比表面吸附仪

仪器信息网比表面吸附仪专题为您提供2024年最新比表面吸附仪价格报价、厂家品牌的相关信息, 包括比表面吸附仪参数、型号等,不管是国产,还是进口品牌的比表面吸附仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合比表面吸附仪相关的耗材配件、试剂标物,还有比表面吸附仪相关的最新资讯、资料,以及比表面吸附仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

比表面吸附仪相关的厂商

  • 长沙市瑞饰表面工程技术有限责任公司从事表面处理聚四氟乙烯换热器及特种电镀等多方面的工程设计及相关设备的生产和销售。本公司的技术与产品主要应用于活塞环等内燃机配件等行业、换热行业以及电镀、钢铁酸洗、腐蚀等表面处理行业。  公司有从事表面处理、高分子材料、机电一体化等专业的技术和生产队伍。通过采用新工艺、新材料,不断开发新产品,结合成熟的生产工艺和完善的质保体系生产出满足用户的产品。  公司一直坚守高质、低耗、实用、环保的原则,以良好的信誉、先进的理念、严格的管理、精美的质量竭诚为用户提供优质的服务。我们还提供全面的技术支持,即向用户提供相关产品的生产工艺及技术指导。
    留言咨询
  • 贝士德仪器,注册地北京,是具有自主知识产权的高科技企业,旗下拥有北京贝士德分析仪器研究院,北京贝士德计量检测中心,总部位于北京市海淀区中关村科技园。 贝士德仪器,专注于吸附表征领域,从事低温氮吸附BET比表面积及微孔分析、高压气体吸附、重量法蒸气吸附、多组分选择性吸附、腐蚀性气体吸附、化学吸附、真密度及孔隙率等分析测试仪器的研发、生产和销售,业务遍及全球10多个国家和地区,为国际吸附表征领域领先的“吸附表征专家”。 自行研发制造的BSD系列吸附表征类分析仪,为国内知名品牌,经过十多年的不断研发创新,性能达到国际先进水平,其中多款仪器填补国际空白。 贝士德仪器在上海,广州,武汉等地设有办事处或实验室。各个办事处具有2-3名技术人员和销售工程师,可及时便捷的为客户提供技术支持。 贝士德仪器发展成就 ◆ 连续13年获得北京及国家高新技术企业认证。 ◆ 连续9年通过ISO9001质量标准体系和CE认证; ◆ 发明专利15项,实用新型专利62项; ◆ 获得市科委和国家科技部中小企业创新基金支持; ◆ 计量与检测证书18项; ◆ 获得北京市新技术新产品证书6项; ◆ 北京市科委组织的国产真密度仪验证与评价项目承担单位; ◆ 参与国家标准《精细陶瓷—陶瓷粉末比表面积测试方法 BET 法》制定; ◆ 参与国家标准《骨架密度的测量 气体体积置换法》的起草与制定; ◆ 参与国家标准《膜孔径测试 气体渗透法》的起草与制定; ◆ 贝士德仪器测试数据被国际知名期刊Science、Nature Chemistry、Advance Materials、JACS、Angew、Nano Energy、ACS Nano、CEJ等引用的论文数量达到近百篇; 组织机构◆ 销售服务部:主要负责产品销售和服务工作。 ◆ 技术开发部:主要负责电路设计、机械设计、产品研制、产品升级。 ◆ 软件开发部:主要负责吸附表征仪器分析软件的开发、升级和理论研究。 ◆ 仪器制造部:主要负责仪器制造以及整机质量性能检测。 ◆ 质量管理部:主要负责质量文件的制定、质量考核、质量管理和检测。 ◆ 办公室:主要负责财务、后勤等工作。 售后服务 在服务上建立了一支朝气蓬勃的服务队伍,有10位专职服务工程师为用户提供安装、调试培训服务。为了提高服务时效,缩短服务半径,贝士德仪器公司在上海,广州,武汉设有办事处,有90%的用户可以在24小时内到达仪器使用现场。此外,公司实行保修期内免费免责保修制度,吸附表征仪器软件免费升级制度,定期回访制度等等,消除了用户的后顾之忧。 ◆ 我们的宗旨: 质量 诚信 科技 创新 ◆ 我们的信仰: 诚实 勤奋 专业 独到 ◆ 我们的精神: 敬业精神 创新精神 合作精神 责任意识 ◆ 我们的行为准则:客户是我们一切行为的核心,不断创新,追求完美,为客户创造价值. 贝士德仪器主营产品:比表面积,BET吸附,BET吸附仪,BET测试,BET测试仪,二氧化碳吸附,二氧化碳吸附仪,低温氮吸附,低温氮吸附仪,吸附仪,比表面,比表面仪,比表面分析,比表面分析仪,比表面检测,比表面检测仪,比表面测定,比表面测定仪,比表面测试,比表面测试仪,比表面积,比表面积仪,比表面积分析,比表面积分析仪,比表面积检测,比表面积检测仪,比表面积测定,比表面积测定仪比表面积测试,比表面积测试仪,气体吸附,气体吸附仪,氨气吸附,氨气吸附仪,氮吸附,氮吸附仪,物理吸附,物理吸附仪比表面积孔径,介孔分布,介孔分布分析仪,介孔分析,介孔分析仪,介孔孔容,介孔孔径,介孔孔容分析仪,介孔孔径分析仪,介孔孔径分布分析仪,介孔孔隙度分析仪,介孔孔隙率分析仪,介孔检测,介孔检测分析仪,介孔测定,介孔测定分析仪,介孔测试,介孔测试仪,介孔结构,介孔结构分析仪,孔体积分析仪,孔体积检测仪,孔体积测定仪,孔体积测试仪,孔容分析,孔容孔径,孔容孔径分析仪,孔容孔径检测,孔容孔径检测仪,孔容孔径测定,孔容孔径测定仪,孔容孔径测试,孔容孔径测试仪,孔容积分析,孔径分布,孔径分布分析仪,孔径分析,孔径分析仪,孔径检测,孔径检测仪,孔径测定,孔径测定仪,孔径测试,孔径测试仪,孔结构,孔结构分布,孔结构分析,孔结构分析仪,孔结构检测,孔结构检测仪,孔结构测定,孔结构测定仪,孔结构测试,孔结构测试仪,孔隙度分析,孔隙度分析仪,孔隙度检测,孔隙度检测仪,孔隙度测定,孔隙度测定仪,孔隙