处理。跨多个平台的自动化矿物学允许关联变得更加简化,因为跨这些平台的矿物库能够在此类云环境中进行通信并通过智能数据管理构建连接的数据集。用于矿物鉴定的地球科学中最多产的技术是光学显微镜 (LM),通常使用岩相显微镜。虽然 LM 一直是岩相学的中流砥柱,但它也是最难实现矿物识别自动化的技术,因为参数很少且变化足以区分静态图像中的矿物。因此,使用我们训练有素的地质学家的大脑,通过肉眼识别 LM 中的矿物质仍然比在大量矿物质中自动化该过程要容易得多。然而,即使是这项技术也有可能在未来发生转变。新的 Axioscan 7 Geo 是专为透射光岩相学设计的数字化平台,可在平面、交叉和圆偏振光(PPL、XPL、CPL)的整个薄截面上快速收集 LM 数据集,图 6:a) Axioscan 7 Geo 数字化平台为偏光显微镜生成独特的数据集,在多个方向捕获多种光模式。这使得数字薄切片可以在虚拟岩相显微镜中查看,或询问像素或晶粒尺度信息。
图 6:b) Axioscan 7 Geo 可以创建光学矿物学所需的所有成像模式,并将数字信息转换为模态丰度、取向、晶粒尺寸等的强大定量分析信息。
这些丰富的数据集是大量矿物学光学信息的基础,它们自然地提供了自动化的可能性。虽然这最初可能仅限于具有相对受控矿物组合的常规工作流程,但它为自动化矿物学在未来桥接光、电子和 X 射线显微镜铺平了道路,允许真正多模式和多尺度的相关项目自然。Mineralogic 软件套件处于自动化矿物学的最前沿,正在为工业和学术界的定量地球科学新时代铺平道路。可以将 2D 和 3D 矿物和纹理信息层与定量地球化学相结合,以创建对岩石样本的全面描述,并在整个地球科学中具有丰富的应用。关于作者理查德泰勒 Rich Taylor 博士Carl Zeiss 显微镜,Zeiss House,剑桥郡,英国Rich 于 2009 年在爱丁堡大学完成了实验岩石学博士学位,之后前往西澳大利亚科廷大学担任 SIMS 实验室专家。随后,他在科廷大学地球与行星科学学院担任研究职位,研究地球化学和地球年代学,专门研究成像和微量分析。2017 年,他搬到剑桥大学,使用新的显微镜技术研究地球上最古老材料中的磁性包裹体。2019 年,Rich 搬到了位于英国坎伯恩的蔡司,担任全球地球科学应用开发职位。原文:The future of automated mineralogy in geoscienceWiley Analytical Science ——Microscopy,7 June 202
  • 欧波同第三方检测|AMICS对某金矿尾矿工艺矿物学分析与研究
    1 研究概况及样品制备受某公司委托,对该公司某金矿的尾矿开展AMICS矿物参数自动定量分析,重点查明尾矿中金矿物的赋存状态。样品分级制备,样品分级情况及产率见表1。表1 尾矿粒度分级及产率由于尾矿中金的含量很低,为了查清 金的赋存状态,我们采用分级大数量统计的测试方法,磨制了4件样品进行测试。2 尾矿矿物组成2.1 尾矿金品位经委托方化学分析,该尾矿金品位平均1.5g/t。2.2 尾矿矿物组成及含量采用AMICS自动矿物分析系统测定该尾矿矿物组成及含量,测定结果见表2及图1。结果表明:尾矿中矿物组成比较简单,主要金属矿物为毒砂、黄铁矿,其次为针铁矿、自然铜等,微量的自然金;脉石矿物主要为石英,其次为云母、碳酸盐矿物及长石等。尾矿各粒级矿物相分类颗粒图见图2。由矿物相分类颗粒图可知,黄铁矿、毒砂粒度较细,连生体较多。表2 物质组成及含量图1 尾矿矿物组成柱状分布图图2 尾矿矿物相分类颗粒图
  • 电子探针分析稀土矿物的难点与重点
    矿产资源是自然资源的重要组成部分,是经济发展和科技进步的重要物质基础。运用现代分析测试技术能够获取详实准确的矿石和矿物数据信息,掌握区域内矿石和矿物的分布情况,阐明岩石矿物的经济价值和应用价值,进而为矿产资源的开发和利用提供科学决策,为保障国家能源安全和实施新一轮找矿突破战略行动提供技术支撑。 为促进学术交流和思想碰撞,国家地质实验测试中心主办期刊《岩矿测试》携手仪器信息网于2023年8月24日组织召开新一期“现代地质及矿物分析测试技术与应用”网络研讨会。期间,中国地质科学院矿产资源研究所研究员陈振宇将分享报告,介绍电子探针分析稀土矿物的难点与重点。电子探针分析稀土矿物的难点包括:单个稀土元素被激发出来的特征X射线线系繁多(包括L线系和M线系,每种线系中还有α线系、β线系等,以及它们不同等级的线系),而且线系之间分布密集;稀土元素由于其原子结构和晶体化学性质相近而经常共生在同一个矿物中;多个稀土元素的线系之间相互重叠的现象极为严重……。电子探针分析稀土矿物的重点包括:详细的定性分析,以确定矿物中所含元素、确定元素分析适合的谱线、确定分析谱线的背景位置、选择合适的分光晶体等,选择合适的标样也非常重要,另外还要注意有些标样和样品在电子束轰击下容易受损、有TDI效应等问题。欢迎大家报名参会,在线交流。附:“现代地质及矿物分析测试技术与应用”网络研讨会 参会指南1、进入会议官网(https://www.instrument.com.cn/webinar/meetings/geoanalysis230824/)进行报名。扫描下方二维码,进入会议官网报名2、报名开放时间为即日起至2023年8月23日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)6、赞助联系人:张老师(电话:010-51654077-8309 邮箱:zhangjy@instrument.com.cn)
  • 短脉宽超快速准分子激光剥蚀系统在地质及矿物分析中的应用
