当前位置: 仪器信息网 > 行业主题 > >

塑料痕硬定仪

仪器信息网塑料痕硬定仪专题为您提供2024年最新塑料痕硬定仪价格报价、厂家品牌的相关信息, 包括塑料痕硬定仪参数、型号等,不管是国产,还是进口品牌的塑料痕硬定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合塑料痕硬定仪相关的耗材配件、试剂标物,还有塑料痕硬定仪相关的最新资讯、资料,以及塑料痕硬定仪相关的解决方案。

塑料痕硬定仪相关的论坛

  • 【资料】生活中的化学--塑料的硬和软!

    塑料的硬和软 冬天在室外,塑料雨衣好似硬纸壳,塑料鞋底硬得梆梆响。塑料为什么冷的时候硬,热的时候软呢?塑料是高分子化合物。它由成千上万个小分子互相“手拉手”地联结起来,形成大分子“链条”。在金属链条里滴上润滑油,各链节之间就活动自如了。在塑料的大分子链条之间,不能加润滑油,但是在加入“增塑剂”以后,硬塑料也就变得柔软起来。塑料雨衣、床单的增塑剂加得多,就可以随意折叠,揉成一团:塑料凉鞋里增塑剂少一些,虽然柔软,却不能折叠:有些硬塑料管的增塑剂就更少,只有在火上烘烤,才能变软、弯曲。 塑料有软有硬,就看添加的增塑剂是多是少了。可是,普通的增塑剂和炒莱油一样,随温度下降变得粘稠起来,润滑的本领越来越小。塑料大分子链条里的“润滑油”都凝冻了,塑料自然变得僵硬啦。因此,寒冷地区使用的塑料制品和热带用的塑料,在增塑剂的品种和比例上,都是不相同的。塑料制品用久了,经过风吹、日晒、雨淋,以及增塑剂的挥发,就会变硬发脆,这叫做塑料的“老化”。 所以,塑料雨衣不用的时候,要擦干净,折叠好,装进塑料袋里保存。一般的聚氯乙烯、聚苯乙烯等塑料制品有毒,不能用来盛放食物。牛奶瓶、口杯、水壶和食品袋是用聚乙烯做的。聚乙烯的化学成分和蜡烛油差不多,没有毒性,也没有添加增塑剂,我们可以放心地使用。鉴别聚乙烯塑料不难。它的外表象蜡,靠近火焰熔融、变软,燃烧时发散出蜡烛油的气味,其他塑料,如聚氯乙烯、聚苯乙烯、有机玻璃,虽然也和聚乙烯一样,受热会熔融、变软,但是燃烧时却有不同的气味。 塑料鞋、塑料脸盆、塑料雨衣、人造革等是聚氯乙烯做的,牙刷柄、肥皂盒是聚苯乙烯做的,三角板、半圆仪、发卡、纽扣是有机玻璃做的,加上做食具用的聚乙烯,这几种塑料都是遇热变软,遇冷变硬,称为“热塑性”塑料。

  • 泡沫塑料吸附痕量金结果偏低是什么原因造成的?

    本人做化探样中痕量金,王水介质中泡沫塑料吸附,石墨炉上机测,发现标样结果每次都偏低,5ppb以下的基本可以吸附完全,5ppb以上的大概只有65%——75%,现在可以排除泡沫塑料体积小的原因,小弟不解请各位达人赐教。。。

  • ICP-MS测超痕量元素用哪种材质的塑料瓶?

    ICP-MS测超痕量元素用哪种材质的塑料瓶?LUPI牌,PTFE,FEP,PFA,PP,PE或PVC等,我想买FEP或PFA,最好是那种透明的, 呵呵,现有的PE好不好呢?在使用前,大家是怎么预处理的呀?LUPI牌子的感觉时间长了容易变黄,这个牌子用的是什么材质的呢?但是别的材质的瓶子小口 的比较多,用起来也不太方便。

  • ICP-MS测超痕量元素用哪种材质的塑料瓶?