度测试,孔隙度测试仪,孔隙率,孔隙率分析,孔隙率分析仪,孔隙率检测,孔隙率检测仪,孔隙率测定,孔隙率测定仪,孔隙率测试,孔隙率测试仪,微孔分析,微孔分析仪,微孔孔体积分析仪,微孔孔容分析仪,微孔孔径分析仪,微孔孔径分布分析仪,微孔孔隙度,微孔孔隙率,微孔检测,比表面及孔径分析仪,比表面积及孔径分析仪微孔检测仪,微孔测定,微孔测定仪,微孔测试,微孔测试仪,孔隙率测试仪,多组份吸附,多组份气体吸附,多组份气体吸附仪,多组份竞争吸附,多组分吸附,多组分吸附仪,多组分气体吸附多组分竞争吸附,多组分竞争性吸附,混合气体吸附,混合气体吸附仪,混合组份吸附,混合组份吸附仪,混合组份气体吸附,混合组份气体吸附仪,混合组分吸附,混合组分气体吸附,混合蒸汽吸附,混合蒸汽吸附仪,穿透曲线,穿透曲线分析仪,穿透曲线测试,竞争吸附,竞争吸附仪,竞争性吸附,竞争性吸附仪,选择吸附,选择吸附仪,选择性吸附,选择性吸附仪,静态容量法多组分吸附,腐蚀性气体吸附,腐蚀性气体吸附仪,腐蚀性吸附,腐蚀性吸附仪,腐蚀性吸附分析,腐蚀性吸附分析仪高压吸附,PCT储氢,PCT储氢测试,pct储氢分析仪,pct储氢性能测试仪,二氧化碳吸附,二氧化碳吸附仪,低温氮吸附,低温氮吸附仪,储氢PCT,储氢吸附,储氢吸附仪,吸附仪,吸附速度,吸附速率,天然气吸附,天然气吸附仪,气体吸附,气体吸附仪,氢气吸附,氢气吸附仪,氨气吸附,氨气吸附仪,氮吸附,氮吸附仪,煤层气吸附,煤层气吸附仪,物理吸附,物理吸附仪,瓦斯吸附,瓦斯吸附仪,甲烷吸附,甲烷吸附仪,页岩气吸附,页岩气吸附仪,高压储氢,高压储氢pct,高压储氢pct测试,高压储氢吸附仪,高压吸附,高压吸附仪,高压气体吸附,高压气体吸附仪,化学吸附,化学吸附tpd,化学吸附仪,化学吸附分析,化学吸附分析仪,化学吸附测定,化学吸附测定仪,化学吸附测试,化学吸附测试仪,吸附化学,静态化学吸附,静态化学吸附仪,静态化学吸附分析仪膜孔径,膜孔径分析仪,膜孔径检测仪,膜孔径测定仪,膜孔径测试仪,膜孔径测量仪,毛细流孔径,毛细管流动,毛细管流动孔径,毛细管流动孔径分析仪,滤膜孔径,滤膜孔径分析,滤膜孔径分析仪,滤膜孔径检测,滤膜孔径测试,滤膜孔径测量,隔膜孔径分析仪,无纺布孔径分析仪,电池隔膜孔径分析仪,纤维膜孔径分析仪,泡压法滤膜,泡压法膜孔径真密度,真密度仪,真密度分析仪,真密度测试仪,真密度测定仪,真密度检测仪,氦比重,氦比重仪,氦真密度,氦真密度仪,开闭孔率测试仪,开闭孔率分析仪,开闭孔率测定仪,开闭孔率检测仪,骨架密度仪,骨架密度分析仪,骨架密度测试仪,骨架密度测定仪,骨架密度检测仪在线气体质谱,在线气体质谱仪,在线质谱,在线质谱仪,气体质谱,质谱,质谱仪,过程质谱,过程质谱仪容量法气体吸附仪,容量法蒸汽吸附仪,有机蒸汽吸附仪,有机蒸气吸附仪,水蒸气吸附仪,水蒸汽吸附仪,水蒸气吸附分析仪,水蒸汽吸附分析仪,蒸气吸附,蒸气吸附仪,蒸气吸附分析仪,蒸汽吸附,蒸汽吸附仪,蒸汽吸附分析仪,动态蒸汽吸附,动态蒸气吸附,重量法吸附仪,重量法蒸气吸附仪,重量法蒸汽吸附仪,重量法静态蒸汽吸附仪,重量法动态蒸汽吸附仪,重量法静态蒸气吸附仪,重量法动态蒸气吸附仪,重量法蒸气吸附仪,重量法蒸汽吸附仪,重量法静态蒸汽吸附仪,重量法动态蒸汽吸附仪,重量法静态蒸气吸附仪,重量法动态蒸气吸附仪克努森透析法,超低蒸气压,超低蒸汽压,超低饱和蒸气压,超低饱和蒸汽压,超低蒸气压分析仪,超低蒸汽压分析仪,超低饱和蒸气压分析仪,超低饱和蒸汽压分析仪,超低蒸气压测试仪,超低蒸汽压测试仪,超低饱和蒸气压测试仪,超低饱和蒸汽压测试仪,努森透析法,克努森透析法,努森质量透析法
    留言咨询
  • 东莞市凯盟表面处理技术开发有限公司(下简称“凯盟公司”)是一家以研发金属防锈和抛光材料为方向的集研发、生产、销售为一体的高新技术公司,总部位于中国工业核心区-东莞。公司为全国范围内的各类钢铁、金属制品企业提供技术领先、品质卓越的产品和高效率的服务。主要产品分为:不锈钢表面处理系列、铜铝表面处理系列和其它化学品。随着业务市场的不断扩大公司在宁波、苏州、佛山和重庆设有业务办事机构,销售网络辐射全国。在国内同行业中享有盛誉。 凯盟公司创立于2005年,原称“东莞市凯盟化工有限公司”。2012年10月更名为“东莞市凯盟表面处理技术开发有限公司”。注册资本为人民币200万元,现有在职员工50余名,其中大专以上学历人员约占40%%。拥有固定资产700余万元。公司分别与“华中科技大学”和“中南民族大学”等国内知名高校建立了良好的合作关系,具有一流的产品研发能力。汇聚专业的研发能力,我们坚持创新,公司陆续开发出一批具有自主知识产权的新型产品,获得发明专利4项,注册商标1件。尤其在钝化领域取得了长足的发展和优异的成果。目前公司产品在:家具、餐具、医疗器械、工程装备、核电、压力容器等领域取得了广泛应用,年产能1000余吨。在新产品的带动下,截至2011年止我司实现产值连续增长4番的优秀业绩。经过公司全体同仁几年的努力创新发展,“凯盟”牌系列产品领衔同行之首,受到了众多客户的认可和赞誉。“凯盟”已名副其实的成为了国内不锈钢表面处理方面行业的知名品牌和最具竞争力的企业之一。我司是“民营科技企业”和“科技特派员驻点企业”,2012年1月获得ISO9001:2008国际质量体系认证。 十年磨一剑,厚积薄发。铸就成为钝化防锈领域的高端知名企业俨然已成为我们新的挑战。我们将继续秉承“以【质】求胜、以【德】求存、可失于【利】、不失于【信】”的经营理念,以“为客户提供一流的产品”为使命,凝心聚力,开拓进取,我们坚信凯盟公司将成为一流的钝化防锈领域高端品牌!
