当前位置: 仪器信息网 > 行业主题 > >

原油预测分析

仪器信息网原油预测分析专题为您提供2024年最新原油预测分析价格报价、厂家品牌的相关信息, 包括原油预测分析参数、型号等,不管是国产,还是进口品牌的原油预测分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合原油预测分析相关的耗材配件、试剂标物,还有原油预测分析相关的最新资讯、资料,以及原油预测分析相关的解决方案。

原油预测分析相关的资讯

  • PHASE发布PHASE原油、渣油、船用燃料油析蜡点/浊点和熔蜡点分析仪新品
    析蜡点(WAT)和熔蜡点(WDT)原油、渣油、重质船用燃料油测试的突破作为开发低温流动性能检测方法的世界知名品牌,Phase有着悠久而引人注目的历史,现在已经扩展了它的能力,包括原油的关键测量:析蜡点(WAT)。析蜡点也被称为浊点,是原油样品在规定的试验条件下冷却时,首次析出固体蜡质的温度。同样,熔蜡点(WDT)是在升温循环中末期的蜡固体熔化成液体的温度。结束了主观的、乏味的测试目前为止,尝试测定原油的析蜡点或浊点是一个不精确、单调和主观的过程。已经尝试了各种手动方法,但都很困难,而且耗时很长,产生的结果误差大得令人无法接受。Phase新推出的WAT-70Xi分析仪创新性的改变了上游和中游石油行业,它是世界上首台一个完全自动测量原油、渣油、船用燃料油WAT和WDT的分析仪。基于ASTM D5773,我们独有的光学闪射技术以极高的灵敏度和准确度检测相位变化。检测速度快,无需设置或清洗这一重要的科学突破意味着,即使是最黑暗、最不透明的样品,现在也可以很容易地进行测试,精度为1.0℃。只需加载样品,其余均由分析仪完成,测试只需15-30分钟即可完成。不需要费时的手动设置,每次测试后自动清洗。值得信赖的70Xi平台设计新的WAT分析仪建立在70Xi系列平台上,具有省时、高效的特点。速度和精度有利于上游和中油石油行业检测WAT和WDT两个关键测试参数有助于理解原油、渣油、重质船用燃料油性质,也决定了蜡沉积和熔化的速度。比所有其他测试方法更快只需15-30分钟即可得到结果,而其他方法的平均测试时间为几个小时。测试不透明样品增强的光学结构可以“看到”黑暗的样品自清洗每次测试后自动使用溶剂冲洗无需手动设置简单地将样品直接注入分析仪后即可开始测试运行优越的精度重复性1.0℃更加敏感可控的自动测试方法确保报告结果没有主观性信息丰富、实时的测试结果完整的相图(回路)清楚地说明了WAT、蜡的相对形成量和WDT。直观的,易于使用的界面全彩色15英寸高分辨率触摸屏,一键式预设“收藏夹”。应用析蜡点(WAT)和熔蜡点(WDT)有助于预测原油中蜡质沉积的发生,对上游和中游石油企业具有重要意义。在油田应用中,WAT和WDT可以帮助确定蜡结晶改进剂和/或蜡沉积抑制剂的优良水平。WAT也是潜在原油不相容的一个指标,也是原油质量变化的一个监测指标。来自同一地区的原油可能具有截然不同的特性,其蜡沉积和溶解速率也不尽相同。位置的变化,提取深度的变化,时间的演变,甚至生产和混合的方法都可以通过WAT来验证。通过管道、铁路或游轮运输原油、渣油 、船用燃料油以及储油,蜡结晶可能会限制流量或造成完全堵塞。WAT和WDT可以帮助定义可接受的可操作性限制,并计算与清洗相关的停机时间和费用。WAT是一种准确预测管道和储罐中蜡沉积的有效工具,具有巨大的潜在节约价值。海底和陆地管道系统的设计和开发以及蜡质修复方案的实施得益于WAT数据的分析。创新点:在原油、蜡油、重质船用燃料油低温测试领域,弥补了空白。对于炼油厂、储运公司及船舶公司检测意义深远。 PHASE原油、渣油、船用燃料油析蜡点/浊点和熔蜡点分析仪
  • 石科院web版原油快评成套技术达到国际领先水平
    近日,由石科院牵头研发、中国石化天津分公司、洛阳分公司参与实施的“Web版近红外光谱原油快评技术的开发与应用”项目通过集团公司科技部组织的技术鉴定。鉴定专家组一致认定,该技术在原油评价数据库和光谱技术相结合快速得到原油物性方面达到国际领先水平,可用于原油采购、原油调合、原油资源优化选择和利用等领域,对炼化企业科学制定生产加工方案、合理开展调度排产具有重要指导意义。01瞄准业界痛点随着我国进口原油品种和来源不断丰富,炼化企业加工的原油变化日趋频繁,如不能及时跟踪加工原油性质,将严重影响炼化企业常减压和二次加工装置的操作条件,进而对生产效益造成负面影响。目前业内普遍采用的传统原油评价技术时效性较差,难以满足炼化企业的实际生产需求。02深厚技术积淀石科院长期从事原油评价的基础工作,收集了近千种的不同原油样本,涵盖了世界各地原油品种及我国各大油田所产原油。在此基础上,石科院开展了一系列的原油快速评价研究,自主研发形成近红外光谱原油快评成套技术,可在三分钟之内提供完整的原油评价数据,极大提升了原油评价的时效性,受到业内的广泛认可。03创新迭代升级由于常规的原油快速评价技术的软件和数据库均为单机版设计,即配套的原油近红外光谱数据库、原油评价数据库均需安装在用户计算机中,导致其模型维护和数据库更新操作较为复杂。为满足炼化企业对原油快速分析的信息化升级需求,石科院在原有的近红外光谱原油快评技术基础上自主研制开发了web版近红外光谱原油快评技术,通过算法改进和光谱传递技术提升,进一步提升了原油快速评价的准确性和预测速度。石科院原油快速评价技术具备自主知识产权,申请专利31件,授权25件;获得3件软件著作权登记;发表国内核心期刊论文21篇,国外SCI论文10篇。04开展工业试验web版近红外光谱原油快评技术在中国石化天津分公司和洛阳分公司进行了工业应用试验,并“量体裁衣”建立了适合洛阳分公司与天津分公司的企业库。工业试验各项数据表明,通过对常加工的原油品种以及蒸馏装置进料进行快速分析,该技术显著节约了两家应用单位的原油评价和数据库维护成本,取得了很好的应用效果,解决了生产的燃眉之急。此后,石科院Web版原油快评成套技术顺利通过中国石化科技部组织的成果鉴定,鉴定专家组一致认为,技术在原油评价数据库和光谱技术相结合用于快速得到原油物性方面达到国际领先水平,可广泛用于原油采购、原油调合、原油资源优化选择和利用等领域,对炼化企业科学制定生产加工方案、合理开展调度排产具有重要指导意义。目前,石科院可为炼化企业提供涵盖原油快评、原油调合和配方原油等技术在内的一系列原油资源优化成套解决方案。未来石科院将持续开发更多智能化技术,帮助企业优化原油资源选择及调度,提升企业生产效益,保障装置“安稳长满优”运行。
  • 中国环保监测行业发展趋势及前景预测分析
    p   监测行业是整个环保行业的基础。如果没有监测,就没有办法对水、气、土进行检测,无法评估环境防治效果以及监督污染源的整治。同时,国家如果想更好的掌握环境信息,就必须依靠自己所建设的环境监测网。也正是因为这个原因,从“十二五”期间开始,国家就重点打造自身的环境监测网络。总体而言,“十二五”期间国控监测网体系已经基本搭建完成,“十三五”的主要任务是进一步完善整个监测网体系,并且逐步向省市一级的监测网下沉。长远来看,监测网体系将会遍布行业各个环节。因此,环境监测是整个环境保护的基础。 /p p   环境监测细分板块众多,涉及到环保各个子领域。环境监测分环境保护监测和污染源监测。环境质量监测主要目的是考核环境保护成果以及环境质量,监测对象有大气监测、水监测、土壤监测和噪声监测。污染源监测主要目的是控制有害物质的排放量,监测对象有废污水监测、废气监测以及重金属监测。环境质量监测中,大气监测主要由国控点(以地级以上行政单位为主)开始逐渐下沉到省控点(以县级行政单位为主)以及农村空气监测。水质监测分地表水监测和地下水监测:地表水监测包括各大江河湖海、集中式水源地、近海海域等。主要由国家地表水质监测断面为主。地下水污染监测体系需要结合之前国土资源、水利工程等已有的地下水工程。主要工程参照《地下水污染防治规划》。土壤监测方式主要为土壤采样、实验室分析为主,环保部印发多篇文件规范土壤监测方法与技术。污染源监测中,废(污)水主要来自于生活污水和工业污水排放。生活污水监测也就是城镇污水监测主要监测城镇排水和污水处理系统。工业污水监测主要监测重点污染企业排放情况。废气监测以前主要是CEMS系统监测,后来增加了针对有机污染物的VOCs监测。主要来自工业废气排放企业的监测和布点。重金属的排放主要通过工业废水废气废渣的方法排放,因此重金属监测和现有的工业废(污)水、废气监测是紧密联系的。 /p p   “十二五”以及“十三五”期间,各项国家政策推动监测行业快速发展。但是在整个环保行业中,监测行业中监测的市场体量依旧比较小,还具有很大的发展空间。根据国家环境监测总站的数据,监测行业销售额从2011年的108亿上升到了2015年227亿,年复合增长率约16%。但是整体规模只相当于水务处理的8%,固废处理的15%。 /p p   2015年,监测行业销售额组成最大的来源是华东地区和华南地区,分别占32.4%和24.8%。这主要是由于首先华东、华南是重要的工业区,本身对于监控设备的需求就比较多。其次,华东华南是经济比较发达的地区,政府财政对于监控的投入也更大。监测行业中研发投入比重逐年增加。监控属于高壁垒高技术行业,目前国内市场中,高精尖设备依然掌握在国外仪器公司手中。随着国家环保力度加大,以及处于对环境数据安全性和降低成本的考虑,监测设备将会逐步国产化。因此,重视研发投入,掌握重要技术的监测公司未来将会获得更大机会。我们总结了国内监测行业几家上市公司的数据,公司的研发投入基本逐年递增。平均研发投入占营业收入的8%左右。近几年,研发投入的占比略微有些下降,主要原因是其销售收入大幅增加导致。 /p p   目前全国从事环境监测业务的企业共有约200家,大部分企业从事废气、废水、环境空气、地表水等在线自动监测系统的研制、生产、安装、运营(含集成商)。 /p p   其中,约有120家企业生产废气在线监测系统,约有80家企业生产废水在线监测系统。我国环境监测行业壁垒较高,垄断格局雏形已现,领先企业占据半壁江山。首先,作为技术密集型产业,环境监测行业技术门槛偏高,目前国内从事环境监测的企业仅有两百多家。高端过程分析仪器市场,大多被德国西门子、瑞士ABB、美国赛默飞世尔等外资企业所占领 内资企业如聚光科技、先河环保等,主要面向中低端过程分析仪器市场。 /p p   其次,在“十二五”期间,销售收入前十的企业市场占有率维持在60%左右,行业竞争格局已经基本形成。并且市场垄断占有率还在逐年提升。监测行业的毛利率基本保持在45%以上,相比水务处理、固废板块普遍30%左右毛利率而言高出很多,但是监测行业的毛利率正出现下跌情形。原因主要是行业内部竞争越来越激烈。随着竞争的加剧,行业内部的兼并收购将会愈演愈烈。恰逢行业本身具有较高技术壁垒,因此,对于国内的环境监测企业来说,未来的发展是机遇与挑战并存。 /p p   内资企业加大研发力度,提升产品核心竞争力。一方面,随着公众对于环境的改善的迫切需求以及政府对于环境保护各大政策的加码或者出台,环境保护以及环境监测的市场空间不断增大 另一方面,随着行业内竞争越来越激烈,行业中毛利润普遍下滑。在此情况下,本土企业想要保持竞争力,扩大市场份额必须加强自己的技术研发或者通过外延并购。保持技术不断创新,努力缩小与国外企业的技术差距,才是企业能够快速发展的条件。 /p p   截至2015年底,共建成全国环境空气质量监测点3360个,其中“国控点”1436个。我们统计了338家地级以上行政单位建成区面积,对照监测点城市设定要求,算得“国控点”数量应该在1400个左右,仅仅略小于1436个。根据环境统计公报数据,2013年至2015年底,“国控点”数量没有增加。因此我们认为“国控点”网络已经搭建完成。在“十三五”规划中,监测点增加主要来自于以县级行政单位为主的“省控点”网络。按照最新统计,全国共有县级行政单位2851家,平均人口为每县50万人,因此我们可以估算平均每一个县级行政单位需要架设2个空气质量检测点。根据2015年的环境统计公报数据显示,“国控点”之外已有空气质量检测点位1924个。因此可以推算,整个“十三五”规划期间(从2015年底算起)新增空气质量监测点增量约为3800个。我们对中国采招网2017年公布的空气监测站招标文件部分统计显示,大部分的空气监测站预算在120——160万之间。同时参考中国环境监测总站采购数据,平均一套自动环境空气自动监测设备约为120——150万。保守估计,我们用120万预算为基准,可以测算出“十三五”期间空气质量监测站增量空间总量大约为45亿,平均每年约9亿。 /p p   《国家空气监测城市站运行管理规定》明确:“原则上,以5-8年为一个周期进行设备的更新换代”。因此我们可以认为大部分的空气监测设备的更新期为设备运行第5年至第8年。根据环境监测总站的数据,我们可以推算出空气监测设备(不仅仅是监测站设备)将在2019年迎来大批量“换机潮”,每年需要更新设备总数将在1500台左右。根据我们上文总结预测的监测站的数量,国控站的更新换代已经开始,每年更换设备数量约为200套左右。省控点的布局还没有完成,我们预测“十三五期间”新增省控点3800个,原“十二五”期间省控点数量为1900余个。基于这些数据,我们认为“十三五”期间每年需要更新的省控点大约在300家左右。长远来看,“十三五”“省控点”网络建成之后,2020年之后的每年需要更新设备将突破700台。综合新增和更新设备,“十三五”期间空气质量监测站市场空间每年约13亿元左右。 /p p   根据《全国农村环境质量监测工作实施方案》,2017——2019年新增1695个村庄的环境监测,2020年之后新增5000余个村庄的环境监测工作。可以认为“十三五”期间平均每年新增农村站560余家。按照每台设备50——60万计算,“十三五”期间,农村空气质量监测市场增量为8.5亿元,平均每年2.8亿元。长远来看,农村空气质量监测市场增量空间为33.8亿元。 /p p   2015年环境统计公报数据显示,截至2015年底(“十二五”规划截止),全国共有水质监测断面10147个,饮用水水源地监测4764个,近岸海域监测点894个。 /p p   其中国控断面点位972个,监测河流423条,水库62座。根据《“十三五”国家地表水环境质量监测网设臵方案》,“十三五”期间,为保证环境监测数据的历史延续性,原则上不再新设监测断面。同时,“十三五”期间地表水监测将对原有断面进行调整。调整之后,国控断面(点位)为2767个,监测河流1366条,湖库139座。 /p p   根据环保部2015年中国环境统计公报,全年废水排放量为735.3亿吨,比2014年增加2.7%。其中主要的废水排放量来自于城镇生活污水。2015年城镇生活污水排放量535.2亿吨,比2014年增加4.9%,占所有废水排放总量72.8%。工业废水排放量199.5亿吨,比2014年减少2.8%。 /p p   废(污)水污染及来自于生活污水排放,又有工业企业端的工业污水排放。废(污)水监测主要包括化学需氧量(COD)、氨氮监测为主。在工业源污水排放监测中还包括石油排放类、挥发酚类、氰化物以及重金属监测。 /p
  • 国际领先!石科院配方原油成套技术鉴定通过
    近日,由石科院牵头、中国石化广州分公司参与研发的“配方原油技术及在原油资源优化中应用”项目通过中国石化科技部组织的技术鉴定。鉴定专家组一致认为,配方原油成套技术在原油分子组成和光谱拟合技术相结合用于配方原油计算方面达到国际领先水平。为什么需要配方原油技术?原油资源关乎国家能源安全和国民经济发展,原油资源的波动对炼厂的经济效益会产生很大的影响。我国石化企业加工原油的品种复杂,原料的频繁变化导致石化企业安全生产和提质增效无法得到有效保障。有的企业从装置运行一开始加工的原油就不是当初设计所用的原油,有的企业加工的合适原油供应不足或价格高企,还有企业加工的原油不是优化的目标原油… … 以上这些因素都会导致蒸馏装置进料性质的频繁变化,使得石化企业配套建设的装置很难按设计要求协调运转,影响企业的正常生产及整体加工效益的提升。配方原油技术可以针对性解决国内石化企业这一共性问题,提升企业经济效益。什么是配方原油技术?配方原油技术是采用先进计算方法,在原油评价数据库和原油近红外光谱库采集的大数据基础上,通过原油品种和数量的优化配伍,形成多种原油性质及加工性能与目标原油相似的原油调合配方供炼厂选择利用,从而达到稳定炼厂加工原油的目的。配方原油技术怎么发挥作用?石科院配方原油成套技术的先进算法既考虑原油宏观物性一致性,还注重原油相容性、炼制性能。同时,还可以利用自主开发的基于分子水平的油品调合规则、燃料油黏度预测模型、二次加工装置机理模型等技术,提升技术经济评价模型,全面评价配方原油的可加工性能以及对全厂加工效益的影响,优化确定可实际执行的原油配方。应用效果怎么样?目前,配方原油成套技术已在中国石化广州分公司成功应用。石科院利用该技术对广州分公司1#蒸馏装置实际加工的两种目标原油进行了配方设计,遴选出优质的配方原油,优化了催化原料和低硫船用燃料油生产。工业应用试验数据表明,实际加工的配方原油与目标原油相似度均超过0.9,馏分收率和性质相近。广州分公司长期应用的结果表明,配方原油技术满足装置对加工原油性质稳定的要求,同时经济效益显著。业界评价如何?在中国石化科技部组织的技术鉴定会上,鉴定专家组一致认为:配方原油成套技术配方原油技术在原油分子组成和光谱拟合技术相结合用于配方原油计算方面达到国际领先水平,首次提出了动态原油相似度的概念,并用于衡量配方原油与目标原油的定量化接近程度,具有自主知识产权,建议加快开展推广应用。
  • 2020年五大金属分析预测
    技术创新继续推动高科技分析解决方案市场向前发展。我们现在对自有的光谱仪有着更高的期望,但同样作为光谱仪制造商,我们也在不断开发我们的仪器,以确保它们能够继续在现场交付,无论是遵守新的法规、管理复杂的供应链,还是满足新的规范。对于金属分析,以下是将要改变2020年发展前景的五大预测:1、价格合理的高性能OES分析的兴起随着行业法规的严格化、供应链的复杂化以及更多地使用废料作为基础材料,铸造厂和金属制造商必须将杂质和痕量元素的含量控制在最*低ppm范围内。曾经,这一级别的OES分析对许多企业而言遥不可及。但今年我们改变了这一局面。我们最近推出了OE750,这是一款新型的开创性直读光谱仪,其实际价格实惠合理。同样,如果您正努力实现最*高精度,特别是使用自己的直读光谱仪(OES)以实现此目的,则类型标准化可能正是您所需要的。我们已经向您介绍了我们的快速指南,以始终如一地实现最*高精度。2、金属质量控制仍然是重要事项我们认为,行业将继续注重质量,尤其是金属制造业中的100 % PMI,我们围绕金属质量分析发表的文章一直最*受欢迎。如果您不熟悉材料分析或想要投资仪器,您最*好首先阅读我们所发布的关于什么是材料可靠性鉴定(PMI)以及为什么PMI如此重要的文章。从根本而言,不管是什么行业,追求产品质量是普遍适用的要求。我们提供了许多光谱仪可供选择,我们了解许多公司正在密切关注不同的可用分析技术—LIBS、OES和XRF—以及其所实现的成果。随着对金属需求的增加,我们深谙当我们迈入2020年,这一预算年度的开始表明许多公司将寻求新的金属分析仪。同样,在许多国家,如美国中小型企业具有税收减免优惠,因此有必要利用这些机会。如果您需要帮助,我们的专家非常乐意与您交谈。3、LIBS与OES的比较辩论我们已经看到手持式激光技术的发展,凭借现场PMI测试便利、重量轻等优势,LIBS光谱仪于2019年广泛用于检测碳含量。然而,根据我们的经验,手持式LIBS不能为您提供在苛刻环境中进行高置信度的低碳钢鉴定和分拣所需的准确度。我们开始察觉客户转向使用OES,因为手持式LIBS不能满足API 5L标准所规定的有关磷和硫等元素的正确含量(低于150ppm)之要求,这对避免安全关键环境中的事故至关重要。今年,我们讨论了LIBS与移动式OES光谱仪的比较,以及当您想购买一款能进行碳分析的手持式LIBS光谱仪以帮助您为贵组织做出正确选择时的考虑事项。 4、LIBS技术的兴起三项技术中的最*新技术——激光分析仪(激光诱导击穿光谱)的兴起将在金属分析中发挥更大的作用。通过选择激光光谱仪而非您信任的XRF光谱仪,实际上可能会为您节省资金,并能即时提高生产力。大多数手持式LIBS光谱仪用于快速分拣废料场的合金、进行来料检验、100 % PMI以及金属行业各种应用中的合金鉴定和分析。欲了解更多关于LIBS的信息,请观看我们广受欢迎的技术概述视频或参加我们的测验,了解最*适合您的技术。5、大数据将发挥重要作用在过去十年中,我们已深谙数据成为企业的关键资源,金属行业也不例外。尽管对该行业的过程控制和优化进行了不少投资,但其多年来在新数字技术应用方面一直落后于银*行和媒体等行业。尽管如此,能带来巨大收益的分析、移动解决方案和自动化创新正迅猛发展。 我们的专家随时乐意为您提供帮助,并回答您可能提出的任何问题。我们已在博客上分享了我们多年积累的丰富知识,您可关注我们的公众号,但同样,如果您想和我们的专家交谈,请联系我们。
