当前位置: 仪器信息网 > 行业主题 > >

锁模力传感器

仪器信息网锁模力传感器专题为您提供2024年最新锁模力传感器价格报价、厂家品牌的相关信息, 包括锁模力传感器参数、型号等,不管是国产,还是进口品牌的锁模力传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合锁模力传感器相关的耗材配件、试剂标物,还有锁模力传感器相关的最新资讯、资料,以及锁模力传感器相关的解决方案。

锁模力传感器相关的资讯

  • 半导体所研制成功无源/半无源双模无线温湿度传感器
    中国科学院半导体研究所超晶格国家重点实验室研究员吴南健团队研制出一种低功耗无源/半无源双模无线温湿度传感器。相关研究成果在传感器领域学术期刊IEEE SENSORS JOURNAL上发表,该论文在2015年2月和3月连续入选为该期刊的前50热点论文。  无线温湿度传感器在高危环境监测、紧急救援、先进物流仓储系统、设备监测、建筑物监测和文物监测等领域具有非常广阔的应用前景,但无线传感器的功耗和成本严重限制了无线传感器网络的大规模应用。在国家自然科学基金和国家科技支撑项目的支持下,课题组研制出一种可与现有商用超高频RFID系统完全兼容的低成本低功耗无源/半无源双模无线温湿度传感器。传感器采用了自主研发的核心芯片,可实现高效率的电磁波能量采集、身份识别、温湿度测量、数据处理和无线通信的功能,传感器的最大工作距离可达6米。该传感器符合ISO18000-6C国际标准,可通过现有商用超高频RFID阅读器进行操作,还可支持扩展多种其他功能的传感器。使用这种传感器有望将无线传感器网络融合至现有的超高频RFID系统中,从而大幅降低无线传感器网络的应用成本,提升无线传感器网络的市场竞争力。
  • 便携式明渠流量计比对装置采用磁致伸缩传感器的好处在哪里?
    便携式明渠流量计比对装置采用磁致伸缩传感器的好处在哪里?HJ355-2019水污染源在线监测系统中明确指出。每季度至少使用便携式明渠流量计比对装置对现场安装的超声波明渠流量计进行至少1次的比对测试,比对结果不符合要求的,按要求多现场的超声波明渠流量计进行校准,校准完成后再进行比对。同时要求便携式明渠流量计采用磁致伸缩传感器加标注流量计算公式的方法进行比对。、其中液位比对中要求,比对装置的液位精度≤1mm,每2min读取一次数据,连续读取6次,安装公式完成比对误差计算。液位比对误差=|第n次明渠流量比对装置测试液位值-第n次超声波明渠流量计测量液位值|其次流量比对要求明渠流量比对装置与现场流量计测量统一水位观测断面处的瞬间流量,进行比对。且在数值稳定后,10min内读取该时间段的累计流量,按公式计算误差.流量比对误差=(明渠流量比对装置累积流量-超声波明渠流量计累积流量)/明渠流量比对装置累积流量一般以月为段位,明渠流量比对装置对某一时间点进行流量测试,明渠超声波流量计的比对。如何快速准确地对明渠污水流量计进行验收?这是现今遇到的一大难题。解决这个难题就需要考虑以下几方面:1.比对时间,比对工具与现场的明渠流量计是否是实时比对,同一时刻,统一数据。否则不同时间节点的数据是没有对比性的。2.XY-6800R比对工具测试的数据是否准确。比对数据的数据可靠性及精度是衡量计量仪器的一个重要指标。不应该受到环境影响测量精度,如雾霾,沙城爆,强光,泡沫,结露等。常规的超声波流量计测试不能避免这些因素。目前采取磁致伸缩传感器能有效避免这些困扰。测试时,电路单元产生电流脉冲,该脉冲沿着磁致伸缩线向下传输,并产生一个环形的磁场。在探测杆外配有浮子,浮子沿探测杆随着液位的变化从上而下移动。由于浮子内装有一组永磁铁,所以浮子同时产生一个磁场。当磁场与浮子磁场相遇时,产生一个扭曲脉冲,或称“返回”脉冲,将“返回”脉冲与电流脉冲的时间转换成脉冲信号 ,从而计算出浮子的实际位置,测得液位 通过无线模块将液位传到计算机。利用内置堰槽参数计算出流量。为什么XY-6800R明渠流量比对系统要选择磁致伸缩传感器?主要原因:1.测量精度高2.抗干扰性强3.寿命长4.性能可靠5.可进行多点,多参数的液位测试,免校准,免维护。磁致伸缩液位传感器输出的液面和界面信号主要分为模拟量和串口两种形式,串口为RS485/232形式,模拟量为4~20mA电流模拟信号,对应量程为0~1m。输出的串口或者模拟信号通过屏蔽电缆传送至主板,主板通过内集成电路将接收到的串口信号或者模拟信号转换成为数字量在文本显示器上显示,由于在线监控过程中存在电机或泵等执行设备运行产生的干扰信号,且现场信号的采集点与控制柜之间存在距离问题,为减少信号在传输过程中受到干扰,故要使用优质的屏蔽电缆线。青岛新业环保科技有限公司是一家集环保科研,设计,生产,维护,销售为一体的综合性实地厂家。青岛凌恒环境科技有限公司属于江苏凌恒环境科技有限公司青岛分公司,主要业务范围:在线水质监测仪销售服务。服务承诺:客户的需求放在首位,“今天的质量、明天的市场、服务到永远”是我们新业环保公司为客户服务的准则,并将其贯穿到研发、生产、安装、销售及售后服务的各个环节中。公司郑重承诺:完善沟通协调机制:通过加强沟通交流,提高信息传递的及时性,准确性,深入市场,倾听用户心声了解客户仪器设备的需求。我公司承 诺:按质、按量、按时完成所供产品的生产任务,并及时将产品运到用户需求现场,确保正常运转。全过程监控:客户只需一个电 话,售后服务部采用一站式模式、全面负责制、全程监控实施并跟踪处理结果,确保客户满意。
  • 索尼推出新型车载CMOS图像传感器,有效像素1742万
    9月12日,日本厚木-索尼半导体解决方案公司(下称“SSS”)宣布推出用于车载摄像头的新型CMOS图像传感器IMX735,像素水平实现突破,高达1742万有效像素。据悉,自动驾驶为了实现系统自主地进行驾驶操作,需要提供覆盖车辆周围360度环境的先进、高精度的检测和识别性能。因此,对于可以帮助实现这一点并支持开发出更先进的车载摄像系统的图像传感器的需求十分可观。新传感器实现的成像示例(1742万有效像素)新传感器实现的放大图像(1742万有效像素)SSS其他产品的放大图像(839万有效像素)该新型传感器具有以下几个主要特点。首先,该新型传感器的有效像素高达1742万像素,像素水平实现突破,可以高清捕捉拍摄物体,识别更远范围的物体,从而更好地支持检测路况、车辆、行人和其他物体。在驾驶过程中及早地检测到远处的物体有助于提高自动驾驶系统的安全性。扫描方向示意图其次,该传感器采用的读出方法是水平方向逐列输出的读出方式,更容易与同样采用水平扫描方法的机械扫描激光雷达同步。这意味着,搭载该产品的车载摄像头输出的信息可以更容易地与激光雷达收集到的信息融合。这将从整体上提高自动驾驶系统的检测和识别能力。同时,该产品采用自研的像素结构和特殊的曝光方式提高了饱和照度范围,同时采用HDR和LED闪烁抑制功能,也能实现106dB的宽广的动态范围。(使用动态范围优先模式时,动态范围可实现高达130dB)。这种设计还有助于减少拍摄移动物体时产生的运动伪影。该产品还可支持网络安全功能,例如通过公钥算法进行摄像头验证,确认CMOS图像传感器的真实性和进行图像验证,从而检测获取的图像是否被篡改,以及进行通信验证,检测控制通信是否被篡改。
  • 助推大规模设备更新,海塞姆DIC视觉传感器精准施力
    日前,《推动大规模设备更新和消费品以旧换新行动方案》正式公布,各高校及企业正积极响应,推动科研仪器、生产设备、用能设备等更新升级与技术改造。为了帮助各相关机构高效完成设备升级,海塞姆准备了覆盖材料力学性能测试、结构力学性能测试,以及安全检测与安全监测三大领域的DIC视觉传感器焕新方案,助力高校及企业在项目储备和申报工作中抢占先机,帮助各位研究人员在未来的科研与生产活动中,具备更精准、高效的检测与分析能力,为实现更多科技创新成果提供坚实的技术支持。
  • 搭载全新CMOS传感器,FLIR机器视觉相机满足生物医学成像的严苛要求
    众所周知,现代生物医学成像的进步帮助医生在诊断和治疗上取得越来越大的突破,X光、计算机辅助断层摄影(computer aided tomographic,CT)、磁共振成像、核与超声波成像,生物医学成像技术越来越精细。因此,研究和诊断生物医学应用通常需要成像仪具备较高的空间分辨率、准确的色彩还原度以及弱光条件下较高的灵敏度,而且许多情况需要同时具备这三种因素,才能提高数据的可靠性。选择医学成像相机要考虑的因素选择合适的显微镜学相机、组织学相机、细胞学/细胞遗传学相机、落射荧光相机,对于临床应用进行正确诊断或在研究工作过程中提供可靠数据具有至关重要的作用。那么要如何判断机器视觉相机是否适合您的应用呢?你需要考虑这些因素:01分辨率与色彩精度现代生物医学成像相机所需的分辨率取决于样品中目标结构相对于相机像素大小的放大率,也就是说,显微镜应用的高分辨率可以通过2MP、25MP或介于这两者之间的相机来实现。它取决于光学元件对样品中目标结构进行的相对于相机像素大小的放大率,为了选出能实现所需分辨率的相机,首先要确定待解析样本中最小结构的尺寸,然后将其乘以光学系统中的镜头放大率,从而得出投射到相机传感器上的结构尺寸。如果结构的尺寸至少是相机传感器上像素的2.33(Nyquist)倍,那么相机可以解析此机构。例如,如果这些投射的结构尺寸是~8um,那么3.45um像素的相机可以解析这些结构。测量分辨率还可以用其他方法(如线对数),但上述方法可以通过简单计算,找到用于测试的相机的选项。组织学、细胞学和细胞遗传学等成像应用使用较大范围的白光(~400nm至700nm),或使用此范围内的选定波长(例如565nm)。如果这批样品中的样本不是活动的(即固定的),则可以暴露于亮光下,不会有污渍褪色或样品被杀死的风险。这种情况下,相机的主要要求是高分辨率和色彩还原度。反过来说,弱光灵敏度不是一个重要因素。02灵敏度、量子效率及动态范围对于活体样本的成像应用,面临的挑战是避免样本在太强光线下过度曝光,否则会使荧光分子褪色或杀死样本。这些应用通常使用一种称为落射荧光技术,落射荧光技术可用于固定样本和活体样本。有的标本很难获得或价格昂贵,而且制作样本的材料和人工费用很高。因此,能保护样品质量的系统有助于降低这些成像应用的持续成本。落射荧光使用经过过滤的高能量波长,以刺激样品发出低能量波长。低能量波长再经过过滤返回相机。这种情况下,可以对样品使用强度较小的破坏性光,因此其要求是灵敏度。即便发射光能量较低,具有出色灵敏度的相机也可以提供高质量的图像。如需查找具备出色灵敏度、在弱光条件下性能良好的型号,您可以侧重于以下三种技术规格:灵敏度、量子效率以及动态范围。灵敏度是得到与传感器所观测噪声等效的信号所需的光子数,数值越小越好。量子效率是指给定波长下转化为电子的光子——值越高越好。动态范围是信号与噪声(包括颞暗噪声)的比值,颞暗噪声是指无信号时传感器内的噪声,动态范围值越高越好。通常单色型号的弱光性能优于彩色型号。03因素综合对于同时使用白光和落射荧光的应用,可以选择FLIR配备Sony全新转换增益功能的相机型号,此功能可以优化传感器,实现高灵敏度或高饱和容量。弱光环境较高的转换增益,因为在此条件下,读取噪声被更大程度地弱化,从而产生较低的灵敏度阈值,非常适合在短时曝光下检测弱信号。强光条件下饱和容量得到了Maximun,获得的动态范围得以增强,因此稍低的转换增益是这种情况的理想选择,Maximun动态范围将受限于12位 ADC。挑选合适的机器视觉相机在选择相机时,较新的CMOS传感器是个很好的出发点。较新的传感器通常性能更好(价格可能还更低)另外,如果针对的应用程序需要在几年内购买多个相机(如持续生产诊断仪器),那么就要选择生命周期不会很快结束的相机,否则您可能要承受提前设计替换相机的成本费用。FLIR生产的机器视觉相机型号有200多种,广泛应用于采用新CMOS传感器的三大系列:Blackfly S、Oryx 和 Firefly。01FLIR Blackfly SFLIR Blackfly S系列相机的传感器、外形尺寸及接口最为广泛。这些相机提供USB3和GigE两种型号,功能广泛,设计初期易于整合。板级Blackfly S型号是全功能盒装产品的微型版本,特别适合空间受限和嵌入式的应用,其功能广泛,性价比高,分辨率可达24MP,是生物医学和生命科学应用的选择。FLIR Blackfly S USB3FLIR Blackfly S 板级02FLIR Oryx10 GigEFLIR Oryx相机系列拥有适配最快10GigE接口的高分辨率传感器,能够以60FPS的速度捕捉4K分辨率、12位的图像。Oryx的10GBASE-T接口是经过验证且广泛部署的标准,能够在线缆长度超过50米的经济实惠的CAT6A上或者长度超过30米的CAT5e上提供可靠的图像传输。03FLIR Firefly DLFLIR Firefly相机系列的外壳尺寸娇小、重量轻、功耗低且价格实惠。Firefly DL型号还能够运行已经过训练的神经网络,可用于物体检测或分类。所有FLIR机器视觉彩色相机都可以通过不同的白平衡选项的形式自定义色彩还原,并使用特殊色彩校正矩阵,这对于生物医学成像非常重要,医学成像中,色彩准确度的涵义不同,这取决于人类对诊断的视觉分析以及实现数据准确性的机器可读格式之间的对比。另外,FLIR 机器视觉Blackfly S、Oryx 和Firefly相机系列可通过GenICam3及 Spinnaker SDK进行控制和编程,它们自一开始设计时就以轻松开发与部署为理念时,确保我们能更快进行应用开发和测试。随着医学科技的进步对于现代生物医学成像的需求也将更加严格对于如何选择医学成像相机
