当前位置: 仪器信息网 > 行业主题 > >

能量代谢分析

仪器信息网能量代谢分析专题为您提供2024年最新能量代谢分析价格报价、厂家品牌的相关信息, 包括能量代谢分析参数、型号等,不管是国产,还是进口品牌的能量代谢分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合能量代谢分析相关的耗材配件、试剂标物,还有能量代谢分析相关的最新资讯、资料,以及能量代谢分析相关的解决方案。

能量代谢分析相关的资讯

  • 全球首发!Incyton实时全息细胞能量代谢分析平台
    德国Incyton公司出品的全新产品“实时全息细胞能量代谢分析平台”- CYRIS Flox系统将于第十届慕尼黑上海分析生化展全球首发!能量代谢异常常见于代谢性疾病,肥胖、糖尿病、癌症、神经性疾病等。探索疾病发病机理、寻找药物作用靶点,往往是科研的首要任务,而细胞的能量代谢检测与细胞形态的观察,能够真实有效的反应细胞的状态与活力。德国Incyton实时全息细胞能量代谢分析平台可以从组织样本、活细胞样本到线粒体样本进行一站式无标记检测。CYRIS Flox系统采用全新的实时无标记荧光检测模块与铂金芯片传感器相结合方法,能够精准的获得多参数数据,实时侦测包括有氧呼吸以及糖酵解作用的细胞能量代谢的状态和动态,能同时进行活体细胞内线粒体耗氧速率和糖酵解产酸速率、细胞膜电阻值检测等功能的全自动测定和分析。具有显微扫描成像系统,首创细胞能量代谢数据与显微细胞影像同时在线实时监测和分析。▌性能指标24孔样本,每孔可单独进行实验耗氧率(OCR)、产酸率 (ECAR)、氧浓度、细胞膜阻抗显微扫描成像系统首创细胞能量代谢数据与显微细胞影像同时在线实时监测和记录氧气浓度和湿度控制氧气控制范围1-21%,可做低氧、厌氧等试验自动灭菌检测室全自动移液工作站,24通道独立换液6个不同试剂池多次精准加药可进行几周至数月的长期试验全自动化数据处理,可实现无人值守耗材可重复使用,配套试剂全部开放▌具体应用1、经典细胞氧化压力测量模式,测量细胞的基础呼吸、质子漏水平、最大呼吸、呼吸储备能力以及非线粒体耗氧等阶段。2、毒理药理学研究中,将细胞能量代谢实时检测与活细胞成像完美结合,诠释了细胞理化性质与细胞密度、细胞活力之间的耦联作用。3、细胞应激研究中,将细胞有氧呼吸和无氧呼吸同时检测,并结合细胞膜电阻抗电生理信号,可同时观察到细胞在应激调节中,细胞的抗压能力的高低。
  • 190万!复旦大学细胞能量代谢分析仪采购项目
    项目编号:0705-2240 02028107项目名称:复旦大学细胞能量代谢分析仪采购预算金额:190.0000000 万元(人民币)最高限价(如有):186.2000000 万元(人民币)采购需求:包件号名称数量简要技术规格备注1细胞能量代谢分析仪1套实时多因子参数检测:同时分析02/H+,得到实时0CR/ECAR值 ,侦测有氧与无氧代谢途径。预算金额:人民币190万元。最高限价:人民币186.2万元。合同履行期限:签订合同后3个月内。 合同履行期限:合同履行期限:签订合同后3个月内。本项目( 不接受 )联合体投标。
  • 大鼠气管狭窄对能量代谢和呼吸的影响
    -大鼠气管狭窄对能量代谢和呼吸的影响-关键词:塔望科技,动物能量代谢监测系统,全身体积描记系统,阻塞性睡眠呼吸暂停,气道阻塞,导致内分泌类疾病,肥胖症,糖尿病,代谢类疾病,大小鼠能量代谢监测系统...论文摘要阻塞性睡眠呼吸暂停(OSA)病人,经过治疗后,代谢生理健康还是不能恢复。在成功移除大鼠气管阻塞物(OR)后,维持呼吸稳态的同时,伴随有体温调节和能量代谢的异常。本研究比较了气道阻塞(AO)和轻度气道阻塞(mAO)移除后的呼吸稳态与能量代谢。结果显示,移除气管堵塞物后大鼠进食量永久性增加。同时,血清胃饥饿素、下丘脑促生长素受体1a(GHSR1a))和磷酸化Akt比率升高。 其中PI3K/Akt 通路与正常代谢密切相关,该通路异常会导致过度肥胖、胰岛素耐受和II型糖尿病。研究表明,为达到代谢健康状态,阻塞性睡眠呼吸暂停(OSA)患者需要终生注重饮食和内分泌健康。实验计划实验结果图A和B气管直径,对照组C:1.81±0.1mm,气道阻塞组AO:1.04±0.1mm,轻度气道阻塞组mAO:1.19±0.12mm,阻塞物移除组OR:1.87±0.11mm图C气道阻力,AO和mAO组气道阻力分别增加71%和35%。图D呼吸频率。图E潮气量。图F分钟通气量,在室内空气呼吸,AO和mAO组分钟通气量分别增加294%和64%,而OR组与对照组没有明显差别。图G二氧化碳敏感性,AO和mAO组二氧化碳敏感性分别增加59%和25.5%,而OR组与对照组没有明显差别。图A,相对对照组,AO、mAO和OR组的进食量分别增加50.9%、20%和10.7%图B,AO和mAO组白天和黑夜进食量均增加,OR只是在黑夜进食量增加。图C图D图E图F,只有AO组每次进食量增加,进食次数差异均不明显。进食量增加主要是由于每次进食时间延长,再加上夜间“微进餐”(micro meals)图G和图H,AO、mAO和OR组的血清胃饥饿素和GHSR-1a明显增加图I:AO、mAO和OR组的p-AKT/AKT比率分别上升25%、16%和15%图A和D,AO组和mAO组的能量消耗分别增加26.5%和10.2%。图B和C,能量消耗增加与氧气消耗量和二氧化碳产生量增加有关。图E图F和图G,AO组的活动量和体温明显降低。参考文献Yael Segev , Haiat Nujedat1, EdenArazi , Mohammad H.Assadi & ArielTarasiuk.”Changes in energy metabolism and respiration in diferent tracheal narrowing in rats” [J].Scientifc Reports. (2021) 11:19166塔望科技提供的相关仪器方案 大鼠全身体积描记系统可对清醒自由活动动物呼吸参数进行测量,如呼吸频率,潮气量,气道高反应性测试(Airway hyperresponsiveness,AHR)等。测试过程中,动物可以处于清醒自由状态,避免了创伤性气管切开及麻醉的影响,使实验过程更加简便,用于呼吸系统模型动物对药物等反应性研究,呼吸性药物的药理和毒理学研究,特别适合于大批量动物快速初筛试验,适合长期跟踪研究和重复性筛查。动物能量代谢监测系统主要用于实时监测和记录小动物代谢运动相关指标,定性定量测量分析动物行为活动及其与呼吸代谢的相互关系,广泛应用于营养、肥胖、糖尿病、心血管等代谢相关性疾病研究。可选择参数包括能量消耗,食物和水分摄取,取食和饮水模式,空间位置,总的活动量和转轮次数,体重,心率,体温及自动化的行为分析等,所有数据都可同步化储存到计算机内小动物麻醉机吸入式动物气体麻醉机,将挥发性麻醉剂或具有麻醉性的气体,途经动物的呼吸道进入体内产生麻醉效果。其麻醉起效快并且复苏快、深度易控制、动物的发病和死亡率低、已被全球科研工作者和宠物临床医师广泛认可和应用。END
  • 动物能量代谢测量技术宣传推广周
    北京易科泰生态技术公司动物能量代谢实验室,将于2017年9月15日至19日,举办动物能量代谢宣传推广周活动,期间特邀美国sable systems international公司首席科学家john lighton教授来华做报告和培训。具体活动安排如下:一、2017年9月15日下午动物能量代谢与生理生态研究测量技术报告会报告人:王德华研究员(中科院动物研究所)john lighton博士(美国sable公司首席科学家)等地点:北京师范大学京师大厦二、2017年9月16日参加由中国生态学会动物生态学专业委员会主办、北京师范大学生命科学学院承办的“第七届动物生理生态学学术会议暨孙儒泳院士学术思想研讨会”,john lighton博士将做“constraints and solutions in metabolic measurement”的会议报告三、2017年9月17-18日动物能量代谢测量技术报告与座谈会(根据需求反馈信息确定具体日程)主讲人:john lighton博士四、2017年9月19日活动汇总反馈及后续合作与技术支持安排john lighton教授30多年来致力于动物能量代谢测量技术的研究,先后在 nature、pnas及the journal of experimental biology等世界著名学术期刊上发表了90多篇学术论文,其于2008年编著出版的“measuring metabolic rates: a manual for scientists. oxford university press”一书,截止目前已达5514次引用。作为美国ssi公司(sable systems international)在中国的唯一指定代理和售后服务中心,易科泰生态技术公司从事动物能量代谢仪器技术服务已有十余年,为国内科研院校提供了上百套动物能量代谢仪器设备和相应技术服务,包括大小鼠等实验动物能量代谢与行为观测系统、牛羊等家畜家禽能量代谢测量系统、两爬类能量代谢测量系统、果蝇及昆虫能量代谢测量系统、斑马鱼及水生动物能量代谢与行为观测系统、人类能量代谢测量系统等,应用领域涵盖动物生理生态学研究、生物医学、家畜家禽营养与能量代谢研究、动物遗传与生物技术(能量代谢表型分析)、生态毒理学等,仪器设备采用国际先进的间接测热法(indirect calorimetry),并结合行为观测、环境调控(如温度调控等)、体温心率监测、红外热成像等技术;除实验室测量仪器外,还提供了大量fms、foxbox等便携式能量代谢测量仪器。公司还通过ecolab生态实验室平台,与中科院动物所(动物生理生态与能量代谢)、农科院畜牧所(家禽呼吸代谢)、农科院植保所(蚜虫呼吸代谢)、疾控中心、北京实验动物中心等保持密切合作关系。公司概况:易科泰自02年至今,已走过了15个年头。我们致力于从不同视角,不同尺度,不同技术平台研究测量生态系统结构、功能及其动态变化过程,引进、消化、吸收和创新国际先进生物生态科研技术,致力于植物表型分析技术的研究与开发,实验室植物表型分析平台目前配备有封闭式叶绿素荧光成像系统、便携式叶绿素荧光成像系统、叶绿素荧光仪、藻类荧光仪、植物高光谱仪、光合仪、co2/o2分析仪、植物光合生理生态监测系统、藻类培养与在线监测系统(光养生物反应器)、根系测量仪器等,具备500余平米温室,计划引进大型叶绿素荧光与rgb成像平台。ecolab实验室表型分析平台可以为用户提供作物抗性检测、胁迫生理生态研究检测、植物表型分析、优良品种及遗传育种检测等技术服务,并可承担植物表型分析技术培训、fluorcam叶绿素荧光成像技术培训、植物表型分析实验方案与仪器技术方案设计等,欢迎联系。公司优势:公司技术团队80%以上具备硕士或硕士以上学位,并与中国科学院研究生院、中科院植物研究所、中科院地理科学与资源研究所、中国农科院、中国林科院、中国环科院、中国水科院、清华大学、中国农业大学、北京林业大学、北京大学等建立了长期的技术合作交流关系。
  • 200万!华中科技大学同济医学院附属同济医院采购细胞能量代谢分析仪项目
    项目编号:HBCZ-22020156-221983项目名称:华中科技大学同济医学院附属同济医院采购细胞能量代谢分析仪项目预算金额:200.0000000 万元(人民币)最高限价(如有):200.0000000 万元(人民币)采购需求:包号设备名称数量预算总价/最高限价(万元)交货期质保期是否可以采购进口产品备注1细胞能量代谢分析仪1200合同签订后2个月内3年是 合同履行期限:合同签订后2个月内。本项目( 不接受 )联合体投标。
  • 359万!山东大学动物能量代谢监测系统采购项目
    项目编号:SDQDHF20220127-H074项目名称:山东大学动物能量代谢监测系统采购项目预算金额:359.0000000 万元(人民币)最高限价(如有):359.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1动物能量代谢监测系统 1套详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。山东大学动物能量代谢监测系统采购项目公开招标公告.pdf
  • 250万!深圳职业技术学院细胞能量代谢仪采购项目
    项目编号:SZDL2022001938(0868-2242ZD785H)项目名称:细胞能量代谢仪预算金额:250.0000000 万元(人民币)最高限价(如有):250.0000000 万元(人民币)采购需求:细胞能量代谢仪 1项。合同履行期限:合同签订后 90 个日历日内交货,产品的附件、备品备件及专用工具、技术文件和资料等应随产品一同交付。本项目( 不接受 )联合体投标。
  • 安捷伦Seahorse技术讲座:细胞能量代谢探索疾病机理新角度
    能量的产生与消耗,在细胞的“生老病死”中究竟扮演着什么角色?有氧呼吸,糖酵解,如何在细胞能量代谢中相辅相成,互相影响与调控?肿瘤、糖尿病、神经退行性疾病,背后为什么都在代谢异常的影子?能量代谢程度,有没有可能成为下一个身体健康表征的重要临床指标?时 间:2018 年 4 月 13 日 ( 周五 ) 09: 00 – 12:00地 点:清华大学生物技术馆 2201 会议室主办方:清华大学生物医学测试中心共享仪器平台主讲人:谢璨 博士 安捷伦 Seahorse应用经理
  • 昆虫动物呼吸代谢能量测量系统在农科院蜜蜂研究所成功安装运行
    3月开学季来临,易科泰携手农科院蜜蜂所为科研实验提供助力,昆虫动物呼吸代谢能量测量系统包括双通道氧气分析仪,高精度二氧化碳分析仪、双通道SS4稳定气流控制单元、RM-8气流切换单元,高精度昆虫呼吸室。可测量单只昆虫的呼吸能量代谢情况、多只昆虫的呼吸能量代谢情况以及不同环境(不同气体浓度比例条件下)的昆虫呼吸代谢情况。其适用的昆虫,小到蚜虫,蚊子,大至蜜蜂、蛾类;尤其适用于果蝇等模式动物。该套系统能够精准有效的反映昆虫的能量代谢、新陈代谢等情况。 昆虫动物呼吸代谢能量测量系统 位于北京植物园内的农科院蜜蜂研究所 位于高精度昆虫呼吸室内的蜜蜂昆虫呼吸代谢能量测量系统广泛应用于动物生理生态学、遗传学、生物医学、媒介生物学等学科,可准确的测量动物的CO2呼出量和耗氧量,并可计算呼吸熵、能量消耗等。同时可选配昆虫活动强度监测、红外热成像等系统对昆虫的能量消耗进行全方位的监控检测。以研究昆虫等动物的生理生态、昆虫活动与温度的关系、昆虫活动与呼吸代谢的关系、昆虫健康状况及生理状态、杀虫剂对昆虫的影响及最小致死量、临界热极值CTmax(critical thermal maximum)、不连续气体交换DGC(discontinuous gas exchange cycle)等。另外,由于昆虫的野生型较多,易科泰根据科研需求推出了便携式昆虫呼吸代谢测量系统。该系统将氧气分析仪、二氧化碳分析仪以及气体抽样单元等高度集成于一个手提箱内,可在野外任何地方对当地的昆虫的呼吸代谢情况进行测量,尽最大可能保证了昆虫的原位野生状态,对于昆虫的生态学研究提供了强有力的工具。北京易科泰生态技术公司近20年来致力于生物呼吸与能量代谢技术的推广和技术服务,为您提供全面生物呼吸与能量代谢测量方案:高通量昆虫呼吸与能量代谢测量技术方案(CO2与O2测量)SSI实验动物能量代谢测量系统与热成像仪联用方案便携式动物呼吸代谢测量系统与热成像仪联用方案人体能量代谢与活动强度研究测量方案
  • 260万!华南理工大学活细胞代谢检测分析仪采购项目