    留言咨询

比表面吸附仪相关的仪器

  • 动态吸附比表面测定仪,JW发明专利,创新的结构,每个样品单独吸附,互不干扰,吸附峰尖锐,灵敏度大大提高,通过吸附峰直接对比得到比表面,测试准确、稳定,比表面下限降低一个数量级,非常适合电池正负极材料尤其是石墨等小比表面材料的检测。产品特点:产品特点及优势: ●动态比表面测定,JW发明专利(专利号201410320453.2),采用吸附峰,测试过程简化,完全避免了样品脱附不完全可能带来的误差; ●仪器设有4个独立分析位,可同时进行4个样品的比表面快速测定,测定范围0.01m2/g-500 m2/g,尤其适合小比表面样品测试; ●每个样品独立进行吸附,实现了多样品的无干扰、无差异测试,完全保证四个样品站测试结果的平行性;测试重复精度≤± 1.0%; ● 每个样品气路直接与热导检测器相连,不受其他气路冲淡,吸附峰尖锐,灵敏度大大提高,非常适合小比表面样品的测定; ●仪器内部管路连接方式采用快插式接头连接,方便、快捷、耐用、不漏气,完全满足常压下动态色谱法比表面积测试的要求,人性化设计; ● 采用热导池检测器恒温系统,确保测试结果的稳定性,大大减小测量误差; ●自主研发的全自动数据采集及处理软件,先进而简便,操作极为方便,具有开拓性、时代性! ●仪器规格:长610mm×宽360mm×高690mm, 重量约30Kg; ●使用电源要求:交流220V±20V,50/60HZ,最大功率300W;可选脱气机参数: 1. 脱气站:4站; 2. 脱气温度:室温—400℃±1℃; 3. 真空泵极限真空:100Pa; 4. 规格:长400mm×宽300mm×高550mm, 重量约10 Kg; 5. 使用电源要求:交流220V±20V,50/60HZ,最大功率300W应用领域(重点推荐) ●电池材料:钴酸锂、锰酸锂、磷酸铁锂、石墨、三元材料等正负极材料; ●医药辅料等其他小比表面材料; 性能参数原理方法:流动色谱法,低温氮吸附;测试功能:直接对比法、BET比表面积快速测定;测试范围:≥0.001m2/g;重复精度:±1.0%;分析站:同时进行3个被测样品测试;测试效率:平均每个样品5min;氮分压:P/P0 0.3;预处理:可选配外置式4站真空脱气机;
    留言咨询
  • 产品介绍 JB-2020比表面积测试仪,参照国标GB/T19587-2017,依据动态低温氮吸附原理,采用高灵敏度传感器,双气源动态测试法。以氦气作为载气,氮气为被吸附气体作为测试气体,对不同样品的固体表面进行分析。仪器校对采用国家GBW(E)130275等标准物质。仪器结构合理、性能稳定、精度高、测试速度快,操作简单,对使用环境无特殊要求,适用于快速测试各种行业粉体材料的比表面积,尤其对比表面小的样品测试更能体现优势。应用领域 石墨、钴酸锂、氢氧化镍、锰酸锂、钛酸锂、碳酸锂、医药粉、催化剂、吸附剂、水泥、陶瓷原材料等多孔物质粉体的比表面积测量。参数指标项目指标项目指标测量范围0.0005m2/g~无上限测试方法单点测试、多点(BET)、对比测试重复性误差≤±3%样品试管优质耐温GG材料,U型样品管准确性误差≤±3%测试气体高纯氦气和氮气。工作站1个软件系统兼容Windows 10/Win7 0操作系统仪器体积700mm×360mm×710mm仪器重量约:30kg工作电源AC220V ±22V 50Hz±0.5Hz环境要求温度:5℃~35℃;湿度:85%;仪器优点1、专有的高精度标准进样器,确保各种体积的标准气体稳定准确。2、虽只有一个工作站,然而经济又实用,测试时间短效率高,每个样3分钟左右。3、测试方法:当样品管置入液氮杯,混合气中的氮气被样品吸附,样品管离开液氮,被样品吸附的氮气脱附出来,根据脱附的响应曲线,再根据标准体积气的响应曲线,即可计算出被测样品的比表面积。4、高灵敏度探测器,工作温度低,寿命长,探测器不会因气体成份的改变而损坏。5、分析软件可在XP/win10系统下运行,软件功能齐全,方便对测试结果作对比分析,测试结果可显示保存或打印。输出测试报告具有存储、查询、比较、编辑、删除等功能。
    留言咨询
  • 产品介绍 JB-2020比表面积测试仪,参照国标GB/T19587-2017,依据动态低温氮吸附原理,采用高灵敏度传感器,双气源动态测试法。以氦气作为载气,氮气为被吸附气体作为测试气体,对不同样品的固体表面进行分析。仪器校对采用国家GBW(E)130275等标准物质。仪器结构合理、性能稳定、精度高、测试速度快,操作简单,对使用环境无特殊要求,适用于快速测试各种行业粉体材料的比表面积,尤其对比表面小的样品测试更能体现优势。应用领域 石墨、钴酸锂、氢氧化镍、锰酸锂、钛酸锂、碳酸锂、医药粉、催化剂、吸附剂、水泥、陶瓷原材料等多孔物质粉体的比表面积测量。参数指标项目指标项目指标测量范围0.0005m2/g~无上限测试方法单点测试、多点(BET)、对比测试重复性误差≤±3%样品试管优质耐温GG材料,U型样品管准确性误差≤±3%测试气体高纯氦气和氮气。工作站1个软件系统兼容Windows 10/Win7 0操作系统仪器体积700mm×360mm×710mm仪器重量约:30kg工作电源AC220V ±22V 50Hz±0.5Hz环境要求温度:5℃~35℃;湿度:85%;仪器优点1、专有的高精度标准进样器,确保各种体积的标准气体稳定准确。2、虽只有一个工作站,然而经济又实用,测试时间短效率高,每个样3分钟左右。3、测试方法:当样品管置入液氮杯,混合气中的氮气被样品吸附,样品管离开液氮,被样品吸附的氮气脱附出来,根据脱附的响应曲线,再根据标准体积气的响应曲线,即可计算出被测样品的比表面积。4、高灵敏度探测器,工作温度低,寿命长,探测器不会因气体成份的改变而损坏。5、分析软件可在XP/win10系统下运行,软件功能齐全,方便对测试结果作对比分析,测试结果可显示保存或打印。输出测试报告具有存储、查询、比较、编辑、删除等功能。
    留言咨询

比表面吸附仪相关的资讯

  • BET是比表面及孔径吸附的缩写吗
    BET是三位科学家(Brunauer、Emmett和Teller)的首字母缩写。1983年,三位科学家对Langmuir 理论进行修正,提出著名的BET理论,其正式名称是多分子层吸附理论,成为了颗粒表面吸附科学的理论基础,并被广泛应用于颗粒表面吸附性能研究及相关检测仪器的数据处理中。多分子层吸附理论所采用的模型的基本假设是:一、固体表面是均匀的,发生多层吸附;二、除第一层的吸附热外其余各层的吸附热等于吸附质的液化热。该理论放弃了单分子吸附层的观点,认为在物理吸附中,固体与气体间的吸附是依靠分子间引力而发生的;而且已被吸附的分子仍有引力,因此在第一吸附层之上还可以吸附第二层,第三层,… … 也就是多分子层吸附。从多分子层吸附理论得到的BET吸附等温式,可用于测试颗粒的比表面积、孔容、孔径分布以及氮气吸附脱附曲线。运用 BET方法的物理吸附等温线对吸附表面积进行测定,主要包含两个步骤:第一步,做出BET图,从中导出单层吸附量;第二步,根据单层吸附量计算比表面积。由于BET 法适合大部分样品,被广泛应用于许多多孔及无孔材料BET面积α的确定。其最大优势是考虑到了由样品吸附能力不同带来的吸附层数之间的差异,这是与以往标样对比法最大的区别。BET吸附等温式是行业中应用最广泛,测试结果可靠性最强的方法,几乎所由国内外的相关标准都是依据BET吸附等温式建立起来的。但BET 法并不适用于所有样品,因此按介孔材料的分析方法分析微孔材料时,由物理吸附分析仪自动生成的BET 比表面值是错误的。ISO9277-2010 和 IUPAC都对含微孔材料的BET比表面分析方法及判断BET 结果的方法做出了规定。
  • 精微高博“高性能氮吸附比表面及孔径分析仪”项目通过技术鉴定
    仪器信息网讯 2010年4月20日,受北京精微高博科学技术有限公司委托,中国分析测试协会组织相关专家对其“高性能氮吸附比表面及孔径分析仪”项目进行了技术鉴定。清华大学金国藩院士担任本次鉴定会主任,参加鉴定会的还有中国分析测试协会张渝英秘书长,中国分析测试协会汪正范研究员,北京钢铁研究总院胡荣泽教授,北京理工大学傅若农教授,北京燕山石化公司研究院刘希尧教授,中国石油大学赵震教授等十余位专家。 鉴定会现场 清华大学金国藩院士主持鉴定会 中国分析测试协会张渝英秘书长   “比表面积”是指每克物质中所有颗粒总外表面积之和,比表面积对于材料的吸附、催化、吸波、抗腐蚀、烧结等功能具有重要的影响。目前比较成熟的测定比表面积的方法是动态氮吸附法,已经列入国际标准和国家标准(如国际标准ISO-9277,美国ASTM-D3037,国家标准GB/T 19587-2004)。北京精微高博科学技术有限公司是比表面仪、孔隙率分析仪的专业生产厂家,成立于2004年,目前已经有300多个国内用户。   鉴定会开始,首先由该项目负责人北京精微高博科学技术有限公司董事长、北京理工大学钟家湘教授作“JW系列比表面及孔径分析仪研制报告”。钟家湘教授先介绍了JW系列比表面及孔径分析仪的研制背景:2000年实现了对直接对比法的操作机械化,并融入了计算机技术;2004年解决了氮气和氦气流量的精确控制等关键技术;2005年研制成功动态、常压、单气路孔径分析仪;2007年研制成功全自动动态氮吸附比表面仪;2008年研发了可以测试吸附等温线以及吸脱附滞后环的新方法;2009年研究成功动态阶梯法比表面测定新方法。最后,钟教授着重讲解了动态氮吸附BET比表面测定仪和静态容量法BET比表面测定仪的总体设计,抽气微调阀、真空系统、压力测试点精度控制等关键部件的技术创新以及所能够达到的技术指标。 北京精微高博科学技术有限公司董事长钟家湘教授   之后专家严格审核了仪器的技术资料、权威机构的测试报告、科技查新资料、用户反馈信息等。在讨论和质疑环节中,各位专家就仪器的可靠性和稳定性、测试报告的规范性、相关标准的制定等问题与项目负责方进行了深入的交流和探讨,并提出了许多建设性意见。 现场考察仪器 JW系列氮吸附仪   最后,经各位专家充分讨论,一致达成以下鉴定意见:   1. 北京精微高博科学技术有限公司先后研发成功:动态氮吸附BET比表面测定仪、动态常压单气路比表面及孔径分析仪、静态容量法BET比表面测定仪、静态容量法比表面及孔隙度分析仪等两大系列十余种机型,国内外用户已超过300家,为我国氮吸附仪的发展做出了贡献   2. 