  • 缩小10倍!最小的二氧化碳传感器
    在“TECHNO 2012”上,日本旭化成株式会社(Asahi Kasei)展出了采用红外线传感器的超小型二氧化碳CO2传感器模块试制型产品。该试制品的最大特点是,尺寸还不到现有最小产品的1/10。该模块被封装在外形尺寸为15.0mm×7.0mm×4.5mm的超小型封装中,体积仅为0.47cc。 由于采用了旭化成电子制造的高速响应、高灵敏度红外线传感器元件“IR1011”,产品的尺寸能够得到缩小。IR1011的尺寸只有2.7mm×1.9mm×0.4mm,气体传感器采用该元件后,可较原产品大幅缩小模块尺寸。此外,由于IR1011的灵敏度出色,因此可缩小气体浓度计指示灯与传感器之间的距离,这也为小型化做出了贡献。另外,传感器试制品的耗电量只有3mW(电源电压为3.0V,测量周期为8秒时),也比现有产品大幅降低,使得该产品能够用于便携式设备。 图为展出的CO2传感器模块试制品,能够将测量到的CO2浓度数据直接显示在PC上。此次试制的传感器模块的主要性能参数如下。工作电源电压为2.7V~5.5V,工作温度范围为0~50℃。测量范围为300~5000ppm,测量周期为1~28秒。配备有有I2C总线数字接口。 图为连接电脑进行CO2浓度测量演示。显示的2190ppm是相当糟糕的空气了。 旭化成电子计划利用新产品小型化、低耗电的特点,将其用于便携式CO2监测计、空调CO2浓度监测以及在移动终端中嵌入CO2传感器等用途。
  • 柯力传感领投点联传感天使轮 开拓精密测量传感器市场
    2023年7月,宁波柯力传感科技股份有限公司(“柯力传感”)与深圳点联传感科技有限公司(“点联传感”)正式签署协议,完成天使轮投资。柯力传感是此次点联传感天使轮融资的领投方。   深圳点联传感科技有限公司正式成立于2022年,是由多名清华大学博士领衔的高层次人才硬核团队,精密仪器专业出身,专注传感检测研究15年。   点联传感在精密光学系统、高速硬件电路以及综合检测算法方面有深厚的研究基础,依托底层高速高精度CMOS激光测量传感器技术框架,逐步拓展对射式、反射式以及同轴共聚焦的产品矩阵,实现对工业品形位尺寸的精密检测与定位,提高生产效率与性能。未来,点联传感将在产学研基础上,进一步构建名校传感器成果转化平台,立志解决中国工控及其他领域中高端传感器卡脖子问题。据悉,柯力投资点联传感主要是基于以下三个方面的考虑:   第一、当前国内精密测量传感器的发展仍处于起步阶段,未来是一个确定性的发展机会,是柯力布局传感器行业的重要市场方向。   第二、高精密测量传感器有一定的技术壁垒,需要依赖技术型团队才能打造升级产品,形成品牌。点联传感团队是由多名精密仪器专业出身的博士组成,专业技术能力强。   第三、通过柯力投资与赋能,可以快速提升点联传感的客户拓展能力,整体价值实现1+1>2。   当前,中国制造业正在向高精度、智能化的方向转型升级。高精度工控传感器是制造装备的基础要素,柯力传感对点联传感的投资与赋能,将助力其成为中国制造业转型升级过程中的国内外一流传感器品牌,同时,也将加速柯力从单一物理量传感器向多物理量传感器融合的步伐与进程。
  • 全球光纤传感器市场规模年均新增18%
    作为物联网极其重要的组成部分之一,光纤传感器因其优势与应用一直备受瞩目。从全球市场来看,2013年全球光纤传感器市场规模为18.9亿美元。预计2014至2018年,全球光纤传感器市场将以年均18%的增长幅度增长,至2018年市场规模达到43.3亿美元。   从光纤传感技术研究上看,美国对该技术的研究起步最早,且在世界上最为先进。数据显示,2007年,美国光纤传感器市场规模为2.35亿美元,此后以30%的年复合增长速度增长,2014年有望达到16亿美元。   相较于美国,中国的光纤传感行业处于起步阶段。据统计,截至2013年底,中国2000万元规模以上的传感器制造企业有260多家。但行业整体素质参差不齐,小型企业占比近七成,以生产低端产品为主 少部分龙头企业和外资企业占据高端产品市场。   虽然起步晚,中国光纤传感市场需求却呈现出爆发式增长,仅电力领域相关产品的招标就比以往多了近百倍以上。业界人士评估,2013年,光纤传感器在中国市场的规模约有10亿元,且呈逐渐增长的态势。   目前,市场上应用最广的光纤传感器有4种,分别是光纤陀螺、光纤水听器、光纤光栅传感器和光纤电流传感器。   光纤陀螺有干涉型、谐振型和布里渊型三种类型,干涉型光纤陀螺是技术上很成熟的第一代商品化阶段,谐振光纤陀螺是处于实验室研究阶段的第二代,布里渊型光纤陀螺是在理论研究阶段的第三代光纤陀螺传感器。   光纤水听器是在光纤、光电子技术基础上的一种水下声音信号传感器,这种传感器通过高度灵敏的光纤相干检测,把水中的声音信号转换成光信号,再通过光纤传到信号处理系统转换为声音信号,这种传感器按原理可以分为干涉型、强度型、光栅型等类型。   光纤光栅传感器产品包括应变传感器、温度传感器和压力传感器,其中光纤bragg光栅传感器是这几年的研究热点,它们大部分属于光强型和干涉型,并且各有利弊。   光纤电流传感器主要应用于电力领域,它能很好地避免一些由于电力过强而引发的事故。   光纤传感器目前可以直接或间接测量近百种物理量以及化学和生物量,被广泛应用于国防、电力、石油、建筑、医学等各个领域。   在国防上,光纤传感器可用于水声探潜(光纤水听器)、光纤制导、姿态控制、航天航空器的结构损伤探测(智能蒙皮)以及战场环境(电磁环境、生化环境等)的探测等。   在电力系统中,高电压、大电流的恶劣电磁环境使得电子类传感器的应用受到限制,而光纤传感器以其特有的抗电磁干扰能力,在电力系统中可用于测量大型电机的转子、定子和高压变压器内部的电流、电压、温利于提高特种微型光缆外护层的固化度,但超过一定范围对提高固化度作用不大。   近年来,这种采用UV涂层作为外护层的特种微型光缆在有线制导武器和水下工程中的应用发展非常迅速,不久的将来可广泛地应用于导弹、重型鱼雷、大潜深潜水器、海底监测网络等领域。
  • 全球CMOS图像传感器需求预计将推动市场增长
    据Research Nester 最近发表的一份报告,全球 CMOS 图像传感器市场预计在预测期内(即 2022-2031 年)以 6.32% 的复合年增长率增长,预计到 2031 年将达到 395.4 亿美元。对高清图像捕捉设备不断增长的需求预计将推动市场增长。   例如,索尼公司于 2019 年 6 月推出了 IMX485 型 1/1.2 4K 分辨率背照式 CMOS 图像传感器和 IMX415 型 1/2.8 4K CMOS 图像传感器。索尼创造了这两款安防摄像头传感器,以满足不断增长的需求一系列监控应用中的安全摄像头,例如防盗、灾难预警和交通监控系统,或商业综合体。   此外,医疗保健行业对 CMOS 图像传感器的需求不断增长。它们通常用于在手术过程中观察病人。美国国家医学图书馆最近的一份报告指出,全世界每年进行的主要手术数量达到惊人的 3.1 亿次,其中 4000 至 5000 万次发生在美国,2000 万次发生在欧洲。   CMOS 图像传感器广泛用于安全和监控目的。CMOS图像传感器具有将光电信号转换为数字信号的能力。安全是每个人最关心的问题。因此,由于盗窃和犯罪事件的增加,预计将安装更多具有 CMOS 传感器的安全摄像头,从而促进市场增长。据估计,大约 82% 的窃贼在闯入之前会检查警报系统是否存在。   但是,由于隐私问题,它们不能随处安装。因此,许多组织提出了有望推动市场发展的创新想法。例如,2021 年 12 月,佳能发布了一款全新的户外 4K 摄像机,既可以用作传统摄像机,也可以用作安全摄像机。此外,它还可以组合 4K UHD CMOS 图像传感器捕获的每个 4K UHD 像素。   按照报告,全球 CMOS 图像传感器市场分为五个主要区域,包括北美、欧洲、亚太地区、拉丁美洲以及中东和非洲地区。   到 2031 年底,亚太地区的 CMOS 图像传感器市场预计将获得 177.593 亿美元的最大收入。政府对智慧城市的举措预计将推动市场增长。印度电子和信息技术部委托 ERNET India 和 IISc 开发 LoRa 网关(极网关),这是一种低成本的计算设备,可以连接摄像头、温度、湿度、空气质量和其他传感器。这是   此外,北美地区预计将进一步增长,到 2031 年底收入将达到 125.79 亿美元,2022-2031 年的复合年增长率为 6.14%。对智能手机的需求增加推动了市场增长。到 2025 年,美国大约 85% 的移动用户预计将拥有智能手机。包括智能手机、电视、可穿戴设备等在内的各种电子产品都包含该地区需求巨大的传感器。许多智能手机制造商在其智能手机中使用图像传感器。例如,小米 12S Ultra 智能手机包含世界上最大的智能手机传感器。作为新系列的一部分,小米推出了 12S 系列,其中包括徕卡设计的 Ultra。   根据报告,到 2031 年底,消费电子领域的收入预计将达到 270.104 亿美元。消费电子领域对 CMOS 的需求增加预计将推动市场增长。这种 CMOS 技术广泛用于智能手机。CMOS 以使用更少的功率而闻名,因此它们在智能手机中的需求正在增加。它不是在单个实例中捕获整个图像,而是以扫描类型的方式捕获图像。此外,带有 CMOS 传感器的相机具有更好的饱和能力,因此许多制造商将其安装在他们的智能手机中。例如,安森美半导体推出了 XGS 系列中最新的 CMOS 图像传感器。称为 XGS 16000 的 16Mp 传感器可为工厂中的机器人和检测系统提供出色的全局快门成像。XGS 16000 以低功耗提供出色的性能,同时为典型的 29 x 29 毫米工业相机提供最高分辨率,在 65FPS 时仅消耗 1 瓦。在北美,到 2031 年底该部门的收入最大,为 85.764 亿美元,而在亚太地区,该部门预计到 2031 年底将实现 121.243 亿美元的最大收入。   预计到 2031 年底,背面照明 (BSI) 部分将获得最大的收入,在预测期内以 6.68% 的最高复合年增长率增长。这种增长可归因于 BSI 技术在高质量和更高像素相机中的使用越来越多。智能手机生产商对 BSI 技术的偏好正在增加,预计这也将带动需求增长。例如,索尼在 4200万像素的 Sony Alpha A7R Mark II 中添加了一个 BSI 全画幅传感器。Sony Cyber-shot RX10 II 和 RX100 IV 均具有“堆叠式”传感器,可实现更快的连拍和高速视频录制。在亚太地区,该细分市场预计在预测期内以 7.34% 的复合年增长率增长。
