当前位置: 仪器信息网 > 行业主题 > >

半胱氨酸检测

仪器信息网半胱氨酸检测专题为您提供2024年最新半胱氨酸检测价格报价、厂家品牌的相关信息, 包括半胱氨酸检测参数、型号等,不管是国产,还是进口品牌的半胱氨酸检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合半胱氨酸检测相关的耗材配件、试剂标物,还有半胱氨酸检测相关的最新资讯、资料,以及半胱氨酸检测相关的解决方案。

半胱氨酸检测相关的资讯

  • 科华生物同型半胱氨酸(HCY)定量测定试剂盒取得医疗器械注册证
    2011年1月21日,科华生物研发的同型半胱氨酸(HCY)定量测定试剂盒(液体)(循环酶法)产品,取得了上海市食品药品监督管理局颁发的《医疗器械注册证》,准许准产注册。注册证编号为沪食药监械(准)字2011第2400060号。本产品是心脑血管疾病诊断的参考指标之一。   该项医疗器械注册证的取得,丰富了公司生化试剂产品线,对公司销售将产生一定的正面影响。
  • 中科院首次发展高选择性检测GSH荧光传感器
    近日,中科院理化技术研究所超分子光化学研究组首次发展了一类在活体细胞中选择性检测谷胱甘肽(GSH)的反应型荧光传感器。相关研究结果日前发表于《美国化学会志》。   自由基损伤是组织损伤的重要分子机制之一,许多疾病,如心脏病、阿尔茨海默氏症、帕金森氏症和肿瘤等的损伤机制中都有自由基的参与。   “含巯基的生物小分子,如半胱氨酸(Cys)、同型半胱氨酸(Hcy)、GSH,会通过清除生物体系内过多的自由基来维持氧化还原平衡。”该研究组副研究员陈玉哲说。   据介绍,作为细胞内含量最多的含巯基生物小分子,GSH不仅参与了细胞抗氧化反应、维持机体的氧化还原平衡,还参与了调节细胞增生、机体免疫应答以及在神经系统中充当神经调质和神经递质的作用。   然而,含巯基的生物小分子结构和反应活性的相似性,往往使得一般检测GSH的荧光探针对Cys和Hcy产生相同或相似的响应。因此,发展高选择性检测GSH的荧光传感器仍然存在巨大挑战。   在文章中,研究组报道了一类基于单氯代BODIPY类衍生物的比率式荧光化学传感器。不同于传统的荧光检测机理,研究组利用了全新的“两步反应”,将GSH与Cys和Hcy区分开来。   “常规的检测,主要是通过巯基和传感器之间发生反应来实现,因而对GSH、Cys和Hcy会产生相似的响应 而我们利用新颖的两步反应机制,Cys和Hcy通过巯基和氨基的协同反应最终生成氨基取代的产物,而GSH生成巯基取代的产物,使其在光谱上产生明显的变化,与Cys和Hcy区分开来。”陈玉哲阐述。   业内专家认为,该成果将为研究肿瘤、心脏病、衰老等疾病的影响及诊疗手段提供新的方法。   据了解,相关研究工作得到了国家自然科学基金委优秀青年科学基金、科技部“973”计划以及中科院“百人计划”的资助
  • 日立:药典明确氨基酸分析检测方法 市场将以15%以上速度增长
    近日,国家药监局发布公告,《中国药典》2020年版第一增补本已编制完成,将于3月12日正式实施,此次增补本,在通则和指导原则部分,对多个分析测定方法进行了新增和修订,在药典四部中,新增了9120氨基酸分析指导原则,并对0713脂肪与脂肪油测定法、0832水分测定法、1421灭菌法、2341农药残留量测定法、2351真菌毒素测定法、9001原料药物与制剂稳定性试验指导原则以及9205药品洁净实验室微生物监测和控制指导原则等做出修订。为了全面了解《中国药典》中分析方法的新进展,促进药物检测检测工作的交流与合作,仪器信息网特别发起“《中国药典》分析方法新进展”主题约稿,欢迎各位行业协会/学会、高校/科研院所的专家老师,以及相关仪器厂商们积极投稿。本文特别邀请日立一起分享,关于氨基酸分析指导原则修订相关内容的解读和解决方案。问题1: 《中国药典》2020年版第一增补本已编制完成,本次增订,对9120氨基酸分析指导原则有哪些方面的更新? 与之前的版本相比,该变化对于制药行业或相关用户会带来哪些影响?目前美国药典、日本药典、欧洲药典等都已经收录了氨基酸分析指导原则,部分药企出口到相应国家的产品也参考这些药典进行氨基酸含量测定或者对原料进行杂质筛查。我国药典也收录了复方氨基酸注射液、多肽类药物和中药等品种都需要采用适宜的氨基酸分析方法进行质控,但之前药典没有收录氨基酸测定指导原则,此次新增氨基酸分析指导原则明确了药典标准的执行过程中如何选择适宜的方法。指导原则要求柱前衍生检测通常使用高效液相色谱仪,柱后衍生法检测一般使用商品化的氨基酸分析仪。指导原则收录了盐酸水解法、碱水解法、氧化水解法、二硫代二乙酸或二硫代二丙酸还原酸水解法、双(1,1-三氟乙酰氧基)碘苯还原酸水解法共计5中样品前处理法。收录了柱前PITC衍生氨基酸测定法、柱前AQC衍生氨基酸测定法、柱前OPA和FMOC衍生氨基酸测定法、柱前DNFB衍生氨基酸测定法、柱后茚三酮衍生氨基酸锂离子交换系统测定法、柱后茚三酮衍生氨基酸钠离子交换系统测定法共计4种柱前衍生法和2种柱后衍生法。按外标法或内标法以峰面积计算样品中的各种氨基酸含量。问题2:新标准实施是否会对相关仪器市场产生拉动?预估市场变化规模有多大?根据相关市场预测,从2020年到2025年,氨基酸分析仪市场每年大概增长10%左右,新的指导原则的实施将有助于药厂明确产品检测方法,有助于产生新的氨基酸分析仪的采购需求,市场需求大概以15%以上的速度增长。2022年日立LA8080高速氨基酸分析仪销售台数实现了超30%大幅增长了,2023年在2022年高速增长的基础上销售台数又实现了双位数增长,同时日立Chromaster全功能氨基酸分析仪销售台数也相应的快速增长。问题3:目前贵公司在氨基酸检测方面有哪些特色的应用方案或仪器产品?具有怎样的技术优势?针对氨基酸检测,日立科学仪器(北京)有限公司可以提供指导原则所列的柱前衍生和柱后衍生两种不同的方案,方便药企和药检所根据实际需求选择。1、日立日立Chromaster高效液相色谱仪柱前衍生法日立Chromaster高效液相色谱仪可以根据用户的实际需求提供灵活的配置:• 10 ml/min双柱塞串联往复泵可以选择40 Mpa或60 Mpa• 紫外可见检测器、荧光检测器、DAD检测器等• 可选配衍生单元进行柱后茚三酮法检测。• 标配第1代700-1500cm的反应盘管衍生技术日立Chromaster全功能氨基酸分析仪以下是使用日立日立Chromaster高效液相色谱仪部分测试示例:1.1、PITC法柱前衍生测氨基酸1.2、依据日本药典测定Val/Ile/Leu样品1.3、测定乙酰半胱氨酸1.4 选配柱后衍生单元后,可以进行柱后茚三酮法测定氨基酸2、日立LA8080高速氨基酸分析仪柱后衍生法日立LA8080高速氨基酸分析仪日立公司也提供LA8080高速氨基酸分析仪测定方法,主要配置:• 1 ml/min双柱塞串联往复半微量泵• 3µm高理论塔板数阳离子交换树脂色谱柱• 全自动色谱柱自行装填程序• 光栅分光检测器• 高压全体积直接进样• 衍生单元提供3种方式可选(第3.5衍生技术灵敏度最高,使用寿命最长):研发于1997年的第2代反应柱研发于2011年第3代TDE2研发于2017年第3.5代TDE3(研发于1962年的第1代700-1500cm反应盘管技术可供对检测结果准确性要求不高的用户选配)日立LA8080高速氨基酸分析仪可选配色谱柱全自动自行装填程序,可实现用户自行装填色谱柱,且柱效可达到原厂色谱柱柱效。以下是使用日立LA8080高速氨基酸分析仪测定样品的示例:2.1、18AA-II复方氨基酸注射中氨基酸测定样品测定难度在于Cys含量非常低,非常考验仪器灵敏度和噪音,LA8080噪音值验收承诺小于25 µV,实测噪音值会比25 µV更小,针对这种含量差异非常大的样品检测对低含量氨基酸检测结果更准确。在前几年的抽检中,在被抽检到的药企中,使用日立LA8080的药企都顺利的通过了抽检,部分抽检未通过的药企重新采购了1-5台日立LA8080。2.2、根据指导原则,部分药企可能会选内标法测定氨基酸,日立LA8080可提供正亮氨酸和正缬氨酸做内标两种方法。2.2.1 正亮氨酸(Nle)做内标正亮氨酸做内标标准分析法仅需要通过调整分析程序即可获得更大分离度正亮氨酸做内标高分离分析法2.2.2 正缬氨酸(Nval)做内标可以在30分钟内实现包含CySO3H/MetSON/Orn/Hypro等氨基酸在内的25种氨基酸分析2.3、指导原则提到“在蛋白质或多肽水解之前,用过氧甲酸氧化样品中的半胱氨酸或胱氨酸和甲硫氨酸,使其转化为稳定的磺基丙氨酸和甲硫氨酸砜,防止半胱氨酸或胱氨酸和甲硫氨酸在水解过程中被破坏”,日立LA8080提供含硫氨基酸测定标准分析和快速分析两种方法。2.3.1 含硫氨基酸标准分析法:2.3.2 含硫酸氨基酸快速分析法:2.4、含丙氨酰谷氨酰胺复方氨基酸注射液的测定,日立LA8080可提供更加多样化的分析方法,仅需调整分析方法即可实现不同目的的测定需求,显示出LA8080洗脱模式的优异性。2.4.1标准60 mm色谱柱的标准分析法2.4.2、标准60 mm色谱柱的快速分析法,仅需要调整分析程序即可2.4.3标准60 mm色谱柱的高分离分析法,仅需要调整分析程序即可2.4.3、80 mm色谱柱的标准高分离分析法2.5、复方氨基酸注射液中氨基酸测定2.6、复方氨基酸注射液中氨基酸测定2.7、脑蛋白水解氨基酸测定2.8、3-氨基丙醇测定2.9、有关物质筛查2.9.1 SST2.9.2 原料如果LA8080色谱柱柱效下降后,可以使用全自动色谱柱装填程序实现一键式自行装填。进口色谱柱对照品图谱自行装填色谱柱对照品图谱通过比较对照品图谱,可以发现LA8080自行装填色谱柱柱效可以达到甚至优于进口色谱柱的柱效。综上,日立公司不仅可以提供指导原则所列柱前衍生法测定方案,也可以提供灵活多样的柱后衍生测定方案,更多的分析示例和方法请联系日立科学仪器(北京)有限公司。
  • 上海通微最新推出饲料添加剂检测解决方案
    近几年,人类食品安全质量问题层出不穷,成为国内外关注焦点。跟食品安全息息相关的饲料行业也成为重点管控对象。2012年,一系列的饲料、畜牧法规条例相继出台,标志着将对畜牧产品质量安全、饲料行业行为将更加规范。   2012年5月1日生效的国务院令第609号《饲料和饲料添加剂管理条例》明确规定: 饲料、饲料添加剂生产企业应当按照国务院农业行政主管部门的规定和有关标准,对采购的饲料原料、单一饲料、饲料添加剂、药物饲料添加剂、添加剂预 混合饲料和用于饲料添加剂生产的原料进行查验或者检验。   2012年10月22日,农业部1849号公告,公布了《饲料生产企业许可条件》和《混合型饲料添加剂生产企业许可条件》。两许可条件自2012年12月1日起施行。该许可条件规定必须没有饮料检测实验室,规定检测实验室中必须配备的仪器,其中包括原子吸收分光光度计、高效液相色谱仪等相关检测仪器。   上海通微分析技术有限公司依托自身强大的研发团队,利用EasySepTM-1020高性能自动化液相色谱系统为饲料行业开发出多套饲料添加剂检测专用高效解决方案。检测项目包括:   饲料中20种氨基酸的检测:牛磺酸(2-aminoethanesulfonic acid)、甘氨酸(Gly)、丝氨酸(Ser)、天冬氨酸(Asp)、谷氨酰胺(Gln)、苏氨酸(Thr)、丙氨酸(Ala)、半胱氨酸(Cys)、脯氨酸(Pro)、胱氨酸(Cys)、赖氨酸(Lys)、组氨酸(His)、缬氨酸(Val)、甲硫氨酸(Met)、精氨酸(Arg)、酪氨酸(Tyr)、异亮氨酸(Ile)、亮氨酸(Leu)、苯丙氨酸(Phe)、色氨酸(Trp)   饲料中维生素的检测:烟酸、维生素B5、维生素B6、维生素B1、叶酸、维生素B12、维生素B2、维生素K3、维生素A、乙酸酯、维生素D3、维生素E   饲料中其他添加剂的检测:苏丹红、三聚氰胺   上海通微分析技术有限公司独创未衍生氨基酸的直接测定分析法,比传统的衍生检测法更快速、简便、成本低、准确度高。   详情,请咨询上海通微分析技术有限公司http://www.instrument.com.cn/netshow/SH100522/office.asp   上海通微公司实力   留美博士阎超教授2002年创办,总部位于美国硅谷的美国通微技术股份有限公司。   中国分析仪器行业内唯一一家经国家批准的企业博士后科研工作站。   通微自主研发生产的产品获得国家和行业内无数奖项,也是取得国内外专利最多的科技型企机构   与国内多所著名研究所和高校联合,设有联合实验室,在行业解决方案方面提供强有力的技术支持   上海通微分析技术有限公司是国内一流的集色谱仪器研发、生产、销售为一体高新技术企业,下设有苏州环球色谱有限责任公司、无锡通微检测技术有限公司两个全资子公司。
  • 辽宁出入境检验检疫协会关于《农田土壤线虫多样性检测技术规范》等4项团体标准的发布公告
    各有关单位:根据国家标准化管理委员会、民政部印发的《团体标准管理规定》和《辽宁出入境检验检疫协会团体标准管理办法(修订版)》相关文件要求,农田土壤线虫多样性监测技术规范》(T/LNIQA 007-2023)、《农用地土壤重金属钝化微生物菌剂》(T/LNIQA 008-2023)、《冷链货物外包装消毒作业规程》(T/LNIQA 009-2023)、《富硒食品中甲基硒代半胱氨酸和硒代蛋氨酸含量的测定》(T/LNIQA 010-2023)4项团体标准报批材料齐全,准于2023年3月6日发布,自2023年3月6日起实施,现予以公告。辽宁出入境检验检疫协会2023年3月6日关于《农田土壤线虫多样性检测技术规范》等4项团体标准的发布公告.pdf
  • 绘云生物质谱试剂盒获医疗注册证,创始人为代谢组学专家、欧洲科学院院士贾伟
    7月3日,深圳市绘云生物科技有限公司的同型半胱氨酸测定试剂盒(液相色谱—串联质谱法)正式获得广东省药品监督管理局二类医疗器械注册证(注册证编号:粤械注准20232401152)。本产品用于体外定量测定人血清中同型半胱氨酸的浓度,临床上主要用于高同型半胱氨酸血症的辅助诊断及心血管病风险的评价。试剂盒由校准品1~4、质控品1~2、内标准品、还原剂、沉淀剂、稀释液、96孔深孔板和96孔V底板、96孔板铝式覆膜、96孔板硅胶垫组成。其中校准品1~4:含同型半胱氨酸和牛血清白蛋白的冻干粉 质控品1~2:含同型半胱氨酸和牛血清白蛋白的冻干粉 内标准品:含氘代同型半胱氨酸和氢氧化钠的水溶液 还原剂:含二硫苏糖醇的固体粉末 沉淀剂:含甲醇 稀释液:含抗坏血酸的水溶液。  仪器信息网进一步查询到绘云生物的相关信息,2017年,贾伟教授创立深圳绘云生物科技有限公司,瞄准大健康及慢病管理的全新领域,运用现代生物技术,开发慢病诊断、预警及干预的创新技术产品。绘云生物曾于2017年获天使轮融资,2021年完成A轮融资。公司专注于医学健康,开展精准医疗和大健康产业相关产品的研发,着力推动个体化医疗服务进展,是一家集科技服务、健康检测及产品研发为一体的高新科技企业。绘云生物科技有限公司致力于研制和生产在医疗领域、研究领域以及商业实验中使用的体外诊断试剂。除了体外诊断试剂,绘云生物科技有限公司还提供诊断检测以及代谢组学技术服务。
  • 质谱新技术 | 美CDC 研究人员开发出筛查新生儿代谢性疾病的新方法
    美国疾病控制和预防中心的研究人员已经开发一种检测新生儿高同型半胱氨酸血症的方法,这是一种常被常规新生儿筛查测试忽略的病症,可能导致永久性损害或死亡。在上周发表在 Clinical Chemistry 杂志上的一项研究中描述该测试时,作者指出,高同型半胱氨酸血症影响到婴儿代谢蛋氨酸的能力,导致蛋氨酸和另一种生物标记物——同型半胱氨酸的水平升高。此外,它还会引起眼部和骨骼问题、智力缺陷和血管异常等问题。 传统的病症筛查方法使用的是以蛋氨酸为生物标记物的多重快速流注分析质谱(FIA-MS/MS)测试,但这种方法通常在新生儿筛查时蛋氨酸水平仍然较低。该测试可以检测到该病症但常常会漏诊。 该试验中引入了还原步骤以及使同型半胱氨酸灵敏度提高的衍生化步骤,使得新测试方法可以更准确地检测到高同型半胱氨酸血症,而不受其他生物标记物的影响。该测试可以无缝集成到现有和未来的一级新生儿筛查测试中,具有实际应用价值。 此测试是第一种能在常规的FIA-MS/MS新生儿筛查测试中实现同型半胱氨酸多重定量的测试方法。此前的属于二级筛查,总同型半胱氨酸进行分离、质谱分析,时间较长,并且比FIA-MS/MS测试使用频率低。该试验可能会漏诊低蛋氨酸水平下的同型半胱氨酸血症患儿,因此一般将其作为第二级筛查生物标记物,但有时在新生儿出生后两天内采集的血液样本中蛋氨酸水平还不够高会导致漏诊。同型半胱氨酸更加接近同型半胱氨酸血症代谢途径并且在受影响的新生儿身上更早出现,而且不受管路喂养的影响,因此可以提高新生儿筛查的准确性。 该试验被测试在152位临床标本中,其中有100个被判定为健康样本,50个是在医院接受管路营养治疗的婴儿样本,以及2个被诊断为同型半胱氨酸血症样本,测试结果准确无误。 测试方法可集成现有和未来的一级新生儿筛查测试中,成本低,具有实际应用价值。只需在现有筛查测试中添加额外的化学物质即可无缝集成。该方法需要进一步测试、验证并取得监管批准后方可大规模使用。 研究人员还计划将其他两个生物标记物引入测试中,以区分同型半胱氨酸血症和其他疾病。此外,该测试方法可以为检测使用总同型半胱氨酸作为生物标记的其他罕见代谢性疾病打开大门。在新生儿筛查中,检测其他与同型半胱氨酸水平相关的疾病也被提出作为一种选择。 总之,该测试方法为早期检测同型半胱氨酸血症提供了一种更准确、更快速和更经济的方法。研究人员表示,该方法的适用范围不仅限于CDC实验室,其他新生儿筛查实验室也可以采用该方法,并且这种化学物质成本较低,便于实际应用。 研究人员表示,该测试方法具有重要的临床意义和应用前景。在医学实践中,检测同型半胱氨酸血症很重要,因为它是一种罕见但可能会引起永久性损伤或死亡的疾病。如今,通过该测试方法,新生儿可以接受更及时、更准确的筛查,以确保他们的健康和幸福。此外,这种测试方法还可以进一步提高新生儿筛查的准确性,为其他代谢性疾病的早期筛查提供参考和借鉴。 然而,该测试方法并非百分之百准确,仍存在漏诊和误诊的风险。因此,在实践中,研究人员建议采用多种测试方法相结合的筛查方法,从而最大程度地减少漏诊和误诊的风险。 总之,对于新生儿来说,早期筛查是非常重要的,因为许多疾病在早期就可以通过筛查被发现和治疗,避免造成长期的不可逆损伤。而这项新的同型半胱氨酸血症测试方法的出现,将有助于提高新生儿筛查的准确性和效率,为新生儿健康保驾护航。 研究人员表示,该测试方法是基于最新技术的成果,并得到了现代技术的支持。基于这个方法,他们也在尝试开发其他新的测试方法,以提高新生儿筛查的准确性和覆盖面。同时,他们还将继续研究同型半胱氨酸血症的治疗方法,为患者提供更好的治疗方案。 该新测试方法的出现为新生儿筛查提供了一种更准确、更快速和更经济的方法,有助于预防和治疗同型半胱氨酸血症等代谢性疾病。这是一个非常好的消息,使我们相信,随着先进技术的不断发展和应用,我们能够更好地保障人类健康和幸福。 该测试方法还需要进一步开发和优化。研究人员将继续改进该方法,包括增加生物标记物的数量和灵敏度,并且要将该测试集成到更多实际应用中。此外,他们还将考虑将该测试方法应用于其他人群的筛查中,以扩大其应用范围。 此外,该测试方法的出现也受到了一些限制和挑战。例如,该测试需要采集新生儿的血液样本,这可能会造成疼痛和不适,需要专业医护人员进行操作。此外,该测试方法还需要耗费一定的时间和资源,这将对筛查的效率和成本产生一定的影响。因此,在实际应用中,需要权衡各种因素,并与其他筛查方法一起使用,以最大程度地提高筛查效果。新生儿高同型半胱氨酸血症是一个危险的罕见疾病,早期筛查尤为重要。该研究开发出的测试方法可以提高筛查准确性,有望在实践中应用。这项成果不仅对筛查同型半胱氨酸血症有很大帮助,而且还为其他罕见代谢性疾病的早期筛查提供借鉴。我们期待着更多的科技成果能够为人类健康事业作出贡献。 Petritis也提出了检测与同型半胱氨酸水平相关的其他疾病作为一种选择。将同型半胱氨酸分析加入到基于串联质谱的主要筛查中,“打开了检测使用总同型半胱氨酸作为生物标志物的其他罕见代谢性疾病的大门。”Petritis指出,举例来说,重甲基化障碍是其中之一。该研究小组还在致力于将另外两种生物标志物多重复合到测试中,以区分同型半胱氨酸尿症和其他疾病。 参考文献: https://academic.oup.com/clinchem/advance-article/doi/10.1093/clinchem/hvad007/7068836
