当前位置: 仪器信息网 > 行业主题 > >

热膨胀系数仪

仪器信息网热膨胀系数仪专题为您提供2024年最新热膨胀系数仪价格报价、厂家品牌的相关信息, 包括热膨胀系数仪参数、型号等,不管是国产,还是进口品牌的热膨胀系数仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热膨胀系数仪相关的耗材配件、试剂标物,还有热膨胀系数仪相关的最新资讯、资料,以及热膨胀系数仪相关的解决方案。

热膨胀系数仪相关的论坛

  • 热膨胀系数单位

    国家标准里面注明热膨胀系数的单位是:/℃,而国际标准的是:/K。当然,对于工程α(平均热膨胀系数)来说,两个数值是可以直接相等的,那么对于物理α呢?可以直接相等吗?没有直接去计算,过来请教一下啦,呵呵

  • 线性热膨胀系数

    GBT 3810.8陶瓷砖线性热膨胀,5的第一行,原始供校准用的标准试样。。。这个怎么具体做校准,这规范上没写。是用仪器测定标准试样的膨胀系数是否为标定的值么。提供的标准试样是圆柱的石英玻璃,说明上给的石英平均膨胀系数是0.55x10(^-6),我用仪器测了室温到100℃和500℃,得到的值都大于这个值。。。厂家说仪器自动减去了补偿值Kt,也加过石英托架的膨胀系数了。。[img]https://ng1.17img.cn/bbsfiles/images/2022/02/202202162136086286_6916_5536684_3.png[/img]

  • 激光干涉法低热膨胀系数测试

    现有客户委托对一种材料进行热膨胀系数进行测量,说是微晶玻璃,据说热膨胀系数非常小,想用这种材料做长度计量中的量块材料。用顶杆法测量后,测试数据在零附近无规则波动,甚至出现负值,顶杆法测不出随温度变化的热膨胀系数 查过资料后,发现微晶玻璃是一种低膨胀系数材料,对这种低膨胀材料需要采用激光干涉法才能进行测量,国内哪家机构有这激光干涉法热膨胀仪呢?迫切需要进行测试,温度范围25~100℃。急需。。。谢谢!!!

  • 低温环境混凝土热膨胀系数测试技术研究

    低温环境混凝土热膨胀系数测试技术研究

    [color=#cc0000]摘要:本文针对低温环境,介绍了目前国内外测量混凝土热膨胀系数的标准测试方法,着重介绍低温环境下混凝土热膨胀系数测量的最新中国国家标准测试方法,对国家标准方法提出了改进建议,并介绍符合国家标准测试方法的大尺寸多样品混凝土低温热膨胀仪。  关键词:低温,混凝土,热膨胀系数,测试方法,膨胀仪[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 引言[/b][/color]  混凝土作为使用最广泛的建筑材料,它在室温和高温环境下的性能都得到了深入的研究。然而,在低温温度(即低于-165℃的温度)环境下混凝土的热物理性能尚未开展系统性研究。目前大多数液化天然气(LNG)储罐都采用了混凝土结构形式展,利用混凝土进行LNG主要密封的罐体设计将是未来发展的趋势,这将大大降低罐体的建造成本。因此,为了提高混凝土结构LNG储罐的安全性和长期耐久性,必须从根本上了解混凝土冷却到低温时的行为,而这些了解低温环境下混凝土的努力将集中于控制由于其部件的热膨胀系数引起的热变形和损伤增长的机制,因此准确测量低温环境下混凝土热膨胀系数是液化天然气储罐设计和建造的前提。  本文针对低温环境,将介绍目前国内外测量混凝土热膨胀系数(CTE)的标准测试方法,着重介绍低温环境下混凝土CTE测量的最新中国国家标准测试方法,对国家标准方法提出了改进建议,并介绍符合国家标准测试方法的大尺寸多样品混凝土低温热膨胀仪。[color=#cc0000][b]2. 国内外测试方法介绍[/b]2.1. 国内标准测试方法[/color]  针对低温环境下的混凝土热膨胀系数测试,我国在2015年新制订了国家标准GB 51081-2015“低温环境混凝土应用技术规范”。  在GB 51081中对低温环境混凝土热膨胀系数的样品规定了应符合现行国家标准《普通混凝土力学性能试验方法标准》GB/T 50081,试件应为边长100mm×100mm×300mm的棱柱体,每次检验应在相同条件下制作12个试件。  对低温环境下混凝土热膨胀系数测试设备GB 51081给出了下列规定:  (1)低温设备应有同时容纳不少于6个试件的有效空间,应满足常温至-197℃区间各种温度的施加,应具有自动控温和给出各种降温速率的功能,恒温器件的温度波动范围应在±0.5℃内。  (2)微变形测量装置应满足各职能过低温下的测量要求,且测量精度不得低于0.001mm。[img=,690,342]https://ng1.17img.cn/bbsfiles/images/2019/04/201904012229434228_5404_3384_3.png!w690x342.jpg[/img][align=center][color=#cc0000]图2-1 低温混凝土热膨胀系数测试棱柱体样品示意图[/color][/align]  在GB 51081中对低温环境混凝土热膨胀系数的具体测量方法给出了如下规定:  (1)试件标准养护应达到设计龄期时取出,并应用湿布擦去表面水分后静置于室内自然环境中。应静置14天后进行时间外观检查和尺寸测量,并应将试件分成2组,每组6个试件。  (2)应标识热膨胀系数检验棱柱体试件两端面的3个测量点位置(图2-1),并应在这3个测量位置测量棱柱体试件的长度。  (3)检验低温时的低温环境混凝土热膨胀系数,第1组试件作用的温度值应为,第2组试件作用的温度值应为。  (4)测量第1组6个试件3个测量位置处的棱柱体试件长度后,应将试件全部放于低温设备内,按不高于1℃/min速率降至,然后保持温度不变,且恒温器件的温度波动范围应在±0.5℃内。低温作用48小时后再测量试件3个测量位置处的棱柱体试件长度。  (5)测量第2组6个试件3个测量位置处的棱柱体试件长度后,应将试件全部放于低温设备内,按与第1组试件相同的降温速率降至,然后保持温度不变,且恒温器件的温度波动范围应在±0.5℃内。低温作用48小时后再测量试件3个测量位置处的棱柱体试件长度。  综上所述,针对低温环境下混凝土热膨胀系数测试设备,国标GB 51081只给出了测量温度范围、温度波动大小、样品尺寸、测量位置点和热膨胀变形测量精度的规定,并没有测试设备更详细的内容,这使得很难具体执行国标GB 51081并有效保证测量准确性。[color=#cc0000]2.2. 国外标准测试方法[/color]  目前国际上并没有针对混凝土及其结构在低温环境下的热膨胀系数标准测试方法,对于液化天然气(LNG)储罐采用的混凝土及其结构,美国混凝土协会(ACI,American Concrete Institute)制订过相应的标准ACI 376(混凝土结构冷冻液化气体容器的设计和构造规范及说明),其中关于热膨胀系数测试所推荐的标准测试方法是改进后的CRD-C 39测试方法。  国外在以往混凝土常温下的热膨胀系数测试中,大多采用的测试方法为ASTM C531、CRD-C 39、AASHTO T336和Protocol-P63,但这些方法在所测试的温度范围基本适用于常温条件下,并不能直接推广应用到低温环境。  在ASTM C531中规定了需要在烘干条件下测量CTE,其中样品长度测量的温度范围为22.8~93.9℃,通过样品长度变化量除以温度变化量来得到CTE。而CRD-C 39中规定了将样品浸入水中48小时来达到饱和条件,然后在4.4~60℃温度范围内测量样品长度。在ASTM C531和CRD-C 39中,样品长度测量都是离线式测量方式,即将达到一定恒温时间的样品从恒温器中取出,并放置在样品长度测量的比较器上。由此可见,ASTM C531和CRD-C 39并不是连续测量热应变来得到热膨胀变化行为。  AASHTO T336和Protocol-P63测试方法也规定了在饱和条件下测试CTE,测试温度范围为10~50℃。然而各种混凝土构件,特别是液化天然气(LNG)储罐采用的混凝土及其结构的实际应用温度会非常低,因此需要拓展测试温度范围以覆盖低温范围。  因此,对于液化天然气(LNG)储罐采用的混凝土及其结构,其热膨胀系数的测试需要重点考虑两方面的因素,一是温度范围的拓展以满足低温测试要求,二是样品要保持一定的湿度然后在低温下进行热膨胀系数的测量。[b][color=#cc0000]3. GB 51081标准方法的改进建议[/color][/b]  对于低温环境下的混凝土热膨胀系数测试,我国基本上基于AASHTO T336标准制订了GB 51081-2015“低温环境混凝土应用技术规范”。因此,AASHTO T336中存在的问题在低温环境下会被放大,从而严重影响测量的准确性。另外,要使得GB 51081标准方法真正能推广应用并保证CTE测试的准确性,GB 51081还需要进行重大改进,主要改进建议如下:  (1)在AASHTO T336测试方法中,由于测试温度在10~50℃范围内,混凝土CTE测量装置中的辅助装置(如承台、导杆、支架等)的影响并不严重,这些辅助装置一般采用CTE较小的殷钢等材料制成就能满足要求。而按照GB 51081规定,低温环境下的最低温度要达到液氮温度(-197℃),在测试温度接近200℃这样大的温度变化范围内,CTE为1×10-6/K量级的殷钢材料的热胀冷缩影响将非常凸出。这就需要采用CTE更小的超低膨胀系数材料制作热膨胀仪的相应辅助装置,同时还需要进行热膨胀仪的基线校准来进一步降低热膨胀仪的系统误差。  (2)在AASHTO T336测试方法中,由于测试温度在10~50℃范围内,样品温度变化并不会对LVDT探测器带来明显的影响。同样,低温环境下的CTE测试,低温环境就会对安装在室温环境下的LVDT探测器产生明显影响,特别是对探测器的支撑板和固定架的温度影响从而带来探测器自身位置的改变。因此,在测试方法中要规定出LVDT探测器及其相关装置的温度变化范围,这方面的影响往往是重要的测量误差源。  (3)在GB 51081标准中缺乏校准样品相关条款,建议在GB 51081标准中增加与AASHTO T336类似的校准样品相关条款,即校准样品的CTE测定必须由第三方实验室测定,测试方法应采用ASTM E228或ASTM E289。此外,第三方实验室的CTE测定必须在与GB 51081相同的温度范围内进行,即低温要达到-197℃。[b][color=#cc0000]4. 低温环境混凝土热膨胀测定仪设计[/color][/b]  为了实现低温环境下混凝土热膨胀系数测试,上海依阳实业有限公司专门设计了一种大尺寸多样品的低温混凝土热膨胀测定仪。混凝土低温膨胀仪一种测试混凝土块体低温下线膨胀系数的测试设备,测量方式为接触方式,整体结构如图4-1所示。此低温热膨胀仪依据测试标准为国家标准GB 51081-2015“低温环境混凝土应用技术规范”,测试温度范围为室温~196℃。[align=center][img=,690,397]https://ng1.17img.cn/bbsfiles/images/2019/04/201904012230310478_4454_3384_3.png!w690x397.jpg[/img][/align][color=#cc0000][/color][align=center]图4-1 低温混凝土热膨胀系数测定仪结构示意图[/align]  此混凝土低温膨胀仪具有测试试样体积大、可多样品同时测量的特点,适合大批量样品的连续测量。  混凝土低温膨胀仪由计算机进行自动控制和检测,自动进行样品温度的监控、自动进行样品变形量的监控以及自己进行测试结果计算。  按照标准方法规定每个样品需测试三个位置点处的热变形。“低温腔体”采用侧开门结构,开启侧门安装或取出样品,使得被测样品处于“低温腔体”内进行升降温。[color=#cc0000][b]5. 参考文献[/b][/color]  AASHTO TP60,Standard Test Coefficient of Thermal Expansion of Hydraulic Cement Concrete,In American Association of State Highway and Transportation Officials,Standard Specifications for Transportation Materials and Methods of Sampling and Testing,Washington, DC, 2000.  CRD-C 39-81,Standard Test Method for Coefficient of Linear Thermal Expansion of Concrete,US Corps OF ENGINEERS,1981.   ASTM C531-00,Standard Test Method for Linear Shrinkage and Coefficient of Thermal Expansion of Chemical-Resistant Mortars,Grouts,Monolithic Surfacings,and Polymer Concretes,ASTM International, West Conshohocken, PA, 2012.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 国内大尺寸构件超低热膨胀系数测试技术综述