在动态氮吸附仪的研制中,采用了精密且快速的流量调节系统、准确的定量氮气自动切入系统和无污染真空预处理系统等技术,新开发的动态可测吸脱附曲线和滞后环的方法以及动态阶梯法BET比表面测定仪均达到了国内外先进水平   3. 在静态容量法氮吸附仪的研制中,创造了独有的微型精密微调装置、双级真空系统、以及测试压力点精密控制的软硬件系统,使仪器的控制精度达到国际先进水平,在T-图分析及微孔测试分析方面,已取得突破,填补了国内的空白   4. JW系列氮吸附仪,包括动态和静态两个系列,经过国家计量部门采用比表面在8m2/g-80m2/g的标准样品的检测时,比表面的测试重复性精度±1%,总孔体积和平均孔径的测试重复性精度±1.5% ,达到了国际先进水平 测试速度优于国内外同类仪器的水平   5. JW系列氮吸附比表面及孔径分布测定仪是自主创新与现代技术集成,具有我国自己的特色和自主的知识产权,总体上达到了国内领先水平,部分指标达到了国际先进水平。   鉴定委员会一致同意通过鉴定,希望今后进一步提高产品的性能指标,完善产品的功能,尽快占领国内外市场。   关于北京精微高博科学技术有限公司   北京精微高博科学技术有限公司,以北京理工大学为技术背景,是北京科委批准的高新技术企业,专业生产氮吸附比表面仪及孔径分布(孔隙率)分析仪。公司设有专门的技术研发部门,销售及售后服务部门,在上海设有分公司,为客户提供高品质的产品及高效的服务是公司首要宗旨。   精微高博在中国比表面积及孔径测试仪领域独具特殊优势,是中国最大的氮吸附仪研制、生产、销售的厂家,是中国动态氮吸附BET比表面和孔径分布测试仪的原创者和开拓者。精微高博作为国产仪器的代表,与国外仪器一起参与了国家标准物质比表面标定的200余种样品的测试,产品经计量院出具的检测报告证明了测试精度高,重复性好,达到国际先进水平,完全可代替进口,与国外仪器相比,还具有质优价廉的优势。
  • 杨正红:氮吸附仪表征药物超低比表面积的技术突破
    p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 药物粉体是大部分药物制剂的主体,其疗效不仅取决于药物的种类,而且很大程度上还取决于组成药剂的粉体性能,包括粒度、形状、表面特性等各类参数。药物粉体的比表面积和孔径关系到粉末颗粒的粒径、吸湿性、溶解度、溶出度和压实度等性能,而且最终影响到药物的生物利用度。国家药典委员会已颁布了最新的2020年版中国药典,增加了0991比表面积测定法,并将于2020年12月30日起正式实施。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 用气体吸附法进行比表面和孔径分布测定,对于大多数制药行业的用户还比较陌生。作为毕业于药学院并从事气体吸附比表面和孔径分析20余年的科学工作者,有责任与大家分享一下我对0991的见解及气体吸附法测定比表面的最新技术发展。 /span span style=" font-family: 宋体, SimSun text-indent: 2em " & nbsp /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 80) font-size: 18px " strong span style=" color: rgb(0, 176, 80) font-family: 宋体, SimSun " 一、中国药典2020版要求在相对压力P/P sub 0 /sub 为0.05-0.3范围内至少进行3个压力点的测试,且BET方程相关系数需大于0.9975 /span /strong /span /h1 p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 1、有关BET比表面积的测量和计算: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 首先需要明确的是,BET比表面积是通过多层吸附理论(BET方程)计算出来的,而不是测出来的。我们需要测定的是液氮温度下的样品对氮气吸附的等温线,而发生多层吸附的区域多数是在P/P sub 0 /sub 0.05-0.3的范围内,吸附曲线在这里进入平台区(图1)。BET理论恰恰需要这个阶段的吸附数据来计算比表面积。完整的BET报告必须包括比表面值、回归曲线、相关系数和C常数(C值,图2)。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/31a57e2c-4f93-4cd4-89eb-10ed26bc5031.jpg" title=" 0000.png" alt=" 0000.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 2、有关BET计算的P/P sub 0 /sub 取点: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 众所周知,药典是制药行业的宪法,是基本法,也就是最低标准。0991的相关数据应该引自美国药典USP846,适用于介孔材料。但是,随着近些年纳米科技的发展和新型药品和药用材料的研发成功,已经开始应用多微孔的纳米载体材料控制药物缓释速度,而这些材料的多层吸附区域会前移,也就是可能到P/P sub 0 /sub 为0.01~0.15的范围,这样药典中的取点范围就显得不合时宜了。因此,判断BET计算结果可靠性的标准应该是C值大于0和回归系数大于0.9999。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (延伸阅读:杨正红:《物理吸附100问》化工出版社,2016年) /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 3、有关BET方程相关系数: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun text-indent: 2em " 回归曲线的相关系数R=0.9975是对吸附等温线测定质量的过于粗放的低端要求,来源于20年前的技术水平。由于比表面测定过程中有许多不可控因素,所以很难获得稳定重复的结果。因此,业内有“BET差5%不算差”的说法,由此,按允许偏差± 5计算: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " R = (1+0.0500)x (1-0.0500)= 0.997500 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 由于BET的计算是取自多层吸附已经完成,孔中的毛细管凝聚尚未发生的平缓线性阶段数据,这显然是一个到达极限的最低标准。以这么低的标准去进行比表面测定的质量控制,实际上等于没有控制。目前所有的全自动物理吸附分析仪都标榜重复性偏差不超过± 2,这意味着: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " R = (1+0.0200)x (1-0.0200)= 0.999600 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 也就是说,R值不应该低于0.9996。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 如果按常规质检要求,重复性允许偏差± 1计算,则对R值的最低要求为: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " R = (1+0.0100)x (1-0.0100)= 0.999900 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 即回归曲线的相关系数不小于四个9(R & gt 0.9999)。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " & nbsp /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " strong span style=" font-family: 宋体, SimSun color: rgb(0, 176, 80) font-size: 18px " 二、表征超低比表面积的技术突破 /span /strong /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 由于真空体积法气体吸附分析仪等温线测定依据的是理想气体方程,影响结果的主要因素不外乎温度、压力和体积。当样品的吸附量远大于这些因素引起的误差时,温度、压力和体积的波动或精度误差(仪器的本底噪音)可以被忽略不计,但是当药品这样的小表面材料所能吸附样品总量不足以克服本底噪音时,就带来了测试结果的不稳定性,甚至测不出来。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 为了解决超低比表面材料的质量控制的痛点问题,我们专门开发设计了iPore 400,该仪器从影响比表面测定的因素入手,严格控制由温度、体积和压力测量带来的误差,采用了一系列新技术,配合全自动智能脱气站,建立了新一代物理吸附仪的技术标准(图3)。它包括: /span /p p style=" text-align:center" span style=" font-family: 宋体, SimSun " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/2260669a-9557-4d2e-b89a-72e7994aee06.jpg" title=" 111.png" alt=" 111.png" / /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (1)& nbsp 全域自动恒温系统:拥有双路进气预热管路及包括12个静音风扇组成的高精度恒温系统(图4),可根据需要在35-50℃之间设定恒定温度。