当前位置: 仪器信息网 > 行业主题 > >

蒸发光散射器

仪器信息网蒸发光散射器专题为您提供2024年最新蒸发光散射器价格报价、厂家品牌的相关信息, 包括蒸发光散射器参数、型号等,不管是国产,还是进口品牌的蒸发光散射器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合蒸发光散射器相关的耗材配件、试剂标物,还有蒸发光散射器相关的最新资讯、资料,以及蒸发光散射器相关的解决方案。

蒸发光散射器相关的资讯

  • 低温蒸发光散射检测器的技术规格包括哪些?
    低温蒸发光散射检测器是一种常用于液相色谱分析中的检测器。其技术规格包括以下几个方面: 待测物范围:低温蒸发光散射检测器适用于各种化合物的检测,包括有机化合物、无机化合物和生物大分子等。 灵敏度:该检测器具有较高的灵敏度,在微量样品中也能够实现可靠的检测。通常以信噪比或最小可检出量来评估灵敏度。 动态范围:动态范围指在同一样品中可以线性地量化不同含量的待测物。宽动态范围使得该技术能够适应不同样品的分析需要。 检出限:指在给定条件下对目标化合物所能达到的低检测限制。这通常取决于仪器本身和分析方法设置。 准确性和重复性:准确性表示待测结果与真实值之间的接近程度;重复性则是指重复进行多次测试时结果之间的一致性。这些指标对于仪器的可靠性和分析结果的可信度至关重要。 温度控制范围:低温蒸发光散射检测器通过控制样品在某一特定温度下蒸发,从而实现检测。因此,该设备应具备能够精确控制和调节温度的功能,并且适用于不同类型待测物的分析需求。 数据采集速率:数据采集速率表示该检测器能够以多快的频率获取并记录结果。较高的数据采集速率有助于更好地观察和解释峰形及其变化。 以上是常见的一些技术规格,不同型号和品牌的低温蒸发光散射检测器可能会有细微差别和附加功能,可根据具体需要选择符合实验要求和预算限制的型号。
  • 网友调查显示:蒸发光散射检测器异军突起
    仪器信息网讯 日前,仪器信息网网友公布了其近日在做仪器信息网仪器论坛做的一个关于我国液相色谱仪检测器配置的调查结果(原贴网址:http://bbs.instrument.com.cn/shtml/20130630/4824110/)。   本次调查从2011年11月开始,到2012年5月结束,历时一年半,共在仪器信息网的液相色谱版块收集了157个样本,调查了可紫外检测器、蒸发光散射检测器、二极管阵列检测器、示差折光检测器、荧光检测器、电化学检测器、质谱、核磁共振等八类检测器的分布情况。   从其调查结果显示,配置排名前三的检测器为:紫外检测器(27%)、二极管阵列检测器(22%)、荧光检测器(14%)。   具体结果分析:   1、紫外检测器还是液相色谱的主导,因为它可以检测大部分液相色谱可以检测的化合物。VWD和DAD两项的投票基本一致,只是现在检测器在可变波长与二极管阵列的价格上有很大出入,VWD相对价格便宜,所以仪器配置的比例还是更高。   2、示差折光检测器已经商品化很多年,再加上其独特的检测领域,特别是GPC分析仪器上的配置,所以它还占有很大比例。   3、异军突起的我想应该是蒸发光散射检测器(ELSD)了,它的出现没有多少年,而它的配置居然占到了12%。目前虽然ELSD的很多检测方法没有标准化,但是中国药典在一部已经有很多采用了ELSD检测,而中药的分析,也是药品分析中的重要组成,很多药品企业应该都会考虑它。 另微博网友@野菠萝是祖国花朵不是热带水果认为,因为蒸发光散射检测器是通用性的检测器,可以弥补示差折光检测器的灵敏度、梯度的不足 另外,蒸发光散射检测器的方法可以平移到HPLC-MS,非常适合经费有限才起步的小公司。免得到做质谱的时候,临时开发方法,拖延进度。   4、荧光检测器由于其灵敏度高,而且在液相领域应用也很广,检测机构一般都会配置。   5、而目前有几个检测器,比如电化学检测器、电喷雾检测器等,这些都具有专一行,通用性差,所以基本都是专用液相配置的多。
  • 新品上市:月旭科技低温型蒸发光散射检测器
    待测样品物质没有生色基团,无法用紫外-可见光检测器检测该怎么办?别担心,这期小编给大家带来了月旭科技的低温型蒸发光散射检测器,无论物质是否具有生色基团都逃不过他的“眼睛”。下面就由小编给大家介绍一下月旭科技新推出的低温型蒸发光散射检测器吧!蒸发光散射检测器检测原理 仪器优点高灵敏度,优化了对非挥发性、热不稳定和半挥发性化合物的敏感性;专用的高效液相色谱雾化器和创新的流通池设计,使谱带展宽最小化;容易拆卸和安装的雾化器,流量范围涵盖200μl /min~2ml/min;通过自动增益调整,检测器可以自动调整增益设置;完全远程控制,气体、加热器、光电二极管、光源均可在分析结束之后自动关闭;可以为符合GLP和验证程序提供了完整的SOP方案;仪器寿命长,具备很高的可靠性和稳定性;低温蒸发,避免温度过高化合物分解导致的检测不准。Welch ELSD-5450可用工作站列表应用案例同步测定银杏中萜烯内酯和类黄酮:采用HPLC/ELSD法对四种萜烯内酯和三种黄酮类化合物进行了色谱分析。1 -银杏内酯,2 -银杏内酯C, 3 -银杏内酯A,4 -银杏内酯B,5 -槲皮素,6 -异鼠李皮素,7 -山奈酚
  • 祝贺UM 3000蒸发光散射检测器荣获2007 BCEIA金奖
    2007 BCEIA于10月21日圆满落幕,上海通微分析技术有限公司在展会上得到了广泛的关注,其中,UM 3000蒸发光散射检测器更是荣获了BCEIA金奖。 UM 3000 蒸发光散射检测器是由上海通微倾力研究开发,“十五”国家科技攻关计划重大项目的研发成果——首台国产化蒸发光散射检测器,该仪器的性能指标已达到国际同类产品水平。 蒸发光散射检测器是一种通用型的检测器,可检测挥发性低于流动相的任何样品,而不需要样品含有发色基团。蒸发光散射检测器灵敏度比示差折光检测器高,对温度变化不敏感,基线稳定,适合与梯度洗脱液相色谱联用。 蒸发光散射检测器已被广泛应用于碳水化合物、类脂、脂肪酸和氨基酸、药物以及聚合物等的检测。 screen.width-300)this.width=screen.width-300" screen.width-300)this.width=screen.width-300"
  • 首台国产化蒸发光散射检测器(ELSD)全新推出
    UM 3000 蒸发光散射检测器是由上海通微倾力研究开发,“十五”国家科技攻关计划重大项目的研发成果——首台国产化蒸发光散射检测器,该仪器的性能指标已达到国际同类产品水平。 蒸发光散射检测器是一种通用型的检测器,可检测挥发性低于流动相的任何样品,而不需要样品含有发色基团。蒸发光散射检测器灵敏度比示差折光检测器高,对温度变化不敏感,基线稳定,适合与梯度洗脱液相色谱联用。 蒸发光散射检测器已被广泛应用于碳水化合物、类脂、脂肪酸和氨基酸、药物以及聚合物等的检测。 通微(上海)分析技术有限公司 http://tongwei.instrument.com.cn
  • 通微蒸发光散射检测器十周年活动火热来袭
    2007年,上海通微分析技术有限公司(以下简称通微)研发的UM3000蒸发光散射检测器问市,彻底打破进口蒸发光产品的垄断地位。作为国家“十五”科技攻关重大项目,UM3000在各个技术环节都不输于进口设备,稳定的性能和极高的性价比使她迅速站稳国内蒸发光市场地位。 当然,通微的研发脚步没有就此停歇,糅合美国通微(通微美国总部)带来的先进技术,通微将每个环节继续精心打磨,贴合不同客户的需要,定制多款蒸发光散射检测器。通微蒸发光散射检测器系列产品在国内市场占有率稳居第一,2015年底新推出的UM5800凭借小巧的外形、应势的全触屏设计、更高的性能吸引众多客户的关注。 为了庆祝UM系列蒸发光散射检测器在中国市场的迅猛态势,更为了解广大用户的仪器使用情况,完善仪器品质,提高服务质量,通微启动了系列ELSD用户体验有奖征文暨UM3000以旧换新活动,诚邀您的参与!