    项目编号:GZZJ-ZFG-2023061项目名称:华南理工大学活细胞代谢检测分析仪采购项目预算金额:260.0000000 万元(人民币)最高限价(如有):260.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1活细胞代谢检测分析仪1套主要用于实时侦测包括有氧呼吸以及糖酵解作用的细胞能量代谢的状态和动态,能同时进行活体细胞内线粒体耗氧速率和糖酵解产酸速率的实时、定量、全自动测定和分析。细胞能量代谢技术近年来已经发展成为细胞相关研究中的重要工具,该设备可广泛应用于食品科学、生命科学和医学的前沿领域:能量代谢学,线粒体,生理、生化,免疫功能和监控研究,干细胞研究,药理学和新药筛选,环境监控,神经生物学,血液学,肿瘤学等260经政府采购管理部门同意,本项目(活细胞代谢检测分析仪设备)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外供货:收到信用证后(90)天内。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师020-871129622.采购代理机构信息名称:广州中经招标有限公司地址:广州市越秀区寺右一马路18号泰恒大厦14楼1409室联系方式:陈小姐、庄小姐 020-87385151、020-37639369、020-87371812、020-873722963.项目联系方式项目联系人:陈小姐、庄小姐电话:020-87385151
  • 1210万!华南理工大学活细胞代谢检测分析仪、原位X射线衍射仪等采购项目
    一、项目基本情况1.项目编号:ZZ0230049项目名称:华南理工大学原位X射线衍射仪采购项目预算金额:365.0000000 万元(人民币)最高限价(如有):365.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价(万元/套)1原位X射线衍射仪1套主要用于原位电化学和变温情况下,分析材料物相和晶体结构分析。365经政府采购管理部门同意,本项目允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品。本项目采购标的所属行业为: 工业 合同履行期限:合同签订之日至质保期结束。本项目( 不接受 )联合体投标。2.项目编号:GZZJ-ZFG-2023604项目名称:华南理工大学多元粉料热机械加工和发酵特性检测系统采购项目预算金额:130.0000000 万元(人民币)最高限价(如有):130.0000000万元(人民币)采购需求:包组号序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)11多元粉料热机械加工和发酵特性检测系统1套多元粉料热机械加工和发酵特性检测系统由多元粉料热机械加工特性检测系统(混合试验仪)和面团发酵过程检测系统(流变发酵仪)组成,可独立和协同使用。混合试验仪揭示谷物蛋白和淀粉的加工特性,一次测定包括吸水率、形成时间、稳定时间、弱化度、淀粉糊化和回生特性等。设备含多个内置测试协议和校准方法,可依据粉料种类和热加工工艺定制测试协议。流变发酵仪聚焦发酵力、面团发酵过程流变特性,对被测定样品的发酵速率、发酵稳定性、发酵力、面团体积、产气速度等进行量化和特性评定。人民币130万元 经政府采购管理部门同意,本项目允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用。境外货物:办理免税证明后(90)天内。本项目( 不接受 )联合体投标。3.项目编号:GZZJ-ZFG-2023602项目名称:华南理工大学活细胞代谢检测分析仪采购项目预算金额:255.0000000 万元(人民币)最高限价(如有):255.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1活细胞代谢检测分析仪1套主要用于实时侦测包括有氧呼吸以及糖酵解作用的细胞能量代谢的状态和动态,能同时进行活体细胞内线粒体耗氧速率和糖酵解产酸速率的实时、定量、全自动测定和分析。细胞能量代谢技术近年来已经发展成为细胞相关研究中的重要工具,该设备可广泛应用于食品科学、生命科学和医学的前沿领域:能量代谢学,线粒体,生理、生化,免疫功能和监控研究,干细胞研究,药理学和新药筛选,环境监控,神经生物学,血液学,肿瘤学等255 经政府采购管理部门同意,本项目(活细胞代谢检测分析仪设备)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外供货:收到信用证后(90)天内。本项目( 不接受 )联合体投标。4.项目编号:0809-2341HGG14049项目名称:华南理工大学大功率激光白光与近红外光源测试系统采购项目预算金额:200.0000000 万元(人民币)最高限价(如有):200.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1大功率激光白光与近红外光源测试系统1套具体详见采购需求200.00本项目(大功率激光白光与近红外光源测试系统)只允许采购本国产品,具体详见采购需求。本项目采购标的所属行业为: 工业 交付地点:华南理工大学五山校区。合同履行期限:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用本项目( 不接受 )联合体投标。5.项目编号:ZZ0230047项目名称:华南理工大学分子与元素分析系统采购项目预算金额:160.0000000 万元(人民币)最高限价(如有):160.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)单项最高限价(万元/人民币)1元素分析设备1套可实现有机分子C、N、H、S等元素比重分析952在线质谱仪1台可实现0-300amu分子量在线分析,包括实现差分电化学质谱分析65 经政府采购管理部门同意,本项目(包组)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品。本项目采购标的所属行业为: 工业 合同履行期限:合同签订之日至质保期结束。本项目( 不接受 )联合体投标。6.项目编号:ZZ0230053项目名称:华南理工大学全自动表面积和孔隙率分析系统采购项目预算金额:100.0000000 万元(人民币)最高限价(如有):100.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价(万元/套)1全自动表面积和孔隙率分析系统1套比表面与孔隙度分析仪是材料表征的基本手段之一,通过静态物理吸附法测定比表面积和孔径分布,揭示材料微观孔隙结构和表面特性。该设备可以对化学、材料、环境分析等领域的样品进行材料的比表面和孔结构进行分析及研究。100经政府采购管理部门同意,本项目允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品。本项目采购标的所属行业为: 工业 合同履行期限:合同签订之日至质保期结束。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年09月08日 至 2023年09月14日,每天上午9:00至12:00,下午12:00至17:30。(北京时间,法定节假日除外)地点:https://www.zztender.com/方式:详见本招标公告“六、其他补充事宜”。售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:华南理工大学     地址:广州市天河区五山路381号        联系方式:文老师020-87112962      2.采购代理机构信息名 称:广东志正招标有限公司            地 址:广州市天河区龙怡路117号银汇大厦5楼            联系方式:罗小姐020-87554018 85165610            3.项目联系方式项目联系人:李小姐、滕小姐电 话:  020-85165610
  • 助力代谢组学精准研究,安捷伦与清华大学联合举办“代谢组学解决方案专题讲座”
    p img src=" http://img1.17img.cn/17img/images/201808/insimg/e017bc51-a3ae-4abc-800c-36d898027b8b.jpg" style=" float:none " title=" 061.jpg" / /p p img src=" http://img1.17img.cn/17img/images/201808/insimg/9adc9c98-3838-4e4a-9cc2-70eb2d093da6.jpg" style=" float:none " title=" 062.jpg" / /p p & nbsp & nbsp 近日由安捷伦科技与清华大学蛋白质研究技术中心代谢组学平台合办的“代谢组学解决方案专题讲座”在清华大学生物新馆举行。来自清华大学及其他院校超过120 名师生参加了此次讲座。本次活动上,安捷伦科技的专家们分享了针对代谢组学研究领域如何实现多维度的动态研究以及不同疾病能量代谢通路与细胞功能的关联研究等方面的干货心得。& nbsp /p p & nbsp & nbsp 安捷伦液质联用产品应用经理冉小蓉博士为大家带来了题为《开启深度研究,洞悉机理机制—代谢组学、代谢流与 Seahorse 的前沿整合方案》的报告,向大家介绍了安捷伦拓展代谢组学深度研究的前沿解决方案。安捷伦基于 MPP 的非靶向/靶向代谢组学工作流程有效地发现差异代谢物,并匹配可能激活的通路;基于 VistaFlux 的定性代谢流解决方案提供更快、更准、更完整的差异代谢物在通路上动态活动规律的研究;Seahorse 在活细胞水平上的细胞能量代谢分析,实现对组学/代谢流结果的正交生物学验证。安捷伦这三个方案的整合,无疑实现了对一个复杂生物学问题从生物标记物的发现到机理机制深入阐释的多维度的动态研究。& nbsp /p p img src=" http://img1.17img.cn/17img/images/201808/insimg/4c75825d-51d8-4473-9d30-47d4b6438257.jpg" title=" 063.jpg" / /p p & nbsp & nbsp 来自 Seahorse 团队的产品经理张小宇则着重从能量代谢角度做了《从能量角度看细胞:新的视角,独到的精彩》的报告。Seahorse 细胞能量代谢平台,可通过监测细胞的体内糖酵解/线粒体呼吸引起的胞外酸化速率、氧气消耗速率来判定不同状态下的细胞实时代谢状态,佐证代谢理论,方便、快捷地帮助研究者进行不同疾病能量代谢通路与细胞功能的关联研究。& nbsp /p p & nbsp & nbsp Agilent 的整体解决方案,将包括生物标志物的发现、鉴定、靶向验证以及通路分析过程中所需要的硬件、软件、消耗品及服务支持的整体融入到代谢组学综合解决方案中,为开启代谢组学的精准研究,提供了有力的条件。& nbsp /p p & nbsp & nbsp 此次讲座受到广大清华师生的热烈欢迎,会后安捷伦的工程师也为广大师生进行了长时间的问答和技术探讨。此次讲座是安捷伦与清华大学代谢平台的第一场联合讲座,后续还会有更多的关于技术分享的活动 /p
  • 关注肿瘤免疫与代谢,这2场免费直播不容错过!
    肿瘤免疫是利用免疫学的理论和方法研究肿瘤的抗原性、机体的免疫功能与肿瘤发生/发展的相互关系、机体对肿瘤的免疫应答及其抗肿瘤免疫的机制、肿瘤的免疫诊断和免疫防治的科学,与肿瘤代谢特性及微环境重建有着十分密切的关系,其对研究肿瘤的发病机制、预防、诊断和治疗具有重要意义。能量代谢是生命体最基本的特征之一,代谢的重编程与癌症、免疫、神经退行性疾病、肥胖、糖尿病等息息相关。为此,从细胞能量代谢着手,探索生命现象的奥秘,寻找重大疾病的新疗法,已成为目前的热门研究领域。一文带你解读近期2场会议报告亮点,揭密那些隐藏的小细节! 6月15日—肿瘤免疫与代谢(点击日程即可报名参会)1.针对肿瘤和自身免疫性疾病等重大疾病,围绕树突状细胞囊泡转运相关分子和T细胞特异性抗原受体库开展系统免疫学研究2.针对肿瘤个体差异和肿瘤空间异质性的问题,发展的代谢组分子分型-代谢物异质分布空间可视化-精准粒子治疗策略,最大化的减少副作用,并达到更好的肿瘤抑制效果3.专注肿瘤免疫生物治疗以及相关代谢机制,在微小囊泡研究领域有一系列的原创性发现。4.安捷伦重磅新品在线赏,能量代谢分析技术强应用6月24日—转化医学之肿瘤免疫学(点击日程即可报名参会)1.重点介绍FOXP3+调节性T细胞功能可塑性及稳定性分子机制研究新进展,以及组织特异性Treg, 特别是自身免疫病,肥胖及衰老相关糖尿病以及肿瘤微环境中FOXP3+Treg功能与免疫疗法相关新进展2.通过研究免疫系统和肿瘤之间的相互作用,鉴定肿瘤特异的免疫细胞,尤其是识别肿瘤抗原的T细胞,以及肿瘤细胞抵抗免疫攻击的逃逸机制,从中发现新的治疗靶标,建立高效的肿瘤免疫治疗新方法3.肿瘤浸润淋巴细胞TIL疗法的进展与挑战4.Cytiva层析技术助力肿瘤免疫学研究 ♥更多精彩尽在网络讲堂:https://www.instrument.com.cn/webinar/
  • 恭贺柳鹏飞教授团队发表四种鸟类代谢产热研究成果
    陇东学院柳鹏飞教授团队于2023年在Avian Research发表“Comparisons of thermogenic features in four coexisting songbirds: Is the northward colonized White-browed Laughingthrush different?”一文,介绍了四种鸣禽(白颊噪鹛、山噪鹛、橙翅噪鹃、绿金翅)的代谢产热表型,以及它们向北扩张栖息地的生理适应机制。该研究采用易科泰生态技术公司提供的高性价比Foxbox呼吸代谢测定仪测量0至40℃下动物代谢产热相关参数。 北京易科泰生态技术有限公司与美国Sable等国际知名能量代谢测量技术公司合作,为国内生物学、生物医学、运动医学、环境医学研究提供全面能量代谢研究技术方案和能量代谢实验室方案:1) 大鼠、小鼠、鸟类等实验动物能量代谢测量技术2) 灵长类能量代谢测量技术3) 果蝇能量代谢测量技术4) 斑马鱼能量代谢测量技术5) 人体能量代谢测量技术6) 动物活动与生理指标(体温、心率等)监测技术7) 测量参数包括:氧气消耗量(VO2)、二氧化碳产量(VCO2)、呼吸交换速率(RER)、能耗(EE,包括REE、AEE、TEE等)、热传导速率(Ct)、日代谢率(DEE)、最大代谢率(MRmax)、呼吸水分丧失(EWL)、能耗效率、EWL/RMR(表示肺的氧气摄取能力)等。
  • 【安捷伦】一种评估细胞代谢的创新方法——安捷伦 Seahorse XF 底物氧化检测