系统实时显示全区域气路和歧管的温度,避免环境因素带来的误差。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " a)& nbsp 内部整体恒温,可在35-50℃之间设置:真空体积法是通过压力传感器读取压力的变化而计算吸附量的,其准确性和有效精度对温度变化极其敏感,尤其在微孔和超低比表面分析中。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " b)& nbsp 0.02℃温控精度:三个温度传感器,实时显示各区域温度。高精度和高稳定的全恒温控制,可将压力变化控制在0.05%以内,远小于传感器本身的不确定度(0.1%),可彻底避免因环境温度变化造成的分析误差。可根据地区需要和数据对比需要调节恒定温度。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " c)& nbsp 进气预热恒温: 由于涉及安全管理问题,大多数实验室气瓶置于室外,造成吸附气进气温度与室温或仪器内温差距巨大,定量注气失准。该系统消灭了地区差别和早晚温差对钢瓶气造成的误差,尤其为锂电材料,药物材料,膜材料的等小比表面质量控制带来福音。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " d)& nbsp 新型电磁阀:常规电磁阀的发热问题由来已久,严重影响气体定量和压力读数的准确性,该问题在超低比表面和微孔分析时尤为突出。为解决这一问题所开发的带有自锁功能的电磁阀,无需持续供电便可保持开启或关闭状态,发热量等效为零,消除了电磁阀工作中发热引起的测量误差,极大地提升了分析性能。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (2)& nbsp 压敏死体积恒定技术:通过压力传感器和伺服反馈电梯精确控制液氮液位,保持过程中死体积恒定。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 【专利号:ZL 2019 & nbsp 885784.5】 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 真空体积法物理吸附是在一个密闭空间进行的。自由空间是系统中吸附质分子传递、扩散的区域,如果要精确计算样品的物理吸附量,死体积值是准确采集数据的基础。因为真空体积法的测量基础是压力,吸附量的计算基础是理想气体状态方程,所以吸附质气体在扩散过程中压力差越大,则气体绝对量计算越准确。 系统死体积越小,对压力变化的灵敏度越高,吸附量计算越准确。换句话说,在同样的条件下,系统死体积越小,则仪器测量精度越高。由于在氮吸附分析过程中,液氮是不断挥发的,所以为保证精确计算吸附量,要对死体积进行控制、测量或校准。 /span /p p style=" text-align:center" span style=" font-family: 宋体, SimSun " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/9d9ab2a1-3a09-482c-b996-a84f2e8565d1.jpg" title=" 222.png" alt=" 222.png" / /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " (3)32位芯片及电路系统:采用全新32位芯片及电路系统,相比24位系统,压力传感器分析精度提升30倍以上,确保超低比表面测量的极致精度。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 模数转换器即A/D转换器,简称ADC,它是把连续的模拟信号转变为离散的数字信号的器件。转换精度就是分辨率的大小,因此要获得高精度的模/数转换结果,首先要保证选择有足够分辨率的ADC,同时还必须与外接电路的配置匹配有关。iPore系列不仅采用32位模数转换,而且采用拥有自主知识产权的32位电路设计和制造,从系统上保证了压力传感器精度的进一步提升(见表1)。 /span /p p style=" text-align: center text-indent: 0em " strong span style=" font-family: 宋体, SimSun " 表1 & nbsp ADC芯片转换精度与压力分辨率关系(以1000Torr传感器为例) /span /strong /p table border=" 1" cellspacing=" 0" style=" border: none" align=" center" tbody tr class=" firstRow" td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 14px" ADC转换位数 /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 14px" 16 Bit /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 14px" 24 Bit /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 14px" 32 Bit /span /strong strong /strong /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 14px" ADC有效位数 /span /strong strong /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 15 Bit /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 20 Bit /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 28 Bit /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 14px" 压力最小分辨率 /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 2 Pa /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 0.0079 Pa /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 0.00003 Pa /span /p /td /tr tr td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 14px" 压力有效分辨率 /span /strong strong /strong /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 4 Pa /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 0.12 Pa /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family:宋体 font-size:14px" 0.0039 Pa /span /p /td /tr tr td width=" 568" valign=" top" colspan=" 4" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 font-size:14px" *ADC span style=" font-family:宋体" 有效位数是指可靠的转换值 /span /span /p /td /tr /tbody /table p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 这些新技术的采用,带来了意想不到的突破。它不仅可以用氮吸附测定0.005 m sup 2 /sup /g左右的比表面积,大大超越了常规氮吸附的比表面下限极值(0.01m sup 2 /sup /g),而且可以测得微量吸附下的孔径分布(图6)。 /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/4eb6833c-d410-482b-9d03-8f85c54cd03d.jpg" title=" 444.png" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/1dbb2a52-49ba-426e-a862-cd25a827530c.jpg" title=" 555.png" / /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 18px " strong span style=" font-family: 宋体, SimSun color: rgb(0, 176, 80) " 三、突破性吸附技术对制药行业的应用意义 /span /strong /span /h1 p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 1.& nbsp 超低比表面样品测定的重复性、重现性和稳定性: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun text-indent: 2em " 仪器的长期稳定性是低比表面材料样品质量检测和质量控制的基础保证。为了验证新技术的准确性和长期稳定性,使用氮气测试比表面标准样品(标称值0.221± 0.013m sup 2 /sup /g,氪吸附)的重复性偏差(表2)。