  • 德国研制出高速CMOS图像传感器
    据美国物理学家组织网1月3日报道,由于排列在矩阵上的大像素不支持较高的读出速度,因此传统的“互补金属氧化物半导体”(CMOS)影像传感器不适合荧光灯等低光亮度应用。德国弗劳恩霍夫研究所研制出的一种新型光电组件能加速这一读出过程,催生出更佳的图像质量。目前该技术已申请了专利,有望于明年正式投入生产。   CMOS影像传感器早已成了数码摄影的主要解决方案。它们比现存的其他品种传感器更加经济,在能量消耗和处理方面也很出色。因此,手机和数码相机制造商几乎无一例外地将CMOS芯片应用在自家的产品之中。这不仅降低了数码产品对电池的需求,也使生产出更多越来越小的相机成为可能。   然而这些光学半导体芯片已经达到了自己的极限,当消费类电子产品体积越来越小时,像素的大小也随之递减至1微米左右。但特定的应用需要超过10微米的更大像素,尤其是在X射线摄影或天文学研究等光线十分有限的领域,而较大的像素可以补偿光线的缺失。针状光电二极管(PPD)可被用于将光信号转化为电脉冲,这种光电组件对于图像处理十分关键,也可以作为CMOS芯片的组成部分。“然而当像素超过一定的尺寸,PPD就会产生速度问题。低亮度的应用需要更高的图像率,但使用PPD的读出速度明显偏低。”弗劳恩霍夫研究所微电子电路和IMS系统部门的负责人维尔纳布洛克赫德解释说。   研究人员现在提出了有关这一问题的解决方案,他们研发出了名为“横向漂移场光电探测器”(LDPD)的新型光电组件。在这个组件中,高速移动的入射光能在读出点产生电荷载子,借助PPD则可将电子扩散至出口。这一过程相对缓慢,但它却足以满足多种应用。   为了生产出新的组件,研究人员基于0.35微米的标准改进了当前使用的CMOS芯片的制造过程。布洛克赫德表示,附加的LDPD组件不会损害其他组件的特性,利用模拟计算,专家会对其进行管理以满足这些需求。目前,新型高速CMOS图像传感器的原型已经成形,有望于明年得到批准开始大批生产。
  • 苏州纳米所石墨烯高灵敏一氧化氮传感器件研究取得新成果
    石墨烯(Graphene)是由单层碳原子构成蜜蜂窝形式的二维纳米结构,具有大的比表面积和良好的载流子传导性能,预期在高灵敏、低功耗室温生物化学传感器方面将得到广泛应用。然而,由于传感物质与石墨烯之间的吸附、电荷转移和脱附等相互作用,器件的有效制作方法和性能优化等方面还有大量工作需要探索。   一氧化氮(NO)气体一方面是有害气体,另一方面却是重要的生物功能信息传递分子。及时监测呼出气体的NO浓度变化,可对哮喘等肺部疾病的发作提前预警。然而,目前NO呼吸气体测试仪器体积偏大、价格昂贵,而且大都集中在大型医疗机构,无法在更大范围内推广使用。   近期,中科院苏州纳米技术与纳米仿生研究所器件部刘立伟课题组李伟伟等与中科院物理所科研人员合作,在制作基于石墨烯的高灵敏一氧化氮气体传感器方面取得进展。研究人员以微纳加工图形化的石墨烯为电极,利用交流电泳技术制作金属纳米颗粒修饰还原的氧化石墨烯传感通道。气体分子的作用降低了石墨烯与金属颗粒之间Schottky势垒的厚度,实现了1 ppb(10亿分之一)至1 ppm(100万分之一)的高灵敏探测性能,对于低功耗、室温NO高灵敏呼吸和环境探测具有潜在应用价值。器件制作示意图和性能测试如图所示。   该项工作成果已经发表在ACS Nano(2011, 5 (9), pp 6955–6961)上。   该项研究得到了国家基金委、科技部、苏州市科技发展计划的资助,并得到苏州纳米所加工和测试平台的技术支持。   基于石墨烯的高灵敏传感器件结构和性能
  • 称重传感器精准与否,差别究竟在哪里?
    称重传感器精准与否,差别究竟在哪里?作为称重核心元器件的称重传感器,其质量的好坏直接决定了称量结果的精准。俗话说,“失之毫厘,差以千里”,有时候小小的误差就会造成难以挽回的损失,那么小梅家是如何做到每一只传感器都精准如一的呢?就让小编为大家来一一揭秘吧。 “工欲善其事,必先利其器”梅特勒-托利多的传感器精准的背后除了其先进的精益生产理念,更离不开货真价实的设备投入。 可靠的力源 1000kg力机 称重界大家都说自己准,那问题来了,准不准到底谁说了算?小编为大家科普一下,国家计量法规规定,可溯源的标准力值必须来自国家或国际的法定计量单位(国际法制计量组织或中国国家计量院)。梅特勒-托利多的实验室和生产车间的测试设备力值均使用标准的静重力机, 其砝码均可溯源到国家计量院,确保梅特勒-托利多的称重传感器的精度满足国家和国际标准。 力机界的“劳斯莱斯” 50T 静重式力标准机 小梅家独有的“力机界的劳斯莱斯” – 由中国运载火箭技术研究院101所研制的50T静重式力标准机, 在称量界可谓无出其右。 除此之外,小梅家的生产工艺还拥有多道检测工序,层层把关,为用户提供最优质可靠的称重传感器 全自动角差修正 温度补偿 自动角差机 自动角差机将最大程度地对传感器进行角差修正,高低温测试让传感器从容面对严寒酷暑 盐雾试验 沙尘试验箱 为了保证每只传感器的精准可靠,梅特勒-托利多绝不放过每一个有可能出现差错的环节,称重传感器精确度的差别,就源自对质量的严格把控! 选择正确称重模块的8个步骤1. 计算称重量程 2. 确定机电控制要求 3. 在安装和操作过程中确保安全 4. 符合准确度要求 5. 符合危险区域要求 6. 符合环境条件 7. 促进快速且经济的安装 8. 确定校准方法 标准秤不适用的场合,压式称重模块可以组建成一台秤。 组建的秤可以是定制平台秤、传送带秤、料罐、料斗或反应器。勿庸置疑,称重模块必须进行仔细选择,以提供其整个生命周期所需的性能。《称重模块购买指南》旨在支持工程师对适合的称重模块进行评估,引导工程师在 8 个步骤内,通过所有相关点为其称重应用做出正确的选择。浏览梅特勒-托利多官方网站,即可快速下载指南! 盐雾腐蚀试验箱
  • 南科大杨灿辉和葛锜团队:多材料3D打印具有多模式传感功能的离子电容传感器
    在过去十年中,离电器件(Ionotronics or Iontronics,离子-电子混合器件,即基于离子与电子协同作用的器件)因其固有的柔韧性,可拉伸性,光学透明性和生物相容性等优势引起了越来越多的关注。然而,现有的离电传感器由于器件结构简单、成分易泄漏,导致器件稳定性差,传感功能单一,极大地限制了实际应用。因此,设计制造性能稳定且具有多模式传感能力的离电传感器具有重要的工程应用价值。南方科技大学力学与航空航天工程系杨灿辉团队与机械与能源工程系葛锜团队,报道了通过多材料光固化3D打印技术一体化设计制造基于聚电解质弹性体的多模式传感离子电容传感器,解决了传统离电传感器稳定性差和功能性单一的问题,为可拉伸离电传感器的设计、智造与应用提供了新的解决方案。相关研究成果以“Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing”为题发表在《Nature Communication》期刊。南方科技大学科研助理李财聪、博士生程健翔和何耘丰为论文共同第一作者,杨灿辉助理教授与葛锜教授为论文共同通讯作者。本研究得到了深圳市软材料力学与智造重点实验室和广东省自然科学基金等项目支持。如图1所示,受人体皮肤对于拉、压、扭及其组合等外力的多模态感知能力的启发,研究人员利用多材料光固化3D打印技术制备了具有多模式传感能力的离电传感器。传感器采用了聚电解质弹性体(PEE),其高分子网络中含有固定的阴离子或阳离子,以及可移动的反离子,具备抗离子泄漏的特性。在打印过程中,PEE材料与传感器上的介电弹性体(DE)材料之间通过共价和拓扑互连形成了牢固的界面粘接。图1. 皮肤启发的多模式传感离电传感器。(a) 人体皮肤内多种力感受器示意图。(b) 人体皮肤可以感知单一的力学信号如压拉、压、压+剪、压+扭。(c) 基于多材料数字光固化3D打印技术制备具有多模式传感能力的离电传感器。研究人员首先合成了一种名为1-丁基-3-甲基咪唑134-3-磺丙基丙烯酸酯(BS)的单体,作为聚电解质材料的组成成分之一,并与另一种名为MEA的疏水单体一起进行共聚。然后通过优化BS和MEA的比例,平衡聚电解质材料的力学性能和电学性能,从而优化传感器的性能,如图2所示。图2. 聚电解质弹性体的设计、制备与光学、力学、电学性能以及热、溶剂稳定性。如图3所示,研究人员进行光流变测试验证了所开发的PEE材料的可打印性。然后通过180°剥离测试,分别测量了3D打印和手动组装的PEE/DE双层结构的界面粘接强度。结果表明,3D打印的双层结构由于PEE和DE之间形成的共价键和拓扑缠结而具有强韧的界面,剥离过程发生了PEE材料的本体断裂, 粘接能达339.3 J/m2;相比之下,手动组装的PEE/DE双层结构界面弱,剥离过程发生了界面断裂,粘接能只有4.1 J/m2。在耐久度测试中,基于PEE的电容式传感器由于无离子泄漏可以长时间保持稳定的信号,而基于传统的LiTFSI掺杂离子的弹性体的传感器由于离子泄漏,信号持续发生漂移,直至发生短路。图3. 离电传感器的可打印性与性能。(a) PEE存储模量和损耗模量随光固化时间的变化曲线。(b) 固化时间与能量密度随层厚的变化关系。(c) 打印的PEE阵列展示。(d) 3D打印和手动组装的PEE/DE双层结构的180°剥离曲线。(e) 3D打印的PEE/DE双层结构本体断裂示意图。(f) 手动组装的PEE/DE双层结构界面断裂示意图。(g) 基于PEE和基于LiTFSI掺杂离子的弹性体的电容式传感器的ΔC/C0随时间变化曲线。(h) 基于PEE的电容式传感器无离子泄漏。(i) 基于LiTFSI掺杂离子的弹性体的电容式传感器离子泄漏示意图。3D打印技术为器件的结构设计提供了极高的灵活性。如图4所示,研究人员分别设计并一体化打印了拉伸、压缩、剪切、扭转四种不同的离电传感器,器件均具有良好的性能和稳定性。特别地,通过器件的结构设计,即可以实现传感器灵敏度的大幅度优化,例如通过在压缩传感器的介电弹性体层引入微结构可以将灵敏度提高两个数量级,又可以实现传感器灵敏度的按需调控,例如通过设计剪切传感器前端的轮廓线或扭转传感器的扇形区域数量可以分别实现不同相应的剪切传感器和扭转传感器。图4. 拉伸、压缩、剪切、扭转离电传感器。(a) 拉伸传感器原理示意图。(b) 电容-拉伸应变曲线。(c) 压缩传感器原理示意图。(d) 有/无微结构的压力传感器的电容-压力曲线。(e) 剪切传感器原理示意图。(f) 一种剪切传感器实物图。(g) 不同灵敏度的剪切传感器的电容-剪切应变曲线。(h) 剪切传感器的疲劳测试曲线。(i) 扭转传感器原理示意图。(j) 一种扭转传感器实物图。(k) 不同灵敏度的扭转传感器的电容-扭转角曲线。(l) 扭转传感器的疲劳测试曲线。如图5所示,研究人员进一步设计并一体化打印了拉压、压剪、压扭三种组合式离电传感器。组合式传感器最大的挑战之一在于不同传感通路之间相互的信号串扰,例如,当器件拉伸时,由于材料的泊松效应会导致垂直方向上的器件几何尺寸缩小,等效于压缩变形,导致拉伸激励引起压缩通道的信号变化。研究人员结合有限元模拟分析,通过合理的器件结构设计,有效地避免了不同通道之间的信号串扰。图5. 组合式离电传感器。(a) 拉压组合传感器示意图。(b) 器件实物图。(c) 拉压组合传感器等效电路图。(d) 单一传感模式下的器件信号。(e) 压缩激励下的电容-圈数变化曲线。(f) 拉伸激励下的电容-圈数变化曲线。(g) 拉压组合变形下的信号谱。(h) 压剪组合传感器示意图。(i) 器件实物图。(j) 压剪组合传感器等效电路图。(k) 单一传感模式下的器件信号。(l) 压扭组合传感器示意图。(m) 器件实物图。(n) 压扭组合传感器等效电路图。(o) 单一传感模式下的器件信号。最后,研究人员展示了一个由四个剪切传感器和一个压缩传感器组成的可穿戴遥控单元,并将其连接到一个远程控制系统,用于远程无线控制无人机的飞行,如图6所示。这个可穿戴遥控单元中的四个剪切传感器负责感知手部的手指运动,用于控制无人机的方向。而压缩传感器则用于感知手指的压力,控制无人机的翻滚。这种可穿戴遥控单元的设计可以实现人机交互,提供更加灵活的控制方式。图6. 组合式离电传感器用于无人机的远程无线操控。(a) 无人机控制系统示意图。(b) 组合式离电传感器中剪切传感模块工作模式示意图。(c) 剪切传感模块工作原理。(d) 传感器五个通道电容信号测试。(e) 指令编译逻辑。(f) 组合式离电传感器实时电容信号。(g) 不同时刻的无人机飞行状态。文章来源:高分子科技023-40583-5MultiMatter C1基于高精度数字光处理3D打印技术和独家离心式多材料切换技术,MultiMatter C1多材料3D打印装备可实现任意复杂异质结构快速成型,在力学超材料、生物医学、柔性电子、软体机器人等领域具有重要应用潜力。离心式多材料切换技术:独家开发的离心式多材料切换技术可实现高效材料切换和残液去除。离心转速可调,最高达8000转/分钟,60秒内即可完成多材料切换,单次打印多材料切换最大次数高达2000次,处于业内领先水平。可打印材料范围广:该设备支持粘度在50-5000 cps范围内的硬性树脂、弹性体、水凝胶、形状记忆高分子和导电弹性体等材料及这些材料组合结构的多材料3D打印,为不同行业和应用领域,提供了材料选择的灵活性。多功能多材料耦合结构实现:该设备可打印高复杂度、高精度、多功能、多材料耦合结构,支持同时打印2种材料,可打印层内多材料和层间多材料,且多材料层内过渡区尺寸在200μm以内,为复杂多材料结构制造提供高精度解决方案。