  • 鞠熀先教授团队攻克MALDI-MS检测难题 发展质谱成像分析新技术
    南京大学化学化工学院鞠熀先教授研究组在质谱成像分析方面取得重大进展,相关成果日前在线发表于Angew. Chem. Int. Ed., DOI: 10.1002/anie.201601096。该成果由14级博士生胡骏杰为第一作者,鞠熀先教授为通讯作者完成。  质谱技术由于高通量和免标记的优势,在酶活性分析中得到广泛关注。然而,由于生物样品的成分复杂,组分丰度的分布差异大,其应用常被复杂的样品前处理所限制。为简化繁琐的样品前处理和数据分析过程,鞠熀先教授研究组发展了质谱成像分析新技术,实现了对多种酶活性的便捷可视化分析。该工作首先需攻克质谱成像分析尤其是通常MALDI-MS检测存在的难题,大幅度提高质谱信号与信噪比,从而通过逐点扫描,获得清晰的质谱图像。该课题组以磷脂分子修饰多肽底物,利用具有两亲特性的磷脂分子保证其在疏水玻片表面的有序组装,构建模拟生物膜,从而增强MALDI芯片的表面生物相容性,以使分析对象酶更易接近其底物,大幅度提高了质谱信号 同时这一设计增加了酶反应产物的分子量,可以避免基质与生物样品中杂质的干扰,改善了检测信噪比与质谱分辨能力。他们以含半胱氨酸的天冬氨酸蛋白水解酶家族(Caspase-1, -2, -3和-8)为模型,将相应多肽底物分别与磷脂骨架的分子连接并组装嵌插于疏水玻片表面,制备出用于酶活性检测的阵列芯片 在目标酶的作用下,底物被剪切产生质量位移,各酶的活性通过酶切产物的质荷比进行颜色编码,实现了多种酶活性的可视化与高通量定量检测(图1)。这一方法已成功用于细胞内水解酶家族的抑制剂筛选和化疗过程癌细胞中Caspases酶活性演化的监测,为耐药性细胞鉴别及抗癌药物筛选提供了有力工具,并可方便地扩展应用于其它酶系统,为探究更多过程中酶的作用机制提供了新途径。  质谱芯片的制备及Caspase酶活性的可视化分析原理  鞠熀先教授研究组自2000年开始质谱研究,以解决实际问题为出发点,建立了海洛因及其代谢物的LC/MS分析方法及鼠药的GC/MS快速检测方法等。2010年后,随着生命分析化学国家重点实验室的建立与生命科学研究的需求,该研究组将纳米技术、化学衍生及化学生物学与传统质谱分析方法结合,通过功能化碳纳米角、磁性碳纳米管等纳米材料,提出低丰度生物小分子(Chem. Eur. J., 2013, 19, 102-108)与蛋白(Nanoscale, 2014, 6, 3150-3156)的选择性富集手段,建立了无需另加基质的MALDI-MS检测方法。特别是,针对阻碍MALDI-MS定量分析的瓶颈,该课题组利用分子标记实现了MALDI定量(Anal. Chem., 2014, 86, 8275-8280 Anal. Chem., 2015, 87, 4409-4414),并用于多肽和酶活性的定量检测,创造性地改变了传统认识,扩展了这一技术的应用范围。 原文链接:MALDI-MS Patterning of Caspase Activities and Its Application in the Assessment ofDrug Resistance
  • 全新上线!曼哈格氨基酸/神经递质/儿茶酚胺检测试剂盒(液相色谱-串联质谱法)
    今日,曼哈格和博莱克联合研发生产的蛋白质氨基酸/神经递质/儿茶酚胺检测试剂盒(液相色谱-串联质谱法)隆重推出。本次推出的3套kit是建立在高效液相色谱质谱平台上,可针对实验动物和人体血样、尿样中的20种蛋白质氨基酸、12种神经递质和6种儿茶酚胺进行精准定量检测。检测试剂盒检测指标▣ 20种蛋白质氨基酸Asparagine天冬酰胺proline脯氨酸Histidine组氨酸Tyrosine酪氨酸Serine丝氨酸Methionine甲硫氨酸Glycine甘氨酸Lysine赖氨酸Glutamine谷氨酰胺Valine缬氨酸Arginine精氨酸Isoleucine异亮氨酸Aspartic acid天冬氨酸Leucine亮氨酸Glutamic acid谷氨酸Phenylalanine苯丙氨酸Threonine苏氨酸Tryptophan色氨酸Alanine丙氨酸Cysteine半胱氨酸▣ 12种神经递质Norepinephrine去甲肾上腺素γ-Aminobutyricacid4-氨基丁酸Metanephrine甲氧基肾上腺素Octopamine章鱼胺Epinephrine肾上腺素Tyramine酪胺Dopamine多巴胺Agmatine胍丁胺Serotonin5-羟色胺Methoxytyramine甲氧酩胺Tryptamine色胺Histamine组胺▣ 6种儿茶酚胺Normetanephrine甲氧基去甲肾上腺素Epinephrine肾上腺素Norepinephrine去甲肾上腺素Dopamine多巴胺Metanephrine甲氧基肾上腺素Methoxytyramine甲氧酪胺产品优势
  • 生物物理所等在GPCR别构调节机制研究方面取得进展
    近日,《美国化学会志》期刊在线发表了中国科学院生物物理研究所王江云课题组与上海科技大学刘志杰和华甜课题组的研究论文。该研究首次通过基因密码子扩展方法,在昆虫细胞表达系统中实现含氟非天然氨基酸(3-三氟甲基-L-苯丙氨酸,mtfF)的插入,并成功用于大麻素受体CB1别构调节机制的研究。  氟原子由于具有对蛋白质环境变化高度敏感、100%天然丰度及没有背景信号等特点,被广泛用于蛋白质动态构象的研究。目前利用19F-NMR检测蛋白质动态构象主要通过蛋白质的半胱氨酸标记含氟原子的基团,进而实现信号检测。但是这需要在目标蛋白表面感兴趣的标记位点存在可接近的半胱氨酸残基,同时要将其他所有暴露在表面的半胱氨酸残基突变掉,这将会影响蛋白质的结构稳定性。半胱氨酸介导的位点特异性标记对于含有少量半胱氨酸残基的蛋白质来说是方便且通用的。然而,近2/3的人类GPCR含有超过10个半胱氨酸残基,并且所有暴露于表面的半胱氨酸残基的突变可能会对目标蛋白造成显著的结构扰动。此外,隐藏在蛋白质疏水核心内的残基不能通过这种方法进行标记。基于半胱氨酸标记方法局限性,发展简单便捷的真核系统蛋白质氟探针标记方法对研究真核生物蛋白质构象十分重要。  大麻素受体CB1是人大脑里表达量最高的GPCR之一,调控多种重要的生理活动,是治疗神经和精神类疾病、肥胖等的重要靶点。刘志杰/华甜课题组一直聚焦于大麻素受体结构与功能的系统性研究,在过去几年中成功解析了大麻素受体CB1和CB2在拮抗状态、类激活和激活状态下的三维结构,揭示了正构调节配体对大麻素受体的作用机制。为了进一步探究别构调节剂对CB1的调控机理以及不同配体如何对GPCR的动态构象进行调控等科学问题,王江云课题组与刘志杰/华甜课题组以及iHuman研究所核磁共振实验室副研究员刘东升合作,利用基因密码子扩展方法,首次获得真核细胞内识别含氟非天然氨基酸的mtfF-氨酰-tRNA合成酶,在昆虫细胞中实现CB1构象变化敏感位点的标记。借助上海科技大学iHuman研究所核磁共振平台,探究了不同正构配体以及别构调节剂Org27569对CB1的动态构象变化的调控,首次发现了Org27569和激动剂如何在CB1激活过程中协同稳定以前未被识别的前激活状态。  通过团队的密切合作和不懈努力,使用19F-NMR破译了受体的动态过程和多态性,同时结合X-射线晶体学方法,揭示了别构调节剂Org27569对CB1的独特调控机理,提出了CB1的激活和别构调节模型,尤其是Org27569和胆固醇分子在CB1激活过程中扮演的角色。基因编码的非天然氨基酸mtfF方法的建立可广泛用于GPCR动态构象变化研究的标记系统,也可以用于其它真核蛋白质动态构象的研究。  该研究得到国家自然科学基金委和国家高技术研究发展计划资助项目的支持。  论文链接
  • 上海睿康生物超高效液相色谱串联质谱检测系统获二类注册证!
    2021年4月,上海睿康生物科技有限公司又获喜讯,其申报的超高效液相色谱串联质谱检测系统RZ-500通过上海市药品监督管理局的审批,获得二类医疗器械产品注册证(沪械注准20212220239)。这是继今年2月份上海睿康获得6个质谱试剂盒二类注册证之后,在临床IVD质谱产品上的又一重大突破。  近年来,液相色谱-串联质谱技术凭借其高灵敏度、高特异性和多指标检测等优势,逐渐深入到常规的临床检验中。作为一种精准诊断技术,质谱能够解决常规检测手段(如生化或免疫法等)未能满足的临床需求,因此临床实验室对液质联用仪的需求日渐旺盛。然而,随着应用场景的深入,现有的仪器虽然能开展新生儿筛查或维生素等项目,但是并不能完全满足市场的需求,特别是对低浓度物质比如激素、儿茶酚胺、多肽标志物的检测等。  上海睿康生物通过与美国赛默飞世尔科技公司的合作,成功的引入赛默飞最高端的质谱技术,开发了一款高性价比的自主品牌液相色谱串联质谱检测系统。RZ-500主要由三部分组成:超高效液相色谱仪(UHPLC)、三重四极杆质谱仪和TraceFinder软件。三部分紧密合作,成就了RZ-500出色的定量能力、灵敏度与特异性、非凡的易用性和耐用性。此外,RZ-500的结构组成还包括色谱柱,这是国内首家拥有二类注册证的与液相色谱串联质谱检测系统配套使用的色谱柱耗材。  RZ-500在多个方面的性能包括灵敏度、分辨率、动态范围、扫描速度、正负极切换时间等领先业内,是一款为覆盖从低端到高端的所有临床检测项目而设计的液相色谱串联质谱系统,不但能够极大的满足常规的临床检测需求,还是极佳的新型疾病标志物(比如传染病、肿瘤等)的转化平台。  RZ-500能够轻松应对的检测项目包括  多种维生素(水溶性和脂溶性维生素)  儿茶酚胺及其代谢物(可检测低至5 pg/mL的多巴胺)  多种类固醇激素(可检测低至1 pg/mL的睾酮)  醛固酮和血管紧张素  多种氨基酸(血清)  多种胆汁酸  多种脂肪酸  多种药物浓度监控(TDM)  多种神经酰胺  新生儿筛查(多种氨基酸和肉毒碱,干血片)  游离T3和游离T4  蛋白质/多肽标志物  以及上海睿康已获二类注册证的试剂盒(6个):  叶酸(首家)  25-羟基维生素D  香草扁桃酸和肌酐(首家)  总T3和总T4(首家)  同型半胱氨酸  甘胆酸
  • 食品中常见过敏原及检测技术研究进展
    食物过敏是指过敏原蛋白引起的异常或过强的免疫反应,从免疫学机制而言,可以将食物过敏反应分为4 种类型,即:免疫球蛋白(Ig)E介导的I型超敏反应、II型细胞毒性超敏反应、III型免疫复合型超敏反应以及T细胞介导的迟发性超敏反应。目前可以从广义的角度将食物过敏分为IgE介导和非IgE介导两大类,其中以IgE介导的食物过敏反应最为常见。IgE介导的过敏反应是指过敏原与特异性抗体形成复合物后,与细胞(如肥大细胞、嗜碱性细胞)相结合,随后细胞释放组胺、5-羟色胺及白三烯等大量活性介质,这些物质作用于组织与器官,引起局部或者全身性的过敏反应。河北科技大学食品与生物学院的宁亚维和河北省食品检验研究院的李 强*、张 岩*等人介绍了8 类常见致敏食品中主要过敏原的结构与致敏特点,对常用的食物过敏原方法以及现阶段一些新兴的检测技术进行了综述,并对检测方法未来的发展方向进行展望,期望能对促进食物过敏原检测方法的开发提供参考。1、食品中常见过敏原大豆大豆引发的过敏为IgE抗体介导的速发型过敏反应,会损害患者的皮肤系统、呼吸系统以及消化系统,引发荨麻疹和皮疹等皮肤病,呼吸障碍、呼吸急促、哮喘等呼吸道疾病,腹痛、腹泻等消化道症状,甚至会导致过敏人群发生过敏性休克。世界过敏原数据库收录数据显示,引起过敏反应的大豆过敏原43 种,但大多数过敏反应由两种主要过敏原蛋白引起,即大豆球蛋白和β-伴大豆球蛋白。小麦小麦中蛋白含量占10%~15%,按其在不同溶剂中的溶解度不同主要分为4 类:清蛋白、球蛋白、醇溶蛋白和麦谷蛋白,这些蛋白成分是小麦中的重要营养物质,同时也是小麦过敏原的主要来源。与小麦过敏相关的疾病主要有小麦运动激发过敏症、接触性荨麻疹、特异性皮炎、面包师哮喘症、恶心呕吐以及腹泻等,大多数小麦过敏涉及的是轻度反应,在某些特殊情况下也会导致生命危险。世界卫生组织/国际免疫学会联合会过敏原命名小组分委员会已经提供了13 种小麦过敏原,包括Tri a 14、Tri a 18、Tri a 19、Tri a 20、Tri a 25、Tri a 26、Tri a 36、Tri a 37、Tri a 41~Tri a 45。坚果类能够引起过敏反应的坚果类食物主要包括杏仁、腰果、核桃、榛子、开心果、巴西坚果等,过敏人群食用后,会出现胸闷、咽喉痛,呼吸困难以及恶心、胃痉挛,呕吐腹泻等症状。坚果一般作为植物的种子或者果实,因此大多数坚果蛋白属于3 种保守的种子贮藏蛋白,包括2S白蛋白、7S豆球蛋白和11S豆球蛋白。2S白蛋白属于醇溶蛋白超家族,此家族中的植物源性过敏原具有低分子质量和序列中含有多个半胱氨酸残基的特征。通常,8 个半胱氨酸参与建立4 条链内的二硫键,构成蛋白质三维结构所必需的α-螺旋。醇溶蛋白超家族的大多数过敏原由于其结构小而紧凑,对热、pH值和胃肠道酶具有高度耐受性。花生花生常引起食物过敏反应,过敏症状包括血管性水肿、低血压、腹痛到危及生命的哮喘和过敏性休克等。目前花生中已鉴定出16 种蛋白质过敏原,并将其命名为Ara h 1~17,由于Ara h 4与Ara h 3的序列重复率大于90%,因此2012年Ara h 4被重新命名为Ara h 3.0201,将其与Ara h 3作为相同的过敏原。50%以上过敏患者血清IgE检测结果表明,最常见的花生过敏原为Ara h 1~3和Ara h 6。牛奶牛奶含有丰富的蛋白质,主要包括酪蛋白和乳清蛋白两类,分别占乳蛋白总量的80%和20%。乳蛋白是主要的食物过敏原,常引起婴幼儿过敏性疾病。牛奶过敏通常表现为湿疹、特异性皮肤炎等皮肤症状以及恶心、呕吐、腹痛、腹泻和大便干燥等消化道症状。牛奶中的过敏原主要有3 种,分别是酪蛋白以及乳清蛋白中的α-乳白蛋白、β-乳球蛋白。鸡蛋鸡蛋也是引起食物过敏的主要食品之一,过敏症状主要表现为湿疹、皮炎和风团疹,消化道出现呕吐、腹泻、胃食道反流等。鸡蛋中的主要过敏原有6 种,蛋黄中存在2 种,分别是α-卵黄蛋白和卵黄糖蛋白;蛋清中有4 种,分别是卵类黏蛋白、卵白蛋白、卵转铁蛋白和溶菌酶,这4 种蛋白分别占蛋清蛋白总量的11%、54%、12%和3.5%。鱼类鱼类肉质鲜嫩且营养价值高,但是鱼类常引起过敏人群发生食物过敏反应。过敏症状主要表现为脸红、荨麻疹、恶心呕吐、腹泻、体温逆转、视力模糊等神经系统症状以及血压下降、心传导阻滞等心血管症状。鱼类主要过敏原为小清蛋白、醛缩酶和烯醇化酶。小清蛋白具有保守蛋白结构,分子质量为10~13 kDa,属于食物过敏原中最大的蛋白质家族之一的钙结合蛋白。小清蛋白的热稳定性极高,对食品加工和酶消化的耐受能力极强,不容易通过物理化学方法去除,因此小清蛋白是导致70%以上的鱼及鱼类产品引起过敏反应的原因。其次,醛缩酶和β-烯醇化酶也是重要的鱼类过敏原,分子质量分别为40 kDa和47~50 kDa。醛缩酶和烯醇化酶对热处理敏感,对食品加工的耐受度低于小清蛋白,因此过敏反应的发生概率也低于小清蛋白。甲壳及贝类甲壳及贝类食品味道鲜美且营养丰富,然而因含有过敏原常引起过敏人群发生海鲜过敏反应。过敏症状表现为恶心呕吐、腹泻腹痛的胃肠道症状,也会导致指尖和脚趾的刺痛感,甚至出现肌肉麻痹。甲壳及贝类过敏原主要存在于肉的可食用部分,其主要过敏原包括原肌球蛋白和精氨酸激酶。2、食物过敏原常用检测技术基于蛋白水平的免疫学检测技术酶联免疫吸附试验法:ELISA法基于免疫酶的特点对待测物质进行免疫测定,检测结果可根据底物与酶反应后的产物颜色对抗原进行定性或定量分析。ELISA法根据检测原理以及检测对象的不同分为多种类型,用于食物过敏原检测的主要是夹心法和竞争法。ELISA法是目前在食物过敏原的检测中应用最广泛的一种方法,特异性强、灵敏度高,现阶段多采用成品化的试剂盒进行样品检测。ELISA法检测结果的准确性依赖于抗体对致敏蛋白的识别,但由于食品加工过程中蛋白结构的改变使抗体无法准确识别结合部位,导致检测灵敏度下降,容易产生假阳性结果。虽然ELISA法存在一定局限性,但其仍是主要的食品过敏原定量方法,尤其是在检测花生、大豆和鸡蛋等过敏食物中的致敏组分应用较广。免疫层析技术:免疫层析技术是酶联免疫吸附技术原理的扩展应用,层析时,标记物与待测物之间形成的复合物被相应的配体捕获而聚集到硝化纤维膜上的检测线上,之后复合物在膜上呈现出标记物所带有的颜色,最后可通过纤维膜上显色条的有无、颜色的深浅和反射光线强弱等实现定性或定量检测。免疫层析技术多应用于花生、榛子等坚果的过敏原检测,也有研究人员将其应用到鱼类过敏原的检测中。免疫印迹技术:免疫印迹技术,又称蛋白质印迹技术。该法首先利用凝胶电泳根据蛋白质分子质量的不同将样品分离,随后将凝胶上的蛋白质样品转移至硝酸纤维素膜上,使用放射性物质或者酶标记抗体来进行样品的检测与分析。免疫印迹技术主要用于食物过敏原的鉴定以及半定量分析,Willison等利用小鼠单克隆抗体4C10对杏仁主要过敏原Pru du 6的构象表位进行定位,免疫印迹实验的分析中,该单克隆抗体与非还原性的Pru du 6发生反应,证明了该过敏原构象表位识别的准确性。生物传感器技术:生物传感器主要由生物识别元件和信号转换元件两大部分组成,通过将目标分析物与识别元件进行特异性结合后将产生的物理、化学信号转化为可以检测的光、电信号以达到检测目的。目前用于食物过敏原检测的传感器主要为免疫传感器,根据测定原理的不同可进一步分为电化学免疫传感器、场效应生物传感器和表面等离子体共振(SPR)传感器等。