    什么是能量代谢?代谢,是生命最基本的特征之一,机体从外界摄取营养物质,包括碳水化合物、脂肪、蛋白质、微量元素、水及维生素等,同时经过体内分解吸收将其中蕴藏的化学能释放出来转化为组织和细胞可以利用的能量,再通过利用这些能量来维持正常的生命活动。我们把这种代谢过程中所伴随的能量的释放、储存和利用称为能量代谢。细胞,作为构成生命体最基本的结构和功能单位,对其功能的研究,比如细胞的增殖,分化等,可以为多个研究领域提供有价值的信息,包括癌症、免疫功能障碍、心血管疾病、神经退行性疾病等。在过去的若干年中,涌现出大量文章及数据,说明能量代谢如何支持细胞生物学的各个方面,以及代谢的变化如何影响重要的细胞功能。安捷伦 Seahorse XF 技术,作为目前细胞能量代谢检测的金标准,可以在不侵入,不破坏样本的前提下,实现实时、高通量、多样本来源的活细胞能量代谢检测,从而为评估细胞功能及研究代谢机制,提供了强有力的技术手段。除了细胞样本,安捷伦 Seahorse XF 技术可以支持多种类型的样本检测,包括新鲜的组织切片,微生物,模式动物等等。当下新冠状病毒肆虐,我国针对病毒的疫苗及特效药的研发也在争分夺秒的进行中,安捷伦 Seahorse 技术同时可以为抗病毒药物和疫苗的研发奠定理论基础。我们已经在之前两篇系列文章(具体请参见文末推荐阅读)中介绍了安捷伦 Seahorse 助力抗病毒研究的相关内容。为什么要研究细胞底物氧化水平?细胞能量代谢与多种疾病息息相关,因此,许多领域的研究人员都对研究能量代谢产生了浓厚的兴趣,其中了解并知道在代谢过程中满足细胞能量需求所依赖的燃料成为了一个重要的研究方向。众所周知,生物体所需的三大营养物质为脂肪、糖类和蛋白质,对于细胞来说,长链脂肪酸(LCFA),葡萄糖(glucose)/丙酮酸(pyruvate)和谷氨酰胺(glutamine)是提供能量的三种最主要的底物。许多领域(例如癌症、免疫学、干细胞生物学)的研究人员已经证明这些底物的氧化水平会对细胞命运、功能以及适应性产生深远影响。癌症研究人员对研究癌细胞对于底物的依赖性很感兴趣,最常见的是癌细胞对于谷氨酰胺的依赖[1,2],这种依赖性可以揭示癌细胞的弱点,从而为找到药物靶点提供依据;免疫学研究人员则对研究诱导免疫细胞分化和激活的底物感兴趣,最常见的是脂肪酸氧化[3]。很多研究发现不仅提供了新的生物学见解,而且还揭示了干预和开发成功疗法的新方法。免疫代谢研究领域领军人物 Dr.Erika L. Pierce 的团队发表在 Trends in Immunology 上的综述性文章[4] 就是这样一个例子。在本文中,他们着重讨论了通过调控 T 细胞代谢(包括脂肪酸氧化)从而治疗癌症和免疫疾病的各种方法,为现在热门的免疫治疗提供了重要依据。文章提到代谢重编程对于 T 细胞激活和功能是必须的,比如抑制氨基酸的转运,可以限制效应 T(effector T)细胞的扩增;抑制脂肪酸的合成,可以削弱 Th17 细胞的分化并且促进调节性 T 细胞(Treg)的发展;增强脂肪酸氧化可以促进调节性 T 细胞或者记忆 T 细胞(T memory)的发展。因此,调控 T 细胞的代谢是提高靶向 T 细胞功能的一种方法。再来看一篇来自癌症研究领域,2019 年发表在 Nature Metabolism 上的文章。美国贝勒医学院的科学家揭示了前列腺癌,这种常见于中老年男性泌尿生殖系统癌症类型的发生机制,其中有部分前列腺癌与雄性激素分泌紊乱有关[5]。文章中指出雄激素受体驱动的前列腺癌细胞所需的能量来源依赖于线粒体丙酮酸氧化,其中 Seahorse 数据证实了抑制负责将丙酮酸转运到线粒体内的转运子(MPC),可以有效抑制细胞的氧化磷酸化水平,揭示了这种癌细胞的底物利用机制,从而提示 MPC 可能是这种前列腺癌的潜在治疗靶点。如何检测细胞底物氧化水平前面我们已经介绍了研究细胞对于底物氧化依赖的重要性,安捷伦 Seahorse 为此提供了一套完整的检测方法,可通过评估活细胞的耗氧速率(OCR)变化来测定细胞底物的氧化水平。这些快速而对样本无侵入损伤的检测方法使研究人员能够研究细胞如何氧化三种主要的底物:长链脂肪酸,葡萄糖/丙酮酸和谷氨酰胺。利用特定底物氧化通路的抑制剂,结合 Seahorse XF 线粒体压力测试,可以对线粒体功能进行全面评估,在底物需求较少(即基础呼吸)和底物需求较多(即最大呼吸)的条件下研究细胞功能,其中在底物需求较多时细胞更多地依赖特定底物(图 1)。该测定方法基于已被广泛熟知并认可的 Seahorse XF 线粒体压力测试,可提供直观的功能性参数,非常适合研究细胞在基础条件下以及在压力状态下能否升高对底物的需求,从而对细胞底物的偏好性以及依赖性进行全方面评估。使用这些试剂盒能够更方便快速的研究活细胞中特定底物的氧化过程,从而有助于研究细胞如何转换对于特定底物的依赖,以执行关键的细胞功能。图 1. 安捷伦 Seahorse XF 底物氧化压力测试曲线。在添加或不添加抑制剂时,连续添加化合物,测定基础呼吸参数、对抑制剂(Etomoxir、UK5099 或 BPTES)的急性响应以及最大呼吸参数。值得注意的是,虽然在基础条件下可以检测到较小的变化,即急性响应,但在高底物需求条件下(如 FCCP 的加入),往往会出现更大的响应,从而显示出细胞氧化所研究底物的能力的差异。产品信息:每个试剂盒均包含三个一次性试剂袋。每个试剂袋包含各一瓶以下试剂:底物通路抑制剂(Etomoxir 或 UK5099 或 BPTES),寡霉素(oligomycin),FCCP 和鱼藤酮/抗霉素 A(rotenone/antimycin A)混合物。每个试剂袋包含足够的试剂,可用于一块完整的 XF96 或 XF24 测试板。为了获得最佳实验结果,建议使用 pH 7.4 的 Seahorse XF DMEM 或 RPMI 检测液和 Seahorse XF 底物(葡萄糖,丙酮酸和谷氨酰胺)。Seahorse XF 底物氧化压力测试与 XF/XFe96 和 XF/XFe24 分析仪兼容。推荐阅读:1. 战胜新冠病毒可用之利器 | 安捷伦 Seahorse 助力抗病毒研究 https://www.instrument.com.cn/netshow/SH100320/news_522313.htm2. 抗击新型冠状病毒,安捷伦核酸/蛋白质质量控制产品从这些方面入手! https://www.instrument.com.cn/netshow/SH100320/news_521879.htm3. 聚焦代谢,安捷伦 Seahorse 在病毒免疫研究中的应用 https://www.instrument.com.cn/netshow/SH100320/news_523220.htm关注“安捷伦视界”公众号,获取更多资讯。
  • 共赢发展 Seahorse助力安捷伦“大步”迈入细胞分析市场 ——访安捷伦细胞分析事业部Seahorse高级总监David Ferrick博士
    p   早在2015年,仪器信息网曾报道过安捷伦科技对生物科技公司Seahorse Bioscience的收购。加入安捷伦之后,Seahorse 成为了安捷伦生命科学和应用市场集团旗下一员。 /p p   如今,距离这场收购已经过去了两年时间,在近期举办的2017冷泉港苏州精确癌症生物学会议上,仪器信息网编辑采访了安捷伦细胞分析事业部Seahorse高级总监David Ferrick博士,并请他介绍了有关Seahorse产品和市场情况,以及与安捷伦这场收购背后的故事。(注: David Ferrick博士原为Seahorse Bioscience公司首席科学官,现于安捷伦旗下负责Seahorse的市场营销和应用事务。) /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/6cb6e665-462d-44c4-bae8-bb5aa692660d.jpg" title=" DSC00017_副本.jpg" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " 安捷伦细胞分析事业部Seahorse高级总监David Ferrick博士 /span /strong /p p    strong span style=" color: rgb(112, 48, 160) " 3800多篇顶级论文作者选择使用Seahorse XF /span /strong /p p   据David Ferrick博士介绍,自Seahorse Bioscience公司成立以来,使用Seahorse XF细胞能量代谢分析系统所累计发表的Nature、Cell等顶级文献量已超过3,800篇。在全球范围内,Seahorse XF在细胞能量代谢研究领域的作用受到广大科学工作者的认可。 /p p   细胞能量代谢异常可引发多种疾病,例如癌症、神经退行性疾病、糖尿病和肥胖。此外,细胞能量代谢分析还广泛应用于药物研发、药物筛查,以及干细胞研究和免疫研究等热门领域。功能性代谢数据对于完整地描述细胞生理性过程和病理状态是非常关键的。Seahorse XF代谢分析系统这种现代化的分析方法能够测量活体细胞的能量代谢。 /p p    strong span style=" color: rgb(112, 48, 160) " 选择安捷伦 打开Seahorse XF全球化大门 /span /strong /p p   对安捷伦而言,Seahorse的加入意味着它拥有了第一个细胞分析产品线。另外,David Ferrick博士介绍说:“如果不能在市场上快速增长,就必然意味着失去。安捷伦旗下其他业务近年来都保持个位数增长,安捷伦公司非常需要这样一个高速增长的产品线。而我们的增长一直保持在20%左右。”当今世界范围内,在生命科学、制药、生物制药、生物工程以及基础科学研究等领域,以细胞为基础的分析方法是非常重要且非常普遍的,因为细胞分析与疾病模型的研究相关,而且或许也是目前为理解疾病而研究得最为透彻的一个系统。“收购Seahorse,代表了安捷伦为构建细胞分析能力所迈出的第一步,代表了安捷伦正式开启了细胞分析市场的‘大门’。”David Ferrick博士总结说。 /p p   当年很多大型企业都对Seahorse Bioscience公司投出了“橄榄枝”,其中不乏赛默飞、丹纳赫等行业巨头。在众多选择当中,Seahorse为何独独青睐安捷伦?David Ferrick博士坦言这是由于安捷伦始终如一的理念——改善人类的生活质量:“无论是食品、药品还是环境,无论是化学分析还是生命科学,安捷伦希望自己始终能够处于一个改善人类生活质量的市场之中,而这恰恰也是Seahorse一直以来的愿景。对安捷伦的了解越深入,我们越为其理念所深深吸引。”相比于收购之后仅仅是业务上统一的管理,可以说Seahorse更看重的是产品之间的“互动”,并通过这种相互配合扩大彼此的优点。David Ferrick博士直言:“其他某些公司的收购可能更加偏向针对产品线的完善,但在收购完成之后产品之间并不能很好的相互配合,彼此之间很少有互动。而且相对而言,Seahorse是一家很小的公司,加入一个大型企业之后是非常容易迷失自我的。如果不是理念的一致,被其他公司收购之后我们可能很快就会摈弃了原本的初衷。”可以说,最终使Seahorse决定“加盟”的正是安捷伦完整的、始终如一的“改善人类生活质量”的理念。 /p p   对Seahorse而言,加入安捷伦之后,Seahorse无论在产品质量、生产过程,还是在财务管理、经营模式等方面都有了长足的进步。作为一家全球化公司,安捷伦的足迹遍布全球,加入安捷伦、作为安捷伦旗下的一员,相信并不需要太久时间,Seahorse的产品就能够分布于全球市场,这无疑非常有利于Seahorse产品进一步的市场发展。“但更让Seahorse期待的是加入安捷伦之后产品的全球化发展前景”, David Ferrick博士如是说。 /p p    strong span style=" color: rgb(112, 48, 160) " 冲破科学研究市场的“藩篱” /span /strong /p p   在加入安捷伦之前,Seahorse的市场焦点主要集中在科研领域内的细胞能量代谢研究。而其他领域,如实际应用、疾病研究当中需要分析细胞能量代谢的用户尚未被Seahorse所关注。如今,Seahorse逐渐意识到很多年龄相关的疾病的发生也与细胞能量代谢有相当高的相关性,如:癌症、神经退行性疾病、肥胖、糖尿病等。但截止目前还没有一个特别好的工具对这些代谢问题进行测定,这恰恰也是Seahorse未来的市场发展领域。 /p p   David Ferrick博士解释说 ,Seahorse之前所关注的领域相对局限,我们叫它‘核心代谢学’,这个市场的规模在数百万美金的范围内,相对来说就更小。而现在,Seahorse逐渐将细胞能量代谢分析应用到免疫学研究、干细胞研究和疾病研究等领域当中,这些都意味着Seahorse迈入了一个更大的市场。细胞代谢研究的方法对于细胞功能的衡量来说是一个非常好的工具,细胞代谢应用的研究市场规模甚至有数亿美元,这就意味着未来一段时间内,Seahorse的市场规模将会因为扩展了对‘应用代谢’的关注而急剧增长。 /p p    strong span style=" color: rgb(112, 48, 160) " 高速发展的预期 Seahorse将在中国市场“大展拳脚” /span /strong /p p   在谈及Seahorse应用市场在欧美国家和中国有什么异同时,David Ferrick博士毫不掩饰言语之间对中国的赞许之情:“中国学者在这方面表现的非常聪明。”在基础科学研究领域,欧美等发达国家的学者已钻研多年,成果颇丰 相较于仅仅延续前人的研究方向而致力于赶超欧美国家的科研水平,中国的研究者还把更多的精力投入在如何为患者带来实际帮助之中,并取得了许多成就。David Ferrick博士感慨说:“中国学者更关注实际应用,更关注转化医学。你可以看到在中国,人们更关注如何利用自己的研究成功给患者带来实际的益处。因此在中国的很多医院的转化研究中心,Seahorse都可以发现自家产品的身影,而不像欧美国家仅仅是科研机构在使用Seahorse产品。”相比于基础研究,应用研究的市场更具规模,这也从另一方面说明了Seahorse的预期增长是非常可观的。挑战与机遇并存,在David Ferrick博士看来,这种地区之间的区别也给Seahorse带来了一些挑战:“在中国,Seahorse面对的客户更多,领域也更偏向于应用,这些都异于Seahorse在欧美国家的成熟经验,需要我们做出相应的调整。” /p p   “在过去的五年,中国对于新技术的理解与驱动是非常超前的。由于转化医学领域的快速发展趋势,未来三年时间内,中国也将成为Seahorse业务发展最快的区域,甚至会快于美国和欧洲大部分地区。这里的机会更多,我们希望Seahorse在中国能够快速增长。预计Seahorse今年在中国将实现高双位数的增长,明后年增长还将高速持续。”,David Ferrick博士如是向笔者描述了关于中国市场的发展趋势。 /p p   “希望在未来5-10年左右的时间里,中国区很有希望为Seahorse业务中占比最大的地区。在中国这个快速发展的巨大市场内,细胞分析产品的普遍增速预计在15%-20%范围。Seahorse产品在中国的增速却将高于这一数字,这一部分是由于我们加入了安捷伦,另一部分则来自我们产品本身的独特性。基于长期以来安捷伦对中国市场的深入理解,相信Seahorse可以在中国取得很大的成功。” /p p    strong span style=" color: rgb(112, 48, 160) " 采访后记 /span /strong /p p   2015年底,安捷伦宣布完成对Seahorse Bioscience公司的收购 在此约一年之后,安捷伦专门为Seahorse成立了细胞分析事业部 2017年初,安捷伦为细胞分析事业部任命了总经理。从这一系列的动作当中,不难看出安捷伦对Seahorse、对细胞分析事业部的重视。未来,除现有三款细胞分析产品以及相关试剂耗材之外,安捷伦还将通过加强研发以及收并购等手段继续拓展业务。 /p p   根据相关市场分析报告,目前全球细胞分析市场的年增长率约为8%-10%,而仅仅在中国,Seahorse今年的增长水平就将远超这个数字。据了解,面对中国市场的高速发展预期,Seahorse也正在积极准备,希望能够建立一套符合中国情况及客户需求的市场机制,直接同实际应用客户对话,并满足客户的差异化需求。安捷伦Seahorse今后的表现具体如何,着实令人期待。 /p p style=" text-align: right "   (采访编辑:王明煜) /p p br/ /p
  • 细胞分析技术,破译生命密码的金钥匙