  • 低温蒸发光散射检测器的技术规格包括以下几个方面
    低温蒸发光散射检测器的技术规格包括以下几个方面低温蒸发光散射检测器(LowTemperatureEvaporativeLightScatteringDetector,LT-ELSD)是一种常用于液相色谱(LiquidChromatography,LC)分析中的检测器。其技术规格包括以下几个方面: 待测物范围:低温蒸发光散射检测器适用于各种化合物的检测,包括有机化合物、无机化合物和生物大分子等。 灵敏度:该检测器具有较高的灵敏度,在微量样品中也能够实现可靠的检测。通常以信噪比或最小可检出量来评估灵敏度。 动态范围:动态范围指在同一样品中可以线性地量化不同含量的待测物。宽动态范围使得该技术能够适应不同样品的分析需要。 检出限:指在给定条件下对目标化合物所能达到的低检测限制。这通常取决于仪器本身和分析方法设置。 准确性和重复性:准确性表示待测结果与真实值之间的接近程度;重复性则是指重复进行多次测试时结果之间的一致性。这些指标对于仪器的可靠性和分析结果的可信度至关重要。 温度控制范围:低温蒸发光散射检测器通过控制样品在某一特定温度下蒸发,从而实现检测。因此,该设备应具备能够精确控制和调节温度的功能,并且适用于不同类型待测物的分析需求。 数据采集速率:数据采集速率表示该检测器能够以多快的频率获取并记录结果。较高的数据采集速率有助于更好地观察和解释峰形及其变化。
  • 安捷伦科技公司推出高灵敏度蒸发光散射检测器
    安捷伦科技公司推出高灵敏度蒸发光散射检测器 2012 年 11 月 12 日,加利福尼亚州圣克拉拉市 &mdash 安捷伦科技公司(纽约证交所:A) 今日宣布推出两款新产品 &mdash 1290 Infinity 蒸发光散射检测器和 1260 Infinity 蒸发光散射检测器,这两款产品的灵敏度比目前市面上的任何一款蒸发光散射检测器 (ELSD) 高 9 倍,效率和重现性也更高。 这两款检测器非常适合制药、药物开发、质保/质控、食品质量检测、保健品和精细化学品分析领域中不挥发和半挥发化合物的分析。二甲基亚砜是药物研发领域广泛应用的样品储存溶剂,这两款检测器可以消除二甲基亚砜的干扰,因而不需要进行繁琐的样品制备就可筛选药物化合物库,而且,这两种检测器还是Agilent 6100 系列质谱系统的补充。 &ldquo 我们的行业热衷于液相色谱使用通用的检测器,Agilent 1260 Infinity 和 Agilent 1290 Infinity 检测器是两种最佳解决方案,&rdquo 安捷伦生命科学部业务开发经理 Graham Cleaver 说道。 新型的基于激光的 1290 Infinity ELSD 的浓度检测下限比上一型号低了9 倍。独特的蒸发器设计与其专有的气流程序,使其可以在低于环境温度的条件下分析半挥发化合物,而这些化合物是任何其他品牌的 ELSD 所无法检测的。 1260 Infinity ELSD 较高的性能得可靠的发光二极管 (LED) 光源和蒸发器设计,及理想的性价比。待机模式不仅节能,还能降低 50% 至 75% 的氮气消耗量。 这两款产品现已上市。更多信息,请访问 www.agilent.com/chem/1260elsd 或www.agilent.com/chem/1290elsd。 关于安捷伦科技 安捷伦科技(纽约证交所:A)是全球领先的测量公司,是化学分析、生命科学、诊断学、电子和通讯领域的技术领导者。公司的 20,000 名员工为 100 多个国家的客户提供服务。在 2011 财政年度,安捷伦的业务净收入为 66 亿美元。有关安捷伦科技的更多信息,请访问:www.agilent.com.cn 。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 好消息!英国PL蒸发光散射检测器(ELSD)新年大促销
    原价:140000RMB,抢购价:118000RMB,直降22000RMB 促销时间:2010年3月1日-2010年6月1日 促销型号:Varian 380-LC 现货供应,数量有限,先到先得,售完为止。 产品相关链接: http://www.instrument.com.cn/netshow/SH100505/C12122.htm# 为了庆祝北京绿绵巨贸科贸有限公司成为PL全线产品的大中华地区总代理,特推出品牌推广促销活动,产品为新型专利化设计的蒸发光散射检测器(ELSD)。PL公司引领了蒸发光散射检测器(ELSD)技术的发展,在这个领域有15年以上的行业经验,仪器的设计、外形、服务、技术支持等方面都居于世界领先地位。 ELSD对分析物质有着广泛的响应性,不依赖于被分析物的光学性质;PL公司的ELSD可匹配安捷伦Chemstation和EZChrom,戴安Chromeleon,瓦里安Galaxie等多家公司的软件,无需其他配件,可直接控制,采集分析数据。Varian 380-LC专利的雾化设计保证了最有效的雾化效果,使得高沸点溶剂也能在低温下蒸发,如流动相是100%的水,也可在25℃蒸发,在半挥发化合物检测中比同类产品表现出明显的优势;也正是这种成功的雾化设计,使得PL公司的ELSD应用同类仪器中最短的漂移管,在保证良好的雾化同时,减少样品分散,保证低谱带展宽;高精密质量流量计控制载气流速,低流速即可完成高效雾化和蒸发过程,载气消耗量接近其它品牌1/3,大大的降低了使用成本;而且,这款设备的独到的内外双漏液传感设计,以及精巧有效的废液处理装置,使得这款设备在目前此类设备的发展水平下臻于完美。 2010-3-1日 欢迎广大用户来电咨询,先到先得,售完为止! 北京绿绵巨贸科贸有限公司 北京总部联系电话:010-82735800 传真:010-82735809 上海办联系电话:021-51822712/3/5 传真:021-51822714 广州联系电话: 020-62819687 传真:020-62819523-803
  • Sanotac发布蒸发光散射检测器技术 高性能的ELSD 检测器
    全新的Omnitor低温型蒸发光散射检测器(ELSD检测器)重磅上市!三为科学蒸发光散射检测器技术团队通过独创的卧式结构,全新的光散射光路设计,智能的自动化功能、友好的用户界面和多平台控制,Omnitor蒸发光散射检测器可以为不同层次和需求的用户提供不同的实验体验。 三为科学本次推出全新ELSD900和ELSD6000两个型号蒸发光散射检测器参加慕尼黑分析仪器展览,新产品几个亮点:一、仪器内部温度场合理设计使体积小到26*19*46cm,和液相色谱泵同等宽度;二、定量重复性达到RSD6≤1.5%,最小检测浓度为≤5.0×10-6 g/mL (胆固醇-甲醇溶液)。三、信号稳定、噪音低,信号噪音 三为科学技术总监姜总向我们介绍Omnitor的仪器性能、参数和工程设计等方面已经达到国外品牌蒸发光散射检测器的同等品质,这两款检测器非常适合制药、药物开发、质保/质控、食品质量检测、保健品和精细化学品分析领域中化合物的分析和中草药、天然药物、食品科学领域天然产物活性成分分离纯化过程中的在线检测。这两款检测器可以消除梯度洗脱时溶剂峰的干扰,大大提高药物化合物库筛选效率。 姜总还向我们介绍了品牌蒸发光散射检测器应该具备的技术特点:紧凑的结构——独创的全新光散射光路和卧式仪器结构,并且对仪器内部温度场进行合理设计,仪器结构紧凑合理安全、长寿命——16项仪器自检,多重安全设计,避免流动相进入检测室检测性能优异——定量重复性达到RSD6≤1.5%,基线噪声低至0.01 mV,漂移小方便用户使用——10组方法存储管理(25个参数),多重报警模式,雾化管前置,便于用户观察和清洗智能温控——漂移管辅助快速降温系统可以完成不同方法间的快速切换,喷嘴加热及雾化管角度调整功能为高端用户提供个性化实验参数定制需求灵活的输出——0.3 ~ 30倍的连续增益调整,提供输出自动归零功能,-1000 mV ~ 1000 mV的偏置模拟输出,并且提供数字输出功能控制采集软件——色谱系统软件符合FDA 21CFR Part 11要求,具有审计追踪功能,可以与任何主流HPLC系统联用多重通讯模式——RS232,RS-485,USB,LAN(TCP/HTTP),可编程外部事件接口绿色节能——提供待机模式,检测器低功耗状态,同时节省50%以上氮气消耗,多重方式开启待机模式(内部、远程、定时器) 会议期间,ELSD9000蒸发光散射检测器得到仪器厂家和分析化学专家的充分认可,来自化学、医疗、食品、环境和医药产业的科技研发人员对ELSD9000的产品性能、结构设计、软件功能给予很大的肯定。 作为专业科学仪器生产企业,三为科学致力于制备液相色谱、蛋白纯化系统、色谱通用检测器的研究。对于行业热衷的液相色谱使用通用的检测器,ELSD9000和ELSD6000蒸发光散射检测器为广大分析检测和药物分离纯化领域的科学家提供了液相色谱通用检测器的解决方案和理想的性价比。在致力于优质色谱通用检测器的国产化的道路上,我们任重路远!
  • 祝贺首台国产化蒸发光散射检测器通过验收
    由上海通微分析技术有限公司倾力开发的UM3000蒸发光散射检测器(ELSD)“十五”国家科技攻关计划重大项目,于2007年5月15日通过国家验收。由于性能指标达到国际同类产品水平,又具有国产仪器的价格优势,在项目验收之际,项目中生产的十台样机已被定购一空。
  • 通微蒸发光散射检测器成为上海市重点新品
    由上海通微研制的首款国产蒸发光散射检测器产品UM-3000近期通过了上海市科学技术委员会的认定,成为上海市重点新产品。为UM-3000的荣誉榜上再添了重重的一笔。 自从UM-3000问世以来,受到了各级领导和广大用户的鼎立支持和帮助,上海通微在此表示深深的感谢和敬意,并承诺继续投入到精密分析科学仪器研制过程,为自主产权的中国民族科学仪器产业尽一份力。
  • 上海通微推新品“一键智能反控”蒸发光散射检测器(ELSD-UM5000A)
    上海通微分析技术有限公司(以下简称:上海通微)是首台国产化蒸发光散射检测器的研发生产厂家,第一台国产蒸发光散射检测器UM3000作为“十五”国家科技攻关计划重大项目的研发成果,从诞生伊始就获得业内专家一致肯定,并于2007年10月获得BCEIA金奖。该仪器的性能指标媲美国际同类产品水平。 为了更好的服务于用户,上海通微一直密切关注客户使用情况,于2012年对UM 3000进行了技术和设计多方位升级,升级后的版本为UM5000,市场口碑和地位直线攀升。上海通微蒸发光散射检测器成为国内各专业使用者的首选产品,截止2013年7月,上海通微蒸发光散射检测器市场使用数量达到600多台。 随着分析技术不断向智能方向发展,上海通微于2013年11月再次对UM5000蒸发光散射检测器进行了升级,升级后的版本为UM 5000A。 UM 5000A蒸发光散射检测器不但外观变得时尚,更让人无法忽略的是它拥有更加灵活的控制方式,轻松实现“一键智能反控”,再续金奖风范。无论您正使用上海通微EasySep-1020液相色谱系统还是任何其他厂商生产的HPLC液相色谱系统,UM 5000A蒸发光散射检测器都能与其进行完美连接,带来操作与快捷的完美体验,是您进行药物分析检测、碳水化合物、类脂、脂肪酸和氨基酸、以及聚合物等的检测的有力武器。 蒸发光散射检测器是一种通用型的检测器,可检测挥发性低于流动相的任何样品,而不需要样品含有发色基团。蒸发光散射检测器灵敏度比示差折光检测器高,对温度变化不敏感,基线稳定,适合与梯度洗脱液相色谱联用。 了解更多上海通微蒸发光散射检测器UM5000A的性能、参数,请点击:http://www.instrument.com.cn/netshow/C192554.htm
  • Omnitor系列蒸发光散射检测器 首次登陆慕尼黑分析生化展
    小体积高性能的ELSD蒸发光检测器 登陆慕尼黑分析生化展 三为科学Omnitor系列低温型蒸发光检测器ELSD检测器首次登陆第九届慕尼黑上海分析生化展。2018年10月31日在上海新国际博览中心慕尼黑上海分析生化展上,Omnitor系列蒸发光散射检测器解开其神秘的面纱。全新的ELSD9000低温型蒸发光散射检测器重磅上市!通过独创的卧式结构和光散射光路设计,先进的自动化功能、友好的用户界面和多平台控制,ELSD9000蒸发光散射检测器可以为不同层次和需求的用户提供不同的实验体验。研发团队对仪器内部温度场进行合理设计,使仪器结构紧凑合理,达到宽26 cm高19 cm深46 cm的尺寸,同时色谱系统软件符合FDA 21CFR Part 11要求,具有审计追踪功能。第九届慕尼黑上海分析生化展作为亚洲重要的分析、生化技术、诊断和实验室技术风向标盛会,今年展会共吸引来自26个国家和地区的950家行业先锋企业倾情献演,展出面积达46,000平方米,更有100余场干货满满的专业报告及技术研讨会如火如荼上演。 会议期间,ELSD9000蒸发光散射检测器得到仪器厂家和分析化学专家的充分认可,来自化学、医疗、食品、环境和医药产业的科技研发人员对ELSD9000的产品性能、结构设计、软件功能给予很大的肯定。 Omnitor 蒸发光散射检测器技术特点:结构紧凑:采用全新的光路设计,体积紧凑(26 cm*19 cm*46 cm),可以与液相色谱系统层叠使用检测性能优异:基线噪声低至0.01 mV,漂移小,精密度高快速降温:有助于在不同检测方法间的快速切换喷嘴加热:有助于提升雾化效果,特别是检测油性样品的时候线性增益调节:增益线性调节,有助于用户精细化的调整输出色谱峰的高度雾化管调节: 雾化角度自由调节,可以满足不同样品的检测需求系统自动检测:16项仪器日常自检,多重安全设计,避免流动相进入检测室,减少仪器维修,延长使用寿命方法管理:方法管理多达10组(每组25个参数),结构化菜单,简化用户的操作监控报警:温度,压力,流量的实时监控,并对异常情况进行声音和灯光报警控制采集软件:专用多平台控制软件,Clarity® 动态链接库,平台支持与任何HPLC色谱系统联用多种通讯模式:RS-232, RS-485, USB,LAN(TCP/HTTP),可编程外部事件接口绿色节能:多种方式启动待机模式—检测器低功耗状态审计追踪:色谱系统软件符合FDA 21CFR Part 11要求,具有审计追踪功能 会议同期我们还展出制备色谱,蛋白分离纯化系统,高压平流泵、温控型高压计量泵、防爆高压输液泵。我们相信客户的满意,市场的认可,业界的肯定,是我们不断前行的动力。感谢客户们一直以来的大力支持,产品销售不是结束,我们的销售从客户收到我们的产品开始,尽善尽美、精细入微,用我们的产品品质和服务质量让新的销售从客户开始延伸。 再次感谢您的关注和选择,2020年慕尼黑分析生化展会我们再相见!