    ICP-MS测超痕量元素用哪种材质的塑料瓶?LUPI牌,PTFE,FEP,PFA,PP,PE或PVC等,我想买FEP或PFA,最好是那种透明的,呵呵,现有的PE好不好呢?在使用前,大家是怎么预处理的呀?LUPI牌子的感觉时间长了容易变黄,这个牌子用的是什么材质的呢?但是别的材质的瓶子小口的比较多,用起来也不太方便。

  • 实验室塑料制品的清洁和保存

    所有聚烯烃,如PE-LD,PE-HD,PP和PMP,以及氟塑料PTFE,PFA,FEP和ETFE都具有憎水表面,可持久使用且易于清洁。清洁时,根据污染程度不同,使用市场上常见的中性或碱性清洁剂即可。聚碳酸酯(PC)实验室器具不可用碱性试剂清洗 (pH7) .注意切勿使用擦洗剂或擦洗垫清洗塑料实验室器具。上述塑料实验室器具 (除PE-LD受温度限制以外),均可与其他器具一起用洗碗机进行清洗和干燥。与浸浴清洗方式相比,用洗碗机进行清洗更温和。使用喷雾进行喷射或用喷射器时,实验室器具与洗涤液接触的清洗时间更短。由于这些器具质量很轻,我们建议清洗时用洗涤网对其进行固定,避免嵌入喷嘴。洗涤剂内的钢丝笼用塑料进行涂覆,可更好地避免器具被磨损。超声波浴清洗实验室塑料器具可用超声波水浴进行清洗。但是需避免与声膜直接接触。痕量分析中的清洁为避免痕量分析中阳离子阴离子的污染,塑料器具应当在室温下用1N HCl或HNO3进行最长6小时的浸泡,随后用蒸馏水冲洗。氟塑料PFA材质的容器,表面光滑,易清洗,清洁后无残留 (记忆效应) 且不易与材料反应,因此最适用于ng/g (ppb)或pg/g (ppt)范围内的痕量分析。

  • 各种塑料材质的简介

    近期发了些塑料产品的促销,大家可能对塑料的实验室器皿接触还比较少,但国外塑料耗材的使用已经很广泛了,下面就简单介绍下一些常见塑料材质的特性:PE-HD 高密度聚乙烯乙烯的聚合反应时由催化控制,则产生的分支非常少。所产生的结构非常坚固致密,这加强了化学耐性并使其能在最高105 °C的条件下使用。PE-LD 低密度聚乙烯在高压下乙烯的聚合反应会导致链中产生一定数量的分支。使得分子结构没有PE-HD那样紧凑,柔韧性与化学耐性良好,但是对于有机溶剂的耐性不如PE-HD。使用温度限于80 °C以下。PP 聚丙烯PP的结构类似于PE,但是在链中每两个碳原子上有一个甲基基团。相比PE,其主要优点是更高的温度耐性。PP可以反复121 °C灭菌。像上面提到的多聚烯烃一样,PP具有很好的机械性质与化学耐性,但是强氧化剂的能力相比PE-HD略低。PMP 聚甲基戊烯PMP与PP类似但带的是异丁基而不是甲基。化学性质可与PP相比,但当接触酮或者氯化溶剂时不耐张力易于破裂。PMP最重要的品质是其出色的透明度与机械性质,可耐受最高达150 °C的温度。PTFE 聚四氟乙烯PTFE是一个氟化烃大分子,具有部分晶体结构。PTFE耐受几乎所有的化学品。它的工作温度范围最广,从-200到+260 °C。其表面是抗粘附的。光滑的性质与绝缘性相比FEP与PFA更加出色。唯一的缺点是其只能通过烧结处理铸造。PTFE是不透明的。适合微波炉使用。ETFE 聚(乙烯-四氟乙烯)ETFE是乙烯与氯三氟乙烯与/或四氟乙烯的共聚物。这种塑料以其出色的化学耐性著称,但其温度稳定性比PTFE差,最高达150 °C。FEP 聚(四氟乙烯-六氟丙烯)是一种氟化烃大分子,具有部分晶体结构。表面抗粘附,机械与化学性质堪比PTFE,但是工作温度范围相对较小,从-100至+200 °C。水的吸附极小。FEP是半透明的。PFA 聚全氟烷基氟化烃高分子,具有部分晶体结构。表面抗粘附。机械与化学性质堪比PTFE。但是工作温度范围相对较小,从-100至+250 °C。对水的吸附极小。PFA是半透明的。PFA的制造过程中不添加催化剂或者塑形剂,可以铸造成非常光滑,易于清洁表面,因此非常适合用于痕量分析。PC 聚碳酸酯这是线性羧酸聚酯的热塑性塑料,结合了金属、玻璃与塑料的许多性质。这种材料为透明并在-130至+130 °C之间具有良好的热学性质。注意:PC会由于高压灭菌或者暴露于碱性去垢剂中而变脆弱。PS 聚乙烯聚乙烯具有玻璃一样的透明度,坚硬、脆度以及由于其非晶态的结构而具有的尺寸的稳定性。PS对于水相溶液具有良好的化学耐性,但对于溶剂的耐性有限。缺点是热稳定性差并容易由于压力而破裂。SAN 聚(苯乙烯-丙烯腈)这是一种如玻璃般清澈的材料,并对压力致破损有良好的耐性。化学耐性稍好于PS。PMMA 聚甲基丙烯酸甲酯坚固、玻璃般清澈 (“有机玻璃”)。抗大气因素。在许多低于90 °C并且低化学耐性的应用中替代玻璃。PMMA具有出色的UV照射稳定性。下面是一些塑料材质的物理性质: 缩写化学名称最高操作温度 (°C)脆点 (°C)是否适用微波炉*密度 (g/cm3)弹性透明度 PS 聚乙烯70-20否 1.05坚硬透明 SAN 聚(苯乙烯-丙烯腈)70-40否 1.03坚硬透明 PMMA 聚甲基丙烯酸甲酯65至 95 -50[font=Arial, sans-se