    安捷伦首届细胞分析创新峰会圆满落幕,尽情展现细胞分析技术的尖端应用 序曲 奇妙的细胞地球上第一个有生命的细胞诞生距今已有三十八亿年[1],然而直到三百五十多年前[2],科学家通过特殊的显像工具方才一睹它的真容。有赖于不断革新演进的细胞分析技术,如今,研究人员能够深度解析细胞结构、代谢、微环境以及细胞生命周期活动中的动态变化,为以细胞模型为基础的多学科应用及产学研转化提供强力的技术支撑。在全球领先的细胞分析技术阵营,安捷伦已成为极具影响力的企业。五月下旬,安捷伦在沪隆重举办了首届细胞分析创新峰会,并为享誉全球科研学术界的安捷伦 BioTek Cytation 产品家族面世十周年举办了庆典。与会嘉宾与安捷伦高层共同见证安捷伦 BioTek Cytation 产品家族面世十周年(左起:安捷伦细胞分析事业部大中华区总经理罗绍光,安捷伦大中华区行业拓展与应用创新团队经理安蓉,安捷伦副总裁兼大中华区业务总经理杨挺,安捷伦大中华区高级市场总监郑欣,安捷伦大中华区销售拓展团队总经理朱颖新)300 多位来自多领域的专家、学者及科研人员到会,与安捷伦高层以及技术工程师共同探讨了先进的细胞成像与分析技术在多学科中的深度应用。峰会聚集并展现细胞分析与研究领域前沿的理论与发现,各种思维与智慧的碰撞与交织,合奏出一曲细胞礼赞的乐章。第一章 问世十年,Cytation 助力生命科学研究持续开拓胞罗万像,聚力新生。安捷伦首届细胞分析创新峰会以此为主题,直观反映出细胞分析应用的丰富多样,也体现出细胞分析研究的目标——解读生命,改善生命。多位学界专家汇聚于此次峰会,期待深入交流安捷伦细胞分析技术在不同科研领域展现出的能力和价值,为各自今后的科研工作提供参考借鉴。问世至今正好十年,安捷伦BioTek Cytation毫无疑问成为本届峰会的主角。十年前,安捷伦BioTek推出了BioTek Cytation 3细胞成像微孔板检测系统,以及增强显微镜的概念,由此创造出一款自动化解决方案,帮助研究人员完成从图像采集到获取可发表数据的全过程。Cytation 3借助其丰富的功能与极具竞争力的价格,推动了自动化成像的广泛应用。为中小型实验室开启了自动化成像的大门。安捷伦副总裁兼大中华区业务总经理杨挺致开幕词安捷伦副总裁兼大中华区业务总经理杨挺在致辞中表示,十年来,Cytation 已经进驻全国近1000家实验室,让用户在自己的实验室全面掌控活细胞分析流程的应用,助力他们在细胞与生命研究领域里持续开拓。尤其是过去三年,人类与病毒和疾病抗争的这段经历,促进了生命科学领域新型研究工具的开发和利用。在这一特殊时期,以安捷伦Cytation 为代表的,基于活细胞、多参数、实时、高通量的多功能细胞成像与检测技术,为身处一线的科学工作者提供了有力的技术支撑。 第二章 细胞科研的夜空,群星闪耀安捷伦邀请了不同学科、以及跨学科的杰出代表,通过学术报告分享并探讨了他们的科研进展。在峰会上分享学术报告的专家(上排左起:郑明彬教授,刘嘉莉副教授,罗克博士 下排左起:印彤研究员,江宽副研究员,刘回民副教授)深圳市第三人民医院郑明彬教授分享了“微纳仿生药物可视化诊疗“进展。他使用 Cytation 在 3D 细胞球进行微纳仿生药物的靶向富集验证,并就微纳技术在疾病精确诊断和精准治疗方向提出了前瞻性见解。 中国药科大学刘嘉莉副教授介绍了“基于类器官的靶组织药动-药效时空异质性研究”及其拓展应用。她使用安捷伦 Lionheart 自动细胞成像仪进行 3D 细胞瘤球培养与检测,并基于 3D 细胞模型建立了空间异质性单细胞 PK/PD 评价新方法,希望通过外源性的药物代谢动力学和内源性的代谢进行cross talk去找到相关的内源性代谢的靶标和干预的策略。 伯桢生物(bioGenous)CTO 罗克博士(Dr. Emmanuel Enoch K. Dzakah)做了题为“Bioimaging in Organoid Technology: Application and Perspectives”的专题报告。类器官是近十年来干细胞研究最令人振奋的进展之一,伯桢生物在类器官技术开发与医药研发应用领域进行了非常深入的探索。罗克博士特别提到,类器官模型的高通量成像采集和分析对于类器官形态特征评价、药物高通量筛选和药效评估至关重要。此外,Cytation可以用于记录和分析类器官和其他细胞如免疫细胞的相互作用过程,因此在肿瘤免疫调节类抗体药物、免疫细胞疗法的药效评估上展现出巨大潜力。 上海交通大学医学院附属瑞金医院研究员印彤博士介绍了“国家转化医学中心(上海)质谱平台助力精准医学研究”进展。基于安捷伦Seahorse的细胞能量代谢分析是质谱平台新开展的业务,Cytation 作为细胞能量分析系统的联用设备,可以轻松实现活细胞能量代谢数据归一化,获得更准确的有生物学意义的细胞能量代谢数据。复旦大学附属眼耳鼻喉科医院江宽副研究员介绍了“流式细胞仪助力脂质纳米药物体内过程研究”进展,借助基于流式细胞术的机体细胞分离与鉴定技术,阐明脂质纳米药物体内与细胞互作及细胞间转运过程,进而明晰机体对脂质纳米药物调控机制,将极大助力脂质纳米药物的临床转化。吉林农业大学刘回民副教授安捷伦BioTek 自动化成像产品不仅被细胞分析、基础医学、药物开发等领域的研究人员广泛使用,而且也在农业研究、植物发育和食品科学中也有诸多应用。刘回民副教授介绍了Cytation 5 细胞成像多功能微孔板检测仪以及Seahorse细胞能量代谢分析系统如何帮助他实现“玉米黄素促进白色脂肪细胞棕色化的分子机制研究”。研究了植物来源的天然化合物在代谢性疾病(肥胖,糖尿病,非酒精性肝炎)中的作用机制。在这些现场学术报告以外,安捷伦细胞分析的应用专家团队也着力向各方嘉宾介绍了Cytation多功能细胞成像与分析技术、流式细胞术、RTCA 非标记细胞分析以及Seahorse 细胞能量代谢分析技术的前沿应用进展,并陪同现场的参会嘉宾一起参观了演示仪器,解答用户关心的实验和使用问题。 第三章 聆听客户需求,优化产品功能报告嘉宾在峰会期间也对 Cytation 和其他细胞分析技术给予肯定的评价,以及激动人心的期待。深圳市第三人民医院郑明彬教授讲到,Cytation在他的实验室里利用率非常高,并且他对其软件功能十分赞赏。郑教授的科研课题需要使用Cytation进行纳米机器人相关的监测,观察病毒是怎么被吞噬和吐出,因此要求设备具有极高的镜头捕捉效率。郑教授期待未来的Cytation着力打造出更先进、更专业的硬件,能够不仅用于细胞科研,而且能够拓展到合成生物学和细菌、甚至更小的物质研究领域。中国药科大学刘嘉莉副教授的实验室需要研究样本的时空表达差异,因此需要对不同样本的空间整体进行成像。实验室正在使用Lionheart成像产品以及Synergy H1酶标仪。她期待能够实现通过不同的license安装在不同电脑上,实现一台电脑成像,另一台电脑分析结果,以此节省时间提升实验效率。她也了解到最新的Cytation C10内嵌了共聚焦的功能,十分期待能够尝试使用。伯桢生物(bioGenous)CTO 罗克博士十分喜欢他正在使用的Cytation C10,因为它既可以实现共聚焦成像,又可以承担酶标仪的工作,并且还能检测活细胞成像。这样的设计能够帮他在同一时间完成多个实验项目,比如可以一边培养细胞,一边进行检测,这项功能对于细胞治疗这类大部分需要实时拍摄的课题非常适用。他十分期待Cytation C10能够和AI结合,自动帮助研究人员承担部分研究任务。上海交通大学医学院附属瑞金医院的研究员印彤博士认为,除了细胞活力和增殖等基础检测功能非常完备外,Cytation在代谢组学功能研究,即活细胞能量代谢中也可大显身手。此外,在更加前沿的空间代谢组研究中,从Cytation获得的样本图像可与质谱数据整合,获得空间代谢组信息,非常有利于将研究推向深入。印彤博士期待Cytation在帮助研究者应对课题挑战的同时,也能够为中国生命科学的发展带来更多助力。复旦大学附属眼耳鼻喉科医院江宽副研究员使用安捷伦流式细胞仪来检测药物对细胞的影响、细胞如何代谢这些药物,以及两者之间的相互作用。他对安捷伦流式细胞仪的模块化功能和整体应用的简约性十分认可。吉林农业大学刘回民副教授对Cytation系列软件的易用性、尤其对Cytation C10的成像能力十分赞赏。他认为,在传统观念里,涉及食品与农业的应用方向对细胞研究技术没有很高的需求,但是他的研究课题——食源性的天然化合物/功能活性物质,已经开始涉及医学类的需求。他期待Cytation C10不断改进成像功能,能够提供视野更大、分辨率更高的图像。 尾声 细胞分析未来可期,安捷伦推出强力技术组合安捷伦大中华区细胞分析事业部总经理罗绍光介绍部门发展历程和业务战略安捷伦大中华区细胞分析事业部总经理罗绍光在峰会上历数安捷伦细胞分析部门发展历程。自2015年收购 Seahorse Bioscience 公司,将活细胞代谢分析纳入公司重点发力的生命科学技术开始,安捷伦正式踏入了细胞分析领域。此后,安捷伦又于2018年与2019年接连并购了艾森生物(ACEA)和微孔板检测领导企业 BioTek ,正式成立细胞分析部门。借助这些举措,安捷伦开始在生命科学、癌症研究、生物制药、免疫与细胞治疗等前沿科技领域,借助多方位细胞分析技术,为用户提供更有深度、更加完善的解决方案。如今,安捷伦细胞分析事业部拥有极具优势的技术组合:流式细胞分析、微孔板检测、自动化成像以及细胞代谢分析,致力于在生命科学与临床研究以及生物医药产品的开发、生产和质控整个生命周期中,为用户提供简单、精准、可靠的检测方案。通过活细胞动态和表型的实时测量,帮助研究人员充满信心地探索细胞奥秘,揭示独特的细胞生物学机理,发现创新药物靶点,推进临床前毒理学研究,并引领新一代免疫疗法开发。细胞潜力,始于分析。安捷伦首届细胞分析高峰论坛在前沿思维的激荡中告一段落,也为安捷伦细胞分析技术和团队吹响继续前行的号角。在细胞科研的夜空,安捷伦期待能够衬托出更多星星的闪耀光芒。参考文献[1] It appears that life first emerged at least 3.8 billion years ago, approximately 750 million years after Earth was formed. https://www.ncbi.nlm.nih.gov/books/NBK9841/[2] 人类第一次发现细胞是在哪一年 https://zhidao.baidu.com/question/501601301800761404.html
  • 我国细胞代谢研究技术取得突破性进展
    p   烟酰胺腺嘌呤二核苷酸(NADH/NAD+)及其磷酸化形式(NADPH/NADP+),作为生物体内两对最重要的辅酶和核心代谢物,常被用作评价细胞代谢状态的关键指标,与癌症、糖尿病、肥胖症、心脑血管疾病、神经退行性疾病等的发生发展密切相关。NADH和NADPH的荧光光谱相似,但是二者的生理功能却显著不同。NADH主要参与物质能量代谢,NADPH主要参与合成代谢和抗氧化,传统的自发荧光分析方法难以区分这两种小分子。 /p p   生物反应器工程国家重点实验室(华东理工大学)杨弋教授、赵玉政研究员研究团队与中国科学技术大学刘海燕教授合作,在前期研究基础上,通过对底物结合蛋白的理性设计和改造, strong 开发了一系列特异性检测NADPH的高性能遗传编码荧光探针iNap,实现了活体、活细胞及各种亚细胞结构中对NADPH代谢的高时空分辨检测与成像。 /strong 利用iNap,研究团队精确测定了癌细胞内不同亚细胞结构中的NADPH,发现其受NAD激酶和葡萄糖-6-磷酸脱氢酶G6PD活性调节,证明氧化应激时癌细胞内NADPH代谢受葡萄糖的动态调节。基于大量数据分析,研究团队提出了哺乳动物细胞有很强的维持NADPH稳态的能力的观点。此外,iNap还揭示了NADPH代谢与巨噬细胞免疫激活以及机体创伤反应密切相关。 strong 细胞代谢荧光探针iNap,不仅可应用于抗氧化、AMPK、脂肪酸合成等代谢途径与通路分析,还可用于衰老及相关疾病创新药物的发现。 /strong /p p   相关成果于2017年6月5日以“研究长文”的形式在Nature Methods上发表。 /p
  • 我国科学家首创细胞代谢荧光探针-SoNar
    华东理工大学生物反应器工程国家重点实验室、上海生物制造技术协同创新中心杨弋团队首创了一种可监测单细胞和活体动物代谢状态的新型荧光探针,并筛选到一个高效的抗癌化合物,揭示了其机制。5月5日,相关研究成果发表于《细胞&mdash 代谢》杂志。   癌细胞代谢的改变是肿瘤发生与生长的根本原因 通过控制癌细胞的异常代谢来杀伤、抑制癌细胞,或使之回到正常细胞,可有效抑制癌症发生的进程。然而利用传统生化分析方法研究细胞代谢活动并搜寻抗癌药物,存在着效率低、成本高的技术瓶颈。NAD/NADH是一对核心代谢物,是表征细胞代谢失衡的最佳参数。   杨弋团队研发的新细胞代谢荧光探针SoNar,基于合成生物学方法构建,具有高灵敏度、高亮度和巨大动态范围,可察觉癌细胞与正常细胞的微细代谢差异,真正实现在单细胞和活体动物水平对细胞代谢状态的高时空分辨检测和成像。利用SoNar,该团队进行了基于细胞代谢的首次活细胞水平高通量化合物筛选,发现化合物KP372-1可在低浓度下广泛杀伤不同人体组织来源的癌细胞。   利用代谢组学、化学生物学和遗传学筛选等技术,研究人员最终鉴定了KP372-1是一种结构新颖的氧化还原循环底物,能在癌细胞中特异高表达的NQO1酶催化下产生极度氧化应激,进而杀灭癌细胞。据悉,该化合物比目前已进入临床II期的依赖NQO1的经典抗癌化合物&beta -拉帕醌具有更高的口服利用度、更长的药物作用半衰期和更低的药效浓度。   据悉,该项研究工作在杨弋的指导下,由赵玉政和呼庆勋等研究生耗时5年完成。同时,SoNar探针还可以广泛应用于细胞代谢相关的活细胞与活体实时监测,为人们更好地了解物质与能量代谢的调节机制提供重要的创新工具与手段。
  • 安捷伦推创新细胞分析解决方案 助力免疫疗法研究