  • 通微发布UM5800Plus蒸发光散射检测器新品
    产品简介UM5800Plus是通微公司新推出的一款全面升级的通用型的蒸发光散射检测器:1.针对非紫外吸收物质的检测,可检测挥发性低于流动相的样品,不需要样品带有发色基团;2.同时具备数字信号输出与模拟信号输出,可与多种液相色谱系统联用(包括常规分析型液相系统、高压制备型液相系统以及Flash快速制备色谱等);3.新增7档信号增益调节功能,可根据样品浓度调节信号响应;4.提供100组分析方法存储,常见检测品种可直接调用已存储的方法。5.新增面板谱图显示功能,实时检测谱图采集。5.温度、流量、信号增益等参数,全面实现软件智能全反控,符合相关法规要求。创新力作 针对非紫外吸收物质的检测√更加人性化的设计l 同时具备数字信号输出与模拟信号输出(±2.4V),可兼容不同厂家的液相色谱仪使用。l 1-7档信号增益调节,可根据样品浓度调节信号响应。l 多达100组方法存储空间,对于药典品种,可直接调用已存储的方法。l 仪器面板含有谱图显示功能,可实时监测谱图采集,有利于预实验进行。√可靠性与安全性的全面提升l 仪器开机多项自检,同时具备出错修正控制,温度、压力及流量等实时监控报警且异常情况具备声音和灯光报警,多重安全保护设计,有效提升仪器维护方式方法,降低仪器维护成本,延长仪器使用寿命。l 待机及工作模式等多种模式自有切换,有效降低功耗。l 密码锁屏,防止误操作,显示错误日志,满足GLP要求。√适应新时代的智能化操作l 温度、流量、信号增益等仪器各项参数的控制,仪器实现全反控;状态参数实时反馈,及时有效反应仪器工作状态,切实保证实验顺利进行。√强大的技术与售后保障l 深耕蒸发光检测器领域数十载的上海通微分析技术有限公司,为用户提供完善的售前售后服务支持,专业的应用团队帮助用户进行方案开发及分析技术支持服务,另外还会不定期根据用户需求举办应用技术培训,此外还会长期优惠供应零配件及耗材试剂等。创新点:UM5800Plus是通微公司最新推出的一款全面升级的通用型的蒸发光散射检测器:1.针对非紫外吸收物质的检测,可检测挥发性低于流动相的样品,不需要样品带有发色基团;2.同时具备数字信号输出与模拟信号输出,可与多种液相色谱系统联用(包括常规分析型液相系统、高压制备型液相系统以及Flash快速制备色谱等);3.新增7档信号增益调节功能,可根据样品浓度调节信号响应;4.提供100组分析方法存储,常见检测品种,可直接调用已存储的方法。5.新增面板谱图显示功能,实时检测谱图采集。5.温度、流量、信号增益等参数,全面实现软件智能全反控,符合相关法规要求。 UM5800Plus蒸发光散射检测器
  • 岛津推出ELSD-LT II低温型蒸发光散射检测器
    ELSD-LT II低温型蒸发光散射检测器是ELSD-LT的改进型。新产品延续了前一代产品低温蒸发技术的特点,使得在蒸发管温度低于40度的情况下,流动相也能够有效的蒸发。保证了对于半挥发性或热不稳定性化合物的高灵敏度检测。ELSD-LT II型低温型蒸发光散射检测器在灵敏度和易操作性上均优于竞争对手。高灵敏度、优秀的重现性、出色的易用性和安全性是这一款产品的显著特点,加上更丰富的自动化功能,减少了操作成本。 此外,由于ELSD-LT II是专为低温蒸发技术而设计的检测器,它还具有如下一些优点:  大部分被蒸发的流动相溶剂重新变成液体。因此,对于环境的影响很小。  在无人值守的状态下运行也具有高安全性。  节省开关机所需等待时间。  不必为每一次分析设定专门的操作温度。 screen.width-300)this.width=screen.width-300" ELSD 检测器应用范围: ELSD 检测器是一种质量型通用HPLC检测器,对色谱柱流出物雾化并加热蒸发流动相,溶质形成的细小颗粒遇到光束引起光散射,通过对散射光强度的测量实现对目标化合物的检测。除了挥发性化合物以外的几乎所有化合物都能检测,并给出和质量数相应的响应值。因此,ELSD检测器非常适合应用于无紫外吸收或紫外末端吸收化合物,如糖、脂类、表面活性剂、甾体、合成聚合物等,这些化合物使用常规的紫外或荧光检测器很难检测。 ELSD检测器适合于所有能用示差折光检测器检测的化合物的测定,并且能提供更高的检测灵敏度和用于梯度洗脱分离化合物的测定。ELSD检测器可以使用和LC-MS 完全一致的流动相条件,因此易于对LC-MS分析的色谱条件进行评估并提供更为丰富的补充信息。
  • 天津市医药行业协会发布《中药注射剂(真溶液型)中高分子杂质的测定高效分子排阻色谱-蒸发光散射检测法》等四项团体标准
    各有关单位:《基于血小板活化生物标志物CD62p检测的中药注射剂活血化瘀活性评价方法操作规程》等4项团体标准于2023年8月1日立项,由天津市药品检验研究院、天津天士力之骄药业有限公司、现代中药创制全国重点实验室、天津药物研究院有限公司、天津红日药业股份有限公司、津药达仁堂集团有限公司中药研究院、天津宏仁堂药业有限公司、津药达仁堂集团股份有限公司乐仁堂制药厂等多家单位联合起草,根据《天津市医药行业协会团体标准管理办法(试行)》有关规定,在专家的指导下,高质量完成了4项团体标准的编制和必要流程,并通过审查。该4项团体标准于2024年5月31日发布并实施,现予以公告。本次发布的4项团体标准如下:T/TPPA 0007–2024《基于血小板活化生物标志物CD62p检测的中药注射剂活血化瘀活性评价方法操作规程》T/TPPA 0008–2024《麦冬(供注射用)质量标准》T/TPPA 0009–2024《五味子(供注射用)质量标准》T/TPPA 0010–2024《中药注射剂(真溶液型)中高分子杂质的测定高效分子排阻色谱-蒸发光散射检测法》团体标准发布公告20240531.pdf团体标准-TPPA0007-2024-基于血小板活化生物标志物CD62p检测的中药注射剂活血化瘀活性评价方法操作规程.pdf团体标准-TPPA0008-2024-麦冬(供注射用)质量标准.pdf团体标准-TPPA0009-2024-五味子(供注射用)质量标准.pdf团体标准-TPPA0010-2024-中药注射剂(真溶液型)中高分子杂质的测定高效分子排阻色谱-蒸发光散射检测法.pdf
  • 通微协亳州市食品药品检验中心举办“新版药典HPLC-蒸发光散射检测器应用分析培训”
    安徽省亳州市食品药品检验中心将与上海通微分析技术有限公司共同举办“新版药典HPLC-蒸发光散射检测器应用分析培训”,通微应用技术与售后服务专家将与药品生产企业、药品检验机构检验技术人员分享液相色谱系统应用与维护经验与技巧,希望通微产品能更好为安徽地区广大中药企业用户服务。培训时间:2017年4月13日培训地点:亳州南洋都市大酒店,亳州市谯城区芍花王魏武大道289号培训日程:
  • Breaking News:瑞士BUCHI公司收购美国Grace 公司快速色谱纯化系统(Flash Chromatography)和蒸发光散射检测器(ELSD)产品线
    BUCHI公司2016年4月12日发布相关信息,BUCHI公司董事会已经与Grace公司董事会达成协议,BUCHI公司购买Grace公司flash chromatography和 ELSD产品线,协议即刻执行。此次收购,极大地扩展了BUCHI公司已有的中压制备色谱产品线,加强了我们的技术服务实力,为广泛用户提供创新的应用解决方案,加快产品如药物研发进程。Grace公司原有品牌色谱系统Reveleris Flash, GraceResolv和蒸发光散射检测Alltech ELSD 3300今后将由瑞士BUCHI公司面向全球供应。Grace公司快速色谱系统简介:美国格雷斯公司(Grace)--全球硅胶材料技术的领导者,有着80年的树脂材料研发、生产和销售经验。Grace综合几十年的硅胶生产经验和领先的ELSD技术,创造了世界上最新进的Flash色谱系统Reveleris Flash, GraceResolv。Reveleris Flash 系统采用新颖的双检测器(UV&ELSD)技术,能够检测到无紫外吸收物质,有效提高收集组分的纯度和回收率。GraceResolv色谱纯化系统更是在双检测器基础上,将Flash色谱和制备液相色谱功能合二为一,在同一台设备上完成样品的简单快速纯化或高分离度分离纯化工作。
  • 广东省农业标准化协会发布《兽药产品中4种氨基糖苷类兽药含量的同时测定 高效液相色谱-蒸发光散射法》等2项团体标准征求意见稿
    各有关单位及专家:由广东省农业科学院农业质量标准与监测技术研究所等单位提出的《兽药产品中4种氨基糖苷类兽药含量的同时测定 高效液相色谱-蒸发光散射法》《兽药产品中8种药物含量的同时测定 高效液相色谱-二极管阵列法》等2项团体标准已完成征求意见稿,为保证团体标准的科学性、实用性及可操作性,现公开征求意见。请有关单位及专家认真审阅标准文本,对标准的征求意见稿(见附件1)进行审查和把关,提出宝贵意见建议,并将意见反馈表(见附件2)于2023年8月23前以邮件或传真的形式反馈至协会秘书处,逾期未回复按无意见处理。感谢您对协会工作的大力支持!附件1:《兽药产品中4种氨基糖苷类兽药含量的同时测定 高效液相色谱-蒸发光散射法》征求意见稿《兽药产品中 8 种药物含量的同时测定 高效液相色谱-二极管阵列法》征求意见稿附件2:团体标准征求意见反馈表(联系人:钱波;电话/传真:020-85161829;邮箱:gdnybzh@163.com) 广东省农业标准化协会2023年7月24日附件1:兽药产品中4种氨基糖苷类兽药含量的同时测定 高效液相色谱-蒸发光散射法-征求意见稿.pdf兽药产品中8种药物含量的同时测定 高效液相色谱-二极管阵列法-征求意见稿.pdf附件2: 团体标准征求意见反馈表.doc