  • “环境中微塑料检测与分析”主题网络研讨会——雷尼绍拉曼光谱系统在微塑料领域的应用,6月30日开播!

    近年来,微塑料日益受到学术界和社会公众的关注。微塑料的痕迹已遍布世界上的各个角落,国内外的相关研究团队已经在淡水、深海、高山、土壤以及北极海冰,甚至婴儿胎盘内发现了微塑料的存在,并且数量还在不断增加。 “微塑料”表面积,吸附污染物的能力强。自然界存在的有毒有害物质,如多环芳烃、双酚A等都有可能吸附在微塑料的表面。因此与不可降解的“白色污染”塑料相比,“微塑料”对环境的危害程度更深、更严重。 为探讨微塑料最新研究成果,加深对微塑料的认知,6月30日,仪器信息网将举办“环境中微塑料检测与分析”主题网络研讨会,邀请微塑料领域专家及仪器厂商工程师,分享微塑料最新研究成果及最新仪器,欢迎大家报名参会。点击链接报名:https://insevent.instrument.com.cn/t/5hhttps://ng1.17img.cn/bbsfiles/images/2021/06/202106281918532544_7761_2507958_3.jpg!w690x609.jpg

  • 浅谈塑料米水分测试仪应用及塑料米的性能分析

    浅谈塑料米水分测试仪应用及塑料米的性能分析

    概述:塑料米是塑料原料的俗称,塑料原料大多数形状被制作成颗粒状,颜色不加染色剂只有本色跟透明,就像大米,所以被人们称作塑料米,同时又被称作塑料颗粒。在塑料米的生产加工工艺中,水分含量的控制至关重要,SFY-20D塑料米水分测定仪能够快速精准的检测出塑料米的水分含量,对生产加工具有指导性的意义,能够达到提高制品的成品率。一、塑料米水分测定仪说明书A、工作原理 采用干燥失重法原理,通过加热系统快速加热样品,使样品的水分能够在最短时间之内完全蒸发,从而能在很短的时间内检测出样品的含水率。检测一般样品通常只需3分钟左右。冠亚水分仪采用的原理与国家标准烘箱法相同,检测结果具有可替代性,仪器采用一键式操作,不仅操作简单而且也避免了人为因素对测量结果产生的误差。B、操作步骤 第一步:按校准键,放砝码,自动校准。(定期效准,不用每天开机效准) 第二步:取样xg,按测试键开始工作。 第三步:仪器加热中,仪器正在显示丢失的水分值。 第四步:测定结束,仪器显示最终水分。http://ng1.17img.cn/bbsfiles/images/2017/02/201702211015_01_2233_3.pngC、使用注意事项1.在测定水分过程中,一定要避免震动,加热筒下端缺口不能迎风摆放。2.测定样品在称量盘中堆积一定要平整,堆积面积尽量布满称盘底面,堆积厚度应尽量薄,利于水分完全蒸发。3.在测定水分过程中,不能用手去摸加热筒,严禁敲击或直接振动工作台面。4.由于该仪器称重系统为精密设备,尤其传力部分特别怕重压,冲击,因而在每次取,放称量盘时尽量用托架,若用手进行取,放称量盘应轻取,轻放。5.测定完成后,马上取下称量盘必须用托架,以免烫手.托架在放入仪器中不应碰到称重支架与称量盘。6.测定后须待称量盘完全冷却后,再放入下一个试样。D、技术参数 1、称重范围:0-90g 可调试测试空间为3cm 2、水分测定范围:0.01-100% 3、样品质量:0.100-90g 4、加热温度范围:起始-205℃ 加热方式:可变混合式加热 微调自动补偿温度最高15℃ 5、水分含量可读性:0.01% 6、显示参数:7种    红色数码管独立显示模式 7、外型尺寸:380×205×325(mm) 8、电源:220V±10% 9、频率:50Hz±1Hz 10、净重:3.7Kg二、普通塑料米性能1. ABS:(丙烯腈-丁二烯-苯乙烯共聚物)其抗冲击性、耐热性、耐低温性、耐化学药品性及电气性能优良,还具有易加工、制品尺寸稳定。