  • 巴西新原油实验室选用赛默飞世尔质谱仪
    巴西新原油实验室选用 Thermo Scientific 组合质谱仪快速分析石油样品 -组合质谱仪将用于快速的同时分析石油样品中的多种成分。全球服务科学行业的领导者赛默飞世尔科技,今天公布汤姆森质谱实验室的新原油实验室购买了一台 Thermo Scientific LTQ FT Ultra 组合质谱仪 。该实验室隶属于巴西坎皮纳斯州立大学( State University of Campinas )化学研究所。这台 LTQ FT Ultra™ 将用于快速的同时分析石油样品中的多种成分,以加速生产并提高该实验室的工作效率。 石油是世界上最复杂的天然混合物和最具有化学分析挑战性的样品之一。新原油实验室是巴西石油巨头巴西国家石油公司( Petrobras )和巴西国家石油管理局( ANP )的合作伙伴。为了通过学术研究促进新分析技术的研发,巴西国家石油公司投资 250 万美元在汤姆森质谱实验室中建成了一个原油实验室。该原油实验室将会评估傅里叶变换质谱仪( FTMS )在原油生产加工中的应用。该实验室进行的实验已经突显了此技术在直接分析原油样品方面的优势,不需要额外的样品前处理和在线分离技术。 该实验室之所以选 择Thermo Scientific LTQ FT Ultra ,是因为它独一无二的快速鉴别多种化合物的能力,它仅用 10-15 分钟就能鉴别单个石油样品中的多达 10 , 000 种天然化合物的分子式。另外,它还能将最先进的离子阱和傅里叶变换离子回旋共振技术独一无二的结合在一台仪器上,为原油实验室提供优异的分析技术和多功能性。正因如此, LTQ FT Ultra 显著提高了所采集数据的质量和数量。 新实验室的协调员 Dr. Marcos Nogueira Eberlin 教授这样评价:“直到最近,巴西新原油实验室的研发主要还是通过公共资源来完成的。然而,巴西的石油公司现在越来越多地与科研实验室合作开发最新的先进分析技术。我们原油实验室应用了LTQ FT Ultra 组合质谱这样的先进技术,确保我们达到巴西国家石油公司对最快分析速度和最佳数据品质的要求。 LTQ FT Ultra 是我们实验室基础设施中一个非常重要的工具,它帮助我们显著提高了巴西国家石油公司的石油开采和生产加工的能力。” 关于赛默飞世尔科技( Thermo Fisher Scientific ) 赛默飞世尔科技有限公司( Thermo Fisher Scientific Inc. )(纽约证交所代码: TMO )是全球科学服务领域的领导者,致力于帮助客户使世界变得更健康、更清洁、更安全。公司年度营收达到 105 亿美元,拥有员工 34,000 多人,为 350,000 多家客户提供服务。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、研究院和政府机构以及环境与工业过程控制装备制造商等。该公司借助于 Thermo Scientific 和 Fisher Scientific 这两个主要品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。 Thermo Scientific 能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室工作流程综合解决方案。 Fisher Scientific 则提供了一系列用于卫生保健,科学研究,以及安全和教育领域的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请登陆: www.thermofisher.com (英文), www.thermo.com.cn (中文)。
  • 合肥研究院研发出面向CRISPR的综合分析预测工具及平台
    近日,中国科学院合肥物质科学研究院健康与医学技术研究所基因组学团队副研究员张帆研发了名为CRISPRimmunity的分析服务平台。该平台是识别CRISPR相关重要分子事件以及用于基因编辑调节器的交互式网络服务器。相关研究成果发表在Nucleic Acids Research上。CRISPRimmunity是全新的、用户界面友好的网络服务器,旨在提供面向CRISPR的一站式综合分析服务平台,全面注释CRISPR-Cas系统与Anit-CRISPR系统共进化过程中关键分子事件,准确预测Anti-CRISPR蛋白,从头识别新型II类CRISPR-Cas基因座,基于CRISPR阵列信息预测细菌与可移动元件(噬菌体、质粒)之间的相互作用,从更加综合地进化视角理解CRISPR-Cas系统和anti-CRISPR系统。CRISPR-Cas系统是自然界中原核生物长期演化过程中所形成适应性免疫系统。该系统通过RNA介导的DNA降解抵御外源基因入侵,能够实现高度灵活的特异性靶向,成为现有基因编辑和基因修饰中效率最高、最简便、成本最低的技术之一。新型CRISPR-Cas相关蛋白及Anti-CRISPR蛋白的发现,将进一步加深科学家对CRISPR-Cas系统在原核生物中的作用的认知,扩展在其他细胞和生物体中进行基因组编辑应用的工具盒。然而,目前可用的CRISPR-Cas相关数据资源仅仅关注CRISPR-Cas系统或anti-CRISPR系统中的特定领域,忽视了两者之间的共同进化关系,因而提供的信息与服务有限,且缺乏识别新型II类CRISPR-Cas系统的可用方法。课题组研发了面向CRISPR-Cas系统与Anti-CRISPR系统的综合分析预测平台——CRISPRimmunity。该平台构建了一系列面向CRISPR相关信息的自定义数据库,注释已知的Anti-CRISPR蛋白和Anti-CRISPR相关蛋白、II类CRISPR-Cas系统、CRISPR阵列类型、HTH结构域和可移动遗传元件,以剖析CRISPR-Cas系统与anti-CRISPR系统共进化中关键分子事件;综合了同源分析、关联分析及原噬菌体区域中自靶向事件等多种策略预测Anti-CRISPR蛋白以提高预测的准确性,在99个经实验验证的Acrs和676个非Acrs的数据上对CRISPRimmunity进行测试,Anti-CRISPR蛋白预测准确率达到0.997;首次提供了II类CRISPR-Cas基因座的从头预测算法,鉴定了4个具有不同PAM结构域的Cas9,1个更小的Cpf1,61个C2c10及3个未分类的全新的V型Cas蛋白,其中一部分CRISPR-Cas基因座已在体外经实验验证了活性。CRISPRimmunity网络服务器设计了图形用户界面,提供多种可视化、自定义设置选项和可导出机器可读格式的详细结果和详细教程,以便不同需求的用户使用;提供了在NCBI数据库中18,408株完全测序的细菌及235株含Acr的细菌及208,209株人类肠道微生物中预注释的CRISPR相关重要分子事件的浏览和下载,为未来的实验设计和进一步的数据分析提供了参考。此外,CRISPRimmunity提供了本地化版本为计算生物学家批量数据挖掘提供便利。研究工作得到国家自然科学基金、黑龙江省头雁团队原创探索基金和哈尔滨工业大学青年科学家工作室等的支持。CRISPRimmunity预测分析框架预测的Cj2Cas9所识别的PAM序列的高通量测序分析CRISPRimmunity结果可视化
  • 原油评价好帮手,实沸点蒸馏
    原油是炼化企业最基础、最核心、最根本的生产资料,在原油加工过程中,原油采购成本占总加工成本的90%以上。在生产过程中,原油评价数据不但可以为一次加工提供依据,而且也是二次加工,如重整、加氢、润滑油生产、渣油加工、焦化、沥青生产和科研的技术工作者提供可靠的分析数据。可见原油评价工作在石油加工和石油研究中处于重要的地位。实沸点蒸馏是原油评价的首道工序。是根据原油中各组分的沸点不同,用加热的方法从原油中分离出各种石油馏分。而实沸点蒸馏仪针对实沸点蒸馏,是原油评价中最重要和最基础的设备,能够根据要求对原油进行窄馏分和宽馏分的切割,得到原油各馏分的效率,然后对宽馏分和窄馏分进一步分析,从而*得到全面的原油评价数据。其中TBP系统(常压蒸馏法)最/高切割温度能够达到400℃,蒸馏柱的效率在全回流时具有14 – 18块理论塔板数。根据需要,在回流比5:1的条件下切割出不同的馏分。剩下常压渣油,其中含有沸点较高的蜡油、渣油等组分。将常压渣油经过加热后,送入PS系统(罐式蒸馏法),是常压渣油在避免裂解的较低温度下进行分馏,PS系统最/高切割温度能够达到常压相当温度565℃,分离出润滑油料、催化料等二次加工原料,剩下减压渣油。 PD400CC原油实沸点蒸馏仪德国Pilodist PD 400系列原油实沸点蒸馏仪可分成两部分:原油蒸馏标准试验仪(PD 100系列)和重烃类混合物蒸馏仪(PD 200系列)。☑ PD 100系列符合ASTM D2892标准方法,切割范围从脱丁烷到400℃,他在全回流状态下具有15块理论塔板,蒸馏柱中装满不锈钢填料,在5:1的回流比下蒸馏。☑ PD 200系列符合ASTM D5236标准方法,切割范围从150℃到565℃,压力从10mmHg到0.1mmHg,蒸馏柱较短,没有填料,只相当于一块理论塔板。仪器特点:① Pilodist原油实沸点蒸馏仪完全符合ASTM D 2892和ASTM D5236标准方法;② 蒸馏过程由计算机控制,基于WINDOWS系统的操作软件操作方便,参数设置灵活,通过计算机输入测试运行参数,控制蒸馏运行,记录测试数据,显示测试曲线,蒸馏过程中操作人员可以随时对各技术参数进行修改设置,具有很强的灵活性;③ 蒸馏速率控制:自动闭环控制,根据样品回收质量速率或体积速率控制蒸馏加热功率,严格符合标准方法要求;④ 馏分切割,自动进行减压馏出温度和常压AET温度的换算,并根据预先设置AET切割温度实现自动馏份切割、收集、质量称量和体积测量;⑤ 数据处理:计算机实时显示测试过程数据,测试结果直接用EXCEL文档显示。试验结束显示和打印wt%、vol%实沸点蒸馏曲线。
  • 上半年医药经济运行分析及全年预测
    日前从工业和信息化部(以下简称工信部)了解到,今年上半年我国医药工业生产、销售、经济效益保持较快增长,在产业结构调整和振兴发展的推动下,行业投资加速,但受国际金融危机影响,出口增长速度缓慢,面临较大的国际市场压力。   产销持续增长增幅稍有回落   据有关统计显示,1~6月,医药行业累计完成工业总产值4766.6亿元,同比增长17.8%,高于全国工业平均水平(1.8%)16个百分点,但增幅较一季度下降1.36个百分点 工业增加值同比增长14.0%,高于全国工业平均水平(7.0%)7个百分点。   其中,化学原料药和化学药制剂业分别完成工业总产值909.8亿元和1393.3亿元,同比各增长6.8%和20.8% 中成药制造业和中药饮片加工业分别完成956.2亿元和235.9亿元,同比各增长18.3%和26.2% 生物生化制品业完成403.2亿元,同比增长22.4% 医疗仪器设备及器械和卫生材料及医药用品制造业分别完成425.7亿元和238.2亿元,同比各增长19.6%和26.5%。除化学原料药外,其他6个分行业增速均高于行业平均水平。   1~6月,医药工业实现销售产值4519.9亿元,同比增长17.7%,增幅水平较一季度下降0.6个百分点。其中,化学原料药和化学药制剂业分别完成863.9亿元和1312.5亿元,同比各增长7.1%和18.8% 中成药和中药饮片加工业分别完成891.4亿元和226.7亿元,同比各增长18.5%和26.7% 生物生化制品业完成383.7亿元,同比增长23.1% 医疗仪器设备及器械和卫生材料及医药用品制造业分别完成413.9和231.0亿元,同比各增长20.3%和27.6%。除化学原料药外,其他6个分行业增速均高于行业平均水平。   1~6月,全行业整体产销率94.8%,同比下降0.12个百分点。其中,化学原料药、中药饮片加工、卫生材料及医药用品、中成药、生物生化制品和医疗仪器设备及器械制造业的产销率较上年同期分别提高0.24、0.31、0.87、0.16、0.54和0.52个百分点,化学药制剂产销率较上年同期下降1.59个百分点。   1~5月,医药工业累计实现利润总额344.3亿元,同比增长17.95%,相对于全国工业平均22.9%的负增长,医药工业继续保持较快的增长水平。其中,化学药制剂业实现利润111.6亿元,同比增长16.8% 中成药和中药饮片加工业分别实现利润69.6亿元和11.1亿元,同比各增长27.9%和30.7% 生物生化制品业35.9亿元,同比增长20.7% 医疗仪器设备及器械和卫生材料及医药用品制造业分别实现利润35.2亿元和14.3亿元,同比各增长28.9%和52.1%。卫生材料及医药用品、中药饮片加工、医疗仪器设备及器械、中成药和生物生化制品5个分行业利润增速高于行业平均水平,化学药制剂利润增速略低于行业平均水平,而化学原料药制造业实现利润54.1亿元,同比下降了4.13个百分点,多年来首次负增长。   1~5月,医药行业亏损企业1636家,行业亏损面为19.9% 累计亏损额21.5亿元,同比增长2.4%。   1~5月,医药保健产品出口总额121.9亿美元,同比下降2.77%,出口增长仍然乏力。其中,化学药原料出口64.5亿美元,同比下降10.0% 医疗器械类产品出口42.6亿美元,同比增长4.0% 西成药出口4.4亿美元,同比增长2.7% 生化药出口4.98亿美元,同比增长62.2% 植物提取物出口2.53亿美元,同比增长18.8% 中成药出口6130万美元,同比下降9.1% 中药材及饮片出口1.9亿美元,同比下降14.2%。   1~5月,医药行业累计完成固定资产投资总额406.3亿元,同比增长44.2%,较2008年全年累计25.9%的增幅有很大的增长。固定资产投资的大幅增长,带动行业继续保持稳定的增长势头。   发展面临诸多不利因素   随着国际金融危机的蔓延和世界经济的衰退,我国医药外贸发展面临的环境愈发严峻,业内专家们预计,2009年可能是进入新世纪以来最为困难的一年。工信部工业消费品司医药处处长李宏和中国医药企业管理协会会长于明德等专家分析认为:   其一,受国际金融危机影响,医药出口面临较大压力。不少企业反映,国外订单额下降、长单变短单、大单变小单、订单减少、下单仍以老客户为主情况较为普遍,出口量下滑。受环保标准提高、实施新劳动合同法等政策性因素影响,成本优势逐步丧失。金融危机导致部分国家货币贬值,尤其是我国医药行业最大的竞争对手印度,其货币卢比对外汇率大幅度下调,而人民币升值相对较快,使得我国很多原料药的出口价格被迫抬高,加剧了产品出口压力。   其二,受国际市场影响,化学原料药产值效益增速大幅下滑。在我国医药行业各分行业中,化学原料药出口比重最高,受国际市场影响也最大。1~5月,化学原料药出口额同比下降了10%,比上年全年增幅下降了65个百分点。由于出口受阻,1~5月化学原料药行业工业总产值同比增幅仅为6.6%,而利润总额同比增幅下降了4.1%,产值增速大幅回落的同时,效益增幅出现了多年来少见的负增长。   其三,药品安全存在隐患。今年以来“双黄连注射液”、“香丹注射液”、“清开灵注射液”等中药注射液品种又接连发生严重不良反应和药品质量安全事件,暴露出我国现有部分注射剂品种,研制基础较薄弱,生产工艺有缺陷,质量水平不高,存在一定安全隐患。   其四,环保压力较大。国家环境保护总局于2008年6月颁布了《制药工业水污染物排放标准》,要求新建制药企业必须按新标准设计和生产,老企业则要求在限期内完成整改。由于新标准要求高,企业与地方、园区公共设施之间在废水治理、排放上尚未形成合作配套机制,仅靠企业自身条件,环保治理成本很高,许多企业和地方医药经济发展急需探索新的发展模式。   需求旺盛增长仍可期待   对于下半年行业走势,业内人士普遍充满信心,认为在新一轮医药卫生体制深化改革推动下,国内医药市场需求依然旺盛,拉动医药产业快速发展的主要因素仍未改变,医药行业仍将继续保持较快的增长态势,预计2009年产值增长率保持在20%左右,效益增幅保持在15%~20%之间。   上述乐观的预测主要基于以下因素:国内市场,新型农村合作医疗参合率、城镇居民基本医疗保险覆盖范围的不断扩大,在即将出台的新一轮医药卫生体制改革的推动下,国内医药市场规模的不断扩大为我国医药行业继续保持快速发展提供有利的外部环境。国际方面,尽管有金融危机的不利影响,但由于医药市场的刚性需求较大,2009年全球医药市场将继续保持增长态势,对我国医药产品的需求也不会发生大的变化,我国在国际市场上占有较大份额的优势产品在短期内不会被其他国家的产品所替代,加之我国政府促进出口发展政策的实施,全年医药产品出口将保持正增长。   从行业方面看,随着《药品注册管理办法》、《制药工业水污染物排放标准》等医药政策和标准的提高,行业优胜劣汰的调整步伐进一步加快,产业资源加速向优势企业集中,在实施医药技术改造专项、加快医药行业结构调整、适时提高出口商品的退税率等产业政策的积极推动下,今年我国医药行业效益水平在调整中将保持较快增长。
  • 2018-2022年中国新材料产业的预测分析
    p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/bfc84bac-73d5-45ca-bb00-87e647d64538.jpg" title=" 1(6199).png" / /p p style=" text-indent: 2em " 一、有利因素 /p p style=" text-align: left "   (一)新材料产业发展指南发布 /p p   在中国的产业升级中,新材料产业是战略性新兴产业的重要组成部分,是整个制造业转型升级的产业基础。工信部在2017年1月23日发布的《新材料产业发展指南》中,提出到2020年,新材料产业规模化、集聚化发展态势要基本形成,要突破金属材料、复合材料、先进半导体材料等领域技术装备制约,在碳纤维复合材料、高品质特殊钢、先进轻合金材料等领域实现70种以上重点新材料产业化及应用,建成与我国新材料产业发展水平相匹配的工艺装备保障体系,建成较为完善的新材料标准体系,形成多部门共同推进、国家与地方协调发展的新材料产业发展格局,具有一批有国际影响力的新材料企业。 /p p   《指南》还提出要完成的重点任务,包括突破重点应用领域急需的新材料,要布局一批前沿新材料,加快重点新材料初期市场培育,突破关键工艺与专用装备制约,完善新材料产业标准体系。同时实施“互联网+”新材料行动,培育优势企业与人才团队,促进新材料产业特色集聚发展。 /p p   (二)市场前景广阔 /p p   新材料产业市场前景广阔,一是由于技术进步以及新兴产业的发展,一些新材料相对于传统材料来说,在性能和成本方面有明显的优势;二是出于环境保护的考虑和资源的限制,一些新材料有较大的优势。当前中国新材料产业发展迅速,产业规模保持平稳增长;材料种类日益丰富,产品结构略有起伏;政策资金积极扶持,发展环境逐步优化;产业基地建设加快,区域特色逐渐形成。京津冀地区新材料企业发展迅速,产业投资及扩张意愿强烈。 /p p   (三)在部分领域达到国际先进水平 /p p   在部分先进基础材料、关键战略材料、前沿新材料等领域,我国实现了与国际先进水平“并跑”甚至“领跑”。例如,在关键战略材料方面,中芯国际前七大耗材中六类材料实现国产采购;南山集团铝合金厚板通过波音公司认证并签订供货合同;中船重工兆瓦级稀土永磁电机体积比传统电机减少50%、重量减轻40%;世界首座具有第四代核电特征的高温气冷堆核电站关键装备材料国产化率超过85%;液态金属在3D打印、柔性智能机器、血管机器人等领域实现初步应用等。 /p p   (四)国家重视培养新材料产业相关人才 /p p   除了市场需求的增长以外,高素质人才的培养也是推动产业的发展的关键因素之一。2017年1月24日印发的《制造业人才发展规划指南》提到在2015年新材料产业人才总量为600万人,预计到2020年人才总量为900万人,人才缺口为300万人,到2025年,人才总量为1000万人,人才缺口为400万人。但三部委在《制造业人才发展规划指南》中明确,要引导高校招生计划向本科电子信息类、机械类、材料类、海洋工程类、生物工程类、航空航天类和高职装备制造大类、电子信息大类、生物与化工大类、能源动力与材料大类中对应制造业十大重点领域的相关专业倾斜。同时注重专业设置前瞻性,主动适应新技术、新工艺、新装备、新材料发展需求,增设前沿和紧缺学科专业,强化行业特色学科专业建设。在教育部门的引导下,高校必定会着力培养大批的高素质新材料产业人才,来支持新材料产业的发展。 /p p   二、不利因素 /p p   (一)资金紧张 /p p   新材料产品的研发具有投入大、周期长、产业风险放大的特点,没有长时间的持续投入,很难开发出稳定的产品。我国新材料企业涉及金属新材料、复合新材料、化工新材料、信息新材料、纤维新材料等,多为中小型企业,年产值多在1亿元以下,多为初创型或发展期企业,现金流压力较大。 /p p   (二)技术水平低 /p p   新材料行业属于知识密集型、技术密集型、资金密集型新兴产业。新材料行业不靠大规模生产来提高竞争力,而靠独特优良性能取胜,与新技术、新技术密切相关,往往在极端条件制备形成,需要各学科与技术之间的相互交叉。我国新材料企业科技创新能力不强,跟踪仿制多,缺乏拥有自主知识产权的产品及技术,在高端产品领域缺乏竞争力。 /p p   (三)环保压力大 /p p   新材料产业对环境的破坏也比较常见,急需解决。例如稀土材料的开采和冶炼对环境的破坏程度已经严重制约行业的发展。一些为解决环境污染问题而开发的新材料在生产过程中也会对环境有极大的破坏。随着我国环保督查压力的增强,企业生产受到较大影响,而中小企业在环保投入上缺乏资金支持。 /p p   (四)产业结构不够合理 /p p   目前,我国部分新材料领域的产业结构不够合理,新材料产业投资支持的是一些“点”,尚未形成以点带线、以线带面的联动效应。国家更愿意把扶持资金投入到国有企业和科研院所,对民营企业虽然从政策上鼓励参与竞争,但从操作层面上看,民营企业进入国家大型项目壁垒重重。此外,作为发展主体的新材料企业普遍规模较小,产业发展缺乏统筹规划,投资分散,成果转化率低,产业链不够完整。有些行业的新材料企业大多集中在中下游环节,产业配套能力不强。 /p p   三、新材料产业市场规模预测 /p p   中国新材料产业总产值由2012年的1万亿元增加到2016年的2.65万亿元,年均增速27.6%。我们预计,2018年中国新材料产业市场规模将达到3.79万亿元,未来五年(2018-2022)年均复合增长率约为18.72%,2022年中国新材料产业市场规模将达到7.53万亿元。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/67ac9c26-0843-48e6-8097-3cb48762757f.jpg" title=" 2(3448).png" / /p p style=" text-align: center " 图表 2018-2022年中国新材料产业市场规模预测 /p