  • 蓝国祥先生在我国光散射研究方面的贡献
    南开大学是国内开展光散射研究得比较早的单位之一。早在1935年,我校的沈寿春先生就与吴大猷、饶毓泰先生合作,在北京大学开始了拉曼光谱研究。抗日战争时期,在昆明西南联大,沈寿春和吴大猷二位先生合作研究了硝酸镍氨晶体的拉曼光谱,考察了晶体场对硝酸根离子的效应。解放后,在沈寿春先生领导下,陈文驹、王之仁等老师较早开始了拉曼光谱的工作,研究最多的是有机磷化合物。1965年教育部决定在北大、复旦、南开三校成立固体能谱科研组,由复旦的谢希德先生牵头,合作开展半导体的基础研究,教育部定期给三校下达研究经费。张光寅先生利用该项经费,购买了一台在当时很先进的英国产的Hilger E612型拉曼光谱仪。该仪器采用石英棱镜分光,光源是汞弧光灯,记条仪是笔式的。但在十年文革期间三校的固体能谱研究组都中断了研究工作,这台光谱仪就一直闲置到20世纪七十年代末。此时南开物理系固体物理教研室正式恢复,固体能谱研究组也就合并到固体物理教研室。当时固体物理教研室主要从事激光技术所需要的非线性光学晶体钽酸锂和铌酸锂的研究及其光学器件的研制。时任教研室主仼的是王华馥先生和副主仼张光寅先生。蓝国祥教授是王华馥先生研究组的成员,当时研究组主要从事非线性光学晶体基础性方面的研究。鉴于蓝国祥教授有扎实的晶体学和晶格动力学的基础知识,又从事晶格振动光谱的研究,从仪器设备、晶体样品的选取和基础知识的储备这三方面考虑,都具备了开展非线性光学晶体激光光谱研究的条件。因此,王华馥先生决定由蓝国祥先生和青年教师李兵承担此项课题的研究,王先生还把他的第一个博士研究生分配到该课题组一起参加研究工作。课题组对Hilger E612光谱仪进行了改造,配置了自行研制的氩离子激光器,开始了非线性光学晶体的拉曼光谱研究。当课题组获得第一批研究成果时,正好迎来1981年在厦门大学召开的全国第一届光散射学术会议,课题组在会议上宣读了相关的研究成果。虽然参加此次学术会议的单位不少,但受制于当时的科研条件,国内有条件开展光散射研究的大学和研究单位毕竟比较少,能提供研究论文的单位并不多。在南开,有很多位老师从事过光散射的研究,力量非常之强,据了解到的,还有陈文驹、陈亭、张春平、刘思敏等多位老师,涉及多种材料。例如,非线性光学晶体偏硼酸钡、钽酸锌锂、铌酸锂和钽酸锂等,关注压力、温度对晶体结构的影响;利用拉曼光谱研究晶体中的电磁激元、铁电性质、铁弹性质,缺陷和非晶化过程等;随着表面增强效应的发现,我校也开展了表面增强光谱的研究,首次观察了吸附于银胶体表面的邻菲啰啉等分子的表面增强拉曼光谱。在从事光散射研究的几十年过程中,蓝国祥教授对待研究生宽严相济,以身作则,学生深刻体会到研究者应该具备的素养和追求。蓝先生带领组内老师和学生,在国内外学术期刊上发表论文百余篇,取得了丰硕的成果。非线性光学晶体的拉曼光谱一直是南开固体教研室关注的重点。对于铌酸锂和钽酸锂的光谱研究非常细致深入,取得一些重要的结果。铌酸锂和钽酸锂室温下是铁电晶体,属于三角晶系的单轴晶体。为获得钽酸锂晶体的异常声子的色散,在蓝先生的指导下,老师和学生精心设计实验方案,共制备11个不同取向的样品,用来获得波矢与光轴成不同夹角的光谱。由于钽酸锂和铌酸锂的折射率约2.1左右,所以表面反射率高达14%。为了消除内反射光引起的附加散射,在样品的表面上镀了增透膜(SiO2)。经过细致的实验测试和严谨的理论分析,获得了钽酸锂晶体的全部13个异常声子,也对之前相关研究报道中的疑点进行了澄清;通过分析测试钽酸锂晶体的变温拉曼光谱,结合中子衍射的晶体结构数据,做出了钽酸锂的铁电相变是有序-无序型的推论,并用结构相变的先兆丛团理论给予解释。20世纪80年代我国的紫外非线性光学晶体的研制得到了飞速发展,例如偏硼酸钡(BBO)、三硼酸锂(LBO)以及三硼酸铯锂(CLBO)等。蓝国祥教授带领课题组的师生对这些晶体的室温、低温以及高压下的光谱进行了较为全面的研究,利用层状和阴离子基团模型,并结合群论和理论计算分析对晶体的外振动、内振动以及阴离子基团的特征振动谱进行了识别和确认。BBO晶体单晶高压拉曼光谱的研究表明了在50 Kbar的压力下拉曼光谱发生突变,预示着存在由压力导致的结构相变。获得非晶材料的传统方法有多种,如熔体急冷,蒸发沉积和离子注入等。上世纪90年代,蓝国祥教授研究组开始利用拉曼光谱进行晶态物质在高压下非晶化转变的研究,先后研究了硼酸盐(硼酸钡、硼酸锂),锗酸盐(锗酸铅、锗酸锂、锗酸铜),以及铌酸锂、钽酸锂等晶体的高压拉曼光谱,在原子水平上研究了这些晶体的非晶态转变机制。对于硼酸盐而言,是由于硼酸基团被破坏,导致结构发生塌缩,由晶态变成非晶态。课题组另外的一项重要工作是有关碳材料的制备和拉曼光谱研究,包括石墨、石墨插入化合物,C60碱金属插入化合物,碳纳米管等。其中一个非常重要和难度很大的问题是单壁碳纳米管的呼吸模谱峰的认定。因为呼吸模的频率与碳管的直径密切相关,困难的原因在于样品中碳管的直径和类型不是单一的;另外,用可见和近红外光激发的单壁碳纳米管拉曼光谱中存在共振散射效应,使得谱峰数目较多且随激发光波长而变化,所以将这些谱峰归属于何种碳管不是显而易见的。为了进行这种认定,我们计算了一系列碳管的电子态密度、呼吸模的频率,并考虑到双共振增强效应,建立了一个图表法,可以对单壁碳纳米管光谱中的呼吸模特征峰进行指认。这种指认包括管子类型的确定,是金属的还是半导体的,是扶手椅管、锯齿管还是一般的手性管,当然也可确定碳管的直径和指数。SPEX 1403 激光拉曼光谱仪(小图:实验室自制的碳纳米管制备装置)为了给研究生开展晶格振动光谱研究打好基础,张光寅先生率先开设了晶格振动光谱课程,并编写了讲义,两年后由蓝国祥先生接替讲授晶格振动光谱学直到退休。这本讲义经过多年的教学积累和反复修改,著成《晶格振动光谱学》一书,由高等教育出版社出版。该本书先后发行了两版,成为教育部研究生教学的推荐用书。无论是科学研究还是教书育人,先生对中国光散射事业的发展都做出很大的贡献。从第一届厦门光散射会议开始直到退休前的第十一届,没有错过一届会议;从第二届光散射会议开始担任光散射专业委员会副主任;退休前一直担任《光散射学报》副主编,全心全力支持学报的发展。80年代国内很多学校科研单位都购置了Spex系列的谱仪,南京大学物理系也有一台Spex激光光谱仪,在使用过程中缺少了一个小部件,张明生老师就向南开大学物理系借用这个部件。考虑到我们这个部件休置不用,就送给南京大学。这也是先生一直秉承的理念:兄弟院校之间和同行之间要有相互帮助和团结的精神,不要彼此拆台闹予盾。参加1999年8月第十届全国光散射学术会议师生合影留念(长春)先生退休多年,留给我们后辈做人做学问的精神一直在,激励我们前行!文中所述纯属个人点滴所见,不当之处,欢迎斧正!作者:南开大学物理学科学院 王玉芳教授
  • 光散射学术盛宴圆满落幕 2021长春再相聚——第二十届全国光散射学术会议闭幕
    仪器信息网讯 2019年11月3-5日,由中国物理学会光散射专业委员会主办,苏州大学、厦门大学承办的第二十届全国光散射学术会议(CNCLS20)在苏州同里湖大饭店召开,参会人数超600人,会议规模创历届之最。  大会最后一天下午,吉林大学刘冰冰教授、新加坡南洋理工大学于霆教授、厦门大学任斌教授分别带来了精彩的大会报告。大会报告环节由中山大学陈建教授、吉林大学赵冰教授分别主持。报告人:吉林大学 刘冰冰教授报告题目:高压下限域碳材料的新结构和新性质  吉林大学刘冰冰教授围绕新型碳纳米材料、半导体纳米材料等蕴含超硬、发光、超导性质的典型纳米体系在超高压下结构相变和物理性质的变化规律等方面开展了深入系统的研究工作,报告中其详细介绍了高压下限域碳材料的新结构和新性质。报告人:新加坡南洋理工大学 于霆教授报告题目:Light-matter Interaction in 2D Materials:from Graphene to Transition Metal Dichalcogenides  新加坡南洋理工大学于霆教授长期致力于碳纳米材料、纳米金属氧化物及其复合物等方面的研究工作,特别是在石墨烯和其他二维材料的研究方面取得了突出的成绩。本次报告中,于霆教授介绍了其利用拉曼和荧光手段进行的一系列二维材料体系相关的研究工作。报告人:厦门大学 任斌教授报告题目:表面等离激元增强拉曼光谱:现状和机遇  厦门大学任斌教授的报告从SERS增强的物理本源讲起,系统介绍了表面等离激元增强拉曼光谱的现状和机遇。其报告内容涵盖了:SERS技术中LSPR对SERS谱峰相对强度的影响 SERS的直接检测与间接检测方法 PERS技术研究电化学的表面和界面过程 高灵敏的电化学原位暗场光谱技术及电化学针尖增强拉曼光谱(EC-TERS)等。  一场完美的学术盛宴,一定有一个美好的结束。三个精彩的大会报告之后,CNCLS20也进入了颁奖和闭幕式时刻,该环节由厦门大学任斌教授主持。中科院半导体所谭平恒研究员宣布青年优秀论文奖获奖名单(共5位,该奖项由HORIBA赞助)青年优秀论文奖获奖者与颁奖嘉宾合影苏州大学姚建林教授宣布优秀墙报奖获奖名单(共17位,该奖项由爱丁堡仪器赞助)优秀墙报奖获获奖者与颁奖嘉宾合影  光散射专业委员会有一个优良的传统,老一辈的专家对年轻学者非常支持。在闭幕式的环节中,德国维尔茨堡大学Wolfgang Kiefer教授、北京大学张树霖教授、苏州大学顾仁敖教授等资深专家分别致辞。