基于基因水平的分子生物学检测技术实时荧光定量PCR技术:实时荧光定量PCR技术在体外模拟体内的DNA复制,利用扩增后的核酸产物来进行样品检测。通过在PCR体系中加入荧光基团,利用荧光基团产生的荧光信号变化来动态监测整个反应过程的实时荧光定量PCR技术在食物过敏原的检测中应用更加广泛。传统PCR技术主要对样品进行定性检测,而实时荧光定量PCR可以实现多种复杂食品中过敏原的定性定量分析以及物种的鉴定。环介导等温扩增检测技术:LAMP是近些年发展起来的一种新型的核酸扩增技术,通过设计4~6 条特异性引物,使用具有链置换活性的DNA聚合酶,在等温条件下每小时将目标基因扩增9~10 倍。由于其操作简单、检测时间短,目前已经应用于食品微生物检测、转基因食品检测以及过敏原成分检测等多个方面。质谱技术近年来,随着质谱技术的不断成熟与完善,在食品过敏原检测中的应用得到了越来越多的关注。使用质谱法检测食物过敏原时多与高效分离纯化技术如液相色谱、毛细管电泳等相结合,最常用的检测方法为 液相色谱-串联质谱法(LC-MS/MS),在选择合适的样品预处理方式和稳定的特征肽段的前提下,可以提高检测的灵敏度和准确性。尽管质谱法在应用时需要昴贵的仪器以及专业的技术人员,但质谱法具有快速、高特异性、高通量的优势,可以克服免疫学方法存在的通量低和交叉干扰的弊端,也克服了 PCR技术不能直接检测致敏蛋白质的缺点,具有较好的开发潜力。3、新型食物过敏原检测技术每种食物过敏原检测技术都兼具优缺点,没有一种单独的方法能够将所有优点结合起来,对所有相关的过敏性食品成分进行经济、可靠、快速和明确的识别和定量(图1)。对于一些复杂的分析样品,可能需要使用一种以上的技术来进行全面的检测。结 语目前在世界范围内,过敏性疾病的发生率仍呈现不断上升的趋势,明确食品中的过敏原并建立相关的检测技术对于预防食物过敏的发生至关重要。在目前的食物过敏原检测技术中,基于蛋白水平的ELISA检测技术和基于核酸水平的实时荧光定量PCR技术应用最为广泛,已经逐渐商业化、标准化。蛋白质容易在加工过程中发生变性、聚集等现象,导致其线性表位以及构象表位发生改变,给过敏原的检测带来困难,因此更容易造成检测误差,出现假阳性以及假阴性结果。相比之下,核酸检测更不易于受到外界条件影响,但由于是间接性检测,无法检测到蛋白质谱引起的过敏反应。而质谱法既可以改善免疫学方法中存在的检测通量低和交叉干扰的影响,同时避免了核酸检测技术不能直接检测致敏蛋白的缺点,能够对蛋白质和多肽进行明确鉴定,并且可以同时检测多种过敏原。但昴贵的仪器成本以及对检测人员的高素质要求在一定程度上限制了其进一步的发展。为了减少过敏性疾病的发生,未来的主要发展方向有两点:一方面,开发有效的过敏原减除技术,如通过热加工、高压及微生物发酵降解等方式降解过敏原蛋白从而降低致敏性;另一方面,开发便捷、快速、高效的过敏原检测技术,以帮助消费者更好地避免摄入过敏原。
  • 质谱从多维度“透视”ADC,为产品质量保驾护航
    ADC药物作为一类新兴的生物治疗药,其结构更为复杂,质量表征挑战也随之升级。在ADC的定量和定性表征中,质谱凭借其独特的能力发挥着不可或缺的作用,可以从完整分子水平、亚基水平、肽段水平和小分子分析等方面对ADC进行多维度的表征(如图1所示)。图1. 质谱多维度表征ADC的方法[1]ADC质谱表征策略√ 丰富的项目经验夏尔巴生物在ADC项目开发方面积累了丰富的经验,涵盖半胱氨酸随机偶联、糖基化定点偶联、半胱氨酸定点偶联、双抗ADC以及双载荷ADC等多种类型。目前,已有5个项目进入临床阶段、多个项目处于临床前阶段。√ 高效的ADC质谱表征流程夏尔巴生物凭借深厚的表征经验和先进的分析平台,成功打造出一套全面、高效的ADC质谱表征策略,可对不同偶联方式的ADC药物进行全方位表征,涵盖分子量、偶联位点、偶联位点占有率、偶联杂质、二硫键和翻译后修饰等,确保分析的全面性和深入性。这套质谱表征流程有效克服了在DAR(药物抗体比)分析、复杂肽段偶联位点的质谱表征研究方面的难题,实现了在完整分子水平的精准分析,充分为产品质量保驾护航。本文聚焦于药物抗体比(DAR, drug-to-antibody ratio)和偶联位点这两个ADC药物的关键质量属性,深入介绍夏尔巴生物的质谱表征方法。药物抗体比(DAR, drug-to-antibody ratio)的质谱表征ADC常用的偶联方式一般分为随机偶联和定点偶联,随机偶联包括赖氨酸随机偶联和半胱氨酸随机偶联;定点偶联方式较多,包括引入反应性半胱氨酸定点偶联、引入非天然氨基酸定点偶联、糖基化偶联、抗体间二硫键桥接偶联、其他酶促反应偶联等。半胱氨酸随机偶联过程如图2所示,由于半胱氨酸随机偶联ADC的轻链和重链以及重链和重链之间的二硫键被破坏,RP-LC/MS方法流动相中的有机溶剂会破坏非共价连接的立体空间结构,无法在完整分子水平分析DAR值和载荷分布情况。图2. 半胱氨酸随机偶联ADC偶联过程和结构展示[2] 而非变性质谱法(Native MS)由于其自身的特性,尤其是体积排阻色谱(Size exclusion chromatography, SEC)和质谱联用,很好的弥补了这种缺陷。SEC-MS法通常选择与质谱兼容的乙酸铵作为流动相体系,液相分离过程中无有机相参与,对柱温要求较低,分子的非共价结构得以保留,从而可以在完整分子水平进行DAR值分析。疏水作用色谱(HIC)通常以含盐的水溶液作为流动相,检测过程中不会引入有机相,也适用于在完整分子水平进行DAR值分析,通常被作为半胱氨酸偶联ADC的DAR值检测放行方法。但是HIC法本身不具备DAR值组分鉴定的能力,所以在HIC方法开发过程中,需要收集不同的组分,借助Native MS鉴定每个峰的组成。HIC法DAR值检测典型图谱见图3A,相应的Native-MS鉴定结果如图3B所示。图3. HIC和Native MS检测DAR值结果[2]定点偶联ADC在偶联过程中一般不会打开分子的链间二硫键,所以传统的RP-LC/MS法可以进行完整水平的DAR值分析。经典的糖定点偶联过程如图4所示,偶联过程中链间的二硫键得以保留,RP-LC/MS法以有机溶剂和水作为流动相,经过反相分离后进行质谱检测,对质谱结果解卷积分析后即可得到平均DAR值和载荷分布。图4. 糖定点偶联ADC的偶联过程[3]双载荷ADC(dual-payload)是在抗体上偶联两种不同的载荷,其自身异质性较强,常规分析方法很难实现两种载荷的DAR值检测,质谱可以根据带有不同载荷分子的分子量差异进行总DAR值以及两种不同载荷DAR值(DAR-A和DAR-B)的表征研究(图5)。图5. 双载荷ADC质谱表征[4]质谱分析DAR相较于常规分析方法的另一个优势在于可以在完整分子和亚基水平分别评估,如图6所示,对完整分子进行DTT还原后,可以检出轻链和重链上分别偶联的linker-payload数量,加权计算得出平均DAR值,与完整分子量检测结果交叉验证,可以得到更准确的ADC结构信息。图6. 质谱在完整分子和亚基水平DAR值检测结果ADC偶联位点的质谱表征研究肽图分析(LC-MS/MS法)是表征大分子药物的强大工具,将ADC样品酶解后,利用LC-MS/MS分析,从而确证氨基酸序列、翻译后修饰、二硫键连接形式,通过一级和二级质谱信号对肽段序列和linker-payload特征碎片进行确认即可获得偶联位点信息。图7. 肽图法质谱分析流程对于含有多个偶联位点的肽段,偶联位点的鉴定会更复杂,如图8所示,铰链区酶切肽段含有两个半胱氨酸偶联位点(~CPPC~),肽段有可能偶联一个或者两个linker-payload,这时就需要通过一级质谱判断肽段偶联的linker-payload数量,结合二级质谱信息判断偶联发生位点。图8. 偶联一个和两个linker-payload肽段质谱鉴定结果综上所述,夏尔巴生物的质谱分析平台具备生物大分子的全面表征分析能力,可以实现抗体、融合蛋白以及随机/定点不同偶联方式的不同分子形式ADC药物的全面表征研究和分析方法开发,可以根据需求为客户提供Top-down、Middle-down、Bottom up等基于质谱的、全面的生物大分子结构表征研究和质量控制策略,助力客户产品提质增效。参考文献1) Zhu X, Huo S, Xue C, et al. Current LC-MS-based strategies for characterization and quantification of antibody-drug conjugates[J]. Journal of pharmaceutical analysis, 2020, 10(3): 209-220.2) Valliere-Douglass JF, Hengel SM, Pan LY. Approaches to Interchain Cysteine-Linked ADC Characterization by Mass Spectrometry. Mol Pharm. 2015 Jun 1 12(6):1774-83.3) van Geel R, Wijdeven MA, Heesbeen R, Verkade JM, Wasiel AA, van Berkel SS, van Delft FL. Chemoenzymatic Conjugation of Toxic Payloads to the Globally Conserved N-Glycan of Native mAbs Provides Homogeneous and Highly Efficacious Antibody-Drug Conjugates. Bioconjug Chem. 2015 Nov 18 26(11):2233-42.4) Yamazaki C M , Yamaguchi A , Anami Y ,et al.Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance[J].Nature Communications[2024-03-05].关于夏尔巴生物夏尔巴生物专注于提供抗体、融合蛋白、ADC(抗体偶联药物)等药物的开发和商业化生产,致力于“帮助优质客户开发出全球老百姓用得起的高质量生物药”。公司已组建了一支具有丰富经验的国际化人才团队,并助力完成了40多个项目的申报注册以及10个产品的国内外上市,满足了250多万病人的用药需求。目前,夏尔巴生物在苏州已有60,000L的总产能,生产线的建设标准同时符合NMPA、FDA和EMA等GMP要求。同时,夏尔巴生物在杭州基地还有172,000L产能在建,其中4条20,000L的生物反应罐已建成。夏尔巴生物致力于为优质客户提供优质的技术服务,可提供行业领先的一站式解决方案,协助客户加速将创新成果实现商业化,惠及更多患者。“利他以恒,匠心致远”,以分享、帮助、成就、共赢的理念,帮助优质客户开发出全球老百姓用得起的高质量生物药,是夏尔巴生物的理想和目标。
  • 环凯微生物气溶胶采样器在军团菌检测中的应用
    军团菌(Legionella)是一种广泛存在于自然界中的机会致病菌,是一种能够引起呼吸道传染病的细菌,最为多见以临床类型为以肺部感染为主,同时伴有全身多系统损害的军团菌肺炎。目前已发现了超过30种军团杆菌,至少19种是人类肺炎的病原,其中最常见病原体为嗜肺军团菌,占病例的85%~90%。军团菌常隐藏在空调制冷装置中,随冷风吹出浮游在空气中,吸入人体后引起上呼吸道感染及发热症状,严重者可导致呼吸衰竭、肾衰竭甚至死亡。&zwnj 由于军团菌肺炎与其他肺炎不易区别,&zwnj 且老年人容易受到侵犯,&zwnj 一旦患病,&zwnj 病情相当严重。&zwnj 因此,&zwnj 对空调通风系统中军团菌的检测至关重要。我国对于空气和集中空调通风系统中军团菌的检测已形成多项标准,其中有《GBT18204公共场所卫生检验方法》第3部分:空气微生物、第5部分:集中空调通风系统、第6部分:卫生监测技术规范,《WS394-2012公共场所集中空调通风系统卫生规范》等,标准要求军团菌“不得检出”。环凯微生物气溶胶采样器是根据相关标准的要求,基于液体冲击式采样法为原理而开发的全新产品,能高效的采集空气及空调送风中的嗜肺军团菌。本采样器是采用前置大流量虚拟冲击空气微生物气溶胶浓缩装置、标准微生物液体撞击采样器相结合的新型空气微生物采集装置,摒弃了传统笨重的真空泵,采用自行研发且具有自主知识产权的轻便采样装置,采集空气样本时流量大,能在短时间将空气中的微生物浓缩到液体采样器中,避免长时间采样带来的生物活性损失,能简便高效解决传统空气采样器对于中低浓度微生物气溶胶捕获效率低下的问题,并有效提高采样人员的工作效率。1、主要产品特点● 实时显示采样数据:根据需求设置采样时间或采样总量,实时显示采样流量、浓缩流量、采样时间、总流量、已完成采样信息等。● 3种采样方式:程序采样、定体积采样、手动采样可选。● 程序采样:可实现单次或最多255次自动间隔采样,可满足多种采样要求。● 高效液体冲击式气溶胶捕集装置:对0.5μm以上生物粒子有效捕集效率90%以上。● 可追溯性:大容量设备运行存储,可自动记录4000组采样数据(含设定的采样地点号、采样分组号、采样量、采样时间等),可通过输入时间段随时查询对应时间段的采样记录数据 USB数据线简单快速接入电脑,通过HKM数据管理软件,实现高效追溯管理,并导出采样数据用于报告和分析(部分型号)。● 3.5寸高清液晶触控屏幕∶显示内容丰富,人性化菜单设置,操作界面简洁易懂。● 总气路和浓缩气路同时采样:可手动调节流量,双气路同时采样,同时显示双路流量。● 内置可充电电池,方便外出采样,有效捕集总生物气胶或活生物气胶有效时间达8小时以上2、嗜肺军团菌采集方案表货号名称规格单位11001010空气微生物气溶胶浓缩采样器(含液体冲击式采样器)ACS-150ACS-150套32647458微生物气溶胶采样器 EHK 225-9595 单个装(气溶胶浓缩采样器配套)EHK 225-9595套071910(嗜肺)军团菌生化鉴定盒7种×10次7×10支/盒盒CP0020BCYE平板(军团菌生长平板)90mm*20个90mm*20个盒1206194嗜肺军团菌 GDMCC1.1266 ATCC33152GDMCC1.1266支CP0040GVPC选择性平板(军团菌选择性平板) 90mm*20个90mm*20个盒CP0030BCYE-CYS平板(BCYE无L-半胱氨酸平板) 90mm*20个90mm*20个盒CP0020BCYE平板(军团菌生长平板)90mm*20个90mm*20个盒026072采样吸收液1-GVPC培养基基础 250克250克瓶SR0570GVPC液体培养基配套试剂(含SR0570A和SR0570B)A*10支+B*5支盒050090酵母提取粉 BR 400gBR 400g瓶
  • 助力生物药研发,浅谈ADC药物DAR值测定
    导语从上世纪初德国医学家、诺贝尔奖得主Paul Ehrlich(保罗埃尔利希)提出ADC(Antibody-Drug Conjugate,抗体药物偶联物)的概念至今,ADC药物已经发展至第三代,一系列特异性偶联技术使得生产工艺变得更加稳定,能够得到稳定药抗比的药物,对于ADC药物的疗效和安全性都有很大的贡献,推动了ADC药物的研发。抗体药物偶联物ADC是具有靶向作用的单克隆抗体与具有特定药理学特性(如细胞毒作用)的化合物的结合,两部分通过连接子偶联为一个整体。DAR(Drug-to-Antibody Ratio,药物抗体比值)是抗体药物偶联物的一个关键属性,是ADC药物研发过程重要的质控环节。 ADC药物 带您了解DAR值如何检测 ADC药物从本质上讲是混合物,是由连接不同个数小分子药物的单抗组成,DAR代表的是每个单抗上连接小分子药物的平均数量,DAR直接影响ADC药物的疗效和安全性,药物研发阶段应尽量缩小DAR值的变动区间。 ADC药物的偶联位点分为单抗赖氨酸残基上的氨基和半胱氨酸残基上的巯基。通过赖氨酸偶联的DAR往往比较小,而潜在的偶联位点却很多,偶联反应具有随机性,产物异质性较大;ADC药物研发使用的单抗有4对链间二硫键,抗体通过部分还原使链间二硫键转换成游离的半胱氨酸残基,半胱氨酸残基中的巯基与连接子中的马来酰亚胺基反应形成ADC,一般连接的小分子数量为0、2、4、6和8,如图所示。 半胱氨酸偶联的ADC药物DAR分布 DAR测定的方法有多种,可分为光谱法、色谱法和质谱法,可根据ADC的特性及偶联工艺等因素选择合适的方法,具体如下: 紫外/可见光谱法(UV/Vis)紫外/可见光谱法是检测DAR值最简单稳定的方法,这种方法需要抗体和小分子药物具有不同的最大吸收波长,分别计算二者的浓度进而得到ADC的DAR值,适用于多种ADC。 色谱法色谱法包括疏水作用色谱(HIC)和反相高效液相色谱法(RP-HPLC)两种,适用于测定半胱氨酸偶联的ADC。疏水作用色谱法能将不同DAR值的组分根据疏水性的差异分离开,且保持ADC分子的结构完整性;反相高效液相色谱法需要先将抗体还原得到轻、重链再进行分析,可用于补充验证疏水作用色谱法的结果,并且适用于质谱分析。 质谱法质谱法适用于赖氨酸偶联的ADC的DAR值测定,包括液相色谱串联质谱和MALDI-TOF-MS。赖氨酸偶联的ADC具有较强的异质性,增加了质谱谱图解析的难度,通常在测定前需对ADC进行额外的前处理,如去糖基化和去除C端赖氨酸异质性。 我们能做什么?疏水作用色谱法解决方案我们使用生物兼容液相系统(Nexera Bio)建立了一种疏水作用色谱方法用于抗体药物偶联物(ADC)中药物抗体比值(DAR)和药物分布的测定。 生物兼容液相系统(Nexera Bio) Nexera Bio系统通过对关键部位的惰性化升级,在耐受高压的前提下,升级的惰性表面降低了生物大分子在管路进样针、检测器中的吸附,并且可耐受高盐洗脱体系,更适合于生物大分子样品的分析。通过梯度洗脱,降低盐浓度,增加有机相比例,可将偶联不同药物数量的ADC分离,未偶联药物的抗体疏水性最弱,最先被洗脱,连接8个药物的抗体疏水性最强,最后被洗脱。峰面积百分比代表特定药物数量连接的ADC的相对分布。通过峰面积百分比和偶联药物数量计算加权平均DAR。 我们将此方法应用于实际药物的分析,并进行了重复性考察,发现液相系统稳定,方法重复性良好。 实际样品色谱图 表2. 6次进样数据重复性结果我们还能做什么? 岛津的产品线比较全面,包括紫外-可见吸收光谱、高效液相色谱、LCMS-Q-TOF以及MALDI-TOF质谱,可满足不同用户对于仪器的需求,较全面覆盖ADC药物DAR值测定以及其它生物制品的研发质控。 结语 经历了几十年的发展,ADC药物研究取得了巨大进展,已上市药物数量达到了12个,在研管道300多种。无论是赖氨酸偶联还是半胱氨酸偶联的ADC药物,都是复杂的混合药物,应该通过工艺的改进更好地控制DAR值变动区间,降低ADC药物的异质性。岛津一直关注生物药行业的发展,希望以我们的仪器平台为产品研发助力,推动新药安全、有效地走向临床,造福社会。
  • 临床实验室自建检测方法渐行渐近,岛津红宝书助您大展宏图!