    准分子激光剥蚀系统在地质行业已经有广泛的应用,近年来,全球知名的激光剥蚀生产厂家Teledyne Photon Machines推出了短脉宽(<5ns)超快速(脉冲频率300Hz及以上)准分子激光剥蚀系统IRIDIA。该系统联用不同厂家的ICP-MS、ICP-TOF-MS等,可广泛应用于各种不同基质样品的分析。2023年8月24日,由国家地质实验测试中心主办期刊《岩矿测试》、仪器信息网联合主办的新一期“现代地质及矿物分析测试技术与应用”网络研讨会将召开。期间,上海仪真分析仪器有限公司产品经理栗斌将分享报告《短脉宽超快速准分子激光剥蚀系统在地质及矿物分析中的应用》,介绍短脉宽超快速准分子激光剥蚀系统在地质领域较难分析样品(如石英、萤石)中的应用,以及LA-ICP-MS/LA-ICP-TOF-MS成像技术在地质及矿物分析中的相关解决方案。欢迎大家报名参会,在线交流。附:“现代地质及矿物分析测试技术与应用”网络研讨会 参会指南1、进入会议官网(https://www.instrument.com.cn/webinar/meetings/geoanalysis230824/)进行报名。扫描下方二维码,进入会议官网报名2、报名开放时间为即日起至2023年8月23日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)6、赞助联系人:张老师(电话:010-51654077-8309 邮箱:zhangjy@instrument.com.cn)
  • 2022 CIFSQ丨仪真分析与您共同关注食品中矿物油污染新进展
    2022年10月26日-27日,第十六届中国国际食品安全与质量控制会议在上海盛大举办。本次大会采取线上线下同步进行的模式,多达600名致力于食品安全和消费者保护的监管机构、科学家、行业高管、技术专家和学者出席,分享对食品安全最新进展的见解。仪真分析时刻关注食品安全议题,聚焦并赞助了本次大会分论坛——食品中矿物油污染物,论坛上,各位大咖多方位多角度地分享了食品中矿物油污染物研究的最新进展,内容精彩纷呈。汪龙飞老师,雀巢中国食品安全研究院化学分析科学家,分享《食品中矿物油检测的挑战》报告,介绍了雀巢公司在食品中矿物油研究中的最新进展情况。隋海霞老师,国家食品安全风险评估中心研究员,评估三室副主任,分享《中国0-3岁婴幼儿辅食中矿物油的风险评估》报告,展示了婴幼儿辅食中矿物油调查方法和目前的现状。张鸿,上海仪真高级产品经理,分享《矿物油样品前处理方法最新进展》报告,介绍了最新的环氧化前处理方法和全自动前处理平台。武彦文老师,北京市科学技术研究院分析测试研究院(北京市理化分析测试中心)研究员,分享《纸质食品包装材料迁移矿物油的研究进展》报告,展示了纸质食品包装材料矿物油迁移的研究方法和调查数据。曹文明老师,丰益(上海)生物技术研发中心有限公司教授,分享《粮油食品中矿物油污染物的定量分析策略与实践》报告,通过自身的实践,提出合理的定量分析策略。同时还有海外专家以国际化视角对食品中矿物油污染进行了深入的探讨。Giorgia Purcaro教授,比利时列日大学,分享《LC-GC×GC-TOFMS/FID: 一个更好了解矿物油污染的验证平台》报告,介绍了LC-GCxGC-TOFMS/FID在矿物油定量和定性中的应用。Stefanka Bratinova,欧盟联合研究中心科学家,分享《采用更协调的方法测定某些具有挑战性基质中的MOSH/MOAH》报告,介绍了JRC中心在MOSH/MOAH分析过程中遇到的挑战和解决方法。Matthias Wolfschmidt,Foodwatch国际策略总监,分享《无矿物油污染的食物之路—非政府欧洲消费者组织Foodwatch的贡献》报告,介绍了Foodwatch公司在欧洲推动政府重视和控制食品中MOSH/MOAH污染问题的贡献。 会议期间,仪真分析同时展出CHRONECT® LC-GC 联用矿物油分析系统,报告后,部分用户至展台进行深入交流。仪真分析是德国Axel Semrau公司中国区独家合作伙伴,2018年在国内推广矿物油分析系统,已经成功为雀巢、玛氏、益海嘉里等多家知名企业提供矿物油解决方案。仪真分析在上海设有Demo实验室,可以对LC和GC进行改装,实现LC-GC联用功能。可以提供“交钥匙”解决方案。此外,仪真分析还可以提供MCPD/GE、甾醇、塑化剂、脂肪酸及PAH等全自动解决方案。
  • 光学显微镜在地质及矿物分析中的应用
    矿产资源是自然资源的重要组成部分,是经济发展和科技进步的重要物质基础。运用现代分析测试技术能够获取详实准确的矿石和矿物数据信息,掌握区域内矿石和矿物的分布情况,阐明岩石矿物的经济价值和应用价值,进而为矿产资源的开发和利用提供科学决策,为保障国家能源安全和实施新一轮找矿突破战略行动提供技术支撑。 为促进学术交流和思想碰撞,国家地质实验测试中心主办期刊《岩矿测试》携手仪器信息网于2023年8月24日组织召开新一期“现代地质及矿物分析测试技术与应用”网络研讨会。期间,徕卡显微系统应用工程师姚永朋将分享报告,从徕卡体视显微镜、数码显微镜、偏光显微镜、徕卡光学观测+元素分析二合一LIBS系统等方面,介绍光学显微镜在地质矿物分析中的应用。欢迎大家报名听会,在线交流。附:“现代地质及矿物分析测试技术与应用”网络研讨会 参会指南1、进入会议官网(https://www.instrument.com.cn/webinar/meetings/geoanalysis230824/)进行报名。扫描下方二维码,进入会议官网报名2、报名开放时间为即日起至2023年8月23日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)6、赞助联系人:张老师(电话:010-51654077-8309 邮箱:zhangjy@instrument.com.cn)
  • 矿物油分析最新进展-德国奶粉事件分析方法解读
