当前位置: 仪器信息网 > 行业主题 > >

制动补偿量仪

仪器信息网制动补偿量仪专题为您提供2024年最新制动补偿量仪价格报价、厂家品牌的相关信息, 包括制动补偿量仪参数、型号等,不管是国产,还是进口品牌的制动补偿量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合制动补偿量仪相关的耗材配件、试剂标物,还有制动补偿量仪相关的最新资讯、资料,以及制动补偿量仪相关的解决方案。

制动补偿量仪相关的论坛

  • YDS系列电梯制动器

    YDS制动器是安装在永磁外转子曳引机电机上的制动元件,通过外转子制动轮进行碟刹式制动。通电时产生磁场,克服制动器内部弹簧的弹力,使衔铁和磁轭吸合,制动轮处于释放状态,电机工作;断电时依靠制动器内部弹簧的作用,使制动器的衔铁和支架上的摩擦片将制动轮夹住,达到制动效果。该制动器具有结构紧凑,功耗低,安装方便,适用性广,噪音低,工作频率高,动作灵敏,稳定性好等优点,是现代化中的一种理想的自动化控制执行元件。

  • 【求助】求汽车制动器相关标准

    JB/T 6406-2006《电力液压鼓式制动器》JB/T 7020-2006《电力液压盘式制动器》JB/T 7021-2006《鼓式制动器连接尺寸》JB/T 7685-2006《电磁鼓式制动器》JB/T 10603-2006《电力液压推动器》JB/T 10917-2008《钳盘式制动器》

  • 汽车制动安全技术名词解释

    来源http://www.zftrans.com/favorite/vocabulary/20051025101.asp更新日期:2005-10-25 10:13:55 出处:正方翻译网,一个自由译者的生命记录 作者:翰唐ABS─防抱死制动系统   ABS英文全称是“Anti-Lock Brake System”。  没有ABS时,汽车紧急制动时,四个车轮会被完全抱死,这时只要有轻微侧向力作用(比如倾斜的路面或者地上的一块小石头),汽车就会发生侧滑,甩尾,甚至完全调头。特别是在弯道行驶时,由于前轮抱死,汽车将因车轮缺乏附着而丧失转向能力,沿着惯性方向向前直至停止。  ABS的功能就在于通过控制刹车油压的收放,达到对车轮抱死的控制。当车轮制动时,安装在车轮上的传感器立即能感知车轮是否抱死,并将信号传给电脑,电脑会马上降低被抱死车轮的制动力,车轮又继续转动,转动到一定程度,电脑又施加制动,这样不断重复,直至汽车完全停下来。通过“抱死-松开-抱死-松开”的循环工作,车辆始终处于临界抱死的间隙滚动状态。安装ABS后,汽车能显著改善制动性能,有效保证驾乘者的安全。  EBD/EBV─制动力分配装置  EBD为英文缩写,其全称是“Electric Brake force Distribution”。其德文缩写为EBV,全称是“Electronic?鄄sche Bremsenkraft Verteiler”。  通常情况下,由于四只轮胎附着地面的条件不同,因此,汽车制动时,很容易因轮胎与地面的摩擦力不同,产生打滑、倾斜和侧翻等现象。EBD的功能就是在汽车制动的瞬间,分别计算出4个轮胎摩擦力数值,然后通过调整制动装置,达到制动力与摩擦力(牵引力)的匹配,以保证车辆的平稳和安全。  EBD主要是对ABS起辅助功能,提高ABS功效。重踩刹车时,EBD会在ABS作用之前,依据车辆的重量分布和路面条件,有效分配制动力,以使4个车轮得到更接近理想化刹车力的分布。因此,ABS+EBD就是在ABS的基础上,平衡每一个轮的有效地面抓地力,改善刹车力的平衡,防止出现甩尾和侧移,并缩短汽车制动距离,使得汽车的安全性能更胜一筹。  ESP─电子稳定程序  ESP英文全称是“Electronic Stability Program”。  ESP综合ABS、BAS和ASR三个系统功能,目前主要应用在高端车型上,比如奥迪、奔驰。  在汽车行驶过程中,ESP系统通过不同传感器实时监控驾驶者转弯方向,车速、油门开度、刹车力,以及车身倾斜度和侧倾速度,以此判断汽车正常安全行驶和驾驶者操纵汽车意图的差距。然后通过调整发动机的转速和车轮上面的刹车力分布,修正过度转向或转向不足。ESP在提高汽车行驶稳定性方面效果显著。  ESP具有三大特点:  实时监控:ESP能够实时监控驾驶者的操控动作、路面反应、汽车运动状态,并不断向发动机和制动系统发出指令。  主动干预:ABS等安全技术主要是对驾驶者的动作起干预作用,但不能调控发动机。ESP则可以通过主动调控发动机的转速,并调整每个轮子的驱动力和制动力,来修正汽车的过度转向和转向不足。  事先提醒:当驾驶者操作不当或路面异常时,ESP会用警告灯警示驾驶者。  BAS─制动辅助系统  BAS英文全称是“Brake Assist System”。  有关调查显示,约有90%的汽车驾驶员紧急情况刹车时缺乏果断,而BAS则能从驾驶员踩下制动踏板的速度,探测车辆行驶情况。紧急情况下,当驾驶员迅速踩下制动踏板力度不足时,BAS便会启动,并在不足1秒的时间内把制动力增至最大,从而缩短紧急制动刹车距离。  ABS虽然能够缩短刹车距离,但如果驾驶员采用点刹时,车轮往往不会抱死,ABS没有机会发挥作用。而刹车辅助系统BAS,则让现有的ABS具有一定的智能。当驾驶者迅速用力踩下刹车踏板时,BAS就会判断车辆正在紧急刹车,从而启动ABS,迅速增大制动力。  ASR─驱动防滑系统  ASR为英文缩写,其全称是“Acceleration Slip Regulation”。德文全称为“Antiebs Schlupfregel Sys?鄄tem”。  汽车在不良路面,特别是在冰雪和泥泞路面起步以及再加速时,ASR将会防止驱动轮出现打滑现象,以此改善车辆行驶方向稳定性和操控性。  此外,ASR还可以防止车辆在滑溜路面高速转弯时,汽车后部出现侧滑现象。总之,ASR可以最大限度利用发动机的驱动力矩,保证车辆起动、转向和加速过程中的稳定性能。此外,还能减小车轮磨损和燃油消耗。  TCS─驱动力控制系统  TCS英文全称是“Traction Control System”。在日本等地也称为TRC或TRAC。  TCS是在ABS基础上发展起来的新系统。ABS控制4个轮,而TCS只控制驱动轮,其制动原理与ASR系统如出一辙。当汽车加速时,TCS将滑动控制在一定的范围内,从而防止驱动轮快速滑动。其功能在于提高牵引力和保持车辆行驶稳定性。  没有配备TCS的汽车在易滑路面加速时,驱动轮极易打滑。其中,后轮驱动车辆将可能甩尾,前轮驱动车辆则容易方向失控,导致车辆向一侧偏移。配备TCS后,汽车在加速时便能减轻驱动轮打滑程度,保证车辆转向清晰。  EBA─电子刹车辅助系统  EBA英文全称是“Electronic Brake Assist”。  在一些非常紧急的事件中,驾驶者往往不能迅速地踩下刹车踏板,EBA就是为此设计。该系统利用传感器感应驾驶者对制动踏板踩踏的力度与速度大小,然后通过电脑判断驾驶者此次刹车意图。如果属于非常紧急的制动,EBA此时就会指示制动系统产生更高的油压使ABS发挥作用,从而使制动力快速产生,减少制动距离。而对于正常情况刹车,EBA则会通过判断不予启动ABS。  通常情况下,EBA的响应速度都会远远快于驾驶者,这对缩短刹车距离,增强安全性非常有利。此外,对于脚力较差的妇女及高龄驾驶者闪避紧急危险的刹车,也帮助很大。有关测试表明,EBA可以使车速高达200公里/小时的汽车完全停下的距离缩短21米之多,尤其是对在高速公路行驶的车辆,EBA可以有效防止常见的“追尾”意外。