    国内大尺寸构件超低热膨胀系数测试技术综述

    摘要:航天器用各种大尺寸构件都普遍要求超低膨胀系数以保证构件尺寸的稳定性,传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量,需要精确测量整个构件的超低热膨胀系数。本文对国内在大尺寸构件热膨胀系数整体测量方面的研究工作进行了综述,以了解国内目前的发展状况,给今后开展此方面工作提供参考和借鉴。1. 前言 在太空运行的各种航天器,由于没有大气层的保护,其环境温度变化很大,受阳面温度可高达上百摄氏度,而被阳面温度却在零下几十摄氏度。因此,航天器在空间环境中,由于材料的热膨胀,会引起航天器结构的尺寸变化。但是从航天器的某些部件和仪器的技术要求考虑,希望航天器的某些结构的稳定性要好,这一点对通讯卫星天线结构及敏感元件、太空望远镜的镜筒支架等的使用和安装尤为重要。尤其是卫星和望远镜桁架结构更要求其在一定的环境温度变化范围内不因热应力产生变形或者变形极小,即所谓零膨胀。传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量。为适应航天器制造的要求,特别是对于以m为长度单位的E-08/K量级材料热膨胀系数需要更加准确的测试。因此,研究航天器用复合材料工程构件的超低膨胀测试方法和相应的测试设备,具有重要的科学意义和实用价值。 本文将介绍国内在工程构件级热膨胀系数测试方法和测试设备方面所开展的工作。2. 光纤位移传感器测试方法(1) 针对卫星用低膨胀纤维增强复合材料杆件,上海复合材料科技有限公司与国防科技大学合作开展相应的热膨胀系数测试系统研究,具体的测试要求为: (1)测试件是碳纤维复合材料杆件,杆件形状为圆杆或矩形杆。长度尺寸1m,圆杆直径φ10~80mm,壁厚为2mm左右。矩形杆的截面不超过100mm×100mm,壁厚2mm左右。 (2)能测量在温度范围-70~+100℃的轴向伸缩量,并测量相应温度,从而得出工程试件的热膨胀曲线。测量误差不大于±3%。 (3)试验箱能按要求的程序升温,升温程序可调,并能实时控制。对设定点的温度控制精度优于±1℃,测量精度优于0.5℃。试件周边温度的均匀性优于±2℃。 上海复合材料科技有限公司研制的这套热膨胀测试系统主要由温度控制系统、机械系统、数据采集系统、计算机控制与分析系统四大部分构成。 (1)温度控制系统:采用高低温试验箱,满足温度范围和温度控制要求。 (2)机械系统:包括测试系统的基座、测试基准、试件支架。 (3)数据采集系统:包括光纤位移传感器。 (4)计算机控制与分析系统:主要用于控制整个测试过程,实现测试数据的自动采集、分析、存储与测试结果的显示。 位移采集采用MTI2000光纤位移传感器,其特点是非接触式,最大量程2mm,分辨率为0.25um。MTI2000光纤位移传感器包含一组发射光光纤和一组接收光光纤,如图 2 1所示,发射光光纤和接受光光纤以三种不同方式排列(不规则、半圆心及同心圆形状),卤钨灯提供光源,光传输到光纤中,光纤探头发出的光照射在被测物上,被测物反射回来的光进入接受光光纤并传入到MTI-2000中。http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614789_3384_3.png图 2-1 光纤分布示意图 如图 2-2所示,当光纤与被测物接触时,没有光能传输给接收光光纤,输出信号为“零”。随着探头与被测物之间距离的增加,接收光纤接收的光也增加,并且增加的光和距离之间非常敏感,与信号输出也呈很好的线性。随着距离的继续增加,接收光光纤接收到的光达到峰值,如果探头和被测物之间的距离继续增加,接收到的光将会持续减少,结果是具有第二个很灵敏且具有大量程和标准距离的测量范围。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614790_3384_3.png图 2-2 MTI2000光纤位移传感器输出信号与位移的变化关系 整个测量系统的测量基准利用低膨胀系数材料殷钢制作,测量基准包括殷钢连杆、传感器微调台和殷钢传感器夹具。测量基准至于试验箱外,因醋不受试验箱内温度变化影响,而且整个测量基准能够控制在0.5um/m℃以下。 被测件通过试件支架安装在试验箱内,试件支架包括殷钢V形架、低导率材料升降杆和剪式升降台,被测件水平置于V形架内,由V形架自动定心,从而保证被测件轴心与两个传感器侧头平行。被测件支架通过剪式升降台固定在大理石基础件上,不与试验箱体接触。 剪式升降台能够调整被测件在试验箱内高度,从而保证能够测量不同直径的被测件的热膨胀系数。在温度快速变化的情况下保证箱体和支架对称变形,同时减小支架的质量,以减小其热容,防止测量时受到支架变形影响而产生的缓慢漂移。 文献中并未报道此测试系统的结构,但根据分析可以大概此测试系统为双端面测试结构,即将两路光纤位移传感器对准被测件的两个端面,同时测量两个端面的位移,最终得到整个测试件的热膨胀长度变化。整个测试系统的结构如图2-3所示。http://ng1.17img.cn/bbsfiles/images/2016/10/201610221657_614791_3384_3.png图 2-3 低膨胀纤维增强复合材料杆件热膨胀系数测试系统结构示意图 从文献报道分析这套大尺寸构件热膨胀系数测试系统技术指标和测试结果,可以得出以下初步的结论: (1)位移传感器分辨率为0.25um,那么测量准确度基本也就在1um左右,这个测量准确度基本与千分表相同,所能测试的热膨胀系数最小也就在1E-06/K左右,还无法测试-7量级甚至-8量级的零膨胀系数材料。而目前的2m长构件热膨胀系数可以达到5E-08/K水平,由此可见采用这种测试方法无法满足目前零膨胀构件的测试需求。 (2)采用光纤式位移传感器所进行的位移测量,是一种相对测试方法,实际测量精度还需要采用更高级别仪器进行计量标定才能保证热膨胀系数测量准确性。 (3)采用已知热膨胀系数的铝材Ly12CZ(淬火状态)制成的测试件进行测量精度考核,测试件直径为φ20mm,常温下长度1m,壁厚为2.5的管型材。在-50?20℃测试温度范围内,测定的平均热膨胀系数为19.9E-6/K,20~100℃测试温度范围内,测定的平均热膨胀系数为21.4E-6/K。文中得出的结论是对于这种E-06/K量级的热膨胀系数测试偏差在7%以内。由此试验证明这套大尺寸只能测试E-06/K量级的热膨胀系数。 (4)文中报道了对直径?20mm、壁厚2mm、长度为1m的碳纤维复合材料圆杆热膨胀系数测试结果,测试温度范围为10~30℃。测试结果显示热膨胀长度变化量为-17.47um,线膨胀系数为-0.87E-06/K。文中仅报道了两次重复性测量,两次重复行测量重复精度为1.3%。由此可见这种碳纤维复合材料圆杆热膨胀系数很大,距离所需要的零膨胀系数差距很大。 (5)从文中报道可以看出,整个测试是以殷钢基座为基准,理论上这个测量基准能够控制在0.5um/m℃以下。但考虑到伸入试验箱内光纤长度的变化,以及并未采用同侧差分测量抵消光纤长度的技术手段,很大可能会出现碳纤维复合材料圆杆实际热膨胀系数很小,但此套装置并不能准确测试,测试结果反而是此装置的系统误差,即碳纤维复合材料圆杆很小的热膨胀以及完全淹没在测试系统误差内。 (6)尽管文中报道的碳纤维复合材料圆杆热膨胀系数测试结果在-0.87E-06/K左右,这表现出碳纤维复合材料圆杆生产工艺还未能实现整体圆杆的零膨胀,更表现出测试方法自身精度完全无法达到零膨胀测试需要,但这是目前国内对大尺寸管件低膨胀测试的首次尝试,尽管不成功但意义非常重大。从对1m长的圆杆测试结果可以看出,在10?30℃温度范围内,圆杆收缩了17.47um。那么如果采用取样方式进行热膨胀测试,取样尺寸如果为100mm,那么100mm小试样的受热收缩也仅仅为1.7um左右。对于这种不到2um的热膨胀,采用目前常规的热膨胀仪器都无法进行测量。文中所报道的1m长碳纤维复合材料圆杆热膨胀系数测试恰恰证明了低膨胀构件整体热膨胀系数测试的必要性,这点在超低热膨胀系数构件中显得更为突出。[color=#ff000

  • 热膨胀测试技术:加热速率对平均线膨胀系数测试结果影响的实验演示

    热膨胀测试技术:加热速率对平均线膨胀系数测试结果影响的实验演示

    在热膨胀系数测试过程中,加热速率是一个重要试验设置参数,加热速率的设置直接影响热膨胀系数测量的准确性。一般来说,加热速率越小,热膨胀系数测量的准确性越高,但相应的整个测试过程时间就会很长。因此,在实际热膨胀系数测试过程中,针对不同被测材料样品,选择合理的加热速率则显着非常重要,从而实现既能保证测量的准确性,又能缩短整个测试过程时间。 一直以来,加热速率对热膨胀系数测试结果的影响只是一个公认的常识,很少看到有专项研究对这种影响进行系统性考核试验和报道。如Jankula等人的研究中[1],仅展示了不同加热速率会使相对热膨胀曲线之间产生偏移,如图1所示。即在较高加热速率下,温度在整个样品中的分布并不均匀,因此可以观察到相对膨胀的一些延迟。这种不同加热速率所带来的延迟效应在热分析测试中非常典型,可以在差热分析、热重分析和其他热分析技术中找到,但这种延迟性描述和表征并不直观,特别是在热膨胀系数测试中并不能直观描述加热速率的影响。[align=center] [img=,690,378]https://ng1.17img.cn/bbsfiles/images/2020/02/202002081406107187_3969_3384_3.png!w690x378.jpg[/img][/align][align=center][color=#990000]图1 不同升温速率下砖坯样品的相对热膨胀变化曲线:2.5℃/分钟(灰色)和10℃/分钟(黑色)[/color][/align] 为了更直接和直观的描述加热速率对热膨胀系数测量的影响,Dulucheanu等人开展了这方面的专项研究[2],具体的实验条件如下: (1)热膨胀仪:德国NETZSCH公司Expedis DIL 402-SUPREME膨胀仪; (2)样品材料:铁素体-马氏体结构双相钢; (3)样品尺寸:圆柱形样品,直径5mm,高度25mm; (4)加热温度范围:30~980℃; (5)测试温度范围:30~700℃; (6)加热速率:1、3、5、10和30℃/min; (7)试验气氛:氮气,流速100ml/min; (8)样品负载:200mN。 在加热速率为3℃/min时,得到如图2所示的相对热膨胀曲线,并由此可计算得到30~100℃、30~200℃、30~300℃、30~400℃、30~500℃、30~600℃和30~700℃的平均线膨胀系数。[align=center][color=#990000][img=,690,466]https://ng1.17img.cn/bbsfiles/images/2020/02/202002081407341483_4829_3384_3.png!w690x466.jpg[/img][/color][/align][align=center][color=#990000]图2 膨胀曲线和线性热膨胀系数(CTE),温度范围为30~700℃,加热速率为3℃/分钟[/color][/align] 分别采用不同加热速率进行测试,得到相应的平均线膨胀系数测试结果,数值形式如表1所示,曲线形式如图3所示。[align=center][color=#990000]表1 不同加热速率下的平均线膨胀系数测试结果[/color][/align][align=center][color=#990000][img=,690,139]https://ng1.17img.cn/bbsfiles/images/2020/02/202002081408072713_661_3384_3.png!w690x139.jpg[/img][/color][/align][align=center][color=#990000][img=,690,504]https://ng1.17img.cn/bbsfiles/images/2020/02/202002081408542587_2405_3384_3.png!w690x504.jpg[/img][/color][/align][align=center][color=#990000]图3 平均线性热膨胀系数(CTE)随加热速率和温度范围的变化[/color][/align] 从这个直观的系列性验证试验可以看出,由于被测样品材料的内部结构和热物理性能,加热速率会对热膨胀系数测试结果产生明显影响,加热速率这一试验参数的选择不当会造成热膨胀系数测量误差极大。因此,在实际测试过程中,要根据被测材料结构和热物理性能,选择合理的加热速率。[b][color=#990000]参考文献[/color][/b] [1] Jankula M, Š íN P, PODOBA R, et al. Typical problems in push-rod dilatometry analysis[J]. Epitoanyag-Journal of Silicate Based & Composite Materials, 2013, 65(1) [2] C. Dulucheanu, T. Severin, M. Bă eș u, The Influence of Heating Rate on the Coefficient of Linear Thermal Expansion of a 0.087% C and 0.511% Mn Steel, TEHNOMUS.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • TMA精确测量铝合金6061的热膨胀系数