  • 原油国标实施 这些指标有限值要求
    p   原油是一种矿产品,也可以说是中间产品,但不是终端产品。在成为终端产品(如汽油)之前要经过一系列加工处理,将危害人身安全、污染环境的有害元素(如硫)脱除,用来生产附属产品(如硫磺)。随着我国市场经济的快速发展,原油的需求量会越来越大,原油这种能源对国民经济发展也越来越重要。 /p p   现代原油炼制工艺完全能够在生产出满足安全环保要求的石油产品的同时,排放也能满足国家相关法规要求。因此,确定原油质量参数及限值时,既要考虑反映原油本身品质参数,也要考虑对最终产品质量的影响,还要考虑原油参数是否满足炼油装置及工艺要求。 /p p   在此之前,国内的原油生产和贸易中,对原油的质量控制一般按SY/T7513-1988《出矿原油技术条件》执行,但是该标准由于质量参数较少,具有一定的局限性。进口原油贸易中质量检验一般按SN/T 2999-2011《进口原油质量评价要求》、SN/T 2930-2011《海上油田外输原油检验鉴定规程》,和SN/T 2418.1-2011《进口原油检验规程第1部分:岸罐检验》执行,这三个标准只对原油进行分类,并推荐了检验项目,缺少质量控制指标。 /p p   12月1日,《GB 36170-2018 原油》正式实施,该标准规定了原油基属的确定、技术要求和试验方法、检验规则、包装、贮存和运输及安全,适用于商品原油。 /p p   本标准将密度、硫含量、酸值、水含量、盐含量、蒸气压、机械杂质含量、有机氯含量列在技术要求中,并对有些参数提出了限值要求。 /p p   详细技术要求和试验方法如下: /p p style=" TEXT-ALIGN: center" img title=" 01.jpg" alt=" 01.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/2f6318d1-8cd0-40eb-b690-950339721e31.jpg" / /p p style=" TEXT-ALIGN: center" img title=" 02.jpg" alt=" 02.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/e36ea510-e1a1-47f0-9c0d-039b887514bc.jpg" / /p p   了解更多,请点击 a href=" https://www.instrument.com.cn/list/sort/030.shtml" target=" _blank" span style=" COLOR: rgb(255,0,0)" strong 石油专用分析仪器》》》 /strong /span /a /p
  • Diana700用于原油馏程测试,追求实现原油价值
    由于地质构造,生油条件和年代等不同,每个地区所产的原油性质和组成千差万别,通过原油评价确定原油类型,选择合适的加工方案可以实现原油价值较大化利用。原油的组成十分复杂,是由分子量数十到数千,数目众多的烃类和非烃类组成的复杂混合物,分子量分布宽,分类难度比较高。无论是对原油进行研究还是加工利用,必须采用分馏方法,将原油按其沸点的高低切割成若干部分。原油种类也可按照关键馏分判定,分为石蜡基,中间基和环烷基。原油中从常压蒸馏馏出初馏点到200℃(或180℃)之间的轻馏分为汽油馏分,200℃(或180℃)~350℃之间的中间馏分为柴油馏分,大于350℃称为常压渣油或重油,这里所提到馏分是指生产汽油和柴油的原料,不等同石油产品。原油是多组分的烃类混合物,含有盐类,泥沙和水分,原油中水分以游离水,悬浮水和溶解水形式存在,原油馏程测试过程中最常见的不安全因素是“冲样”和“爆沸”。输“冲 样” 是指原油在加热过程中由于油蒸汽升腾过快,得不到及时冷却,冲出冷凝器或者迫使蒸馏烧瓶塞冲出,导致测试结果无效。“爆 沸” 是指原油中油水相互包裹,形成油包水乳液,由于油、水受热膨胀系数不同,使水滴突然汽化,产生“小爆炸”现象。Diana700优势◾ 低电压加热器,全自动智能加热调节,自动升降加热器;◾ 电子半导体快速温控技术,用于冷凝管以及收集仓的快速精确温度控制;◾ 5合1多功能温度传感器,即是传感器,又能有效密封烧瓶;◾ 高精度体积检测;◾ 智能测试条件监控系统,智能检测所有的必须部件和动作,引导式操作,即使初学者也能轻松掌握。得益于Diana700的智能加热控制和高效的冷却技术,精确的体积检测,可用于原油的馏程评价。测试目的:依据汽油和柴油的馏分点所得出的回收体积评判原油的品质并制定相应的加工方案样品来源:西部某油区两口油井样品前处理:通常采用压力釜脱水,本次测试采用离心脱水法(离心前按一定配比加入破乳剂),具体设置条件如下:样品名称常温状态脱水条件水含量(脱水后),m/m1#样品半固态不流动离心脱水大于0.2%(标准要求)2#样品液态,流动性好大于0.2%(标准要求)测试步骤◾ 依据原油性质采用安东帕自定义方法;◾ 借助水浴使脱水后样品具有流动性,擦干净量筒内壁刻度处,仪器自动读取体积;◾ 读取结束,迅速将样品装入到装有适量沸石的蒸馏烧瓶中,选择方法,根据仪器提示完成相应操作;◾ 量筒放入回收舱,放入导流器,将蒸馏烧瓶安装在加热位;◾ 点击屏幕“开始蒸馏”,观察检测过程是否有爆沸和冲样现象,实验结束,仪器自动保存数据。样品测试结果测试温度回收体积,%1#样品2#样品205℃12.040.8310℃34.075.1结论1#样品和2#样品测试过程中,运行平稳,无“冲样”和“爆沸”现象,蒸馏速率始终保持在4-5mL/min,保证了原油蒸馏过程的安全性;1#样品:205℃回收体积为12.0%,310℃回收体积为34%;2#样品:205℃回收体积为40.8%,310℃回收体积为75.1%; 2#样品汽油和柴油馏分含量高于1#样品,更适合汽柴油加工;Diana700完全满足《GB/T 26984-2011原油馏程的测定》要求,能够适度放宽标准中关于水含量要求的相关条件,可以完美的执行原油馏程测试。
  • JAMA热点 | 肿瘤免疫微环境分析方案助力PD-1/PD-L1疗效预测
    近年来肿瘤免疫治疗取得了一系列突破性成果,成为继肿瘤手术治疗、放化疗及靶向治疗之外的革命性治疗手段,特别是基于PD-1、CTLA-4等免疫检查点抑制剂的治疗方案表现尤为突出。即便如此,肿瘤的免疫治疗仍面临巨大挑战,如疗效不确定性、总体有效率低、耐药抵抗及检测生物标志物缺乏等都制约了对患者的精准治疗。大量的临床案例和科学研究表明肿瘤免疫微环境的深度解析将会是突破免疫治疗障碍的关键所在,独特的Phenoptics分析方案可以完美的解决这一难题。该方案可以实现对肿瘤样本内多达9种生物标志物的原位标记和描绘,同时实现多种生物标志物的联合分析及空间分布分析,从而实现生物学数据的深度挖掘,为肿瘤精准诊疗提供重要依据。 接下来跟随小编一起来看几篇发表在顶尖杂志的相关研究论文,一探究竟吧!1、JAMA Oncology2019年7月18日来自美国约翰霍普金斯大学、耶鲁大学、范德堡大学及西北大学等科研单位联合在肿瘤学权威期刊JAMA Oncology(IF 22.4)发布了一项肿瘤学免疫诊疗重要研究成果(Comparison of Biomarker Modalities for Predicting Response to PD-1/PD-L1 Checkpoint Blockade A Systematic Review and Meta-analysis),系统阐述了利用Phenoptics免疫标志物mIHC/IF多重免疫组化(即Opal多重免疫组化)分析方案对于肿瘤微环境进行深度分析,其结果对比传统检测手段对于疗效预测有着更为突出的优势,可以更好地为肿瘤的诊断和免疫治疗提供可靠依据。文章对比了广泛应用的几种肿瘤学生物标志物检测方案,如传统PD-L1免疫组化检测、TMB肿瘤突变负荷分析、GEP基因表达谱分析及mIHC/IF多重免疫组化检测等方案与临床案例的诊断准确性及免疫治疗应答率进行了深度整合分析。研究人员通过Meta分析统计了2013年-2018年间公开发表及重大学术会议公布的肿瘤免疫治疗及免疫检查点抑制剂56篇研究案例,包含 10种以上不同类型的肿瘤样本总计8135份的完整临床数据(包括黑色素瘤、肺癌、尿路上皮癌、头颈癌、结肠癌、肝细胞肝癌、宫颈癌、胃癌、默克细胞瘤、肾细胞癌等),系统关联分析了肿瘤治疗应答率和生物标志物的表达水平,根据其比值权重依据敏感性和准确度统计出sROC曲线并分析计算曲线下面积AUC数据进行准确度评估用于判断该检测方案的敏感度和特异度,这两项指标与肿瘤的免疫治疗应答率具有高度相关性。数据统计分析显示,mIHC/IF多重组化检测方案的数据结果权重分析条件下AUC=0.79显著优于其他分析方案,PD-L1传统免疫组化IHC检测(AUC=0.65,P2、Nature近来关于肿瘤微环境分析与免疫治疗相关研究成果接连发表,2019年6月26日Nature发表了巴黎大学Immune evasion before tumor invasion in early lung squamous carcinogenesis的研究论文,该文利用Phenoptics组织微环境分析方案对于肺癌病人样本的肿瘤免疫细胞进行了深度的分型分析,阐述了肺鳞状细胞癌发生过程相关免疫细胞空间分布定位的差异性变化,从而揭示肿瘤免疫微环境的重塑有利于对肿瘤的精准治疗。3、Nature Immunology2019年7月8日来自美国希望之城癌症中心的科研人员在Nature Immunology发文同样阐述了Phenoptics肿瘤微环境分析方案在乳腺癌的诊断和治疗方面具有极大的潜力和价值(Connecting blood and intratumoral Treg cell activity in predicting future relapse in breast cancer),可以有效的对乳腺癌病人治疗后的复发风险进行预测,从而为患者的精准诊疗提供重要的数据支持。4、Nature Communications2018年度诺贝尔奖生理学或医学奖得主James Allison教授早在2017年领导的一项研究就应用Phenoptics多重免疫组化方案深度分析了胰腺癌病例肿瘤组织微环境与临床预后信息具有极高的相关性,该研究成果发表在Nature子刊 Nature Communications (Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer),而相关的研究方案将为肿瘤的免疫治疗提供新的诊疗依据从而更好的给肿瘤患者制定有效的治疗方案。总结:独特的Phenoptics多光谱组织微环境景观分析方案融合了Opal多重免疫组化染色、Vectra多光谱成像和inForm智能组织定量分析技术,可以完美实现传统肿瘤检测方案难以解决的技术难题,从而更好的实现对于肿瘤患者的精准诊断和治疗。网络讲座讲座时间:2019年8月27日12:00 PM(北京时间)讲座题目:Comprehensive Meta-analysis of Biomarker Technologies for Predictive Response of PD-1/PD-L1 Checkpoint Therapies主讲人:霍普金斯大学 Steve LuAkoya Biosciences Cliff Hoyt内容简介:详细分享Phenoptics分析方案的特点和技术优势,包括多种生物标记技术预测PD-1/PD-L1免疫治疗的预测指标分析,免疫细胞亚群定量蛋白检测的重要性以及疾病状态下细胞空间分布差异比较与应用,用于稳定且高通量临床研究的多重免疫荧光方法的最新进展等内容。会议地址:https://www.labroots.com/ms/webinar/akoya-biosciences-series-comprehensive-metaanalysis-biomarker-technologies-predictive-response-pd-1参考文献1. Wang L, Simons D L, Lu X, et al. Connecting blood and intratumoral T reg cell activity in predicting future relapse in breast cancer[J]. Nature immunology, 2019: 1.2. Lu S, Stein J E, Rimm D L, et al. Comparison of Biomarker Modalities for Predicting Response to PD-1/PD-L1 Checkpoint Blockade: A Systematic Review and Meta-analysis[J]. JAMA oncology, 2019.3. Carstens J L, De Sampaio P C, Yang D, et al. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer[J]. Nature communications, 2017, 8: 15095.4. Mascaux C, Angelova M, Vasaturo A, et al. Immune evasion before tumour invasion in early lung squamous carcinogenesis[J]. Nature, 2019: 1.5. Soo R A, Lim J S Y, AsuncionB R, et al. Determinants of variability of five programmed death ligand-1 immunohistochemistry assays in non-small cell lung cancer samples[J]. Oncotarget, 2018, 9(6): 6841.关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 安捷伦与密西西比州立大学合作检测墨西哥湾海产品中的原油污染
    安捷伦科技与密西西比州立大学合作检测墨西哥湾海产品中的原油污染 2010 年 7 月 22 日,北京 &mdash 安捷伦科技公司(NYSE:A)与密西西比州立大学(MSU)宣布,MSU 国家化学实验室的科学家已开发出一种检测墨西哥湾的海产品是否受原油污染的新分析方法。目前该方法已提交给美国食品和药品管理局(FDA)进行审查。 近日,安捷伦为密西西比州立大学安装了测定多环芳香烃(PAH,一种影响海产品的主要原油污染物)含量的 7000 系列 GC/MS/MS PAH 分析仪,由此,新方法的开发取得了突飞猛进的进展。安捷伦的工程师在七月的第一周完成了新仪器的安装工作。 &ldquo 在检测过程中,重现性和精密度是极为重要的,&rdquo 密西西比州立大学副教授兼 MSU 国家化学试验室研究部以及工业与农业服务部主任 Kang Xia 说道,&ldquo 但目前实验室所用的仪器已经不能再提供可靠的数据了。这台分析仪已经用了十多年,由于长年累月的过度使用,已经多次出现机械故障和软件失效。而有了 Agilent 7000 系列 GC/MS/MS PAH 分析仪,这些不利状况将不复存在。&rdquo 此外,使用 Agilent GC/MS/MS PAH 分析仪还大大缩短了从检测样品到向监管机构提供结果的周期时间。即便是分析 20 个样品,从运行测试到获得结果,仅仅只要两天半的时间。而目前美国国家海洋和大气管理局(NOAA)所使用的方法却要花上五六天的时间,可见使用本方法可在时间成本大幅节省。 &ldquo 对于担当着监测墨西哥湾海产品安全性重任的密西西比州以及相关研究机构来说,拥有目前最先进的技术至关重要,&rdquo 安捷伦化学分析部的总经理 Mike McMullen 说道,&ldquo 一直以来,安捷伦不断将尖端技术推向石化、环境和食品安全测试领域,而这恰恰是应对墨西哥湾原油污染的所有重要领域。漏油事故发生后的短短几周,我们的科学家已经开发出全套解决方案,能够立刻提高生产效率和分析性能。&rdquo 国家化学实验室预计在七月底将最新的检测方法提交到 FDA 进行审查。相关研究结果也将发表到同行评审的出版物。 &ldquo 现在,密西西比州的研究、服务和扩展正在发挥重要作用,而在该地区从原油泄漏导致的环境和经济影响中逐渐恢复过来的这段漫长时期,我们会继续提供领先的服务,&rdquo 政府赠地大学研究与经济开发部的副教授 David Shaw 说道。 密西西比州立大学简介 密西西比州立大学是一所政府赠地大学,也是该州科研大学中的佼佼者。在最新发布的报告中,该大学获得超过 2.1 亿美元的研究经费,在所有公立大学中排名第 58 位,并且在工程学方面排名第 34 位,在农业科学方面位列第 5 名。更多信息,请访问www.msstate.edu。 安捷伦科技公司简介 安捷伦科技(纽约证交所:A)是全球领先的测量公司,是化学分析、生命科学、电子和通讯领域的技术领导者,公司的 19,000 名员工在 110 多个国家为客户服务。在 2009 财政年度,安捷伦的业务净收入为45 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com。
  • 质检总局发布:原油中总汞含量的测定 塞曼校正冷原子吸收光谱法SN/T 4429.2-2016
    中华人民共和国国家质量监督检验检疫总局公告 国质检认[2016]131号 现将《原油中总汞含量的测定 塞曼校正冷原子吸收光谱法》等110项出入境检验检疫行业标准予以发布。生效日期为2016年10月1日。该标准采用LUMEX高频塞曼测汞仪分析原油中的汞含量。塞曼校正技术具有高灵敏、高选择性以及抗干扰性强等特点,能有效去除芳香族的伪数据等问题。标准编号:SN/T 4429.2-2016标准名称:原油中总汞含量的测定 塞曼校正冷原子吸收光谱法英文名称:Determination of total mercury in crude oil一Zeeman correction一 Cold atomic absorption spectrometry发布部门:国家质量监督检验检疫总局起草单位:中华人民共和国宁波出入境检验检疫局标准状态:现行发布日期:2016-03-09实施日期:2016-10-01标准格式:PDF标准简介:SN/T 4429的本部分规定了原油中总汞含量的塞曼校正冷原子吸收光谱测定方法。本部分适用于原油中总汞含量的测定,汞的最低测定限为2μg/kg。(来源:LUMEX公司)
  • 原油水含量自动测定标准实施 填补国家空白