  • 【分享】多参数水质测量仪的特征及应用

    多参数水质测量仪又称为多参数水质检测仪,该仪器体积小、重量轻、采用防水密封材料包装,携带方便可测量多种参数。多参数水质测量仪采用数字化设定、显示温度、电导、盐度、溶解氧、自动控制多参数测量。多参数水质测量仪具有操作简单、性能稳定可靠、测试快速、准确、操作舒适等优点,适用于实验室或者各种野外现场环境。 多参数水质测量仪的外壳可承受轻度撞击,坚固耐用,采用手机式键盘设计,可单手操作,数据可单个或按预编时间间隔连续记录,也可直接与计算机连接,通过软件进行数据统计、分析和报告。多参数水质测量仪可同时测量温度、电导、盐度、溶解氧、酸碱度和氧化还原电位以及总溶解固体,具有温度和大气压力自动补偿,自动温度补偿功能,保障样品随温度波动时的精确测量。所多参数水质测量仪具有出厂校准与用户校准功能。确保测量准确可靠;还具有有自动关机功能。 多参数水质测量仪适合于实验室或者野等各种条件恶劣的环境条件下,对地表水、地下水、工业废水等各种水质中的近四十多种多参数进行分析测量,多参数水质测量仪广泛用于环保、医疗、卫生、食品、自来水、环保部门、工厂过程检测、啤酒饮料业、造纸、污水处理、印染、石化、冶金、院校等行业的水质检测和测量。

  • 请问Agilent 6890的柱补偿如何操作?

    帮助文件里是这么说的:化学工作站在平直基线上的积分峰比上升基线上的积分峰更加精确一致。使用柱补偿修正温度设定过程中的基线上升。首先,使用“启动柱补偿运行”进行空白运行(未进样样品的运行)。[url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 将保存该运行的数据,然后可以在实际运行中减去这些数据以生成平直基线。柱补偿运行的色谱条件必须与即将在实际运行中使用的色谱条件相同。使用相同的检测器和柱,在相同的温度和气流条件下操作:指定用于“曲线 1”和“曲线 2”(相对于柱 1 和 2)的检测器(参见“选项”)。选择“启动柱补偿运行”。化学工作站会将两个柱的柱补偿数据收集到以下文件中:col comp 1(来自柱 1 的补偿数据)col comp 2(来自柱 2 的补偿数据)在“信号”对话框中选择“检测器”,然后(对于“源”)指定您即将在实际运行中使用的检测器以及要从实际运行数据中减去的柱补偿数据。前检测器 - col comp 1后检测器 - col comp 1前检测器 - col comp 2后检测器 - col comp 2进行实际运行(化学工作站将自动执行减操作)。注意 要根据柱补偿运行的数据绘制图形,请选择“检测器”(在“信号”对话框中),指定“col comp 1”或“col comp 2”的“源”,并执行运行。_-------------------------------------------------------------我的仪器上只装了一根柱子,一运行柱补偿,就提示不能运行。请问何解?还有这应该是单柱补偿吧??

  • 点火补偿值

    agilent7890A点火补偿值在哪块设置啊?它有什么用啊?一般设置多少啊?对FID点火影响很大吗?

  • 波纹补偿器

    波纹补偿器的主要弹性元件为不锈钢波纹管,依靠波纹管伸缩、弯曲来对管道进行轴向、横向、角向补偿。其作用可以起到:   1.补偿吸收管道轴向、横向、角向热变形。   2.吸收设备振动,减少设备振动对管道的影响。   3.吸收地震、地陷对管道的变形量。   补偿器按是否能吸收管道内介质压力所产生的压力推力(盲板力),可分为无约束型波纹管补偿器和有约束型补偿器;按波纹管的位移型式,可分为轴向型补偿器、横向型补偿器、角向型补偿器及压力平衡型波纹管补偿器。北京天彩康拓http://www.bjtckt.com

  • 【求助】关于色谱柱补偿

    [em0811] 安捷伦公司的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],其6890系列都有自动补偿,想请问一下其作用在于什么呢?5890是没有自动补偿的,那么在什么情况下需要进行一下手动补偿?还有一个问题哈,5890有一个“补充气”,对于补充气的使用应该遵循什么原则呢?而且有一个问题就是当我将补充气打开时,FID检测器就非常难以点火,5890手动点火很难点着

  • 什么是补偿导线法?