    TMA精确测量铝合金6061的热膨胀系数

    铝合金6061是含有镁和硅为主成分的通用铝合金。此材料质量轻、机械强度和焊透性良好,广泛用于交通工具领域,比如飞机、船只、汽车和自行车。热膨胀测试仪(DIL)、热机械分析仪(TMA)都是测量铝合金6061和其他金属合金热膨胀的理想工具。[color=#1f497d][/color][b]测试条件[/b]耐驰热机械分析仪,TMA 402 F1 Hyperion温度范围:-20°C ... 500°C加热与降温速率:5°C/min气氛:He,20ml/min样品长度:25.00mm样品支架:石英测量模式:膨胀[color=#1f497d][/color][b]结果讨论[img=,590,329]http://ng1.17img.cn/bbsfiles/images/2018/06/201806131407412759_976_163_3.jpg!w590x329.jpg[/img][/b][color=#000000]图[/color][color=#000000]1[/color][color=#000000]显示了铝合金在室温至[/color][color=#000000]500[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000]范围的热膨胀曲线。得到的平均热膨胀系数([/color][color=#000000]20[/color][color=#000000]°[/color][color=#000000]C...100[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000])为[/color][color=#000000]22.8X10[sup]-6[/sup] 1/K[/color][color=#000000],非常接近文献数据[/color][color=#000000]23.0 ... 23.6X10[sup]-6[/sup] 1/K[/color][color=#000000]。([/color][color=#000000]20[/color][color=#000000]°[/color][color=#000000]C ... 500[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000])范围内的平均热膨胀系数为[/color][color=#000000]27.0 X 10[sup]-6[/sup] 1/K[/color][color=#000000]。[/color]

  • 玻璃化转变对聚酰胺(尼龙)热膨胀系数的影响

    玻璃化转变对聚酰胺(尼龙)热膨胀系数的影响

    尼龙是一种由DuPont最先研发的聚酰胺纤维(PA 6.6),最初是作为丝绸的替代品用在纺织品和绳索制造中。后来,在英语中尼龙作为一个术语表示所有线性脂肪族聚酰胺纤维,它的应用范围迅速扩大,现在被广泛应用在包装、管道和低负载机械部件等领域。玻璃纤维和碳纤维作为填料加入到尼龙中制成的复合材料具有很好的机械强度和耐热性,使其应用范围更加宽广。耐驰热机械分析仪可以作为尼龙和其他聚合物材料膨胀系数测试的有力工具。[b]测试仪器[/b]TMA 402 F1 Hyperion[b]测试条件[/b][table][tr][td=1,1,124]温度范围[/td][td=1,1,124]升降温速率[/td][td=1,1,124]气氛[/td][td=1,1,124]样品长度[/td][td=1,1,124]样品支架[/td][td=1,1,121]测量模式[/td][/tr][tr][td=1,1,124]-30℃-200℃[/td][td=1,1,124]5℃/min[/td][td=1,1,124]He,20ml/min [/td][td=1,1,124]25.02mm[/td][td=1,1,124]熔融石英[/td][td=1,1,121]拉伸模式[/td][/tr][/table][img=,590,329]http://ng1.17img.cn/bbsfiles/images/2018/06/201806131413202108_9987_163_3.jpg!w590x329.jpg[/img][b]结果讨论[/b]聚合物材料相对金属材料具有更高的膨胀系数,一般其膨胀系数(CTE,工程膨胀系数)在10-5 1/K-10-4 1/K范围内。示例中使用的聚酰胺样品在20℃-200℃的膨胀系数为13.5X10-5 1/K(即1.35X10-4K/min)。CTE值是指在所选温度区间内平均热膨胀系数,但因为尼龙样品在65℃(起始点)附近玻璃化转变的存在,导致热膨胀曲线呈现非线性形状,因此在温度20℃-100℃之间(玻璃化之前)的热膨胀系数值较小,约为9.9X10-5 1/K。

  • 304不锈钢热膨胀系数的精确测定

    304不锈钢热膨胀系数的精确测定

    304不锈钢是一种常见的奥氏体钢合金,其中含有18-20%的铬和8-12%的镍。它具有很好的耐腐蚀性能,被广泛应用在化学、食品和石油工业中。它还具有很好的拉伸性能,可以按需求制成各种复杂的形状。[color=#1f497d][/color]耐驰的热膨胀仪和热机械分析仪非常适合用来测试304不锈钢和其他金属或金属合金的膨胀行为。[color=#1f497d][/color][b]测试仪器[/b]耐驰热机械分析仪,TMA 402 F1 Hyperion[b]测试条件[/b][table=100%,rgb(255,255,255)][tr][td=1,1,15%]温度范围[/td][td=1,1,15%]升降温速率[/td][td=1,1,21%]气氛[/td][td=1,1,15%]样品长度[/td][td=1,1,15%]样品支架[/td][td=1,1,16%]测量模式[/td][/tr][tr][td=1,1,15%]RT … 1300℃[/td][td=1,1,15%]5℃/min[/td][td=1,1,21%]He,20ml/min[color=#1f497d][/color][/td][td=1,1,15%]27.99mm[/td][td=1,1,15%]氧化铝[/td][td=1,1,16%]压缩模式[/td][/tr][/table][img=,590,329]http://ng1.17img.cn/bbsfiles/images/2018/06/201806131404507849_2425_163_3.jpg!w590x329.jpg[/img][b]结果讨论[/b][color=#1f497d][/color]上图显示,在测量温度范围内,样品表现出相对线性的膨胀行为,26℃… 649℃(79 … 1200℉)间的热膨胀系数(工程膨胀系数,CTE)为18.3X10[sup]-6[/sup] 1/K,与文献中数据(温度范围0℃ … 649℃,即30 …1200℉)18.7 X10[sup]-6[/sup] 1/K吻合很好,样品在26 … 1299℃(79 … 2372℉)间的膨胀系数为19.9 X10[sup]-6[/sup]1/K。