    记者在锦州市经信委获悉,由锦州电子技术研究所研究起草的原油水含量自动测定标准填补国家标准空白。   《GB/T25104-2010原油水含量的自动测定射频法》国家标准于2010年12月1日正式实施。这一标准由中国机械工业联合会提出,由全国工业过程测量和控制标准化技术委员会管理,由锦州电子技术研究所研究起草国家标准,促进含水测量技术规范化、标准化。这一标准填补了原油水含量自动测定方面国家标准的空白,充分证明了锦州电子技术研究所在原油水含量自动测定方面的技术水平与实力,同时也表明锦研制造的射频含水分析仪及自动测定系统软件处于国内技术领先地位。
  • 原油检测标准汇总及常用仪器盘点
    p  原油,一般指未经加工处理的石油,是一种黑褐色并带有绿色荧光,具有特殊气味的粘稠性油状液体,是烷烃、环烷烃、 芳香烃和烯烃等多种液态烃的混合物。原油的主要成分是碳和氢两种元素 还有少量的硫、氧、氮和微量的磷、砷、钾、钠、钙、镁、镍、铁、钒等元素。原油经炼制加工可以获得各种燃料油、溶剂油、润滑油、润滑脂、石蜡、沥青以及液化气、芳烃等产品,为国民经济各部门提供燃料、原料和化工产品。原油按组成可分为石蜡基原油、环烷基原油和中间基原油三类 按硫含量分,可分为超低硫原油、低硫原油、含硫原油和高硫原油四类 按比重分类可分为轻质原油、中质原油、重质原油以三类。 /p p   原油的性质包含物理性质和化学性质两个方面。物理性质包括颜色、密度、粘度、凝固点、溶解性、发热量、荧光性、旋光性等 化学性质包括化学组成、组分组成和杂质含量等。 /p p style=" text-align: center " strong 原油现行标准 /strong /p p strong /strong /p table border=" 0" cellpadding=" 0" cellspacing=" 0" style=" " align=" center" colgroup col width=" 48" style=" width:48px" / col width=" 168" style=" width:168px" / col width=" 72" style=" width:72px" / /colgroup tbody tr height=" 18" style=" height:18px" class=" firstRow" td height=" 18" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 序号 /td td width=" 168" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 标准号 /td td width=" 242" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 标准名称 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 1 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 25104-2019 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油水含量的自动测定 射频法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 2 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 37160-2019 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 重质馏分油、渣油及原油中痕量金属元素的测定 电感耦合等离子体发射光谱法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 3 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 26985-2018 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油倾点的测定 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 4 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB 36170-2018 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 5 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 17280-2017 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油蒸馏标准试验方法 15-理论塔板蒸馏柱 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 6 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 34430.3-2017 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 船舶与海上技术 保护涂层和检查方法 第3部分:原油船货油舱 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 7 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 33976-2017 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油船货油舱用耐腐蚀热轧型钢 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 8 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 18606-2017 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 气相色谱-质谱法测定沉积物和原油中生物标志物 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 9 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 18610.2-2016 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油 残炭的测定 第2部分:微量法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 10 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 18611-2015 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油简易蒸馏试验方法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 11 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 31944-2015 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油船货油舱用耐腐蚀钢板 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 12 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 18610.1-2015 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油 残炭的测定 第1部分:康氏法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 13 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 31820-2015 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油油船货油舱漆 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 14 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 17674-2012 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油中氮含量的测定 舟进样化学发光法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 15 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 18608-2012 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油和渣油中镍、钒、铁、钠含量的测定 火焰原子吸收光谱法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 16 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 6532-2012 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油中盐含量的测定 电位滴定法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 17 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 6533-2012 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油中水和沉淀物的测定 离心法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 18 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 28910-2012 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油流变性测定方法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 19 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 11059-2011 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油蒸气压的测定 膨胀法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 20 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 18609-2011 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油酸值的测定 电位滴定法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 21 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 18612-2011 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油有机氯含量的测定 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 22 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 26982-2011 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油蜡含量的测定 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 23 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 26983-2011 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油硫化氢、甲基硫醇和乙基硫醇的测定 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 24 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 26984-2011 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油馏程的测定 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 25 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 26986-2011 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油水含量测定 卡尔.费休电位滴定法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 26 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 13377-2010 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油和液体或固体石油产品 密度或相对密度的测定 毛细管塞比重瓶和带刻度双毛细管比重瓶法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 27 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 18340.1-2010 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 地质样品有机地球化学分析方法 第1部分:轻质原油分析 气相色谱法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 28 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 18340.5-2010 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 地质样品有机地球化学分析方法 第5部分:岩石提取物和原油中饱和烃分析 气相色谱法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 29 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 17606-2009 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油中硫含量的测定 能量色散X-射线荧光光谱法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 30 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 11146-2009 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油水含量测定 卡尔?费休库仑滴定法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 31 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 21450-2008 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油和石油产品 密度在638kg/m3到1074 kg/m3范围内的烃压缩系数 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 32 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 20658-2006 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油和液体石油产品 粘稠烃的体积计量 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 33 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 8929-2006 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油水含量的测定 蒸馏法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 34 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 1884-2000 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油和液体石油产品密度实验室测定法(密度计法) /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 35 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 11715-1989 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油洗舱机 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 36 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 9110-1988 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油立式金属罐计量 油量计量方法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span 37 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " span GB/T 6531-1986 /span /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " width=" 178" 原油和燃料油中沉淀物测定法(抽提法) /td /tr /tbody /table p   原油常用的检测项目包含酸值、残炭酸值、残炭、粘度、馏程、卤素、倾点、蒸气压、水含量、硫含量、氮含量、析蜡点、有机氯、密度、蜡含量、沉淀物、盐含量、比热容、粘温曲线、密度与相对密度、元素含量等。 /p p style=" text-align: center " strong 常见原油检测项目 /strong strong /strong /p table border=" 0" cellpadding=" 0" cellspacing=" 0" width=" 564" style=" " align=" center" colgroup col width=" 93" style=" width:93px" / col width=" 470" style=" width:471px" / /colgroup tbody tr height=" 18" style=" height:18px" class=" firstRow" td height=" 18" width=" 93" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 项目内容 /td td width=" 471" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 检测标准 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 酸值 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" GB/T 18609 原油酸值的测定 电位滴定法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 残炭& nbsp /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" GB/T 18610 原油残炭的测定 康氏法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 粘度 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SN/T 0520原油粘度测定 旋转粘度计平衡法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 馏程 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" GB/T 26984 原油馏程的测定 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 卤素 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SN/T 3185 原油中卤素含量的测定 氧弹燃烧-离子色谱法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 倾点 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" GB/T 26985 原油倾点的测定 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" br/ /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SY/T 7516 改性原油倾点的测定 熔化法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" br/ /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SY/T 7551 原油倾点测定法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 蒸气压 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" GB/T 11059 原油蒸气压的测定 膨胀法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 水含量 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" GB/T 11146 原油水含量测定 卡尔· 费休库仑滴定法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" br/ /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" GB/T 26986 原油水含量测定 卡尔· 费休电位滴定法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" br/ /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" GB/T 8929 原油水含量的测定 蒸馏法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" br/ /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SY/T 5402 原油含水量的测定 电脱法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" br/ /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SY/T 7552 原油 水的测定 卡尔· 费休电位滴定法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 硫含量 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" GB/T 17606 原油中硫含量的测定 能量色散X-射线荧光光谱法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 氮含量 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" GB/T 17674 原油及产品中氮含量的测定 化学发光法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 析蜡点 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SY/T 0521原油析蜡点测定 显微观测法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" br/ /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SY/T 0522 原油析蜡点测定 旋转粘度计法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 有机氯 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" GB/T 18612 原油有机氯含量的测定 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 密度& nbsp /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" GB/T 1884 原油和液体石油产品密度实验室测定法(密度计) /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 蜡含量 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" GB/T 2698 原油蜡含量的测定 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" br/ /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SY/T 0537 原油中蜡含量的测定 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 沉淀物 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" GB/T 6531 原油和燃料油中沉淀物测定法(抽提法) /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 盐含量 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" GB/T 6532 原油及其产品的盐含量测定法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" br/ /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SN/T 2782 原油中盐含量的测定 电测法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" br/ /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SN/T 0536原油盐含量的测定 电量法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 比热容 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SY/T 7517 原油比热容的测定方法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 粘温曲线 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SY/T 7549 原油粘温曲线的确定 旋转粘度计法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 密度、相对密度 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" GB/T 13377 原油和液体或固体石油产品 密度或相对密度的测定& nbsp /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 简易蒸馏试验 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" & nbsp GB/T 18611 原油简易蒸馏试验方法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 析蜡热特性参数 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SY/T 0545 原油析蜡热特性参数的测定 差示扫描量热法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 正辛烷及以前烃组分 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SY/T 7504 原油中正辛烷及以前烃组分分析 气相色谱法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 硫化氢、甲基硫醇、乙基硫醇 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" GB/T 26983 原油硫化氢、甲基硫醇和乙基硫醇的测定 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 蜡、胶质、沥青质 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SY/T 7550 原油中蜡、胶质、沥青质含量测定法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 屈服值 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SY/T 7547原油屈服值测定 旋转粘度计法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 水和沉淀物 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" GB/T 6533 原油中水和沉淀物测定法(离心法) /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 铁、镍、钠、钒& nbsp /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" GB/T 18608原油中铁、镍、钠、钒含量的测定原子吸收光谱法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 钠、镁、钙、铁、钒、镍、铜 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SN/T 3186原油中钠、镁、钙、铁、钒、镍、铜元素的测定 微波灰化-电感耦合等离子体发射光谱法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 钠、镁、铝、硅、钙、钒、铁、镍、铜、铅、砷 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SN/T 3187原油钠、镁、铝、硅、钙、钒、铁、镍、铜、铅、砷的测定 波长色散X射线荧光光谱法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 铅、汞、砷 & nbsp /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SN/T 3188原油中铅、汞、砷元素的测定 原子荧光光谱法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 钠、镁、铁、钒、镍、铜、铅 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SN/T 3189原油中钠、镁、铁、钒、镍、铜、铅元素的测定 有机进样-电感耦合等离子体发射光谱法 /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 铝、硅、钒、镍、铁、钠、钙、锌、磷 /td td style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" SN/T 3190原油及残渣燃料油中铝、硅、钒、镍、铁、钠、钙、锌、磷的测定 灰化碱熔-电感耦合等离子体发射光谱法 /td /tr /tbody /table p strong /strong br/ /p p   原油检测用到的仪器包括粘度计、差式扫描量热仪、离子色谱仪、X荧光光谱仪、气相色谱仪、电感耦合等离子体发射光谱仪、原子荧光光谱仪、原子吸收光谱仪等。 /p p style=" text-align: center " strong 原油检测仪器   /strong /p table border=" 0" cellpadding=" 0" cellspacing=" 0" width=" 421" style=" " align=" center" colgroup col width=" 421" style=" width:421px" / /colgroup tbody tr height=" 18" style=" height:18px" class=" firstRow" td height=" 18" width=" 421" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 原油检测仪器(点击可查看仪器专场) /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/1106.html" target=" _self" 酸碱浓度计 /a /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/87.html" target=" _self" 旋转粘度计 /a /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/24.html" target=" _self" 离子色谱仪 /a /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/363.html" target=" _self" 石油低温性能测试仪(倾点/浊点/冰点/冷滤点/凝固点) /a /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/496.html" target=" _self" 红外水份测定仪、卤素灯水份测定仪 /a /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/75.html" target=" _self" 能量色散型X荧光光谱仪 /a /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/177.html" target=" _self" 密度计 /a /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/1009.html" target=" _self" 盐含量测定仪 /a /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/63.html" target=" _self" 差示扫描量热仪 /a /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/1.html" target=" _self" 气相色谱仪 /a /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/37.html" target=" _self" 原子吸收光谱 /a /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/39.html" target=" _self" 电感耦合等离子体发射光谱仪 /a /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/1080.html" target=" _self" 波长色散型X荧光光谱仪 /a /td /tr tr height=" 18" style=" height:18px" td height=" 18" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" a href=" https://www.instrument.com.cn/zc/36.html" target=" _self" 原子荧光光谱仪 /a /td /tr /tbody /table p br/ /p
  • Turner的水中油荧光仪系列正在监测墨西哥湾原油泄漏
    目前,Turner Designs公司的多款水中油荧光仪都被用于监测墨西哥湾原油泄漏。其中包括:C3水下荧光仪、Cyclops-7水下原油传感器及DataBank手持设备、Trilogy实验室荧光仪等。这些产品均可以在现场快速部署,监测石油泄漏。为相关部门提供重要信息。 美国CBS5新闻中也详细报道了此事件。详情请看:http://cbs5.com/environment/oil.spill.tracking.2.1717862.html 更多详细信息请参考http://www.turnerdesigns.com/ Fluorometers Specifically Configured to Detect Crude Oil for Tracking the Gulf Oil Spill Turner Designs is providing in situ and Laboratory Fluorometers specifically configured to detect Crude Oil for tracking the Gulf Oil spill. Equipment being deployed includes the C3 Submersible Fluorometer, as specified in the USCG SMART protocol the Cyclops-7 Submersible Crude Oil sensor with the DataBank, our handheld datalogger and the Trilogy Laboratory Fluorometer for discrete sampling on shipboard. With our standard leadtime of 1-2 weeks, Turner Designs&rsquo fluorometers can be deployed quickly to start providing valuable spill tracking information.