    [size=14px][font=宋体]在热电偶参考端温度波动变化情况下,参考端的温度[/font][i][font=&]T[/font][/i][font=宋体]是不稳定的,此时,无法对参考端的温度[/font][i][font=&]T[/font][/i][font=宋体]进行修正,即无法对工作对象进行测量,补偿导线法就是在[/font][/size][font=宋体][size=14px][color=#0080ff]热电偶参考端外接一热电偶补偿导线,将热电偶的参考端延伸至温度稳定的环境中,使波动变化较大的参考端处于温度稳定的环境下,再用计算法进行修正,以达到测量目的。[/color][/size][/font][size=14px][font=宋体]热电偶的补偿导线的特性作用和连接方法如下。[/font][font=&][/font][/size][size=14px][font=宋体]([/font][font=&]1[/font][font=宋体])热电偶的补偿导线是指在对定温度范围内和所连接热电偶的热电极具有相同热电特性的廉金属导线。[/font][/size][font=宋体][size=14px]([/size][/font][font=&][size=14px]2[/size][/font][font=宋体][size=14px])热电偶的补偿导线一般分为两种:[/size][/font][font=&][size=14px]a.[/size][/font][font=宋体][size=14px][color=#ff0000]延伸型补偿导线[/color][/size][/font][size=14px][font=宋体],是指与所配用的热电偶的热电极化学成分相同的导线。这种导线仅起着延伸热电偶参考端的作用。[/font][font=&][/font][/size][font=&][size=14px]b.[/size][/font][font=宋体][size=14px][color=#ff0000]补偿型补偿导线[/color][/size][/font][size=14px][font=宋体],是指与所配用的热电偶的热电极化学成分不相同的导线,但在参考端温度可能的变化范围内如([/font][font=&]0~100[/font][font=宋体])℃或([/font][font=&]0~200[/font][font=宋体])℃,其电热特性与所匹配热电偶特性相同。[/font][font=&][/font][/size][size=14px][font=宋体]([/font][font=&]3[/font][font=宋体])补偿导线的连接方法,[font=宋体]这里要说明的是[/font][font=system-ui, -apple-system, BlinkMacSystemFont, &]补偿导线法的补偿导线作用,只是延长热电极,它并不能消除参考端不为0℃时的影响[/font][font=宋体],还必须用电势修正法对测量的热电势进行计算处理。[/font][font=宋体]注:使用分类中,G为一般用,H为耐热用[/font][/font][/size][font=宋体][size=12px]参考资料[/size][/font][font=宋体][size=12px][1]GB∕T 16839.1-2018 热电偶 第1部分:电动势规范和允差[/size][/font][font=宋体][size=12px][2]马恒儒.热学计量基础知识,2002年[/size][/font][font=宋体][size=12px][3] ANSI and IEC Color Codes for Thermocouples Wire and Connectors[/size][/font]

  • 温度补偿需如何处理数据???

    很多电化学法的小仪器都有温度补偿这个东东甚至有些是自动温度补偿,比如PH计 溶解氧仪 电导仪。。。 那位老师能讲讲这个温度补偿到底是对检测数据进行了何种处理呢???

  • 【原创大赛】酸度计与电导率仪温度补偿器的原理与区别

    【原创大赛】酸度计与电导率仪温度补偿器的原理与区别

    [align=center][b]绪 论[/b][/align] 酸度计和电导率仪是广泛应用于科学实验、环境监测和生产环节的一种常用科学分析仪器。酸度计和电导率仪的使用和检定都离不开各自使用的溶液,而溶液的 pH 值和电导率都与温度密切相关,当温度发生变化时,pH 值和电导率会发生不同变化。在计量检定过程中我们发现对两种仪器温度补偿器的正确使用对测量结果有较大影响,而且部分仪器使用者,因对温度补偿器的原理和两者之间的区别理解不正确,使用不当,造成测得数据不准确,所以正确理解温度补偿器的原理和区别是至关重要的。[b]一、酸度计和电导率仪温度补偿器的原理 和作用1、酸度计温度补偿器的原理和作用[/b]在酸度计计量检定和使用中,我们发现 pH 值测量不准确的原因主要是未能正确使用温度补偿器造成的。下面就介绍一下酸度计温度补偿器的原理、对 pH示值的影响和产生问题的原因。对于酸度计来说,不同溶液的 pH 值的温度系数差别很大, 要将不同温度下的 pH 值折算到 25℃时的 pH 值是非常困难的, 也没有必要。所以酸度计的温度补偿器是将其电极在标定温度下得到的转换系数按能斯特公式换算到当前温度下的转换系数,从而得到当前温度下的 pH 值。其中酸度计是用电位相对测量法来测定溶液 pH 值的,其理论依据来自于能斯特方程式:[img=,616,457]https://ng1.17img.cn/bbsfiles/images/2019/08/201908132315502479_8185_1638093_3.png!w616x457.jpg[/img] 通过对一台 PHS-3C 型号酸度计在 25℃条件下使用标准缓冲液校准后,对同一溶液在不同温度下的 pH 值进行测量实验,得到结果如下:[img=,633,249]https://ng1.17img.cn/bbsfiles/images/2019/08/201908132316535212_6069_1638093_3.png!w633x249.jpg[/img] 由此表可看出温度补偿器固定在 25℃条件下时(即不启动酸度计的温度补偿器时),测量溶液的 mv 值是不随着温度变化而变化的,酸度计测得的 pH 值也永远是标定温度下的 pH 值;当酸度计启动温度补偿器时,测量溶液的 mv 值同样是不随着温度变化而变化的,但是测得的 pH 值是随温度的改变而变化的。根据实验数据我们可以发现,随着溶液温度的改变,由于溶液的 mV 值是不随温度的变化而变化的,所以被测溶液与标定溶液间的电位差也是不发生变化的,随着温度的变化实际发生变化的是每 mV 值变化量对应的 pH 值的变化量,通过公式(3)我们可以发现这就使得 K 值发生了变化,所以酸度计通过温度补偿调整转换系数K 来抵消温度变化引起的电动势差的变化。因此,为了适应各种温度状态下 pH 值的测量,酸度计中均设有温度补偿装置。[b]2、电导率仪温度补偿器的原理和作用[/b] 电导率的大小与电解质在水中的离解度及离子的迁移速度有密切的关系,而离解度及迁移速度又与溶液的温度有关。温度升高,溶液的电导率增加,反之,则电导率减小。溶液的电导率受温度的影响较大,实验数据见下表。通过对一台 DDS-307 型号电导率在溶液不同温度下进行温度补偿实验,得到结果如下:[img=,642,125]https://ng1.17img.cn/bbsfiles/images/2019/08/201908132319228901_8338_1638093_3.png!w642x125.jpg[/img] 由此表可以看出不进行温度补偿,同一溶液的电导率随着溶液温度的增加而不断增大,使得测量结果没有参考价值,所以电导率的测量结果一般均折算到参考温度下(参考温度:20℃或 25℃,使用 25℃时较多)。如果把电导率仪的温度补偿器关掉,则需先测出溶液的温度及该温度下的电导率,再将测得的结果换算到参考温度的电导率。公式如下:[img=,609,213]https://ng1.17img.cn/bbsfiles/images/2019/08/201908132320266973_5978_1638093_3.png!w609x213.jpg[/img] 通过式(4)可以看出当电导率仪不启动温度补偿器时,即温度校正系数为0.00%时,测得的电导率为溶液实际温度下的电导率,需要人工换算成参考温度下溶液的电导率值,否则测得值没有参考价值。电导率仪的温度补偿器的作用就是为了克服温度的影响,将溶液在实际温度下的电导率值转换为参考温度(一般为 25℃)下的电导率值,使得溶液在不同温度下的电导率具有可比性,以满足各行各业比对或控制指标的需要。因此,市面上越来越多的电导率仪具有温度补偿功能,在检定过程中,检定规程规定增加这一检定项目看来也是很有必要的。[b]二、酸度计与电导率仪温度补偿器使用过程中的注意事项1、酸度计温度补偿器使用中的注意事项[/b] 由于酸度计测量过程中溶液的 mV 值是不随温度的变化而改变的,实际上起到作用的是通过调节温度补偿器进而调整转换系数 K,进而改变每 mV 变化量引起的 pH 的变化量,所以在使用酸度计时需要注意的是用于标定仪器的标准参考溶液与被测溶液的温度差。[b]2、电导率仪温度补偿器使用中的注意事项[/b] 通过公式(4)我们发现,在将电导率修正为参考温度下电导率时,温度校正系数β是一个关键参数,且不同的溶液温度校正系数也不同,所以在使用温度校正系数不可调节的电导率仪时,温度校正系数会引入测量误差,所以在进行准确度要求较高的测量时,如果温度校正系数不能调整为溶液实际的温度校正系数,则应该关闭电导率仪的温度补偿功能,通过准确测量溶液温度后根据公式(4)计算出参考温度下的电导率值,或将被测溶液的温度严格控制在参考温度条件下测量,进而减小测量误差。[b]三、仪器使用中温度补偿器出现异常的快速判定方法1、酸度计温度补偿器出现异常的快速判定方法[/b] 先通过两点标定斜率,并测量第三种标准溶液示值误差合格。然后用酸度计测量第三种标准溶液在打开温度补偿器时的 pH 值及其温度,查找 JJG119-2018《酸度计检定规程》,规程中表 A.2 显示了标准溶液不同温度下对应的 pH 值,通过与测量的 pH 值进行对比,测量结果的示值误差应小于仪器对应等级的最大允许误差,否则酸度计的温度补偿器功能可能出现异常,应及时送检。[b]2、电导率仪温度补偿器出现异常的快速判定方法[img=,600,184]https://ng1.17img.cn/bbsfiles/images/2019/08/201908132324000098_9238_1638093_3.png!w600x184.jpg[/img][img=,598,142]https://ng1.17img.cn/bbsfiles/images/2019/08/201908132324411825_1524_1638093_3.png!w598x142.jpg[/img]结 论[/b] 综上所述,电导率仪温度补偿器,其作用就是为了克服温度的影响,将溶液在实际温度下的电导率值转换为参考温度(一般为 25℃)下的电导率值,使得溶液在不同温度下的电导率具有可比性。而酸度计的温度补偿器,其作用是将电极在标定温度下得到的转换系数按能斯特公式换算到实际温度下的转换系数,从而得到实际温度下的 pH 值。由此可见两种仪器的温度补偿作用是有所区别的,不能混淆,只有正确理解酸度计和电导率仪的温度补偿器对于仪器测量准确度的意义和作用,才能促进仪器的合理、正确使用,保证测量结果的准确性。同时通过文中温度补偿器出现异常的快速判定方法,使用者就可以自己合理判定温度补偿功能是否正常工作,当发现仪器温度补偿器可能存在异常时,需及时到计量检测机构对仪器进行检定。