  • 苏州纳米所可穿戴汗液传感器研究获进展
    p   人体汗液中富含大量潜在的与健康和疾病相关的标志物,相比较常规的血液和尿液检测,其具有非侵入(Non-invasive)和实时连续监测等优势,因此可穿戴汗液传感器的研究成为可穿戴健康电子设备领域发展的重点之一。微型化、集成化的全固态离子选择性电极和全固态参比电极,是检测汗液中电解质离子浓度的核心传感技术。然而,现有的大部分固态离子传感器多采用导电聚合物作为离子/电子的传导层材料,存在稳定性差、干扰因素多、使用寿命短等缺点,限制了其在可穿戴汗液检测领域的应用。 /p p   中国科学院苏州纳米技术与纳米仿生研究所张珽研究团队前期研发了可用于皮肤水分检测的柔性可穿戴离子型湿度传感器(Advanced Science, 2017, 1600404,1-7, Back Cover)。进而,针对微型化全固态离子传感器和全固态参比电极稳定性等关键科学技术问题,研究团队结合MEMS微纳加工技术设计制备了具有微孔阵列为模板的电极芯片,采用一步电沉积法制备了大比表面积且可调控的三维金纳米结构离子/电子传导阵列电极,相比较基于碳纳米管、石墨烯、多孔碳等材料的离子/电子传导层,其具有制备简单,重复性好等优势。通过该电极芯片构建的全固态离子选择性电极具有稳定的电位响应灵敏度(56.58 ± 1.02mV/decade)、快速的响应时间(& lt 10s)和宽线性范围(10-6~10-1mol/L),传感器的电位漂移和水层干扰影响减小。通过优化参比电极聚合物膜和盐的组分,在传感器芯片上集成了基于聚合物/氯化钾的全固态参比电极,获得的微型化参比电极芯片具有平衡时间短,对不同种类和不同离子强度电解质干扰响应小,对光不敏感,在pH3~10范围内响应稳定,具有长期稳定性等优势。同时,研究团队创新性地设计了具有汗液采集、转运和排出结构的可穿戴“导汗带”汗液传感设备,将传感器芯片与汗液导汗带集成封装,可舒适便捷地佩戴与人体额头区域,可对人体运动过程中电解质离子进行实时连续地分析监测,对人们健身运动过程中脱水情况的监测,尤其是对运动员、抢险急救人员、军人在执行高强度任务过程中的生理健康状况具有预警和指导意义。相关研究成果发表在Analytical Chemistry上。 /p p   该工作得到了国家自然科学基金、江苏省杰出青年基金和中国博士后科学基金资助项目等的资助。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201709/insimg/a3540c68-c53b-4d5a-adbc-c9bcb6f769d5.jpg" title=" W020170927538680564180.jpg" / /p p   图1.(A)电沉积制备不同比表面积的三维金纳米结构固体接触传导阵列电极 (B)全固态离子选择性阵列电极构建的结构示意图。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201709/insimg/ddaec8b7-2e9f-437b-a335-33e17dfa67e2.jpg" title=" W020170927538758629536.jpg" / /p p   图2.(A)、(B)和(C)为可穿戴“导汗带”汗液传感器设备的照片和示意图 (D)汗液传感器芯片在穿戴前和穿戴后对不同浓度标准Na+溶液的校准曲线 (E)为汗液传感器在人体上运动过程中实时连续监测汗液中Na+浓度变化的曲线图。 /p
  • 新型有机薄膜传感器或可替代外部光谱仪?
    德国科学家研制出一种新型有机薄膜传感器,它能以全新的方式识别光的波长,分辨率低于1纳米。研究人员称,作为一款集成组件,这种新型薄膜传感器未来可替代外部光谱仪,用于表征光源。这一技术已经申请专利,相关论文刊发于最新一期《先进材料》杂志。  光谱学被认为是研究领域和工业领域最重要的分析方法之一。光谱仪可以确定光源的颜色(波长),并在医学、工程、食品工业等各种应用领域用作传感器。目前的商用光谱仪通常“体型”较大且非常昂贵。  现在,德累斯顿工业大学应用物理研究所(IAP)和德累斯顿应用物理与光子材料综合中心(IAPP)的研究人员与该校物理化学研究所合作,开发出了一种新型薄膜传感器,能以一种全新的方法识别光的波长,而且,由于其尺寸小、成本低,与商用光谱仪相比具有明显优势,未来或可成功替代后者。  新型传感器的工作原理如下:未知波长的光激发薄膜内的发光材料。该薄膜由长时间发光(磷光)和短时间发光(荧光)的器件组成,它们能以不同方式吸收未知波长的光,研究人员根据余辉的强度推断未知输入光的波长。  该研究负责人、IAP博士生安东基奇解释说:“我们利用了发光材料中激发态的基本物理特性,在这样的系统内,不同波长的光激发出一定比例的长寿命三重和短寿命单重自旋态,使用光电探测器识别自旋比例,就可以识别出光的波长。”  利用这一策略,研究人员实现了亚纳米光谱分辨率,并成功跟踪了光源的微小波长变化。除了表征光源,新型传感器还可用于防伪。基奇说:“小型且廉价的传感器可用于快速可靠地确定钞票或文件的真实性,而无需任何昂贵的实验室技术。”  IAP有机传感器和太阳能电池小组负责人约翰内斯本顿博士说:“一个简单的光活性膜与光电探测器结合,形成一个高分辨率设备,令人印象深刻。”
  • 2025年CMOS图像传感器市场将超240亿美元
    p   CMOS全称为Complementary Metal-Oxide Semiconductor,中文翻译为互补性氧化金属半导体。CMOS的制造技术和一般计算机芯片没什么差别,主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带N(带–电)和P(带+电)级的半导体,这两个互补效应所产生的电流即可被处理芯片纪录和解读成影像。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/a9826f4e-82ca-4905-baa7-b0e768e0aca4.jpg" title=" 微信图片_20200714144558.png" alt=" 微信图片_20200714144558.png" / /p p   据相关研究机构显示,2017年为CMOS图像传感器高增长点,同比增长达到20%。根据Yole披露的统计数据,2018年全球CMOS图像传感器市场规模155亿美元。目前,全球CMOS图像传感器市场正处于稳定增长期,预计2025年CMOS图像传感器市场将逐渐饱和,市场规模将超过240亿美元。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/d8d020a7-b9b3-4dc0-ae80-6145f131d666.jpg" title=" 微信图片_20200714144617.png" alt=" 微信图片_20200714144617.png" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/be481980-278e-4469-962c-a349a3c9716f.jpg" title=" 微信图片_20200714144702.png" alt=" 微信图片_20200714144702.png" / /p p style=" text-align: center" br/ /p p br/ /p
  • 南方科技大学《ACS Nano》:通过分级互锁结构设计获得高灵敏和宽线性传感的柔性压力传感器
    灵敏度高、线性传感范围宽的柔性压力传感器在机器人触觉、健康监测、可穿戴设备领域具有重要应用。构筑微结构可以提高传感器的灵敏度,但由于软材料在压力作用下的结构硬化问题使传感器的响应逐渐饱和,导致器件呈现较窄的传感范围和显著的非线性响应。针对这一问题,来自南方科技大学的郭传飞教授团队设计了由微穹顶阵列与带有次级微柱的微穹顶(分级微穹顶)阵列而形成的一种分级互锁结构,有效提升界面结构的可压缩性,显著降低结构硬化,实现柔性压力传感器的高灵敏度(49.1 kPa-1)、线性响应(相关系数R20.995)和宽传感范围的统一(~485 kPa)。传感器的响应/恢复时间小于5 ms,可以检测频率高达200 Hz的振动刺激,显示出良好的动态响应特性。将传感器用于机械手的抓取任务中,结合机器学习,帮助机械手识别被抓取物体的重量,提升机器人触觉感知能力。相关工作以“Graded Interlocks for Iontronic Pressure Sensors with High Sensitivity and High Linearity over a Broad Range”为题发表于国际期刊《ACS Nano》。 该研究使用面投影微立体光刻技术(nanoArch S130,摩方精密)打印具有微穹顶结构以及分级微穹顶结构的树脂作为模具,进一步地,通过模板法获得具有微穹顶结构的环氧树脂/Au电极及离子膜。打印模具尺寸:9 mm×9 mm×1.5 mm,单个微穹顶尺寸(电极模具):宽290 μm,高480 μm;次级微柱尺寸(离子膜模具):直径28 μm,高70 μm。每层打印精度设置为5 μm,以实现分级互锁结构的高精度、定制化打印。 这项工作为制造具有高灵敏度、高线性度和宽压力响应范围的柔性压力传感器提供了一种策略,在未来的触觉器件中具有广阔的应用前景。 图1. 分级互锁结构的可压缩性及器件传感原理 分级互锁结构由微穹顶结构与带有次级微柱的微穹顶结构组成。微柱在分级互锁结构中具有重要作用。一方面,它提高了结构的可压缩性,减少结构硬化,使应力分布更均匀,有助于实现线性形变;另一方面,微柱结构的引入减小了电极与离子膜之间的起始接触面积,可有效提高了器件的灵敏度(图1)。 图2. 分级互锁型柔性压力传感器的制备该研究使用面投影微立体光刻技术打印具有微穹顶结构以及分级微穹顶结构的树脂作为模具。进一步地,通过模板法获得具有微穹顶结构的环氧树脂/Au电极及离子膜,并与平面电极PET/Au组合、封装,获得分级互锁型器件(图2)。 图3. 分级互锁型柔性压力传感器的传感性能分级互锁结构的设计实现了器件的高灵敏度、高线性度及宽传感范围的统一,同时提升了器件的响应速度,实现对高频振动刺激的精准检测,呈现出良好的动态响应特性(图3)。 图4. 分级互锁型柔性压力传感器的线性传感特性 将该传感器用于开发线性响应的电子天平,并用于测量几种未知物体的重量,其输出结果与商业电子天平的称量结果几乎一致,表明了自制电子天平对质量的测量比较准确、可靠,而且无需额外的非线性校准,大大简化数据处理过程(图4)。 图5. 基于机器学习的抓取任务感知与重量识别 柔性压力传感器的一个重要应用是为机器人带来触觉感知能力,使机器人能够像人类一样与外界互动。将分级互锁型传感器集成在气动抓手表面,实现机械手在抓取物体时的触觉感知;结合机器学习,帮助机械手识别物体的重量(图5)。原文链接:https://doi.org/10.1021/acsnano.1c10535作者:白宁宁