    导语2023年1月全国医疗器械监督管理工作会议在北京召开,会议指出,支持重点区域监管创新和产业发展,持续夯实注册管理法制基础,扎实开展自制试剂试点等内容。随着“健康中国”战略的实施,临床实验室自建检测方法(Laboratory Developed Tests, 以下简称LDT)势在必行。针对客户需求和临床行业发展趋势,岛津推出《医学检验应用手册》,共分8大章节,内容涵盖质谱在出生缺陷领域、内分泌代谢及小分子代谢领域、营养水平监测、诊断标志物、基因检测、职业病与中毒医学领域的应用,以及全自动前处理设备在医学检验中的应用和精准医疗。每个章节均包含临床检验中热点难点项目,满足质谱检测行业需求。手册中检测项目大部分采用自建方法,从试剂配置、样品前处理到质谱测定,助您轻松应对临床实验室自建检测方法开发!相关法规2021年3月18日,国家药监局正式发布了最新修订的《医疗器械监督管理条例》。该《条例》指出,对国内尚无同品种产品上市的体外诊断试剂,符合条件的医疗机构根据本单位的临床需求,可以自行研制,在执业医师指导下,在本单位内使用。这为医疗机构采用LDT方式进行临床检验提供了法律依据。2022年,上海、广州及杭州等多地城市陆续出台相关文件积极支持LDT试点,有条件允许LDT项目服务于临床推广。质谱技术在医学检验中的应用目前,临床诊断中最常用的质谱类型有三重四极杆质谱仪LC-MS/MS、气相色谱质谱仪GC-MS、基质辅助激光解析质谱仪MALDI-TOF、液相色谱仪和电感耦合等离子体质谱仪ICP-MS等。尤其是LC-MS/MS,是当前在临床诊断中应用最广的质谱技术,其与自动化前处理设备联用广受青睐。【岛津解决方案】丰富的产品线岛津拥有丰富的产品线,仪器涵盖液相色谱、气相色谱、三重四极杆质谱、气相色谱质谱、基质辅助激光解析质谱、电感耦合等离子体质谱、全自动在线前处理设备等,丰富的产品线保证了医学检验完善的方案应对。LDT红宝书 -《医学检验应用手册》岛津《医学检验应用手册》分8大板块,共包含71篇应用文章,其中包括临床热点项目新筛、维生素检测、微生物诊断、血药浓度检测及微量元素检测等,丰富的医学检验内容及细致广泛的LDT方案,堪称医学检验红宝书!LDT红宝书八大板块临床项目涵盖广泛1特色案例1:串联质谱同时测定27种激素串联质谱测定类固醇激素,一直被认为是质谱测定重点难点项目,而超过20种激素同时测定方案,更是难点中的难点。岛津激素方案从标准品配制,样品SPE净化到质谱分析,全套LDT流程助您轻松拿捏激素测定项目。串联质谱同时测定27种激素色谱图2特色案例2:ICP-MS快速测定血清中微量金属元素的含量临床应用中人体微量元素及痕量元素测定越来越倾向于使用灵敏度更高更准确的ICP-MS,岛津ICP-MS临床测定方案操作简单、测定准确、仪器稳定,可准确定量分析人体内微量元素及痕量元素。3特色案例3:GPC-GCMS法测定血液中17种有毒物质对于低沸点、低极性的毒药物分析,岛津方案简单的前处理及GCMS准确定性定量优势,助您迅速开展相关检测。LDT自建项目步骤完整而清晰手册中大部分应用文章采用LDT自建方法完成,从标准品配置、样品前处理到液相条件设置及质谱参数设置,包含一条龙式完整方法开发,您只需“copy”即可完成LDT自建方法转移,使LDT方法开发化繁为简,使LDT方法开发“so easy”,解放您的时间和精力。4特色案例4:血尿同筛检测方案新生儿遗传代谢病筛查作为检品量最大的串联质谱检测项目之一,目前已在全国推广开来。按照相关规定,干血斑初筛阳性的患儿需进行GCMS尿筛二次确证。岛津提供即可使用的血尿同筛方案,血尿同筛均提供完整的前处理操作流程及数据处理软件,可轻松应对血尿同筛。血筛&bull 提供“即刻使用方法” ,可于多种试剂盒相匹配。&bull 仅需1uL进样量即可提供准确结果&bull 提高工作效率60 秒/ 样品专业化的软件简化操作步骤并提供质量控制管理尿筛&bull 单个标本一次分析可同时进行40种代谢病的筛查和判断。&bull 超130种有机酸已登陆于诊断软件,无需购买标准品,零方法开发。&bull 诊断软件可扩展多种有机酸筛查诊断。红宝书《医学检验应用手册》目录质谱在出生缺陷领域中的应用● 非衍生化-三重四极杆液质联用法进行新生儿遗传代谢缺陷筛查的应用研究● 液相-三重四极杆质谱法进行新生儿遗传代谢病筛查的应用方案● 使用LCMS-8050衍生化法测定DBS中的氨基酸和酰基肉碱● 气相色谱质谱联用法在有机酸尿症诊断中的应用● LCMSMS用于罕见病X-ALD筛查应用研究查的应用方案● LCMSMS用于肌酸缺乏综合征筛查应用研究● LCMSMS用于多种有机酸血症筛查应用研究● 串联质谱法用于先天性肾上腺皮质增生症筛查诊断应用研究质谱在内分泌代谢及小分子代谢领域中的应用● 应用LCMSMS检测人血浆中儿茶酚胺及其代谢物● LCMSMS测定人血浆中27种激素含量● LCMSMS测定人血浆中17种糖皮质激素含量● LCMSMS同时测定血清中血管紧张素I、II● 应用LCMSMS检测人血清中游离脂肪酸含量● 高效液相色谱三重四极杆质谱法测定人血清中游离氨基酸含量● 超高效液相色谱三重四极杆质谱联用法测定血清和尿液中氨基酸含量● LCMSMS检测人血清中全谱氨基酸● LCMSMS测定人血清中17种胆汁酸含量● LCMSMS用于高同型半胱氨酸血症诊断应用研究● LCMSMS结合蛋白沉淀法用于人血浆中胰岛素样生长因子1的测定● 气相色谱-质谱法检测血液中的5种脂肪酸含量● GCMS法检测血液中8种短链脂肪酸含量● GCMS法检测尿液中8种短链脂肪酸含量质谱在营养水平监测应用● 应用LCMSMS检测人血清中25-羟基维生素D2/D3含量检测● 应用Nexera MX System平行液相三重四极杆质谱联用系统检测人血清中25-羟基维生素D2/D3含量● 串联质谱用于血清中脂溶性维生素含量测定● Nexera MX平行液相色谱质谱联用系统测定人血清中的VA和VE含量● LCMSMS测定血清中的维生素K1● LCMSMS检测人血清中维生素B1、B2和B6含量● ICPMS-2030在临床尿液碘含量测定中的应用● ICPMS-2030测定尿液中多种金属元素的含量● ICPMS-2030碰撞池技术快速测定血清中微量元素的含量质谱在诊断标志物检测中的应用● LCMSMS测定人血浆中的总同型半胱氨酸● 超高效液相色谱三重四极杆质谱法测定血清中甲基丙二酸的含量● LCMS-8050选择离子监测模式快速测定人体血液中糖化血红蛋白含量● LCMS-8045多反应监测模式快速测定人体血液中糖化血红蛋白含量● LCMSMS同时测定人脑脊液中淀粉样蛋白Aβ1-42和Aβ1-40● LCMSMS测定人血浆中草酸含量● 同位素稀释气相色谱质谱法测定血清甘油三酯含量● LCMSMS定量分析人血清中的甲状腺激素T3和T4含量基因检测● 利用基质辅助激光解吸电离飞行时间质谱MALDI-TOF结合SARAMIS数据库鉴定耐药菌品种● 应用微芯片电泳仪MultiNA高通量检测诺如病毒基因● 一种高通量和自动化用于宫颈癌筛选和预测的人乳头瘤病毒分型方法● 微芯片电泳MultiNA在二代测序(NGS)文库质控中的应用● RFLP片段的定性与定量分析● DNA外显子的定性与定量分析● 微芯片电泳MultiNA分析基因编辑样本基因型质谱在职业病与中毒医学中的应用● ICPMS-2030测定血液中的Cr、Cd、As、Tl 和Pb● ICPMS-2030碰撞池技术快速测定血清中微量金属元素的含量● LC-ICP-MS直接测定血浆中Pt元素含量● LCMS-8045 测定血液中的草甘膦● LCMS-8045 测定血液和尿液中的乙基葡萄糖醛酸苷● GPC-GCMS法测定血液中有毒物质● 在线凝胶色谱净化结合三重四极杆气质联用仪测定人体血液中有毒物质● 顶空-气相色谱法测定血液中乙醇含量● 生物样品血液中甲醇、乙醇、乙醛、正丙醇、异丙醇、丙酮和正丁醇的顶空-气相色谱检测方法(内标法)● GC Smart+HS-10测定血液中酒精含量● 顶空-气相色谱质谱法测定血液中磷化氢及其代谢物含量● 超高效液相色谱三重四极杆质谱联用法进行血液中的5种毒物检测全自动前处理设备在医学检验中的应用● CLAM-2000-LCMS-8050联用系统测定人血清中1,5-脱水葡萄糖醇含量● CLAM-2000和LC-MS/MS联用测定尿样中的苯丙胺类毒 品含量● CLAM-2000与LCMS-8050联用测定人血清中5种雌激素含量● ATLAS-LEXT和LCMS-8045联用检测尿液中酸碱毒 品含量● ATLAS-LEXT和LCMS-8045联用检测毛发中四氢大麻酚、大麻二酚和大麻酚● ATLAS-LEXT和LCMS-8045联用检测血液中11种常见毒 品含量● ATLAS-USIS结合GCMS测定血液中有机磷农药毒物● ATLAS-LEXT结合GCMSMS法测定血液中46种农药类毒物● ATLAS-USIS结合岛津“药物毒物快速筛查方法包”对尿样中毒物进行高自动化快速筛查、定性及定量● CLAM-2030-LCMSMS联用系统结合岛津“药物毒物快速筛查方法包”对血浆样品中毒物进行全自动化快速筛查、定性分析精准医疗● 《Nature》:血浆中β-淀粉样蛋白生物标记物对阿尔兹海默疾病的高效诊断● 《Oncotarget》:应用气相色谱质谱联用法对结直肠癌进行早期诊断筛查●《Biological and Pharmaceutical Bulletin》:基于nSMOL酶解技术对利妥昔单抗的LC/MS生物分析及方法验证医学检测道路上,岛津伴您同行,更多内容,敬请关注《医学检验应用手册》请扫码查看撰稿人:孙亮文中推荐技术方法方案仅用于医学专业人士技术交流,不作为临床诊断依据。如需深入了解更多细节,欢迎联系津博士 sshqll@shimadzu.com.cn
  • 定量蛋白质组学揭示内质网应激作用下蛋白质的构象变化
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章Quantitative Structural Proteomics Unveils the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress1,文章的通讯作者是来自美国佐治亚理工学院的Ronghu Wu助理教授。在真核细胞中,内质网(endoplasmic reticulum,ER)负责蛋白质组中40%蛋白质的合成和成熟。蛋白质合成或折叠过程中的变化都将影响内质网的稳态,进而导致未折叠蛋白的积累和蛋白分泌效率的降低。在过去几十年的研究中,内质网应激反应被广泛研究,但是内质网应激反应后蛋白质折叠状态的变化却没有被深入研究。基于丰度的蛋白质组学方法不能直接用于分析蛋白质状态的变化,在这篇文章中,作者整合了半胱氨酸(cysteine,Cys)共价标记、选择性富集和定量蛋白质组学,称为半胱氨酸靶向共价蛋白绘制(cysteine targeted covalent protein painting,Cys-CPP),用于研究蛋白质组范围内的蛋白质结构和变化(图1A)。  使用CPP分析蛋白质结构,需要一种具有高反应活性的探针。作者设计了一种针对半胱氨酸的探针,其中包含半胱氨酸反应基团、用于富集的生物素部分和用于生成半胱氨酸特异性识别位点标签的可裂解连接部分(图1B)。以变性处理后的蛋白样品作为蛋白质展开形式的参考,计算肽段在原始样本和变性样本中的比例从而获得宝贵的蛋白质结构信息。  图1.利用半胱氨酸反应探针定量分析人细胞蛋白质组中半胱氨酸暴露率的原理。(A)Cys-CPP的一般工作流程。(B)半胱氨酸残基与探针之间的反应。富集后,进行紫外裂解,在修饰的半胱氨酸上留下一个小标记,用质谱进行位点特异性分析。  半胱氨酸暴露率Rexpo通过每条肽段在原始样本和变性样本中的比值进行计算。结果显示:(1)半胱氨酸的暴露率和溶剂可及性呈现正相关(图2C) (2)在丝氨酸和苏氨酸等极性氨基酸残基旁边的半胱氨酸具有相对较高的暴露率,这与人们普遍认为亲水残基更有可能暴露在蛋白质表面的观点一致 (3)甘氨酸和脯氨酸附近的半胱氨酸具有更高的暴露率,这是因为这两种氨基酸通常出现在蛋白质的转角和环结构中,对半胱氨酸的空间位阻较小 (4)半胱氨酸暴露率与其有/无序区(图2D)或所处二级结构(图2E)的相关性分析均表明,较低的暴露率与更稳定和结构化的局部环境有很好的相关性。这些数据结果共同证明目前的方法可以准确地测得半胱氨酸暴露率,并为蛋白质结构提供有价值的信息。  图2.HEK293T细胞中半胱氨酸暴露率的分析。(A) VAHALAEGLGVIAC#IGEK(#代表标记位点)的串联质谱样本。报告离子的强度使我们可以准确定量一个半胱氨酸的暴露率(左框为报告离子强度的放大视图)。(B)蛋白CCT3中被定量半胱氨酸的定位和暴露率演示(PDB代码:6qb8)。(C−E)比较不同的溶剂可及性(C)、预测无序区(D)和二级结构(E)的半胱氨酸暴露率。  衣霉素(Tunicamycin,Tm)可抑制 N-糖基化并阻断 GlcNAc 磷酸转移酶 (GPT)。由于蛋白质的N-糖基化经常发生在共翻译过程中,在蛋白质折叠的调节中起着至关重要的作用,所以衣霉素会引起细胞内质网中未折叠蛋白的积累并诱导内质网应激。基于此,作者用衣霉素对细胞进行处理,计算并对比了衣霉素处理样本和正常样本中的半胱氨酸暴露率。正如预期的那样,Tm处理样本中许多半胱氨酸的暴露率升高,且Tm对于蛋白质不稳定区域的作用尤为显著。根据Tm处理样本和正常样本之间半胱氨酸暴露率的差值,作者将所有位点划分为5个部分,在Tm处理下,近三分之一的半胱氨酸定位区域没有明显的结构变化(差值在-0.05~0.05之间),而28%的位点则高度暴露(差值0.15)(图3B)。对这两种蛋白质进行基因本体(GeneOntology,GO)功能富集分析(图3C),结果显示:差值在-0.05~0.05之间的蛋白通常是糖异生或折叠过后具有良好结构区域的蛋白,而差值0.15的蛋白则是与囊泡转运相关的蛋白。这表明抑制N-糖基化主要影响经典分泌途径中的蛋白质,与预期相符。  图3.利用Tm抑制蛋白质N-糖基化对蛋白质折叠影响的系统研究。(A)Tm处理和对照样品之间半胱氨酸暴露率的比较。(B) 不同暴露率变化范围内的蛋白质数量。(C)在具有高度展开或稳定区域半胱氨酸的蛋白之间进行GO功能富集分析。  由于Tm对于预先存在的、折叠良好的蛋白质所产生的影响可能远小于对新合成蛋白的影响,分别研究Tm对这两种蛋白的影响是必要的。作者通过将目前的方法Cys-CPP与细胞培养中氨基酸的稳定同位素标记(pSILAC)结合(图4A),探究了细胞中已存在蛋白和新合成蛋白在内质网应激作用下的不同变化。结果显示:(1)抑制N-糖基化对新合成蛋白的去折叠影响比对已存在蛋白的影响更显著(图4C) (2)N-糖基化除了调节蛋白质的二级结构外,在蛋白质三级或四级结构的形成中起着更重要的作用(图4D)。  图4. 抑制N-糖基化对新合成蛋白和已存在蛋白折叠状态影响的研究。(A)量化新合成蛋白和已存在蛋白折叠状态变化的实验设置。(B) 经Tm处理和未经处理的细胞中新合成和已存在蛋白质的重叠。括号内为每组蛋白质数。(C)不同蛋白质组中暴露率的分布。(D) 在有或没有Tm处理的细胞中、在不同的二级结构下,新合成和已存在蛋白之间半胱氨酸暴露率的差值分布。  本文通过设计一种半胱氨酸靶向探针,定量半胱氨酸残基的暴露率,系统地研究了蛋白质的结构以及结构的变化。结果表明,半胱氨酸暴露率与蛋白质局部结构的相关性非常好。利用该方法,作者研究了Tm引起的内质网应激反应下细胞中蛋白质的结构变化。此外,通过将Cys-CPP与pSILAC结合,研究了在内质网应激反应下原有蛋白和新合成蛋白的结构变化差异,并详细分析了内质网应激对蛋白质去折叠的影响,深入和准确地了解内质网应激下的蛋白质结构变化,有助于深入了解蛋白质的功能和细胞活性。  参考文献:[1] Yin K, Tong M, Sun F, et al. Quantitative Structural Proteomics Unveil the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress[J]. Analytical Chemistry, 2022,
  • 德米特高效液相色谱质谱系统DMT9500系列获批二类医疗注册证!
    近日,湖南德米特仪器有限公司高效液相色谱串联质谱检测系统DMT 9500BG 、DMT 9500SD正式获批二类医疗器械注册证,用于对来源于人体的血液样本中的被分析物进行定性或定量检测,包括有机小分子化合物(氨基酸、肉碱、维生素)的定性定量分析。  据仪器信息网跟踪报道显示,这是2023年以来第一款获批的国产临床质谱系统,但截至目前23年新增获批的临床质谱试剂产品共有5款,包括三款LC-MS/MS方法的检测试剂盒、两款基于飞行时间质谱方法的三类基因检测试剂盒。国产序号产品名称型号、规格方法适用范围管理级别注册证编号注册人名称批准日期有效期至备注125-羟基维生素D检测试剂盒(液相色谱-串联质谱法)96测试/盒;192测试/盒LC-MS/MS本试剂盒用于人血清样本中25-羟基维生素D浓度的体外定量检测。第二类浙械注准20232401008瑞智谱(杭州)医疗器械有限公司2023/1/112028/1/1023年新增2二十项遗传性耳聋基因突变检测试剂盒(飞行时间质谱法)96人份/盒TOF-MS本产品用于定性检测人外周全血样本中人基因组DNA中4个遗传性耳聋相关基因的20个突变位点,包括GJB2上的35 del G、176_191 del16、235 del C、299_300 del AT、167delT,GJB3上的538CT、547GA,SLC26A4上的IVS7-2AG、2168AG、281CT、589GA、1174AT、1226GA、1229CT、IVS15+5GA、1975GC、2027TA、2162CT,和线粒体 12S rRNA上的m.1555AG、m.1494CT。第三类国械注准20233400012广州市达瑞生物技术股份有限公司2023/1/52028/1/423年新增3二维液相色谱串联质谱检测系统DMT 9600BG、DMT 9600MCLC-MS/MS该产品基于在线萃取二维液相色谱-质谱联用技术原理,二维液相色谱完成在线萃取、杂质高分离与目标物分离;质谱作为检测系统完成离子化、质量选择与量值信号转化。与配套的检测试剂共同使用,在临床上用于人体生物样本中有机化合物的定性或定量检测,包括有机小分子化合物(氨基酸、肉碱、维生素)的定性定量分析。第二类湘械注准20232220119湖南德米特仪器有限公司2023/2/152028/2/1423年新增4同型半胱氨酸及其代谢相关物质检测试剂(液相色谱-串联质谱法)96测试/盒LC-MS/MS用于体外定量测定人血清中同型半胱氨酸、甲硫氨酸、总叶酸(5-甲基四氢叶酸和叶酸的加和值)的含量。第二类鲁械注准20232400042质谱生物科技有限公司2023/1/122028/1/1123年新增5人CYP2C19基因分型检测试剂盒(飞行时间质谱法)48人份/盒TOF-MS本产品用于体外定性检测人外周血样本中的CYP2C19基因681位点GA、636位点GA和-806位点CT的多态性。第三类国械注准20233400263江苏先声医疗器械有限公司2023/3/82028/3/723年新增
  • 未来已来:ADC药物精准制导癌症治疗
    抗体药物偶联物(ADC)作为一类新型靶向抗癌药物,近年来在抗癌药物研发领域备受关注。ADC药物由单克隆抗体、细胞毒素、连接子和偶联位点组成。单克隆抗体能够特异性识别并结合癌细胞表面的抗原,连接子则起到将抗体和细胞毒素结合在一起的作用。当ADC药物进入体内并结合靶细胞后,通过内吞作用进入细胞内,连接子在细胞内被降解,从而释放出细胞毒素,最终导致靶细胞的死亡,从而实现高效杀伤肿瘤细胞并减少对正常组织的损伤。据统计截止到今年5月底,全球有超过800款ADC药物处于不同的研发阶段,其中国产ADC新药研发项目占到了519项,充分体现了我国在ADC药物研发领域的强劲实力。一般的,用于ADC生产的偶联方法可分为三类。第一类是天然赖氨酸偶联或半胱氨酸偶联;第二类是通过半胱氨酸残基进行抗体工程和修饰,或结合非天然氨基酸残基作为有效载荷偶联的反应标签;第三类是使用酶催化偶联;目前,商业市场上所有的ADC都是通过化学偶联进行生产的,化学定点偶联的方法有高DAR值偶联、天然半胱氨酸重桥接、Fc亲和肽结合三种。高DAR值偶联在工艺稳健性和跟踪记录方面具有显著优势,天然半胱氨酸重桥接在偶联反应条件方面具有很高的灵活性,Fc亲和肽结合则能够应用于各种抗体和药物接头,该方法能提供位点特异性DAR2的ADC。从ADC药物的发展可以看出,随着技术的变革,ADC药物的开发逐渐从初期的探索性阶段进入到临床应用与优化阶段。以下是目前研究中ADC药物的研究热点内容:新型连接子的开发与优化ADC药物的疗效与安全性在很大程度上取决于连接子的设计。传统的连接子设计较为简单,但在体内稳定性和靶细胞内的释放效率方面存在不足。为了提高ADC药物的疗效,研究者们正在开发更加智能和高效的连接子,例如酸敏感连接子和酶敏感连接子。这些新型连接子能够在肿瘤微环境中或特定酶的作用下被特异性降解,从而提高药物的靶向性与毒性释放效率。抗体工程技术的发展抗体工程是ADC药物开发中的另一项关键技术。通过抗体工程技术,研究人员可以优化抗体的结构,以提高其与目标抗原的结合力,同时减少免疫原性。目前,双特异性抗体和抗体片段等新型抗体形式正逐渐进入ADC药物开发的视野,靶向同一抗原上不同位点的双特异性ADC可以改善受体聚集并导致靶标的快速内化。此外,抗体片段由于其较小的分子量,可以更容易地渗透到肿瘤组织中,增加药物的治疗效果。高效细胞毒素的筛选细胞毒素是ADC药物的核心杀伤成分,其毒性和选择性直接影响药物的疗效与安全性。传统的细胞毒素如卡瑞里霉素和美登素虽然毒性强,但对正常细胞也具有较大的杀伤作用。为了提高ADC药物的安全性与降低耐药性,研究者们使用两种不同的细胞毒性药物作为有效载荷的双有效载荷ADC,通过精确控制两种药物的比例,通过将两种协同有效载荷递送入癌细胞,可以达到更有效的治疗效果。并且随着两种不同机制的有效载荷的应用,耐药性的发生率将大大降低。质谱技术在ADC药物研发中的应用质谱技术是当前ADC药物研究中的重要工具,主要用于分析和表征ADC药物的化学结构及其代谢产物。在ADC药物的研发过程中,研究者将LC-MS/MS技术用于深入表征ADC药物的偶联位点异质性,评估药物抗体比(DAR)和偶联位点的载荷分布,从而保证药物的安全性和有效性。将高分辨质谱技术用于ADC药物的分子量及DAR值检测、肽图分析、HCP的鉴别和定量等方面,为药物的质量控制和表征提供了重要信息。同时,基于高分辨质谱的完整蛋白质谱分析技术,可以在不进行酶解或碎片化的情况下,直接对蛋白类药物进行表征。另外,质谱成像技术还可以用于分析ADC药物在肿瘤组织中的分布情况,从而帮助优化药物的设计和给药方案。单细胞分析技术的引入单细胞分析技术近年来逐渐在ADC药物研究中崭露头角。通过单细胞分析,可以更精确地识别和选择在肿瘤细胞表面高表达、而在正常组织低表达或不表达的靶点,这对于提高ADC药物的特异性和减少副作用非常重要。这项技术有助于更准确地理解药物在肿瘤组织中单个细胞水平上的作用,这对于优化ADC药物的设计和效果至关重要。目前,越来越多的ADC药物进入临床试验,并展现出良好的治疗前景。随着ADC药物技术的不断进步以及研究人员的努力,未来ADC药物在癌症靶向治疗中会展现出更多的惊喜。
  • 【指南与共识】流式细胞术在CAR-T细胞免疫治疗相关检验中的应用专家共识