  • ARC功率因数自动补偿控制仪的原理及其应用

    ARC功率因数自动补偿控制仪的原理及其应用安科瑞 蔡昀羲摘 要:介绍了基于ATMEGA16的高精度低压无功功率补偿器。该控制器采用数字检测电路来获取电网电压与电流的相位差,从无功补偿的原理出发,设计控制器的软硬件。使该系统在应用中实现了对电网功率因数的及时补偿和实时监测,适用于目前企业用户进行无功功率补偿。关键词:功率因数;无功补偿;单片机  随着现代工业的发展,电网中使用的感性负载也愈来愈多,如感应式电动机、变压器等。这些设备在工作时不但要消耗有功功率,同时需要电网向其提供相应的无功功率,造成电网的功率因数偏低。在电网中并联电容器可以减少电网向感性负载提供的无功功率,从而降低输电线路因输送无功功率造成的输电损耗,改善电网的运行条件,因此功率因数补偿控制器一直有着广阔的应用市场。本文所介绍的功率因数补偿控制器符合JB/T9663-1999国家标准,主要功能有:  (1) 相序自动识别  (2) 电压、电流、功率因数采样与显示  (3) 过压解除、欠流封锁,从而保护电容器及避免循环投切  (4) 采用先投入的先切除,先切除的先投入的原则,对补偿电容实行循环投切  (5) 所有的工作参数都可以通过面板按键设定,包括投入门限、切除门限、过压保护门限、欠电流封锁门限、投切延时时间一、 工作原理  采样三相电源中一线电流(如A线)与另外两线的电压(如BC线)之间的相位差,通过一定的运算,得到当前电网的实时功率因数。此功率因数与设定的投入门限和切除门限比较,在整个投切延时时间内,若在投切门限以内,则不予动作;若小于投入门限,则另投入一组电容器;若大于切除门限或发现功率因数为负时,则切除一组已投入的电容器。再经过投切延时时间,重复比较与投切,直到当前的功率因数达到投切门限以内。在投切过程中,若发现检测到的电压大于设定的过压保护门限,则按组切除所有已投入的电容;当检测到的电压超过设定的过压保护门限的10%时,则一次性切除所有已投入的电容,用以保护电容器。在投切时若发现检测到的电流小于欠电流封锁门限,则停止投切动作,避免系统出现循环投切现象。  由于在三相供电中有不同接线方法,不同的接线方法对功率因数的算法也不一样,因此我们规定ARC系列功率因数自动补偿控制仪的电流取自三相供电中的A线,电压取自BC间的线电压,同时为减少现场接线的复杂度,我们在程序中对相位进行自动判别。  在三相供电中,我们假设三相的相电压分别为Ua、Ub、Uc,A线电流为Ia  则有Ua=Usin(ωt),Ub=Usin(ωt+120º),Uc=Usin(ωt+240º),  从而得到BC间的线电压为Ubc=Ub-Uc= Usin(ωt-90º)  若A线负载为纯阻性,则A线电流Ia与A线电压Ua同相,Ia超前Ubc的角度为90º;  若A线负载为感性,则A线电流Ia滞后A线电压Ua角度为φ(0º≤φ≤90º),Ia超前Ubc的角度为90º-φ;  若A线负载为容性,则A线电流Ia超前A线电压Ua角度为φ(0º≤φ≤90º),Ia超前Ubc的角度为90º+φ  在我们的ARC功率因数自动补偿控制仪中,为了计算的方便,我们电流相位的采样为电压采样的第二个周期,即若没有相位差Ia滞后Ua的角度为360º。在实际检测中,假设我们检测到Ia滞后Ubc的角度为α,根据以上的分析得知:  若180ºα270º,则电路为容性负载,COSφ=COS(270º-α)  若α=270º,则电路为感性负载,COSφ=1  若270ºα360º,则电路为感性负载COSφ=COS(α-270º)  为方便用户接线,若用户将电压Ubc接成了Ucb,或将Ia的输入接反,根据以上的推断,我们同样可得到:  若0ºα90º,则电路为容性负载,COSφ=COS(90º-α)  若α=90º,则电路为感性负载,COSφ=1  若90ºα180º,则电路为感性负载COSφ=COS(α-90º)http://www.acrel.cn/cn/download/common/upload/2011/02/25/16149c0.jpg图1 电压、电流向量二、 硬件的设计  控制器的CPU采用ATMEL的ATMEGA16-8L,此单片机工作电压范围宽(2.7 - 5.5V),最高工作频率为8MHz;芯片内部具有16k字节的Flash程序程序存储器,512 字节的EEPROM,1K字节的片内SRAM;8路10 位ADC;一个可编程的串行USART,具有独立片内振荡器的可编程看门狗定时器;两个具有独立预分频器和比较器功能的8 位定时器/ 计数器 ;一个具有预分频器、比较功能和捕捉功能的16 位定时器/ 计数器。显示芯片采用南京沁恒公司生产的键盘、显示专用芯片CH451S,CH451S最大能驱动8为数码管,且不需外加驱动就能直接驱动LED数码管,大大减小了印板尺寸,单片机的采用SPI模式,只需3线(片选CS、时钟CLK、数据输入DIN),因本系统未用CH451S的键盘功能,所以CH451S的DOUT引脚不用。Ubc的电压信号经过电阻限流进入2mA/2mA的隔离变换器后分为两路,一路进入模拟绝对值处理电路送入单片机的A/D转换口ADC0,作为电压显示信号,另一路经过零比较后进入单片机中断口INT0;同样Ia的电流信号经5A/5mA的隔离变换器后分为两路,一路进入模拟绝对值处理电路送入单片机的A/D转换口ADC1,作为电流显示信号,另一路经过零比较后进入单片机定时器门控端ICP引脚。http://www.acrel.cn/cn/download/common/upload/2011/02/25/1626rm.jpg图2 ATMEGA16外部引脚 http://www.acrel.cn/cn/download/common/upload/2011/02/25/16215ld.jpg图3 输入信号处理三、 软件的设计  因整个系统对电压、电流采样的精度要求不高,我们直接用CPU的10位A/D对电压、电流的信号进行A/D转换,转换的结果一方面供显示的需要,另一方面作为过压与欠流的比较信号。我们将INT0设置为上升沿产生异步中断,ICP设置为上升沿触发输入捕捉。当INT0产生中断时,16位计数器开始以内部恒定的频率开始计数,直到下一中断的产生。在计数的同时,当TCP上有上升沿脉冲时,即将16位计数器已计得的数据放入到捕捉寄存器中。当一个采样周期结束时,计数器中得数据(N)即为外部交流信号的一个周期基数, 捕捉寄存器中数据(n)电流Ia滞后电压Ubc的基数,将(n/N)*360º即为角度,根据上面的原理就可判断在同一周波中时电压超前电流还是电流超前电压,同时还可得出超前或滞后的角度,将此数据进行查表即可得到功率因数。  为了避免对电容器组中的某一组进行频繁的投切,平衡每一组电容器的工作时间,延长整个系统的使用寿命。我们对电容器的投切采用先投入的优先切除,先切除的优先投入的原则,我们在单片机的RAM中开辟了一空间,用于记录每组电容器的投入与切除时间,然后进行排序,将已工作时间最长的作为优先切除对象,将切除时间最长的作为优先投入对象。  当三相交流的负载回路电流非常小时,会产生投切振荡的现象。也就是说控制系统投入一组电容器会产生过投,切除一组电容器又会产生投入不足,控制器就会产生重复的投切现象。为避免此想象的发生,我们设置了欠电流锁定,当电流值小于此数值时,系统将停止对电容器的投切动作,维持已投入的电容器工作。  在工作过程中,若采样到的电压数据大于设定的过压保护值时,控制器将逐步切除已投入的电容器,若发现超过设定的保护值的10%时,则一次性切除所有已投入的电容器,保护电容器。  以上的技术现已应用于本公司的ARC功率因数自动补偿控制仪中,经测试运行,系统工作稳定、各项指标达到了国家标准的要求,现已初步投放市场。