    10月25日,中国中央电视台CCTV 13“新闻直播间”报道了“德机构称部分婴幼儿奶粉检出矿物油残留”的食品安全新闻。中国安捷伦科技与仪真分析多年前就关注矿物油食品安全问题,并与欧洲保持同步,将欧洲最新的矿物油分析解决方案提供到国内。目前,国内已经有多家用户在使用此分析系统。导读中央电视台所称的德机构,实际上是德国著名的公益检测机构foodwatch。他们最近在德国、法国和荷兰随机抽样了16种罐装婴儿配方奶粉和婴儿奶制品,分析是否含有矿物油残留。并在2019年10月24日,公布了其检测方法和结果。以下是该报告中使用的分析方法的解读。1分析方法参照欧盟JRC(联合研究中心)方法:在线LC-GC-FID二维色谱联用法定量,检测限0.5 mg/kg;使用GC*GC-TOF联用法定性。2参与分析的实验室3家经过认可的实验室。3实验前处理用氧化铝除去MOSH干扰物、环氧化去除MOAH测量干扰。4实验结果4.116种受试产品中,有15种产品的MOSH/POSH含量高于0.5mg/kg的定量限,在5 mg/kg以上至8.4 mg/kg的范围内有4个样品。4.216份样本中,有8份(50%)检测到MOAH阳性,含量范围为0.5mg/kg至3.0mg/kg。阳性产品中MOAH含量表明它们受到了未完全纯化的矿物油的污染。4.3使用GC*GC-TOF分析技术对MOAH阳性物质中相应的标记物质和物质组的阳性结果进行分析验证,证明了污染物来自矿物或化石来源。4.4矿物油污染来源不能完全确定,可能来自生产链,也可能来自包装材料。虽然此次抽检的产品是从德国市场取样,但是这些奶粉工厂生产的产品是否也销售至需求量庞大的中国市场,是一个值得探究的问题。虽然中国目前奶粉的各项检测指标中,并没有关于芳香烃类矿物油(MOAH)的抽检。但作为事件的扩展,这些企业的中国方面也正对国内配供的婴幼儿配方奶粉做出安全的保证。矿物油矿物油(MOH)是以石油、煤或天然气为原料,经过加工提炼,获得的一类碳原子个数不同的烃类混合物,常见的碳数在C10-C50之间。外观类似日常的油脂,但又不来自于动物或植物。为了和动植物油脂有所区别,故称矿物油。常见的矿物油种类繁多,可能是燃料油、润滑油、白油、蜡油和除尘剂等等。随着产品的大量使用,矿物油逐渐渗入到我们的食物链中。矿物油的毒性和法规根据毒理程度,矿物油目前被分成两类,一类是由直链、支链或环烷烃组成的饱和烃类矿物油(MOSH),另一类是含有苯环的芳烃类矿物油(MOAH)。研究表明,碳数在C16-C35之间的饱和烃类矿物油(MOSH)在体内不易被代谢,在组织中出现蓄积现象,长期食用会在淋巴结、肾脏和肝脏等组织内蓄积。芳香烃类矿物油(MOAH),常含有一个至多个苯环,含有多于三个苯环的MOAH被认为可能具有致突变和致癌性。德国联邦风险评估研究所(BfR)明确要求用于食品包装的接触材料 MOSH 迁移量小于 2mg/kg, MOAH 小于 0.5mg/kg。2017 年,欧盟发布了关于“监测食品以及食品接触材料和物品中矿物油烃类”的建议性指导文件,指出矿物油可以通过环境污染、收获和食品生产等残留在食品中。矿物油分析解决方案(Chronec LC-GC-FID)矿物油检测长期以来一直是非常有挑战的难点,首先要将样品中矿物油与复杂的介质分离,再通过气相色谱检测。由于矿物油无处不在,获得干净的仪器很重要。为了达到足够的灵敏度,需要大体积进样技术。由于矿物油中MOSH和MOAH的毒性不同,欧盟要求必须分开定量。矿物油在2011年被报道发现以来,欧洲的分析化学家经过多年努力,终于实现了矿物油可靠分析方法(在线LC-GC-FID)。方法初始,分析仪器由科学家自行搭建而成。仪器可靠性和耐用性方面一般。欧洲著名的仪器方法集成公司德国Axel Semrau公司,在5个博士组成的硬件和软件攻关团队集体努力下,实现了可靠性和耐用性非常高的分析系统。系统组成和特点如下:系统清洁和改装技术,去除背景使用液相色谱和硅胶柱将矿物油从介质(油脂等)中分离;部分溶剂蒸发技术保证450ul的样品在气相色谱中的分析,满足超低量分析;双通道双FID技术对MOSH和MOAH同时定量检测(它们分别是成千上万的混合物),节省分析时间;全自动氧化铝和全自动环氧化技术,进一步提高样品分析灵敏度与准确度;具有馏分收集功能,可以由GC*GC-QTOF对MOAH定性分析,确定来源;可使用LC-GC*GC-TOF 联用直接对矿物油各成分进行定性分析;软件Chronect可以兼容市场上所有主要品牌的LC和GC,无缝对接。Chronect 矿物油分析系统用户Chronect矿物油分析系统在欧美已经成功拥有了超过70家用户,包括BfR (德国联邦风险评估研究所),Eurofins(欧陆科技),德国SGS,德国IFP实验室, 费列罗(Ferrero)等著名欧洲食品检测实验室。本次foodwatch使用的3家独立实验室均使用Axel Semrau的分析系统:在线LC-GC-FID定量和GC*GC*TOF 定性。或许有被模仿,但AS在矿物油分析的专业性从未被超过,AS公司技术的矿物油分析方案的检测限为0.5 mg/kg。仪真分析和安捷伦中国仪真分析历来密切关注食品卫生安全的动态,为消费者提供咨询、建议及检测决方案。德国Axel Semrau公司选择了仪真分析作为大中国区的合作伙伴,授权并传授了其矿物油分析系统的设立,改装和分析技术。仪真是中国安捷伦科技的合作伙伴(VAR),首先共同推出安捷伦液相和气相色谱平台上的构建的Online-LC/GC-双通道FID+MS全自动矿物油检测方案,完全符合欧盟标准方法,并被国标或行标,如粮油系统行标-矿物油在油脂中的检测(草案),以及矿物油在大米中的检测(草案)作为推荐方案,被多位中国用户成功使用,食品企业未雨绸缪,已经建立内部监控计划,以可靠的数据应对突发事件。德中合作的矿物油分析实验室(仪真分析和北京理化分析测试中心共享实验室)已经于2019年8月正式揭牌,成为国内科研检测人员研究矿物油分析方法的平台。揭牌过程由仪器信息网全程跟踪报道(https://www.instrument.com.cn/netshow/SH101203/news_492242.htm)。欢迎光临2019.10.30-31的北京CIFSQ仪真分析展台或者2019.11.5-8 布拉格RAFA2019的Axel Semrau展位,有矿物油全自动分析系统及其它食品分析热点仪器展出。 请联系仪真分析或安捷伦科技,获取更多产品信息。
  • GERSTEL守护食用油安全——应对矿物油、氯丙醇酯及缩水甘油酯污染