各位专家在致辞中回顾了中国光散射学术会议的发展历程,并分享了其中让人难忘的点点滴滴。在肯定中国光散射领域所取得成绩的同时,大家也对年轻一代提出了殷切的期望。德国维尔茨堡大学Wolfgang Kiefer教授致辞北京大学张树霖教授致辞苏州大学顾仁敖教授致辞  北京大学张树霖教授说,虽然近代中国的自然科学是落后的,但是拉曼光谱学在国际上却是领先的。其强调,拉曼光谱是自然科学,做科学就要弄清楚科学的基础,研究的方法也一定要科学,一定要实事求;苏州大学顾仁敖教授回顾了其16届参会经历和感受,他说,光散射会议有很多优良传统,大家开会都很认真,讨论也很积极,到会率也很高,这个传统一定要保持。另外,顾仁敖教授对本次会议给出了很高的评价,他说光散射会议的规模逐年扩大,这也代表了我国光散射行业兴旺发展的趋势。中山大学陈建教授进行会议总结  据介绍,本次600余名参会代表的地区涵盖了6个国家,18个省,4个直辖市,3个自治区,1个特别行政区。大会共收到论文摘要280余篇,开展了6场大会报告、44场分会邀请报告、58场分会口头报告、9场仪器展商报告,展出了181份墙报,并评出了5位青年优秀论文奖,17位优秀墙报奖。  陈建教授说,这是一次学术氛围非常浓厚的大会,也是一次团结的大会,最终必然是一次非常成功的大会。本次会议无论在学术水准、办会水平,还是参会规模方面都创造了历届之最。总结中,陈建教授还对会务组的辛勤付出表示了特别的感谢!会议主席:苏州大学姚建林教授、厦门大学任斌教授,共同宣布CNCLS20闭幕。  3天的时间,大家脚步匆匆穿梭于各会场中间,收获了很多,也成长了很多。相聚是美好的,但也是短暂的,不过每一个美好的结束,也都意味着另一个美好的开始。闭幕式结束之后,会议也宣布:第三届生物医学拉曼光谱学术会议将由华中农业大学承办(2020年11月6-8日,武汉),第二十一届全国光散射学术会议将由吉林大学和北京理工大学联合承办(2021年8月中下旬,长春)。第三届生物医学拉曼光谱学术会议承办方华中农业大学韩鹤友教授给出了去武汉参会的“6大理由”受吉林大学刘冰冰教授委托,北京理工大学张韫宏教授代表第二十一届全国光散射学术会议承办方进行长春及吉林大学的相关介绍志愿者合影
  • 超越光散射技术界限,东曹在JASIS2019上发布多角度光散射检测器新品
    2019年9月4日-6日,日本最大规模的分析仪器展JASIS 2019在东京幕张国际展览中心盛大开幕。展会为期三天,吸引来自全球各地的万余名观众参观出席。东曹公司近年来瞄准全球生物制药行业,针对性地上市了多款新品,均在本次展会上展出。 东曹海外市场部的今泉惠子女士接受了仪器信息网的采访,向观众介绍了本次参展的新品及公司未来发展的重点领域等内容。 JASIS上的东曹展台 东曹海外市场部今泉惠子女士接受仪器信息网采访 仪器信息网:此次展会,东曹展出了哪些新品或重要产品?它们有哪些创新之处? 今泉惠子:这次展出了我司首台多角度光散射检测器LenS3。多角度光散射检测器与凝胶渗透色谱仪联用,可以用来测量合成聚合物、蛋白质、多糖等生物大分子的绝对分子量和分子尺寸。东曹公司开发的多角度光散射检测器LenS3,采用了独有的光学专利光路设计与计算方法,解决了其他同类产品无法检测低分子物质的绝对分子量和回转半径这一难点。举例来说,LenS3可以精确测量分子量500的聚苯乙烯的绝对分子量、10nm以下聚苯乙烯的回转半径。并且,该款仪器具有超高的灵敏度,不仅可以检测纳克级别的物质,也非常适用于生物样品这样的微量检测。 我司在去年上市了第八代高速凝胶渗透色谱仪8420GPC,将8420GPC与LenS3联用,将给用户带来一种超越现有检测技术界限的革新的解决方案。并且,LenS3也可以用来检测像抗体药物、疫苗这类的生物制品。我司深信,我们能为客户提供高品质的分子量测试解决方案,助力客户在产品开发和品质管理方面的工作。 这款多角度光散射检测器现已在美国上市,受到了行业专业用户的广泛关注。预计明年在日本、中国上市,敬请期待。 仪器信息网:请介绍2019年截至目前,东曹公司较为重大的举措及取得的代表性成绩。 今泉惠子:截至2019年3月的财年结束,东曹集团全年净销售额达到8,615亿日元(合82亿美元)。虽然生命科学事业部的业绩没有单独公式,但全年的销售也保持了稳健增长。尤其是去年上市的8420GPC、与生物制药相关的层析填料、液相色谱柱产品,业绩表现都非常好。今年,我司面向生物制药领域上市了两款新产品。其中之一是可以基于抗体药物的ADCC活性来分离抗体的新型亲和色谱柱TSKgel FcR-ⅢA-NPR。此款色谱柱上市后在全球范围内大获好评。接下来我司将会继续通过举办技术研讨会等多种形式来向广大用户介绍这款产品。 仪器信息网:以东曹的观察,哪些地区、细分应用领域会出现新的市场机会?针对这些领域的用户,东曹相比于竞争对手的核心优势是什么? 今泉惠子:正如我去年接受仪器信息网采访时说的那样,亚洲,特别是中国地区是东曹最重要的市场,十多年前东曹就在上海设立了负责产品销售和技术服务的子公司,拥有专业的销售和技术团队。除了对应仪器的安装调试、维修维护以外,还可以向客户提供委托分析、仪器培训等技术服务,受到中国用户的好评。 另外,中国生物科技正在快速发展,已经涌现出众多具有先进技术的生物制药相关企业。我们不仅向中国客户销售性能优良的产品,也非常重视对客户的售前和售后技术支持,推动并帮助客户开发和生产新产品。同时,我们在中国地区举办过多场技术研讨会、日本总部的技术专家也会出席这样的学习会,来更多地与中国客户进行交流,听取他们对产品以及应用开发方面的意见和建议。今后东曹仍将以满足中国客户的需求为目标,进一步完善我们的销售和技术服务工作。详细内容,请点击以下现场采访视频进行观看:https://www.instrument.com.cn/news/20190911/493127.shtml新型AFC色谱柱TSKgel FcR-ⅢA-NPR TOYOPEARL® 层析填料和Ca++Pure-HA羟基磷灰石填料
  • 从问题出发 拉曼光谱仪器成果凸显 —— 第二十二届全国光散射学术会议报告集锦
    仪器信息网讯 2023年9月23日,由中国物理学会光散射专业委员会主办、河南大学承办、陕西师范大学协办的第二十二届全国光散射学术会议在河南开封召开。此次会议邀请了国内外光散射,以及相关光谱原理和技术领域的诸多知名专家学者,共同探讨光散射领域的最新研究成果和发展趋势,吸引了近500人注册参会。值得一提的是,为了解决科研和实际应用中的难题,多位专家在仪器技术开发方面做了系列探索,并产出了相关的成果,吸引参会代表关注。部分报告内容分享如下:中国科学院半导体研究所 谭平恒研究员《显微共焦拉曼光谱模块及其应用》现场仪器展示:显微共焦拉曼光谱模块鉴于市场上显微共焦拉曼光谱仪的昂贵价格,是否能设计一套显微共焦拉曼光谱测量模块,可与任何光谱仪耦合成一套成本低、操作简便、光路布置合理以及后期升级方便的多功能显微共焦光谱仪是众多研究者迫切盼望的事情。22日的会前特邀讲座环节,中国科学院半导体研究所谭平恒研究员分享了其课题组的仪器成果,并在会议同期做了仪器展示。据介绍,在近25年拉曼光谱研究经验基础上,谭平恒研究员的课题组成功研制了显微共焦光谱测量模块,连续多年入选《中国科学院自主研制科学仪器》产品名录,可以实现从拉曼光谱仪到布里渊光谱仪耦合,从高信号透过率到低波数信号测量,从近红外激光到深紫外激光激发,从光栅光谱仪到光纤光谱仪耦合,从高温热台到极低温恒温器应用,从光谱多信号出口到高性价比多功能集成与升级方案,从实验室照明状态下调试和测试到超低背景噪声光谱实现等功能。中国科学院上海微系统与信息技术研究所 陈昌研究员《芯片级拉曼光谱仪的机遇与挑战》微型拉曼光谱仪使拉曼技术在更广泛的无损快速检测场景中得以应用。陈昌研究员在报告中从原理、小型化、应用等方面对色散型光栅光谱仪、迈克尔逊干涉光谱仪、空间外差干涉光谱仪等的优缺点进行了分析,并详细介绍了微型化、高性能拉曼光谱仪面临的挑战,包括高通量、高光谱分辨率等。为了攻克难题,陈昌研究员的实验室汇聚了8大类30多台拉曼光谱仪。经过课题攻关 ,其课题组开发了芯片级的空间外差拉曼光谱仪。据介绍,该产品核心部件轻于1克,实现了若干个物质的拉曼光谱重构。北京理工大学 崔晗教授《激光空间偏移/差动共焦拉曼光谱技术及应用》传统拉曼光谱技术的探测深度只有几百微米,仅可用于样品表层信息的探测,而空间偏移拉曼光谱(SORS)技术通过收集离激发光轴有一定偏移量的轴外拉曼光谱,可实现样品内部深层信息的探测。北京理工大学崔晗教授课题组提出了一种将空间偏移拉曼光谱技术与空间外差光谱技术(SHS)相结合的空间偏移外差拉曼光谱(SHORS)的方法,以对现有空间偏移拉曼光谱技术的性能进行改善。与采用光栅色散型光谱仪的空间偏移拉曼光谱技术相比,空间偏移外差拉曼光谱技术将系统的灵敏度提高了约一个数量级,为其在生物医学、地质考古等领域的进一步应用提供了技术途径。不仅如此,该课题组还基于差动共焦定焦技术构建了系列差动共焦拉曼光谱仪,实现了微区三维几何形貌和光谱信息的同步原位探测,提高了系统定焦能力,改善了系统抗漂移能力。除了以上的报告之外,还有很多老师分享了在拉曼光谱仪器技术、方法开发方面所做的系列工作,如力学拉曼光谱、紫外共振拉曼光谱、原位高温拉曼光谱、时间门控拉曼光谱等。24日,雷尼绍、牛津仪器、赛默飞、天美仪拓、光谱时代、HORIBA、长光辰英、鉴知技术等仪器企业也将分享最新的产品和技术。为期3天的报告还在继续,相关的新技术新成果精彩纷呈,鉴于篇幅的原因不能一一描述,仪器信息网也将给大家持续分享会议的精彩内容,敬请期待!