结果表明,iPore 400的即时重复性偏差优于0.1%,一天重复性偏差优于0.6%,四天长期稳定性优于1.0%!性能的全面优化使BET比表面测定长期重复性达到空前水平! /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " iPore 400可以配置6个独立的分析站(图4),具有极高的通量,不仅节省分析时间,提高了分析效率,而且6个站BET测定结果具有高度的一致性,重现性偏差同样优于1%(表3)。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " /span /p p style=" text-align: center " strong span style=" font-family: 黑体 font-size: 14px" span style=" font-family:黑体" 表 /span /span /strong strong span style=" font-family: 黑体 font-size: 14px" 3 /span /strong strong span style=" font-family: 黑体 font-size: 14px" & nbsp /span /strong strong span style=" font-family: 黑体 font-size: 14px" span style=" font-family:黑体" 低比表面石墨样品比表面平行测定实验( /span /span /strong strong span style=" font-family: 黑体 color: rgb(255, 0, 0) font-size: 14px" span style=" font-family:黑体" 红色 /span /span /strong strong span style=" font-family: 黑体 font-size: 14px" span style=" font-family:黑体" 数据是 /span 12次测量结果的标准差) /span /strong /p table border=" 0" cellspacing=" 0" style=" margin-left: 7px border: none" align=" center" tbody tr style=" height:22px" class=" firstRow" td width=" 176" valign=" center" nowrap=" " colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td valign=" center" nowrap=" " colspan=" 6" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" BET比表面值(m /span /strong strong sup span style=" font-family: 黑体 font-size: 15px vertical-align: super" 2 /span /sup /strong strong span style=" font-family: 黑体 font-size: 15px" /g), & nbsp & nbsp R & gt 0.9999 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 六站测定重现性 /span /strong strong /strong /p /td /tr tr style=" height:19px" td width=" 73" valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 测定次数 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 站号 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 1 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 2 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 3 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 4 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 5 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" 6 /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family: 黑体 font-size: 15px" RSD /span /strong strong /strong /p /td /tr tr style=" height:19px" td width=" 73" valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family: 宋体 font-size: 15px" 1 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family: 宋体 font-size: 15px" 定投气量测试 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8781 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8880 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8940 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8825 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8878 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8800 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.54% /span /p /td /tr tr style=" height:19px" td width=" 73" valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" span style=" font-family: 宋体 font-size: 15px" 2 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family: 宋体 font-size: 15px" 定压测试 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8767 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8760 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8747 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8747 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8744 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.8816 /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.25% /span /p /td /tr tr style=" height:19px" td width=" 176" valign=" center" nowrap=" " colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family: 黑体 font-size: 15px" 同站测定重现性,RSD /span /strong strong /strong /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.07% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.60% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.96% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.39% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.67% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" span style=" font-family: 宋体 font-size: 15px" 0.08% /span /p /td td valign=" center" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:right" strong span style=" font-family: 宋体 color: rgb(255, 0, 0) font-size: 15px" 0.61% /span /strong strong /strong /p /td /tr /tbody /table p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 我们用这些新技术对薄膜超低比表面积进行了重复性测定,得到了相当出色的结果 (BET = 0.0307m sup 2 /sup /g)。