    近期,“罐车混用”事件再次将食品安全问题推向风口浪尖,引发社会广泛关注。油罐车在未经彻底清洗的情况下,从运输煤制油等化工类液体转而装运食用油,导致食用油可能遭受化工残留物的污染。有专家表示,长期摄入含有这些化工残留的食用油,可能导致人体中毒,出现恶心、呕吐、腹泻等症状,甚至对肝脏、肾脏等器官造成不可逆的损害,但消费者很难分辨出来。鉴于此,仪器信息网特此发起“油罐车混装事件:仪器检测如何护航食用油安全?”主题征稿活动。此次邀请到GERSTEL分享食用油中矿物油、氯丙醇酯及缩水甘油酯污染的解决方案。 01 请介绍贵单位有哪些仪器成果或解决方案应用于食用油安全检测? GERSTEL 一直以来关注食品安全,以精密的样品前处理设备助力检测结果的准确性和高效性、以智能的控制软件提高使用感受并灵活满足应用需求、以强大的分析软件解决复杂繁琐的数据处理。我们成熟的矿物油污染HPLC-GC-FID检测方案、氯丙醇酯和缩水甘油酯污染检测方案,提供高效、准确的食用油安全的检测和评估,深受全球消费者的欢迎。 同时使用同一个平台还可以实现更多的检测项目,如PAHs,橄榄油中的烷基酯、蜡、甾醇、萜烯醇、豆甾二烯进行高效,准确的分析。GERSTEL矿物油污染HPLC-GC-FID 检测方案:GERSTEL 矿物油污染MOSH MOAH 解决方案实现了对食品、饲料、个人护理产品和包装提取物中矿物油残留的高效自动样品制备和分析。该系统基于在线耦合的 HPLC-GC-FID 系统,使用 GERSTEL 多功能进样器 (MPS)进行自动样品制备和进样。首先在 LC 步骤中,矿物油残留被分离成两个部分:矿物油饱和烃(MOSH)和矿物油芳香烃(MOAH)。然后,这些部分被分别转移到两个独立的 GC 柱中,在一个组合的双通道GC 系统中进行单独分析。该解决方案符合 DIN EN 16995:2017-08 标准的要求。双通道 GC 分离和 FID 检测使得MOSH MOAH 的完整分析仅需30分钟。此方法的关键是在 MOSH 和 MOAH 进入 GC 色谱柱前,需要准确的去除大量溶剂(LC洗脱液)并保证两个馏分精确的被分配到两个 GC 色谱柱中。GERSTEL 使用保留间隙技术(通过色谱前柱保留组分)和自主研发的 “溶剂汽化出口 Early Vapor Exit(EVE),可以精确控制 MOSH 和 MOAH 馏分的分配以及汽化溶剂的排出时间和体积。GERSTEL供完整的自动化样品前处理方案,包括环氧化、皂化、氧化铝净化以及馏分收集,大大提高结果的正确性和更低的检测限,同时大大降低繁琐的手动操作的工作量和时间。数据分析软件ChroMOH,帮助自动分析MOSH和MOAH的组分,提供100%可靠、稳定、快速的数据结果并自动生成报告,降低手动处理可能造成的误差,节省时间。HPLC-GC-FID 检测方案带有自动环氧化、氧化铝、皂化样品前处理功能的HPLC-GC-FID检测方案通过ChroMOH 软件自动积分MOSH和MOAH的各组分,并生成到最终报告中。GERSTEL氯丙醇酯和缩水甘油酯污染检测方案:GERSTEL 提供全面的3-MCPD和缩水甘油的检测自动化方案,可高效、准确、可靠地测定食品中氯丙醇及其脂肪酸酯含量。&bull 同位素稀释-气相色谱-串联质谱法 (对应 ISO18363-4法)&bull 碱水解-气相色谱-质谱法 (对应 ISO18363-1法)&bull 酸水解-气相色谱-串联质谱法 (对应 ISO18363-3 法)GERSTEL的自动化解决方案,严格遵守标准方法GB 5009.191-2024第二篇第一法,使用内标13C3-3-MCPD 二酯和13C3-2-MCPD 二酯作为内标,得到的3-MCPD酯、2-MCPD酯和缩水甘油酯的标准曲线非常好, 分别为0.999、0.998、0.997。有回收率高,转化率稳定可靠,样品通量高的优势。02请分享1-2个仪器检测技术在食用油安全检测中的最新应用与进展举例1:意面、麦片、面包干、葡萄干及其包装中的矿物油实际含量上图分别为意面、麦片、面包屑、葡萄干(依次从上到下)的MOSH和MOAH色谱图,每个样品检测三次,重现性非常好。举例2:实现食品安全国家标准 GB 5009.191-2024 -高效、准确、可靠地测定食品中氯丙醇及其脂肪酸酯、缩水甘油酯GB 5009.191-2024第二篇第一法,即13C同位素稀释-气相色谱-串联质谱法,使用13C3-3-MCPDE 作为内标,准确量化转化为缩水甘油的3-MCPD的量,修正由碱水解所带来的缩水甘油测定值偏高的问题,并且可以直接从样品中测定缩水甘油。基于分析前建立的校准曲线在一次测定中确定3-MCPD酯、2-MCPD酯、和缩水甘油酯3种分析物。GERSTEL的自动化解决方案,严格遵守标准方法 GB 5009.191-2024第二篇第一法, 使用内标13C3-3-MCPD 二酯和13C3-2-MCPD 二酯作为内标,得到的 3-MCPD酯、2-MCPD 酯和缩水甘油酯的标准曲线非常好, 分别为0.999、0.998、0.997,有回收率高,转化率稳定可靠,样品通量高的优势。循环对比试验中样品的成功分析证明了自动化样品制备过程、方法和分析系统的高质量。 不同基质中所有分析物的 RSD 介于0.1%和10%之间。 自动化可实现24/7全天候运行,优先样品可轻松插入运行序列。03您认为哪些检测技术可能会进入食用油检测标准中?目前经典的检测方法是德国BfR推荐方法,即使用手工SPE过柱实现MOSH和MOAH的分离,然后使用GC-FID和GC-MS进行定量分析。很多方法如ISO17780-2015 和中国出入境检验检疫行业标准SN/T 4895-2017 都与德国的BrR类似。在此方法基础上的自动化在线LC-GC-FID法,欧盟标准方法EN16995-2017《基于植物油和以植物油为基础的食品的在线HPLC-GC-FID分析测定矿物油饱和烃(MOSH)和矿物油芳烃(MOAH)》,我认为将会进入食用油中矿物油的检测方案。此标准方法通过自动的LC柱在线净化和分离,大大提高了MOSH和MOAH的分离效率和准确率,并且大大降低一次性的耗材和人力劳动的使用,是未来分析方法的方向。
  • 火星探测中的近红外光谱矿物表征