    文章来源:中华检验医学杂志, 2022,45(8) : 790-801作者:中国中西医结合学会检验医学专业委员会摘要嵌合抗原受体(CAR)-T细胞免疫治疗是近年来肿瘤治疗领域一个举世瞩目的重大成果。流式细胞术(FCM)在CAR-T细胞免疫治疗相关检验的每一个步骤中都起到非常重要的作用,包括靶点筛查、CAR-T细胞产品成分鉴定、毒性预估、微小残留病(MRD)检测、免疫功能评价、免疫微环境研究等。为了深刻认识FCM在CAR-T细胞免疫治疗这一新兴领域的作用,规范每一项应用中的操作,进一步促进其在CAR-T细胞免疫治疗中的应用,中国中西医结合学会检验医学专业委员会制定了此专家共识。嵌合抗原受体(chimeric antigen receptor,CAR)-T细胞免疫治疗是近年来肿瘤治疗领域一个举世瞩目的重大成果[1, 2, 3, 4, 5, 6, 7],尤其是CD19-CAR-T细胞免疫治疗难治复发B细胞急性淋巴细胞白血病(acute lymphoblastic leukemia,ALL)获得了90%左右的缓解率[1, 2, 3],单独使用或者桥接异基因造血干细胞移植均极大程度地提高了患者的完全缓解率和生存率;CAR-T细胞免疫治疗其他类型白血病、淋巴瘤、骨髓瘤以及实体瘤也在不断探索并取得巨大进步[4, 5, 6, 7]。流式细胞术(flow cytometry,FCM)在CAR-T细胞免疫治疗相关检验的每个步骤中都起到非常重要的作用 [1, 2, 3, 4, 5, 6, 7]。作为一项免疫治疗,CAR-T细胞免疫治疗相关检验中涉及的FCM与临床常规不同,体现在靶点评估需要精确设门并且同时关注正常细胞的表达,CAR-T细胞免疫治疗后微小残留病(minimal/measurable residual disease,MRD)需要考虑靶点丢失以及输入的CAR-T细胞影响,而CAR表达细胞比例和数量的检测以及免疫相关检测均缺乏规范化,给临床工作带来不确定性等。为了能使更多相关领域的科研、临床和实验室检测人员认识FCM在CAR-T细胞免疫治疗中的作用和注意事项,规范在每项检验中的实验方案和技术操作,进一步促进其在CAR-T细胞免疫治疗中的应用,中国中西医结合学会检验医学专业委员会组织专家结合文献学习和多家医疗机构的临床工作实践制定了本专家共识。适用范围、术语和定义一、适用范围各类医疗机构临床实验室、商业化实验室和科研单位在使用FCM进行CAR-T细胞免疫治疗相关临床检验时,均可采用或参照使用本专家共识。鉴于CAR-T细胞生产过程中的创新性和复杂性,并且该步骤极少在临床诊断实验室中进行,本共识不涉及此研发过程。二、术语和定义1.多参数流式细胞术(multiparametric flow cytometry,MFC):虽然MFC的术语出现于20世纪80年代,当初指代两色以上FCM,后期对此也没有明确定义,但是现在普遍建议采用三激光八色或者以上机型。2.CAR-T细胞免疫治疗:人体免疫细胞(来自自体或异体均可),在体外经过基因修饰后具备了特异性识别和杀伤表达特定抗原的肿瘤细胞的能力,输入患者体内以实现清除肿瘤细胞或者其他病态细胞的免疫治疗方法[1, 2, 3, 4, 5, 6, 7]。CAR-T细胞免疫治疗技术包括几个步骤:(1)从患者或者供者血液中分离出自体或者异体T淋巴细胞;(2)用CAR编码的病毒载体进行体外修饰、培养;(3)最后输入患者体内。近年来为了增强治疗效果降低副作用,已发展到第4代CAR-T细胞免疫治疗技术。3.细胞因子:细胞因子是由多种免疫细胞分泌的一类小分子蛋白质,具有介导和调节免疫过程等作用。目前已经发现的人类细胞因子有200多种。根据结构和功能一般可分为白细胞介素(interleukin,IL)、干扰素(interferon,IFN)、肿瘤坏死因子(tumor necrosis factor,TNF)、集落刺激因子、趋化因子和生长因子等。4.细胞因子释放综合征:细胞因子释放综合征(cytokine release syndrome,CRS)是一种发生在任何免疫治疗后,由于内源性或者输注的T细胞和/或其他免疫效应细胞活化或者聚集导致的超生理反应。症状多样,但是必须包括初发时发热,可能伴有低血压、毛细管渗漏(低氧)和终末器官衰竭。尽管没有将细胞因子检测纳入定义,而CRS分级也主要是根据临床表现,但是鼓励进行C反应蛋白、细胞因子、铁蛋白等相关检测,便于为将来的研究提供依据[8]。5.趋化因子及其配体:趋化因子是能使细胞发生趋化运动的小分子细胞因子,其配体很多是免疫功能检测中区分淋巴细胞亚群的重要标志物,例如半胱氨酸-半胱氨酸基序趋化因子受体(cysteine-cysteine motif chemokine receptor,CCR)系列,半胱氨酸-氨基酸-半胱氨酸基序趋化因子受体(cysteine-X-cysteine motif chemokine receptor,CXCR)系列[9]。6.抗原表达率:精确设门后,特定细胞上抗原表达的百分比。临床工作中由于受到抗体和荧光素选择、抗原抗体结合过程、温度光照和放置时间导致荧光信号改变、仪器设置、设门精确度、个体差异、细胞异质性、对照细胞群、检测目的等多种因素影响,以诊断为目标的临床实验室,一般由流式操作人员排除各种影响因素后,按照表达、部分表达、不表达进行定性描述[10],以方便临床和实验室对目的细胞群进行简单直观的性质判断。7.抗原表达强度:与某种抗原分子在细胞上表达量的多少有关,FCM的直观体现为荧光强度。根据抗原表达强度将阳性细胞表达分为强表达(bright,bri)、中等强度表达、弱表达(dim)和异质性表达[10],可能会随着治疗和疾病或者活化状态发生改变。8.单链可变区片段(single-chain variable fragment,scFv):构建CAR-T细胞需要将CAR基因通过病毒载体或非病毒系统转染并整合到T细胞基因组上。CAR基因正常表达时,形成跨膜的CAR结构,细胞外域的重链可变区和轻链可变区通过15~20个氨基酸短肽连接而成的部分即为scFv。编码的scFv元件既是CAR-T细胞识别肿瘤抗原的重要成分,也可作为FCM评价CAR表达情况的检测靶点之一。9.同型阴性对照:用于检测抗体与细胞表面可结晶段受体非特异性结合导致背景信号的阴性对照。应该用与检测抗体相同标记、同种属来源、相同亚型、相同浓度的免疫球蛋白进行染色,如果是间接标记抗体,还需要做二抗的荧光素背景对照,其作用是设置仪器条件,消除背景染色。对于正常标本中不存在的未知标志或者与阴性细胞界限不清的标志,或者标本中比例极低需要精确检测的标志,同型阴性对照是普遍采用的对照。CAR-T细胞免疫治疗相关检验中的FCM项目CAR-T细胞的生产研发、临床治疗每个环节都与FCM检测密不可分,包括靶点筛查、患者选择、CAR-T细胞成分鉴定、毒性预估、MRD检测、回输物和患者标本免疫功能评价、免疫微环境和复发机制研究等。鉴于CAR-T细胞治疗这一全新领域集合了肿瘤细胞和正常细胞免疫表型、肿瘤干细胞免疫表型、免疫细胞亚群、细胞因子检测、CAR-T细胞检测、因部分病例靶点丢失甚至系别转变导致需要调整方案的FCM MRD检测、肿瘤异质性和免疫微环境检测等(表1),以及CAR-T细胞治疗设计的多样性和复杂性、临床工作中使用不同靶点或者联合靶点CAR-T细胞治疗、使用其他细胞因子或者信号分子靶向药物控制副作用等,这些都对FCM检测提出更高的要求。因此深入了解每个环节需要使用的标本类型、检测方案以及最低检测要求,将有助于进一步规范检测流程,提高检测水平,保证检测质量。FCM在CAR-T细胞免疫治疗靶点筛查中的应用随着CAR-T细胞治疗技术的不断完善,CAR-T细胞的功能和治疗的安全性都有了很大提升,并有CAR-自然杀伤(natural killer,NK)细胞、双特异性靶点CAR-T细胞等类似靶向细胞免疫治疗产品出现。但是作为特异性免疫治疗,胞外抗原识别区的设计,尤其是有效靶点的选择始终是每一种CAR-T细胞治疗相关产品的关键环节。理想的靶点应该满足下述要求:高覆盖率(某种疾病的群体中,肿瘤细胞表达该抗原的患者比例高)、高表达率(阳性个体中几乎所有肿瘤细胞都表达)、高表达强度(在肿瘤细胞表面抗原分子数量多,表现为同一种荧光标记时,荧光强度高)、高特异性(在正常细胞中不表达或者少表达,对患者不会造成严重影响)[11]。FCM作为一项快速、简便、直观、定性定量的技术,是目前实现这一目的的重要检测手段,而CAR-T细胞治疗靶点的选择虽然都是在免疫分型或者MRD的基础上进行,但是比常规临床诊断有更严格的特殊注意事项[12, 13]。共识2:为了尽可能给CAR-T细胞免疫治疗提供客观评价,建议一项研究或治疗过程中尽量采用相同的方案,至少是关键抗体和组合相似的方案。同一患者的随访监测尽量在同一台仪器上进行,且尽量仪器条件(包括补偿)相同,或者进行仪器间条件比对。推荐强度:建议执行。)专家组成员(按姓名字母顺序排列
  • 此刻的你还在着急等双十一快递么,别错过这波ProSense大促!
    您在进行活体癌症和炎症研究时是否仍然遇到提升荧光成像信噪比的困难?传统的临床前小鼠模型主要依靠离体测量手段进行疾病形态学和组织学分析,以此评估肿瘤和其他疾病的临床症状。但使用这些测量方法可获得的信息量有限,且可能无法展示最生理相关的生物过程。相比之下,体内荧光成像可最大化实现终点定量,从而从一组动物中获取最相关的信息,但活体检测仍可能遇到低荧光信噪比的难题。PerkinElmer推出新颖的“智能” 近红外组织蛋白酶荧光探针ProSense可轻松应对上述两项挑战,实现对癌症和炎症病灶处相关联蛋白酶进行最佳可视化成像分析什么是蛋白酶,它们的功能是什么?众所周知,蛋白酶可使蛋白质发生特异性和非特异性水解。蛋白酶存在于包括细菌和病毒在内的各种生命形式中,经历多次进化后形成不同类别。半胱氨酸组织蛋白酶家族是其中一个重要的类别,是控制蛋白质寿命和活性的关键所在。在健康的生物系统中,蛋白质的表达和抑制受蛋白酶的剪切和降解功能调节,维持在精确的平衡状态。人溶酶体半胱氨酸组织蛋白酶家族有 11 个成员,其中许多具有重叠功能。其中较常见的溶酶体组织蛋白酶包括组织蛋白酶 B、L、S和纤溶酶,这些半胱氨酸组织蛋白酶几乎仅在溶酶体的弱酸性低 pH 环境中具有活性。研究证明,组织蛋白酶在细胞外间隙的异常调节和过表达反映出多种病理状态,包括:1炎症2癌症、肿瘤转移3动脉粥样硬化4心血管疾病5类风湿性关节炎、自身免疫性疾病、骨关节炎6肺相关疾病7神经炎症/痛觉过敏图 1.蛋白酶和半胱氨酸组织蛋白酶在溶酶体和细胞外间隙中表现出一定活性。ProSense 荧光信号激活示意图见右图ProSense 近红外荧光探针的作用原理是什么?ProSense 近红外荧光探针用于检测广谱组织蛋白酶家族的活性,因为这些酶的表达与重要疾病的发展相联系。ProSense 探针在完整状态下并不发射荧光信号,利用一项新型专利技术*可以实现对活化的蛋白酶活性进行可视化成像分析,最终探针在蛋白酶介导的剪切作用下被活化并释放极强的荧光信号。ProSense 探针可用于实时定量检测体内正常/异常表达的蛋白酶,包括组织蛋白酶。它通过胞饮作用进入溶酶体/内体,可以在不抑制蛋白酶活性的条件下,检测巨噬细胞、中性粒细胞和肥大细胞等炎症细胞或肿瘤细胞中溶酶体内的蛋白酶。ProSense 探针对静息巨噬细胞的吸收和活化作用极小,因此尤其适用于炎症研究,例如:在肺部炎症和极性外伤炎症中,ProSense 探针可以检测到大量活化的炎症细胞。图 2.ProSense 探针活化原理图。(左)非常接近荧光团的非活化探针(右)蛋白酶剪切作用分离荧光团以便活化我们在此介绍两项案例研究以说明 ProSense 荧光探针的应用方法:01哮喘炎症模型哮喘是一种以可逆性气道阻塞和气道高反应性为特征的炎症性疾病,其疾病过程由活化 T 淋巴细胞和嗜酸性粒细胞驱动。当人体吸入过敏原后,这些细胞会集中到肺部,并释放炎症介质、激活肥大细胞和上皮细胞、刺激粘液分泌,最终导致气道阻塞。首先用卵清蛋白免疫小鼠,在小鼠肺部激发对卵清蛋白的免疫应答,从而诱发过敏反应。三周后,用卵清蛋白对小鼠进行鼻腔给药。如图 3 所示,给药后肺部发生了以气道高反应性改变为特征的过敏反应,其原因是大量嗜酸性粒细胞涌入肺部,以及细胞因子和免疫因子的诱导作用,这些因子同时也是人类哮喘疾病的典型诱导因子(例如白细胞介素 IL-4,组胺和 IgE)。这些参数通常需要通过外科手术(测量气道高反应性)、处死小鼠(测量支气管肺泡灌洗 [BAL] 嗜酸性粒细胞计数)以及大量样品处理和制备步骤(用于基于微孔板的血清和支气管肺泡灌洗液免疫检测)等方式来测量和评估。相比之下,使用 ProSense 探针进行非侵入式成像可以追踪病变细胞,在多个时间点监控同一动物的疾病进展。图 3.注射 ProSense 680 的哮喘小鼠(左),肺内可见荧光和炎症的广泛分布。对照组小鼠(右)几乎没有荧光信号。(使用 FMT® 系统成像。)02肿瘤模型通过静脉注射 4T1 小鼠乳腺癌细胞建立转移性肺癌模型。在 ProSense 750 试剂给药前让肿瘤生长两周。如图 4 所示,非侵入式荧光成像的结果稳定,与肺总重量变化、离体组织成像和组织学评估等终末评估具有较好的相关性。这种成像方法有助于对体内癌症进展或转移性级联进行可视化分析和定量,并有利于开发新的治疗方法。图 4.注射 5X1054T1 细胞两周后,注射 ProSense 750 荧光探针,使用 FMT小动物活体荧光断层成像系统进行活体成像,并取出脏器进行离体脏器成像。将 ProSense 荧光探针检测融合到完整活体检测解决方案中ProSense 系列荧光探针可用于检测病灶部位高表达的组织蛋白酶(Cathepin)活性,包含组织蛋白酶B, L, S及 Plasmin,可用于癌症,关节炎,肺炎,血管新生,蛋白粥样硬化,心血管疾病研究及相关药物研发。ProSense 有三种波长规格可供选择:680、750 EX 和 750 FAST。值得一提的是,ProSense FAST (Fluorescent Activatable Sensor Technology,荧光活化传感器技术)的药代动力学特性更为出色,其激活用时更短,目标特异性信号更高,背景噪音更少,可显著减少注射后的等待时间。现针对ProSense系列部分产品可享受一次性50%折扣优惠,促销活动至2019年12月31日截止。促销产品目录*专利 9574085 - 含 N,N - 二取代磺酰胺的生物相容性荧光染料标记
  • 2020版药典∣缘起,缘定——我与岛津ICP-MS
    《中国药典》2020版已于2020年12月30日正式实施,药品检测企业进入到新标准的适应期。为协助用户尽快渡过这个阶段,岛津持续致力于满足用户对技术信息及技术协助的需求。新版药典实施转眼已过半年,这些企业仪器使用的如何了?小编们走访了北京同仁堂健康药业(宁夏)有限公司,了解了仪器应用情况,并征得用户的同意收集了他们可分享的经验等,编写成微信,供行业用户共享。 北京同仁堂健康药业(宁夏)有限公司雷 燕 缘起为了应对中药材中重金属检测,我们公司在2020年购买了岛津ICPMS-2030系列电感耦合等离子体质谱仪。我之前从来没有使用过ICP-MS,这对我也是很大的考验。在应用摸索的过程中,不断遇到各种问题,幸好岛津公司技术部和分析中心的工程师们,在我遇到问题时耐心的给予解答、帮我纠正,使我顺利迈过ICP-MS检测重金属元素的门槛。 现在我已能较熟练的使用ICPMS-2030测试中药材中重金属元素,为我公司中药重金属质量安全保驾护航。 缘续 目前我已在岛津ICP-MS上建立了我们公司中药材的重金属检测方法,给大家分享下我做的中药材玄参分析: 缘定 我是一个ICP-MS的新人,在学习应用的过程中,岛津工程师分享了很多分析经验给我,自己在实践中也不断的积累学习。受益于此,赠人玫瑰,现在将我觉得比较重要的几点分享给大家: 1、空白污染根据2020版《中国药典》规定,ICP-MS法测定中药材铅、镉、砷、汞、铜五种重金属,其中铅、镉、砷、铜四种元素配为混合溶液,汞标准曲线通常单独配制。在开始方法摸索和测试过程中,由于ICP-MS的高灵敏度、测试浓度低,试验用试剂杂质、容器清洁和实验环境等容易引起部分元素空白较高,导致标准曲线线性达不到要求(r≥0.999)。需使用纯度高、杂质含量低的硝酸等试剂,保证实验用器皿的足够洁净,减少外来污染;一般建议做三份及以上平行,验证试验操作过程的可重复性;新购试剂建议核查测定元素空白本底值。尤其是汞元素测试,刚开始使用仪器时,曲线线性相关系数一直达不到要求,在岛津应用工程师指导下,通过比较测试不同水、硝酸、容器等,发现是试验容器清洁和前处理过程污染,影响汞的线性响应,由于汞元素较特殊、测试浓度低,对实验用具清洁和过程污染控制有更高要求。 2、汞元素测定稳定性汞元素具有挥发性强、易吸附、记忆效应强等特点,大部分植物性中药材汞浓度一般都较低。在曲线配制和样品消解后加入浓度约1 mg/L金溶液作为稳定剂,主要是使Hg和Au形成金汞齐,减少汞在容器壁和进样管路的吸附残留;同时汞标准溶液一般现配现用,样品消解完成后尽快测试,避免长时间放置吸附损失等。除了常用的金溶液外,也可以使用0.1% L-半胱氨酸作为汞稳定剂,L-半胱氨酸上的巯基可以和汞络合,起到稳定和降低汞吸附的作用。由于汞浓度较低,可以设置较长的数据采集时间,改善结果的精密度重现性。 3、汞记忆效应汞容易吸附在容器壁和进样管路中,ICP-MS测试较高浓度汞后,可能残留在进样系统中,导致背景信号升高,记忆效应引起后续样品结果的偏离,因此要保证足够的溶剂清洗时间,可以使用含金或L-半胱氨酸的酸溶液作为清洗溶液,具有较好的清洗效果。如果清洗不能消除记忆效应,更换蠕动泵管,清洗采样锥和截取锥、炬管、雾室等。 4、内标稳定性测试过程中受标准溶液和不同样品基体差异影响,有可能导致信号漂移较大,在点燃等离子体后使用实际样品进样对采样锥和截取锥的锥口老化稳定约30 min,清洗液清洗后再测试,有利于保证内标元素和测试结果的稳定性。 小编说铅、镉、砷、汞等环境重金属元素对动植物和人体健康具有危害作用,中药材在生长过程中会吸收来自土壤中的重金属,化肥、农药施用等也可能引入重金属污染,通过生物富集作用最终危害人体健康。ICP-MS灵敏度高、检测效率高,是中药材重金属多元素检测的首选方法。初学者需要一定时间的试验积累才能充分理解和用好ICP-MS,对中药材重金属检验过程中的问题及解决方法进行简要总结,有助于相关人员使用ICP-MS快速、便捷检测中药材重金属元素含量。希望以上经验积累能够帮助到具有相同情况的用户。
  • 植物也要“摘口罩”:Nature主刊揭示植物气孔如何重新打开
    人们面对病毒入侵,会通过佩戴口罩进行有效抵御。同样,植物也会通过调节气孔的开放和关闭来抵抗病原入侵。气孔关闭可减少水分流失并限制病原体进入,然而长时间关闭气孔,会导致植物光合作用以及蒸腾作用的减弱,水分的过度积累甚至会促进植物体内病原体的定殖。所以,植物其实也是需要在合适的时间“摘掉口罩”。那么,植物是如何动态调节气孔关闭和开放的?其背后的分子机理仍不清楚。今年5月,美国德州农工大学何平教授、单立波教授与山东建筑大学侯书国教授在Nature主刊合作发表了相关研究,发现了一类新的调控免疫和水分流失的分泌小肽SCREWs,阐明了SCREWs参与植物重新打开气孔的分子机制。这也是山东建筑大学首篇Nature主刊文章。植物基因里编码数以千计的小肽,而其中多数小肽的功能仍是未知的。一些小肽是植物免疫的细胞因子,被驻扎在细胞表面的受体激酶所感知。作者首先分析了拟南芥小肽合成基因的转录组学,发现受细菌鞭毛蛋白刺激时,一些小肽的合成会明显提高,并且这些小肽具有保守的C端(图1)。用这些小肽处理种苗后,发现小肽诱导激活了MAPKs(mitogen-activated protein kinases),及包括WRKY30,WRKY333,WRKY353和FRK1在内的多种PTI(pattern-triggered immunity)标志物的表达,并且证明了C端保守的两个半胱氨酸(CC)对诱导免疫反应十分重要。体内实验发现这些小肽直接决定了拟南芥是否易感染Pst DC3000(Pseudomonas syringae pv. tomato DC3000)。由此作者鉴定这些小肽为一类新的植物细胞因子,被命名为SCREWs(SMALL PHYTOCYTOKINES REGULATING DEFENSE AND WATER LOSS)。图1 细胞因子SCREWs的序列比对作者的下一步是找到SCREWs的受体。受体激酶,特别是LRR-RKs(leucine-rich repeat receptor kinases)是很多内源肽的受体。作者筛选了拟南芥的受体激酶,发现NUT(AT5G25930)介导了SCREWs诱导的免疫反应。为了确定NUT是不是SCREWs的直接受体,作者使用Biacore T200,通过把NUT胞外域固定在CM5芯片上,SCREWs作为分析物流过芯片,检测得到SCREW1与NUT的亲和力达到12.95μM,SCREW2与NUT的亲和力达到6.23μM(图2)。图2 Biacore鉴定SCREWs的受体NUT(pH 7.5)为了更加接近体内的环境,作者同样使用Biacore方法检测了pH5.7条件下SCREWs与NUT的亲和力,发现在非原质体的pH条件下,SCREWs与NUT的亲和力基本一致(图3)。图3 Biacore检测非原质体酸碱条件(pH 5.7)下SCREWs与NUT亲和力前面提到,SCERWs羧基端的保守半胱氨酸对诱导免疫十分重要,这里作者同样用Biacore做了体外实验的验证,结果发现保守区域半胱氨酸的突变会使SCREWs与NUT的亲和力显著降低(图4)。由此,藉由Biacore完整、可靠的实验结果,作者确定了NUT就是SCREWs的受体。图4 关键氨基酸的突变使SCREWs与NUT的亲和力显著降低很多LRR-PKs的受体都是BAK1和相关的SERKs,利用免疫沉淀实验发现SCREW会刺激NUT-BAK1复合物的产生后,作者同样使用Biacore检测SCREW2-NUT-BAK1三元的结合(图5)。同样把NUT胞外域固定在CM5芯片上,分析物则设置固定浓度的BAK1预混多浓度的SCREW2,并且检测NUT与单独BAK1的结合试验作为对照。结果发现,BAK1的存在显著提高了NUT和SCREW2的亲和力,达到了0.38μM。图5 Biacore检测SCREW2-NUT-BAK1三组分的结合除了调控免疫,作者还发现SCREW-NUT可以调控植物的水分流失。植物缺水时,ABA会促进气孔的关闭,调控植物的水分利用和耐旱性。作者发现,SCREW-NUT通过调控ABI(ABA INSENSITIVE)的磷酸化,导致ABI磷酸酶对OST1(OPEN STOMATA 1,一种介导ABA和MAMP诱导的气孔关闭的关键激酶)的活性增加,降低S型阴离子通道的活性,最终抑制气孔关闭。总结图6 文章整体研究思路综上所述,团队首次发现了植物应对病原体侵染或水分缺失时,会通过SCREWs-NUT来控制气孔的重新开放。SCREW-NUT系统广泛分布于双子叶和单子叶植物中,说明本研究在优化植物对非生物和生物胁迫的适应性方面有重要作用。Biacore作为分子互作的金标准,轻松应对信号通路的二元,三元体系研究,在研究植物生长发育和抗逆的信号通路,转录调控等方面,深受广大农业和植物科学家的信赖。Biacore可靠的实验数据,加上科学家创新又严谨的研究思路,定会加速我国科学家们在农业和植物领域的科研进展,巩固我们在此领域的领军地位。Biacore,for a better life参考文章:Liu, Z., Hou, S., Rodrigues, O. et al. Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature 605, 332–339 (2022).