外观为不透明呈象牙色的颗粒,无毒、无味,吸水率低其制品可着各种颜色,并具有90%的高光泽度。ABS相对密度为1.05。火焰呈黄色,有黑烟,烧焦但不滴落,并发出特殊的肉挂味。2. PA:名称叫尼龙(聚酰胺)。具有耐磨、强韧、质轻、耐药品、耐热、耐寒、易成型、自润滑、无毒、易染色等优点。室温下PA具有较高的拉伸强度和冲击强度,而且使用温度广泛,一般可达-40℃--100℃。另外,它流动性好的特点。3. POM: (聚甲醛)(赛钢~特灵). 密度:1.41-1.43克/立方厘米。A:高结晶,乳白色粒料,很高刚性和硬度。B:耐磨性及自润滑性仅次于尼龙,并具有较好的韧性、温度,温度对其性能影响不大。C:耐反复冲击性好过PC及ABS。D:耐疲劳性是所有塑料中最好的。E:加入增强材料对收缩率影响很大。F:材料坚韧有弹性不易吸水分。4. PC: A:高透明度(接近PMMA亚克力),非结晶体,耐热性优异。B:成型收缩率小,高度的尺寸稳定性,用于精度较高产品。C:抗冲击强度高居热塑料之冠,刚硬而有韧性。D:非常好的热稳定性,光洁度,抑制细菌性,阻燃性和看污染性。E:耐疲劳强度差,耐磨性不好,对缺口敏感,而应力并裂性差。5. PP:(聚丙烯)质轻,可浮于水中。高洁晶,耐磨性好,优于HIPS,高温冲击性好,硬度低于ABS。突出的延伸性和看疲劳性能。未着色时呈白色半透明,蜡状;比聚乙烯轻。透明度也较聚乙烯好,比聚乙烯刚硬。6. HDPE:(高密度聚乙烯) HDPE是一种结晶度高为85-90%、非极性的热塑性树脂。半透明状。HDPE具有很好的电性能,特别是绝缘介电强度高,使其很适用于电线电缆。中到高分子量等级具有极好的抗冲击性。收缩大易变形。7. LDPE:(低密度聚乙烯)LDPE分子量较低,分子链有支链,洁晶度较低,(55-60%)密度小,质地柔软,透明性较HDPE好。耐冲击,耐低温性极好,但耐热性及硬度都低。吸湿性小,可不必干燥。流动性好,流动性对压力敏感。收缩大易变形。8. HIPS:HIPS为PS的改性材料,分了中含有5-15%橡胶成份,其韧性比PS提高了四倍左右,冲击强度大大提高。它具有PS具有成型加工、着色力强的优点。HIPS制品为不透明性。HIPS吸水性低,加工时可不需预先干燥。9. PS:(聚苯乙烯) 特点:一种透明的仿玻璃状的材料,比重为每立方厘米1。05克,于水基本相同,钢硬而脆,敲打时发出金属般的叮当声,声音响而清脆,俗称响胶,无毒,无味。PS的流动性好,分解温度高,而融化比重比较稳定,他成为注塑机测定塑化效率的指标参数。优点:高频绝缘材料,有良好的电弧性。透明度极高,成型后表面光泽。容易印刷。PS能自由着色,无毒,无味,不致菌类生长。缺点:机械性能差,质硬而脆,受到熔剂的侵蚀,容易开裂,硬度低,易刮伤。耐热性差,热变形温度低。10. AS:(苯乙烯-丙烯睛共聚体) 不易产生内应力开裂。透明度很高,其软化温度和搞冲击强度比PS高。xz9bP8 该料易吸湿,加工前需干燥一小时以上,其流动性比PS稍差一点。11. PMMA:(亚克力) 特点:透明性极好(92%),强度较高,有一定的耐热、耐寒性、耐腐蚀、绝缘性良好,综合性能超过聚苯乙烯,但质脆,易熔于有机溶剂,如作透光材料,其表面硬度稍低,容易擦花。 适于制作透明绝缘零件和强度一般的零件:如眼镜、放大镜、激光扫描等透光性产品。