    p style=" text-align: justify "   2019年5月9日至13日,美国免疫学家协会(AAI)第 103 届年会 Immunology 2019在美国加利福尼亚州圣迭戈成功举办,大会期间 strong 安捷伦科技公司 /strong 宣布为免疫疗法研究人员推出统一的产品组合并展示该创新解决方案。 br/ /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/5715b9df-a310-4ffe-817a-fbc0b54cf991.jpg" title=" AAI大会官网首页.png" alt=" AAI大会官网首页.png" / /p p style=" text-align: center " strong Immunology 2019官网主页 /strong /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 安捷伦科技公司细胞分析事业部高级总监David Ferrick博士 /strong /span 表示:“免疫疗法正在改变癌症治疗的格局,但大多数可用工具都经过了调整,因为它们并非专为这种以细胞为中心的工作流程而设计。因此,我们非常重视基于细胞的创新解决方案的组合和统一。我们想要帮助研究人员和开发人员克服重重挑战,在这一快速发展的领域中攫取先机。” /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 宾夕法尼亚大学佩雷尔曼医学院和艾布拉姆森癌症中心免疫疗法教授、医学博士Carl June /strong /span 谈道:“现在,通过安捷伦提供的工具,我们可以在流式细胞术、活细胞代谢的动力学测量以及量化T细胞在一段时间内杀死靶标的能力等方面开展研究,寻找我们需要的答案。任何一种基于细胞的分析方法,只要能够提高获得有效细胞结果的概率,都将是人们所期望和需要的。” /p p style=" text-align: justify "   细胞分析业务是安捷伦的关键战略规划之一,其对于理解疾病和发现潜在治疗方法至关重要。安捷伦致力于成为细胞分析行业的领军者,积极推动生物产业发展。安捷伦的这款新产品包括四款专门设计的组成部分,它们相辅相成以提供最佳性能: /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong Agilent SureGuide 化学合成 sgRNA /strong : /span 提供最佳向导,充分发挥 CRISPR 在细胞工程和免疫疗法中的潜力。 /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong NovoCyte Quanteon 流式细胞仪 /strong : /span 使用市面上最灵敏的硅光电倍增检测器技术,通过多达 25 个荧光通道快速准确地进行免疫表型分析。体验流式细胞术的新标准。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 428px height: 217px " src=" https://img1.17img.cn/17img/images/201905/uepic/1ab75ca7-3dba-4408-9782-2c1e618a23de.jpg" title=" quanteon流式细胞仪.jpg" alt=" quanteon流式细胞仪.jpg" width=" 428" height=" 217" / /p p style=" text-align: center " strong a href=" https://www.instrument.com.cn/zt/liushixibaoyi" target=" _blank" NovoCyte Quanteon 流式细胞仪(点击进入流式细胞仪专题) /a /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px color: rgb(12, 12, 12) " 该流式细胞仪具备以下特点:1、检测能力大大扩展,多至27个参数;2、超群的FSC/SSC和荧光分辨率,可以用于尺寸小至0.1μm的颗粒检测,可以轻松识 别和分析血小板,细菌和各种亚微米颗粒;3、无需微球,直接进行绝对计数,既不需要对液路系统进行复杂的校准也不需要昂贵且需要数量换算的计数微球;4、具备智能化设计简化工作流程。内置质量控制:快速运行每日QC,自动生成全面的QC报告,并通过Levey-Jennings图表方便地跟踪仪器性能。 自动化质量控制测试不仅可以确保日常的性能监测,而且可以对仪器性能进行长期监测。 /span /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong xCELLigence RTCA eSight /strong : /span 捕获动态细胞行为,追踪费时费力的终点测定可能无法检测到的生物学行为,从而实时定量分析癌细胞杀伤等重要事件。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 471px height: 314px " src=" https://img1.17img.cn/17img/images/201905/uepic/c58843e9-ea5f-4b33-8821-a89cf01bae52.jpg" title=" xCELLigence RTCA eSight细胞分析仪.png" alt=" xCELLigence RTCA eSight细胞分析仪.png" width=" 471" height=" 314" / /p p style=" text-align: center " strong a href=" https://www.instrument.com.cn/list/sort/126.shtml" target=" _blank" xCELLigence RTCA eSight无标记细胞分析系统(点击进入细胞生物学仪器专场) /a /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px color: rgb(12, 12, 12) " 该款仪器主要特点如下:1、可以使活细胞成像和实时生物传感器测量可以在相同的细胞群上进行;2、xCELLigence技术采用专利E – Plate板,在每个板的底部嵌入微金电极,非侵入性地量化细胞行为;3、测量速度非常快,提供精确的时间分辨率,因此所有相关响应都可以用秒、分钟、小时或天来测量。 /span /p p style=" text-align: justify "    span style=" color: rgb(0, 112, 192) " strong 安捷伦 Seahorse XF 分析仪 /strong : /span 研究并调谐免疫细胞代谢,以获得持久且可靠的抗肿瘤反应。XF 分析仪是市面上针对此类工作的领先仪器。以下为三款Seahorse XF分析仪: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/83fbe92b-b5c6-4922-a854-bd0a71a9910c.jpg" title=" 安捷伦Seahorse XFe96细胞能量代谢分析仪.jpg" alt=" 安捷伦Seahorse XFe96细胞能量代谢分析仪.jpg" / /p p style=" text-align: center " strong a href=" https://www.instrument.com.cn/netshow/C279107.htm" target=" _blank" 安捷伦Seahorse& nbsp XFe96细胞能量代谢分析仪(点击查看该仪器信息) /a /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/343b0082-aadc-4f71-b95a-adecc9bc1b37.jpg" title=" 安捷伦Seahorse XFe24 细胞能量代谢分析仪.jpg" alt=" 安捷伦Seahorse XFe24 细胞能量代谢分析仪.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C279108.htm" target=" _blank" strong 安捷伦Seahorse XFe24 细胞能量代谢分析仪(点击查看该仪器更多信息) /strong /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C279109.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/36f6995b-78fa-4d1f-802c-c0385d73dbce.jpg" title=" 安捷伦Seahorse XFp 细胞能量代谢分析仪.jpg" alt=" 安捷伦Seahorse XFp 细胞能量代谢分析仪.jpg" / /a /p p style=" text-align: center " strong a href=" https://www.instrument.com.cn/netshow/C279109.htm" target=" _blank" 安捷伦 Seahorse XFp 分析仪(查看仪器更多信息) /a /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px " Seahorse XF 分析仪通过测定多孔板中活细胞的耗氧率 (OCR) 和胞外酸化率 (ECAR) 审查线粒体呼吸和糖酵解等关键细胞功能。XF 分析仪可实时进行化合物添加和混合,免标记分析检测,并自动测定 OCR 和 ECAR。(信息源:安捷伦科技) /span /p p style=" text-align: justify "    strong 关于安捷伦科技公司 /strong /p p style=" text-align: justify "   安捷伦科技公司(纽约证交所: A)是生命科学、诊断和应用化学市场领域的全球领导者,拥有50多年的敏锐洞察与创新,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在2018财年,安捷伦的营业收入为49.1亿美元,全球员工数为14800人。 /p p style=" text-align: center " span style=" text-decoration: underline " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span br/ /p p style=" text-align: center " span style=" text-decoration: none color: rgb(0, 112, 192) " strong 扫码关注 span style=" text-decoration: none color: rgb(192, 0, 0) " 3i生仪社 /span ,解锁更多生命科学相关资讯 /strong /span /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/87876a06-cb72-4e5d-ab6a-d4a74455ab30.jpg" title=" 小icon.jpg" alt=" 小icon.jpg" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/bf7fe01d-8654-45d0-9383-6f068d6752fd.jpg" title=" 企业微信截图_20190520102956.png" alt=" 企业微信截图_20190520102956.png" / /p
  • 基于NMR的代谢组学研究助力新冠肺炎重症早发现*
    虽然造成新冠肺炎(COVID-19)的新型冠状病毒(SARS-CoV-2)主要是呼吸道病毒,但这种疾病会累及全身的器官。除了肺部损伤和呼吸困难外,新冠肺炎患者还表现出神经、肾、肝和血管受损的症状。 研究表明,新冠肺炎患者具有与健康对照者不同的、提示代谢紊乱和血脂异常的代谢谱,且它们也与疾病的严重度相关联。这提升了利用代谢组学来识别具有最高重症风险的新冠肺炎患者的可能性。然而,大多数此类研究只是将新冠肺炎患者与健康对照者进行比较,导致无法确定这种关联是新冠肺炎特有的,还是只是提示危重疾病的普适性标志。 来自德国吕贝克大学的研究人员,通过将接受重症监护室(ICU)治疗的新冠肺炎患者,与在同一ICU进行心源性休克治疗的患者进行比较,研究了代谢谱的特异性。 近乎完美的区分 研究人员分析了5名接受ICU治疗的新冠肺炎患者、11名新冠病毒检测阴性的心源性休克患者,以及58名健康对照者的代谢和脂蛋白谱。他们在布鲁克Avance IVDr平台*(配备TXI探头的布鲁克核磁共振代谢分析系统)上总共分析了276份血清样品。初步的非靶向NMR代谢组学和脂质组学研究表明,新冠肺炎患者与健康对照者及心源性休克患者之间都存在差异。通过针对性分析,研究人员能够量化来自NMR谱图的代谢物和脂蛋白,并识别引起最大差异的代谢物类别。这些分析实现了对新冠肺炎患者与健康对照者及心源性休克患者近乎完美的区分。 为了进一步研究新冠肺炎的代谢影响,研究人员对代谢物和脂蛋白进行了比对分析。结果显示,有许多与能量状态紊乱、肝损伤和血脂异常相关的一致变化。 与其他重症患者截然不同的代谢谱 被识别出的一些关键特征包括低谷氨酰胺/谷氨酸比值,这是由分解代谢疾病状态下谷氨酰胺消耗增加所导致的。这一重症感染的典型指标与新冠肺炎有关联,但与心源性休克无关联。 苯丙氨酸是新冠肺炎患者出现上升的另一特征参数。该氨基酸通常在肝脏中代谢,其水平上升提示肝功能受损。 一些标志物提示能量代谢严重紊乱和代谢抑制,包括葡萄糖水平升高,以及组氨酸、蛋氨酸和乳酸水平降低。但是,这些变化只是新冠肺炎患者相比健康对照者所存在的差异,而与心源性休克患者相比没有这些差异,这表明它们可能不是新冠肺炎所特有的,而是提示危重患者能量状态紊乱的普适性指标。 根据之前的研究,研究人员还发现,新冠肺炎患者的脂蛋白谱严重紊乱,提示心血管疾病风险上升。该脂蛋白谱中很大一部分都与心源性休克患者不同。尤其要提到的是,新冠肺炎患者的极低密度脂蛋白(VLDL)、小颗粒VLDL组分及中密度脂蛋白水平上升——它们相比更大的低密度脂蛋白颗粒更易导致动脉粥样化;因此是引起心血管疾病和心脏损伤的风险因素。此外,新冠肺炎患者的甘油三酯水平相比健康对照者和心源性休克患者都有上升。 惊人的关联 该研究还研究了无症状感染或轻症之后持续发生的代谢变化。为此,研究人员分析了来自18个具有新冠病毒抗体的人的34份血清样本,并与来自相同年龄和性别的、不具有新冠病毒抗体的对照者的样本进行了比较。两组患者在采血前的急性冠状病毒感染检测均为阴性。 主成分分析(PCA)显示,两组之间的代谢谱和脂蛋白谱无显著差异,区分度很低,说明总体血清谱无显著差异。研究人员表示,这意味着新冠肺炎感染康复之后代谢谱回归正常。 然而,在来自曾经的轻症感染者的样本中,发现了抗体滴度和代谢健康标志物之间的关联。例如,抗体滴度与心血管风险标志物(包括小颗粒LDL-6、胆固醇和磷脂)呈负相关。还发现抗体滴度与作为代谢健康标志物的甘氨酸呈正相关。研究人员指出,他们无法从现有数据中确定因果关系,但拥有健康的代谢状态的个体可能更有可能对病毒产生有效的免疫反应,使得感染后的抗体滴度更高。 总之,研究人员表示,他们的发现表明新冠肺炎重症患者的代谢高度紊乱,包括分解代谢状态、肝损伤和严重血脂异常等。这一信息表明,基于NMR的代谢组学研究可被进一步用于患者的识别和分层,以帮助预测新冠肺炎的严重度。 *布鲁克核磁共振波谱仪仅供研究人员使用,不能用于临床诊断。 参考资料 Schmelter F, Foeh B, Mallagaray A et al. (2021) Metabolic markers distinguish COVID-19 from other intensive care patients and show potential to stratify for disease risk. medRxiv preprint. doi: https://doi.org/10.1101/2021.01.13.21249645.
  • 重庆大学预算783万元采购纳米颗粒跟踪分析仪等仪器设备