  • 食品中元素形态分析解决方案
    元素的不同存在形态下具有不同的物理化学性质和生物活性,决定了其在环境中表现出不同的毒性和生物效应,如:无机砷化合物的毒性比较大,有机砷化合物的毒性较小或者基本没有毒性。痕(微)量元素的化学形态信息在环境科学、生物医学、中医医学、食品科学、营养学、微量元素医学以及商品中有毒元素限量新标准等研究领域中起着非常重要的作用。 国家新近实施了两个国标GB 5009.11-2014(食品中总砷及无机砷的测定)和GB 5009.17-2014(食品中总汞及有机汞的测定)分别规定了食品中无机砷和有机汞的检测方法。针对两个标准,安谱推出食品中形态分析解决方案,分别采用安谱的阴离子交换色谱柱和C18色谱柱检测食品中的无机砷和有机汞,各组分峰型完美、分离度良好、稳定性高,完全符合国标的检测要求。一、砷形态分析(对应标准GB 5009.11-2014) 样品前处理:可参考国标GB 5009.11-2014 分析方法:(1) LC-AFS法: 仪器:液相色谱-原子荧光联用仪(SA-20,吉天仪器) 色谱柱:CNWSep AX 阴离子交换色谱柱,250mm x 4.0mm,10μ m(LAEQ-4025G7) 保护柱:CNWSep AX 保护柱,5.0×4.0mm,10μ m LBEQ-4005G7K) 流动相:15mmol/L磷酸二氢铵; 流速:1mL/min; 柱温:30℃; 进样量:100ul(100ppb) 谱图: 实验数据:峰号组分名保留时间(min)峰高(mV)面积(mV*s)含量(%)分离度1As(III)2.6321067.742593038.592DMA3.971356.2217407.119.71.00593MMA5.339552.2253954.823.010.92564As(V)12.604286.1206314.718.694.0549(2) LC-ICP-MS法 色谱柱:CNWSep AX 阴离子交换色谱柱,250mm x 4.0mm,10μ m(LAEQ-4025G7) 保护柱:CNWSep AX 保护柱,5.0×4.0mm,10μ m(LBEQ-4005G7K) 流动相:(含10mmol/L无水乙酸钠、3mmol/L硝酸钾、10mmol/L磷酸二氢钠、0.2mmol/L乙二胺四乙酸二钠的缓冲溶液,氨水调节 pH=10):无水乙醇 99:1 流速:1ml/min 柱温:30℃ 进样量:50 ul 实验数据:序号组分名样品测定值 (青口贝)加标值)加标测得值回收率1As(III)12.110ppb21.698%2DMAND9.797%3MMAND9.595%4As(V)ND10.1101%二、汞形态分析(对应标准GB 5009.17-2014) 样品前处理:可参考国标GB 5009.17-2014 分析条件: 仪器:液相色谱-原子荧光联用仪(SA-20,吉天仪器) 分析柱:C18分析柱 250mm x 4.6mm,5μ m(LAEQ-462571) 保护柱:C18保护柱4×20mm,5μ m(LBEQ-400271K) 流动相:5%甲醇+0.06mol/L乙酸铵+0.1%L-半胱氨酸 流速:1ml/min 进样量:100ul 谱图: 实验数据:序号组分名样品测定值 (鱼)加标值)加标测得值回收率1Hg2+0.16ppb5.285%2MeHg311102.6%3EtHgND5.378.8% ND:未检出 相关耗材:货号名称规格价格(元)LAEQ-4025G7CNWSep AX 阴离子交换色谱柱250mm x 4.0mm,10um,100A6990LBEQ-4005G7KCNWSep AX 保护柱套装1个柱套+2个柱芯,5.0×4.0mm,10μm1990LAEQ-462571Athena C18液相色谱柱250mm x 4.6mm,5um2247LBEQ-400271KAthena C18保护柱套装1个柱套+1个柱芯,4×20mm,5μm1100 SGEQ-C40055微波消解内罐适配CEM Mars6 Xpress,55mL微波消解罐,TFM罐体,PFA盖子,TFM垫片3000SGEQ-C24110微波消解内罐适配CEM Mars6 Xpress,110mL微波消解罐,TFM罐体,PFA盖子,TFM垫片4000SGEQ-C12100-V微波消解内罐适配CEM Mars5 OMNI Mars5 EasyPrep Mars6 EasyPrep,100mL微波消解罐,TFM罐体3000CFGG-060033-26-01砷(As5+)ICP-MS标准溶液1000mg/L溶于H2O,100mL750CFGG-060033-34-01砷(As5+)ICP-MS标准溶液100mg/L溶于H2O,100mL675CFGG-060033-08-01 砷(As3+)ICP-MS标准溶液1000mg/L溶于2% HCl,100mL650CFGG-060033-31-01 砷(As3+)ICP-MS标准溶液1000mg/L溶于2% NaOH,100mL700CFGG-060080-02-01 汞(Hg)ICP-MS标准溶液1000mg/L±0.3%溶于2% HNO3,100mL450CDGG-030355-02 氯化甲基汞标准品 1000 mg/L于丙酮, 1 ml666CDGG-130413-01-1ml 氯化甲基汞和氯化乙基汞混标1000 mg/l于甲苯,1ml1050CFEQ-4-430525-0100L-半胱氨酸≥98.0%,100g850CFEQ-4-120022-0100 (易制爆)硼氢化钾,98%,还原剂,for AAS100g640SBEQ-CA0854CNWBOND HC-C18 SPE 小柱500mg, 6mL/30 个/盒520CFEQ-4-120123-0250 优级纯磷酸二氢铵, ≥98.0%250g400CFEQ-4-110040-2501优级纯硝酸,≥65% ,金属元素杂质ppm级别2.5L380CAEQ-4-013456-0250 HPLC级氨水,氢氧化铵,≥25%(NH3)250ml380CFEQ-4-198528-0500优级纯无水乙酸钠,≥99.0%500g420CAEQ-4-012929-0100 HPLC级磷酸二氢钠二水化合物,≥99.0%100g335CFEQ-4-120095-0100 优级纯乙二胺四乙酸二钠盐二水合物,EDTA二钠盐(ACS),99.0-101.0%100g210CAEQ-4-011518-4000 HPLC级正己烷, 95%4L490CAEQ-4-016362-4000 HPLC级乙醇,ethanol absolut4L525特别推荐: 吉天仪器-SA系列液相色谱-原子荧光联用仪(原子荧光形态分析仪)仪器特点: 独创的紫外消解技术,无需氧化剂 多功能的数据工作站,简单易学 先进的气液分离技术(专利),高效的除水率 可配置自动进样器可检测元素形态元素定性定量检测定性半定量检测定性检测砷砷酸盐[As(V)]、亚砷酸盐[As(III)]、一甲基砷酸[MMA(V)]、二甲基砷酸[DMA(V)]、砷甜菜碱(AsB)、砷胆碱(AsC)、饲料中的有机砷制剂(阿散酸p-ASA和洛克沙胂Roxarsone)一甲基亚砷酸[MMA(III)]、二甲基亚砷酸[DMA(III)]、二甲基砷酸的硫代物砷糖(AsS)汞无机汞(Hg2+)、甲基汞(MetHg)、乙基汞(EtHg)、苯机汞(PhHg)硒亚硒酸盐[Se(IV)]、硒酸盐[Se(VI)]、硒代胱氨酸(SeCys)、硒甲基硒代半胱氨酸(SeMeCys)和硒代蛋氨酸(SeMet)锑锑酸盐[Sb(V)],三价锑[Sb(III)]应用领域 食品卫生检验、环境样品检测、水样品检测、农产品检测、地质冶金检测、临床医学样品检测、药品检测、化妆品检测、土壤饲料肥料检测、纺织纤维样品检测、教育及科研。
  • 盘点:通过CFDA医疗器械注册且在有效期内的质谱产品(试剂篇)
    p   近年来,随着精准医学和个体化诊疗的发展,临床诊断的重心正逐渐趋向于“精准”,先进的检测技术是实现精准诊断的前提。质谱作为临床检测新技术,在生命组学、精准医疗及临床医学中发挥着越来越大的作用。随着质谱技术的发展及普及,其在临床诊断中的应用也越来越多。截至目前,通过CFDA医疗器械注册且尚在有效期内的质谱相关试剂盒产品共10项,其中进口试剂产品5项,国产试剂产品5项。以下为这些产品详细的CFDA医疗器械注册信息。 /p p    strong 进口: /strong /p p    span style=" color: rgb(255, 0, 0) " strong 1.琥珀酰丙酮样本前处理液(串联质谱法) /strong /span /p p   注册证编号:国食药监械(进)字2014第3403746号 /p p   注册人名称:NeoBase& #8482 Succinylacetone Assay Solution /p p   型号、规格:1 小瓶,2.8 mL。 /p p   结构及组成:琥珀酰丙酮样本前处理液: 为稀释的含水联氨溶液。(具体内容详见说明书) /p p   适用范围:本试剂用于体外测量与评估滤纸干血斑样本(DBS)中琥珀酰丙酮浓度试验中的样本处理。 /p p   批准日期:2014-08-01 /p p   有效期至:2019-07-31 /p p    span style=" color: rgb(255, 0, 0) " strong 2. 非衍生化多种氨基酸、肉碱和琥珀酰丙酮测定试剂盒(串联质谱法)(NeoBase& #8482 Non-derivatized MSMS Kit) /strong /span /p p   注册证编号:国械注进20173400071 /p p   注册人名称:Wallac Oy /p p   代理人名称:珀金埃尔默医学诊断产品(上海)有限公司 /p p   型号、规格:960人份/盒 /p p   结构及组成:含氨基酸内标准品、酰基肉碱内标准品、干血斑质控品、V型底耐热微孔板、V型截底透明微孔板、铝箔制微孔板封套、粘性微孔板封套、微孔板条形码标签、特定批号的质量控制证书。(具体内容详见说明书) /p p   适用范围:本试剂盒用于测量和评估采集到滤纸片上的新生儿干血样中的氨基酸、琥珀酰丙酮、游离肉碱以及酰基肉碱的浓度。包括以下分析物,氨基酸:丙氨酸、精氨酸、瓜氨酸、甘氨酸、亮氨酸/异亮氨酸/羟基脯氨酸、蛋氨酸、鸟氨酸、苯丙氨酸、脯氨酸、酪氨酸、缬氨酸 肉碱:游离肉碱、乙酰肉碱、丙酰肉碱、丙二酰肉碱/ 3-羟基-丁酰肉碱、丁酰肉碱、甲基丙二酰肉碱 / 3-羟基-异戊酰肉碱、异戊酰肉碱、异戊烯酰肉碱、戊二酰肉碱 / 3-羟基-己酰肉碱、己酰肉碱、已二酰肉碱、辛酰肉碱、辛烯酰肉碱、癸酰肉碱、癸烯酰肉碱、癸二烯酰肉碱、十二碳酰肉碱、十二碳烯酰肉碱、十四碳酰肉碱(肉豆蔻酰肉碱)、十四碳烯酰肉碱、十四碳二烯酰肉碱、3-羟基-十四碳酰肉碱、十六碳酰肉碱(棕榈酰肉碱)、十六碳烯酰肉碱、3-羟基-十六碳酰肉碱、3-羟基-十六碳烯酰肉碱、18碳酰肉碱(硬脂酰肉碱)、18碳烯酰肉碱(油酸肉碱)、18碳二烯酰肉碱(亚油酸肉碱)、3-羟基-十八碳酰肉碱、3-羟基-十八碳烯酰肉碱 酮:琥珀酰丙酮。(具体内容详见说明书) /p p   批准日期:2017-01-11 /p p   有效期至:2022-01-10 /p p   span style=" color: rgb(255, 0, 0) " strong  3.VITEK MS-CHCA Matrix for use with VITEK MS /strong /span /p p   注册证编号:国食药监械(进)字2014第1401567号 /p p   注册人名称:bioMerieux,SA /p p   型号、规格:5× 0.5 mL /p p   结构及组成:α-氰基-4-羟基-肉桂酸、乙醇、乙腈和溶剂。(具体内容详见说明书)。产品有效期:2-8℃下避光储藏,有效期12个月。附件:注册产品标准,产品说明书。 /p p   适用范围:用于质谱样本的预处理。 /p p   批准日期:2014.03.28 /p p   有效期至:2018.03.27 /p p    span style=" color: rgb(255, 0, 0) " strong 4. 多种氨基酸和肉碱测定试剂包(串联质谱法) (NeoGram Derivatized Assay Solutions /strong /span /p p span style=" color: rgb(255, 0, 0) " strong   ) /strong /span /p p   注册证编号:国械注进20163401510 /p p   注册人名称:Wallac Oy /p p   代理人名称:珀金埃尔默企业管理(上海)有限公司 /p p   型号、规格:流动相溶剂:473 mL/瓶× 3瓶 萃取液:237 mL/瓶× 1瓶 复溶溶液:237 mL/瓶× 1瓶 3.0 N盐酸正丁醇:110 mL/瓶× 1瓶。 /p p   批准日期:2016.04.19 /p p   有效期至:2021.04.18 /p p   主要组成成分(体外诊断试剂):含流动相溶剂、萃取液、复溶溶液、3.0N 盐酸正丁醇。(具体内容详见说明书) /p p   预期用途(体外诊断试剂) :本产品与多种氨基酸和肉碱测定试剂盒(串联质谱法)配合使用,用于测量采集到滤纸片上的新生儿足跟穿刺干血样中的氨基酸、游离肉碱以及酰基肉碱的浓度。 /p p   产品储存条件及有效期:(体外诊断试剂)2~30° C 避热避光条件下保存,有效期 15个月。 /p p    strong span style=" color: rgb(255, 0, 0) " 5. 多种氨基酸和肉碱测定试剂盒(串联质谱法)(NeoGram Amino Acids and Acylcarnitines Tandem Mass Spectrometry Kit) /span /strong /p p   注册证编号:国械注进20163401511 /p p   注册人名称:Wallac Oy /p p   代理人名称:珀金埃尔默企业管理(上海)有限公司 /p p   型号、规格:1920人份试剂/盒 /p p   批准日期:2016.04.19 /p p   有效期至:2021.04.18 /p p   主要组成成分(体外诊断试剂) :含氨基酸内标准品、酰基肉碱内标准品、干血斑质控品、V 型底耐热微孔板、V 型截底透明微孔板 、铝箔片微孔板封套、粘性微孔板封套、热封膜、微孔板条形码标签、与批次匹配的质量控制证书。(具体内容详见说明书) /p p   预期用途(体外诊断试剂) :本试剂盒用于测量采集到滤纸片上的新生儿足跟穿刺干血样中的氨基酸、游离肉碱以及酰基肉碱的浓度。具体分析物见附件。 /p p   产品储存条件及有效期:(体外诊断试剂)2~8° C条件下储存,有效期为12 个月。 /p p strong   国产: /strong /p p   strong span style=" color: rgb(255, 0, 0) "  1. 同型半胱氨酸检测试剂盒(液相色谱-串联质谱法) /span /strong /p p   注册证编号:沪械注准20162400091 /p p   注册人名称:上海复星长征医学科学有限公司 /p p   型号、规格:100人份/盒 /p p   批准日期:2016.02.15 /p p   有效期至:2021.02.14 /p p   主要组成成分(体外诊断试剂) :主要组分 剂型 规格 主要组成成份内标液(N1) 液体 1ml DL-高胱氨酸-D8 还原剂(H2) 固体 0.277g/瓶 1,4-二硫苏糖醇 蛋白沉淀剂(T3) 液体 1ml 三氯醋酸对照品(D4、D5、D6) 液体 3??50μl DL-同型半胱氨酸 质控品(Z7) 液体 1??50μl DL-同型半胱氨酸 稀释液(X8) 液体 1??ml 小牛血清水溶液 /p p   预期用途(体外诊断试剂) :供医疗机构用于体外检测人血清或血浆样本中同型半胱氨酸的含量,作辅助诊断用。 /p p   产品储存条件及有效期(体外诊断试剂) :2~8℃避光,12个月 /p p    span style=" color: rgb(255, 0, 0) " strong 2.& nbsp 25-羟基维生素D检测试剂盒(液相色谱-串联质谱法) /strong /span /p p   注册证编号:沪食药监械(准)字2014第2401132号 /p p   注册人名称:上海复星长征医学科学有限公司 /p p   型号、规格:100人份/盒 /p p   结构及组成:A液:甲酸、甲醇 B液:甲酸、甲醇 pH调节剂:氢氧化钠 校准品1、2、3、4:25(OH)VD2、25(OH)VD3及小牛血清 质控品1、2:25(OH)VD2、25(OH)VD3及小牛血清 内标:25(OH)VD2-d6、25(OH)VD3-d6 稀释液:小牛血清。产品储存条件及有效期:12个月附件:产品标准,产品说明书。 /p p   适用范围:供医疗机构用于对人血清样本中25-羟基维生素D2和25-羟基维生素D3浓度的体外定量检测,作辅助诊断用。 /p p   批准日期:2014.07.05 /p p   有效期至:2019.07.04 /p p   产品标准:YZB/沪6954-40-2014 /p p   span style=" color: rgb(255, 0, 0) " strong  3.& nbsp & nbsp 1,5-脱水葡萄糖醇检测试剂盒(液相色谱-串联质谱法) /strong /span /p p   注册证编号:沪械注准20162400317 /p p   注册人名称:上海复星长征医学科学有限公司 /p p   型号、规格:100人份/盒 /p p   批准日期:2016.04.21 /p p   有效期至:2021.04.20 /p p   主要组成成分(体外诊断试剂) :对照品1、2、3:1,5-脱水葡萄糖醇 质控品:1,5-脱水葡萄糖醇 沉淀剂(含内标):13C6-1,5-脱水葡萄糖醇 稀释液:乙腈 pH调节剂:氨水。 /p p   预期用途(体外诊断试剂) :供医疗机构对人血清样本中1,5-脱水葡萄糖醇(1,5-AG)浓度的体外定量检测,作辅助诊断用。 /p p   产品储存条件及有效期(体外诊断试剂) :2~8℃避光,12个月 /p p   span style=" color: rgb(255, 0, 0) " strong  4.琥珀酰丙酮和非衍生化多种氨基酸、肉碱测定试剂盒(串联质谱法) /strong /span /p p   注册证编号:国械注准20163401324 /p p   注册人名称:广州市丰华生物工程有限公司 /p p   型号、规格:NZP008:480人份/盒、NZP108:960人份/盒。 /p p   备注:申请人在产品上市后继续收集产品临床使用数据,并于延续注册时提交至少五家省级医疗卫生机构不少于五万例新生儿干血斑样本的临床筛查实验数据。筛查试验可不设对照组,但其余项目应严格按照《体外诊断试剂临床试验技术指导原则》要求进行,并在最终的临床资料中由出具临床数据的机构写明每一病例的筛查结果与最终诊断结果的关系或将筛查结果与诊断结果不符的病例情况写明。 /p p   批准日期:2016.07.29 /p p   有效期至:2021.07.28 /p p   主要组成成分(体外诊断试剂) :氨基酸同位素内标准品、肉碱同位素内标准品、质控品、非衍生法萃取液、非衍生法流动相、琥珀酰丙酮样本处理液、U型底微孔板、V型底微孔板、铝箔制微孔板封片、粘性微孔板封片。(具体内容详见说明书) /p p   预期用途(体外诊断试剂) :该产品用于检测新生儿滤纸干血片样本中的琥珀酰丙酮和多种氨基酸、肉碱的浓度。 /p p   产品储存条件及有效期(体外诊断试剂) :2~8℃下保存,避光、避热、密封储存,有效期为12个月。 /p p   span style=" color: rgb(255, 0, 0) " strong  5.衍生化多种氨基酸和肉碱测定试剂盒(串联质谱法) /strong /span /p p   注册证编号:国械注准20163401325 /p p   注册人名称:广州市丰华生物工程有限公司 /p p   型号、规格:ZP009:480人份/盒、ZP109:960人份/盒。 /p p   备注:申请人在产品上市后继续收集产品临床使用数据,并于延续注册时提交至少五家省级医疗卫生机构不少于五万例新生儿干血斑样本的临床筛查实验数据。筛查试验可不设对照组,但其余项目应严格按照《体外诊断试剂临床试验技术指导原则》要求进行,并在最终的临床资料中由出具临床数据的机构写明每一病例的筛查结果与最终诊断结果的关系或将筛查结果与诊断结果不符的病例情况写明。 /p p   批准日期:2016.07.29 /p p   有效期至:2021.07.28 /p p   主要组成成分(体外诊断试剂) :氨基酸同位素内标准品、肉碱同位素内标准品、质控品、衍生法萃取液、衍生化试剂、复溶液、衍生法流动相、U型底微孔板、V型底微孔板、铝箔制微孔板封片、粘性微孔板封片。(具体内容详见说明书) /p p   预期用途(体外诊断试剂) :该产品用于检测新生儿滤纸干血片样本中的多种氨基酸和肉碱的浓度。 /p p   产品储存条件及有效期(体外诊断试剂) :2~8℃下保存,避光、避热、密封储存,有效期为12个月。 /p