  • 瞬态高速加热条件下航天复合材料热膨胀系数测试技术初步研究

    瞬态高速加热条件下航天复合材料热膨胀系数测试技术初步研究

    [size=16px][color=#cc0000][b]摘要:为准确测量航天复合材料快速加热过程中的热膨胀系数,本文介绍了热膨胀系数测试过程中加热速率、加热形式和位移测量形式对被测样品内外温度和热膨胀测量方向上温度梯度的影响,以及这些温度梯度与热膨胀系数测试结果之间的变化规律。在这些初步研究基础上,本文提出了高速加热过程中热膨胀系数测量装置的初步设计方案,即采用聚光辐射或电磁感应技术进行非接触快速高温加热,采用激光扫描或光学投影技术进行非接触应变测量。[/b][/color][/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [b][size=18px][color=#cc0000]1. 问题的提出[/color][/size][/b][size=16px] 比较典型的航天复合材料如碳碳和石墨复合材料、各种酚醛树脂基复合材料等,其热膨胀系数普遍还是采用加热速率较慢的各种热膨胀仪进行测试,而这种常规测试过程中的较低加热速率与航天复合材料的实际使用环境下的快速升温速率严重不符,低速加热时的热膨胀系数测试结果几乎对复合材料结构的热设计毫无用途,从而造成现有的热结构设计太过保守。为此,本文针对快速加热条件下的航天复合材料热膨胀系数测试,开展初步的测试技术研究,通过典型材料重点了解快速加热条件下的以下两方面的问题:[/size][size=16px] (1)快速加热条件下,样品或材料的内外内外温差对热膨胀系数的影响。[/size][size=16px] (2)快速加热条件下,样品或材料热膨胀测试方向上的温度均匀性影响。[/size][size=18px][color=#cc0000][b]2. 样品内外温差影响[/b][/color][/size][size=16px] 对于航天复合材料而言,由于其结构和热物理性能的不同,特别是热导率有着数量级上的差别,由此会在实际应用和取样测试过程中有时会存在严重的内外温差。热膨胀测试中,加热速率的不同会对测量结果产生明显的影响。[/size][size=16px] 为了直观了解这种内外温差对热膨胀系数测量的影响,我们选择了具有中等热导率(常温时约14W/mK)的不锈钢材料进行取样测试,测量温度范围为室温30~700℃,测试得到的平均热膨胀系数结果如图1所示。[/size][align=center][size=16px][color=#cc0000][b][img=不锈钢样品不同加速速率下的平均线性热膨胀系数测试结果,660,482]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111012258135_6561_3221506_3.jpg!w690x504.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图1 不同加速速率下的不锈钢样品热膨胀系数测试结果[/b][/color][/size][/align][size=16px] 从图1所示的测量结果可以看出,在较低加热速率(5℃/min)下的热膨胀系数测试结果相差不大,只是随加热速率的升高热膨胀系数整体有很小的降低。而在加热速率超过10℃/min时,测试结果发生明显的偏差,热膨胀系数明显的偏低,特别是在低温范围内这种现象更为明显。[/size][size=16px] 由此可见,对于热导率较低的材料,较快的加热速率会在样品内外产生明显的温差,从而对热膨胀系数产生严重的影响,使得热膨胀系数测试结果严重偏低。具体应用到航天复合材料中,由于碳碳和石墨复合材料的热导率普遍较高,相关的测试研究表明石墨材料在1600℃温度以下的范围内测试时,加热速率几乎没有影响,对于碳碳复合材料,这个不受加热速率影响的温度范围可以扩展到1700℃。[/size][size=16px] 对于热导率普遍较低的酚醛树脂复合材料,其热膨胀对加热速率则非常敏感,且膨胀过程非常复杂。有测试观察到当碳酚醛或二氧化硅酚醛层压材料被缓慢加热时,在190℃左右发生一些快速膨胀,然后材料开始收缩,从膨胀到收缩的变化对应于热降解的开始。而在高加热速率下,热膨胀系数的急剧增加发生在与低速率下开始收缩时的大致相同温度区域。据信,在高加热速率下,树脂开始软化,然后发生气体的快速释放。这些气体不容易逸出,并在材料中产生压力,导致快速膨胀和裂缝的张开。除了热膨胀之外,因材料的结构受到影响,其他性能也会受到加热速率的影响。[/size][size=18px][color=#cc0000][b]3. 样品表面温度均匀性影响[/b][/color][/size][size=16px] 在快速加热形式的热膨胀测试设备中,往往还存在以下两方面的因素会给样品表面温度的均匀性带来影响,由此会给热膨胀系数测量带来误差:[/size][size=16px] (1)加热方式:热膨胀测试中的快速加热一般会采用聚光辐射加热、感应加热和直接通电三种形式,其中辐射加热适用于非导电材料样品,而感应加热和通电加热则适用于导电类材料样品。但不论采用哪一种加热方式,发光灯管和感应线圈都会是有限长度,从而使得样品轴向方向上的温度并不是均匀分布。特别是直接通电加热方式中的电极与被测样品直接接触,样品上的热量会通过电极散失而造成较严重的样品温度不均匀性。[/size][size=16px] (2)变形测量方式:热膨胀系数的测量一般会采用顶杆法和光学投影法,在顶杆法测试中,与样品接触的顶杆同样会对样品起到散热作用而影响样品的温度均匀性,而非接触形式的光学投影法则不存在样品散热问题,对样品的温度均匀性影响较小。[/size][size=16px] 为了研究样品表面温度不均匀性对快速加热过程中热膨胀系数测量的影响,有研究人员采用了感应加热式顶杆法热膨胀仪,如图2所示,对42CrMo超高强度钢进行了不同升温速率下的测试。样品被夹在两根熔融石英顶杆之间,其中一根顶杆固定,另一根连接到一个差动变压器(LVDT)进行样品的变形量测量。样品被放置在感应线圈的中心可实现高速加热,样品上焊接了两只S型热电偶,中心位置的热电偶用于控制样品温度,边缘位置热电偶用来测量温度均匀性。[/size][align=center][size=16px][color=#cc0000][b][img=02.感应加热式顶杆法热膨胀仪结构,500,344]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014018059_9517_3221506_3.jpg!w690x476.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图2 感应加热式顶杆法热膨胀仪结构[/b][/color][/size][/align][size=16px] 如图3所示为样品和感应线圈结构和尺寸示意图,样品为壁厚为0.5mm的薄壁圆柱,样品长度为10mm,熔融石英棒顶杆的外径和内径分别为2mm和1mm。[/size][align=center][size=16px][color=#cc0000][b][img=03.快速加热热膨胀测试中使用的样品和感应线圈几何形状,660,222]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014201830_7644_3221506_3.jpg!w690x233.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图3 快速加热线膨胀测试中使用的样品和感应线圈几何形状[/b][/color][/size][/align][size=16px] 对上述样品,在1℃/s~1200℃/s范围内一系列不同的速率下对样品进行了加热,不同加热速率下样品中心与边缘之间的温度差测试结果如图4所示,相应的应变测试结果如图5所示。[/size][align=center][size=16px][color=#cc0000][b][img=04.不同加热速率下的样品中部和边缘的实测温差,550,443]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014398184_2549_3221506_3.jpg!w690x557.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图4 不同加热速率下样品中部和边缘的实测温差[/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b][img=05.不同加热速率下的样品应变量-温度测试结果,550,443]https://ng1.17img.cn/bbsfiles/images/2023/07/202307111014595694_4159_3221506_3.jpg!w690x556.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图5 不同加热速率下样品应变量-温度测试结果[/b][/color][/size][/align][size=16px] 从图4所示的温差曲线可以看出,对于低于10℃/s的加热速率,样品中心和边缘之间的温差不会超过10℃。对于所有其他加热速率,温差随着中心温度快速增加,并在达到某一温度时开始变缓。从该温度开始,中心与边缘之间的温差随着样品中间温度变化几乎呈线性增加。对于最高加热速率1200℃/s,温差达到最大值160℃,边缘温度相当于中心温度的大约70%。[/size][size=16px] 如图5所示,比较不同加热速率下测得的应变-温度曲线,可以观察到加热速率越高,测得的应变越低,这也与图1所示的规律一致,但这也部分可能与加热速率增加时膨胀方向上的温度梯度的增加有关。从图5可以看出,最小和最大升温速率下应变测量值的相对偏差约为20 %。[/size][size=16px] 显然,在非常高的加热速率下使用变形信号对发生相变的动力学过程的研究将导致严重的误差,因为应变信号中的误差将通过不确定的传播影响描述相变动力学的所需参数的计算,同时,还取决于所应用的动力学模型的数学性质,最终误差甚至可能大于这里测量的应变的20%误差。[/size][size=16px] 另外,样品轴向上的温度梯度是由于样品和棒之间的接触带来的热损失,这导致靠近样品边缘的温度降低。在低加热速率下,从中心到边缘的热传导几乎使整个样品的温度相等,导致小的温度梯度,但随着加热速率的增加,由于热传导使得样品中心的温度上升较快,这导致轴向温度差的增加。[/size][size=16px] 造成温度梯度的另一个因素是样品与线圈磁场的相互作用,感应热在整个样品长度上并不是均匀和恒定的,对于膨胀计的感应线圈的规则螺旋状几何形状,沿着轴向方向上存在强烈的感应温度梯度。[/size][size=18px][color=#cc0000][b]4. 总结[/b][/color][/size][size=16px] 通过上述高加热速率条件下进行的金属材料热膨胀系数测试,可以明显看到加热速率对样品内外和样品轴向温度差的严重影响,因此在今后的各种高加热速率条件下的热膨胀测试,需要特别注意以下几个内容:[/size][size=16px] (1)测试前,首先要确定具体测试的是哪一种热膨胀系数,稳态热膨胀系数测试则选用低加热速率,瞬态热膨胀系数测试则根据实际应用场景选择相应的高加热速率,这在材料的相变过程研究中非常重要。[/size][size=16px] (2)对于稳态热膨胀的测试,需要在样品内外温度一致后进行测量,这是就需要尽可能采用尽可能低的加热速率才能保证相应的测量准确性,甚至可以采用台阶式温升方式,使样品在不同温度下恒定一段时间后再进行变形测量。[/size][size=16px] (3)由于材料固有的导热性能,对于符合实际变温速率应用场景的高加热速率下的热膨胀测试,样品内外的温差更能符合材料的实际温度环境,但在热膨胀系数的具体测试中需要尽可能避免样品轴向温度差带来的测量误差。具体采取的措施是分别采用非接触形式的加热技术和位移测量技术,使被测样品不与其他物体接触或最小接触,如采用均温场更长的聚光辐射加热装置或能提供更均匀温度场的异型感应线圈对样品进行非接触式快速加热,如采用激光线扫描或投影法光学变形测试技术非接触测量样品的长度。[/size][size=16px] 总之,通过对高速加热过程中热膨胀系数测试技术的初步研究,确定了非接触快速加热和非接触位移测量的总体技术方案,为后续航天复合材料高速热膨胀系数测试研究工作的开展奠定了基础。[/size][size=16px][color=#cc0000][b][/b][/color][/size][align=center][size=16px][b][color=#cc0000]~~~~~~~~~~~~~~~~~[/color][/b][/size][/align]