    项目编号:CQU-SS-HW-2023-003   项目名称:重庆大学医学公共实验中心实验设备(Ⅱ)采购   预算金额:783.0000000 万元(人民币)   最高限价(如有):729.0000000 万元(人民币)   采购需求:序号产品名称(设备名称)※数量单位备注1细胞能量代谢分析仪1套(核心产品)该设备经批准可以采购进口产品2纳米颗粒跟踪分析仪1套(核心产品)该设备经批准可以采购进口产品3活细胞工作站1套该设备经批准可以采购进口产品4大容量落地式离心机1套该设备经批准可以采购进口产品5大型灭菌器1套该投标产品必须为中国关境内生产,若为进口产品将按无效投标处理。6组合式全温振荡培养箱1套该投标产品必须为中国关境内生产,若为进口产品将按无效投标处理。   技术需求:序号设备名称技术需求1细胞能量代谢分析仪▲1.1平行检测样品量:一次可满足≥20个样品的平行检测;1.2数据采集:可在同一孔同时检测线粒体功能与无氧代谢,即时反应样本生理状态变化;1.3采用超敏感的惰性光学微传感器和非接触式设计,真正实现检测样本零损伤,在最接近样本的真实状态下,测量出反映样本能量代谢情况的动态数据;1.4实时多因子参数检测:同时分析02/H+,得到实时OCR/ECAR值,侦测有氧与无氧代谢途径;1.5可检测项目:基础代谢率、极限呼吸率、呼吸储备能力、质子漏水平、产氧自由基等有害物的情况等参数;1.6探针类型:检测探针为固态荧光探针,两种独立反应底物;※1.7检测器:配有≥20个独立的光电二极管检测器;1.8传感器:传感器为独立于每个孔的固态光纤传感器;※1.9自动加药槽:每个样品孔配有≥3通道自动加药槽,可按需设定加药程序;※1.10可在实验进程中加药,可调的混合系统,气体驱动的药物传递,自动混匀。整合了自动化药物注入系统,实验进程中可定时定量加入≥3种不同药物。2纳米颗粒跟踪分析仪2.1设备需要满足功能要求:2.1.1在主机内集成了高灵敏度传感器,温控单元以及不同波长的激光选择。便于移动、清洁,适合高通量检测;2.1.2采用整体设计,具有荧光增强检测能力。可以对于悬浮体系中的纳米颗粒进行粒径、散射光强、计数、zeta电位和荧光检测。检测能力使其在蛋白质团聚,外泌体、微泡、药物传递等领域具有广泛的应用。还可以利用荧光标定特定颗粒,单独对这些颗粒检测,而不受到复杂环境的影响;※2.1.3必须具备zeta电位测试功能。2.2技术指标:2.2.1粒径检测范围:0.01-2微米;※2.2.2浓度检测范围:106-109粒子/mL;2.2.3具有单个颗粒跟踪功能的激光散射视频技术,自动准直和自动聚焦;※2.2.4激光光源:双激光一体化配置,软件控制激光选择,无需拆卸;※2.2.5激光光源和相机同步移动,可自动测量样品至少10个测量位置达到有效统计点;2.2.6在1分钟内至少可测量样品1000个以上的颗粒,保证样品数据采集的有效性;※2.2.7仪器具备荧光测量功能,不同位置点的测量必须具有快速测试模式,在荧光淬灭前测量到样品10个不同位置的荧光数据;2.2.8光学系统:高灵敏度的CMOS相机,相机速度25fps;※2.2.9测量池必须是石英玻璃测量池,插入式设计,无需拆卸即可自动冲洗;2.2.10激光光源和检测器的位置必须全自动调节,无需人工操作;※2.2.11 Zeta电位测量范围:-400mV—400mV;2.2.12自动提示样品浓度与相机设定的匹配程度;※2.2.13可自动判断数据可靠性,并给出离散原因;2.2.14软件功能:提供布朗运动可视视频,提供平均粒径和分布宽度参数,提供颗粒浓度信息,提供粒径-数量分布和体积分布曲线,提供 Zeta 电位分布,可以在不同粒径范围进行分段计算,提供颗粒分布累积曲线,数据管理:可视频、文本、PDF、单一或叠加输出。3活细胞工作站※3.1系统包括高分辨荧光显微镜成像模块和活细胞培养模块,可通过电脑调用预设实验程序自动进行成像实验。3.2全电动荧光高分辨成像系统:3.2.1研究级全自动倒置荧光显微镜,可具备明场、荧光、相差、彩色明场成像功能;▲3.2.2相差具有立体浮雕效果,兼容塑料底耗材;3.2.3电动载物台,XY行程≥114mm×73mm;▲3.2.4物镜:至少四个,其中高倍物镜为水镜,NA≥1.2,可以自动添加水;3.2.5配有防震台;▲3.2.6配备硬件自适应焦面控制系统,兼容明场和荧光,可实现自动样品寻找和焦面寻找,并且可以在活细胞实验中维持焦平面的稳定;3.2.7机身预留灌流接口,可外置灌流系统;3.2.8配有用于76×26mm玻片、多孔板、35mm培养皿、腔室载玻片的适配器;※3.2.9拥有至少4色激发光,能同时激发DAPI,GFP,RFP,CY5等染料;※3.2.10至少配置4个高灵敏度荧光检测器,并可以4个通道同时成像;※3.2.11配备实时高分辨成像技术,最佳光学分辨率XY≤140nm;※3.2.12分辨率不低于400万像素条件下,同时4色成像速度≥20fps;▲3.2.13 4个荧光检测器QE量子效率:≥45%。※3.3环境控制模块:通过成像软件进行环境控制,温度、CO2控制及湿度控制均可由系统软件实现。3.4电脑工作站与软件系统:▲3.4.1电脑主机一台:处理器:不低于Intel Xeon Gold 5222;内存≥128GB,硬盘≥10TB;独立显卡≥8GB;显示器:≥32寸高对比度广视角液晶显示器,Win10专业版操作系统;含DVD刻录光驱;3.4.2配置UPS不间断电源一台;▲3.4.3软件功能:灵活的实验设计功能,可以针对实验需求灵活设置实验参数和自动化实验流程;多维图像成像功能,控制显微镜进行Time-lapse拍摄、多点拍摄、细胞跟踪、Z轴整合、自动对焦、样品的三维重建;图像处理和分析工具:包括可进行蛋白表达的定量分析、共定位分析、细胞内目标观测物的定量测定、动态示踪、量化参数列表和运动趋势/模式作图和视频制作等;3.4.4仪器可为后续信息化和智能化管理预留接口。4大容量落地式离心机※4.1最高转速不低于:29,000rpm,最大离心力不低于:100,605×g,最大容量≥4,000mL;▲4.2转速控制精度不高于:±50rpm;4.3具备密码保护功能;▲4.4程序保存不低于:99个;▲4.5加速至少可设定档位:9档,减速至少可设定档位:10档;4.6热输出<2.0kw,噪音<62dB;※4.7控制系统:微电脑控制,可简单快捷设定运行条件和运行参数,触摸屏液晶显示界面;4.8驱动系统:能有效降低升降速时间;▲4.9运行监测:实时显示运行曲线图,动态惯量检测功能,提高运行中的安全性;4.10转头识别与锁定:自动识别,自动锁定,具备转头管理功能,提高操作安全性;4.11温度设定范围:-20至+40℃,温度步升±1℃,温度精准度±2℃,最高转速下可保持4℃;※4.12安全系统:门互锁,对位不平衡检测(容忍度5%),超速和超温保护。5大型灭菌器▲5.1执行标准:中国标准GB8599;※5.2基本需求:采用脉动真空灭菌技术,300L≤容积≤400L,提供压力容器质量证明书、竣工图证明;▲5.3设计压力至少:0.25Mpa(-0.1),设计温度至少:139℃;▲5.4设计年限至少:8年(16000次灭菌循环);▲5.5运行时间:85min;※5.6程序最少包含:121℃塑料物品灭菌、134℃金属物品灭菌、134℃织物灭菌、121℃开口容器液体灭菌、121℃固体废弃物灭菌、121℃快速液体程序、BD测试、真空测试、自定义程序;5.7外形尺寸:尺寸1:1215×1880×1190mm;5.8夹套、门板、门档材质:304不锈钢或同类型档次材质;5.9管路:304不锈钢或同类型档次材质卫生级管路,卡箍连接;▲5.10工艺:至少满足手工焊接、无下沉工艺水平;5.11安装方式:地上安装;5.12主体结构:环形加强筋结构,内腔强度和稳定性更高;▲5.13生产厂家至少为:专业灭菌设备生产厂家,国家认定的企业技术中心,通过ISO9001、ISO13485、环境管理体系、职业健康安全管理体系认证,并提供相应证明;※5.14安全性能:压力容器安全联锁装置、超压自动泄放功能、夹套、内室各1个安全阀、漏电过载保护、经过电磁兼容检测。6组合式全温振荡培养箱6.1外形尺寸:一层、二层或三层叠加组合,以最小的占地面积为用户提供最大的使用空间;6.2三维一体的偏三轮驱动,运转平滑、稳定、耐久、可靠;▲6.3具有超温报警功能及异常情况自动断电功能;▲6.4具有断电恢复功能,避免因停电、死机而造成的数据丢失问题;6.5流线型外观,美观大方;内衬采用圆弧角镜面不锈钢设计,便于清洁,不容易滋生细菌、防腐蚀;外壳采用静电喷塑;▲6.6中空钢化玻璃门,方便随时在不开门情况下在各个角度观察箱体内部情况;6.7人性化设计,下两层为下翻式开门,第三层为上翻式开门,摇板可自由抽出,方便装卸摇瓶,每层可独立控制,各层可在不同温度转速下同时运转或根据需要运行一层、两层或三层;▲6.8精选优质进口压缩机、无氟环保制冷剂,噪音低、制冷效果好,确保设备在低温状态下长时间稳定运行;6.9配备滤波器磁环,减少外界和自身对机器稳定性的干扰;6.10人性化设计的开门即停功能,使用更加安全快捷;※6.11具有紫外线灭菌功能;▲6.12产品升级方案:可选配光照系统,光照强度可高达16000LX,高效节能,光效率高,1%—100%步进1%可调(1%、2%、3%—100%)使用寿命超长(可升级多种光源);6.13拥有数据记录功能,每分钟记录一次数据,可记录近三个月的数据,并且可显示温度、速度曲线,方便数据的分析;▲6.14配备高质伺服电机,控制速度精确、高速性能好、稳定性强;6.15特殊的制冷工艺,制冷量可调节,温度控制更加精准;▲6.16独特定时除霜功能,1—89分钟可自由设定,除霜间隔30—600分钟可调,能确保长时间在低温状态下运行时蒸发器不结冰;※6.17 LCD触摸屏,设定温度、转速、时间和实测温度、转速、剩余时间在同一界面显示,不用相互切换界面,观察更直观;6.18操作界面加密锁定功能,杜绝重复操作和人为误操作;可自由设定摇板正转或反转;强制对流的风扇常开或自动;※6.19振荡频率:可到达300rpm;※6.20温控范围:5~60℃;※6.21恒温精度:±0.5℃;※6.22温度均匀度:±0.8℃。   设备配置清单:序号设备及配件名称数量单位1细胞能量代谢分析仪1套1.1细胞能量代谢分析仪主机1台1.2数据处理和控制工作站(内置操作及分析软件一套)1套1.3微孔板套装(每套含6个探针板,10个细胞培养微孔板)2套1.4实时ATP速率测定试剂盒(6包/套)1套1.5细胞线粒体压力测试试剂盒(6包/套)1套2纳米颗粒跟踪分析仪1套2.1纳米颗粒跟踪分析仪主机(包含双激光模块,zeta电位模块和CMOS相机)1台2.2石英测量池1个2.3长通荧光滤光片1套2.4测量分析软件1套2.5标准样品1个2.6控制及数据采集系统1套3活细胞工作站1套3.1全自动活细胞显微成像系统主机,含全套适配器1台3.2采集与分析软件1套3.3计算机工作站1套3.4防震台1个3.5电脑桌2个3.6UPS不间断电源保护1个3.7除湿器2台3.8数据分析用电脑(含免费版软件、刻录光盘)1台3.9共聚焦皿1箱4大容量落地式离心机1套4.1离心机主机1台4.28×50mL定角转头,最高转速≥25,000rpm,最大相对离心力≥75,000×g1个4.34×1000mL定角转头,最高转速≥9,000rpm,最大离心力≥16,000×g1个4.450mL聚丙烯(PP)离心瓶≥50个4.510mL离心瓶≥50个4.61000mL聚碳酸酯(PC)离心瓶≥12个4.7250/500mL聚碳酸酯(PC)离心瓶≥12个4.810mL适配器8个4.9250/500mL适配器4个5大型灭菌器1套5.1大型灭菌器(设备包含压缩气、软化水等配套设备)1套6组合式全温振荡培养箱1套6.1三层组合式全温振荡培养箱1套   合同履行期限:中标人应在采购合同签订后90日内交货,交货后30日完成安装调试。   本项目( 不接受 )联合体投标。   获取招标文件   时间:2023年01月30日 至 2023年02月06日,每天上午9:00至12:00,下午12:00至18:00。(北京时间,法定节假日除外)   地点:采购代理机构领取或在中国政府采购网(http://www.ccgp.gov.cn)或重庆大学政府采购与招投标管理中心网(http://ztbzx.cqu.edu.cn)网上下载   方式:采购代理机构领取或在中国政府采购网(http://www.ccgp.gov.cn)或重庆大学政府采购与招投标管理中心网(http://ztbzx.cqu.edu.cn)网上下载   售价:¥0.0 元,本公告包含的招标文件售价总和   提交投标文件截止时间、开标时间和地点   提交投标文件截止时间:2023年02月20日 09点30分(北京时间)   开标时间:2023年02月20日 09点30分(北京时间)   地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层)
  • 新型NADH荧光探针问世 实现细胞代谢实时检测与成像
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/8285de06-fab1-432b-acd4-3147494e96d5.jpg" title=" tpxw2017-08-10-03_副本.jpg" / /p p   在国家自然科学基金重大研究计划、国家杰出青年科学基金项目和面上项目的资助下,华东理工大学杨弋教授团队开发了一系列特异性检测还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)的高性能遗传编码荧光探针iNap,相关研究成果以“Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism”(遗传编码的荧光探针揭示NADPH代谢的动态调节)为题于2017年6月5日以“研究长文”的形式在线发表在Nature Methods,2017年7月28日正式刊出。陶荣坤博士、赵玉政研究员和初环宇博士为共同第一作者。华东理工大学杨弋教授和中国科学技术大学刘海燕教授为文章的共同通讯作者。 /p p   烟酰胺腺嘌呤二核苷酸(NADH/NAD+)及其磷酸化形式(NADPH/NADP+),作为生物体内两对最重要的辅酶和核心代谢物,常被用作评价细胞代谢状态的关键指标,与衰老及相关疾病如癌症、糖尿病、肥胖症、心脑血管疾病、神经性退行性疾病等的发生发展密切相关。长久以来,细胞代谢的检测主要依赖酶学、色谱、质谱等,这些方法不仅破坏了细胞或生物体的完整性,更难以应用于高通量筛选。为了解决这一重要科学难题,2011年,杨弋教授团队利用合成生物学方法开发了一系列遗传编码的NADH荧光探针,实现了在活细胞及各种亚细胞结构中对NADH分子的实时动态、特异性的检测与成像(Cell Metabolism, 2011, 14, 555)。2015年,该团队又报道了可同时检测NAD+,NADH及其比率的第二代细胞代谢荧光探针NADH氧化还原比率探针(SoNar),像火眼金睛一样,可察觉到癌细胞与正常细胞的微细代谢差异(Cell Metabolism, 2015, 21, 777)。并进一步建立了细胞代谢荧光探针在单细胞、活体动物成像及高通量药物筛选方面的系统研究方法(Nature Protocols, 2016, 11, 1345)。 /p p   NADH和NADPH的荧光光谱相似,但是二者的生理功能却显著不同。NADH主要参与物质能量代谢,而NADPH主要参与合成代谢以及抗氧化,传统的自发荧光分析方法很难区分这两种小分子。该研究团队在第二代NADH荧光探针SoNar的基础上,通过对底物结合蛋白的理性设计和改造,开发了一系列高性能遗传编码荧光探针iNap,特异性检测NADPH,实现了在活体、活细胞及各种亚细胞结构中对NADPH代谢的高时空分辨检测与成像。该研究首次报道了癌细胞内不同亚细胞结构中游离的NADPH水平,发现了氧化应激时癌细胞内NADPH代谢受葡萄糖水平动态调节。研究团队也进一步发现人体内源性类固醇激素DHEA通过抑制G6PD活性和激活AMPK活性,对NADPH代谢实现双向调节作用。鉴于AMPK信号通路在衰老、糖尿病、肥胖症以及癌症中的重要角色,这一研究结果有望破解DHEA作为一种药物和膳食补充剂在这些疾病方面发挥出的有益作用。NADPH作为细胞内的还原力,在生理或病理条件下发挥重要角色。该研究报道的细胞代谢荧光探针iNap,不仅可应用于抗氧化、AMPK、脂肪酸合成等代谢途径与通路分析,也可用于衰老及相关疾病创新药物的发现。 /p
  • 肿瘤细胞中不同的糖代谢途径|附相关会议