这为解决超滤膜和纳滤膜的纳米孔分析奠定了基础(图7)。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0e898529-e557-42aa-8499-f7f6d3993be8.jpg" title=" 666.png" alt=" 666.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 2.& nbsp 超高比表面样品测定的重复性: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 共价有机框架聚合物(COF)是一种低密度、高比表面、易于修饰改性和功能化的新型人工合成材料。在问世的短短十余年之间,就在气体储存与分离、非均相催化、储能材料、光电、传感以及药物传递等领域展现出优异的应用前景,并且已经发展成为一种纳米药物载体。常规气体吸附法比表面容易测定的范围是5~500 m sup 2 /sup /g之间。因为吸附量巨大,需要长时间的平衡条件,比表面大于1000 m sup 2 /sup /g 的样品重复性控制并不容易做到。为此,对比表面大于2000m sup 2 /sup /g的COF样品比表面进行了长期稳定性测定,结果重复性优于0.07%(图8)! /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 3.& nbsp 能力验证——新技术对超低比表面样品测定重复性的重要性: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 为了比较新技术和现有技术在超低比表面应用中的区别,我们用一种极低比表面的金属氧化物对仪器性能进一步进行了验证,并与其它品牌的测试结果进行了比较(图8)。结果表明,新技术不仅两次测定(图8a和b)相关系数都在0.9999以上,而且BET比表面和吸脱附等温线都能很好地重复;而一旦关闭死体积恒定功能,虽然BET =0 .032并且相关系数(R=0.9987)依然满足药典0991要求(图8c),但其数据质量已经迅速下降,脱附等温线已经发生变形,说明这些采用的新技术相辅相成,缺一不可。而没有这些技术的常规氮吸附分析仪器的噪音已经完全掩盖了该样品的微弱吸附量,无法分辨(图8d)。 /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/f6863e5f-cd33-488a-97c4-55f51653c09e.jpg" title=" a.png" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/69859a06-d2f0-4879-9371-d8406940d9b3.jpg" title=" b.png" / /p p style=" margin-top: 0px margin-bottom: 0px text-indent: 2em " span style=" font-family:黑体 font-size:12px" a span style=" font-family:黑体" 和 /span span style=" font-family:Times New Roman" b /span span style=" font-family:黑体" : /span span style=" font-family:Times New Roman" iPore 400 /span span style=" font-family:黑体" 两次测定的结果,比表面积值可以完全重复; /span /span /p p style=" margin-top: 0px margin-bottom: 0px text-indent: 2em " span style=" font-family:黑体 font-size:12px" c span style=" font-family:黑体" : /span span style=" font-family:Times New Roman" iPore 400 /span span style=" font-family:黑体" 关闭死体积恒定功能的结果,可见 /span span style=" font-family:Times New Roman" BET /span span style=" font-family:黑体" 回归系数下降,脱附曲线受液氮挥发导致的死体积变化,已经完全变形 ; /span /span /p p style=" margin-top: 0px margin-bottom: 0px text-indent: 2em " span style=" font-family:黑体 font-size:12px" d span style=" font-family:黑体" :其它品牌仪器所测的结果,吸附量被仪器本身的噪声所掩盖,等温线显示为仪器本底的随机噪声曲线 /span /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 4.& nbsp 在标准“介孔仪器”配置上实现氪吸附: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 药品多为有机化合物,比表面值一般都很低。新版中国药典0991指出,对于比表面积小于 0.2m sup 2 /sup /g 的供试品,为避免测定误差,可选用氪气作为吸附质;也可选用氮气作为吸附质,但必须通过增加取样量,使供试品总表面积至少达到 1m2方可补偿测定误差。氪气(Kr)因其在液氮温度下的饱和蒸汽压特性,是用于小比表面积样品的精密测试方法。但是,进行Kr吸附一般至少需要配备10torr的高精密压力传感器以及分子泵,以分辨P/P sub 0 /sub 在10 sup -5 /sup ~10 sup -4 /sup 的极低压力环境下细微的压力变化,从而保证数据精确且稳定。氪吸附应用到小于0.05 m sup 2 /sup 的绝对表面积计算。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 但是,一般的氪吸附的应用需要配置分子泵和10torr压力传感器,这给企业带来了额外的成本负担。而新技术的突破可以在标准配置(机械泵和1000torr压力传感器)的条件下满足氪吸附的应用要求,P/P sub 0 /sub 下限达到可重复的10 sup -5 /sup (图9),为医药企业节约了检测投资成本! /span /p p style=" text-align:center" span style=" font-family: 宋体, SimSun " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/ad65b4cb-6898-4bbf-8553-8afc66f8b0c1.jpg" title=" c.png" alt=" c.png" / /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 5.& nbsp 用氮吸附完全替代氪吸附: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 其实,在77.4K的氪吸附实际还存在着许多问题,如其吸附层的性质和热力学状态并不明确,是固体还是液体?应该参照何种状态来计算P/P sub 0 /sub ?与此连带的一些问题是,在远远低于三相点温度的环境下,氪作为被吸附相有怎样的浸润特性(因为在BET方法中,假设吸附质相完全浸润)?在77K的氮吸附中,可以观察到几乎所有材料都被完全浸润的特性,但在低于三相点温度时,这种情况可能是不同的。 另一个不确定因素是氪分子的有效横截面积,它非常依赖于吸附剂表面,因此没有被很好地建立起来。从氪的过冷液体密度计算出的横截面面积是0.152 nm sup 2 /sup & nbsp (15.2 Å sup 2 /sup ),但通常会用较大的横截面面积值,甚至高达0.236 nm sup 2 /sup (23.6 Å 2)。采用较多的横截面积值是0.202 nm sup 2 /sup (20.2 Å sup 2 /sup )。除此之外,氪气的成本是氮气的240倍,这意味着氪吸附测定需要高昂的实验成本,会极大加重企业负担。因此,理化联科气体吸附分析技术上的突破带来了药企行业应用的巨大突破,氮吸附已经成功地实现了氪吸附领域的超低比表面积测定(图6~8)。我们用氮吸附成功测定的极限样品是0.0047m sup 2 /sup /g,这意味着只有当试样比表面小于0.005m sup 2 /sup /g时,才需要氪吸附,而这样的样品凤毛麟角。也就是说,一台全部采用上述新技术的仪器可以全部满足药企各种比表面的测定需求。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 6.& nbsp 建立超滤膜孔径(纳米孔)评价的新方法: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 滤膜孔径评价的经典方法是气体渗透法(即毛细管流动法),但这种方法的适用范围是20nm~500μm。超滤膜是一种孔径范围为1-20nm的纳米孔过滤膜,其范围恰恰在气体渗透法能力之外。该膜的孔径范围虽然被气体吸附法所覆盖,但由于膜的吸附量过低,常规的气体吸附法无法实现测定。国外曾经建立起了液氩温度下氪吸附测量膜孔径的方法,但无论仪器、耗材及方法都很难向工厂推广。制药行业中膜技术应用存在的技术瓶颈亟待解决,需要建立快速可行的超滤膜孔径评价方法。实际上,电池隔膜和电子薄膜也存在类似问题。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 气体吸附技术在精度控制上的突破也为纳米薄膜的孔径分布分析带来佳音,这种吸附量极低的孔径分析不再需要液氩温度下的氪吸附,只需要按照常规操作即可(图6右)。