  • 咨询CTE(即热膨胀系数)用设备信息

    实验室预开展CTE的测试,主要做针状焦(如石油系、煤系),已经查到CTE的检测按照GB/T 3074.4,检测前的石墨化等按照GB/T 32158《煤系针状焦》和CAS 104《石油系针状焦》。求助的是,设备的品牌和型号(包括球磨机、混捏锅、挤压机、高温电阻炉、高温炉、热膨胀系数仪)。不胜感激。如设备厂商可满足以上标准要求的,也可在站内短信留言。

  • 美国波音公司激光干涉法大尺寸构件超低热膨胀系数测试技术综述

    美国波音公司激光干涉法大尺寸构件超低热膨胀系数测试技术综述

    摘要:航天器用各种大尺寸构件都普遍要求超低膨胀系数以保证构件尺寸的稳定性,传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足长度1m以上大尺寸构件的超低热膨胀系数测量,多数航天器用大尺寸构件需要精确测量整个构件的超低热膨胀系数。本文对美国波音公司在太空望远镜大尺寸桁架超低热膨胀系数整体测量方面的研究工作进行了综述,以了解国外技术发展状况,给今后开展此方面工作提供参考和借鉴。1. 前言 在太空运行的各种航天器,由于没有大气层的保护,其环境温度变化很大,受阳面温度可高达上百摄氏度,而被阳面温度却在零下几十摄氏度。因此,航天器在空间环境中,由于材料的热膨胀,会引起航天器结构的尺寸变化。但是从航天器的某些部件和仪器的技术要求考虑,希望航天器的某些结构的稳定性要好,这一点对通讯卫星天线结构及敏感元件、太空望远镜的镜筒支架等的使用和安装尤为重要。尤其是卫星和望远镜桁架结构更要求其在一定的环境温度变化范围内不因热应力产生变形或者变形极小,即所谓零膨胀。 传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量。为适应航天器制造的要求,特别是对于以1m以上长度的E-08/K量级材料热膨胀系数需要更加准确的测试。因此,研究航天器用复合材料工程构件的超低膨胀测试方法和相应的测试设备,具有重要的科学意义和实用价值。 本文将介绍美国波音公司在太空望远镜桁架超低热膨胀系数测试方法和测试设备方面所开展的工作。2. 波音公司激光干涉法第一代热膨胀系数测试技术 早在1971年波音公司的Bond等人就开始研究一种用于监测大直径天线在空间模拟腔体内动态行为的多通道激光干涉法测试技术【1】,其中采用了可反转条纹计数技术来测量安装在试验箱体外测量装置与安装在腔体内天线上7个光学反射镜之间的距离。 试验腔外测试仪器距离腔体内部天线的距离将近5m,干涉仪采用了Twyman-Green干涉仪,其中参考光束的相位在13.5kHz频率处进行调节以便对每个通道进行可反转条纹计数,每根条纹计数对应的距离变化增量为7.9nm(0.125倍激光波长),整个光学系统结构如图 2-1所示。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252327_615105_3384_3.png图 2-1 多通道激光干涉仪光学系统结构示意图 基于上述技术,波音航空公司在1974年至1975年期间针对大型空间望远镜(LST)项目中的石墨环氧测量支架进行了热膨胀系数测试考核【2】。具体测试考核包括了两方面的内容,一方面是测试管状支架和H型支架的热膨胀系数,另一方面是对管状支架热膨胀系数进行了热循环效应考核。 热膨胀系数测试试件为91.44厘米长的截面分别为圆形和H型的管材,被测试件放置在真空腔内并稳定24小时后再进行测试,图 2-2所示为测试装置的结构示意图。如图所示,被测试件悬浮在含有加热套的真空腔内,激光干涉仪的光学部件放置在真空腔外的底部位置,形成立式结构热膨胀系数测量装置,用来测量试件长度变化的聚焦光束垂直进入真空腔底部的光学窗口,整个测量装置实物如图 2-3所示,激光干涉仪测量装置实物如图 2-4所示。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252327_615106_3384_3.png图 2-2 热膨胀系数测试系统结构示意图http://ng1.17img.cn/bbsfiles/images/2016/10/201610252327_615107_3384_3.png图 2-3 热膨胀系数测试系统整体照片http://ng1.17img.cn/bbsfiles/images/2016/10/201610252328_615108_3384_3.png图 2-4 热膨胀系数测试系统激光干涉仪测量装置 每个被测试件上安装了三只测温热电偶和四个角反射镜,如图 2-5所示。激光干涉仪测量得到四个角反射镜的位移变化,由此得到热变形量和监视试件的倾斜。在被测试件的顶部安置一个参考反射镜用来抵消被测试件和干涉仪之间相对运动所带来的影响。 测试中真空腔内部气压低于1Torr以下并使真空度稳定16个小时,然后使试件温度升到37.8℃(100℉)后在冷却下来,整个加热冷却过程中,每隔2.8℃(5℉)测试一次热变形量,每隔14℃(25℉)进行一次30分钟的恒温。整个温度变化过程直到试件冷却到-73.3℃(-100℉)停止。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252328_615109_3384_3.png图 2-5 热膨胀系数测试系统测温传感器和光学器件安装位置示意图 铺层方向为(02±50)s 的管状试件热变形量测试结果如图 2-6所示,整个过程的平均线膨胀系数为 7.2E-08/℃(4E-08/℉)。图 2-7所示为管状构件热膨胀系数测试与计算之间的比较结果,从比较结果可以看出板层方向的有效性,这种特性可以用来设计特殊性能的复合材料。 在进行管件热膨胀系数热循环考核试验中,先沿着试件长度方向上安装两只1英寸宽的电阻加热器以建立起与热真空试验相同的试件状态,在热真空试验中,电阻加热器是用来控制管件的温度,而在管件热膨胀系数热循环试验中,加热电阻器只是实现相同的结构状态,热循环试验的温度控制则是采用真空腔内的加热套来实现。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252328_615110_3384_3.png图 2-6 试件热变形量随温度变化的测试结果http://ng1.17img.cn/bbsfiles/images/2016/10/201610252329_615111_3384_3.png图 2-7 测试与设计结果的比较 在热膨胀系数热循环考核试验中,反射镜和温度传感器的安装与热膨胀系数测试时完全相同。热循环测试时也是先抽真空使得试件进行一两天的除湿,然后进行+38℃~-78℃(+100℉~-100℉)温度范围内的208次的冷热循环,大约间隔50次循环进行一次测量,在最后一次循环时,测试将电阻加热器取出后的试件热膨胀系数。热循环过程中试件的热膨胀系数随温度变化测量结果如图 2-8所示。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252329_615112_3384_3.png图 2-8 热循环过程中试件热膨胀系数随温度变化的测量值[/