    北京时间2月19日凌晨4时55分,在“天问一号”进入火星轨道一周后,“毅力”号(Perseverance)火星车不经变轨直接突入火星大气层,并成功着陆。本轮火星探测季也进入了新的阶段。毅力号火星车毅力号的着陆地点是位于北纬18度的耶泽罗陨击坑(Jezero crater)。有证据表明曾经有河流流入耶泽罗陨击坑,形成了一个早已干涸的三角洲。而毅力号在此处着陆,一项重要目标便是识别和收集该地区的沉积岩和土壤样本,探寻可能存在的火星生命迹象,同时测试人类在火星生存的技术。火星表面矿物分布提供了火星起源、地质及环境演化线索,火星表面卤水种类及分布提供了火星气候/水文演变信息。此外,毅力号还将通过对表面岩石、土壤物理化学特征的分析,帮助人类理解火星地质以及大气环境。Raman(拉曼)与NIR(近红外)光谱技术是从分子层面识别火星表面及次表面物质成分、丰度及分布特征的重要手段,是多国火星车的必备科学设备。位于毅力号火星车桅杆单元的SurperCam(超级相机)搭载了Raman和NIR光谱仪对火星进行巡视探测,将Raman与NIR数据融合进行联合矿物表征分析,并开展火星表面卤水及其它与水相关物质的分析具有重要科学意义。对地外行星探测来说, 近红外光谱技术具有几乎无需样品制备、信号易获取、探测矿物种类丰富、对H2O/OH探测响应灵敏等特点。马尔文帕纳科(Malvern Panalytical)旗下ASD TerraSpec Halo矿物近红外光谱分析仪以其宽广的光谱范围(350-2500nm)、超高光能动态范围、高光谱分辨率及重现性及体积小巧坚固结实等特性被选择使用于为人类重返月球、探測火星准备的多项重要研究中,以提高人类勘探行星资源的能力。其中之一是由NASA赞助的研究项目,地理发现操作策略测试(GeoHeuristic Operational Strategies Test-GHOST),选择了由马尔文帕纳科赞助和提供的涵盖VIS-NIR-SWIR波段的ASD TerraSpec HALO,以提高火星车样品收集的速度、效率和科学回报。该项目使用光谱仪模拟火星科学实验室(MSL)的ChemCam和2020火星车的SuperCam.SurperCam(超级相机)于毅力号火星车位置示意图分子在红外光谱内的吸收产生于分子振动或转动的状态变化或分子振动或转动状态在不同的能级间跃迁。能量跃迁包括基频跃迁(对应分子振动状态在相邻振动能级之间的跃迁)、倍频跃迁(对应于分子振动状态在相隔一个或几个振动能级之间的跃迁)和合频跃迁(对应于分子两种振动状态的能级同时发生跃迁)。由于近红外光谱谱峰较宽,实际样品中各种成分的吸收峰重叠严重,需要用化学计量学方法对近红外光谱进行化学成分的定量分析。蒙脱石/黑色,伊利石/亮蓝色,白云母/深蓝色的可见-近红外光谱曲线SuperCam超级相机桅杆单元内部(装配前)TerraSpec Halo矿物近红外光谱分析仪是勘探地质市场上最便携的近红外(NIR)仪器,它是手持一体式全量程的仪器。扣动一下扳机,这款创新性的仪器可以即时在仪器上获得矿物分析结果。这些近乎实时显示的结果极大地加快了勘探的工作力度,提高了效率,有助于进行分析和决策,最终为采矿经营者节省了宝贵的时间和金钱。TerraSpec HALO还被广泛地应用于例如考古和采矿行业中,包括陶瓷、陶器的成份分析,艺术品的鉴定和修复,矿藏的勘探,开采和加工等等。TerraSpec HALO矿物分析近红外光谱仪TerraSpec HALO光谱库内置超过150种矿物质的700种以上的光谱,来源于大学、个人采集、国际研究所、以及美国地质勘探局(USGS)的矿物质目录,并可由客户自定义添加光谱库,以进行矿物质的快速识别,且具有GPS和语音备忘录功能。TerraSpec HALO采用专利的矿物质匹配算法,通过将未知物质光谱与内置矿物质谱库匹配,计算匹配矿物后,将其从未知物质光谱中被扣除。使用扣除后的未知物质光谱,继续匹配,最多可以生成7种相关矿物成份的识别。将获取光谱导入计算机Halo Manager软件中可分析多达9种矿物成份。随机自带矿物质评级显示于屏幕右侧,描述矿物结晶程度或构成性质,允许地质学家了解地质或地热的情况,以指引潜在的矿物。参考文档:1. https://mars.nasa.gov/mars2020/spacecraft/instruments/supercam/2. https://finance.sina.com.cn/tech/2021-02-19/doc-ikftssap6896673.shtml3. http://www.globenewswire.com/news-release/2019/07/16/1883283/0/en/Renowned-Researchers-Leverage-Malvern-Panalytical-s-ASD-TerraSpec-Halo-Mineral-Identifier-to-Advance-Investigation-of-Life-on-Mars.html4. https://www.materials-talks.com/blog/2019/07/10/asd-terraspec-halo-used-in-space-based-research/5. 徐伟杰 火星表面模拟矿物和卤水的光谱鉴别研究[D] 山东大学 2018年
  • 拉曼光谱新应用:根据矿物粒大小对岩石进行分类
    粒度指常指矿物或颗粒的直径(毫米、微米)大小。沉积物颗粒的大小对沉积物的成岩作用有较大的影响,因此沉积岩矿物组成的粒度大小可以反映沉积岩结构的主要特征,是岩石岩性的主要评价指标,同时对于其性质和潜在用途有着非常重要的影响,例如,在同等孔隙度条件下,颗粒越粗,对应的渗透率越大。石灰岩是一种典型的沉积岩,在建筑、冶金、化工、塑料、涂料、食品等工业领域有着广泛应用。而粒度是石灰岩的分类与利用的关键因素之一,不同工业用途对于矿物粒度的要求也不同。如在冶金工业中,炼铁所需的石灰石粒度在15-60mm,烧结则要求粒度≤3mm。以往的研究表明,拉曼光谱信号和背景的强度取决于所测试样品的颗粒及其大小。研究人员在此基础上研究了钙质材料的拉曼信号强度变化和相关背景强度随晶粒尺寸的变化,并开发出一种可以从拉曼光谱中提取平均晶粒尺寸定量信息的方法。研究人员对来自不同意大利采石场的一组沉积钙质岩样品进行岩石学分类,然后进行拉曼光谱分析,同时还对相应的微球和结晶方解石粉末样品进行了分析,发现拉曼信号与粒径之间存在明显的相关性,并获得了校准曲线。实验实现了拉曼信号和背景强度对晶粒和粒径的可重复行为,因此证明了从前者的测量中获得后者的半定量信息的可能性。该成果可以在石灰工业领域以及各种科学环境和其他材料生产链中加以利用。由于设备便携,该技术在采石时期就可以对石灰岩进行快速分析并分类,有利于有利于缩短石灰石材料的生产周期,减少成本。
  • 如何高效准确地进行矿物油含量检测分析?