  • 高分子表征技术专题——光散射技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!光散射技术在高分子表征研究中的应用Laser Light Scattering and Its Applications in Polymer Characterization作者:郑萃,刘芷君,梁德海 作者机构:中国石化北京化工研究院,北京,100013 北京大学化学与分子工程学院,北京,100871作者简介:梁德海,男,1971年生. 1994年获南开大学环境科学系理学学士,同年进入南开大学化学系攻读硕士. 2001年在美国纽约州立大学石溪分校获得理学博士学位,并留任博士后. 2006年加入北京大学化学与分子工程学院高分子科学与工程系,任副教授;2012年任教授. 2011年得到教育部新世纪优秀人才计划的支持,2015获得Elsevier第九届冯新德高分子奖最佳文章奖. 研究方向为高分子溶液物理,主要项目包括:基于生物大分子的非平衡态原始细胞模型的构筑及动态行为研究;多肽诱导脂质体膜内吞及外吐机理研究;大分子拥挤及限制作用的定量化研究.摘要光散射技术是高分子领域中重要的表征手段之一. 静态光散射和动态光散射的结合能够获得丰富的关于高分子的信息,如重均分子量、回转半径、第二维里系数、流体力学半径、尺寸分布、分子链构象等. 除合成高分子外,光散射技术同样适用于研究生物大分子、微生物、胶体、纳米粒子、病毒、囊泡等在溶液或悬浮液中的行为. 本综述重点介绍稀溶液中静态光散射和动态光散射的历史、基本理论和实验技巧. 对于浓溶液适用的交叉相关技术和扩散波谱技术以及固体光散射也做简要介绍. 为了帮助初学者更好地理解并掌握光散射技术,综述的最后介绍了4个应用实例:动、静态光散射相结合跟踪研究线团到密实球的转变过程,光散射确定超支化分子的标度关系,时间可分辨的光散射来剖析聚合诱导胶束化的机理,以及去偏振动态光散射研究纳米粒子在生物介质中的聚集行为.AbstractLaser light scattering (LLS), which includes static light scattering (SLS) and dynamic light scattering (DLS), has been widely applied in characterization of polymer samples in dilute solutions. SLS measures the angular dependence of the excess scattered intensity, from which the weight average molecular weight, radius of gyration, and second viral coefficient are obtained. DLS measures the intensity-intensity time correlation functions, from which the hydrodynamic radius and size distribution are obtained. The combination of SLS and DLS enables information on chain conformation. Beside synthetic polymers, LLS is also suitable for the solutions and suspensions of biopolymers, microbial, colloids, nanoparticles, virus, and vesicles. The history, theory, and experimental techniques of SLS and DLS specific for dilute solutions are summarized. In recent years, the cross-correlation techniques, diffusing wave spectroscopy, and other related techniques have been developed to expand LLS to study samples in semi-dilute and even concentrated solutions. These techniques, as well as solid light scattering, are also briefly introduced in this review. In the last, we provide four typical examples of light scattering experiments: the coil-to-globule transition as studied by the combination of SLS and DLS, the scaling of hyperbranched polymers as determined by LLS, the polymerization-induced micellization process as monitored by time-resolved LLS, and the aggregation of nanoparticles in biological media as investigated by depolarized DLS.关键词光散射  高分子表征  分子量  回转半径  相关函数KeywordsLaser light scattering  Polymer characterization  Molecular weight  Radius of gyration  Correlation function 1光散射技术的发展简史人们对光散射的认识最早可以追溯到1869年著名的丁达尔(Tyndall)凝胶散射实验. 1871年,瑞利对空气中的光散射现象进行了理论研究[1],推导出了球形粒子的散射公式,解释了晴空蓝和夕阳红的成因[2]. 之后,德拜(Debye)和甘(Gans)分别把瑞利的散射理论拓展到了非球形粒子[3] 和大尺寸的粒子[4],完善了气体中粒子的光散射理论.在液体等凝聚相(condensed phase)中,散射强度的实测值通常比瑞利理论的预测值小一个数量级以上,这是由散射波的相消干涉造成的. 针对这种现象,斯莫鲁霍夫斯基(Smoluchowski)和爱因斯坦(Einstein)[5]从密度涨落的角度出发,提出了光散射的涨落理论(fluctuation theory of light scattering),极大地拓展了光散射的应用范围. 1940年前后,德拜和齐姆(Zimm)将涨落理论与溶液中的高分子表征相结合,实现了光散射对高分子的分子量、分子尺寸、分子形状和分子间相互作用的测量[6].静态光散射(static lightscattering, SLS)也称为弹性光散射,是指不考虑散射波长(或能量)变化的光散射. 1914年,布里渊(Brillouin)预测固体中热声波的散射光频率会出现双峰分布,后被实验所证实,从而开启了人们对准弹性光散射,即动态光散射(dynamic light scattering, DLS)的研究. 由于对光源单色性的苛求,动态光散射技术直到1960年前后激光光源趋于成熟之后,才得到了较好的发展. 1964年,佩科拉(Pecora)[7]利用高分子溶液中散射光的频率变化,计算出了高分子的扩散系数,并得到了高分子的流体力学半径、链柔顺性等信息.当溶液中粒子的浓度增加到一定程度时,就会发生多重散射,即散射光再次或多次与粒子发生作用. 这种浓度下溶液的光散射理论较为复杂. 近年来,科学家们针对这类体系设计了许多特殊的方法或仪器,如折射率匹配法(1991年)[8],微样品池法(1998年)[9,10]、光纤准弹性散射法(fiber optical quasi elastic light scattering, FOQELS,1991年)[11,12]、时间交叉相关法(1981年)[13]、3D交叉相关法(1999年)[14]、互相关法(1997年)[15]等. 2006年,得益于电荷耦合器件(charge coupled device,CCD)以及计算机的发展,基于光斑(speckles)的互相关法得到了实质性发展[16],得以对亚浓溶液或浓溶液进行较为深入的研究. 当溶液体系达到浑浊状态时,极其严重的多重散射使得光在体系中的行进可以按扩散过程来处理,扩散波谱(diffusing wave spectroscopy, DWS)理论应运而生[17],基于该理论的技术可适用于多种不同的浑浊体系.固体介质中也存在光散射现象,但在原理和应用等方面与溶液中的光散射都有很大差别. 固体中很容易产生严重的多重散射,且固体表界面的强烈散射常会对内部的散射造成严重干扰,这些都使得固体的光散射结果难以解读. 早在1922年,布里渊[18]就用光散射对固体振动进行了研究,但这不是严格意义的弹性光散射. 1960年斯坦因(Stein)[19]优化了垂直偏振光散射方法,极大地简化了散射结果,使得固体光散射在测定聚合物的链取向和晶体结构的研究中得到广泛应用[20,21].2光散射原理2.1气体光散射光的本质是电磁波,含有周期变化的电场E. 原子或分子在电场作用下会发生极化,强度与极化率α相关. 原子在周期性变化的电场中会被周期性地极化,从而转变为一个次级光源,向周围发射同频率的电磁波,即散射光(图1).Fig. 1Scattered light generated by a scatterer as it is induced to be an oscillating dipole in the incident beam. θ is the scattering angle, and the inset shows the angular dependence of the scattered light from small particles, such as atoms or molecules. The polarization of incident beam is not considered.单原子产生的散射光强Is由原子的极化率α和入射光波长λ决定. 另外,在空间某点测定的散射光强还与观测点到散射点的距离r有关. 1871年,瑞利推导出如下的散射公式:其中I0为入射光强度. 单个原子、分子和粒子在空气中的散射光强都可以用公式(1)描述. 对于多粒子体系,可表示为体积V中存在N个散射粒子,如果粒子尺寸小(半径小于入射光波长的1/20),且数目较少,粒子之间的散射光不发生干涉,散射光强可表示为:公式(2)表明,散射光强度与波长的4次方成反比,波长短的蓝色光的散射明显强于波长更长的红色光,因此天空在阳光的照耀下显示为蓝色.2.2溶液光散射光散射技术在溶液体系中具有非常广泛的应用. 在稀溶液中,利用静态光散射技术能够测定散射粒子的绝对分子量M、回转半径Rg、第二维里(Virial)系数A2等信息;利用动态光散射技术能够测定散射粒子的流体力学半径Rh及其分布等信息. 光散射技术在亚浓溶液或浓溶液中也发挥了重要作用,但该类体系中的多重散射使得散射理论变得十分复杂. 本文重点介绍稀溶液中的光散射理论,对非稀溶液体系的散射理论只做简要介绍.2.2.1稀溶液中的静态光散射在稀溶液中,根据Clausius-Mossoti公式,可将难以测量的极化率α转化容易测量的折光指数n:其中n0是纯溶剂的折光指数,M为粒子的绝对分子量,NA为阿伏伽德罗(Avogadro)常数,c (=MN/VNA)为质量浓度. 值得一提的是dn/dc, 即溶液折光指数n对溶液质量浓度c的导数,称为折光指数增量,可以用专有仪器测定,或是从相关手册[22]中查到. 当dn/dc = 0时,预示体系中测不到反映溶质结构信息的光散射信号.对于dn/dc ≠0的单组分体系,将公式(3)代入(2)中,可得到瑞利散射公式:其中H称为光学常数,R为瑞利比.忽略由溶剂自身密度涨落引起的散射. 根据涨落理论,散射光强I仅与光学常数H、质量浓度c和渗透压π相关,并遵循如下的关系式:根据van’t Hoff关系式:其中,M为溶液中粒子的绝对分子质量,A2为第二维里系数,用来定量描述溶剂-溶质之间的相互作用. 将公式(6)代入(5)中,可以得到:式(7)中只有2个未知数M和A2. 理论上只要测量2个不同浓度溶液的散射光强I,就可以计算得到粒子的绝对分子量M和第二维里系数A2. 但是,由于每一台光散射仪的探测器面积和探测器到样品的距离都可能不同,激光束的粗细和样品池的大小也可能存在差异,因此对于同一个样品,每台光散射仪得到的信号都可能是不同的. 仪器测得的光强,必须要转化为绝对散射光强,才可以进行下一步的计算. 在实际操作中,常用瑞利比R代替I,并考虑以下这些影响因素:第一步,偏振校正. 取决于样品的性质,散射光的偏振方向会发生变化,且会影响散射光强的大小. 偏振的校正较复杂[23]. 目前绝大多数光散射仪均使用了VV偏振散射设计,即入射光与观测的散射光都是垂直(vertical)偏振的,相应的散射光强标记为Rvv.第二步,散射体积校正. 常见的散射仪器一般用小孔和狭缝来限制检测器接收的散射光. 激光束中被小孔或狭缝截留的光路在空间中所占的体积称为散射体积(图2). 对于同一个体系,散射体积越大,测得的散射光越强. 在激光光束和小孔或狭缝固定的情况下,散射体积与散射角θ (入射光矢量与散射光矢量的夹角)存在sinθ的定量关系. 因此在静态光散射实验中,在θ角测定的散射光强需要进行sinθ的校正.Fig. 2Geometry of a typical laser light scattering setup (top view).第三步,净剩光强校正. 