  • TMA测量微晶玻璃陶瓷的热膨胀系数

    TMA测量微晶玻璃陶瓷的热膨胀系数

    [color=black]Pyroceram[sup][/sup][/color][color=black]是康宁公司开发的多晶型硅酸镁铝微晶玻璃。此材料密度低、耐高温达1000°C,同时还具备类似钢材等金属合金的力学性能,因而广泛应用于厨具、实验室加热盘等。美国航天局NASA采用此材料制造轻量化且满足相应热学和力学性能要求的零部件。[/color][color=black]Pyroceram[sup] [/sup]9606[/color][color=black]具有稳定良好的高温热传递性能(包括导热和热扩散)而被批准为标准材料,它由NPL(UK)公司制造,标号BCR-724,由IRMM发行销售。[/color][color=black]热膨胀仪(DIL)和热机械分析仪(TMA)是测量Pyroceram[sup][/sup]和其他玻璃陶瓷材料热膨胀的理想方法。[/color][b]测[color=black]试条件[/color][/b][color=black]耐驰热机械分析仪 TMA 402 F1 Hyperion[/color][table][tr][td=1,1,370][color=black]温度范围:-20°C ~ 300°C[/color][/td][td=1,1,370][color=black]加热与降温速率:2°C/min[/color][/td][/tr][tr][td=1,1,370][color=black]气氛:He,20ml/min[/color][/td][td=1,1,370][color=black]样品长度:25.41 mm[/color][/td][/tr][tr][td=1,1,370][color=black]样品支架:石英[/color][/td][td=1,1,370][color=black]测量模式:膨胀[/color][/td][/tr][/table][b]结果讨论[img=,590,329]http://ng1.17img.cn/bbsfiles/images/2018/06/201806131417027350_5522_163_3.jpg!w590x329.jpg[/img][/b][color=#000000]图谱显示了[/color][color=#000000]Pyroceram[sup][color=black][/color][/sup] 9606[/color][color=#000000]样品的实测热膨胀曲线(黑色)和文献数据(红色)比对,两条数据曲线十分吻合,说明[/color][color=#000000]TMA 402 F1 Hyperion[/color][color=#000000]能够获得很高的测试准确度。实测的平均热膨胀系数([/color][color=#000000]0[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000]…[/color][color=#000000]300[/color][color=#000000]°[/color][color=#000000]C[/color][color=#000000])为[/color][color=#000000]5.44 X 10[sup]-6[/sup] 1/K[/color][color=#000000],而文献数据为[/color][color=#000000]5.53 X 10[sup]-6[/sup] 1/K[/color][color=#000000],两者只相差[/color][color=#000000]0.9 X 10[sup]-7[/sup] 1/K[/color][color=#000000]。[/color]