    近日,新京报报道指出,部分罐车在卸载煤制油后,未进行清洗便直接用于装载食用油,此事件迅速引起社会各界的广泛关注,油脂质量和我国人民群众身体健康之间的关系极为密切。◀ 矿物油组成及毒性▶ 01矿物油是C10-C50烃类化合物的总称,主要由饱和碳氢化合物(mineral oil saturated hydrocarbons, MOSH)、芳香族碳氢化合物(mineral oil aromatic hydrocarbons,MOAH)以及少量的多环芳烃(PAH)和含硫、含氮化合物构成。矿物油可以通过多种途径进入食品,传统的包括环境污染、采收运输、生产加工、包装销售等,整个产业链均可能发生矿物油迁移,从而污染食品。有毒理学研究表明,MOSH是人体中累积量最大的污染物,主要来源于食物的摄入。进入体内的矿物油,在小肠和肝脏被代谢为脂肪酸和脂肪醇后,部分MOSH会蓄积在人体的皮下脂肪、肝脏、肾脏、脾脏和肠系膜淋巴结等器官和组织中。相比MOSH,MOAH虽然没有蓄积效应,但其毒性很大,其中含3个以上苯环的MOAH具有遗传毒性和致癌性。◀ 矿物油检测方法分析▶ 01目前,高效液相色谱-气相色谱-氢火焰离子化检测器在线联用技术(HPLLC-GC-FID)是测定食品中矿物油的理想方法(DIN EN 16995-2017),原因是FID对所有烃类化合物的响应几乎完全一样,相同浓度的任一碳氢化合物的FID响应信号(峰高或峰面积)接近,因此,无需寻找与目标物对应的参考标准,仅采用任一内标物即可对不同化学组成的矿物油进行准确定量。气相色谱的作用是可以将矿物油按照沸程由低到高分离,从而可以通过色谱图了解矿物油的碳数范围信息。然而,仪器复杂且造假昂贵导致改方法普及程度不高。国内的两个标准GB/T 5539和GB/T 37514,采用了皂化法和氧化铝薄层色谱法,方法不足之处在于方法只能用于定性, 不能用于定量,而且检测限较高。02ISO 17780:2015,GC-FID(离线方法)装填的层析柱或SPE柱借助硝酸银渍来提高MOAH和烯烃的保留能力,使得MOSH分段流出。该方法与食品接触领域,相关检测标准SN/T4895-2017《食品接触材料 纸和纸板 食品模拟物中矿物油的测定气相色谱法》相近。SN/T4895-2017的检测原理是:经迁移试验获得的食品模拟物,经正已烷萃取富集,用固相萃取柱洗脱分离矿物油MOSH部分和MOAH部分,浓缩定容后,采用气相色谱火焰离子检测器(FID)测定,用内标物定量计算。依据此标准,睿科集团推出的0.3% AgNO3-Silica Glass, 3g/6mL(P/N:RC-204-AS306)定制固相萃取柱,可以较好分离MOSH和MOAH。◀ 仪器设备和耗材解决方案▶ 仪器设备检测项目设备类型技术性能设备型号矿物油含量全自动浓缩设备全自动的水浴氮吹浓缩仪-Auto EVA 60高通量全自动平行浓缩仪-Auto EVA 80高通量全自动平行浓缩仪耗材检测项目耗材矿物油含量固相萃取柱:0.3%硝酸银硅胶玻璃柱货号:RC-204-AS306◀ 样品制备自动化实验流程▶
  • 欧波同发布全自动光学显微矿物分析系统新品
    1、背景介绍随着我国钢铁行业的高速发展,对各个检验及研发环节要求越来越高。无论是生产装备还是检验研发设备,降本增效是发展根本。产品结构已经完成了“普转特、特转优、优转精”的战略转型,提供优质的铁水、钢水是对于生产的保障,而合理的原料供应是得以保障持续发展的必要条件。选矿是整个生产过程中最重要的环节,选矿工艺的合理制定也直接决定了后续的产品质量。Fe在矿石中的主要存在形式有磁铁矿、赤铁矿、褐铁矿、菱铁矿,对不同种类矿石的区分以及硬度、密度、湿度、解离度等方面的评估是制定后续的选矿工艺的理论基础。所以更好、更深入地了解铁矿资源而不仅仅局限于铁含量的检测非常重要,其不仅能够准确地评估铁矿价值、推断铁矿品质对下游工艺的影响,还能够优化生产工艺以节约成本提高产能。2、工作原理3、产品功能(1)识别并定量分析铁矿石矿相,从而评估铁矿价值,优化矿石处理工艺流程及预测铁矿品质对下游工艺的影响;(2)识别并定量分析烧结和球团矿矿相,研究烧结球团矿微观结构与性能的关系,优化配矿和烧结焙烧工艺,从而改善烧结矿品质降低配矿成本;(3)分析焦炭微观结构,预测焦炭性能及其对炼铁、冶金工艺的影响。4、产品优势(1)相对于传统的电镜矿物分析系统,该产品的性价比更高、效率更高。与人工计点法相比,其评价的面积更大,精度更高,速度会有几十倍的提升。同时该系统配备的完善的数据库以及极高的自动化程度降低了对操作人员技术水平的要求,能够节约一部分人工成本。对于整个钢铁行业而言能够快速的推动选矿、配矿等工艺的发展,提高整个行业的发展水平。(2)该系统基于丰富的高质有效矿物信息能够实现更高层次的特征表征;(3)直观的反映出相同结构、相似性质的矿石颗粒的结构差异,对下游工艺流程的预测具有重要指导意义。下图为四种具有不同类型组织结构特征的赤铁矿颗粒(从致密到多孔不等)。这些不同的组织结构使得它们在硬度、耐磨性和吸湿性等方面表现出差异,同时在粉碎、选矿造粒和烧结过程中也表现出不同特点。(4)基于反射光显微镜的工作原理能够有效地鉴别不同种类的铁氧化物和氢氧化物,比电镜矿物分析和拉曼光谱等分析速度更快、分辨率更高、更经济实用。(5)H = 赤铁矿(假象赤铁矿),HH = 水赤铁矿,vG = 玻璃针铁矿,oG = 赭色针铁矿,K = 高岭石,P = 孔隙,E = 环氧树脂创新点:(1)相对于传统的电镜矿物分析系统,该产品的性价比更高、效率更高。 (2)该系统基于丰富的高质有效矿物信息能够实现更高层次的特征表征; (3)直观的反映出相同结构、相似性质的矿石颗粒的结构差异,对下游工艺流程的预测具有重要指导意义。 (4)基于反射光显微镜的工作原理能够有效地鉴别不同种类的铁氧化物和氢氧化物,比电镜矿物分析和拉曼光谱等分析速度更快、分辨率更高、更经济实用。 全自动光学显微矿物分析系统
  • 牛津仪器显微分析技术在地质及矿物分析中的应用