  • Sensata森萨塔微应变计MSG制动压力传感器

    [size=14px]Sensata森萨塔微应变计MSG制动压力传感器是一种先进的传感解决方案,可以监控液压系统的压力和温度信息,为汽车系统提供关键的信号输入。通过将压力数据和温度信息结合在一起,MSG传感器有助于优化系统性能,并且可以激活其他功能。这种传感器系列包含各种不同范围的低压到高压传感器,适用于支持未来更先进的制动应用,确保汽车制动系统的安全性和可靠性。[/size][align=center][size=14px][img=Sensata森萨塔微应变计MSG制动压力传感器,305,284]https://www.ldteq.com/public/ueditor/upload/image/20240226/1708912464750820.png[/img][/size][/align][b][size=14px]特征:[/size][/b][size=14px]基于成熟技术的领先市场解决方案[/size][size=14px]体积小,设计轻便[/size][size=14px]提高制动性能[/size][size=14px]最佳性价比[/size][size=14px]支持先进的制动解决方案,包括线控系统电液制动器 (EHB)[/size][size=14px]符合功能安全标准[/size][b][size=14px]参数:[/size][/b][size=14px]压力范围:0- 50bar,0- 180bar,0- 250bar,0- 300bar[/size][size=14px]耐压:150bar, 250bar, 300bar[/size][size=14px]破裂压力:250bar, 300bar, 350bar, 450bar[/size][size=14px]密封:是的/不[/size][size=14px]技术:微应变计[/size][size=14px]安装:赢得,获得/ o形环,线程[/size][size=14px]外壳材质:不锈钢、不锈钢305SS、AISi7[/size][size=14px]连接类型:弹簧3x USCAR键(可定制)[/size][size=14px]工作温度:-40°~ 120°C,-40°~ 125°C,-40°~ 130°C[/size][size=14px]V电源:5.0V±0.25V,5.0V±0.375V[/size][size=14px]典型精度:±1.7% FS,±2% FS,±3.2% FS[/size][size=14px]输出类型:SENT, Analog[/size][size=14px]符合RoHS标准:是的[/size][size=14px]支持ISO 26262:是的[/size][size=14px]IP防护等级:IP30,Solid 6Kx,Water x9K[/size][size=14px]媒体:空气、油、燃料[/size][size=14px]用途:制动器、悬架、变速器[/size][font=微软雅黑, &][color=#0070c0]了解更多关于[/color][/font][url=https://www.ldteq.com/brand/86.html]Sensata森萨塔[/url][font=微软雅黑, &][size=15px][color=#333333]品牌相关产品信息可咨询[url=https://www.ldteq.com/]立维创展[/url]。[/color][/size][/font]