  • 国内学者成功研发石墨烯温度流量一体化传感器
    p style=" line-height: 1.75em "   & nbsp 国内科研人员成功研发基于石墨稀材料的大量程、高精度的流量、温度传感器,有望在热力系统进行规模应用。 /p p style=" line-height: 1.75em text-align: center " img src=" http://img1.17img.cn/17img/images/201604/insimg/3e7bf569-3c52-4b91-b4b2-dd53a82c552f.jpg" title=" 20160407151516449.jpg" /    /p p style=" line-height: 1.75em text-align: center " 清华大学 朱宏伟 /p p style=" line-height: 1.75em "   近日,清华大学朱宏伟教授团队和北京华大智宝电子系统有限公司合作开发出石墨烯温度流量一体化传感器件。他们针对热力系统检测用流量、温度传感器的应用需求,通过对石墨烯传感的作用与规律研究,突破石墨烯材料在热量表流量计应用的关键技术,开发热力系统检测用石墨烯流量、温度传感器件,解决了现有传感器表面结垢、功耗高等问题,形成了批量制备能力,有望在热力系统进行规模应用。 /p p style=" line-height: 1.75em "   该团队完成了石墨烯晶片形状、尺寸、表/界面状态对传感性能调制研究,通过基于石墨稀材料的传感工艺结构设计,开发了大量程、高精度的流量、温度传感器。流量传感器元件测量范围达到0.01~6m3/h,测量精度达到0.005m3/h 温度传感器元件测量范围达到0~100℃,测量精度达到0.02℃。 /p p style=" line-height: 1.75em "   在石墨烯流量、温度传感材料基础上,同时开展了两项拓展研究:1)提出了一种实现高灵敏柔性应变传感的新思路,通过石墨烯与超弹超薄高分子材料复合构建了一类基于柔性传感器原型器件,开发了面向可穿戴装备的传感器的制造方法和工艺,在应变、压阻、扭转、挥发性有机物、声波等几个典型传感应用上进行了探索,并可探测脉搏、语音等微弱生理信号,有望应用于移动医疗、可穿戴式设备等领域 2)研究了水在石墨烯层片孔中的扩散特性,开发了一种同位素标记法,揭示了水分子在石墨烯中的扩散系数比微孔滤膜中微米尺寸通道的扩散系数高4~5个数量级,证明了水分子可超快速传输,为基于石墨烯的传质特性研究奠定了基础,并在快速过滤与分离领域展现出广阔的应用前景。 /p p style=" line-height: 1.75em "   相关研发成果已发表SCI收录论文15篇,申请国家发明专利5项,获授权实用新型专利1项。所制备的六种传感器发表在ACSNano、Adv.Funct.Mater.、Small、NanoRes.、Appl.Phys.Lett.、Chem.Commun.等期刊上,并被学术媒体Nanowerk、Graphene-Info和MaterialsViewsWiley做为研究亮点报道,被评价为“…全新的传感机制、石墨烯的高性能应用…”,“石墨烯的机电效应结合其它特性…促进了在高灵敏传感中的应用,…这些传感器的潜在用途包括柔性显示、智能服装、电子皮肤、体外诊断等,在可穿戴健康检测类设备上有较大的应用空间”。 /p p br/ /p
  • 石墨烯生物传感器:中国SCI发文量全球第一
    石墨烯,是当前世界上最薄、最轻、最硬、导电性最好而且拥有强大灵活性的纳米材料。它的强大能力常常令人咋舌。一块1厘米厚的石墨烯板,能够让一头5吨重的成年大象稳稳站在上面 用石墨烯做的手机电池,一秒内就能把电充满 以石墨烯为材料的平板电脑,可以随意折叠成手机大小放在口袋里。在电子、航天军工、新能源新材料等领域也有着广泛应用。  11月25日,在中科院文献情报中心产业情报研究中心主办的第20期《产业技术情报》发布会上,研究人员详细梳理了石墨烯在超级电容器和生物传感器方面的应用情况,首次将两个发布主题聚焦于同一领域,并基于权威数据库分析,对两者未来的发展趋势作出研判。  石墨烯超级电容器技术:中国处于快速增长期  当今能源及环境问题日趋严重,以新能源电动汽车为代表的绿色交通工具的发展需求越来越大。而解决其制动能量回收系统的问题是产业发展的关键之一,因此产业对兼顾高能量密度与高功率密度的电化学储能器件的需求越来越迫切。与此同时,超级电容器因具备使用寿命长、充电时间短等优点,被赋予较大期待。石墨烯超级电容器主要研究领域包括:用于电极材料的过渡金属氧化物、活化煤以及氮掺杂石墨烯、集电器表面等方面,涉及技术包括氧化石墨烯单体、过度金属氧化物、氮掺杂、煤活化等。  随着2004年英国曼彻斯特大学物理学家发现石墨烯的分离制备方法,石墨烯在超级电容器中的应用也逐渐开始迅速发展,专利年发表数量快速增长,于 2012年达到峰值每年280项。目前相关技术专利平均在每年250项左右。中国的石墨烯超级电容器领域技术的发展2009年起迅猛增长,年申请量迅速超过每年100项,于2012年达到峰值,此后基本保持在每年120项以上,处于快速增长期。  记者发现,在石墨烯超级电容器技术专利权人排名中,前25名专利权人中数量最多的是来自中国的机构(17家)。排名前5位的依次是:海洋王照明科技股份有限公司、中国科学院、韩国三星公司、美国Nanotek仪器公司和浙江大学。  “从产业技术情报发布的内容来看,我们国家在石墨烯领域的论文和专利的数量还是比较可观的,这些数据充分反映了我们国家的科技活力。”清华大学化工系教授骞伟中说。  他介绍,目前石墨烯的主要制造市场和应用市场均在中国,国内的众多机构在该领域进行了专利布局。北京和江苏已分别成为国家石墨烯发展和研发较为集中的地区,未来5年到10年这些地区还将在石墨烯领域进行大力布局。  “从产业化角度来看,目前石墨烯电容器领域技术更多地集中在高校实验室,离产业化还有一段路要走。我们国家应推动高校和企业的衔接,大力推动石墨烯电容器的产业化发展。”骞伟中建议。  石墨烯生物传感器:中国SCI发文量位列第一  石墨烯因其特殊的纳米结构,优良的光学、电学等特性以及良好的生物相容性,迅速成为生物传感器研究中的热点材料,并成功检测多种生物小分子、DNA、酶、蛋白质以及细胞等。  “生物传感器是生命分析化学及生物医学领域中的重要研究方向,已广泛应用于临床疾病诊断和治疗研究。但石墨烯生物传感器目前处于实验室阶段,还未实现产业化。”国家纳米科学中心博士研究生史济东说。  据中科院文献情报中心研究人员介绍,石墨烯用于生物传感器领域研究的重点集中在以下两个方面:一是石墨烯电化学生物传感器,包括安倍型传感器、电化学发光型和场效应晶体管型等,涉及酶传感器(用于检测过氧化氢、葡萄糖、抗坏血酸、多巴胺、尿酸等)、免疫传感器(用于检测病毒、细菌、癌症标志物等)、DNA传感器、蛋白质传感器等 二是石墨烯光学生物传感器,包括荧光传感器和基于共振能量转移传感器。  石墨烯用于生物传感器领域的SCI论文发文年代分布呈现出如下特征:2005 年至2009年发文量相对较少,年发文量不超过100篇,主要来自美国和中国,研究进展相对缓慢,处于技术孕育期 随着2010年英国曼彻斯特大学物理学家安德烈海姆和康斯坦丁诺沃肖洛夫因在石墨烯材料方面的研究获得诺贝尔物理学奖,全球石墨烯用于生物传感器领域的SCI发文量增长趋势逐渐明显,其中 2015 年SCI发文量突破了2300篇,相关技术进入快速成长阶段。  统计数据显示,全球共有85个国家和地区开展了石墨烯用于生物传感器的相关研究,其中中国、美国、印度等10个国家和地区在石墨烯用于生物传感器领域的SCI发文量占总量的81.61%。其中中国在该研究中占有明显优势,发文量占全部论文的47.76% 位居第2位的是美国,发文量占全部论文的 9.39%。  在高被引论文方面,石墨烯用于生物传感器领域的SCI论文属于ESI高被引论文有345篇,来自35个国家和地区。其中ESI高被引论文主要来自中国(176篇)、美国(86篇)、新加坡(39篇)、韩国(23篇)和印度(15篇)。  值得一提的是,前10位ESI高被引SCI论文中,有6篇发文来自中国福州大学、中科院长春应用化学研究所、清华大学和中科院上海应用物理研究所4家机构,可以看出中国在该技术领域拥有一定的技术优势。
  • 快讯!MOTUS波浪传感器成功整合到大型浮标平台
    背景在恶劣环境中的设施将大大增加对气象海洋学参数信息的需求。处于这些环境中的操作员们希望能减少安装的传感器平台数量以提升效率。欧洲大型传感器平台的一家主要制造商选择与我们合作,结合利用 Aanderaa MOTUS 波浪传感器与 Aanderaa 多普勒流速剖面仪,以监控海浪和洋流。通过联合激光雷达与其他传感器,我们致力于为最终用户提供完整的解决方案以实现高质量的气象海洋学监控。MOTUS 波浪传感器MOTUS 波向传感器的产品经理 Stig B. Øen 为我们介绍了更多有关 MOTUS 传感器的最新动态:针对来自 MOTUS 传感器用户和 MOTUS 浮标用户的反馈,我们始终用心倾听并积极响应,为此我们专门对传感器进行了升级:添加了一些基于竖向时间序列位移的波浪参数,并新增了 NMEA AIS 模式。MOTUS 传感器中的新增参数包括:平均波周期 T1/3;有效波高 H1/10;平均波周期 T1/10波;高 H1/1;平均波周期 T1/1;参考东向和北向水平时间序列,可配置为 2Hz 或 4Hz 采样。有关 MOTUS 波浪传感器的参数,请查阅数据表。MOTUS 适用于不同尺寸的浮标为了测量海浪特征,在理想情况下,传感器平台应完美地跟随水面运动。如果未应用补偿,则 MOTUS 传感器会根据安装位置的竖向平台位移计算波高。波向则基于水平浮标位移的方向。为了在众多不同类型的浮标中脱颖而出,MOTUS 传感器提供以下补偿功能。偏心补偿:在不同形状的大型浮标的旋转原点处安装传感器通常难度较大。通过向传感器提供其安装位置相对于旋转原点的信息并激活传感器偏心补偿功能,可以补偿误差。浮标响应/传递函数:如果浮标无法满足在所有频率下均理想地跟随水面,则可以通过激活和修改浮标传递函数来补偿限制。Anderaa 开发了一款简单工具,以帮助您了解不同尺寸形状浮标的期望阻尼因子。磁性:如果传感器受到电磁干扰,则可以将外部罗盘直接连接到 MOTUS 传感器。MOTUS 适用于海上风力/海上设施结合使用 Aanderaa 提供的海浪和洋流传感器与其他传感器(例如环境传感器和激光雷达),可为您提供完整的预研究平台和全面投产的海上风电场。MOTUS 传感器可在其内部完成对波浪参数的所有处理,通过实时/近实时输出基于频率和时间的参数,提供风浪和涌浪的全波频谱。对于海上风电场的运营来说,监控该区域的海浪将有助于确定是否将船只或技术人员派往现场、缩短停运时间,以及对健康、安全和环境保持高度关注。
  • 半导体所研制出面向860GHz CMOS太赫兹图像传感器的像素器件