公式(7)中的光强是散射粒子自身的光强,在溶液中又称净剩光强,即溶液的散射光强Isolution减去溶剂的散射光强Isolvent.在实验中,以瑞利比Rvv已知的标准溶剂为参照,在同一台散射仪器上进行样品的测量是最常用的做法. 例如温度为T时,样品在θ角的瑞利比RTθ 通过以下公式得到:其中ITθ、RTθ、nT为样品在温度T下的净剩光强、瑞利比和折光指数,I25θ,standard、R25θ,standard和n25standard分别为标准溶剂在25 oC的散射光强、瑞利比和折光指数,也可以选用其他温度的配套数值. 当样品溶液和标准试剂的折光指数不同时,也需要进行校正. 狭缝和小孔所对应的指数分别为1和2. 甲苯是目前最常用的标准试剂,25 °C和632.8 nm波长下的瑞利比为8.70×10-6 cm-1. 甲苯与苯在不同波长和温度下的瑞利比可以从参考文献中查阅[24,25].将散射光强用瑞利比表示后,公式(7)可改写为:公式(9)适用于描述小粒子(尺寸小于波长的1/20)在溶液中的散射行为. 通常测量多个浓度下的Rvv值,将Hc/Rvv对c作图,从拟合直线的截距和斜率中分别求得M和A2值.当高分子的尺寸较大时,同一高分子内部不同重复单元的散射光会发生干涉现象,从而导致散射光强出现了散射角度的依赖性(图3). 从光强角度依赖性数据可以反推粒子的尺寸和形状. 具体做法是在公式(9)的基础上,引入与散射角度相关的形状因子(form factor)P,其中包含了粒子的尺寸和结构信息.Fig. 3Interference pattern of light scattered from two segments in a large particle or polymer chain. The inset shows the angular dependence of the scattered light.在光散射中,习惯上使用散射矢量q表示散射角. 散射矢量q定义为散射光波矢量与入射光波矢量的差. q与散射角度θ之间的数值关系为[24]:由式(10)可知,散射矢量q的单位为长度的倒数. 在波长和溶液体系固定的前提下,q是由散射角θ决定的变量,此时形状因子可相应地记为P(q). 经P(q)修正后的散射光强公式为[23]:对于小粒子而言,P(q) = 1,与散射角度无关.用回转半径Rg来描述高分子的尺寸,当qRg 1时,不同形状粒子的P(q)存在较大差别[23,26].回转半径为Rg的无规高分子线团:半径为R的均匀实心球:半径为R的空心薄球壳:半径为R的薄圆盘:其中J1为一阶贝塞尔函数.长度为L的细圆柱:其中Si(x)为sinus积分函数:通过测定待研究体系的形状因子P(q),并与标准体系进行对比,就能够判断粒子的构象并确定其特征尺寸参数. 当体系浓度足够小,2A2c一项相对于1/MP(q)可以忽略时,公式(11)可转化为:即:在公式(22)中,M/Hc是与散射角θ或散射矢量q无关的量. 因此,测定各个散射角度下的Rvv,用零角度的数值归一化,再对q作图就得到了P(q)曲线. 为了提高用P(q)确定体系构象的准确性,尽量选用窄分布的样品,并在测定时覆盖尽可能宽的散射角度.利用静态光散射来测定共聚物比均聚物要复杂很多. 由公式(4)可知,决定体系散射性能及强度的内在因素是dn/dc. 共聚物等体系包含有2种或2种以上的组分. 当这些组分的(dn/dc)不同时,散射方程将急剧地复杂化. 以AB两嵌段共聚物为例,体系总的(dn/dc)AB = wA(dn/d
  • 动态光散射技术入门及仪器采购指南
    作者:马尔文仪器公司纳米颗粒及分子鉴定产品营销经理 Stephen Ball   动态光散射(DLS)是一项用于蛋白质、胶体和分散体的极具价值的粒度测量技术,其应用范围可轻松扩展到1 nm以下。本文中,马尔文仪器公司产品营销经理Stephen Ball将向您介绍DLS的工作原理,并就购买光散射系统时的关注事项为您并提供一些专业建议。   通过观察散射光,可以测定粒子分散体系或分子溶液的特性,如粒度、分子量和zeta电位。光散射系统充分挖掘利用这些特性之间关联,并在近几十年间经过不断完善,目前已经能为常规实验室应用提供高度自动化的检测。利用光散射仪器的检测快速而高效,可用来表征分散体系、胶体和蛋白质。   理论上,光散射仪器中使用的各种技术看起来可能很相似,但它们的功能和检测结果却在实际应用中千差万别,从而对仪器的寿命期价值产生显著影响。光散射系统中的组件和设计的差异也会导致数据质量及仪器适用范围产生很大的差异。例如,某些光散射系统可通过测量蛋白质电泳迁移率对蛋白质电荷以及粒度进行测定,从而成为生物制药应用中高效的选择方案。   撰写本文的目的在于为考虑采用动态光散射DLS技术的读者提供一个入门指南。本文将考察DLS的主要用途、应用领域,尤其会侧重系统设计中对于特定性能的重要性,从而为那些正为自身需求而关注DLS技术的用户提供背景信息和理论支持。   了解基本知识   当我们要开始对一种新的分析技术进行评估时,第一个重要步骤就是要了解它的基本工作原理。DLS的优势之一是它操作非常简单,而这直接源于它的测量原理。   由于热能,溶剂分子不断运动,和悬浮的颗粒物产生碰撞,使得分散体或溶液中的小颗粒做无规则的布朗运动。可以通过观测散射光随时间的波动性得到颗粒布朗运动的速度,这种技术被称为光子相关光谱法(PCS)或准弹性光散射法(QELS),但现在通常称作动态光散射法(DLS)。   斯托克斯 - 爱因斯坦方程定义了颗粒布朗运动速度与颗粒大小之间的关系:      其中,D = 扩散速度, k = 波尔兹曼常数,T = 绝对温度,h = 粘度,DH = 流体力学直径   上述关系式清楚地表示了在样品温度和连续相粘度已知的情况下,如何根据扩散速度测定粒径。尽管必须是控制检测温度,但很多商用仪器还是会对温度进行测量 而对于许多分散剂,尤其是水而言,粘度是已知的。在很多情况下,DLS实验所需的补充信息也仅仅是粘度测量。   DLS的优势   DLS固有的操作简便性意味着操作者无需具备很强的专业知识就能得到详尽而有用的数据,这个优点在最新的高度自动化系统中表现得尤为明显&mdash &mdash 一般分析只需要几秒钟的时间,并且分散剂的选择余地比较大,不管是水性还是非水性的,只要它们呈透明状并且不太粘稠,就都可以使用。这种测试方法所需的样品量也很小,最少时只需要几微升即可,这一点对于涉及宝贵的样品的早期研究而言是极具吸引力的。   实际上,DLS法在测量0.1 nm ~ 10 µ m范围的粒径时十分出色。它在测量小颗粒方面的能力尤为突出,对于绝大多数待测体系提供2nm及以上的准确、可重复的数据。从理论上讲,检测低密度分子的粒径仅仅受到仪器灵敏度的限制,但对致密颗粒而言,沉降是可能导致分析不准确的一个潜在问题。例如,对于密度为10g/ml的颗粒,最大检测粒径通常会限制在大约100nm以内。   无论是稀释样品还是混浊样品都可以用DLS法来进行测量,可分析的浓度范围最低可至0.1ppm,最高可达40%w/v。不过,由于样品浓度会大大影响其外观尺寸,因此当粒子含量较高时对样品的制备需要加倍小心。   上述适用的粒径和浓度范围以及该测量技术的高重现性(粒径20nm时可达到+/- 0.1nm),使得DLS这种测量方法具有广泛的适用性。比如,它特别适合检测平均粒径的细微变化,这种变化可能会反映出胶体样品的稳定性 它也可以测得少量聚集体的出现。上述这些现象很有可能是某种样本解体的前兆,当用于药物的蛋白质研究时,这类情况的出现有可能对药物性能产生不利甚至有害的影响。   DLS法的局限性   DLS方法的大多数局限性可以或已经通过对实验操作过程进行改进,或对DLS技术进行改进来加以克服 但在区分仪器类型,尤其是对于那些要求异常苛刻的应用而言,它的局限性仍然值得我们加以关注。一般来说,DLS使用过程中遇到的大多数问题是出于以下原因:   &diams 存在较大的颗粒   超出仪器最高量程范围的颗粒应该事先被过滤掉。或者,如果大颗粒的存在量极少也可以通过软件进行处理。   &diams 沉淀   这种现象在较为致密的颗粒中尤其比较容易出现。提高分散液密度是比较有效的抑制方法(比如在系统中加入蔗糖),但这种方法仅适用于密度不高于1.05 g/ml的样品体系。   &diams 分辨率较低   DLS不属于高分辨率的技术。当样品的粒度分布排列十分密集,且存在三种以上的粒度分布差异时,DLS 将无法对多重分散样品进行精确表征。在这种情况下,建议最好在测量之前对样品进行分离 而在测量方法上,则需要将DLS与制备技术如凝胶渗透法或尺寸排除色谱法(GPC / SEC)和(或)流场分离技术(FFF)联合使用。   &diams 多重光散射   多重散射是指从一个颗粒发出的散射光在到达探测器之前又会被其它粒子再次散射,在较致密的样品中,这种现象会使粒径计算的精确度受到影响。背散射检测器以大于90° 的角度进行测量,大大抑制了这一现象,从而扩大了该技术的测量范围。   &diams 分散剂的选择   虽然大多数分散剂都适用于DLS,但如果分散剂粘度大于100mPa.s,往往会影响测量的可靠性,另外分散剂对光的吸收也会对检测产生干扰。比如有色样品的散射光强度可能会有所降低。一种可行的解决方案是根据系统的灵敏度,采用不同的激光波长进行分析或对样品进行稀释。样品中的荧光也会对信噪比造成影响,但可以通过使用窄带滤波器来解决,以排除荧光杂散光的影响。   界定DLS检测仪的特性   上述的讨论是在对DLS仪器的界定特征进行检验的背景下展开的。对于任何分析技术,灵敏度都是最基本的要素,对于DLS系统,这方面的性能是由光学硬件和相应的设置来确定的。稀释度较高时,具有优越光学设置的系统能对较小的颗粒进行可靠测量,但对于在这些功能方面要求不高的应用而言,替代方案可能会更为经济。光学设置的主要元件包括:   &diams 激光源   具有低噪特性的稳定激光源最为合适,如某些氦氖气体激光器。也可以使用某些特定的固态激光器,但价格要贵得多 低成本的固态激光器使测量结果的精度和可重现性受到极大影响。   &diams 光学设置   光学设置的核心是进行测量的散射角。测量角固定于90o 时,可使系统简便而经济高效,为许多应用(见图1)提供合适的灵敏度级别。这类系统已得到广泛使用。   当实验需要灵敏度更高,或样品浓度更高时,最好选择较大的测量角度。例如马尔文仪器公司Zetasizer Nano系列激光粒度仪,采用非侵入式背散射检测器 (NIBS),将测量角度调到175o(参见图1),扩大了颗粒粒度与浓度的测量范围。由于入射光无需通过整个样品,因此显著减少了多重散射引起的测量不准确性,同样也排除了大灰尘颗粒的影响。   在上述两种类型的设置中采用了光纤光学收集组件,其提供的信噪比优于传统的相应部件,从而大大提高了数据质量。   &diams 检测器   检测器有两种类型:一种是便宜、灵敏度较低的光电倍增管PMT,另一种是较昂贵的、性能更好的雪崩光电二极管检测器(APD)。后者宣称效率高达65%,远远优于替代产品PMT4-20%的效率,从而使数据收集最大化,测量速度更快、质量更高。   要获得精确的DLS测量,另一项基本要求是必须对温度进行很好的控制。如同分散剂粘度一样,颗粒的布朗运动也直接和温度相关,因此温度控制较差造成的影响非常严重。例如,在环境温度下对水性体系进行测量,1oC的温度误差将导致2.4%的检测结果偏差,超过ISO13321 [1] 标准规定的+/-2% 或更新的 ISO 22412[2] 标准规定的范围。对于使用的各类比色皿,DLS仪器温度控制的合理目标是 +/-0.2oC。   比起在检测仪外部连接水浴装置,内置温度控制器在使用上更加方便,在测量精度、稳定性和重现性方面也更加可取。此外,具有高性能控制系统的仪器,既能进行快速的系统预热,又能迅速调整温度,从而对温度变化所产生的影响(如蛋白质热不稳定性)进行研究。   日常使用   当选择仪器时,评估整体性能特点尤为重要。然而,如果每天使用一个不太符合操作要求的系统所造成的不便会令人非常烦恼,甚至不想再去用它。因此,当需要在最终几个备选仪器之间进行选择时,以下几个问题是值得考虑一番的:   &diams 我最重要的需求是什么:速度还是准确性?   &diams 我的样品粒径的范围?   &diams 我要测量的样品属于什么类型,比如是否有毒?或者具有特别强的腐蚀性?   &diams 今后仪器的操作者是专家还是新手?他们具备多少关于光散射的专业知识?   速度与准确性   DLS测量通常成批进行,样品通常不同、且体积较小。测量时间一般按照能达到要求的重复性水平设置,但一般不大会超过几分钟。不过,分析效率可能因样品制备和系统清洗要求而有所不同,不同系统的使用方便性也会有较大的差异。如果DLS系统被用作 GPC/SEC 检测器,系统将设置为流体工作模式。由于样品流经仪器,为达到必要的精度,测量必须在短短几秒钟之内完成。   具有良好测试速度和准确性的仪器通常都价格较高,但考虑使用寿命期的成本更为重要。考虑到因不能满足重复性标准而进行反复实验所花费的时间和成本,以及因仪器装备不能满足常规实验室使用要求而造成的分析效率下降等因素,更昂贵一些的系统也许更能体现物有所值。   适用于各种样品类型的比色皿   大多数光散射系统在批量样品分析期间使用各种比色皿池或比色皿来盛放样品。它们通常是塑料(通常是聚苯乙烯)、玻璃或石英材质的,但大小各不相同。样品的最小用量取决于光学设置,通常为2-3 ml。不过,如果不考虑任何样品回收要求,也有一些系统测量只需要2µ l的样品用量。   一次性塑料比色皿无需清洗,消除了交叉污染的风险,特别适用于盛放有毒材料 有些比色皿只有50 &mu L大小。采用比色皿可以避免产生&lsquo 非比色皿&rsquo 系统(即把样品直接放在玻璃片上进行测量)因清洗不彻底而导致测量不准确的问题。石英比色皿具有更佳的测量质量,尤其是用于低浓度或小粒径样品时,这是因为石英材料具有优异的光学特性和抗划伤性。   减轻分析负担   光散射通常只是许多研究人员在实验室中常规使用的多种技术之一。