    人们早在20世纪初就观察到肿瘤细胞群体的一个有趣且独特的性质:大多数肿瘤细胞的能量代谢与正常细胞相比呈现出巨大的差异性。1924年Otto Warburg首先报道了这一现象,后来他由于发现呼吸酶(即细胞色素c氧化酶)而获得了诺贝尔奖。相关会议推荐点击可免费报名大多数不增殖的正常细胞通过获取氧分子,将葡萄糖通过葡萄糖转运蛋白(GLUT)运输入胞内,在胞质中有氧条件下能通过糖酵解途径将葡萄糖分解成丙酮酸。在糖酵解的最后一步,丙酮酸激酶的M1亚型的存在,可以确保产物丙酮酸被运送到线粒体,再在丙酮酸脱氢酶(PDH)的作用下进行氧化,生成乙酰辅酶A,进入三羧酸循环。通过这种方式,线粒体每分解一个葡萄糖分子就能产生36个ATP分子。而在肿瘤细胞中,即使在有充足氧供应的肿瘤细胞中,GLUT1将大量葡萄糖运输至胞质中进行糖酵解。它依赖丙酮酸激酶的M2亚型,将丙酮酸盐转化为乳酸脱氢酶(LDH-A)的底物,生成大量乳酸,分泌到胞外。由于只有极少量的葡萄糖被运输至线粒体进行分解,故每个葡萄糖分子只分解得到2个ATP分子。此外,糖酵解途径中的大量中间产物被用于其他生化合成途径中。被Warburg称为肿瘤细胞“有氧糖酵解”的这种代谢方式,由于其每分解一个葡萄糖分子只能得到两个ATP分子,在能量学上显得很不经济。因为在三羧酸循环中有氧分子参与的情况下,一个葡萄糖分子的有氧糖酵解途径能提供36个ATP分子。机体中的大多数正常细胞正是通过这种由血液系统带来氧分子、进而进行有氧糖酵解的途径获得高效供能的。而即使子提供充足氧气的情况下,肿瘤细胞也不使用常规糖酵解方式,这实在是一种非常与众不同的生物学行为。由于肿瘤细胞使用的是一种很不经济的糖代谢方式,因此它们需要大量的葡萄糖进入胞内进行分解。在多种肿瘤中,如上皮来源的癌和血液系统肿瘤,都能观察到这种行为。它们高表达葡萄糖转运蛋白,如GLUT1等,以便能跨膜转运大量葡萄糖。那么为什么80%的肿瘤细胞要采取这种糖酵解的方式,而不采用到线粒体中进行三羧酸循环的方式对葡萄糖进行分解呢,并且明显后者能提供更多的ATP以供肿瘤细胞的生长和增殖?有氧糖酵解是否是肿瘤细胞维持其表型必需的?又或它只是细胞转化后的一个无意义的副效应,对细胞转化和生长并没有因果作用。有关有氧糖酵解的一个解释是肿瘤块内部的肿瘤细胞通常都呈现缺氧的状态,这种缺氧状态导致细胞不能进行充分的糖酵解进而提供充足的ATP,就像正常细胞在缺氧状态时的反应一样。由于具备Warburg效应,肿瘤细胞很好地适应了这种缺氧环境,但这依然不能解释为什么在提供充足氧气的条件下,肿瘤细胞依然不加以利用以合成更多的ATP。关于有氧糖酵解另一个合理的解释是,除了产生ATP,糖酵解还有第二个作用:糖酵解途径的中间产物可以作为很多涉及细胞生长(如核酸和脂类的合成)的分子的前体。肿瘤细胞通过糖酵解途径的负反馈机制,阻断糖酵解途径的最后一步,使细胞内积累了大量早期中间代谢物。这些糖酵解途径的中间产物能参与许多重要的生化合成反应。较肿瘤细胞而言,正常细胞没有那么强的增殖活性,也不需要大规模的生化合成反应,葡萄糖主要用来产生ATP以维持其正常代谢。正是这种肿瘤细胞异常的葡萄糖代谢为其创造了生长和增殖的生理学环境。参考文献: 1. 《The biology of CANCER》second edition. Robert.A Weinberg 2. 《癌生物学》詹启敏 刘芝华 主译
  • 前沿合作∣岛津助力陈春英团队在PNAS上发表揭示细胞内纳米蛋白冠干扰蛋白稳态重塑细胞代谢
    2022年6月2日,国家纳米科学中心陈春英研究员团队在《美国国家科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America 2022, 119(23), e2200363119)在线发表了题为"Dynamic intracellular exchange of nanomaterials’ protein corona perturbs proteostasis and remodels cell metabolism"的研究论文(图1),通过创新应用多维度多组学(蛋白组学、代谢组学、脂质组学)、分子间互作以及原位质谱成像等分析技术,首次揭示了“纳米蛋白冠”的蛋白组成在细胞转运过程中的动态演化模式,并发现该过程扰动细胞蛋白质稳态、能量代谢和脂质代谢过程。该研究工作得到了岛津中国创新中心(Shimadzu China Innovation Center)的技术支持。图1 论文首页标题 背景介绍当纳米材料进入生命体系时,生物流体的生物分子迅速与纳米材料表面结合,形成生物分子冠,其中纳米-血液蛋白分子互作形成的“纳米蛋白冠”,自2006年始引起科学界的广泛关注。前期工作发现纳米蛋白冠的形成决定纳米材料在多层级细胞和组织中的识别、转运、分布、功能和生物效应,是纳米材料生物应用的“黑匣子”问题,不仅决定纳米药物载体的递送效率,还会制约纳米药物的递送效率,并严重影响其有效性和安全性 [1]。该领域研究的一个重要挑战是“纳米蛋白冠”的复杂性,该复杂性受不同组织器官中生物分子的多样性以及生理病理状态的影响。然而目前对蛋白冠的蛋白组成和结构特性如何随纳米颗粒所处的生物微环境不同而发生变化,存在认知不明、机理不清的问题。 解决方案为了解决这一问题,研究人员以纳米金颗粒为模式纳米颗粒,研究了蛋白冠从血液系统到细胞内的动态演化过程(血液-溶酶体-细胞质)(图2),当纳米颗粒由血液环境经过细胞内吞进入溶酶体,再从溶酶体逃逸进入细胞质后,其表面的蛋白组成会发生巨大变化,被细胞内蛋白质分子(PKM2、HSPs、GAPDH、ASSY等)所替代,只保留部分血液环境中形成的蛋白冠成分(FIBs、APOs、HBs、C3、S100s等)(图2)。 图2. 纳米蛋白冠组成在细胞转运过程中的演化过程 随后发现,纳米蛋白冠的胞内演化扰乱细胞内的蛋白稳态(proteostasis),引发伴侣蛋白(HSC70, HSP90等)和丙酮酸激酶M2(PKM2)在胞内纳米蛋白冠表面的富集,并利用微量热泳动技术(MST)验证了PKM2、HSC70与从溶酶体逃逸出来之后的纳米蛋白冠具有极强的亲和力,这一吸附规律激发了伴侣蛋白介导的自噬反应(Chaperone mediated autophagy, CMA),即“纳米蛋白冠引发的CMA”(Protein corona induced CMA)(图3)。 图3. 纳米蛋白冠的组分与胞内蛋白(伴侣蛋白、代谢激酶)的交换引发伴侣蛋白介导的自噬(CMA)活性的升高 进一步,研究人员采用代谢组学发现“纳米蛋白冠诱导的CMA”影响细胞糖酵解,引发细胞外酸化率(ECAR)显著增加。结合脂质组学发现的特定脂质,利用iMScope TRIO(Shimadzu Corporation)进行鉴定和可视化分布分析显示在动物组织水平纳米蛋白冠的存在一定程度上扰动肿瘤组织中的脂质种类和分布(图4),扰动的脂质主要富集在胆碱代谢、甘油磷脂和鞘脂代谢途径。 图4. 纳米蛋白冠引发的CMA重塑细胞能量代谢和脂质代谢 结论综上所述,此项工作首次阐明了纳米颗粒从血液到亚细胞微环境转运过程中的演化模式,发现了“纳米蛋白冠”的胞内微环境特异性,进而重塑细胞代谢,为深入理解纳米-生物界面调控纳米材料复杂生物学效应提供了新认识和理论支撑。同时借助岛津成像质谱显微镜iMScope,可在肿瘤组织内部原位清晰展现出包括磷脂酰胆碱(PC)、磷脂酰乙醇胺 (PE)、磷脂酰肌醇(PI)类脂质等多种成分均发生了明显变化。通过空间可视化成像技术,不仅可实现在分子水平上对纯纳米粒子和纳米蛋白冠的生物毒理学效应进行有效研究,同时也为未来对更多种类的纳米搭载生物诊疗试剂和材料的毒理学和安全性评价提供更为直观有力的研究手段。 原文链接https://www.pnas.org/doi/10.1073/pnas.2200363119参考文献:[1] Cao M. et al. Molybdenum Derived from Nanomaterials Incorporates into Molybdenum Enzymes and Affects Their Activities in vivo. Nature Nanotechnology, 2021, 16: 708-716.
  • 前沿合作∣岛津助力陈春英团队在PNAS上发表揭示细胞内纳米蛋白冠干扰蛋白稳态重塑细胞代谢
    2022年6月2日,国家纳米科学中心陈春英研究员团队在《美国国家科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America 2022, 119(23), e2200363119)在线发表了题为"Dynamic intracellular exchange of nanomaterials’ protein corona perturbs proteostasis and remodels cell metabolism"的研究论文(图1),通过创新应用多维度多组学(蛋白组学、代谢组学、脂质组学)、分子间互作以及原位质谱成像等分析技术,首次揭示了“纳米蛋白冠”的蛋白组成在细胞转运过程中的动态演化模式,并发现该过程扰动细胞蛋白质稳态、能量代谢和脂质代谢过程。该研究工作得到了岛津中国创新中心(Shimadzu China Innovation Center)的技术支持。 图1 论文首页标题 背景介绍当纳米材料进入生命体系时,生物流体的生物分子迅速与纳米材料表面结合,形成生物分子冠,其中纳米-血液蛋白分子互作形成的“纳米蛋白冠”,自2006年始引起科学界的广泛关注。前期工作发现纳米蛋白冠的形成决定纳米材料在多层级细胞和组织中的识别、转运、分布、功能和生物效应,是纳米材料生物应用的“黑匣子”问题,不仅决定纳米药物载体的递送效率,还会制约纳米药物的递送效率,并严重影响其有效性和安全性 [1]。该领域研究的一个重要挑战是“纳米蛋白冠”的复杂性,该复杂性受不同组织器官中生物分子的多样性以及生理病理状态的影响。然而目前对蛋白冠的蛋白组成和结构特性如何随纳米颗粒所处的生物微环境不同而发生变化,存在认知不明、机理不清的问题。 解决方案为了解决这一问题,研究人员以纳米金颗粒为模式纳米颗粒,研究了蛋白冠从血液系统到细胞内的动态演化过程(血液-溶酶体-细胞质)(图2),当纳米颗粒由血液环境经过细胞内吞进入溶酶体,再从溶酶体逃逸进入细胞质后,其表面的蛋白组成会发生巨大变化,被细胞内蛋白质分子(PKM2、HSPs、GAPDH、ASSY等)所替代,只保留部分血液环境中形成的蛋白冠成分(FIBs、APOs、HBs、C3、S100s等)(图2)。 图2. 纳米蛋白冠组成在细胞转运过程中的演化过程 随后发现,纳米蛋白冠的胞内演化扰乱细胞内的蛋白稳态(proteostasis),引发伴侣蛋白(HSC70, HSP90等)和丙酮酸激酶M2(PKM2)在胞内纳米蛋白冠表面的富集,并利用微量热泳动技术(MST)验证了PKM2、HSC70与从溶酶体逃逸出来之后的纳米蛋白冠具有极强的亲和力,这一吸附规律激发了伴侣蛋白介导的自噬反应(Chaperone mediated autophagy, CMA),即“纳米蛋白冠引发的CMA”(Protein corona induced CMA)(图3)。图3. 纳米蛋白冠的组分与胞内蛋白(伴侣蛋白、代谢激酶)的交换引发伴侣蛋白介导的自噬(CMA)活性的升高 进一步,研究人员采用代谢组学发现“纳米蛋白冠诱导的CMA”影响细胞糖酵解,引发细胞外酸化率(ECAR)显著增加。结合脂质组学发现的特定脂质,利用iMScope TRIO(Shimadzu Corporation)进行鉴定和可视化分布分析显示在动物组织水平纳米蛋白冠的存在一定程度上扰动肿瘤组织中的脂质种类和分布(图4),扰动的脂质主要富集在胆碱代谢、甘油磷脂和鞘脂代谢途径。 图4. 纳米蛋白冠引发的CMA重塑细胞能量代谢和脂质代谢 结论综上所述,此项工作首次阐明了纳米颗粒从血液到亚细胞微环境转运过程中的演化模式,发现了“纳米蛋白冠”的胞内微环境特异性,进而重塑细胞代谢,为深入理解纳米-生物界面调控纳米材料复杂生物学效应提供了新认识和理论支撑。同时借助岛津成像质谱显微镜iMScope,可在肿瘤组织内部原位清晰展现出包括磷脂酰胆碱(PC)、磷脂酰乙醇胺 (PE)、磷脂酰肌醇(PI)类脂质等多种成分均发生了明显变化。通过空间可视化成像技术,不仅可实现在分子水平上对纯纳米粒子和纳米蛋白冠的生物毒理学效应进行有效研究,同时也为未来对更多种类的纳米搭载生物诊疗试剂和材料的毒理学和安全性评价提供更为直观有力的研究手段。 原文链接https://www.pnas.org/doi/10.1073/pnas.2200363119 参考文献:[1] Cao M. et al. Molybdenum Derived from Nanomaterials Incorporates into Molybdenum Enzymes and Affects Their Activitiesin vivo. Nature Nanotechnology, 2021, 16: 708-716.
  • 生物大分子标记新突破:可基因编码的代谢糖质标记技术
    生物体中几乎所有的细胞都具有相同的基因组,而不同的细胞类型和功能则由不同的基因表达、表观遗传修饰和翻译后修饰等所决定。解析特定器官或组织中特定细胞的生物大分子图谱对探究发育、细胞间通讯以及疾病的发生发展等都具有重要意义。因此,开发细胞选择性的生物大分子标记方法,近年来受到了科学家们的广泛关注。通过基因编码的方法,人们在活体动物中实现了蛋白质的组织特异性和细胞选择性标记和分析。然而,糖质(glycan)作为另外一种主要的生物大分子,尚无法通过基因编码的方式,实现活体中的细胞选择性标记。糖质以寡糖、多糖、糖蛋白、糖脂等形式直接参与细胞的分化增殖、免疫调节、信号转导、细胞迁移等重要的生命活动,对其进行在体标记和分析一直是领域内的一个难点。其中,基于生物正交化学的代谢糖质标记(metabolic glycan labeling)技术已经成为了最主要的工具之一。经过20多年的发展,目前已有数十种非天然糖分子可用以在活细胞和活体中标记糖质。然而,非天然糖在活体中并不具备器官或细胞特异性,无法实现精准的细胞选择性标记,阐释特定细胞群体中糖质所发挥的生物学功能。北京大学化学与分子工程学院、北大-清华生命科学联合中心陈兴教授课题组一直致力于解决这个问题,此前开发了基于靶向性脂质体的非天然糖代谢标记技术,实现了肿瘤组织和脑部的糖质标记。同时,他们意识到,基因编码技术可以在活体中实现更加精准的细胞选择性。为了实现这一目标,继续推进代谢糖质标记技术的应用,2022年5月5日,该课题组在 Nature Chemical Biology 上发表了题为“Cell-type-specific labeling and profiling of glycans in living mice”的论文,报道了一种可基因编码的代谢糖质标记技术(GeMGL)。该技术将“凸凹互补(bump and hole)”的化学遗传学策略与代谢糖质标记方法相结合,利用非天然糖1,3-Pr2GlcNAl(Bump)及其匹配的焦磷酸酶突变体AGX2F383G(Hole)的正交组合,在活体动物上实现了细胞选择性糖质标记和分析。他们从一个具有低标记效率的非天然糖—乙酰胺基葡萄糖的叠氮类似物GlcNAz出发,确认了其代谢通路中的焦磷酸酶AGX是限速酶,将其过表达可以增强代谢强度。他们随即想到,增大非天然基团并对AGX酶进行突变,可能可以开发出凹凸对。于是,他们采用了炔基修饰的乙酰胺基葡萄糖GlcNAl和焦磷酸酶突变体AGX2F383G,通过体外和细胞实验证明了GlcNAl的代谢完全依赖焦磷酸酶突变体AGX2F383G。接着,在多细胞共培养体系和小鼠移植瘤模型中,证明了GeMGL策略的可行性。基于此,他们将该策略拓展到了转基因小鼠中。他们首先利用心肌细胞特异的启动子α-MHC实现了AGX2F383G在小鼠心肌细胞中的特异性表达,然后腹腔注射非天然糖1,3-Pr2GlcNAl,实现了非天然糖分子在小鼠心肌细胞中的特异性代谢。从各组织标记结果来看,GeMGL策略展现出严格的心肌细胞选择性。结合定量蛋白质组学方法,在小鼠心肌细胞中鉴定到582个O-GlcNAc修饰蛋白。分析发现,心肌细胞中许多糖酵解、TCA循环和氧化磷酸化途径相关蛋白都具有O-GlcNAc糖基化修饰,表明O-GlcNAc糖基化修饰可能在心肌细胞的线粒体能量代谢过程中发挥重要功能。在转基因小鼠中进行的细胞类型特异性代谢糖质标记该工作提供了一种可基因编码的细胞特异性糖质标记技术GeMGL,为在活体层面研究糖质在特定细胞类型中的生物学功能提供了一种便利、有效的工具。该技术有望被推广到更为复杂的神经系统中,并在相关疾病模型中探究糖基化与神经发育、神经退行性疾病等的关系。陈兴 北京大学化学学院教授,生命科学联合中心高级研究员,合成与功能生物分子中心研究员。长期致力于糖化学和糖生物学研究,糖质标记和分析是其研究重点之一。综合运用化学方法、生物手段和纳米技术,研究糖基化的生物学功能及其在代谢疾病及其心血管并发症中的作用。原文连接:https://www.nature.com/articles/s41589-022-01016-4