    显微尺度下的矿物分析是地质领域非常重要的研究内容,采用不同的分析技术可以获得多维度的信息。牛津仪器的材料分析集团(Materials Analysis Group)整合了EDS、EBSD、WDS、Raman、AFM等多种显微分析技术,这些技术均可用于地矿样品的分析。2023年8月24日,由国家地质实验测试中心主办期刊《岩矿测试》、仪器信息网联合主办的新一期“现代地质及矿物分析测试技术与应用”网络研讨会将召开。期间,牛津仪器应用科学家陈帅将分享报告,以具体的案例详细地展示牛津仪器显微分析技术在地矿领域的最新进展,内容包括EDS技术定量分析、鉴定未知矿物相;AZtecWave分析微量-痕量元素以及谱峰重叠严重的元素;Unity探测器对全样品进行BEX成像;EBSD技术分析矿物的相分布、取向关系和变形状态等;AZtecMineral分析矿物相比例、解离度、共生关系等参数;Raman成像技术鉴别矿物相、分析矿物相的三维分布;AFM技术分析矿物的物理性能等。欢迎大家报名参会,在线交流。附:“现代地质及矿物分析测试技术与应用”网络研讨会 参会指南1、进入会议官网(https://www.instrument.com.cn/webinar/meetings/geoanalysis230824/)进行报名。扫描下方二维码,进入会议官网报名2、报名开放时间为即日起至2023年8月23日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)6、赞助联系人:张老师(电话:010-51654077-8309 邮箱:zhangjy@instrument.com.cn)
  • 堪称粘土矿物分析“神器”的设备,究竟好在哪儿?
    粘土矿物主要指那些粒级为粘土级的层状含水铝硅酸盐矿物,有较大的比表面能,膨润性、吸附离子的可交换性优异。常见的粘土矿物主要有高岭土、蒙脱石、伊利石、绿泥石以及这些矿物组成的混层矿物,X射线衍射分析仪则是分析此类化合物的优异设备之一。奥林巴斯便携式X射线衍射分析仪可以为地质学家、冶金学家等提供实时的定量矿物学信息。地质勘探学者可以利用XRD现场分析的数据立即做出准确决策,冶金学家可以利用XRD分析数据提供高效的提纯精炼工艺,有益于提高矿石的分析效率。便携式XRD与实验室XRD分析结果一致,如下图是奥林巴斯便携式XRD(Terra)分析粘土矿物的谱图,结果表明样品主要含有方解石、伊利石、石英、钠长石及绿泥石。分析一系列粘土样品,可对比谱图的差异来观测样品的组分差异。奥林巴斯便携式XRD五大优势:极大的便携性极少样品量(约15mg)独特的震动舱设计简易的样品处理XRD与XRF同步分析检测奥林巴斯的XRD分析仪是一款高性能、封闭射线式便携XRD分析仪,可以通过对Cl到U元素进行的一次性快速XRF扫查,提供材料主要成份、次要成份或微量成份的全晶相结构信息。所需样品量极少,操作简便,可使操作人员在野外对样品进行实时快速的现场分析。
  • 106项指标监控自来水质量(康师傅矿物质水事件)
    对用自来水为水源生产矿物质水不必过于担忧 106项指标监控自来水质量 各种水的生产过程   近日,有网友发帖,质疑康师傅矿物质水广告中所声称的 “优质水源”从何而来?更有网友潜入康师傅杭州水厂探密,揭秘康师傅水源系自来水灌装。   对于 “自来水”事件,康师傅接受记者采访时证实:其大部分工厂的水源确是自来水。   对于“优质水源说”,康师傅控股有限公司总裁室副总经理钱为家解释说:“基于安全与卫生的考虑,我公司认为,只要符合国家GB5749《生活饮用水卫生标准》,其中共计106项指标,我们认为在有这么多监控指标下的水,不论是自来水或其他天然水源,都可以被称为是安全和优质的水源。”   对于这一解释,钱为家坦承:“这可能与一些消费者的认知有所差异,我们在此感到遗憾和抱歉。故我们为了尊重消费者的感受,即刻修改广告与相关标签内容,以消弭误解。”   质检专家解读标准   康师傅“自来水”事件经多家媒体的先后报道,在饮用水市场掀起不小的波澜,同时扯出一个行业内幕———用自来水生产矿物质水或纯净水,其实是行业普遍现象。   包装水产品的水源,不外乎来自各地自来水、地下水或天然水源。由于天然水源非常有限,大部分都在深山老林里,企业不可能把每一家工厂都建在天然水源地附近,这样势必会使运输成本大幅上升,同时增加运输过程中被污染的风险。因此,绝大多数瓶装水,都是由城市自来水净化而成。   有专业机构的统计数据表明,以自来水作为水源的包装水产品,市场占有率达到81%。而使用天然水源的水产品市场占有率仅为19%,其中,天然矿泉水占8%,天然(饮用)水11%。   天然水源与自来水作水源,哪个更为优质?国家食品质量监督检验中心主任宋全厚表示:“各有优点。”国家标准GB10789饮料通则规定,包装饮用水是饮料中的一个大分类,其下再分为饮用天然矿泉水、饮用天然泉水、其他天然饮用水、饮用纯净水、饮用矿物质水,其他包装饮用水,共六个分类。每个水的种类都有一定的特性,可提供消费者不同的选择,没有好坏的分别。饮用矿物质水是在纯净水的基础上添加矿物质,是合乎政府规范的六大包装饮用水的其中一类。   使用自来水生产瓶装水与使用天然水源有什么区别呢? “没有必要区分,也没有办法区分,因为没有标准来区分。” 宋全厚认为,从安全与卫生的角度而言,自来水经过公共供水系统严格检测,符合国家标准GB5749《生活饮用水卫生标准》。天然水源作为饮用水水源时,也需进行检测,符合国家标准GB5749《生活饮用水卫生标准》。   宋全厚同时表示,依据国家标准,近年来,国家食品质量监督检验中心对瓶(桶)装饮用水进行了多次抽查,市场占有率较高的大型生产企业产品合格率质量没问题,消费者可以放心喝。   在专家看来,标准为饮用水产品质量撑起一把保护伞,是看问题的起点,也是终点。   “康师傅”强调质量安全   对于此次事件中引起关注的矿物质水,康师傅集团总部中央研究所所长杨乾辉强调,康师傅使用合乎GB5749《生活饮用水卫生标准》的水源,经过六道严谨、先进的加工程序,再次进行过滤与杀菌处理,制成纯净水,再添加符合《食品添加剂》与《营养添加剂》等国家标准的矿物质原料———氯化钾与硫酸镁,整体生产过程采用进口的全自动化设备,制成具有全国一致标准的矿物质水产品,请大家放心饮用。   这起事件是否对康师傅矿物质水的销售带来不利影响呢?康师傅相关负责人表示:“没有什么影响。”他解释说,消费者购买瓶装水,主要要求质量、卫生过关,同时,关心价格和口感。“作为一个老品牌,全国这么多人喝了这么多年的饮用水品牌,消费者是信赖的。”
  • 全新发布 | TESCAN公司推出新一代适用于地球科学研究和矿物分析的 综合矿物分析系统TESCAN TIMA