  • 【分享】刀具测量仪的特征及功能简介

    刀具测量仪器具有水平及垂直两种光学测量系统,可以在一台仪器上实现刀具的全部测量,是测量复杂刀具的理想工具。刀具测量仪是由花岗石台面作为底座和立柱、精密滚珠丝杆传动、精密线性导轨导向等部件组成,采用独立的工程学设计工作台,配有完整的配电箱,可有效降低温度变化对测量仪器的影响。 刀具测量仪具有使用简捷,高度精确的优点,整个对刀过程不需要在CNC机床上进行,有效避免对工件的损坏以及机订对刀的困难和危险,仪器采用稳定的整体式花岗岩制造,气浮导轨,坚实、抗振动的花岗岩结构和集成的温度补偿器使测量结果能保持可靠的长期稳定性。刀具测量仪采用高分辨率CCD B/W相机,能够用于对刀具边缘进行无接触表面光及透射光测量,和对刀头几何图形进行表面光测量,采用CNC导轨控制以及4个控制轴。确保了仪器完整的精度,确保了刀具测件能够快速、准确的定位。 刀具测量仪主要适用于测量数控机床、加工中心和柔性制造单元上所使用的镗铣类刀具切削刃的精确坐标位置,并能检查刀尖的角度,圆角及刃口精况。刀具测量仪还可用于钻孔、铣削刀具或是极度复杂的切削刀具以及切削钢的制造或精磨。

  • ARC功率因数自动补偿控制仪的原理及其应用

    摘 要:介绍了基于ATMEGA16的高精度低压无功功率补偿器。该控制器采用数字检测电路来获取电网电压与电流的相位差,从无功补偿的原理出发,设计控制器的软硬件。使该系统在应用中实现了对电网功率因数的及时补偿和实时监测,适用于目前企业用户进行无功功率补偿。Abetted:This article introduces reactive power compensator based on ATMEGA16 controlling with high precision. It measures excess phase of voltage and current by using digital circuit, Based on the reactive compensation theorem, The software and hardware of the controller is deigned.By using the system a timely compensation and real-time monitnring of the power factor in electricity network are possible, It is mainly used to compensate reactive power in present factories and mines.关键词:功率因数;无功补偿;单片机  随着现代工业的发展,电网中使用的感性负载也愈来愈多,如感应式电动机、变压器等。这些设备在工作时不但要消耗有功功率,同时需要电网向其提供相应的无功功率,造成电网的功率因数偏低。在电网中并联电容器可以减少电网向感性负载提供的无功功率,从而降低输电线路因输送无功功率造成的输电损耗,改善电网的运行条件,因此功率因数补偿控制器一直有着广阔的应用市场。本文所介绍的功率因数补偿控制器符合JB/T9663-1999国家标准,主要功能有:  (1) 相序自动识别  (2) 电压、电流、功率因数采样与显示  (3) 过压解除、欠流封锁,从而保护电容器及避免循环投切  (4) 采用先投入的先切除,先切除的先投入的原则,对补偿电容实行循环投切  (5) 所有的工作参数都可以通过面板按键设定,包括投入门限、切除门限、过压保护门限、欠电流封锁门限、投切延时时间一、 工作原理  采样三相电源中一线电流(如A线)与另外两线的电压(如BC线)之间的相位差,通过一定的运算,得到当前电网的实时功率因数。此功率因数与设定的投入门限和切除门限比较,在整个投切延时时间内,若在投切门限以内,则不予动作;若小于投入门限,则另投入一组电容器;若大于切除门限或发现功率因数为负时,则切除一组已投入的电容器。再经过投切延时时间,重复比较与投切,直到当前的功率因数达到投切门限以内。在投切过程中,若发现检测到的电压大于设定的过压保护门限,则按组切除所有已投入的电容;当检测到的电压超过设定的过压保护门限的10%时,则一次性切除所有已投入的电容,用以保护电容器。在投切时若发现检测到的电流小于欠电流封锁门限,则停止投切动作,避免系统出现循环投切现象。  由于在三相供电中有不同接线方法,不同的接线方法对功率因数的算法也不一样,因此我们规定ARC系列功率因数自动补偿控制仪的电流取自三相供电中的A线,电压取自BC间的线电压,同时为减少现场接线的复杂度,我们在程序中对相位进行自动判别。  在三相供电中,我们假设三相的相电压分别为Ua、Ub、Uc,A线电流为Ia  则有Ua=Usin(ωt),Ub=Usin(ωt+120º),Uc=Usin(ωt+240º),  从而得到BC间的线电压为Ubc=Ub-Uc= Usin(ωt-90º)  若A线负载为纯阻性,则A线电流Ia与A线电压Ua同相,Ia超前Ubc的角度为90º;  若A线负载为感性,则A线电流Ia滞后A线电压Ua角度为φ(0º≤φ≤90º),Ia超前Ubc的角度为90º-φ;  若A线负载为容性,则A线电流Ia超前A线电压Ua角度为φ(0º≤φ≤90º),Ia超前Ubc的角度为90º+φ  在我们的ARC功率因数自动补偿控制仪中,为了计算的方便,我们电流相位的采样为电压采样的第二个周期,即若没有相位差Ia滞后Ua的角度为360º。在实际检测中,假设我们检测到Ia滞后Ubc的角度为α,根据以上的分析得知:  若180ºα270º,则电路为容性负载,COSφ=COS(270º-α)  若α=270º,则电路为感性负载,COSφ=1  若270ºα360º,则电路为感性负载COSφ=COS(α-270º)  为方便用户接线,若用户将电压Ubc接成了Ucb,或将Ia的输入接反,根据以上的推断,我们同样可得到:  若0ºα90º,则电路为容性负载,COSφ=COS(90º-α)  若α=90º,则电路为感性负载,COSφ=1  若90ºα180º,则电路为感性负载COSφ=COS(α-90º)二、 硬件的设计  控制器的CPU采用ATMEL的ATMEGA16-8L,此单片机工作电压范围宽(2.7 - 5.5V),最高工作频率为8MHz;芯片内部具有16k字节的Flash程序程序存储器,512 字节的EEPROM,1K字节的片内SRAM;8路10 位ADC;一个可编程的串行USART,具有独立片内振荡器的可编程看门狗定时器;两个具有独立预分频器和比较器功能的8 位定时器/ 计数器 ;一个具有预分频器、比较功能和捕捉功能的16 位定时器/ 计数器。显示芯片采用南京沁恒公司生产的键盘、显示专用芯片CH451S,CH451S最大能驱动8为数码管,且不需外加驱动就能直接驱动LED数码管,大大减小了印板尺寸,单片机的采用SPI模式,只需3线(片选CS、时钟CLK、数据输入DIN),因本系统未用CH451S的键盘功能,所以CH451S的DOUT引脚不用。Ubc的电压信号经过电阻限流进入2mA/2mA的隔离变换器后分为两路,一路进入模拟绝对值处理电路送入单片机的A/D转换口ADC0,作为电压显示信号,另一路经过零比较后进入单片机中断口INT0;同样Ia的电流信号经5A/5mA的隔离变换器后分为两路,一路进入模拟绝对值处理电路送入单片机的A/D转换口ADC1,作为电流显示信号,另一路经过零比较后进入单片机定时器门控端ICP引脚。三、 软件的设计  因整个系统对电压、电流采样的精度要求不高,我们直接用CPU的10位A/D对电压、电流的信号进行A/D转换,转换的结果一方面供显示的需要,另一方面作为过压与欠流的比较信号。我们将INT0设置为上升沿产生异步中断,ICP设置为上升沿触发输入捕捉。当INT0产生中断时,16位计数器开始以内部恒定的频率开始计数,直到下一中断的产生。在计数的同时,当TCP上有上升沿脉冲时,即将16位计数器已计得的数据放入到捕捉寄存器中。当一个采样周期结束时,计数器中得数据(N)即为外部交流信号的一个周期基数, 捕捉寄存器中数据(n)电流Ia滞后电压Ubc的基数,将(n/N)*360º即为角度,根据上面的原理就可判断在同一周波中时电压超前电流还是电流超前电压,同时还可得出超前或滞后的角度,将此数据进行查表即可得到功率因数。  为了避免对电容器组中的某一组进行频繁的投切,平衡每一组电容器的工作时间,延长整个系统的使用寿命。我们对电容器的投切采用先投入的优先切除,先切除的优先投入的原则,我们在单片机的RAM中开辟了一空间,用于记录每组电容器的投入与切除时间,然后进行排序,将已工作时间最长的作为优先切除对象,将切除时间最长的作为优先投入对象。  当三相交流的负载回路电流非常小时,会产生投切振荡的现象。也就是说控制系统投入一组电容器会产生过投,切除一组电容器又会产生投入不足,控制器就会产生重复的投切现象。为避免此想象的发生,我们设置了欠电流锁定,当电流值小于此数值时,系统将停止对电容器的投切动作,维持已投入的电容器工作。  在工作过程中,若采样到的电压数据大于设定的过压保护值时,控制器将逐步切除已投入的电容器,若发现超过设定的保护值的10%时,则一次性切除所有已投入的电容器,保护电容器。  以上的技术现已应用于本公司的ARC功率因数自动补偿控制仪中,经测试运行,系统工作稳定、各项指标达到了国家标准的要求,现已初步投放市场。