  • 【原创大赛】太空望远镜复合材料桁架管件超低热膨胀系数测试系统技术方案

    【原创大赛】太空望远镜复合材料桁架管件超低热膨胀系数测试系统技术方案

    [align=center][b][color=#3333ff]太空望远镜复合材料桁架管件超低热膨胀系数测试系统技术方案[/color][/b][/align][align=center]Design Proposal of Ultralow Thermal Expansion Coefficient Measurement System for Composite Truss Used in Space Telescope[/align][b][/b]摘要:太空望远镜用各种大尺寸复合材料桁架管件和镜筒普遍要求超低热膨胀系数以保证太空望远镜的热稳定性,传统热膨胀系数测试中的小尺寸试样已无法满足大尺寸构件的超低热膨胀系数测量,需要精确测量整个构件的超低热膨胀系数。本文基于成熟的激光干涉法微位移测试技术,根据复合材料桁架管件工艺质量控制技术要求,提出了大尺寸构件超低热膨胀系数测试系统设计方案。[align=center][img=太空望远镜超低热膨胀系数桁架管件,483,400]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220048_02_3384_3.png[/img][/align][align=center][color=#ff0000]上海依阳实业有限公司(www.eyoungindustry.com)[/color][/align][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#ff0000]1.需求背景[/color][/b] 在太空中运行的望远镜由于没有大气层保护,其工作温度变化很大,受阳面温度可高达上百摄氏度,而被阳面温度却在零下几十摄氏度。因此,太空望远镜在空间环境中,望远镜桁架材料的热膨胀,会引起太空望远镜光学结构的尺寸变化,从而造成望远镜观测精度下降。这样对太空望远镜的某些部件和仪器的技术要求就是热稳定性要好,要求太空望远镜的大尺寸桁架结构在一定的环境温度变化范围内不因热应力产生变形或者变形极小,热膨胀系数达到E-08/K量级,即所谓零膨胀。 传统热膨胀系数测试只针对长度100mm以下的小试样,无法满足大尺寸构件的超低热膨胀系数测量。为适应太空望远镜制造的要求,特别是对于以米为单位的大尺寸E-08/K量级部件的超低热膨胀系数,需要更加准确的测量。因此,研究太空望远镜用复合材料工程构件的超低热膨胀系数测试方法和相应的测试设备,具有重要的科学意义和实用价值。 本文基于成熟的激光干涉法微位移测试技术,根据复合材料桁架管件工艺质量控制技术要求,提出大尺寸构件超低热膨胀系数测试系统设计方案,为管件的设计、生产和质量评价提供技术支撑,并为今后整体桁架结构的尺寸稳定性测试评价奠定技术基础。[b][color=#ff0000]2.超低热膨胀系数测试系统技术要求[/color][/b][color=#ff0000]2.1. 样件形式和尺寸范围[/color] (1)刚性固体复合材料制成的横截面为圆柱形、矩形和T型等形式的管件; (2)样件外径范围为70mm~150mm; (3)样件长度范围为500mm~2000mm; (4)样件端面平整度小于0.05mm; (5)样件两端面平行度小于0.05mm。[color=#ff0000]2.2. 技术指标[/color] (1)测试温度范围:0℃~40℃; (2)测温精度:≤0.01℃; (3)样件温度均匀性:≤0.05℃; (4)变形测量分辨率:0.4nm; (5)变形测量不确定度:≤30nm; (6)测温点数:1个/2℃; (7)热膨胀系数测量不确定度:≤1×10-8/K。[color=#ff0000]2.3. 验收大纲[/color] (1)验收测量长度为1m的2等量块或同等制造精度的碳纤维复合材料管件(其直径为70mm~150mm,长度为1000mm~2000mm)。 (2)以1m的碳纤维复合材料管件为验收样品,在温场均匀度优于0.05℃、测温步长为2℃条件下,5次测量结果的长度变化量优于30nm,热膨胀系数标准偏差优于1×10-8/K。[b][color=#ff0000]3. 整体结构设计[/color][/b] 大尺寸样件超低热膨胀系数测试系统主要由真空系统、试验系统和测量系统三部分组成,整个测试系统放置在气浮隔振台上,如图3-1所示。[align=center][img=大尺寸管件超低热膨胀系数测试系统,690,269]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220049_01_3384_3.png[/img] [/align][align=center][color=#6633ff]图3-1 整体结构示意图(侧视图)[/color][/align] 针对大尺寸样件,超低热膨胀系数测试系统可以根据激光干涉仪的分布位置设计为单端测量和双端测量布局两种形式。[color=#ff0000]3.1. 单端测量布局[/color] 单端测量布局形式如图3-2所示。[align=center][img=超低热膨胀系数测试系统单端结构,690,439]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220050_01_3384_3.png[/img] [/align][align=center][color=#3333ff]图3-2 单端测量结构示意图(俯视图)[/color][/align] 单端测量布局的特点: (1)光程差大(试件长度),两反射镜平行度要求高,可能会带来一定误差。 (2)优点是便于今后多通道测量和扩展,一台激光器可带三台干涉仪进行三个试样测量。 (3)关键是可以进行空载测量,确定系统误差。[color=#ff0000]3.2. 双端测量布局形式[/color] 双端测量布局形式如图3-3所示。[align=center] [img=超低热膨胀系数测试系统双端结构,690,250]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220050_02_3384_3.png[/img][/align][align=center][color=#3333ff]图3-3 双端测量结构示意图(侧视图)[/color][/align] 双端测量布局的特点: (1)光程差小,两端反射镜平行度要求不高,有利于保证测量精度。 (2)多通道测量和扩展成本高,两台干涉仪只能测量一个试样。[color=#ff0000][b]4. 分系统设计[/b]4.1. 真空系统[/color] 真空系统为大尺寸样件的热膨胀系统测量提供精确恒定的真空环境,避免激光干涉测量受到气体(气压)波动的影响。[color=#ff0000]4.1.1. 真空腔体及整体布局[/color] 真空腔体及整体布局如图4-1所示。[align=center] [img=,346,200]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220043_02_3384_3.png[/img][/align][align=center][color=#3333ff]图4-1 真空腔体布局示意图[/color][/align] 真空腔体为矩形上开盖结构,因真空会使腔体变形不便做成大跨度的多试样整体结构,只能做到长矩形腔体并进行加固,减少腔体对测量影响。 今后扩展采用独立真空腔体形式,至少可在两个方向上扩展,甚至可能在三个方向上扩展。 设计中考虑了激光干涉测量系统光路扩展,留有扩展功能。[color=#ff0000]4.1.2. 光学窗口[/color] 光学窗口是实现真空条件下测量稳定性的关键,其功能是保证真空环境形成过程中对激光光路的影响最小。光学窗口的结构如图4-2所示。[align=center][img=,512,300]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220044_01_3384_3.png[/img] [/align][align=center][color=#3333ff]图4-2 光学窗口结构示意图[/color][/align] 光学窗口设计有以下两个特点: (1)采用局部刚性密封避免石英片移动。 (2)采用弹性调节和固定方式,将光学窗口石英片水平面调节和固定在常用真空度恒定时的位置上,同时保证与激光光路垂直。[color=#ff0000]4.1.3. 