  • 我国首个近红外原油快速评价系统运行
    2月22日,我国首个近红外原油快速评价系统在中国石油大连石化正式运行。   大连石化原油评价实验室是中国石油三大原油评价重点实验室之一。这个实验室包括三个子平台:常规原油评价实验室子平台、原油快速评价系统子平台和全球原油数据库系统子平台。   大连实验室投用后,除完成大连石化的原油评价外,还要完成中国油集团每年计划的20个新增原油品种的全面评价和约30个已有原油品种的全面更新评价任务,建成国际先进水平并拥有完全自主知识产权的全球原油数据库,并达到国际主流原油数据库的数据更新速度 建立和扩充中国石油自己的原油光谱数据库,实现原油快速评价,为原油性质的实时监控、运输、储存、加工提供可靠的技术支持。
  • 原油催化裂解技术实现全球首次工业化应用
    近日,中国石化所属石油化工科学研究院自主研发的原油催化裂解技术在扬州石化成功进行工业试验,直接将原油转化为轻质烯烃和芳烃等化学品。这是原油催化裂解技术的全球首次工业化应用,标志着我国原油直接制化学品技术取得突破性进展,成为世界上原油催化裂解技术路线领跑者。原油催化裂解技术,是原油直接制化学品技术路线之一。该技术可以“跳过”传统炼油的常减压蒸馏和原料精制等过程,直接将原油转化为轻质烯烃和芳烃,大幅增加乙烯、丙烯和轻芳烃等高价值化学品产量,同时显著降低综合能耗和碳排放。试验结果表明,低碳烯烃和轻芳烃总产率提升2倍,高达50%以上,即采用该技术每加工100万吨原油可产出高价值化学品约50万吨,经济价值巨大。该技术的成功应用对化解我国炼油产能过剩、化学品供应不足矛盾具有重要意义。该院院长李明丰表示,这一技术为原油制化学品开辟了一条新的途径,预计化学品收率最高可达70%,这意味着每加工100万吨原油可产出高价值化学品约70万吨。未来这一技术将应用于新建化工型炼厂或炼厂现有催化裂化装置的升级改造,为保障我国化学品供应链安全、缓解行业供需矛盾、助力企业转型升级作出更大贡献。
  • 红外成像搭载底部原油装置在西北油田首次运用
    近日,由西北油田完井测试管理中心完成的红外成像搭载底部原油装置在顺北4-9H井首次运用,顺北4-9H井是顺北4条带一口重点开发井,由于该井生产原油为密度每立方厘米0.77毫克的轻质油,具有高含硫化氢、易挥发的特征,在试采装车过程中,不同的原油罐车装油口的大小与鹤管装油装置存在一定间隙,轻质原油挥发伴随硫化氢逸散,给现场施工带来一定安全隐患。该装置在实现全密闭打油的同时,人员不上罐观察,就可以通过红外热成像监测到液面的位置,既不影响原油装车,又保证了人员的安全。据悉,配套装置将在5月底在西北油田各完井测试现场全部配置到位。图为:在顺北4-9H井施工现场,施工人员正对红外成像搭载底部原油装车进行巡检图为:施工人员在顺北4-9H井施工现场,正在安装底部原油装车管线。
  • 2021年原油资源高效加工利用技术交流会会议通知
    各有关单位:为了推进原油评价和原油高效加工新技术发展,经研究,兹定于2021年9月16日至17日在北京召开“原油资源高效加工利用技术交流会”。会议将邀请国内石油公司、研究院所、炼化企业的有关专家学者与会,重点就原油资源现状、原油加工、原油优化选择利用、分子水平原油评价、智能炼化以及炼化转型等方面展开深度交流,助力炼化企业实现高质量转型发展。本次会议将作为“2021年石油炼制科技大会”的分会场与其同期召开。现将会议有关事项通知如下。一、会议时间及地点 时间:2021年9月16日-17日,16日全天报到。会期1天。地点:中国石油科技交流中心(附件1)北京市昌平区沙河镇西沙屯桥西中国石油科技园会服电话:010-80166666,010-53399077二、会议主题高效利用原油资源,助力企业转型发展。在碳减排、碳中和形势下,实现原油资源的高效加工利用,助力原油资源从燃料型向新材料原料型转型。三、会议组织单位1. 主办单位中国石油化工信息学会石油炼制分会中国石油化工信息学会智能化分会2. 承办单位中国石油天然气股份有限公司石油化工研究院中国石油天然气集团有限公司原油评价重点实验室3. 协办单位仪器信息网四、会议学术委员会主 任:何盛宝副主任:李文乐 田松柏委 员:(按姓氏汉语拼音顺序)曹 青 崔 鹏 代振宇 范文军 龚俊波葛少辉 黄德先 何 京 何 沛 侯经纬华伦松 鞠林清 李凤岭 路 鑫 史 权王艳斌 吴建国 肖占敏 薛慧峰 姚成斌袁洪福 杨 超 张 彦 张汉沛 周 锋五、会议日程安排会议将特邀国内相关领域专家作主旨报告,同时从投稿论文中择优进行大会报告。9月16日全天报到9月17日上午1、 开幕式2、 专家报告下午1、 主题报告2、 优秀论文颁奖六、其他1、本会场不收取会议费,食宿统一安排,费用自理。(科技交流中心双人标间550元/天,单人大床房500元/天,单人标准间400元/天)。2、参加本会场会议的代表请于9月16日24:00前报到,报到地点为中国石油科技交流中心A座一楼大厅。3、同时参加石油炼制科技大会和其他分会场的代表需另行注册。4、本次会议不安排接站,请自行前往会场。七、会议联系人赫丽娜,15116987016,helina010@petrochina.com.cn修 远,18511795858,xiuyuan@petrochina.com.cn八、注意事项参会代表请于2021年8月30日前将会议回执(附件2)发送至会议联系人邮箱。报告人请务必参会,以免影响会议进程,如确不能参会,请委派代表参会。附件1 中国石油科技交流中心方位图附件2 参会回执表 中国石油化工信息学会 二〇二一年七月三十日附件1 中国石油科技交流中心方位图附件1 中国石油科技交流中心方位图附件2:参会回执表姓名性别民族身份证号职称工作单位职务联系方式通讯地址邮编办公电话手机电子邮箱住宿要求入住时间退房时间□ 双人标准间550元/天□ 单人大床房500元/天□ 单人标准间400元/天□ 自行安排住宿备注请最晚于8月30日之前以电子邮件形式发送至会议联系人邮箱。
  • GB/T 17623气相色谱分析仪--适用分析充油电器设备
    根据中投产业研究院发布的《2021-2025年中国石油化工行业投资分析及前景预测报告》,我国石化化工行业的发展形势,具体主要有以下几点:一是市场需求总体继续扩大,但增速下降。一方面,随着城镇化和基础设施建设的不断深入,基本原材料的需求还将保持一定增速,但增速会有所降低,人们日常生活用品也不会有太大的提高;另一方面,人们的消费升级以及生活方式和消费模式的改变,将提高或改变市场需求,促进与经济发展相配套的石化化工产品升级换代。因此,预计“十四五”期间,传统石化化工产品,如成品油、大宗化工产品等,在很长的一段时间内消费保持低速增长态势,甚至有些个别产品还会有略微下降;而在与智能制造、电子通信、生活消费品和医药保健等有关的化工产品,主要是电子化学品、纺织化学品、化妆品原材料、快餐用品、快递服务用品、个人防护和具备特殊功能的化工新材料等,都将会有很大增幅。二是低油价可能成为新常态。油价是世界经济的温度计。世界经济下行,将影响经济需求,进而导致国际原油及其他大宗商品价格走低。加上页岩油(岩页油)、页岩气(岩页气)技术的成熟,非常规油气资源的大规模开发利用,国际原油市场供求关系正在发生转折性变化,国际石油供应总体保持宽松,油价将极大概率继续低位运行。综合国际政治经济多因素分析,低油价可能成为今后一个较长时期内的新常态。在油价低位的背景下,煤价也将下移,价格中枢回落。低油价、低煤价将向石化产业链下游传导,整个产业链的价格体系都将重构。三是安全生产、绿色发展的要求日益提高。石化化工生产“易燃、易爆、有毒、有害”特点突出,尤其是近几年,化工行业事故频发,特大恶性事故连续不断,给人们生命财产造成重大损失,在社会各界造成极其恶劣的影响。随着我国城镇化的快速推进,原来远离城市的石化化工企业已逐渐被新崛起的城镇包围,带来了许多隐患。“十四五”期间,社会各界将更加紧盯各地石化化工企业,石化化工企业进入化工园区,远离城镇布局将成为必然要求,安全生产也将是企业必须加强的一门必修课。气相色谱仪是利用色谱分离技术和检测技术,对多组分的复杂混合物进行定性和定量分析的仪器。通常可用于分析土壤中热稳定且沸点不超过500°C的有机物,如挥发性有机物、有机氯、有机磷、多环芳烃、酞酸酯等。气相色谱-质谱联用仪是一种质谱仪,应用于医学、物理学,气相色谱的流动相为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。A1220气相色谱分析仪是依据GB/T 17623、DL/T 703标准规定的方法设计制造的,适用于分析充油电器设备中(包括变压器、电抗器、电流互感器、电压互感器、充电套管等)溶解于绝缘油中的氢、一氧化碳、甲烷、二氧化碳、乙烯、乙烷、乙炔等气体含量的分析。主要技术特点与参数:1、实现计算机实时控制和数据处理:仪器自带数字接口,通过一根通讯线在计算机上实现实时数据信号采集、数据处理及检测结果。仪器电脑连接互联网,可通过远程计算机与仪器连接,实现远程数据采集和管理。提高了装置的自由度,促进实验室的有效应用。通过人性化软件操作界面,极大方便用户设定包括各路温度、程升、检测器、桥流等参数;直观地操作包括FID点火(先已改成全自动的,无需人工操作),开关桥流,开启关闭控温,和各个时间事件等功能;2、高精度,稳定可靠的温度控制系统:主控电路采用了功能先进的微处理器、大容量存储器的采用,使数据的保存更加可靠;同时集测量、控制、电路板的一体化设计提高了仪器的抗干扰性和可靠性;采用微处理器的温度控制电路,各加热区被控对象的温度精度达到0.1度; 柱箱具有超温保护装置。任一路温度超过设定极艰,仪器均会停止加热,并在显示器上报告故障部位;3、简洁明了的人机对话界面,操作简便,易学易用仪器采用大屏幕LCD液晶汉字显示,显示直观、操作方便、更适合中国国情;自我诊断功能,能显示故障部位;数据断电保护功能,仪器所设定的运行数据在断电后能长期保存;具有秒表、计数功能4、双重稳定的高精度气路控制系统。载气气路采用先稳压后稳流的双重稳定的气路系统流量调节阀采用旋钮调节,直观、可靠性好。配有电子压力显示系统,精度比压力表更高。5、柱室采用跟踪升温方式。6、仪器检测低含量的烃类和高含量的CO、CO2可分开检测,避免相互干扰。7、氢火焰离子化检测器(FID):圆筒型收集极结构设计,金属喷嘴,响应极高检测限:≤2×10-12g/s(正十六烷/异辛烷)基线噪声:≤2×10-13A基线漂移:≤2×10-12A/30min线性:≥106可调式全自动点火,稳定时间:30分钟8、热导检测器(TCD):采用半扩散式结构电源采用恒流控制方式灵敏度:≥5000mVml/mg。基线噪声:≤10μV。基线漂移:≤100μV/30min。线 性:≧1059、大屏幕LCD液晶显示:清晰显示各路温度的设定值,实测值和保护值实时显示仪器状态触摸式键盘,菜单式操作,全自动点火10、温控指标:温度范围:室温上5℃~420℃?精度±0.1℃11、其他参数:电源:220V±22V,50Hz,功率:≥2kW重量:55KG外形尺寸:60cm×50cm×50cm
  • 原油蒸气压测试新时代--- GB/T11059-2011
    2018年12月, 由中石化,中石油,中海油,海关等相关单位联合起草的GB36170原油产品规范正式实施。在GB36170中规定了原油的技术要求和试验方法。而交接温度下蒸气压试验方法规定为GB/T11059-2011原油蒸气压的测定(膨胀法)。 GB/T11059-2011标准修改采用了ASTM D6377 原油蒸气压的测定 膨胀法(英文版)。而ASTM D6377是由奥地利格拉布纳仪器公司开发与编写。并在1999年,Werner Grabner博士也因开发与编写两种蒸气压测定标准ASTM D6377(原油),ASTM D6378和一种闪点测定标准ASTM D6450得到了ASTM(美国试验材料协会)颁发的 “杰出贡献奖” 。在2001年,奥地利格拉布纳仪器公司编写了ASTM D6897用于测试液化石油气 (LPG)。 作为奥地利格拉布纳仪器公司的全自动微量蒸气压测定仪,MINIVAP VP VISION完全符合ASTM D6377(GB/T 11059-2011)原油蒸气压测定标准。 并且通过30多年用户使用体验和口口相传,使奥地利格拉布纳MINIVAP成为行业用户的信赖品牌和指定选择。 全面通用 标准内置1符合标准......ASTM D6378(SH/T0769, SN/T2932),ASTM D5191(SH/T0794),ASTM D6377(GB/T11059-2011) (原油)ASTM D6897(液化石油气)ASTM D6299(SQC), D5188(T(V/L)), ASTM D5482EN13016-1/2, IP394,409,481GOST52340, JIS K2258-22关联标准......ASTM D323(GB/T8017, GB/T21616)ASTM D2879, D4953, D5190, D1267 LPGJIS K2258-13符合燃油产品规范......ASTM D910 航空汽油ASTM D1655 航空涡轮燃料ASTM D1835 液化石油气ASTM D6227 无铅航空汽油ASTM D4814汽车用火花塞点火发动机燃料EN 228汽车燃料-无铅汽油GB 36170-2018 原油GB17930-2016车用汽油GB18351-2017车用乙醇汽油(E10)GB 22030-2017车用乙醇汽油调合组分油GB/T 23799-2009 车用甲醇汽油(M85)GB 1787-2018 航空活塞式发动机燃料本期产品介绍MINIVAP VP VISION* 每台仪器都具有最宽的压力范围0-2000kPa* 最宽的温度范围0-120℃,可扩展到-100℃到300℃* 内置振荡器,适于原油及快速平衡测试,避免测试过程中样品不均匀*专利活塞式压力浮筒,适于原油和液化石油气测试,防止轻组分挥发* 专属的原油测试包,作为原油测试的整体解决方案* 无需样品冷却和空气饱和,无需真空泵* 样品量仅需1ml。测试仅需5min。全自动,快速操作* 专利进样阀技术,能够使测试样品间的交叉污染达到最小化* 专利中枢润滑系统润滑相关部件,减少仪器维护* 10英寸全彩工业级触摸屏,实时动画显示,简洁明了* 便携式设计适用于实验室和现场检测 高度通用 应用广泛 MINIVAP VP VISION是一款最全面的蒸气压测定仪。可以对汽油,原油,液化石油气,航空燃油,化学溶剂等石化产品的蒸气压进行快速准确测定。主要应用行业为汽车行业,质检,商检,学校,研究机构,权威第三方检测机构,中石化,中石油,中海油,中化,地炼等石化相关行业的实验室和现场操作。测试速度快,样品量少,精密度高,准确性高,全自动化操作,无需样品冷却和空气过饱和操作等特点,成为用户非常信赖的蒸气压测定仪器。
  • 中石油建三大原油评价重点实验室
    中石油目前正在建设三大原油评价重点实验室。其中,大连石化原油评价实验室已完成主体建设。实验室投用后,除完成本公司的原油评价外,每年还将完成中石油20个新增原油品种的全面评价和30个已有原油品种的全面更新评价任务。
  • 国产大口径原油管道刮板流量计研制成功
    记者7月5日从国家管网集团获悉,该集团东部原油储运公司承担的国产大口径原油管道刮板流量计研制与应用科技项目经过1万余小时的工业试验,日前通过有关部门验收,正式投入使用。这标志着又一油气管道关键设备实现国产化,对有效降低管道建设和运营成本,更好保障国家能源安全具有重要意义。国产大口径原油管道刮板流量计。国家管网集团供图“当前,国家管网集团用于原油贸易交接计量的大口径进口流量计服役时间较长,即将面临着大批量更新。新建的原油管道重点工程对大口径原油管道刮板流量计也有着大量的采购需求。”国家管网集团东部原油储运公司生产运行部副经理张光表示,出于降低建设和运营成本等原因,自主研发国产大口径原油管道刮板流量计势在必行。2021年7月,国家管网集团启动原油管道刮板流量计研制与应用科技项目研究。项目主要研究内容包括技术规格书的编制、图纸设计和样机制造、样机功能和性能测试、工业性试验、国产化鉴定等。国家管网集团东部原油储运公司科技研发中心副经理曹旦夫介绍,通过科研攻关,项目组解决了刮板流量计凸轮设计、刮板选材、机械和电子双表头设计等关键技术难题,使自主研制的刮板流量计提高了准确度和重复性、提升了量程比,实现了双表头和双路脉冲输出功能,消除了流量计倒转或振动造成的发讯误差,满足精准计量需求。国家管网集团工作人员正在操作国产大口径原油管道刮板流量计。国家管网集团供图“该项目研发过程中,共生产制造了4台刮板流量计样机,其中两台分别在中国计量科学研究院和国家石油天然气大流量计量站进行第三方测试,另外两台分别安装在国家管网集团东部原油储运公司扬子作业区扬子站、山东省公司东营站进行工业性试验。”项目经理、国家管网集团东部原油储运公司物资供应中心经理刘波介绍。2022年6月,刮板流量计样机完成1万余小时的工业试验,试验成果运行平稳,满足工业性运行要求。该设备的成功研制,填补了国产大口径原油管道刮板流量计的空白。据了解,下一步,国家管网集团将开展国产刮板流量计的全系列化研制,为先进制造业自主创新助力。