  • 安捷伦科技创新推出Seahorse XF Pro分析仪
    安捷伦科技创新推出Seahorse XF Pro分析仪新品专为制药和生物制药优化,有助于深入了解细胞功能 2022年1月25日,安捷伦科技公司隆重推出全新安捷伦 Seahorse XF Pro分析仪。该款新品是以制药应用为导向的全新工作流程解决方案,其中包含更先进的实验设计和分析工具。安捷伦 Seahorse XF Pro分析仪 安捷伦 Seahorse XF Pro分析仪具备更出色的性能、更稳定高效的工作流程,以及经过优化的用户体验,各种技术水平的操作人员均可使用其先进的细胞代谢分析技术,深入了解细胞命运(cellular fate)、适应性和功能。临床前治疗药物的研发工作流程对细胞分析有很高的要求,免疫学和疾病研究人员越来越多地使用罕见的体外细胞和基因工程细胞构建更好的疾病模型。 随着业界对实时监测活细胞的关注度不断提升,安捷伦 Seahorse XF Pro分析仪也针对性集成了一套硬件和软件增强功能,可提高测量性能和数据解析能力,从而更轻松地鉴定出创新药物靶标、验证靶标对细胞功能的影响、优化疾病模型,并确定药物安全性和T细胞疗法的抗肿瘤潜力。 安捷伦细胞分析、Seahorse、Luxcel 和微孔板业务部协理副总裁兼总经理 Richard Fernandes 表示:“通过专用的工作流程解决方案,安捷伦 Seahorse XF Pro分析仪提供了增强的性能和更出色的客户体验,尤其是在制药和生物制药开发以及毒性评估项目中。这彰显了安捷伦致力于开发以端到端解决方案为核心的创新产品的承诺,切实满足客户需求,继续引领包括直接代谢分析在内的应用分析与研究应用。” 安捷伦细胞分析事业部营销协理副总裁Chris Braun表示:“安捷伦Seahorse XF Pro是我们‘以客户为中心’创新理念的又一写照。通过与客户的合作和深入交流,我们认识到他们需要一种活细胞代谢分析平台,让经验丰富的用户和新手都能更轻松地进行复杂的分析。安捷伦Seahorse XF Pro主要针对的是制药和生物制药行业,然而所有客户都能获益——它可以帮助研究人员将关键的代谢见解应用于研发流程中,以便在关键的工作环节获得更高质量的数据。” 研究人员期望安捷伦Seahorse XF Pro 分析仪能够改进活细胞分析的关键环节,对于从事免疫治疗、早期药物发现和临床前安全性评估的研究人员而言更是如此。 通过在低氧耗率(OCR)条件下提供更高精度,安捷伦Seahorse XF Pro 分析仪能够帮助分析人员可靠地分析更多免疫细胞类型,包括生物能量代谢受损的细胞类型。 该款新品还采用了为制药应用量身定制的工作流程,可在利用稳定细胞代谢测量的同时处理悬浮细胞类型,同时实现简化的自动化和分析仪器确认(analytical instrument qualification,AIQ)。 关于安捷伦科技安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,致力于提供敏锐洞察与创新,帮助提高生活质量。我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在 2021 财年,安捷伦的营业收入为 63.4 亿美元,全球员工数为 17000 人。
  • 空间代谢组学高分辨率质谱成像揭示鞘脂控制真皮成纤维细胞异质性
    人类真皮成纤维细胞是皮肤的细胞成分,由于它们的动态细胞特性而表现出细胞间表型异质性。因此,单个真皮成纤维细胞可以有不同的细胞特性,负责伤口修复、纤维化或细胞外基质的重塑。脂质代谢在具有不同表型的成纤维细胞中是否存在不同的形态,以及脂质成分是否参与成纤维细胞亚型的建立尚不清楚。  2022年4月,洛桑联邦理工学院的Laura Capolupo等人在Science上发表了题为“Sphingolipids control dermal fibroblast heterogeneity”的研究成果,通过空间分辨代谢组学和单细胞转录组学研究方法,通过研究单个细胞的脂质组成,揭示了鞘脂在成纤维细胞状态确定中的驱动作用。研究背景  外部信号(例如激素、细胞因子和生长因子)和细胞自主特性(例如单个细胞的转录和代谢状态)共同决定细胞命运的决定。尽管在数十年的深入研究中,外部信号的作用方式已经得到了广泛的详细说明,但细胞自主对命运决定的分子基础仍难以捉摸。脂质参与能量代谢,负责生物膜的组装,充当信号分子,并与蛋白质相互作用以影响其功能和细胞内分布。脂质组成因细胞类型而异,并在分化事件中重新编程。然而,脂质组重塑是否以及如何帮助改变细胞特性尚不清楚。  研究思路  研究结果  1. 通过空间代谢组学揭示脂质异质性的组织原理,单细胞分析显示脂质协同调节  图1和图2展示了研究人员首先对原代真皮人成纤维细胞 (dHF) 进行了空间代谢组学解析,结合电喷雾电离液相色谱-质谱(ESI-LC/MS)和基于多反应监测(MRM)的脂质组学分析,发现dHF 中存在两个共存的脂质变异轴。一个轴与细胞内组织有关,另一个轴与脂质相关的细胞间异质性有关,其中鞘脂途径受到高细胞间变异性的影响。随后的单细胞脂质组根据脂质组成对细胞进行分组,产生了不同的细胞簇。当考虑鞘脂的水平时,某些鞘脂在特定的细胞簇中富集,表明 dHF 以不同的鞘脂代谢状态存在。  研究人员随后用可识别不同鞘脂头部基团的荧光标记的细菌毒素对细胞进行染色,验证了这一结果,发现dHF 以亚稳态鞘脂代谢配置存在,与给定的表型状态相对应,并在细胞世代中持续存在,研究人员将这些脂质代谢状态称为lipotypes。  图1 | dHFs的单离子空间代谢组学分析  (A)空间代谢组学检测方法示意图  (B)正离子模式检测的部分脂质成像图  (C)每个像素的PCA坐标显示  (D)前10种脂质的贡献度展示  图2 | 单细胞脂质组学分析  (A)空间代谢组数据单细胞分析方法示意图  (B)显示通过257个细胞计算的脂质CV的条形图  (C)脂质协变网络  (D)单细胞脂质组学数据的t-SNE图  (E)鞘脂染色t-SNE分布图  (F)鞘脂前体和负责鞘脂的成像图  2. 单细胞转录组测序对细胞类型进行分类并对应不同脂型结合分析  研究人员接着对dHF 进行了单细胞 RNA 测序 (scRNA-seq),并将转录组定义的亚型与鞘脂定义的亚型联系起来,发现特定的lipotypes与普遍的细胞状态有关,表明lipotypes是 dHF 细胞状态的标志物。此外,dHF lipotypes还反映在不同真皮区域的成纤维细胞亚型上,如真皮较深区域的网状成纤维细胞与较浅区域的乳头状成纤维细胞会呈现差异化的lipotypes,且与皮肤癌的相关性不同。由此,lipotypes可以在体内标记特定的 dHF 群体。  图3 | 脂肪类型映射到转录细胞的状态  (A)通过指定聚类对5652个单独DHF的scRNA序列进行UMAP嵌入分析  (B)聚类标记基因的基因表达点图  (C)A中单个dHF细胞的扩散图,突出了不同细胞状态之间转录变异轴  (D)DHF的sRNA序列数据PAGA轨迹分析图  (E)每个FACS分类的脂肪型群体的富集基因的平均基因表达热图  (F)不同的脂型基因特征分数UMAP图  (G)不同簇细胞的平均脂型z分数点图  (H)ShTxB2e+、ShTxB1a/2e+、ChTxB+和triple+的PAGA轨迹分析图  (I)成纤维细胞(ACTA2)和基底细胞(LMNA)的两种典型标记物的UMAP图  (J)几种染色细胞的共焦显微照片  3. 鞘脂扰动对细胞状态的影响  研究人员最后探究了鞘脂扰动对细胞状态的影响,发现lipotypes异质性通过使原本相同的细胞对细胞外刺激的反应多样化来影响细胞特性,并且操纵鞘脂组成足以将细胞重新编程为不同的表型状态。此外,鞘脂还能整合到参与细胞状态确定的调节回路中,这些回路解释了代谢和转录成纤维细胞的异质性。具体来说,研究人员观察到鞘脂调节成纤维细胞生长因子2 (FGF2) 的信号传导,其中globo系列鞘脂Gb3/Gb4 充当正调节剂,而神经节苷脂GM1 充当负调节剂。反过来,FGF2 信号通过维持导致Gb3/Gb4 产生的替代代谢途径来抵消 GM1 的产生。  图4 | 鞘脂扰动对FGF信号的影响  相关讨论  该研究通过将高分辨率质谱成像与单细胞转录组学相结合,测量了单个人类真皮成纤维细胞的脂质组和转录组,发现特定脂质代谢途径的细胞间变化有助于建立参与皮肤结构组织的细胞状态如图5所示。这为细胞间异质脂质代谢在多细胞系统的自组织中发挥指导作用提供了证据。图5 |鞘脂控制真皮成纤维细胞异质性
  • 代谢组学,妙手何来?|迈理奥,开拓代谢组学新科技的先锋
    今天要讲到的代谢组学妙手来自何方? 来自我们优秀的用户——迈理奥(Meliomics)。迈理奥的快速崛起,源自于他们对代谢组学领域的深刻理解和持续创新,而安捷伦出色的仪器和解决方案也为其提供了重要支持。日前,我们有幸采访到了迈理奥首席科学家厉良教授(加拿大皇家科学院院士)和学术总监李佳博士,深入了解了代谢组学领域及其检测环节所面临的挑战与机遇。厉良教授是享誉国际的质谱和代谢组学专家,加拿大皇家科学院院士、加拿大国家代谢组学研究创新中心联合主任、加拿大阿尔伯塔大学终身教授、人类代谢组计划联合发起人、人类代谢组学数据库 HMDB 联合创始人,积累了丰富的学术成果,获得诸多行业赞誉。图 1. 厉良教授正在接受采访 什么是代谢组学? 随着人们生活水平的提高,健康已成为重要关注点。常规体检通过检测肌酐、尿酸、胆红素等代谢物来评估健康状态。然而,对于某些复杂的疾病,常规检测方法可能无法提供足够的信息,需要更先进的技术来辅助。以新生儿筛查为例,代谢组学技术能在几分钟内快速识别 40 多种遗传代谢病的生物标志物。那么,什么是代谢组学呢?代谢组学是通过质谱等高通量技术手段,研究和发现特定生理时期内生物体的所有低分子量的物质,并进行定性和定量分析,探索代谢物变化与生物过程之间的有机联系。简单来说,代谢组学就是研究生物体内所有小分子代谢物的科学。癌细胞为了满足自身快速增殖的能量需求,通常会加速和增加生物能量代谢途径,包括通过糖酵解提高葡萄糖摄取以及引起三羧酸循环的变化。想象一下,借助代谢组学技术,我们有望在癌症早期进行发现和干预,避免病情发展到晚期扩散才进行治疗。这种早期诊断和干预策略,能够显著提升治疗效果,改善患者的生存质量。 图 2. 葡萄糖、乳酸和三羧酸循环对抗肿瘤免疫的影响 质谱检测在代谢组学领域面临哪些挑战?如何应对? 代谢组学领域的研究在检测环节面临很多挑战,厉良教授介绍到,代谢物常用质谱进行检测,但检测方法还有几个层面亟待提升。迈理奥正在通过颠覆性的创新技术克服常规代谢组学方法的瓶颈,从而提升检测的准确性和效率。 01 代谢物的检测覆盖率:很多代谢物电离效率不高或难以在色谱柱上保留,导致质谱不容易捕捉到这些物质。针对这一问题,迈理奥巧妙运用了化学衍生化的方法,使代谢物拥有疏水基团和叔胺结构,显著提高其色谱柱的保留性能和离子化效果,结合安捷伦高分辨质谱仪器,提升代谢物检测灵敏度 10-1000 倍,可检测8000-13000 个色谱峰对,极大地提升了代谢物的检测效率。使得更多的代谢物能够被准确、全面地检测到。 02 代谢物的定量分析:代谢物的准确定量应使用其对应的同位素内标矫正,但并不是所有代谢物均有同位素内标,或即使有,价格往往非常昂贵。针对这一难题,迈理奥采用同位素双标记的方法,为每种代谢物生成一一对应的同位素内标,进行精确的定量分析。代谢组学研究中很多时候不需要绝对定量检测,仅需要通过相对定量检测确定代谢物的变化趋势,即可为进一步研究和转化提供重要参考。 03 代谢物的鉴定:质谱灵敏度较高,因此会检测到很多离子信号,但是如何鉴定其为具体的某种代谢物,这方面能力仍然需要提升。 为了得到更准确的代谢物鉴定结果,迈理奥建立了专业的三层级代谢物鉴定数据库,实现了1400+个代谢物的精准鉴定和7000+个代谢物的可靠推定。为了进一步提高代谢物的鉴定能力,迈理奥正在构建基于 AI 的规模更大、更专业化的数据库,此举旨在提高鉴定精度,确保检测结果的准确性,从而为科学研究和临床应用提供更加可靠的支持。图 3. 迈理奥技术人员进行代谢组学实验 在代谢组学研究领域,质谱仪需要满足哪些要求? 在代谢组学研究领域中,质谱仪发挥着非常重要的作用,因此厉良教授认为,质谱仪需要尽量满足以下要求:1灵敏度,确保能够检测出样本中浓度很低的化合物,使多种代谢物的峰强度和面积都能得到很好的体现; 2分辨率,确保能够区分并准确识别具有接近质量数的多种代谢物;3稳定性,确保从样品前处理、液相分离、到质谱检测等各个环节都保证较高的稳定性,从而确保大队列和长时间的检测项目都能保证检测输出的一致性; 4数据处理能力,确保有软件能便捷地把各种峰型的结果进行分析汇总。图 4. 安捷伦仪器安捷伦的高端质谱仪器,在灵敏度、分辨率、稳定性和数据处理方面都可以满足需求,而且在性价比方面也占有一定优势,方便将来向更多的实验室推广整套技术和解决方案。图 5. 安捷伦软件界面 代谢组学的临床转化和应用前景? 在基因组-转录组-蛋白质组-代谢组的系统生物学框架内,代谢组学处于最下游,最接近生物表型,比其他组学更具时间敏感性,因此可以更容易直接与表型建立关系。通俗点讲,就是我们的基因可能不会经常变化,但是代谢物却在一直变化,观察整个代谢组的变化,可以评估人体的健康或疾病状态,例如最常见的就是糖检测和诊断糖尿病之间的联系。 图 6. 系统生物学与人体表型之间的联系目前,代谢组学在临床领域的应用主要有三个方面:1疾病生物标志物的发现:代谢组学可以帮助识别与特定疾病相关的生物标志物,这些标志物可用于疾病的早期诊断、疾病的分型或预后评估。这对于提高疾病的检测精度和患者管理具有重要意义。 2药物代谢与反应监测:在药物开发的临床试验阶段(包括一期、二期和三期),代谢组学通过分析代谢组的变化,帮助明确药物的作用机制。此外,它还可以用于评估不同人群对治疗的响应水平,支持精准医疗的实施。3疾病预防和健康管理:通过观察多种代谢物(如指纹图谱)的变化,代谢组学可以评估个体的整体健康状况,并预测潜在的疾病风险。这为早期干预提供了依据,有助于预防疾病的发生。 迈理奥是谁?作为开拓代谢组学新科技的先锋,迈理奥在首席科学家厉良教授的全程指导下,组建了以归国博士赵爽为核心的专业团队,创建了全球领先的 DeepMarker MT 代谢组学平台和 DeepMarker LT 脂质组学平台,专注于全方位、个性化、一站式的科研服务和创新医疗诊断技术的开发,推动生物标志物探索、健康检测等生命科学领域的创新与变革。 颠覆性的技术创新突破了常规方法的瓶颈,已应用于数百项研究,涉及疾病诊断、健康监测、药物研发、中医药研究、食品农业、环境监测等领域,助力高水平的科学研究以及高效的临床转化,成果显著,如阿尔茨海默症(加拿大脑计划)生物标志物的探索、乌帕替尼(艾伯维)的新适应症疗效评估、食品发酵过程监测等,体现了更高灵敏度、高覆盖率、高精准定量、高稳定性的全方位、多层面的领先优势。结语代谢组学作为后基因组时代发展最快、最热门、极具潜力的组学新兴学科,广泛应用于生命科学各领域,为发现生物标志物、探寻疾病机制等提供了强大的技术平台。感谢迈理奥一直走在突破代谢组学技术瓶颈、助力千亿级疾病早筛市场的道路上。安捷伦也将继续与迈理奥及各位行业合作伙伴通力协作,通过提供尖端、稳定、高性能的产品平台,以及专业的服务和支持,助力更多本土企业实现创新和发展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制