  • 岛津质谱成像技术助力超富硒植物单粒种子原位研究
    近日,中科院高能所李玉锋研究员团队,以硒超富集植物-堇叶碎米荠(Cardamine violifolia)单粒种子为研究对象,借助北京同步辐射装置X射线荧光微分析实验站硬件和软件功能升级契机,发展了基于同步辐射X射线荧光二维/三维成像技术(SRXRF)、X射线吸收谱技术、二维质谱成像技术(MALDI-MSI)及微区计算机断层扫描(micro-CT)等技术的空间金属组学(spatial metallomics)研究框架,实现了堇叶碎米荠单粒种子中有机硒和无机硒的原位二维/三维研究,首次发现堇叶碎米荠种皮中存在甲基硒代化合物,加深了对堇叶碎米荠富硒机制的理解,并以Spatial metallomics reveals preferable accumulation of methylated selenium in a single seed of the hyperaccumulator Cardamine violifolia为题发表于 Journal of Agricultural and Food Chemistry(影响因子/JCR分区:5.895/Q1)。该研究工作得到岛津中国创新中心的实验支持。图1 Journal of Agricultural and Food Chemistry原文背景介绍硒(Se)是动物和人类必需的元素。它是硒蛋白和硒酶的重要组成部分,硒缺乏会增加各种神经、内分泌和癌症风险,更严重的是,会导致器官衰竭和死亡。世界卫生组织(WHO)和美国农业部建议成人每日膳食硒摄入量为55 ~ 200 μg。然而,在一些地区,人们的日摄入量明显低于推荐剂量(仅26 μg/天),因此,探索富硒膳食补充剂来改善人们日常硒的摄入是很有必要的。图2 堇叶碎米荠硒在植物生长周期内无法被消耗,一些百合科、十字花科和豆科植物可累积高达几千毫克/公斤的硒元素。原产于中国湖北省恩施市的堇叶碎米荠(Cardamine violifolia)已被证明是硒的超富集植物,已用作膳食补硒剂原料。&bull 单粒种子中硒的原位空间分布和形态分布堇叶碎米荠对于硒元素的耐受性和超积累的机制主要包括:(1)钙蛋白和富半胱氨酸激酶的表达下调和硒结合蛋白的表达上调 (2)体内解毒硒的泛素基因或蛋白的表达 (3) 堇叶碎米荠硒的特定代谢途径。研究发现堇叶碎米荠可以通过硫酸盐转运体和各种S/Se代谢酶来积累硒元素。而堇叶碎米荠中硒元素的主要存在形态为硒代半胱氨酸(SeCys),硒代蛋氨酸(SeMet),硒代羊毛硫氨酸,甲基硒代半胱氨酸(MeSeCys),甲基硒代蛋氨酸(MeSeMet),二甲基硒醚(DMSe)和二甲基二硒醚(DMDSe)等。图3 通过SRXRF和MALDI-MSI研究硒在单粒种子中的原位空间分布和形态研究结果表明,一方面SRXRF结果显示硒元素在整个种子中都有分布,子叶中硒含量相对高于外胚层/种皮;另一方面MALDI-MSI结果显示DMSe (m/z 107.970)、MeSeCys (m/z 184.019)和MeSeMet (m/z 212.983)主要存在于种子外胚层。硒植物毒性的一个突出原因被认为是硒氨基酸(如SeCys)错掺入蛋白质。已有研究表明,甲基化SeCys形成MeSeCys是Se超富集物的一个关键耐受机制之一, 这大大减少了非特异性取代蛋白质中的Cys的SeCys的数量。本研究中MeSeCys的发现证实了这也是堇叶碎米荠的Se耐受的重要机制之一。质谱成像MALDI-MSI方法本研究中的质谱成像部分使用岛津iMScope QT (Shimadzu, Kyoto, Japan)进行。MALDI-MSI在光学显微镜的帮助下确定所需的采集区域,用激光二极管激发的掺钕钇铝石榴石(Nd/YAG)激光(355 nm)照射种子组织切片。激光直径为40 μm,扫描步长为80 μm。对每个像素进行100次激光照射(1000 Hz重复频率)。所有数据均在正负模式下分别采集,采集范围分别为m/z 100 ~ 500和m/z 500 ~ 1000。利用IMAGEREVEAL MS分析软件对所采集的数据进行图像分析,最终得到显示多种形态硒的具体分布。图4 岛津新一代成像质谱显微镜——iMScope QT本文内容非商业广告,仅供专业人士参考。
  • Nature:攻克30年挑战 靶向“无药可及”的癌症基因
    在药物设计领域,K-Ras蛋白是一个传奇。作为人类癌症中最常见的突变癌基因,30多年来它一直位列在所有研究人员的&ldquo 靶点&rdquo 清单上。尽管如此的高调,由于许多的制药、生物技术公司和高校实验室都未能设计出一种能够成功靶向这一突变基因的药物,在科学界里K-Ras被视作是&ldquo 无药可及&rdquo 的靶点。 现在,来自加州大学旧金山分校霍华德休斯医学研究所(HHMI)的研究人员,鉴别并利用了K-Ras一个新发现的&ldquo 阿喀琉斯之踵&rdquo (Achilles heel)。这一薄弱点就是HHMI研究人员Kevan M. Shokat和同事们在K-Ras上新发现的一个 &ldquo 口袋&rdquo (结合位点)。Shokat和他的研究小组设计出了一种化合物,证实它可以进入到这一口袋里,抑制突变K-Ras的正常活性,但不会影响正常的蛋白。 Shokat 说:&ldquo 人们将K-Ras视作是癌症中最重要的癌基因,并广泛认为它&lsquo 无药可及&rsquo 。我们报告称发现了K-Ras上一个药物可及的新口袋。我们相信这对于患者将具有真正的转化意义。&rdquo 在发表于11月20日《自然》(Nature)杂志上的一篇研究论文中,Shokat研究小组描述了一种新型的化合物,其能够进入到K-Ras上一个从前未知的口袋中,干扰该酶的功能。Ras蛋白是一种在细胞内负责传送信号的小GTPase。由于它们在细胞生长和存活中发挥核心作用,对于细胞至关重要。 Ras这一名称也用于指代编码这些蛋白质的基因家族。其中的一个基因K-Ras大约30年前被发现,在30%的人类肿瘤,包括90%的胰腺癌、40%的结肠癌和20%的非小细胞肺癌中存在突变。携带Ras突变的癌症具有侵袭性,对标准治疗反应不佳。 尽管靶向突变Ras基因的研究工作一直遭受挫折,美国国家癌症研究所(NCI)近日强调将继续重视这一难对付的药物靶点,并宣布了一项1000万美元的RAS计划。这项计划将汇集研究人员共同开发阻断Ras的新思路,以激励研发出新药或新疗法让癌症患者受益。 Shokat的HHMI研究小组在大约6年前开始启动对Ras的研究工作。利用他们的化学专业知识,Shokat和两个研究小组成员:博士后研究人员Ulf Peters以及博士生Jonathan Ostrem拟定了一些早期的想法:研发一类新的Ras突变体抑制药物。&ldquo 其中一些早期的策略行不通,&rdquo 他说。 &ldquo 我们不得不开发出一种新的筛选方法,其最终推动研发出了这一新抑制剂。&rdquo Shokat说当确定了他们的攻击范围时他们做了一些不一样的事情。他们将焦点缩小,专注于其他科学家们没有采用的策略。他们还选择了研究一种叫做G12C的K-Ras突变体,这种K-Ras突变体广泛存在于大约7%的肺癌患者中。 这一突变使得K-Ras蛋白中第12位的甘氨酸被半胱氨酸所替代。重要的是,这一半胱氨酸处在对Ras正常功能至关重要的一个位置。偏离从前的研究工作,Shokat和同事们没有试图靶向天冬氨酸和缬氨酸突变的Ras版本&mdash &mdash 这些突变相对常见,因此过去许多的科学家们都将焦点放在这些突变上。反之,他们挑选出了G12C突变体,因为这些Ras突变体影响了大批的肺癌和结直肠癌患者。 Shokat说,这一半胱氨酸所赋予的一些化学特性,为他的研究小组提供了一个独特的药物设计把柄。在20种天然氨基酸中半胱氨酸具有一种独特的能力:可以形成共价键。通常两个半胱氨酸之间形成共价键起稳定蛋白质结构的作用,但如果存在游离半胱氨酸,就如同G12C K-Ras,一种特别设计的药物就可以与这一半胱氨酸形成共价键。 Shokat说:&ldquo 其他人一直认为他们必须去追逐所有的Ras突变体。我们寻找的是别人没有做过的,我们挑选出这一特殊突变是因为它的一些化学特性。&rdquo 在三年的时间里,该研究小组对500多个化合物进行了初步筛查,看看他们能否鉴别出一个可以与K-Ras G12C共价结合和&ldquo 连接&rdquo 的化合物。他们的研究导致鉴别出了一种有效的K-Ras抑制剂。为了获得这一化合物与K-Ras互作机制的更好图像,科学家们解析了这一化合物与K-Ras结合的晶体结构。 当他们检测数据时,Shokat和研究小组发现在靠近这一半胱氨酸残基的K-Ras蛋白表面上有一个之前从未描述过的口袋。Shokat说:&ldquo 这个口袋是新发现的,此前从未有人找到它。&rdquo 通过进一步的调查,他们发现化合物是通过改变Ras与底物GTP的自然亲和力从而对其形成干扰的。&ldquo 其中最重要的一个方面就是这一小分子只抑制突变K-Ras,而不影响正常蛋白,&rdquo Shokat说。 接下来的工作包括:继续优化这一化合物,进一步测试了解这一化合物在多大程度上能够杀死具有G12C突变的细胞。Shokat说他和同事们成立了一家叫做Araxes Pharma, LLC的公司,与强生的下属部门Janssen Biotech建立了合作关系,以开发出有潜力应用于临床的化合物。 人透明质酸结合蛋白(HABP)ELISA试剂盒 Human Hya]uronate binding protein,HABP ELISA试剂盒 人Ⅰ型胶原N末端肽(NTX)ELISA试剂盒 Human cross linked N-telopeptide of type Ⅰ collagen,NTX ELISA试剂盒 人幽门螺旋杆菌IgM(Hp-IgM)ELISA试剂盒 Human Helicobacter pylori IgM,Hp-IgM ELISA试剂盒 人细胞毒素相关蛋白A(CagA)ELISA试剂盒 Human Cytotoxin-associated protein,CagA ELISA试剂盒 人胃抑素(GIP)ELISA试剂盒 Human gastric inhibitory polypeptide,GIP ELISA试剂盒 人胃泌素释放多肽(GRP)ELISA试剂盒 Human gastrin-reliasing peptide,GRP ELISA试剂盒 人胃泌素释放肽前体(ProGRP)ELISA试剂盒 Human pro-gastrin-releasing peptide, ProGRP ELISA试剂盒 人胶原蛋白Ⅱ(HCBⅡ)ELISA试剂盒 Human Collagen-like Bioprotein Ⅱ,HCBⅡ ELISA试剂盒 人促胰液素/胰泌素(Secretin)ELISA试剂盒 Human Secretin ELISA试剂盒 人多肽YY(Peptide-YY)ELISA试剂盒 Human Peptide YY ELISA试剂盒 人促胃液素受体(GsaR)ELISA试剂盒 Human gastrin receptor,GsaR ELISA试剂盒 人胆囊收缩素/缩胆囊素八肽(CCK-8)ELISA试剂盒 Human cholecystokinin octapeptide,CCK-8 ELISA试剂盒 人胰蛋白酶原激活肽(TAP)ELISA Human trypsinogen activation peptide,TAP ELISA试剂盒 人&alpha 1酸性糖蛋白(&alpha 1-AGP)ELISA试剂盒 Human &alpha 1-Acid glycoprotein,&alpha 1-AGP ELISA试剂盒 人内皮型一氧化氮合成酶3(eNOS-3)ELISA试剂盒 Human &alpha 1-Acid glycoprotein,&alpha 1-AGP ELISA试剂盒 人丙二醛(MDA)ELISA试剂盒 Human malondialchehyche,MDA ELISA试剂盒 人胰淀素(Amylin)ELISA试剂盒 Human Amylin ELISA试剂盒 人血管活性肠肽(VIP)ELISA试剂盒 Human Motilin,MTL ELISA试剂盒 人胆囊收缩素/肠促胰酶肽(CCK)ELISA试剂盒 Human cholecystokinin,CCK ELISA试剂盒 人Ⅲ型前胶原肽(PⅢNP)ELISA试剂盒 Human N-terminal procollagen Ⅲ propeptide,PⅢNP ELISA试剂盒 人Ⅱ型胶原(Col Ⅱ)ELISA试剂盒 Human Collagen Type Ⅱ,Col Ⅱ ELISA试剂盒 人Ⅰ型胶原(Col Ⅰ)ELISA试剂盒 Human Collagen Type Ⅰ,Col Ⅰ ELISA试剂盒 人Ⅰ型前胶原羧基端肽(PⅠCP)ELISA试剂盒 Human procollagen Ⅲ N-terminal peptide,PⅢNT ELISA试剂盒 人透明质酸(HA)ELISA试剂盒 Human Hyaluronic acid,HA ELISA试剂盒 人Ⅳ型胶原(Col Ⅳ)ELISA试剂盒 Human Collagen Type Ⅳ,Col Ⅳ ELISA试剂盒 人Ⅲ型胶原(Col Ⅲ)ELISA试剂盒 Human Collagen Type Ⅲ,Col Ⅲ ELISA试剂盒 人层连蛋白/板层素(LN)ELISA试剂盒 Human Laminin,LN ELISA试剂盒 人纤连蛋白(FN)ELISA试剂盒 Human Fibronectin,FN ELISA试剂盒 人纤连蛋白(FN)ELISA试剂盒 Human Fibronectin,FN ELISA试剂盒 人NOGO-A抗体(Nogo-A Ab)ELISA试剂盒 Human anti-Nogo-A antibody,NOGO-A Ab ELISA试剂盒 人抗组织转谷氨酰胺酶抗体IgA(tTG-IgA)ELISA试剂盒 Human Anti-tissue tranGSlutaminase IgA,tTG-IgA ELISA试剂盒 人抗存活素抗体/生存蛋白(Surv)ELISA试剂盒 Human anti-Survivin antibody,Surv ELISA试剂盒 人粒细胞巨噬细胞集落刺激因子抗体(GM-CSF Ab)ELISA试剂盒 Human anti-Granulocyte-Macrophage Colony Stimulating Factor antibody,GM-CSF Ab ELISA试剂盒 人抗肌联蛋白抗体(TTN)ELISA试剂盒 Human Anti-titin Antibody,TTN ELISA试剂盒 人抗突触前膜抗体(PsmAb)ELISA试剂盒 Human anti-presynaptic membrane antibody,PsmAb ELISA试剂盒 人血管紧张素Ⅱ受体2抗体(AT2R-Ab)ELISA试剂盒 Human Angiotensin Ⅱ Receptor 2 antibody,AT2R-Ab ELISA试剂盒 人血管紧张素Ⅱ受体1抗体(ATⅡR1)ELISA试剂盒 Human angiotension Ⅱ receptor 1 Antibody,ATⅡR1 Ab ELISA试剂盒 人血管紧张素Ⅰ受体抗体(ANG-ⅠR)ELISA试剂盒 Human angiotension I receptor Antibody,ANG-ⅠR antibody ELISA试剂盒 人卵清蛋白特异性IgG(OVA sIgG)ELISA试剂盒 Human ovalbumin specific IgG,OVA sIgG ELISA试剂盒 人抗钙调素特异抗体(CAM-ab)ELISA试剂盒 Human anti-calmodulin specific antibody,CaM-ab ELISA试剂盒 人甲状腺非肽激素抗体(THAA)ELISA试剂盒 Human thyroid hormone autoantibodies,THAA ELISA试剂盒 人抗类固醇生成细胞抗体(SCA)ELISA试剂盒 Human steroid producing cell autoantibody,SCA ELISA试剂盒 人粒细胞特异性抗核抗体(GS-ANA)ELISA试剂盒 Human granulocyte specific antinuclear antibody,GS-ANA ELISA试剂盒 人抗信号识别颗粒抗体(SRP)ELISA试剂盒 Human signal recognization particle antibody,SRP ELISA试剂盒 人封闭抗体(BA)ELISA试剂盒 Human Blocking antibody,BA ELISA试剂盒 人抗细胞膜DNA抗体(cmDNA)ELISA试剂盒 Human anti-cell membrane DNA antibody,cmDNA ELISA试剂盒 人抗钙蛋白酶抑素抗体(ACAST-DⅣ)ELISA it Human autoantibodies against the C-terminal domain Ⅳ,ACAST-DⅣ ELISA试剂盒 人卵清蛋白特异性IgE(OVA sIgE)ELISA试剂盒 Human ovalbumin specific IgE,OVA sIgE ELISA试剂盒 人抗核仁纤维蛋白抗体(AFA/snoRNP/U3RNP)ELISA试剂盒 Human anti-fibrillarin antibody,AFA/snoRNP/U3RNP ELISA试剂盒 人系统性红斑狼疮(SLE)ELISA试剂盒 Human systemic lupus erythematosus,SLE ELISA试剂盒 人抗神经节苷脂抗体(GM1)ELISA试剂盒 Human anti-ganglioside antibody,GM1 ELISA试剂盒 人抗髓鞘相关糖蛋白抗体(MAG Ab)ELISA试剂盒 Human anti-myelin associated glycoprotein antibody,MAG Ab ELISA试剂盒 人抗中性粒细胞颗粒抗体(ANGA)ELISA试剂盒 Human anti-neutrophil granules antibody,ANGA ELISA试剂盒 人抗中性粒细胞抗体(ANA)ELISA试剂盒 Human anti-neutrophil antibody,ANA ELISA试剂盒 人抗载脂蛋白抗体A1(Apo A1)ELISA试剂盒 Human anti-apolipoprotein A1 antibody,Apo A1 ELISA试剂盒 人抗胰岛素受体抗体(AIRA)ELISA试剂盒 Human anti-insulin receptor antibody,AIRA ELISA试剂盒 人抗胃壁细胞抗体(AGPA/PCA)ELISA试剂盒 Human anti-gastric parietal cell antibody,AGPA/PCA ELISA试剂盒 人抗网硬蛋白抗体(ARA)ELISA试剂盒 Human anti-gastric parietal cell antibody,AGPA/PCA ELISA试剂盒 人抗网硬蛋白抗体(ARA)ELISA试剂盒 Human anti-Reticulin antibody,ARA ELISA试剂盒 人抗突变型瓜氨酸波形蛋白抗体(MCV)ELISA试剂盒 Human anti-mutated citrullinated vimentin antibody,MCV ELISA试剂盒 人抗髓磷脂抗体IgA(AMA IgA)ELISA试剂盒 Human anti-myelin antibody IgA,AMA IgA ELISA试剂盒 人抗突变型瓜氨酸波形蛋白抗体(MCV)ELISA试剂盒 Human anti-myelin antibody IgA,AMA IgA ELISA试剂盒 人抗髓磷脂抗体IgA(AMA IgA)ELISA试剂盒 Human anti-myelin antibody IgA,AMA IgA ELISA试剂盒 人抗腮腺管抗体(anti-parotid duct Ab)ELISA试剂盒 Human