  • 大连部分海滩受到原油污染
    据新华社大连7月20日电国家海洋局海上溢油应急处置前线指挥部20日发布的情况通报表明,大连部分海滩受到大连新港输油管道爆炸事故泄漏原油的污染。   国家海洋局大连新港石油储备库管道爆炸事故海上溢油应急处置前线指挥部向新华社提供的情况通报中说:20日,海监队伍进行岸边巡视,发现金石滩附近海域有条状漂油带,1/3的海滩被石油污染 棒棰岛海水浴场海面和沙滩上都发现大量油污,沙滩的油污基本已被有关人员清理完毕。   这份通报说,国家海洋局北海预报中心对2010年7月20日6时2分雷达卫星数据重点对溢油核心海域——大连新港附近进行解译,结果发现这一海域溢油分布面积约38平方公里。   通报说,20日,中海油总公司继续投入4艘专业收油船,围油栏800米,撇油器3套,储油罐6套,SPC吸附材料2吨,捞油工具40套全力收油,截至20日14时已回收含水油污960立方米。截至20日,中石油集团公司累计投入船舶15条,布设围油栏约15100米,使用洗油毡12吨,吸油围栏5800米,回收含水油污900立方米。
  • 开创重油四组分分析新时代—-橙达仪器-中国石油石化院 重油四组分自动分析仪荣获2023BCEIA金奖
    9月6日分析测试行业盛会——第二十届北京分析测试学术报告会暨展览会(BCEIA 2023)隆重开幕,北京橙达仪器有限公司和中国石油天然气股份有限公司石油化工研究院联合自主研发生产的SARAlyzer Elite重油四组分自动分析仪斩获了2023年BCEIA金奖。重油四组分分析对于原油评价与价值评估、重油加工原料优化、沥青产品使用性能等具有重要意义:(1)重油四组分是原油评价的必做项目,对原油中重组分的价值评估和加工路线选择具有重要的指导意义;(2)重油四组分的测定结果还是工艺优化和装置运行监控的必要指标。以催化裂化装置为例,可以通过四组分数据预测脱沥青油、常压渣油、回炼油等原料的结焦倾向,还能通过测定进料和出料的四组分来考察催化剂的效果和监控装置运行的情况;(3)重油四组分也是沥青产品的重要指标,四组分的比例不同对沥青的物理性质有很大的影响。 目前测定重油四组分采用的是NB/SH/T 0509-2010 《石油沥青四组分测定法》,该标准方法最初发布于1992年,目前在应用中主要存在以下问题:(1)分析步骤繁琐,分析时间过长,一个样品需要两天,消耗大量人工;(2)分析结果准确性和精密度差,不同人、不同实验室得到结果差异非常大,无法进行比对;(3)消耗大量正庚烷、甲苯等挥发性有机溶剂,对操作人员的健康和实验室的安全环保都带来很多隐患。因此对简单、自动化程度高、速度快、溶剂用量少、重复性再现性好的重油四组分方法及相关仪器的需求十分迫切。SARAlyzer Elite重油四组分自动分析仪和配套方法是具有自主知识产权的专利技术(授权专利号:CN116371032A、CN306581932S、CN112730636B、CN212417980U),和原方法相比,该技术在以下几个方面具有明显优势(如下表1),能为炼厂实现精细化、现代化的管理提供技术支撑,还能起到节约人力成本,降低HSE风险的效果,具有显著的经济效益和社会效益。同时,SARAlyzer Elite重油四组分自动分析仪也拓展到了SY/T 7550-2012 原油中蜡胶质沥青质含量的测定应用中。SH/T 0509SARAlyzer Elite分析时间大于30小时分析时间:4通道1米左右长度带有通风罩的台面敞开式操作,人员直接接触溶剂;加热无防爆设计密封体系,配有防爆设计;可选配有机溶剂蒸汽处理系统关于2023BCEIA金奖今年的金奖申报通知在2023年3月22日发出,截止2023年5月20日。原有的BCEIA金奖评奖规定,只有国产的分析仪器整机才可以申报BCEIA金奖。但是,国家科学仪器专项支持的重点从 “十二五”开始,已经逐步从整机转向关键零部件,现行的评奖范围只限于分析测试仪器整机的规定,已经不适应当前分析测试仪器的研制和生产,国内一些分析仪器企业也希望他们研制生产的一些分析仪器的零部件能够参与BCEIA金奖的评审。故2023年度BCEIA金奖的申报将分析仪器的零部件列入申报范围,进行试点。今年共有42个单位申报了44个整机产品;18个单位申报了15个零部件产品。2023年5月26日将42个单位申报的44个整机产品和18个单位申报的15个零部件产品及其厂家信息在中国分析测试协会网站http://www.caia.org.cn和BCEIA网站http://www.bceia.cn上公示(公示期为2周),以了解这些产品的知识产权是否有争议,公示期间没有争议提出。中国分析测试协会于5月底成立了以王海舟院士为组长,10位专家参加的2023BCEIA金奖评审组,负责评审工作。我们按产品的创新性、产品的性能指标、产品的社会效益和产品的销售情况设计了打分表,并给出了打分的参考标准,由评审专家独立打分。在评审专家独立打分的基础上,于6月27日召开了2023BCEIA金奖评审专家组第一次会议,提出了需要进一步进行现场考察的产品名单。在7月13日—8月15日评审组组织了专家对这些产品的生产企业和产品进行了考察,考察了产品的生产线、实际样品的测试、了解了产品的销售情况及用户的反映。8月28 金奖评审组召开了最后一次会议,听取了考察汇报,进行了无记名投票,按照BCEIA金奖评选办法中的规定,得票数超过投票专家数三分之二的产品获得BCEIA金奖,今年共有13个整机产品和5个零部件产品获得2023BCEIA金奖(获得金奖产品的名单见后),我们对获得金奖产品单位表示祝贺。今年获得整机金奖产品的数量只有申报数量的29.5%;获得零部件金奖产品的数量只有申报数量的33.3%。从产品的外观、性能指标、可靠性、稳定性、耐用性、软件功能等方面来看,国产仪器的水平有了很大的提高,与国外同类产品的差距明显缩小;获得金奖的产品中有些达到了国外高档产品的水平,改变了国产分析仪器只有中、低档产品的局面;获得金奖的产品中有很多是根据国家的需要,开发研制的专用仪器,这是发展有中国特色分析仪器,并向国际市场进军的有效途径。这些都说明了我国分析仪器产业,实现了科技部提出的:“九五”起步,“十五”打基础,“十一五”全面发展的战略部署,在国家的大力支持和中国分析仪器研发人员和企业家的坚持不懈努力下,中国分析仪器产业开始了新的腾飞。
  • 60秒快速测定原油和石油产品酸值
    ASTM近期公布了测定原油和石油产品中酸值的D8045温度滴定法。ASTM D8045温度滴定法的优势60秒内获得稳定而可靠的结果。改善的混合溶剂对含重石蜡等困难样品的溶解性更好,结果稳定可靠。使用的溶剂量更少,节省实验室溶剂消耗及废液处理费用。无需电极活化、校准和维护。可选择不同的温度滴定方式全自动系统只需用户称取样品,其余的工作由仪器自动完成。全自动系统可以在通风橱中进行测定,减少了有毒试剂的暴露,更加安全。困难样品同样可以得到一个明确的终点电位滴定与温度滴定测定油品酸值方法对比电位滴定与温度滴定测定油品酸值结果对比多项专利技术
  • 颜宁等点评:AI 精准预测蛋白质结构,结构生物学何去何从?
    p style=" text-indent: 2em " 12 月 1 日,谷歌旗下的 DeepMind 公司宣布,其 strong 新一代 AlphaFold 人工智能系统 /strong 在国际蛋白质结构预测竞赛(CASP)上击败了其余的参会选手, strong 精确预测了蛋白质的三维结构 /strong , strong 准确性可与冷冻电子显微镜(cryo-EM)、核磁共振或 X 射线晶体学等实验技术相媲美。 /strong /p p br/ /p p style=" text-indent: 2em " (详见《解决生物学 50 年来的重大挑战!生物界「AlphaGo」精准预测蛋白质结构》)这一消息引发了全球媒体关注,前 Genentech 首席执行官 Arthur D. Levinson 博士盛赞这一成就是 strong 「划时代的进步」 /strong 。 /p p br/ /p p style=" text-indent: 2em " 人工智能的「进击」对生物学、对其他学科会有什么影响?网络上有人提出: strong AI 都能解蛋白质结构了,结构生物学家是不是该失业了? /strong /p p br/ /p p style=" text-indent: 2em " 《返朴》总编、结构生物学家颜宁特邀几位同仁对这一新闻各抒己见, 回答大家的疑问。 /p p style=" text-align: center text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 558px height: 618px " src=" https://img1.17img.cn/17img/images/202012/uepic/73bb911a-86ca-490b-a90a-f01fb76aa418.jpg" title=" 微信图片_20201204191414.jpg" alt=" 微信图片_20201204191414.jpg" width=" 558" height=" 618" / /p p style=" text-align: center text-indent: 2em " span style=" font-size: 12px " by Asier Sanz | https://asiersanz.com/ /span /p p br/ /p p style=" text-align: center text-indent: 2em " strong AlphaFold2 是个大突破,但我们还有努力的方向 /strong /p p br/ /p p style=" text-align: center text-indent: 2em " 张阳 /p p style=" text-align: center text-indent: 2em " (ITASSER 创造者,美国密歇根大学教授) /p p br/ /p p style=" text-indent: 2em " AlphaFold2 显然是蛋白质结构预测领域的重大突破。这可能是从 1969 年第一篇& nbsp Journal of Molecular Biology& nbsp 用比较建模方法预测蛋白质结构发表& nbsp 51 年以来最大的突破。 /p p br/ /p p style=" text-indent: 2em " 这个领域过去 20 年来,进展一直比较缓慢,但最近几年,随着共同进化、接触图预测以及引入深度学习之后,很多软件,比如 I-TASSER 和 Rosetta 等,都有了很大进步。 /p p br/ /p p style=" text-indent: 2em " 就 I-TASSER 来讲,两年前在第 13 届 CASP(CASP13)时,它能够正确预测的非同源蛋白数目比其六年前在 CASP11 上提高了 5 倍。这次 CASP14 也比 CASP13 的预测能力提高了很多。但 AlphaFold2 这次比上次进步更大,和两年前的上一个版本相比,& nbsp AlphaFold2 的主要变化是直接训练蛋白质结构的原子坐标,而不是用以往常用的、简化了的原子间距或者接触图。 /p p br/ /p p style=" text-indent: 2em " 传统上,蛋白质结构预测可以分成基于模板和从头预测,但是 AlphaFold2 只用同一种方法 —— 机器学习,对几乎所有的蛋白质都预测出了正确的拓扑学的结构,其中有大约 2/3 的蛋白质预测精度达到了结构生物学实验的测量精度。这说明,至少是在单结构域的蛋白结构,他们接近解决了这个问题。 /p p br/ /p p style=" text-indent: 2em " 谷歌这次为什么能够取得如此大的成功? /p p br/ /p p style=" text-indent: 2em " 这首先与它们拥有强大的人力和计算资源有关。 /p p br/ /p p style=" text-indent: 2em " 计算机上,他们使用 TPU(据他们的宣传是比 GPU 快 15 倍),学术界的实验室只有 CPU 或者 GPU,而很多实验室都还没有 GPU。他们对媒体宣传中说 Alphafold2 最后只用相当于 100 个 GPU 的资源训练了两周就产生了最后的模型,学界大多数实验室都可以做到,这是不客观的。因为产生一个新的想法,到训练成功的模型,中间起码要反复测试重复 100 次甚至 1000 次。这就像吃了十个馒头的饿汉一 样,不能说吃了最后一个馒头吃饱了,就觉得只吃最后一个馒头就够了。 /p p br/ /p p style=" text-indent: 2em " 另外,他们可以高薪招聘大量专业人才,集中精力攻关一件事,不需要担心基金申请、教学和学生毕业论文等等。这些人力和计算资源上的差别是谷歌 DeepMind 这样的工业研究机构比起学术界在攻关科学或者工程问题上的最大优势。 /p p br/ /p p style=" text-indent: 2em " 当然,学术界在蛋白质结构预测这么多年的积累,也给 AlphaFold2 的成功奠定了基础。 /p p br/ /p p style=" text-indent: 2em " 我自己很高兴他们取得了这么大突破。这个工作首先证明了蛋白质结构预测问题是可以被解决的。这其实不是一个简单的问题,因为蛋白质结构和序列的复杂关系,常常让人们 —— 特别是做结构预测的人 —— 怀疑,蛋白质折叠这个问题是不是可解, 或者有没有唯一解。 /p p br/ /p p style=" text-indent: 2em " 我们在 15 年前的一篇 PNAS 论文中提到,用 PDB 库中的模板,在理论上可以解决 “单结构域蛋白质结构预测” 这个问题,但那是一个基于模板的传统解法, 难点是如何找到最好的模板。谷歌他们这次用「暴力」的机器学习,「暴力」地解决了这个问题。这个做法的成功会对很多相关领域都产生深远影响。 /p p br/ /p p style=" text-indent: 2em " 有人说这个 AlphaFold2 会让很多相关行业的人失业。我认为恰恰相反,它给很多领域提供了解决问题的新途径和新思维,因而会极大推动相关领域的发展,因此会产生更多更大的机会。即便是在蛋白质结构预测这个相对较小的领域,我们还有很多事情要做。 /p p br/ /p p style=" text-indent: 2em " AlphaFold2 这次只有 2/3 的蛋白预测做到实验精度,还有 1/3 做不到,是否还有更快更好的途径来产生更高精度结构的算法?基于商业或其它考虑,我相信谷歌可能不会公开代码或 Server。 /p p br/ /p p style=" text-indent: 2em " 所以,最终可能还得学术界的同行共同努力,完善和推广这一技术,让其真正惠及生物医学研究以及普通公众的健康需求。 /p p br/ /p p style=" text-align: center text-indent: 2em " strong 共赢大于竞争 /strong /p p br/ /p p style=" text-align: center text-indent: 2em " 龚新奇 /p p style=" text-align: center text-indent: 2em " (中国人民大学数学科学研究院教授,清华大学北京结构生物学高精尖中心合作研究员) /p p br/ /p p style=" text-indent: 2em " 2020 年第 14 届国际蛋白质结构预测竞赛(CASP14)共有 84 个常规(Regular)题目,其中有 14 个题目因为生物实验没给出确定结构等原因被取消或延缓,其他 70 个题目的单体和复合物蛋白质所含有的氨基酸个数从 73 到 2180 不等。 /p p br/ /p p style=" text-indent: 2em " 19 个国家的 215 个小组参加了 CASP14。最终,谷歌旗下 DeepMind 公司的人工智能系统 AlphaFold2 在 2018 年的 Alphafold 基础上迭代创新,超常发挥,一枝独秀,基本解决了「从氨基酸序列预测蛋白质结构」这个困扰人类 50 年的生物学第二遗传密码问题。 /p p br/ /p p style=" text-indent: 2em " AlphaFold2 的成功表现在三个方面: /p p style=" text-indent: 2em " 1.