    2020年11月25日,TESCAN ORSAY HOLDING a.s.宣布正式发布新一代综合矿物分析系统---TESCAN TIMA,TIMA(TescanIntegrated Mineral Analyzer)是一款可满足地球科学研究和工业矿物分析的岩石矿物全自动化定量分析系统。TESCAN TIMA 可以对岩石、矿石、岩屑、精矿、尾矿、浸出渣或冶炼产品等进行快速定量矿物分析,能快速有效识别岩石类型、矿物种类、测量矿物含量、分布、颗粒大小、解离或锁定各种参数。TESCAN TIMA 综合矿物分析系统功能和优势:矿石的整体形态和矿物及元素的种类、含量及分布;矿石中矿物的结构构造、共生、连生和包裹关系特征;快速准确的金、银、铂和稀有金属亮相元素寻找功能;选矿和冶炼过程中矿物及成矿元素的品位和回收率计算;储油层岩石特征、岩屑分类、孔隙组合及孔隙度的测量;TIMA软件支持离线数据分析,数据永久保存,可随时查看。 TESCAN TIMA 可以快速解析复杂矿石和寻找贵重金属,提高资源利用,降低勘探成本,助力矿产资源勘查和潜力评估,精确监控粉碎、浮选、浸出和回收工艺,优化选矿流程设计,提高矿山运营效益。TESCAN TIMA 提供的特定矿物和亮相搜索模块,可以快速准确寻找目标矿物和金、铂等贵金属以及稀有和稀土金属。TIMA对矿物成分和结构的定量解析达到微米的尺度,相对于传统光学显微镜和扫描电镜具有非常大的优势,已广泛应用于地质、石油、矿业和冶金等领域。新一代的TESCAN TIMA在软件和硬件上都有了进一步的发展和融合,能够更准确的识别矿物,提高分析效率。提供的多达100个样品的全自动进样系统,24/7无人值守全自动分析功能更是带来前所未有的超脱体验!近几年来,无论在国内和国际上,已有多个课题组和公司采用该项技术进行了相关研究和实际应用,并在多种期刊上发表了高水平文章,相关的成果正在不断地涌现。 TESCAN TIMA 相关论文应用方向:地球1、Instantaneous rocktransformations in the deep crust driven by reactive fluid flow(Nature Geoscience,2020,DOI:10.1038/s41561-020-0554-9)文章链接:https://xueshu.baidu.com/usercenter/paper/show?paperid=1u0c0r00x40s0g00143804h0e9320814&site=xueshu_se&hitarticle=1 2、Cold deep subductionrecorded by remnants of a Paleoproterozoic carbonated slab(NATURE COMMUNICATIONS,2018,DOI:10.1038/s41467-018-05140-5)文章链接:https://xueshu.baidu.com/usercenter/paper/show?paperid=5daab39185510fbab1e2466e7564a378&site=xueshu_se&hitarticle=1 3、Recoveryof an oxidized majorite inclusion from Earth' s deep asthenosphere(Science Advances,2017,DOI:10.1126/sciadv.1601589)文章链接:https://xueshu.baidu.com/usercenter/paper/show?paperid=439db230a088a740edda4a498fff8349&site=xueshu_se&hitarticle=1 应用方向:选矿 4、The mineralogy and processingpotential of the Commonwealth project in the Molong Volcanic Belt, centraleastern New South Wales, Australia(Ore Geology Reviews,2019,DOI:10.1016/j.oregeorev.2019.102976)文章链接:https://xueshu.baidu.com/usercenter/paper/show?paperid=1v3u08r0v71x0rm0qh2f0gj0mj513539&site=xueshu_se&hitarticle=15、Assessment of a spodumene oreby advanced analytical and mass spectrometry techniques to determine itsamenability to processing for the extraction of lithium(Minerals Engineering,2018,DOI:10.1016/j.mineng.2018.01.010)文章链接:https://xueshu.baidu.com/usercenter/paper/show?paperid=ee20d0507c9e3a57a5bea30d91e1076d&site=xueshu_se&hitarticle=1 6、Comparison of the Mineralogyof Iron Ore Sinters Using a Range of Techniques(Minerals,2019,DOI:10.3390/min9060333)文章链接:https://xueshu.baidu.com/usercenter/paper/show?paperid=1g580c805b3a0my0mw7k08j07t615415&site=xueshu_se&hitarticle=1应用方向:石油 7、Mineralogy and pore topologyanalysis during matrix acidizing of tight sandstone and dolomite formationsusing chelating agents(Journal of Petroleum Science andEngineering,2018,DOI:10.1016/j.petrol.2018.02.057)文章链接:https://xueshu.baidu.com/usercenter/paper/show?paperid=68908abcdef9cbd15705dc2371b76934&site=xueshu_se&hitarticle=1 应用方向:文保8、Alkaline leaching ofbrannerite. Part 2: Leaching of a high-carbonate refractory uranium ore
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制