  • 各种塑料术语及相关定义

    A 001 氨基树脂 amino resin 由含有氨基的化合物如脲或三聚氰胺与醛类或可生成醛的物质缩聚制得的聚合物。 002 氨基塑料aminoplastics 以氨基树脂为基材的塑料。 003暗泡 bubble 塑料成型时,由于残留的空气或其他气体而在制品内部形成的气泡缺陷。 B 004 板材 plate 一般指厚度在2毫米以上的软质平面材料和厚度在0.5毫米以上的硬质平面材料。 005 瓣合式模具 split mould 由两个或多个元件组成模腔并用模套箍紧的一种压制模具。 006半透明性 translucence 物体只能透过一部分可见光,但不能通过它清晰地观察其他物体的性质。 007半溢料式模具 semi-flash mould 压缩模塑中只允许有限物料在闭模时溢出的模具。 008半硬质塑料 semirigid plastics 按GB1040-79《塑料拉伸试验方法》测定,拉伸弹性模量在700~7000公斤力/厘米2 约70~700 108(帕)之间的塑料。标准环境按照GB1039----79《塑料力学性能试验方法总则》的要求选取。 009 包封 encapsulation 用涂刷、浸涂、喷涂等方法将热塑料性或热固性树脂施加在制件上,并使其外表面全部被包覆而作为保护涂层或绝缘层的一种作业。 010 薄膜 film 一般指厚度在0.25毫米以下的平整而柔软的塑料制品。 011 爆破强度 bursting strength 塑料容器、管材、薄膜等在爆破试验时所能受液体或空气对其连续施加的最大压力。 012刨纹 shecter lines 刨痕 切削操作过程中,在塑料片材料上所产生的大面积平行刮痕或沟纹状的缺陷。 013 保压时间 hold up time (1) 注射成型时,指在塑料充满模腔后对模内塑料保护规定压力实行补料的一段时间。 (2) 压缩模塑时,指将物料压入模腔放气后压力升到预定值至开始解除压力的时间。 014 苯胺甲醛树脂 aniline formaldehyde resim 由苯胺与甲醛缩聚制得的一种氨基树脂。 015 本体聚合(作用) bulk polymerization,mass polymeriza-tion 除加催化剂或引发剂外,不加任何其他介质(如稀释剂或溶剂)而使单体(通常为液体)进行的聚合。 016 苯乙烯类树脂styrene resin 由苯乙烯或其衍生物聚合或以苯乙烯为主与其他不饱和化合物共聚所制得的聚合物。 017 闭孔泡沫塑料 closed-cell foamed plastics 所含泡孔绝大多数都互不连通的泡沫塑料。 018 比例极限proportional limit 材料在不偏离应力与应变正比关系(虎克定律)条件下所能承受的最大应力。 019 比例粘度viscosity/density ratio,kinematic viscosity 流体的绝对粘度与流体的密度之比值为比密粘度。 ν=η/р v——比密粘度 η——绝对粘度 р——流体的粘度( 厘米克秒制单位为沲(stokes);米公斤秒制单位米2/秒(=104沲) 020 闭模时间closing time 模塑时从开始合模到模具完全闭合的时间。 