    p & nbsp & nbsp & nbsp & nbsp 中国科学院半导体研究所超晶格国家重点实验室高速图像传感及信息处理课题组副研究员刘力源等研制出面向860GHz CMOS太赫兹图像传感器的像素器件。相关研究成果将于2017年在太赫兹领域学术期刊IEEE Transaction on Terahertz Science and Technology 上发表。 /p p   太赫兹 (Terahertz, THz) 波是指频率在0.3 THz - 3 THz 范围内,波长(1mm ~ 100mm) 介于毫米波与远红外光之间的电磁波。太赫兹波成像技术作为一种新型无损成像技术正在兴起,在生物医学、医疗诊断、安全检测、危险物品检查、隐形武器探测、材料表征和探伤等科学研究以及日用领域具有非常广阔的应用前景,业已成为各国争相研究的热点技术。在国家重点研发计划课题、国家自然科学基金、北京市自然科学基金、中科院青年创新促进会基金和中科院基金的支持下,课题组研制出一种基于标准CMOS工艺的太赫兹像素器件及其集成化低噪声信号处理电路,如图1所示。器件采用了自主设计的CMOS片上天线、太赫兹波段匹配网络和高电压响应度晶体管结构。在常温工作条件下,像素器件的太赫兹电压响应率为3.3kV/W @860GHz,噪声等效功率为106pW/Hz0.5。课题组也验证了像素器件信号处理电路,它集成了低噪声斩波式仪表放大器和高精度的SD-ADC,为实现单片集成高分辨率太赫兹图像传感器奠定了基础。图2是基于像素器件扫描成像的实验结果。基于像素器件,有望进一步实现大面阵CMOS太赫兹图像传感器,提升我国在太赫兹成像领域的国际竞争力。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/bbac28dc-c956-49ab-9abd-667953f56d61.jpg" title=" 1.jpg" /   /p p style=" text-align: center " 图1 太赫兹像素器件结构(左)芯片照片(右) /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/8884854d-8f47-4c43-9977-98688dfc232b.jpg" title=" 2.jpg" / /p p style=" text-align: center " 图2 成像结果:(a) 树叶的成像 (b) 隐藏在信封内的物体成像 /p p br/ /p
  • 宁波材料所在柔性应变-温度双模态传感器研究方面取得进展
    人体活动所产生的包括应变和温度等生理信号是医疗健康、运动监测的重要数据来源,利用柔性可穿戴设备实现应变和温度的感知意义重大。柔性传感器是柔性可穿戴设备的核心部件,其发展趋势是集成化和多功能化。发展柔性应变-温度双模态传感器,实现应变和温度等信号的监测以及区分,同时兼具高的分辨率仍是一个难点。   Co基磁性非晶丝具有优异的软磁性能和巨磁阻抗效应(GMI),可以实现对磁场的高灵敏探测,是发展柔性多功能传感器的理想材料之一。前期,中国科学院宁波材料技术与工程研究所研究员李润伟、刘宜伟基于磁性非晶丝设计与发展了仿生触觉传感器与自供电弹性应变传感器,并在机器人假肢的触觉感知、运动捕捉的智能服装方面实现应用(Science Robotics. 2018, 3, eaat0429;Nano Energy, 2022, 92, 106754)。在此基础上,研究人员以磁性非晶丝为敏感材料,通过设计具有管状异质结构的双模态传感器实现了单一传感器对应变和温度的灵敏监测和实时区分。   该传感器具有独立的应变和温度感知机制。一方面,结合磁弹性体的磁弹效性和Co基非晶丝的巨磁阻抗效应可以实现应变灵敏探测;另一方面,用于阻抗输出的热电偶线圈具有显著的塞贝克效应,可以同时实现温度的检测。基于独立的感应机制,温度和应变信号之间不存在相互耦合,后续通过信号读取电路可实现温度和应变信号的实时区分和输出。   该研究中双模态传感器的应变-磁转换单元中具有磁弹效应的磁弹性体提供随应变而变化的磁场,通过内置的Co基磁性非晶丝,能够灵敏感知微小变化的磁场,从而输出变化的阻抗,实现应变的感知。此外,该工作设计了具有双功能的Cu-CuNi热电偶线圈,不仅可以实现阻抗的输出,而且本身具有的塞贝克效应可以实现对温度的感知。   进一步地,通过调控应变-磁转换单元的不同区域的相对模量,即磁弹性管和非磁性弹性管的相对模量,可以控制磁场变化快慢,从而能够实现应变灵敏度的可调。该传感器可实现0.05%的应变和0.1℃的低探测极限,5.29和54.9μV/℃的较高应变和温度感知灵敏度。   此外,该研究也从模拟和实验上对该双模传感器的应变-温度信号输出的耦合和相互干扰进行了验证。研究人员分别测试了双模传感器在不同应变下的温度输出信号和不同温度下的应变输出信号,发现该传感器具有的管状异质结构能够有效避免应变对温度的干扰,且磁性非晶丝和磁粉的磁性能在低于居里温度下具有良好的温度稳定性,可以确保温度对应变感知几乎没有影响。   该研究将所设计的管状线型双模传感器与织物集成,可以同时用于人体微小应变的探测,比如呼吸和吞咽等检测,也可用于膝盖弯曲等较大应变的探测,同时能实现体温或环境温度的实时监测,在健康监测、智慧医疗以及人机交互领域具有良好的应用前景。   相关成果近期以Dual mode strain-temperature sensor with high stimuli discriminability and resolution for smart wearables为题在线发表在Advanced Functional Materials上。研究工作得到国家自然科学基金重大仪器研制项目、国家自然科学基金项目、国家自然科学基金委中德交流项目、中科院国际合作重点项目、浙江省自然科学基金等项目的支持。图1(a)双模传感器的感应机制,(b)具有管状异质结构的双模传感器传感器制备流程,(c)应变-磁转换单元中磁弹性管的微观形貌,(d-i)具有磁弹效应的磁弹性管不同磁化方向磁化具有不同的磁性能,(j-m)双模传感器外观和柔性展示图2 双模传感器的应变感知性能
  • 金属所柔性应变传感器的手势识别应用研究取得进展
    基于手势识别技术的可穿戴柔性电子设备在医疗健康、机器人技术、人机交互和人工智能等领域颇具应用前景。研制性能优异的柔性应变传感器是实现高性能可穿戴设备应用的重要基础。感器的灵敏度决定可穿戴设备的感知精度,而在过载、瞬时冲击、多次循环弯曲/扭折等条件下的机械鲁棒性将影响可穿戴设备实际应用环境条件下的长期可靠服役。截至目前,采用简单方法制备兼具高灵敏度和机械鲁棒性的柔性应变传感材料颇具挑战性。如何将基础研究所获得的高性能柔性应变传感器推广应用到人机交互系统等实际应用场景中,将会为此类器件的研发提供全新思路。   近期,中国科学院金属研究所沈阳材料科学国家研究中心薄膜与微尺度材料及力学性能研究团队,在前期柔性基体金属薄膜力学行为研究的基础上,基于柔性器件传感的力学原理,提出将裂纹类传感器的传感机制引入高机械鲁棒性蛇形曲流结构中,通过对传感层进行巧妙的高/低电阻区调控实现高灵敏度传感的学术思想,研制出灵敏度与裂纹类传感器相当(GF 1000)且机械鲁棒性优异的柔性应变传感器。该传感器在过载、冲击、水下浸泡、高/低温等严苛环境条件的作用下表现出优异的循环稳定性,稳定响应周次达10000周。同时,该传感器具有响应和回复时间快(图2.柔性应变传感器的传感性能。a、高/低电阻区调控前的响应曲线;b、高/低电阻区调控后的响应曲线;c、在不同峰值应变下的循环响应曲线,极限检测应变;d、响应和回复时间。图3.柔性应变传感器的机械鲁棒性。a、循环稳定性;b、最大可承受应变;c-e:对严苛环境的耐受力。图4.可穿戴手语翻译系统。a、应用场景示意图;b、系统框架;c、手语手套;d、无线电路板;e、用户界面。图5.手语识别验证。a、6种由复合手势组成的手语;b、手语翻译系统对6种手语的识别准确率;e、手语翻译系统的各项性能汇总。
  • 掺硼石墨烯可制成超高灵敏度气体传感器
    一个国际联合研究小组近日宣布,通过在石墨烯中加入硼原子的方式,他们开发出一种灵敏度极高的气体传感器。该装置能“嗅”出空气中浓度极低的有害气体,在人们还未察觉时发出警报。该研究还有助于改善锂离子电池和场效应晶体管的性能。  用石墨烯制成的气体传感器已具有很高灵敏度,但科学家们并不想止步于此,希望通过在石墨烯中掺入其他元素的方式让其性能得到进一步提升。  美国宾夕法尼亚州立大学物理学、化学和材料学教授莫里西欧特伦斯经过不断更换掺入元素,成功合成了1厘米见方的高品质掺硼石墨烯片。为防止硼化合物暴露在空气后快速分解,他们研制中用到了类似起泡器的化学气相沉积系统。  核心部件制成后,被送往本田研究院的美国公司进行组装。2010年诺贝尔物理学奖获得者、英国曼彻斯特大学科学家康斯坦丁诺沃肖洛夫的实验室负责研究传感器的传输机制。此外,比利时、日本和中国的科学家也促成了这项研究。  测试显示,新的气体传感器能够探测到浓度极低的有害气体分子,如空气中含量为十亿分之一的氮氧化合物和百万分之一的氨气,灵敏度比单纯用石墨烯制成的气体传感器要分别高出27倍和1000倍。  负责此项研究的本田研究所首席科学家阿维迪克哈瑞泰元认为,新方法开辟了一条制造超高灵敏度气体传感器的新途径。该技术未来极有可能突破1000的五次方分之一检出限,在灵敏度上,比目前最先进的气体传感器高6个数量级。  未来这种传感器有望在科学实验和工业中获得广泛的应用,无论是有毒有害气体、超标排放的汽车尾气,还是大气污染中的氮氧化合物都会在它面前一一显出原形。研究人员称,除检测有毒和易燃气体外,这种掺硼的石墨烯理论上还能帮助改建锂离子电池和场效应晶体管。  相关论文发表在11月2日出版的《美国国家科学院院刊》。 来源:科技日报
  • 告别盲人摸象,传感器融合才是智能社会的标配
    今天,我们的生活高度依赖传感器。传感器作为人类“五感”的延伸,去感知这个世界,甚至可以观察到人体感知不到的细节,这种能力也是未来智能化社会所必须的。不过,单个传感器的性能再卓越,在很多场景中还是无法满足人们要求。比如汽车中昂贵的激光雷达可以根据生成的点云,判断出前方有障碍物,但想准确得知这个障碍物是什么,还需要车载摄像头帮忙“看”一眼;如果想感测这个物体的运动状态,可能还需要毫米波雷达来助阵。这个过程就好比我们熟悉的“盲人摸象”,每个传感器基于自己的特性和专长,只能看到被测对象的某一个方面的特征,而只有将所有特征信息都综合起来,才能够形成更为完整而准确的洞察。这种将多个传感器整合在一起来使用的方法,就是所谓的“传感器融合”。对于传感器融合,一个比较严谨的定义是:利用计算机技术将来自多传感器或多源的信息和数据,在一定的准则下加以自动分析和综合,以完成所需要的决策和估计而进行的信息处理过程。这些作为数据源的传感器可以是相同的(同构),也可以是不同的(异构),但它们并不是简单地堆砌在一起,而是要从数据层面进行深度地融合。实际上,传感器融合的例子在我们生活中已经屡见不鲜。归纳起来,使用传感器融合技术的目的主要有三类:●获得全局性的认知。单独一个传感器功能单一或性能不足,加在一起才能完成一个更高阶的工作。比如我们熟悉的9轴MEMS运动传感器单元,实际上就是3轴加速传感器、3轴陀螺仪和3轴电子罗盘(地磁传感器)三者的合体,通过这样的传感器融合,才能获得准确的运动感测数据,进而在高端VR或其他应用中为用户提供逼真的沉浸式体验。●细化探测颗粒度。比如在地理位置的感知上,GPS等卫星定位技术,探测精度在十米左右且在室内无法使用,如果我们能够将Wi-Fi、蓝牙、UWB等局域定位技术结合进来,或者增加MEMS惯性单元,那么对于室内物体的定位和运动监测精度就能实现数量级的提升。●实现安全冗余。这方面,自动驾驶是最典型的例子,各个车载传感器获取的信息之间必须互为备份、相互印证,才能做到真正的安全无虞。比如当自动驾驶级别提升到L3以上时,就会在车载摄像头的基础上引入毫米波雷达,而到了L4和L5,激光雷达基本上就是标配了,甚至还会考虑将通过V2X车联网收集的数据融合进来。总之,传感器融合技术恰似一个“教练”,能够将性能各异的传感器捏合成一个团队,合而为一又相互取长补短,共同去赢得一场比赛。选定了需要融合的传感器,怎么融合则是下一步要考虑的问题。