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 7.& nbsp 突破传统“介孔仪器”,实现微介孔样品的氮吸附微孔测定: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 新的气体吸附技术标准使1000torr传感器的分辨率提高到了10torr级别,仪器的密封性使机械泵抽空效率发挥到极致。以氮吸附替代氪吸附,以传统介孔仪器成功测定微孔(图10),不仅节约了用户购买仪器的成本,而且降低了用户使用成本;不仅将比表面测定的重复性提高一个数量级,而且微孔分析的重复性也得到充分保障,对MOF/COF样品的研究开发将起到推动作用。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/c02cabde-81b1-42d3-a7f5-5b064c381921.jpg" title=" d.png" alt=" d.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 8.& nbsp 气凝胶较大介孔和边际大孔的孔径分析取得突破: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 气体吸附法介孔孔径分析的经典方法是BJH法,它是基于以毛细管凝聚理论为基础的KELVIN公式。其基本概念是,当压力增加时,气体先在小孔中凝结, 然后才是大孔。因此,孔径与压力有对应关系。但是,当孔径大于10nm以后(对应P/P sub 0 /sub =0.90),压力上升0.05(P/P sub 0 /sub =0.95),对应的孔径已经是20nm了,并且呈指数上升。如:P/P sub 0 /sub =0.98对应50nm,而0.99则已经是100nm了。因此,虽然ISO15901-2指出气体吸附法的孔径测定上限是100nm,但实际上很少有人能做到30nm以上去,因为压力传感器必须能够密集分辨和探知百万分之一的压力变化,这大大超出了常规压力传感器0.15% 分辨率的标称值。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 气凝胶是一种新型低密度多孔纳米材料,具有独特的纳米级多孔及三维网络结构,同时具有极低的密度(3 500kg/m sup 3 /sup )、高比表面积(200 1000m sup 2 /sup /g)和高孔隙率(孔隙率高达 80 99.8%,孔径典型尺寸为 1 100nm),从而表现出独特的光学、热学、声学及电学性能,具有广阔的应用前景。在医药领域,气凝胶被用于药物可控释放体系。但是,其孔径分布分析却遇到麻烦,因为压汞仪的高压会破环样品的孔结构。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 致病微生物在多孔氧化铝膜上生长不易受到限制,因此氧化铝膜常用于药物敏感性实验(DST)了解病原微生物对各种抗生素的敏感程度或耐受程度来指导临床用药。与气凝胶相反,膜的单位吸附量极低,但孔径可能达到100nm以上。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 由表1可知,32位电路新技术可以极大地提高压力传感器的分辨率,至少可分辨3.9*10 sup -8 /sup 的相对压力变化,因此,我们尝试对气凝胶和氧化铝膜进行孔径分布分析。利用精细投气控制新技术,0.99以上的设点间隔达到0.0002的密度,最高吸附点达到了0.9980(对应孔径559nm),在测试方法上取得新的突破,为建立气凝胶和氧化铝膜孔径分析的新方法奠定了坚实的基础(图11)。 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px text-indent: 0em " span style=" color: rgb(0, 176, 80) font-family: 宋体, SimSun font-size: 18px " 四、总结 /span /h1 p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 工欲善其事,必先利其器! /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 利用气体吸附分析仪进行比表面积质量控制分析时,经常碰到如下问题:不同厂家仪器之间数据不一致;同一型号在不同地域或不同海拔的数据不一致;同一台仪器在白天晚上或春夏秋冬的数据不一致;同一台仪器长期稳定性不好。这些现象已经成为长期困扰行业质量控制的头疼问题。气体吸附分析技术的突破不仅彻底攻克了这个难题,而且使超低比表面分析达到高稳定性、高重复性、高效率;随之产生的功能性扩展,无论用氮吸附代替氪吸附,还是孔径分布测定向介孔两端范围延伸拓展,都为中国企业全面贯彻中国药典0991带来了超高性价比的惊喜! /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/6ca5abfe-f2ab-4486-9fa5-bb34c06304c5.jpg" title=" e.png" alt=" e.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 气体吸附分析技术的突破,为全面贯彻药典新规和GB/T 19587-2017标准,准确测定原料药、药用辅料及其产品的比表面和孔径,进行精确的质量控制或检验,提供了性能全面优化的可涵盖各种药用试品的分析仪器,也为下一代物理吸附分析仪的发展方向树立了新的标杆,建立了新的标准。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-family:宋体, SimSun" 作者简介: /span /strong /p p style=" text-align: center " span style=" font-family: 宋体, SimSun " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/b5946e97-b5e2-4749-8815-3ebd6df36529.jpg" title=" f_看图王(1).jpg" alt=" f_看图王(1).jpg" / /span /p p span style=" font-family: 宋体, SimSun " (注:本文由杨正红老师供稿,不代表仪器信息网本网观点) /span /p

比表面吸附仪相关的方案

比表面吸附仪相关的资料

比表面吸附仪相关的论坛

  • 氮吸附法测定比表面及孔隙率的技术

    任何粉体表面都有吸附气体分子的能力,在液氮温度下,在含氮的气氛中,粉体表面会对氮气产生物理吸附,在回到室温的过程中,吸附的氮气会全部脱附出来。当粉体表面吸附了满满的一层氮分子时,粉体的比表面积(Sg)可由下式求出: Sg=4.36Vm/W (Vm为氮气单层饱和吸附量,W为样品重量)而实际的吸附量V并非是单层吸附,即所谓多层吸附理论,通过对气体吸附过程的热力学与动力学分析,发现了实际的吸附量V与单层吸附量Vm之间的关系,这就是著名的BET方程,用氮吸附法测定BET比表面及孔径分布是比较成熟而广泛采用的方法,都是利用氮气的等温吸附特性曲线:在液氮温度下,氮气在固体表面的吸附量取决于氮气的相对压力(P/P0),当P/P0在0.050.35范围内时,吸附量与(P/P0)符合BET方程,这是氮吸附法测定比表面积的依据;当P/P00.4时,由于产生毛细凝聚现象,即氮气开始在微孔中凝聚,通过实验和理论分析,可以测定孔容、孔径分布。问题的关键是用甚么方法可以准确地把吸附的氮气量测量出来

比表面吸附仪相关的耗材

  • 比表面仪静态仪器样品预处理机
    比表面仪静态仪器样品预处理机静态仪器预处理机作用:由于样品分析前状态无法控制,样品内部可能含有很多水分,有机质或腐蚀性物质。在分析前为了保证分析样品中的杂质,不污染仪器,不损坏或腐蚀仪器管线,样品应放置在高温烘箱中,至少在110 度下烘干2 小时, 若能放置在真空烘箱中烘干效果更好,样品自然冷却至室温, 并在干燥器皿中保存。在上机分析前通常须在样品预处理机上进行真空脱气预处理以保证样品的清洁。静态仪器预处理机特点:◎ 四个样品可独立控温加热◎ 真空度高,保证脱气最优化◎ 脱气温度500C-4000C,± 10C◎ 操作简单,易于掌握
  • 比表面积测试仪动态样品预处理机
    比表面积测试仪动态样品预处理机动态仪器预处理机作用:由于样品分析前状态无法控制,样品内部可能含有很多水分,有机质或腐蚀性物质。在分析前为了保证分析样品中的杂质,不污染仪器,不损坏或腐蚀仪器管线,样品应放置在高温烘箱中,至少在110 度下烘干2 小时, 若能放置在真空烘箱中烘干效果更好,样品自然冷却至室温, 并在干燥器皿中保存。在上机分析前通常须在样品预处理机上进行真空脱气预处理以保证样品的清洁。动态仪器预处理机特点:◎ 4位同时处理◎ 真空度高,保证脱气最优化◎ 可靠性高,可随时查看真空度和气体流量◎ 操作简单、易懂◎ 脱气温度1℃-400℃,± 1℃
  • 高比表面积氧化石墨烯
    参数:制备方法:改良的H法高表面积氧化石墨烯直径:1 ~ 5um厚度:0.8~1.2nm单层比:99%纯度:99%比表面积(BET):100平方米/克堆积密度:0.009g/cm3体积密度:0.0052g/cm3Parameter:Preparation Method: Modified HUMMER’S methodHigh Surface Area Graphene OxideDiameter:1~5 μmThickness:0.8~1.2 nmSingle layer ratio:~99%Purity:~99%Specific Surface Area (BET):100 m2/gTapped Density:0.009g/cm3Bulk Density:0.0052g/cm3
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制