真空度测量和控制系统[/color] 真空腔体内的真空度(气压)需要长时间的精确恒定控制,采用高精度薄膜电容规测量真空度,采用特制的控制器进行自动控制,真空度精确控制在100Pa,波动率小于±1%,气氛为干燥氮气。 选择真空度为100Pa是为了既能消除气体折射率波动对激光干涉测量的影响,同时还能最大限度利用气体传热能力便于试件温度快速达到热平衡。 采用干式真空泵抽取真空,降低真空泵对光学器件的污染。真空度控制系统结构如图4-3所示。[align=center] [img=,507,300]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220045_01_3384_3.png[/img][/align][align=center][color=#3333ff]图4-3 真空度控制系统结构示意图[/color][/align][color=#ff0000]4.2. 试验系统[/color] 试验系统整体放置在真空腔内,用于放置被测试件、加热试件、保证试件受热膨胀形成单方向变形并将试件热变形转换为光程变化。[color=#ff0000]4.2.1. 支撑平台机构[/color] 热膨胀系数测试中,被测试件无论通过什么形式都要与真空腔体底部发生连接关系,真空腔体温度变化及其不均匀性都会造成这些连接关系发生二维形变。支撑平台机构除了给试件与真空腔底部提供连接关系之外,其重要功能是为试件提供一个基准平台,此基准平台只在光学测量方向上产生一维变形。支撑平台机构如图4-4所示。[align=center] [img=,690,234]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220045_02_3384_3.png[/img][/align][align=center][color=#3333ff]图4-4 被测样件支撑结构示意图[/color][/align] 试件变形测量的基准为导轨板,导轨板水平方向上的变形必然是二维形式。通过固定在真空腔底板和导轨板一端的单向平移机构保证导轨板一维变形,通过导轨板另一端的轴承导轨结构消除掉另一个水平方向上的位移,保证导轨板单向水平移动。[color=#ff0000]4.2.2. 试件支架结构[/color] 试件支架结构如图4-5所示。[align=center][img=,526,400]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220045_03_3384_3.png[/img] [/align][align=center][color=#3333ff]图4-5 试件支撑结构示意图[/color][/align] 为使试样尽量处于轴向自由移动状态,整个试样采用两个弧形支架支撑,尽可能减少试样与支架的接触面积。 支架采用铜材料,其中安装测温用热电阻测量试样温度。 采用氟塑料进行隔热,避免试样温度向下传递。 铜支架放置在可调节水平和高度的微调平台上,并能滑动以改变支点位置满足不同长度试件要求。[color=#ff0000]4.2.3. 试样绝对变形量传递装置[/color] 试样绝对变形量传递装置如图4-6所示[align=center] [img=,690,530]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220046_01_3384_3.png[/img][/align][align=center][color=#3333ff]图4-6 绝对变形量传递装置示意图[/color][/align] 绝对变形量传递装置的核心是将两个平面反射镜设法固定在试件的两个端面上,试件长度方向上的受热变形会使得平面反射镜同步线性位移。 此设计方案并未采用简陋的胶粘方式将两个平面反射镜固定在试件两个端面上,这是因为胶粘后的两个平面反射镜并不能保证相互的平行度,会给激光干涉测量带来很大误差,甚至无法进行测量。 新型绝对变形量传递的基本原理是采用弹簧机构把贴附在试件两端面上的平面反射镜拉紧固定,并采用调整机构使得两个平面反射镜相互平行,从而保证两个平面反射镜随着试件尺寸变化进行单向移动,将试件变形转换成平面反射镜的单向位移。 单端测试时采用一个平移机构,另一端平面镜固定不动。双端测试时采用两个平移机构。[color=#ff0000]4.2.4. 试样加热装置[/color] 根据技术指标要求,在大尺寸试件上要保证温度测量精度达到0.01℃和均匀性达到0.05℃,采用普通电加热和油浴加热方式都很难实现,且实现所需时间非常漫长。试样加热装置如图4-7所示。 采用分段闭合筒式加热结构,便于安装和卸载试样,并满足不同长度试件的加热需要。 加热套外部采用半导体热电器件进行温度控制,0.01℃超高精度温度控制,并通水冷却,最外部覆盖隔热材料。 加热桶壁上开小孔导入铂电阻温度传感器,并粘贴在试件上测试试件温度分布。[align=center] [img=,518,380]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220046_02_3384_3.png[/img][/align][align=center][color=#3333ff]图4-7 试件加热装置结构示意图[/color][/align][color=#ff0000]4.3. 测量系统[/color] 测量系统包括激光干涉仪测量装置、光路调整装置以及光学测量环境保障装置三部分。[color=#ff0000]4.3.1. 激光干涉仪测量装置[/color] 激光干涉仪测量装置是微位移测量的关键,在激光干涉仪选型中必须要满足以下三方面要求: (1)必须是外差式双频激光干涉仪,这样才能消除环境振动等因素对测量的影响,保证测试系统可以长时间连续运行而不受外界干扰,实现在普通实验室内的操作条件下进行微位移测量。 (2)激光干涉仪温度偏移小,否则很难实现高精度的微位移测量。 (3)外差式双频激光干涉仪抗偏移性能优良,就算测量光和参考光发射一定偏离造成干涉信号强度下降30%以上,照样可以进行测量。[color=#ff0000]4.3.2. 光路调整装置[/color] 在放入试件且抽真空后,整个光路将不能进行调整,再需调整还要充气并打开真空腔。 为了便于真空环境下的光路进一步精细调整,在真空腔内的相应位置上增加压电陶瓷驱动的微位移调节装置,从而保证起始温度下具有稳定的起始位置。[color=#ff0000]4.3.3. 激光干涉仪测量装置的密封和恒温[/color] 密封和恒温装置如图4-8所示。[align=center] [img=,467,250]http://ng1.17img.cn/bbsfiles/images/2017/08/201708220047_01_3384_3.png[/img][/align][align=center][color=#3333ff]图4-8 光学系统密封和恒温结构示意图[/color][/align] 采用半导体热电控温装置对干涉仪恒温套进行恒温控制和测量,始终使干涉仪处于恒温状态避免收到环境温度的影响,减小激光干涉仪温度漂移。 激光器和干涉仪全部放置在密封箱内,通过专门进出气口对激光器通风冷却。[b][color=#ff0000]5. 结论[/color][/b] 太空望远镜复合材料桁架管件超低热膨胀系数测试系统技术方案借鉴了国内外的成功经验,整个测试系统的硬件设计充分考虑了各个测量不确定度分量对应的工程内容,提出了切实可行的解决方案。 整个测试系统设计考虑了测量的准确性、可靠性、操作便利性和可扩展性,整个实施方案的技术成熟度较高、工程实现性强。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【求助】求助】那位高是能帮忙指点一下我测到的半导体基片的热膨胀系数

    【求助】求助】那位高是能帮忙指点一下我测到的半导体基片的热膨胀系数

    这是在下最近测定的半导体基片厚度方向的热膨胀系数,基片厚度为0.1mm,当时测量的时候好象是很多片叠在一起的,那位高人能指点一下迷津,因为实在不知道为什么厚度方向上不仅没有膨胀,反而尺寸变小了。(基板主要是由树脂层,铜层,还有其他有机物层叠合到一起的,不知道是因为有内应力还是其他原因,导致了这么怪异的膨胀曲线),在此先多谢各位了[img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005190909_219453_1611933_3.jpg[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制