仪器操作者可能不是光散射方面的专家,因而仪器操作的简便性是很有帮助的。   一些DLS系统在数据收集过程中即对数据进行评估,剔除因大颗粒存在而被污染的结果。这类些系统有助于提高样品制备的速度和容许范围。粒径大于10微米的颗粒主要发生向前散射,因此含背散射检测器的仪器对这些颗粒的存在不太敏感。测量浓度范围宽的系统尽可能降低了样品稀释的需求,进一步提高了测量效率。   大多数现代化测量系统在数据采集过程中都无需操作员干预,从而减少了分析师的工作量,并提高测量的可重复性。但是有些比较复杂的样本可能需要采用特殊方法进行测量,因此应在标准操作程序(SOPs) 中包含这些特殊方法,从而确保应用的标准化。   虽然自动测量现在已很普遍,但在内置数据分析支持程度方面,不同仪器之间的差异很大。如果是给非专业人员使用的光散射测量系统,那么含有内置数据分析和专家意见的先进软件将极富价值,就好像在电话另一端有一位可靠的、活生生的专家一样。   总结   DLS是一项比较成熟的技术,可为各种类型的样品进行粒径和分子尺寸测量。因此,在选择仪器时,必须将系统能力与用户要求紧密联系起来,使两者相匹配。光散射系统在测量粒径的同时,还可以测量分子量、蛋白质电荷和Zeta电位,甚至还能具有微流变学测量功能。   不同系统之间的灵敏度有很大差别,如同在高浓度下也能进行测量一样,也可对各种大小的颗粒或分子进行有效的测量。与那些90o 度探测器相比,背散射仪器具有很实际的优势。   除了性能以外,还有其它因素也会影响仪器使用寿命期内的价值,包括易于清洁 能获得的支持以及友好的用户软件界面。无论是什么规格的仪器,最好的建议是在购买前进行测试,看看你能否轻松得到有用的数据。DLS问世已经多年,因此不论你的用途是什么,你都可以期望拥有一套有使用针对性的、富有成效并且易于操作的测量系统。   结束   参考文献:   [1] ISO 13321 (1996) 粒度分析 - 光子相关光谱。   [2] ISO 22412 (2008) 粒度分析 - 动态光散射   [3] GPC / SEC静态光散射技术说明,(马尔文仪器公司白皮书)。下载网址:www.malvern.com/slsforgpc   [4] www.malvern.com/aurora   图片   图1:DLS系统的关键组件包括(1)激光器,(2)测量单元,(3)检测器,(4)衰减器,(5)相关器和(6)数据处理PC。探测器可置于90° 或更大的角度,例如这里所显示的NIBS检测器设置在175° 。   图2:在悬浮液稳定性研究中采用Zeta电位对粒子之间斥力进行量化   laser:激光器   attenuator:衰减器   detector:检测器   digital signal processor 数字信号处理器   correlator:相关器   Electrical double layer:双电层   Stern layer:严密电位层   Diffuse layer:扩散层   Negatively charged particle:带负电荷的颗粒   Slipping plane:滑动面   Surface potential:表面电位  Zeta potential:Zeta电位   Distance from particle surface:到颗粒表面的距离
  • 天美公司携爱丁堡共聚焦显微拉曼光谱仪助力第二十二届全国光散射学术会议
    2023年9月22日-26日,天美仪拓实验室设备(上海)有限公司(以下简称天美公司)携爱丁堡共聚焦显微拉曼光谱仪RM5/RMS1000赞助参加第二十二届全国光散射学术会议。此次会议由中国物理学会光散射专业委员会主办、河南大学承办、陕西师范大学协办。会议邀请了国内外光散射,以及相关光谱原理和技术领域的诸多知名专家,共同探讨光散射领域的最新研究成果和发展趋势,为拉曼光谱领域的研究学者提供了一个良好的交流平台。天美公司应邀作为赞助商之一,全程参加了此次会议。光散射学术会议是聚焦于光散射与相关光谱原理与技术等领域的学术交流盛会,每两年举办一次,到目前为止已经成功举办了21届。会议期间,天美公司还受邀进行会议报告,来自英国爱丁堡仪器公司的Matthew Berry为大家介绍《材料表征的多模式显微光谱技术:拉曼光谱及其它光谱技术应用》。首先讨论了拉曼光谱仪如何用于分析2D过渡金属二硫族化合物、表面增强拉曼散射-纳米结构材料、多晶型药物和矿物等样品。然后,将不同的光谱成像技术集成到拉曼光谱仪中,如二次谐波、双光子荧光、荧光寿命成像和电致发光,用于分析生物组织、钙钛矿太阳能电池和有机发光二极管等材料。在会议间隙,专家及学者们莅临天美公司展台,进一步了解天美旗下爱丁堡共聚焦显微拉曼光谱仪RM5/RMS1000的新技术以及新应用;同时,现场针对爱丁堡仪器的老客户们提出的各类仪器使用问题进行解答。与会的专家及学者们,对爱丁堡仪器表示了认可。通过为期5天的会议,天美公司与各位专家及学者们进行了深入的交流,更加深了彼此的相互了解。天美公司作为仪器行业的知名供应商,将始终秉承助力科研领域的发展,一如既往的支持研究学者在光散射领域的创新研究,为广大用户提供更加优质的服务。
  • 新品发布会 | 重新定义动态光散射分析!
    Microtrac MRB 动态光散射系统即将发布关注我们收看2022年3月7日Microtrac MRB - 新品发布会!发布会相关细节时间:2022年3月7日 09:00 AM CET2022年3月7日 04:00 PM CET注:若您不便观看现场直播,您也可以报名,我们将在会后向您发送带中文字幕的视频回放链接,供您查看。扫码参与本次新品发布会Microtrac MRB:作为一个颗粒表征解决方案的供应商,提供三条产品线,在三大洲拥有研发和技术中心。- 散射光分折- 图像分析- 比表面和孔径测量Microtrac MRB一直致力于为全球客户提供先进的测量技术,来获得可靠的测量结果。大昌华嘉科学仪器部作为Microtrac MRB三大产品线的中国区总代理,我们为用户提供完善的售前、售后服务及全面的技术和应用支持。
  • 环境部征求PM2.5分析仪标准意见 拟增加光散射法仪器
    p   生态环境部办公厅于近日发布了环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法(征求意见稿)。 /p p   本标准是对《环境空气颗粒物(PM10和 PM2.5)连续自动监测系统技术要求及检测方法》(HJ 653-2013)的修订,修订的主要内容如下:& nbsp /p p   ——术语定义中增加了“动态加热系统”、“挥发性补偿系统”和“实际状态”,并将本标准性能检测中颗粒物的浓度值由标准状态下浓度值修改为实际状态下浓度值 /p p   ——系统组成中增加了系统应包括“动态加热系统”或“挥发性补偿系统”的要求, strong 删除了“方法原理”的要求 /strong /p p   ——技术要求中增加了系统铭牌内容和切割器具有唯一性标识的要求,修订对数据显示、记录和输出功能要求,增加对参数的显示、记录和输出要求 /p p   ——性能指标中增加了“检出限”、“断电影响测试”,调整和删除了部分性能指标, strong 适当加严“参比方法比对测试”性能指标要求 /strong ,将“切割器性能”、“加载测试”两项性能指标调整至功能要求,检测方法调整至资料性附录B。 /p p   ——检测方法对应性能指标进行调整, strong 对“参比方法比对测试”的测试地点、测试程序等提出更加全面和具体的要求。 /strong /p p    strong span style=" color: rgb(255, 0, 0) " 对于删除了“方法原理”的要求,编制组解释为: /span /strong /p p   近年来颗粒物自动监测技术发展迅速,仪器测量方法也更趋精细化,目前在市场中常见的方法原理除β射线吸收法、微量振荡天平法、β射线吸收与光散射融合法之外,也涌现出越来越多的光散射原理监测设备。 /p p   对比不同原理间设备,β射线吸收法监测设备在我国监测网中的占有量最大,仪器成本较低,维护相对简单。微量振荡天平法与手工重量法的原理最为相似,使用历史久,测量精确度和准确度较好。光散射法监测设备可同时测量 PM10、PM2.5、PM1等多个参数,能避免倒挂问题的出现,且安全级别、维护成本、操作难度均有明显优势。 /p p   近年来,光散射法监测技术有了长足的进步,并分化成不同的技术路线,如浊度法-单波长-90° 光散射法、粒子数浓度法-单波长-120° 光散射法、粒子数浓度法-多波长宽光谱-90° 光散射法等,且有多型号产品通过了美国 EPA、欧洲 TUV 权威机构认证,在北美及欧洲监测网络中均得到应用,监测数据质量与其他原理不相上下。 /p p   本次修订过程中, strong 项目组在开展验证测试时,也加入了三款光散射法监测设备,测试结果表现良好,与同批β射线吸收法和微量振荡天平法处于同一水平。 /strong 因此,为促进监测技术进步,鼓励技术创新,并与国际市场接轨,本次修订删除了对仪器方法原理的要求。 /p p    span style=" color: rgb(255, 0, 0) " strong 适当加严“参比方法比对测试”性能指标要求: /strong /span /p p   本次修订对于 PM2.5 和 PM10 比对测试中的 strong 斜率、截距和相关系数三项指标均有加严 /strong ,见表 9。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/637f7eb1-5ae4-4539-b0e0-54cf9df8df16.jpg" title=" 11.jpg" alt=" 11.jpg" / /p p   本标准 2013 年编制时,由于我国 PM2.5监测刚刚起步,缺少 PM2.5自动监测经验和仪器测试数据,因此主要参考了美国 EPA 法规 CFR-40-part-53:“AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS”标准中的技术指标体系和检测方法。但由于我国 2012 年 PM2.5污染较为严重,浓度本底较高,并考虑到国产 PM2.5自动监测仪器研发和生产刚起步,性能水平较进口产品还有较大差距,在相应指标设置上,较美国适当放宽了要求。 /p p   近年来,随着环境空气质量显著改善,颗粒物浓度普遍降低,原有较为宽松的准确性考核尺度已难以满足当前越发严格的环境管理要求。因此,应结合以往检测数据,同时在全国范围内开展更为全面的验证测试,评估进一步加严指标的合理性和可行性, strong 达到整体提升颗粒物监测数据的准确度的目的。 /strong /p p    span style=" color: rgb(255, 0, 0) " strong 对“参比方法比对测试”的测试地点、测试程序等提出更加全面和具体的要求 /strong /span /p p   (1)测试地点要求:本标准中规定: /p p   对于 PM10监测仪,测试应在以下 2 个地区进行 2 次参比方法比对测试。a)北方地区,具有较高的 PM10浓度和较高半挥发性有机污染物 b)南方地区,具有较低的 PM10浓度和较高的相对湿度。 /p p   对于 PM2.5监测仪:测试应在以下至少 2 个地区进行不少于 4 次参比方法比对测试。a)北方地区,具有较高的 PM2.5 浓度和较高半挥发性有机污染物 b)南方地区,具有较低的 PM2.5浓度和较高的相对湿度 c)中部地区,具有较高的 PM2.5浓度和大幅度的环境温度变化 d) 西部地区,具有较高海拔和高风速环境条件 。 /p p   原标准中没有要求, strong 本次修订增加了对测试地点的要求 /strong 。 /p p 征求意见稿全文: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/202006/attachment/bbf92b00-b23f-4df7-b607-ac51b6a58aea.pdf" title=" 环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法(征求意见稿).pdf" style=" font-size: 12px color: rgb(0, 102, 204) " span style=" color: rgb(0, 102, 204) font-size: 16px " 环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法(征求意见稿) /span .pdf /a /p p br/ /p
  • 山东省生态环境厅发布《油烟在线监测分析 光散射法》(征求意见稿)
    各有关单位:为进一步提高环境管理水平,促进生态环境监测监控工作,我厅正在组织编制地方生态环境标准《油烟在线监测分析 光散射法》,现已完成文本征求意见稿及编制说明。根据国家和我省生态环境标准制修订工作有关规定,现将标准征求意见稿和编制说明在网上公开征求意见建议,请研究并提出书面修改意见,于2023年8月5日前反馈我厅。联系人:宿子琪,电话:0531-51798318李松枝,手机:17860725287邮箱:hjjcc@shandong.cn地址:济南市经十路3377号,邮编:250101附件:1.油烟在线监测分析 光散射法(征求意见稿)      2.《油烟在线监测分析 光散射法(征求意见稿)》编制说明      3.征求意见单位名单山东省生态环境厅2023年7月6日附件: 附件1 油烟在线监测分析 光散射法网上征求意见稿.docx 附件2《油烟在线监测分析 光散射法》编制说明.docx 附件3征求意见单位.docx
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制