传感器融合的体系结构,按照融合的方式分为三种:●集中式:集中式传感器融合就是将各个传感器获得的原始数据,直接送至中央处理器进行融合处理,这样做的好处是精度高、算法灵活,但是由于需要处理的数据量大,对中央处理器的算力要求更高,还需要考虑到数据传输的延迟,实现难度大。●分布式:所谓分布式,就是在更靠近传感器端的地方,先对各个传感器获得的原始数据进行初步处理,然后再将结果送入中央处理器进行信息融合计算,得到最终的结果。这种方式对通信带宽的需求低、计算速度快、可靠性好,但由于会对原始数据进行过滤和处理,会造成部分信息的丢失,因此原理上最终的精度没有集中式高。●混合式:顾名思义,就是将以上两种方法相结合,部分传感器采用集中式融合方式,其他的传感器采用分布式融合方式。由于兼顾了集中式融合和分布式的优点,混合式融合框架适应能力较强,稳定性高,但是整体的系统结构会更复杂,在数据通信和计算处理上会产生额外的成本。对于传感器融合方案,还有一种按照数据信息处理阶段进行分类的思路。一般来说,数据的处理要经过获取数据、特征提取、识别决策三个层级,在不同的层级进行信息融合,策略不同,应用场景不同,产生的结果也不同。按照这种思路,可以将传感器融合分为数据级融合、特征级融合和决策级融合。●数据级融合:就是在多个传感器采集数据完成后,就对这些数据进行融合。但是数据级融合处理的数据必须是由同一类传感器采集的,不能处理不同传感器采集的异构数据。●特征级融合:从传感器所采集的数据中提取出能够体现监测对象属性的特征向量,在这个层级上对于监测对象特征做信息融合,就是特征级融合。这种方式之所以可行,是由于部分关键的特征信息,可以来代替全部数据信息。●决策级融合:在特征提取的基础上,进行一定的判别、分类,以及简单的逻辑运算,做出识别判断,在此基础上根据应用需求完成信息融合,进行较高级的决策,就是所谓的决策级融合。决策级融合一般都是应用导向的。如何选择传感器融合的策略和架构,没有一定之规,需要根据具体的实际应用而定,当然也需要综合算力、通信、安全、成本等方面的要素,做出正确的决策。不论是采用哪种传感器融合架构,你可能都会发现,传感器融合很大程度上是一个软件工作,主要的重点和难点都在算法上。因此,根据实际应用开发出高效的算法,也就成了传感器融合开发工作的重中之重。在优化算法上,人工智能的引入是传感器融合的一个明显发展趋势。通过人工神经网络,可以模仿人脑的判断决策过程,并具有持续学习进化的可扩展能力,这无疑为传感器融合的发展提供了加速度。虽然软件很关键,但是在传感器融合过程中,也并非没有硬件施展拳脚的机会。比如,如果将所有的传感器融合算法处理都放在主处理器上做,处理器的负荷会非常大,因此近年来一种比较流行的做法是引入传感器中枢(Sensor Hub),它可以在主处理器之外独立地处理传感器的数据,而无需主处理器参与。这样做,一方面可以减轻主处理器的负荷,另一方面也可以通过减少主处理器工作的时间降低系统功耗,这在可穿戴和物联网等功耗敏感型应用中,十分必要。有市场研究数据显示,对传感器融合系统的需求将从2017年的26.2亿美元增长到2023年的75.8亿美元,复合年增长率约为19.4%。可以预判,未来传感器融合技术和应用的发展将呈现出两个明显的趋势:●自动驾驶的驱动下,汽车市场将是传感器融合技术最重要的赛道,并将由此催生出更多的新技术和新方案。●此外,应用多元化的趋势也将加速,除了以往那些对于性能、安全要求较高的应用,在消费电子领域传感器融合技术将迎来巨大的发展空间。总之,传感器融合为我们洞察这个世界提供了更有效的方法,让我们远离“盲人摸象”般的尴尬,进而在这个洞察力的基础上,塑造更智能的未来。
  • 会议规模“暴增” 第十六届全国化学传感器学术会议正式开幕
    仪器信息网讯 2023年9月23日,第十六届全国化学传感器学术会议(SCCS2023)于山东济南正式开幕。本次会议由中国仪器仪表学会分析仪器分会化学传感器专家组主办,济南大学承办,化学生物传感与计量学国家重点实验室(湖南大学)、上海师范大学、上海仪电科学仪器股份有限公司(雷磁)、临沂大学、济南国科医工科技发展有限公司、江苏江分电分析仪器有限公司、仪器信息网共同协办。本次大会以“化学传感赋能新时代”为主题,邀请了国内外众多知名专家学者,共同探讨化学传感领域的最新研究成果和发展趋势,吸引了近千人注册参会,会议规模“暴增”。会议现场济南大学副校长黄加栋主持开幕式济南大学党委副书记、校长刘宗明致辞山东省教育厅科技处处长曾宪文致辞山东省科技厅基础研究处处长王钟伟致辞中国仪器仪表学会分析仪器分会常务副理事长 刘长宽致辞大会主席 谭蔚泓院士致辞开幕式由济南大学副校长黄加栋主持,济南大学党委副书记、校长刘宗明、山东省教育厅科技处处长曾宪文,山东省科技厅基础研究处处长王钟伟、中国仪器仪表学会分析仪器分会长常务副理事长刘长宽、大会主席潭蔚泓院士分别致辞。三十多年来,在几代人的努力下,全国化学传感器学术会议取得了长足发展;在第十五届会议采取线上会议形式的特别经历,本次会议重回线下,相比第十四届参会人数增长近60%,盛况空前!在济南大学的大力支持下,组委会汇集了老一辈科研工作者和年轻的学者,将共同围绕化学、材料、化学与环境、生物医学等多学科交叉领域进行学术交流,充分展示了我国在分析化学和生物传感领域取得的丰硕成果。致辞嘉宾纷纷预祝大会圆满成功!吴海龙教授宣读获奖名单致辞结束后,举行了隆重的颁奖仪式——第三届中国化学传感器雷磁终身成就奖和中国化学传感器雷磁杰出成就奖。化学传感器专家组组长吴海龙宣读获奖名单:中国科学院院士、发展中国家科学院院士,中国科学院生态环境研究中心研究员江桂斌,长期从事环境污染的健康危害研究,开辟了环境科学与毒理的学术方向,为我国履行斯德哥尔摩公约做出了突出贡献,被特别授予中国化学传感器雷磁终身成就奖!中国化学传感器雷磁终身成就奖获奖人:江桂斌院士(中)湖南大学教授张晓兵、南京大学教授龙亿涛、广州大学/中山大学教授牛利荣获中国化学传感器雷磁杰出成就奖。中国化学传感器雷磁杰出成就奖获奖人:张晓兵教授(右三)、龙亿涛教授(左四)、牛利教授(左三)短暂的开幕式结束后,迎来了大会报告环节。在济南大学教授魏琴和临沂大学教授李雪梅共同主持下,中国科学院院士、中国科学院生态环境研究中心江桂斌,中国科学院院士、湖南大学/中国科学院基础医学与肿瘤研究所潭蔚泓,南京大学教授龙亿涛,湖南大学教授张晓兵,广州大学/中山大学教授牛利,华东师范大学教授田阳和崂山实验室/山东师范大学教授唐波分别作大会特邀报告。济南大学教授 魏琴主持报告临沂大学教授 李雪梅主持报告中国科学院院士、中国科学院生态环境研究中心 江桂斌报告题目:《分析技术在新污染物研究中的应用》新污染物具有生物毒性、环境持久性、生物累积性等特征,且现阶段尚未被有效监管。江桂斌的报告结合国家对新污染物的管理政策及自身科研监测经历,介绍了质谱仪器法进行风险评估及模型的构建,并表示质谱仪器在新污染物领域研究中具有重要意义,对新污染物的评估还需结合各种新技术综合分析,实现长期稳定监测。中国科学院院士、湖南大学/中国科学院基础医学与肿瘤研究所 谭蔚泓报告题目:《功能核酸与膜蛋白》功能核酸是指具有特异性识别靶标物质或催化功能的核酸序列,核酸适体可以作为医疗判断和药物治疗的分析工具,是功能核酸的一种。潭蔚泓利用CelI-SELEX技术创造了500多个的核酸适体,用于“点亮”癌症,为靶向治疗提供判断依据,尤其在乳腺癌上,实现了重大疾病分型治疗,对未来医疗领域发展具有重大意义。南京大学教授 龙亿涛报告题目:《孔道限域的电化学传感》龙亿涛对纳米孔道的发展及应用进行介绍,其测量信息从智能测序DNA到现在可以进行人工聚合物分析,且机制解析和应用创造也变得丰富智能化。纳米孔道需要多维限域测量界面、高时空分辨测量系统和智能数据算法结合,最终实现多物理场耦合增强、时序信息获取和瞬态行为高通量原位解析。湖南大学教授 张晓兵报告题目:《荧光探针结构调控与精准成像研究》张晓兵从探针原位检测、探针抗干扰性能、探针响应特异性三个角度出发,提出基于氢键驱动的有机小分子荧光探针有序组装策略,首次提出疏水疏脂染料概念;发现富电子葱衍生分子的长余辉发光特性和机制,提出有机余辉共振能量转移精准分析新方法,实现清醒活体的长余辉成像;针对临床成像分析探针稳定性及生物标志物专一性问题提出分子探针构建新策略,发展精准成像分析技术。广州大学/中山大学教授 牛利报告题目《柔性传感器件》采用柔性传感器制备的可穿戴设备既是国家战略需求,又是国民生活需求,具有万亿规模的市场。牛利以大量科研案例介绍不同材料之间的差异,在不同领域产品上选择灵敏、可弯折等特点的柔性材料,尤其在医学和生理过程上,具有便捷、快速测定的价值。华东师范大学教授 田阳报告题目:《神经分子的识别与生物传感》生物传感作为一种新型的检测技术,利用特定生物分子的识别作用,实现对目标分子的灵敏响应。田阳采用电化学开路电位法、光激发-电输出检测法和光激发活体拉曼法对小鼠电信号和化学信号同时记录并对比,拉曼首发现缺氧时线粒体O2-爆发受酸敏感离子通道1a 调节,并导致Ca2+超载,电化学首次发现导致缺氧时线粒体中过量的Ca2+几乎都来自细胞外Ca2+的流入,实现了良好的检测平台构建,目前可在活体小鼠上稳定检测2个月以上。崂山实验室/山东师范大学教授 唐波报告题目:《基于微流控的跨尺度分析》微流控技术具有不同的芯片结构,便于联用多种控制和分析技术为不同尺度的样品分析提供了强大工具。唐波介绍道,微流控芯片可用于单颗粒、单分子分析,用来构建单颗粒限域,创建复合光场等。此外,微流控芯片还可以用于单细胞分析和类器官分析,用于辅助药物机理研究及靶向药物指导。为进一步促进学术交流,大会报告后,23日下午,组委会设置了化学传感器领域相关的7个分会场,相比往届有大幅增长;并开设墙报展供参会者之间学习、交流。本次大会为期2天,24日将为与会者带来更多精彩报告!仪器信息网将在后续报道中呈现更多分会场报告内容。本次会议得到众多厂商的支持,同期举行了小型仪器展览,仪电科学仪器、海能、赛默飞、德国札纳等众多国内、外仪器厂商代表向参会者分享各自企业的最新的产品和技术。厂商展位掠影墙报展一览部分分会场现场
  • 上海微系统所制备出微型光电一体化集成钻石量子磁传感器
    近日,上海微系统所传感技术国家重点实验室采用微纳加工技术制备了一种基于氮空位(NV)色心的微型光电一体化集成钻石量子磁传感器。相关研究成果于2022年5月9日以“Amicrofabricatedfiber-integrated diamond magnetometer with ensemble nitrogen-vacancy centers”为题发表在当期的Applied Physics Letters上。 钻石,不仅可以作为珠宝装饰品,更是具有极高研究价值的新型量子材料。氮空位缺陷——NV色心,是钻石晶体结构中最常见的点缺陷,由氮原子取代碳原子和相邻空穴而形成,利用其在磁场中的量子顺磁共振效应及荧光辐射特性可以进行精密磁测量。NV色心在常温下也具有稳定的量子态,可以在非制冷的室温下工作。同时,钻石量子磁传感器以其高空间分辨率、高灵敏度、高生物兼容性等技术优势,在近场微观磁共振、磁异常探测、生命科学等领域具有重要的应用前景。 小型化、集成化、便携化是钻石量子传感器取得实际应用的重要条件。该团队基于晶圆级微机电工艺平台,利用标准微纳加工技术,制备出钻石量子磁传感器的核心——钻石芯片。芯片内部集成了微波辐射结构,实现了原位微波量子态操控。采用金属热压键合技术实现了钻石单晶与硅晶圆的异质集成,确保了机械稳定性。钻石芯片耦合带有梯度变化折射率透镜的光纤模块,实现了“光进光出”的工作模式,大大缩小了探头尺寸,实现了钻石磁强计探头的高集成度。并进一步指出,采用双频共振技术可以同时进行磁场和温度场的同步实时测量,不仅通过温漂抑制提高了磁场测量的信噪比,还确保了传感器的温度稳定性。 该团队提出的制备工艺可以在晶圆级进行拓展,具有批量化制备的潜力,为建立高一致性、高灵敏度的可穿戴传感器阵列提供了可能性。目前钻石量子磁传感器整体尺寸仅有20×15×1.5 mm3,灵敏度达到2.03nT/√Hz。同时,该钻石磁传感器可以对小于0.5 mm(甚至更小)的目标区域进行近距离测量,具有在心磁、脑磁等弱磁信号探测场景的应用潜力,为后续实用化的可穿戴生物磁传感器提供了良好的研究基础。 该论文的第一作者单位和通讯单位为中科院上海微系统所,第一作者为博士研究生谢非,通讯作者为武震宇研究员和陈浩副研究员。该工作得到中国科学院战略性先导科技专项(XDC07030200)、国家重点研发计划(2021YFB3202500)、中科院科研仪器装备研制(YJKYYQ20190026)等项目的支持。 论文链接:https://doi.org/10.1063/5.0089732