021 比强度specific strength 材料在断裂点的强度(通用拉伸强度)与其密度之比,用厘米(米2 /秒2 )表示。 022 变色 discoloration 因光、热、室外暴露、化学试剂等作用而引起的塑料制品颜色的变化。 023 表现密度 apparent density 单位体积的试验材料(包括空隙在内)的质量。 024 标距 gauge lehgth 在所测定的应变或长度变化范围内,标出的试样原始长度。 025 表面处理剂 surface treating agent 为了提高粘接性能,用作处理塑料、填料、颜料和粘接载体等表面的物质。 026 表面电阻率 surface resistivity 平行于通过材料表面上电流方向的电位梯度与表面单位宽度上的电流之比,用欧姆表示。 注:如果电流是稳定的,表面电阻率在数值上即等于正方形材料两边的两个电极间的表面电阻,且与该正方形大小无关。 027 瘪泡(泡沫塑料中)collapse(in foamed plastics) 泡沫塑料在制造过程中由于泡孔结构受到破坏所局部密度增大的缺陷。 028 丙-阶段 C-stage 某些热固性树脂在熟化瓜中的最后阶段。该阶段中,树脂既不溶解也不熔融。 029 丙烯腈-丁二烯-苯乙烯树脂acrylonitrile-butadiene-styrene resin ABS树脂 丙烯腈-丁二烯和苯乙烯或其衍生物的三元共聚物或丙烯腈-丁二烯的共聚物与丁二烯-苯乙烯的共聚物的掺混物。 030 丙烯腈-丁二烯-苯乙烯塑料 acrylonitrile-butadiene-styrene plastics ABS塑料 以丙烯腈-丁二烯-苯乙烯树脂为基材的塑料。 031 丙烯酸类塑料 acrylic plastics 以丙烯酸类树脂为基材的塑料。 032 丙烯酸类树脂 acrylic resin 以丙烯酸或丙烯酸的衍生物为单体聚合或以它们为主而与其他不饱和化合物共聚合所制得的聚合物。 033 丙烯类树脂 propylene resin 以丙烯聚合或以丙烯为主而与一种或多种其他不饱和化合物共聚所制得的取合物。 034 泊松比 poisson’s ratio 在材料的比例极限内,由均匀分布的纵向应力所引起的横向应变与相应的纵向应变之比的绝对值。 注:超过比例极限时,泊松比随应力变化而变化,实际上已不是泊松比。此时若记录泊松比,应指出测应力值。对于各向异性材料,泊松比随施加应力的方向变化。 035 波纹 waviness 出现在塑料制品表面上的波状凹凸不平缺陷。 036 不饱和聚酯 unsaturated polyester 主链上含有不饱和键的聚酯。 037 不溢式模具positive mould 压缩模塑中一种没有模塑料溢出的模具。

  • 配制流动相时应避免塑料制品的污染

    我们都知道配制的流动相不能存放在塑料容器中。因为塑料可能含有软化剂、抗氧化剂、稳定剂或着色剂,它们可能会从材料中渗出污染流动相。除此之外,我们在配制流动相时还需要避免接触的塑料制品也应扩展到量筒、移液管和洗瓶等。 有研究人员发现当pH计探头插入水性缓冲溶液时会污染流动相,出现鬼峰,在调节pH值时最好取一小份来测量 pH 值,而不是直接将 pH 计探头插入溶液中。