不少结构的预测精确度跟实验晶体结构相当,可以替代晶体结构; br/ /p p style=" text-indent: 2em " 2.一些含有多个结构域的复杂超长的单链结构也达到了可以跟实验结构比较的程度; /p p style=" text-indent: 2em " 3.帮助解析了竞赛中涉及到的、实验多年没拿到的 X 射线晶体和 cryo-EM 冷冻电镜结构,比如 T1058 的膜蛋白是用了 Alphafold2 的预测模型之后,才跟原有晶体学数据综合成功解析了结构。 br/ /p p style=" text-indent: 2em " AlphaFold2 团队的& nbsp John Jumper 报告表明,他们使用了基于注意机制的神经网络,动态调整网络中节点的顺序和链接;依靠的是端到端的优化整体构建结构,而不是氨基酸距离;网络中内置了大量的序列、结构和宏基因组等多重比较信息;还依赖分子模拟软件优化去掉了原子的堆积碰撞。 /p p br/ /p p style=" text-indent: 2em " 在 AlphaFold2 的摘要作者名单里,交叉团队的 30 位作者中有 19 位都被标记为相同贡献的第一作者。他们将近 8 分钟的宣介视频,记录了团队成员在新冠疫情期间精诚合作、攻坚克难的宝贵场景。 /p p br/ /p p style=" text-indent: 2em " CASP 组织者 John Moult 指出,计算下一步还有更困难的问题要解决:超大复合物结构、动态构象变化、蛋白质设计、药物设计等等。 /p p br/ /p p style=" text-indent: 2em " 除了我们蛋白质结构预测小同行对 AlphaFold2 的成功很欣喜之外,社会上还有多个不同方向的学术界、产业界和新闻界对它寄予了厚望。 /p p br/ /p p style=" text-indent: 2em " 在欣喜的同时,蛋白质结构预测小同行也有一些保留意见: /p p style=" text-indent: 2em " 1.工程化明显,依赖于强大的 GPU 计算资源和代码优化团队; br/ /p p style=" text-indent: 2em " 2.谷歌公司几乎可以收集全球所有网络信息,虽然看起来 AlphaFold2 的自动化程度很高,但他们在人工操作中使用了哪些信息值得关注; /p p style=" text-indent: 2em " 3.预测对了结构,但不等于明白了蛋白质折叠过程和原理。 /p p br/ /p p style=" text-indent: 2em " strong 生物实验科学家也有不少看法: /strong /p p style=" text-indent: 2em " 1.算出结构只是生物学规律发现的第一步; /p p style=" text-indent: 2em " 2.计算的多个 models 中,有时打分排序不准; /p p style=" text-indent: 2em " 3.开放 AlphaFold2 的 server 之后,使用效果不一定那么好; /p p style=" text-indent: 2em " 4.只是在已有蛋白质结构数据集上训练得到的模型,尚不能计算其它构象或其它类别的分子结构。 /p br/ p style=" text-indent: 2em " 还有关心这个领域的其他方向的专家也提出了问题:怎么理解这个算法成功的原理?怎么跟原有的热力学、物理学等基本原理相融相通? /p p br/ /p p style=" text-align: center text-indent: 2em " 我认为 AlphaFold2 是个大突破,后续可能性很多,会替代一些简单的结构生物学实验,但对当下科学家追求的前沿生物学来说,共赢大于竞争;对生物学、数学和计算机学等学科而言,则会带来新的机遇。 br/ br/ strong 技术服务于科学探索,结构生物学早就进入新时代 /strong br/ 颜宁 /p p style=" text-align: center text-indent: 2em " (美国普林斯顿大学雪莉?蒂尔曼终身讲席教授,美国科学院外籍院士) /p p br/ /p p style=" text-indent: 2em " 首先,简单说一下,什么是生物学里的「结构」。 /p br/ p style=" text-indent: 2em " 用个不太恰当的类比:变形金刚。比如擎天柱是辆车还是个机器人,这就是不同的结构了,机器人能打架大车做运输,功能也不一样。而不同的汽车人组成成分可能差不多,都有合金、玻璃、橡胶,但是形态各异,特长也不一样。 br/ 生物分子的组成成分和基本单元就那么几种,但是组装起来,不同的序列不同的结构,于是功能各异、五花八门。这个结构不是静止的,每一个生物大分子基本都像个小机器,比变形金刚更复杂、更变化多端。 /p p br/ /p p style=" text-indent: 2em " 因为结构决定了生物大分子的功能,所以解析高分辨率结构在过去几十年一直是理解生物大分子工作机理最有力的工具。但是一直以来,因为技术局限,对于绝大多数生物大分子的结构解析困难重重。所以,一批科学家另辟蹊径,试图在已有的知识基础上,绕开劳心劳力又劳财的实验步骤,从蛋白质的序列直接通过计算预测出它们精准的三维结构。 /p p br/ /p p style=" text-indent: 2em " 蛋白结构预测并不是一个新鲜学科,一直以来就是结构生物学的一个分支,很多科学家不断开发算法,希望根据序列预测出来的结构越来越准确。 br/ 这个领域在过去十几年进步迅速,并且与实验结构生物学融合度越来越高。比如,自从进入电镜时代,看到一堆黑白灰的密度,如果其中某些部分没有同源结构,通过软件预测一个大致的结构模型,放到密度图里面做框架,再根据实验数据调整,已经是个常规操作。 /p p br/ /p p style=" text-indent: 2em " 这次人工智能赢得 CASP 的新闻亮点有两个,一是 AI,二是准确度高。这确实是突破,但是有了两年前的新闻(注:2018 年,DeepMind 开发的第一代 AlphaFold 首次参加 CASP 并且拔得头筹)做铺垫,现在这次委实是意料之中。 br/ 至于衍生出来的所谓「结构生物学家都要失业了」的调侃 —— 如果你对结构生物学的理解还停留在 20 年前,那这么说也不是不行。但是结构生物学自身一直在发展着,一场冷冻电镜的分辨率革命更是令结构生物学不同往日了。 br/ 我在 2015 年主持一个学术研讨会的时候曾经评论过:结构生物学的主语是生物学,是理解生命、是做出生物学发现。 br/ 但是,在 X - 射线晶体学为主要手段的时代,获得大多数研究对象的结构本身太难了,于是很多研究者把「获得结构」本身作为了目标,让外行误以为结构生物学就是解结构。但我从进入这个领域之初,就被教育得明明白白:结构本身只是手段,它们是为了回答问题、做出发现。而电镜使得「发现」二字尤为突出。 br/ br/ 看到结构本身、知道你的研究对象长啥样,倒也可以称之为发现,但我刚刚说的「发现」,特指那些超乎想象的、通过结构才揭示出来的、自然界里神奇的存在或者令人叹为观止的机理。 /p br/ p style=" text-indent: 2em " 我讲课最喜欢举的例子之一就是施一公组的剪接体结构。为啥呢?因为它集合了结构生物学发现里几乎所有的精彩要素和挑战。 br/ br/ 第一,在剪接体结构出来之前,有很多剪接体的组分甚至是未知的。不同于传统的结构生物学,先知道你要研究对象是啥,再吭哧吭哧地去把它们的结构解出来 —— 剪接体的电镜分析是看到了密度图之后,完全不晓得这是啥,需要通过质谱等手段去鉴定组分。我从 2015 年就预测:电镜与质谱组合,将会变成一个重要的生物学研究发现手段。在电镜时代,这样的例子越来越多。比如清华大学隋森芳老师组的那个巨大的藻胆体结构,靠质谱都不够了。为了搞明白组分,他们甚至先做了基因组测序。 br/ br/ 第二,几十上百个蛋白如何众星捧月地把那么几条貌似简单的 RNA 掰成与几个小小的金属离子配合的核酶反应中心,在茫茫碱基中,在正确的时间正确的地点牵线搭桥,剪掉 intron(内含子),连接 exon(外显子)?就为了这一「剪子」& nbsp 一「钩针」,为了几毫秒的过程,这么个庞然大物的几十上百个组成部件却要分分合合,这个过程是真神奇。 /p p br/ /p p style=" text-align: center text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/72bc97e7-d254-461b-b199-1156f73a37c8.jpg" title=" 微信图片_20201204191624.jpg" alt=" 微信图片_20201204191624.jpg" / /p p style=" text-align: center text-indent: 2em " span style=" font-size: 12px " 施一公实验室报道的首个酵母剪接体的结构 /span /p p style=" text-align: center text-indent: 2em " span style=" font-size: 12px " (图源:生物化学经典教材 Lehninger Principles of Biochemistry(第七版)封面) /span /p p style=" text-align: center text-indent: 2em " span style=" font-size: 12px " br/ /span 结构生物学目前的实验手段只能获得静止的 3D 照片,为了揭示这部电影,就要不断获得中间态的 3D 照片,帧数越多,电影越精准。但即便如此,这个过程中的动力学问题,简单说,就是变化速度,依旧不是现在的结构生物学实验手段可以揭示的,需要借助更多生物物理技术、计算生物学手段去探索。 br/ 我自己的工作虽然没有剪接体那么酷炫,但是电压门控钠离子通道如何感受膜电势的变化,开门关门,就这么个过程,听着简单,我们死磕三年了,依旧束手无策。另外,我们今年发的两篇 PNAS 论文其实代表了结构生物学的另一个努力方向:在实验操作过程中对生物大分子施加外力(电场、磁场、各种长度的波......)。 br/ 也许是受到我自身专业领域的局限,AlphaFold 迄今带给我的震撼还赶不上冷冻电镜的革命,后者将我们从技术挣扎中解放出来,可以专注于结构带来的生物学发现本身。 br/ br/ AlphaFold 目前最成功的预测是针对单链分子,当然将来预测复合物的高精结构也应该不在话下。相比于对蛋白折叠的贡献,我倒是更希望 AI 能够助力 Molecular Dynamics Simulation(分子动力学模拟)。对结构生物学而言,这个领域才是亟需进步的。 br/ br/ 我个人认为生命是地球上最神奇的存在,那么多未知要探索,任何一次技术进步都是契机。该考虑的是如何把新技术为我所用,去问出、去探索更有意思的问题。 br/ 最后,当 AI 能够成功预测我们正在孜孜以求的生物大分子动态、原位高分辨率结构的时候,那失业的一定不止是结构生物学家、或者生物学家了 :p br/ br/ strong 各抒己见 /strong /p p style=" text-indent: 2em " strong br/ /strong 根据现在披露的结果,AlphaFold2 已经基本达到实验解析结构的精度。前天 AlphaFold2 团队的报告展示了新冠病毒 SARS-COV-2 的预测结果,说明 RNA 聚合酶这么大的蛋白也能基本预测准确。 /p br/ p style=" text-indent: 2em " 理论上,这会对结构生物学有很大冲击,尤其是以后单颗粒 cryo-EM 的实验方法上,是否还需要把分辨率做得那么高?低分辨率的电子密度图,甚至 SAXS 数据结合预测结果应该就能解决问题了。 br/ 但是,现实中的冲击不会那么大。这是因为,AlphaFold2 模型的创新性非常高,其中结合的 2D transformer 和 3D equivariant transformer 都是 AI 领域的前沿技术,模型的训练难度很大。 /p br/ p style=" text-indent: 2em " DeepMind 的训练方法在学术界很难复现,估计学术界要花几年的时间才能跟上,因此短期内 AlphaFold2 对结构生物学的影响会比较有限。DeepMind 可能会和个别实验室合作,预测蛋白质结构。 /p br/ p style=" text-align: right text-indent: 2em " ——& nbsp 龚海鹏(计算生物学家,清华大学结构生物学高精尖创新中心研究员) /p br/ br/ p style=" text-indent: 2em " AlphaFold 为结构生物学家提供了除晶体学、冷冻电镜、NMR 以外的另外一种手段,用于揭示生物大分子发挥作用的分子机制。 /p br/ p style=" text-align: right text-indent: 2em " —— 张鹏(结构生物学家,主要利用晶体学和冷冻电镜技术;中科院分子植物科学卓越创新中心研究员) /p br/ br/ p style=" text-indent: 2em " AlphaFold 目前还不能预测复杂的分子机器,主要是因为蛋白 - 蛋白相互作用非常复杂,存在极多的可能性。实验手段所揭示出来的蛋白 - 蛋白相互作用方式还只是冰山一角,更何况在不同生理条件和过程中的结构变化。因此,未来对有特定功能的、多个成分组成的、生物大分子复合体的结构解析,以及体内的结构分析,将成为结构生物学实验研究的主要内容。无论有没有 AlphaFold,结构生物学也正在朝这个方向发展。 /p p style=" text-indent: 2em " Rosetta(注:从头蛋白结构建模算法)也好,AI 也罢,结构预测都是基于已有的实验数据够大。没有足够的数据积累,这些基于统计和数据库的预测就无法实现。完全基于物理学和化学第一性原理的结构预测还没有出现。 br/ 实验科学永远是探索未知的必要手段。新的软件算法应该是成为实验科学家的更有力工具,而不是取代实验科学。 /p p br/ /p br/ p style=" text-align: left text-indent: 2em " —— 王宏伟(cryo-EM 专家,清华大学结构生物学高精尖创新中心执行主任,清华大学生命科学学院院长) br/ br/ br/ br/ & nbsp & nbsp & nbsp 最近两年,结构生物学领域经历了与围棋界类似的故事。Alphago Fan 版本时围棋界并不认为它能够战胜人类顶尖高手,可是 Alphago Lee 后整个围棋界甘拜下风,并且转向 AI 拜师学艺。2018 年 Alphafold 出现时,实验结构生物学领域认为被战胜的仅仅是传统的结构预测领域,2020 年 Alphafold2 之后,实验结构生物学领域应该开始思考如何与之共存以及如何「拜师学艺」了。 /p p style=" text-align: left text-indent: 2em " br/ & nbsp & nbsp & nbsp 目前阶段人工智能在围棋上已经远远超过人类顶尖棋手,但是人类围棋比赛并未因此取消,如同汽车发明后奥林匹克仍然在进行田径比赛一样。原因之一是人工智能虽然超越了人类,但并未解决围棋的最终解。同样的道理,对于复杂的结构生物学问题,预测手段本身还不能号称完全解决了问题。 /p p style=" text-align: left text-indent: 2em " br/ & nbsp & nbsp & nbsp 实验结构生物学领域接下来需要做的一个事情是要拥抱变化,更好地与预测方法结合以及共同发展。 /p br/ p style=" text-align: right text-indent: 2em " —— 周强(cryo-EM 专家,西湖大学生命科学学院特聘研究员) /p p br/ /p p br/ /p p style=" text-indent: 2em " 蛋白质体系越大,结构的解析越难仅依赖计算方法。Cryo-ET& nbsp (冷冻电镜断层成像)& nbsp 技术擅长解析体外难表达的大分子机器结构、细胞中的原位蛋白结构等复杂体系,因此很难被脱离实验手段的方法取代。目前,由于体系过于复杂,使用分子动力学模拟整颗病毒尚未实现,要模拟细菌、细胞、组织,还要很长的路要走。 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制