  • 无功功率补偿的意义

    一、为什么要进行无功功率补偿?  从无功功率(http://www.vfe.cc/NewsDetail-378.aspx)的作用可知,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率,如果电网中的无功功率过低,用电设备就没有足够的无功功率来建立正常的电磁场,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。  当电网线路中供给的无功功率远远满足不了负荷的需要时,我们就需要设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。这就是我们所说的无功功率补偿。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。二、无功功率补偿的原理 电网输出的功率包括两部分:一是有功功率;二是无功功率。直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能,只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能。电流在电感元件中作功时,电流超前于电压90度。而电流在电容元件中作功时,电流滞后电压90度。在同一电路中,电感电流与电容电流方向相反,互差180度。如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理。三、无功功率补偿的方式1、集中补偿:装设在企业或地方总变电所6~35KV母线上,可减少高压线路的无功损耗,而且能提高本变电所的供电电压质量。2、分散补偿:装设在功率因数较低的车间或村镇终端变、配电所的高压或低压母线上。这种方式与集中补偿有相同的优点,但无功容量较小,效果较明显。3、就地补偿:装设在异步电动机或电感性用电设备附近,就地进行补偿。这种方式既能提高用电设备供电回路的功率因数,又能改变用电设备的电压质量。四、无功功率补偿的作用  无功补偿的主要作用就是提高功率因数以减少设备容量和功率损耗、稳定电压和提高供电质量,在长距离输电中提高输电稳定性和输电能力以及平衡三相负载的有功和无功功率。无功补偿可以收到下列的效益:  1、根据用电设备的功率因数,可测算输电线路的电能损失。通过现场技术改造,可使低于标准要求的功率因数达标,实现节电目的。   2、采用无功补偿技术,提高低压电网和用电设备的功率因数,已成为节电工作的一项重要措施。   3、无功补偿,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量,稳定设备运行。   4、减少电力损失,一般工厂动力配线依据不同的线路及负载情况,其电力损耗约2%--3%左右,使用电容提高功率因数后,总电流降低,可降低供电端与用电端的电力损失。  5、改善供电品质,提高功率因数,减少负载总电流及电压降。于变压器二次侧加装电容可改善功率因数提高二次侧电压。   6、延长设备寿命。 改善功率因数后线路总电流减少,使接近或已经饱和的变压器、开关等机器设备和线路容量负荷降低,因此可以降低温升增加寿命(温度每降低10°C,寿命可延长1倍)   7、最终满足电力系统对无功补偿的监测要求,消除因为功率因数过低而产生的罚款。  8、无功补偿可以改善电能质量、降低电能损耗、挖掘发供电设备潜力、无功补偿减少用户电费支出,是一项投资少,收效快的节能措施。  9、无功补偿技术对用电单位的低压配电网的影响以及提高功率因数所带来的经济效益和社会效益,确定无功功率的补偿容量,确保补偿技术经济、合理、安全可靠,达到节约电能的目的。

  • 补偿式量热仪

    补偿式量热仪

    补偿式量热仪是把研究体系置于一等温量热仪中,测量体系与环境之间迸行热交换时,两者的温度始终保持恒定,并且与环境温度相等。反应过程中研究体系所放出或吸收的热量是依赖恒温环境中的某物理量的变化所引起的热流给予连续的补偿,使体系温度保持恒定。实验过程中,利用相变潜热、电-热、电-制冷效应来实现温度补偿。 (1)相变补偿量热 设将一反应体系置于冰水浴中,其热效应将使部分冰融化或使部分水凝固。已知冰的单位质量熔化焓,只要测得冰水转变妁质量,就可求得热效应的数值。反之,反应体系发生吸热反应,也同样可以通过冰增加的质量来求得热效应。这种量热仪除了冰-水为环境介质外,也采用其他类型的相变介质。这类量热仪简单易行,灵敏度和准确度都较高,热损失小,但热效应是处于相变温度这一特定条件下发生的。造类方法为确定热效应的环境温度提供了热化学数据,但也限制了量热仪的使用范围。 (2)热效应补偿量热 对于一个吸热的化学或物理变化过程,可将研究体系置于一液体介质中,利用电热效应对其补偿,使液体介质温度保持恒定。这就要求电加热时,热损失可忽略不计,这时所吸收的热量可由加热器所消耗的电压(U)、电流(I)和时间(t)的精确测量直接求得。如果不考虑研究体系的介质与外界的热交换,该变化过程所吸收的热量可用公式计算,即:http://ng1.17img.cn/bbsfiles/images/2013/05/201305180957_440560_2698790_3.jpg 在这里,介质温度可根据需要予以设定,温度变化可用高灵敏度的温差温度计测量,电压、电流、时间的测量可用精确度高的仪器测量,只要液体介质恒温良好,热量的测量值就准确可靠。介质与外界的热交换、介质搅拌及其他因素的影响所产生的热量可以通过空白实验予以校正。 对于放热效应就要使用电制冷元件,利用帕提尔(Peltier)效应来补偿。在两种不同金属组成的回路上通一定电流,双金属的接点上将分别形成冷端和热端。帕提尔功率在两端的分配比例与电流大小有关。两端功率相等时的回路电流为I0,在某一小于I0的工作电流I时,其制冷功率为 http://ng1.17img.cn/bbsfiles/images/2013/05/201305180957_440563_2698790_3.jpg ,式中,n称帕提尔系数,它与所用元件材料及工作温度有关。实际上,由于冷热端之间的导热,将使制冷效率低于计算值,这会给放热效应带来一定的测量误差。