  • 石墨烯传感器可让小分子“现形”
    科技日报北京7月12日电 尽管科学家因为石墨烯无与伦比的属性而对其青睐有加,但迄今为止,其实际应用仍然乏善可陈。不过,瑞士洛桑联邦理工学院(EPFL)生物纳米系统实验室和西班牙光子科学研究所的科学家们在最新一期的《科学》杂志上宣称,他们利用石墨烯独特的光学和电子学属性,研制出了一种具有超高灵敏度的分子传感器,可以探测蛋白质或药物小分子的详细信息。  在红外吸收光谱学这种标准的探测方法中,光被用来激活分子。不同分子的振动不同,借由这种振动,分子会显示其存在甚至表现自己的“性格”。这些“蛛丝马迹”可在反射光中“读出”。但在探测纳米大小的分子时,这一方法的表现差强人意。因为照射分子的红外光子的波长约为6微米,而目标分子仅几个纳米,很难在反射光中探测到如此微小分子的振动。  于是,石墨烯受命于危难之间。研究合作者丹尼尔罗德里戈解释道,如果让石墨烯拥有合适的几何形状,其就能将光聚焦在表面上的某个特定点上,并“倾听”附着其上的纳米分子的振动。他说:“通过使用电子束轰击并使用氧离子蚀刻,我们在石墨烯表面弄了一些纳米结构。当光到达时,纳米结构内的电子会振荡,产生的‘局域表面等离子体共振’可将光聚集在某个点上,其与目标分子的尺度相当,因此,能探测纳米大小的结构。”  除此之外,这一过程也能揭示组成分子的原子键的属性。研究人员称,当分子振动时,连接不同原子的原子键会产生多种振动,不同振动之间的细微差别可提供与每个键的属性以及整个分子的健康状况有关的信息。为了找出每个原子键发出的“声音”从而确定所有的频率,需要用到石墨烯。在实验中,研究人员对石墨烯施加不同的电压,让其“调谐”到不同的频率,从而能“阅读”其表面上的分子的所有振动情况,而使用目前的传感器无法做到这一点。研究人员海蒂斯奥特格说:“我们让蛋白质附着在石墨烯上,并用这一方法,得到了分子全方位的信息。”  研究人员表示,这种简单的方法表明,石墨烯在探测领域拥有不可思议的潜能,奥特格表示:“尽管我们研究的是生物分子,但这一方法或许也适用于聚合物和其他物质。”
  • 基于Pμ SL 3D打印的导电点阵结构用于多模态传感器
    介观尺度(10μm-1mm)的3D点阵结构为新应用领域提供了最佳的几何结构,例如轻质力学超材料、生物打印组织支架等。其周期性、多孔的内部结构为调谐3D点阵结构对力、热、电以及磁场的多功能响应提供了机会。借助这种结构优势,多材料3D点阵结构可用于实现器件的多功能性。由于传统微加工技术在复杂三维结构制造方面的局限性,而3D打印技术在制备复杂三维结构方面可较好的克服这一局限性。目前,研究人员基于挤压成型、立体光刻(SLA)等3D打印技术制备了金属点阵或者复合材料点阵实现结构的功能化。但是这些方法打印分辨率比较低,挤压成型制备的点阵需要高温烧结处理,工艺比较繁琐。面投影微立体光刻(PμSL) 3D打印技术具有超高的精度,可以实现介观尺度3D聚合物点阵结构的制备。纳米薄膜可以利用表面驱动的静电对化学吸附和物理吸附的敏感性而被用于化学和生物传感领域。因此,基于PμSL技术,通过纳米薄膜与3D聚合物点阵结构的集成化可以实现介观尺度传感器件的制备。近日,美国达特茅斯学院William J. Scheideler课题组基于面投影微立体光刻(PμSL) 3D打印技术结合原子层沉积技术(ALD)制备了多功能3D电子传感器。该团队基于摩方精密(BMF)超高精度光固化3D打印机 microArch S240打印了3D点阵结构,结构表面光滑,有利于电子薄膜的均匀沉积(图1)。采用原子层沉积技术先在聚合物点阵表面低温沉积一层Al2O3晶种层,然后再均匀沉积一层导体(SnO2,ZnO : Al)和半导体(ZnO)的金属氧化物薄膜材料,从而实现3D打印聚合物到多功能3D电子器件的转变(图2)。其中,Al2O3晶种层可以促进导电薄膜在聚合物点阵表面的生长。图1. 基于PμSL 技术制备的3D导电点阵结构 图2. 金属氧化物在3D打印点阵结构上的生长图3. 金属氧化物包覆的3D打印八面体点阵的电学性能图4. 3D导电点阵结构的传感性能 3D导电点阵结构电学性能的测试表明金属氧化物薄膜厚度、3D网络结构以及生长温度等均可影响结构的导电性能;同2D结构相比,3D导电点阵结构具有更大的比表面积,为电流传导提供更多的平行通道,因此,该结构的导电性能明显增强。研究结果发现,八面体导电点阵具有高比表面积、高理论预测电导率和热导率,因此研究者将其用于多模态传感器进行传感性能的研究并进行验证。结果表明3D几何结构不仅提高了传感器的灵敏度,而且增强了传感器对化学、热以及机械刺激的响应。该研究成果表明3D导电点阵结构在植入式生物传感器、3D集成微机电系统等介观尺度器件方面具有巨大的应用潜力,以“Transforming 3D-printed mesostructures into multimodal sensors with nanoscale conductive metal oxides”为题发表在Cell Reports Physical Science上。原文链接:https://doi.org/10.1016/j.xcrp.2022.100786官网:https://www.bmftec.cn/links/10
  • 红外沼气分析仪应用新趋势——模块化红外气体传感器
    本文介绍了检测沼气成分的五种主要方法:奥氏气体分析法、热催化燃烧检测法、热导元件检测法、气相色谱GC检测法、红外气体分析法,分析了这五种检测方法的特点及其在我国沼气服务体系中的适应性,并总结了目前最适宜我国大中型沼气工程沼气成分监测的分析方法是红外沼气成分分析技术。1、奥氏气体分析法 奥氏气体分析法是一种经典的化学式手动分析方法,该方法是利用溶液吸收法来测定CO、CO2和O2浓度,CH4和H2浓度则在爆炸燃烧法后用吸收法测定,剩余气体为N2。目前传统的奥氏气体分析方法在沼气成分检测中应用较少。针对农村沼气服务体系的特定应用,通常采用检测管法,该方法操作更简便,常用的检测管有H2S、O2、CO2、CO等,但没有直接测量CH4浓度的检测管,CH4浓度是通过计算所得,即100%-[ CO2 ]-[空气]-[H2S]-[ CO ]等,因此存在一定误差。 奥氏气体分析仪具有结构简单、价格便宜、维修容易等优点,常用于CO2、O2、CO、H2、烃类等气体浓度的测定,在实验室里应用广泛。但该仪器长期运行成本高,仅每年购买试剂和玻璃器皿至少要1万多元,且必须对气体进行人工取样,才可在实验室内进行分析,其中分析人员的操作技能和“态度”对分析的精确度也有着较大影响。同时奥氏气体分析仪只能对单一成分逐个进行检测分析,不具备多重输入和信号处理功能,分析费时,操作繁琐,响应速度慢,效率低,难以实时在线地分析现场工况,现逐渐被全自动分析仪器替代。2、热催化燃烧检测方法 热催化燃烧检测方法是利用两只热催化(黑白)元件——补偿元件和桥臂电阻构成惠斯顿电桥加一恒定电压,将铂丝加热到500℃,当遇到空气中的可燃气体时,测量元件在催化剂的作用下,在元件表面发生催化反应,使得温度升高,阻值增大,电桥输出不平衡,以此来测定甲烷浓度。该方法是检测甲烷泄漏最简单、经济的方法,在我国煤矿安全检测领域具有广泛应用。但载体催化元件只能检测0~4%的甲烷浓度,当空气中甲烷浓度超过5%后,元件会发生“激活”现象,造成永久损坏。同时检测设备需要频繁标定,热催化元件的仪器使用寿命一般在1年内,精度较差(10%),而在高H2S条件下,易造成传感器中毒甚至报废,使用寿命大大缩短。3、热导元件检测方法 不同气体的导热系数存在差别,热导元件检测方法就是根据这一特性,来测定气体的体积浓度。沼气的主要成分是CH4和CO2 ,被测沼气的导热系数由CH4和CO2共同决定。对于彼此之间无相互作用的多组分气体,其导热系数可近似地认为是各组分导热系数浓度的加权平均值。因此,根据沼气的导热系数与各组分导热系数之间的关系,就可以实现沼气多组分气体浓度的测定。 目前该检测方法已广泛应用在煤矿瓦斯抽排领域,也可用于沼气中甲烷浓度的测量。但该类型传感器使用寿命一般在2年左右,且该传感器对于低浓度测量,具有较大局限性,如无法测量浓度低于5%的甲烷浓度,如果用于甲烷的泄露报警将会造成较大误差。4、气相色谱GC检测方法 气相色谱GC分析方法是利用气体物理吸附能力的差别,将采样的气体在色谱中分离然后,热导检测器通过热电阻与被测气体之间热交换和热平衡来实现其CH4、CO2、O2等气体浓度的检测,该检测方法分离效能高,对物理化学性能很接近的复杂混合物质都可以进行定性、定量检测,灵敏度较高。气相色谱分析原理示意图 由于柱温与载气对分离结果的具有较大影响,其中柱温对分离结果的影响比载气的大,所以在检测过程中,除了要经常更换色谱柱外,还需要对色谱柱温和载气流速进行适度的调节,以免影响分离结果造成误差。同时色谱价格相对较贵,需要采样,不能实现在线分析。5、红外气体分析方法 当对应某一气体特征吸收波长的光波通过被测气体时,其强度将明显减弱,强度衰减程度与该气体浓度有关,两者之间的关系遵守朗伯一比尔定律,也就是红外光谱检测方法的基本原理。红外气体分析技术作为一种快速、准确的气体分析技术在实际应用中十分普遍。由于该方法是采用物理原理,分析气体不与传感器发生反应,因此传感器使用寿命很长,该类型传感器不仅可以用于测量沼气泄露的低浓度报警,也可以用于高浓度的沼气成分测量。 由上表可知,红外气体分析技术相较于奥氏、热催化、热导元件、气相色谱气体分析技术,具有响应时间快、灵敏度高、使用寿命长、仪器操作方便等优势。但对国内用户而言,红外气体分析技术普遍存在NDIR传感器价格昂贵、维护困难、产品质量参差不齐等问题。针对这些问题,四方仪器对NDIR传感器进行了升级,将红外传感器进行模块化设计,一个传感器对应检测一个气体组分,拆卸维护方便,使得仪器在体积、性能、维护、价格上具有以往仪器无法比拟的优势。 如沼气分析仪(智能便携型)Gasboard-3200Plus,采用自主知识产权的模块化红外传感器,可实现CO、CO2、CH4等多组分气体浓度的快速测量。同时其H2S、O2浓度测量可拓展,流速、流量可采集,体积轻量化,APP终端智能化等创新设计,弥补了沼气成分、流量一台仪器不可同时测量,长距离、大规模沼气项目监测设备不易携带,监测数据获取流程复杂等的不足,可广泛用于生物沼气、污水处理废气和垃圾填埋气体等沼气成分的可靠准确且经济有效的监测。在满足行业标准应用的同时,仪器测量组分还可根据用户需求定制,轻巧便携,实用性大大提高。模块化红外气体传感器工作原理6、结论 在沼气技术服务体系建设中,气体分析仪发挥了十分重要的作用,在选择配置时需要考虑仪器的使用寿命、功能、质量保障体系、实用性、性价比等因素。在奥氏吸收、热导元件、热催化、气相色谱、红外光谱的气体分析仪中,从寿命、功能、实用性等方面考虑,可优先选择红外方法的仪器;如果仅测量甲烷浓度或检测泄露,可以考虑基于热导和热催化原理的仪器;如果用于实验室定性与定量的精准测量,也可以考虑色谱分析方法。 但随着沼气生产和过程控制要求的逐渐提高,不断实现技术创新升级的红外沼气分析仪将逐渐取代奥氏吸收、热导元件、热催化、气相色谱等气体成分检测技术,成为我国大中小型沼气工程沼气成分监测与工艺过程调控必不可少的气体成分监测设备。(来源:沼气圈)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制