anti-parotid duct antibody ELISA试剂盒 人抗软骨抗体(anti-cartilage-Ab)ELISA试剂盒 Human anti-cartilage-antibody ELISA试剂盒 人抗人绒毛膜促性腺激素抗体(AhCGAb)ELISA试剂盒 Human anti-chorionic gonadotropin-antibody,AhCGAb ELISA试剂盒 人抗染色体抗体(anti-chromosome Ab)ELISA试剂盒 Human anti-chorionic gonadotropin-antibody,AhCGAb ELISA试剂盒 人抗脑组织抗体(ABAb)ELISA试剂盒 Human anti-brain tissue antibody,ABAb ELISA试剂盒 人抗麦胶蛋白/麦醇溶蛋白抗体(AGA)ELISA试剂盒 Human anti-gliadin antibody,AGA ELISA试剂盒 人抗磷脂酰丝氨酸抗体(APSA)ELISA试剂盒 Human Anti-phosphatidyl serine antibody,APSA ELISA试剂盒 人抗磷壁酸抗体(TA)ELISA试剂盒 Human anti-teichoic acid antibody,TA ELISA试剂盒 人抗淋巴细胞毒抗体(ALA/LCA)ELISA试剂盒 Human anti-lymphocytotoxic antibody,ALA/LCA ELISA试剂盒 人抗巨噬细胞抗体(anti-macrophage Ab)ELISA试剂盒 Human anti-macrophage antibody ELISA试剂盒 人抗甲状腺过氧化物酶抗体(TPO-Ab)ELISA试剂盒 Human anti-Thyroid-Peroxidase antibody,TPO-Ab ELISA试剂盒 人抗红细胞抗体(RBC)ELISA试剂盒 Human anti-red cell antibody ELISA试剂盒 人28S抗核糖体抗体(28S rRNP)ELISA试剂盒 Human 28S ribosome RNP antibody,28S rRNP ELISA试剂盒 人抗核仁抗体(ANA)ELISA试剂盒 Human anti-nucleolus antibody,ANA ELISA试剂盒 人抗核膜糖蛋白210抗体(gp210)ELISA试剂盒 Human Anti-glucoprotein 210,GP210 ELISA试剂盒 人抗肝细胞胞质1型抗体(LC1)ELISA试剂盒 Human anti-liver cytosolantibody type 1,LC1 ELISA试剂盒 人抗肺泡基底膜抗体(ABM-Ab)ELISA试剂盒 Human alveoli basement membrane zone antibody,ABM-Ab ELISA试剂盒 人抗胸腺细胞球蛋白(ATG)ELISA试剂盒 Human anti-thymocyte globulin,ATG ELISA试剂盒 人抗表皮细胞基底膜抗体(EBMZ)ELISA试剂盒 Human epidermal basement membrane zone,EBMZ ELISA试剂盒 人抗中性粒/中心体抗体(ACA)ELISA试剂盒 Human anti-centrol and centrosome antibody,ACA ELISA试剂盒
  • LC-MS/MS在多种罕见病检测中发挥关键作用
    2023年8月17日,国家医保局发布了提案建议回复,国家医疗保障局关于政协十四届全国委员会第一次会议第03136号(医疗卫生类270号)提案答复的函,将霍勇等 4位委员提出的《关于将罕见病用药保障机制纳入国家(医疗保障法)的提案》收悉,正式答复。  一是优化准入程序,及时将符合条件的罕见病用药纳入医保目录。认真贯彻落实国务院关于“加强罕见病用药保障”要求,2023 年国家医保药品目录调整工作方案中对罕见病用药的申报条件未设置上市时间限制,纳入国家鼓励仿制药品目录的药品可以申报当年医保目录,进一步拓宽了罕见病用药的准入范围。  二是推进医保目录准入谈判,提高罕见病用药可及性。自国家医保局成立以来,已累计将 26 种罕见病用药纳入医保目录,平均降价超 50%。叠加其他药品准入方式,目前获批在我国上市的 75 种罕见病用药已经有 50 余种纳入医保药品目录,切实提高了罕见病用药保障水平。  三是建立健全医保谈判药品“双通道”落地机制,提升罕见病用药供应保障水平。我局联合国家卫生健康委先后印发《关于建立完善国家医保谈判药品“双通道”管理机制的指导意见》《关于适应国家医保谈判常态化持续做好谈判药品落地工作的通知》,通过定点医疗机构和定点零售药店两个渠道,满足谈判药品供应保障、临床适应等方面的合理需求。  截至2023年6月底,全国已有 22.9 万家定点医院和药店配备了包括罕见病用药在内的目录谈判药品,有效提升了包括罕见病用药在内的谈判药品的供应保障水平。四是持续完善罕见病多层次医疗保障体系,切实减轻罕见病患者用药费用负担通过完善高额费用负担患者综合帮扶机制,积极引入市场力量推动慈善组织、商业健康保险、医疗互助等社会各方力量参与救助保障,积极发挥保障合力。  罕见病是指那些发病率极低的疾病。罕见疾病又称“孤儿病”,在中国没有明确的定义。根据世界卫生组织(WHO)的定义,罕见病为患病人数占总人口的0.65‰~1‰的疾病。世界各国根据自己国家的具体情况,对罕见病的认定标准存在一定的差异。  例如,美国将罕见病定义为每年患病人数少于20万人(或发病人口比例小于1/1500)的疾病 日本规定,罕见病为患病人数少于5万(或发病人口比例为1/2500)的疾病,中国台湾则以万分之一以下的发病率作为罕见病的标准。  近年来,液相色谱串联质谱(LC-MS/MS)技术在临床检验领域受到广泛关注。其因特异度高、可同时区分/定量多种代谢物等特点,正逐渐从科研应用走向临床实践前沿。  一方面,在目前常规生化免疫学尚无成熟检测方法的情况下,LC-MS/MS技术可作为临床亟需项目的重要补充 另一方面,作为鉴别检测干扰物的利器,LC-MS/MS技术可标化不同分析系统检验结果的一致性,对同一待测物质不同结构亚组进行准确定量分析,从而在临床精准诊断中发挥越来越大的作用。  罕见病患者仅占全球人口的0.65‰~1‰,但病种多达7000多种,且临床表现差异大,诊断非常困难。为加强我国罕见病防治管理、提高罕见病诊疗水平,2018年国家卫生健康委员会联合五部门制定了《第一批罕见病目录》,纳入了121种罕见病。目前罕见病体外诊断领域的主要关注点集中于基因突变检测方面,而对具有筛查、诊断及鉴别诊断作用的代谢物、激素等的定量检测则缺乏完整的解决方案。  LC-MS/MS技术具有同时准确定量分析多种物质的能力,可以对罕见病的早期诊断及治疗监测提供有力的实验室帮助。目前,LC-MS/MS技术已在多种罕见病检测中发挥关键作用,本文参考我国《第一批罕见病目录》,同时纳入部分不在此目录但北京协和医院接诊较多且患病率低于1/10 000的疾病,分析LC-MS/MS技术在其诊断中的应用现状及前景。  早在2022年12月20日,国家卫健委办公厅发布了《国家卫生健康委办公厅关于印发国家罕见病医学中心设置标准的通知》  文件指出:  一、国家罕见病医学中心应当满足以下基本条件:  (一)三级甲等综合医院,具备产前诊断技术资质,能够提供遗传咨询服务   (二)省级及以上罕见病医疗质量控制中心依托单位   (三)常态化开展罕见病多学科诊疗(MDT)工作,门诊常规运行的罕见病相关 MDT 团队≥15 个   (四)医院依法进行药物临床试验机构备案,近 3 年(以伦理审查时间为准),参与罕见病新药临床试验≥30 项,其中作2为组长单位或国际多中心临床研究国内牵头单位开展的项目≥10 项。  二、医疗服务能力  国家罕见病医学中心应当具备齐全的临床科室和医技科室,建立完备的罕见病多学科协作诊疗体系,掌握罕见病预防、诊断、治疗的各项关键技术,提供从胎儿、儿童到成人的全生命周期罕见病诊疗服务。  (一)科室设置。  能够提供内科(呼吸内科、消化内科、神经内科、心血管内科、血液内科、肾病学、内分泌、免疫学和变态反应)、外科(普通外科、神经外科、骨科、泌尿外科、胸外科、心脏大血管外科、整形外科)、妇产科、儿科、眼科、耳鼻咽喉科、口腔科、皮肤科、精神科、传染科、肿瘤科、急诊医学科、康复医学科、麻醉科、重症医学科、医学检验科、病理科、医学影像科、中医科等罕见病诊疗服务。上述罕见病诊疗相关的科室中,具有验收合格的国家临床重点专科建设项目≥25 个。  (二) 诊疗能力与核心技术。  1.罕见病基因检测能力。医院能利用 PCR(巢式 PCR、长片段 PCR、倒位 PCR、三引物 PCR 等)、荧光定量 PCR(qPCR)、多重连接探针扩增(MLPA)、染色体微阵列分析(CMA)、荧光原位杂交(FISH)、染色体核型分析、一代测序、二代测序等技术开展罕见病致病基因检测。近 3 年,开展基因检测病例数≥2500 例,3并覆盖超过 1/3 的中国罕见病目录病种(附件 1)。  2.核心医学检验技术。能够从分子、代谢物、细胞、组织等不同维度为罕见病患者提供特定检验服务。近 3 年,开展的检验项目覆盖清单(附件 2)所列项目 80%以上。  3.罕见病诊断能力。近 3 年,诊断患者覆盖超过 2/3 的中国罕见病目录病种(附件 1),且在中国罕见病诊疗服务信息系统病例登记数≥50000 例。  4.罕见病治疗能力。具备罕见病重症患者复杂手术支持平台,完成过脊髓性肌萎缩(SMA)、假肥大型肌营养不良(DMD)、马凡综合征、先天性脊柱侧弯等四种以上罕见病脊柱矫形手术 具备罕见病患者特殊给药技术(鞘内、深静脉、特定脑区等),保障 SMA 等罕见病患者的治疗 具备全方位的营养和康复支持平台,能够实施运动训练、吞咽训练等康复干预,制定胃肠道营养方案,为罕见病患者提供全方位营养支持。近 3 年,收治的罕见病患者累计出院人数≥1500 人,覆盖超过 1/2 的中国罕见病目录病种(附件 1)。  5.罕见病产前诊断及预防能力。临床具备成熟开展羊膜腔穿刺术、脐静脉穿刺术、绒毛取材术、基于胎儿镜系统的宫内治疗手术等产前诊断介入性取材和治疗能力,近 3 年,开展产前诊断病例数累计≥5000 例。具备完善的胎儿尸检病理检查的能力。具备产前遗传学检验能力。近 3 年,连续参加国家卫生健康委临床检验中心的遗传病筛查和诊断相关室间质量评价项目,每年通过率达 100%。  6.罕见病药品可及性。医院能保障罕见病患者用药,储备的药品覆盖目前国内上市的重要罕见病治疗用药。  早期发现、早期干预是罕见病防治的最佳途径。应积极开展罕见病的宣传及科学知识的普及,组织相关医学培训,提高我国罕见病的发现和诊断水平,减少因误诊、漏诊造成的疾病干预与治疗时机的延误。  罕见病涵盖121大项和412个病种。在相关检验项目中,除临床基础检验外,生化涵盖乳酸、镁离子、同型半胱氨酸、血氨、游离脂肪酸和酮体检测。  重点的LC-MS平台涵盖了类固醇、氨基酸、维生素D、肉碱、胆汁酸谱等。加上ICP-MS平台的铜、锌,气相色谱的有机酸检测,几乎涵盖了整个质谱平台范围。
  • 北大王初课题组发展顺铂结合蛋白的组学鉴定方法
    近日,北京大学化学与分子工程学院、北大-清华生命联合中心、北京大学合成与功能生物分子中心王初课题组在RSC Chemical Biology杂志上发表了题为“ Discovery of Cisplatin-binding Proteins by Competitive Cysteinome Profiling”的研究文章。在这项工作中,作者应用基于竞争的定量化学蛋白质组学策略rdTOP-ABPP,在MCF-7活细胞体系中全局性地鉴定了顺铂(cisplatin)结合蛋白与其结合顺铂的位点,发现并证明了顺铂可以结合谷氧还蛋白1(GLRX1)与具有硫氧还蛋白结构域的蛋白17(TXNDC17)的活性位点。除此之外也发现了一个全新的顺铂结合蛋白甲硫氨酸氨肽酶1(MetAP1),并发现其对顺铂的细胞毒性有一定的保护作用。顺铂是1965年被发现的化疗药物,其在如睾丸癌,卵巢癌等癌症的治疗过程中被广泛应用。其在进入细胞后生成的活性的二价铂离子会进攻DNA上的腺嘌呤或鸟嘌呤,从而引起DNA损伤,最终杀死癌细胞,这个过程被认为是顺铂细胞毒性的主要原因。而近年来很多研究也发现活性二价铂离子除了结合DNA之外,其也会与细胞质中大量亲核性物质反应,比如GSH,RNA以及金属硫蛋白等进行结合,据统计,仅有1%左右的铂是结合到DNA上。大量游离的活性二价铂离子会与细胞中多种有功能的蛋白质结合,从而影响其正常的功能,因此对顺铂结合蛋白的研究有助于我们更完整的理解顺铂细胞毒性的机理以及帮助我们避免顺铂耐药性。目前已经有很多组学上鉴定顺铂结合蛋白的方法,例如利用Pt的特征同位素分布的特点,在一级质谱层面筛选那些潜在的顺铂结合蛋白 或者将ICP-MS与二维凝胶电泳结合,从而在组学层面鉴定潜在的顺铂结合蛋白等,但这些方法受限于较低的灵敏度和通量。对顺铂进行生物正交基团改造,从而通过生物素-亲和素富集来鉴定顺铂结合蛋白的方法也被开发,并成功在酵母细胞中鉴定到数百种潜在的顺铂结合蛋白。但由于顺铂的分子较小,并且其作为无机药物,在其上进行官能团化修饰可能会一定程度上改变顺铂本身的性质,并影响最终的鉴定结果。鉴于活性二价铂离子易与半胱氨酸残基反应并结合,因此作者考虑使用基于竞争的定量化学蛋白质组学策略rdTOP-ABPP来鉴定顺铂结合蛋白。首先作者在活细胞水平上证明了顺铂可以与半胱氨酸特异性反应的探针IAyne竞争结合蛋白质的半胱氨酸残基。在优化了质谱条件后,作者在三次重复的质谱实验中共鉴定并定量到1947个肽段,对其进行条件筛选,定义顺铂处理后肽段的色谱强度与对照组中相同肽段色谱强度比值为Ratio,作者认为三次重复的Ratio平均值与对应的p value满足-log10(p value) x log2(ratio) 1.5的是潜在的顺铂结合位点,共筛选到125个肽段归属于107种蛋白。这些蛋白显著富集于核质交换通路以及氧化还原相关通路,这与之前报道的顺铂会引起DNA损伤以及顺铂会引发细胞产生氧化应激相对应。  随后作者在筛选的107种蛋白中,选择了归属于氧化应激通路的已知的与顺铂有关的靶点蛋白GLRX1以及TXNDC17进行验证,纯蛋白层面的竞争标记与ICP-MS结果均表明这两种蛋白为顺铂结合蛋白,并且其顺铂结合位点均是质谱鉴定到的位点,且均是两个蛋白的活性中心位点,暗示了顺铂结合可能会影响两种氧化还原相关的酶的活性,进而引起氧化应激。纯蛋白质谱实验中,二级谱也表明两个蛋白与顺铂的结合均是桥连结合,这与文献中报道过的其中一种顺铂与蛋白结合的模式是相对应的。  之后作者选择了另一种尚未明确是否与顺铂有相互作用的蛋白MetAP1进行了后续的生化验证。纯蛋白层面的竞争标记实验与ICP-MS的实验结果证明MetAP1是顺铂结合蛋白,且其顺铂结合位点为我们鉴定到的C14位。随后我们测量了顺铂对MetAP1活性的影响,发现顺铂不会明显影响MetAP1纯蛋白的活性,但可以抑制MetAP1在体内的活性,表明顺铂会在活细胞中影响新生成蛋白的N端甲硫氨酸切割,最后通过比较MetAP1的敲除细胞系和野生型的细胞系对顺铂的MTT曲线,作者发现MetAP1在顺铂引起的细胞毒性中起到了一定程度的保护作用。  总之,作者应用竞争性ABPP策略,在MCF-7活细胞中鉴定到了107种潜在的顺铂结合蛋白,并对其中的三个靶标进行了验证。作者发现顺铂可以结合与氧化还原相关的酶GLRX1与TXNDC17的关键酶活中心,暗示了顺铂结合可能会影响两种氧化还原相关的酶的活性,进而可能影响细胞的ROS水平。也证明了顺铂通过结合来影响MetAP1的活性从而影响新生成蛋白的N端甲硫氨酸的加工,并表明MetAP1可以作为提高顺铂细胞毒性以避免肿瘤耐药性的潜在靶点。本文的通讯作者为北京大学化学与分子工程学院、北大-清华生命联合中心、北京大学合成与功能生物分子中心的王初教授。其指导的化学与分子工程学院2019级博士研究生王相贺为本文的第一作者。该工作得到了国家自然科学基金委、国家重点研发计划的经费支持。  本文作者:WXH  责任编辑:JGG  原文链接:https://pubs.rsc.org/en/content/articlehtml/2023/cb/d3cb00042g  文章引用:DOI: 10.1039/D3CB00042G
  • 通微公司推出饲料行业最新整体解决方案
    2012年10月22日,农业部1849号公告,公布了《饲料生产企业许可条件》和《混合型饲料添加剂生产企业许可条件》。两许可条件自2012年12月1日起施行。该许可条件规定必须设有饲料检测实验室,规定检测实验室中必须配备的仪器,其中包括原子吸收分光光度计、高效液相色谱仪等相关检测仪器。通微公司依托自身强大的应用研发团队,利用EasySepTM-1020 HPLC系统联用紫外检测器和蒸发光散射检测器产品平台,为广大饲料企业第一时间开发了专业饲料检测用高效液相色谱仪、耗材及应用方法包,应用于饲料中的氨基酸、维生素、三聚氰胺、抗生素等添加剂的检测;同时,我们将不断为您推出饲料中各种添加剂的专用检测方法包。通微公司的唯一的国产蒸发光散射检测仪,是国家“十五攻关”的重大科技成果,获得2007年BCEIA金奖。该检测仪液相色谱联用检测氨基酸,可以省去劳师费时的样品衍生步骤,直接检测。 EasySepTM-1020 HPLC系统平台 国产首台蒸发光散射检测仪ELSD 5000 部分检测范例如下: 1、水溶性维生素检测 仪器型号: EasySepTM-1020 HPLC 检测器类型: UV 柱 温(℃): 室温 检测波长(nm): 270 nm流动相:甲醇/0.1%磷酸溶液=55/45色谱柱:Globalsil C18,5μm,4.6 mm×150 mm进 样 量: 20 µ L 流量:1.5 mL/min 2、三聚氰胺检测 仪器型号: EasySepTM-1020 HPLC 检测器类型:UV 检测波长:240 nm色谱柱:Globalsil C18,5 μm, 4.6 mm×150 mm; 柱 温(℃): 40℃流动相:离子对试剂缓冲液-乙腈(90:10);流速:1.0 mL/min; 进样量:20 ul 3、氨基酸分析 仪器型号: EasySepTM-1020 HPLC 检测器类型:ELSD 色谱柱:Globalsil C18,5 μm,4.6 mm×250 mm 柱温:35 ℃ 流动相:溶剂A,七氟丁酸:三氟乙酸:水=1.0:0.5:500;溶剂B,甲醇;流速:0.8 mL/min;梯度洗脱: 时间(min) 0 8 11 21 30 40 A% 100 100 78 73 45 45 B% 0 0 22 27 55 55 蒸发温度:40 ℃;载气流量:2.5 L/min(推荐使用氮气) 进样体积:10 μL 1、甘氨酸(Gly),2、丝氨酸、(Ser),3、天冬氨酸(Asp),4、谷氨酰胺(Gln),5、苏氨酸(Thr),6丙氨酸、(Ala),7、谷氨酸(Glu),8、半胱氨酸(Cys),9、胱氨酸(Cys),10、脯氨酸(Pro),11、赖氨酸(Lys),12、组氨酸(His),13、缬氨酸(Val),14、精氨酸(Arg),15、甲硫氨酸(Met),16、酪氨酸(Tyr),17、异亮氨酸(Ile),18、亮氨酸(Leu),19、苯丙氨酸(Phe),20、色氨酸(Trp)。 通微公司简介上海通微分析技术有限公司(www.unimicrotech.com.cn)成立于2002年,是总部设在美国硅谷的美国通微技术股份有限公司 (Unimicro Technologies, Inc.,以下简称通微公司)在上海浦东张江高科技园区内创立的子公司;为了业务发展的需要,通微公司分别在2007年、2011年成立的两家全资子公司-苏州环球色谱有限责任公司、无锡通微检测技术有限公司,目前,通微公司北京办事处、西安办事处、广州办事处等全国销售网络相继建成。通微公司,致力于打造国际一流的微分离领域色谱仪器和耗材基地,一直专注于色谱仪器及相关耗材产品的研制与开发;借助美国通微技术股份有限公司雄厚的技术开发实力,致力于中国市场的拓展,为中国的科研单位和科研工作者提供全新、优质的产品和一流服务。通微公司设有中国分析仪器行业首家企业博士后工作站,在毛细管电色谱系统开发及产业化方面取得了重大开创性成果,推动了电色谱技术的进步;先后承担国家科学仪器重大专项、国家 “九五”、“十五” 科技攻关重大项目,国家发改委高科技产业化专项、国家自然科学基金,中国与美国以及中国与比利时等国际合作项目,科技部中小企业创新基金以及上海市的科技攻关项目等30余项,在色谱领域共发表180余篇学术及应用论文,申请和获得30多项国际和中国专利。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制