  • 基于计算机的测量仪器的内部和外部校准

    基于计算机的测量仪器具有很大的灵活性,应用因而日益普及。通过控制仪器功能,可以开发满足特殊要求的测量系统。对任何测量系统来说,成本是第一个考虑因素。开发一个基于计算机的测量仪器的费用常常比购买一个独立的台式仪器要便宜几倍。这是由于硬件成本较低、软件可重复使用,且一个测试仪器常常可代替若干独立的测量仪器的缘故。 基于计算机的测量仪器与计算机行业联系紧密,它们得益于计算机技术的进步,这包括开放的通信标准、网络服务器和在仪器和桌面应用之间进行电子制表和字处理的简单界面。这些测量仪器也因计算机性能的稳定及价格的降低而获益,从而使基于计算机的测量仪器在没有加价的条件下性能得到持续的提高。 采用校准实现精确测量 大部分测量仪器以精度表的形式提供有关某一测量仪器的测量线路精确性的信息。精度规范表有助于确定测量仪器总的不确定性,然而,这些精确规范仅适用于被成功校准的电路板,因此,你必须在测量调整前后均要运用这些规范来验证板的工作。 测量仪器准确测量物理量变化的能力是按照一定的因子变化的。使用寿命、温度、湿度和暴露在外部环境的情况及误用都会影响测量的准确性。通过对所得测试结果与己知标准进行比较,校准将测量的不确定性进行了量化。它要验证测量仪器是否工作在规定的指标范围内。如果仪器的测量值超过了所公布的不确定性,那么就要调整测量电路以使之符合业已公布的规范。 经过一段时间,用户要对传统的测量仪器进行校准,基于计算机的测量仪器也一样需要校准。用户应当选择具备内部校准(也称自动校准)和外部校准工具的的基于计算机的测试仪器。 内部校准 如果你使用了如示波器这样的仪器,那时你已经完成了内部校准。事实上,当你改变垂直范围设置的时候,大部分示波器已完成了内部校准。基本上仪器将高精确度和板上电压源进行数字化,并将其读数与己知值相比较,然后将校准因子保存在仪器自身携带的电可擦除只读存储器中,这个自身携带的板上电压源也被校准为如NIST之类的大家所知的标准,进行内部校准的主要目的是补偿工作坏境的变化、内部校准温度的变化和可能影响测量的其它因素。 同传统的测量仪器一样,基于计算机的测量仪器应当支持内部校准。基于计算机的测量仪器的内部校准由调用校准测量电路的软件功能来启动。由于测量可立刻进行,并且无须等待这个内部校准无论何时调整垂直范围,因而由软件控制的内部校准技术可节省测试时间。 基于计算机的测量仪器被安装在桌面计算机、PXI/CompactPCI机箱,或VXI/VME 机箱这样的环境中,因为基于计算机测量仪器被安装于多种不同的计算机环境当中,设计人员应当记住基于计算机的测量仪器会受到电磁干扰和电源电压的变化的影响,还要在宽的温度范围下工作。传统的测量仪器由于同个人电脑的集成日益紧密,也面临类似的挑战。 消除电磁干扰的最基本的方案包括:将数字和模拟信号的地平面分开、对电源信号的进行局部过滤、对敏感元件进行屏蔽。为了补偿电压源的变化,可以采用DC-DC转换器提升电源电压,采用电压调节器控制板上电源的电压,采用大电容消除板上电源的谐波。可以采用板上温度传感器和内部校准来完成在操作环境下不同温度的校准。关于上述设计技术的资料,可查询NI网站上一篇题为“以基于PC的数据采集硬件来进行精确测量”的白皮书。

  • 安捷伦压缩因子补偿及可变冲程体积

    [align=center][font=黑体]如何进行压缩因子补偿?[/font][/align][align=left][font=宋体]当系统的背压变化时,所用溶剂压缩因子将影响保留时间的稳定性(例如,色谱[/font][font=宋体]柱的老化)。为最大程度地减少该影响,泵提供了一种压缩因子补偿的功能,此[/font][/align][align=left][font=宋体]功能可以按照溶剂类型优化流量的稳定性。该压缩因子补偿功能设定为缺省值,[/font][font=宋体]可通过用户界面进行修改。[/font][font=宋体]如果没有压缩因子补偿功能,在第一个柱塞杆的冲程过程中将发生以下问题。柱[/font][font=宋体]塞杆腔内的压力增加,腔内的体积将根据背压和溶剂类型进行压缩。由于体积被[/font][font=宋体]压缩,转移到系统的体积将减小。[/font][font=宋体]设定压缩因子值后,处理器将根据系统中的背压和所选压缩因子来计算补偿体[/font][font=宋体]积。该补偿体积将被添加至正常冲程体积中,并补偿前面所述的、在第一个柱塞[/font][font=宋体]杆输送冲程中[/font][font=黑体]减少[/font][font=宋体]的体积。[/font][/align][align=center][font=黑体]可变冲程体积如何工作?[/font][/align][align=left][font=宋体]由于泵腔体积的压缩,泵的每个柱塞杆冲程都将产生一个小的压力脉动,这将影[/font][font=宋体]响到泵的流量稳定性。压力脉动的振幅主要取决于冲程体积和所用溶剂的压缩因[/font][font=宋体]子补偿。在相同的流速下,与高冲程体积相比,小冲程体积将产生更小振幅的压[/font][font=宋体]力脉动。此外,压力脉冲的频率也更高。这将减小流量脉动对定量结果的影响。[/font][font=宋体]在梯度模式中,较小的冲程体积对流量波动的影响也更小,这样便减小了组分的[/font][font=宋体]波动。[/font][font=宋体]模块使用处理器控制的转轴系统来驱动柱塞杆。针对选定的流速优化正常的冲程[/font][font=宋体]体积。小的流速使用小的冲程体积,而较高的流速使用较高的冲程体积。[/font][font=宋体]缺省情况下,泵的冲程体积设置为 AUTO 模式。这就是说针对使用的流速优化冲[/font][font=宋体]程。增大冲程体积是可以的,但是我们不建议这样做。[/font][/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制