  • 【分享】常用塑料及塑料制品性能检测方法标准

    分享常用塑料及塑料制品性能检测方法标准1. GB/T 1033-1986 塑料密度和相对密度试验方法2. GB/T 1034-1998 塑料吸水性试验方法3. GB/T 1036-1989 塑料线膨胀系数测定方法4. GB/T 1040-1992 塑料拉伸性能试验方法5. GB/T 1041-1992 塑料压缩性能试验方法6. GB/T 1043-1993 硬质塑料简支梁冲击试验方法7. GB/T 1446-2005 纤维增强塑料性能试验方法总则8. GB/T 1447-2005 纤维增强塑料拉伸性能试验方法9. GB/T 1448-2005 纤维增强塑料压缩性能试验方法10. GB/T 1449-2005 纤维增强塑料弯曲性能试验方法11. GB/T 1450.1-2005 纤维增强塑料层间剪切强度试验方法12. GB/T 1450.2-2005 纤维增强塑料冲压式剪切强度试验方法13. GB/T 1451-2005 纤维增强塑料简支梁式冲击韧性 试验方法14. GB/T 1462-2005 纤维增强塑料吸水性试验方法15. GB/T 1463-2005 纤维增强塑料密度和相对密度试验方法16. GB/T 1633-2000 热塑性塑料维卡软化温度(VST)的测定17. GB/T 1634.1-2004 塑料 负荷变形温度的测定 第1部分:通用试验方法 18. GB/T 1634.2-2004 塑料 负荷变形温度的测定 第2部分:塑料、硬橡胶和长纤维增强复合材料) 19. GB/T 1634.3-2004 塑料 负荷变形温度的测定 第3部分:高强度热固性层压材料20. GB/T 1636-1979 模塑料表观密度试验方法. 21. GB/T 1843-1996 塑料悬臂梁冲击试验方法22. GB/T 1844.1-1995 塑料及树脂缩写代号 第一部分:基础聚合物及其特征性能23. GB/T 1844.2-1995 塑料及树脂缩写代号 第二部分:填充及增强材料24. GB/T 1844.3-1995 塑料及树脂缩写代号 第三部分:增塑剂25. GB/T 2035-1996 塑料术语及其定义26. GB/T 2406-1993 塑料燃烧性能试验方法 氧指数法27. GB/T 2407-1980 塑料燃烧性能试验方法 炽热棒法28. GB/T 2408-1996 塑料燃烧性能试验方法 水平法和垂直法29. GB/T 2409-1980 塑料黄色指数试验方法30. GB/T 2410-1980 透明塑料透光率和雾度试验方法31. GB/T 2411-1980 塑料邵氏硬度试验方法32. GB/T 2546.2-2003 塑料 聚丙烯(PP)模塑和挤出材料 第2部分: 试样制备和性能测定33. GB/T 2547-1981 塑料树脂取样方法34. GB/T 2572-2005 纤维增强塑料平均线膨胀系数试验方法35. GB/T 2573-1989 玻璃纤维增强塑料大气暴露试验方法36. GB/T 2574-1989 玻璃纤维增强塑料湿热试验方法37. GB/T 2575-1989 玻璃纤维增强塑料耐水性试验方法38. GB/T 2576-2005 纤维增强塑料树脂不可溶分含量试验方法39. GB/T 2577-2005 玻璃纤维增强塑料树脂含量试验方法40. GB/T 2578-1989 纤维缠绕增强塑料环形试样制作方法41. GB/T 2913-1982 塑料白度试验方法42. GB/T 2918-1998 塑料试样状态调节和试验的标准环境43. GB/T 3139-2005 纤维增强塑料导热系数试验方法44. GB/T 3140-2005 纤维增强塑料平均比热容试验方法45. GB/T 3354-1999 定向纤维增强塑料拉伸性能试验方法46. GB/T 3355-2005 纤维增强塑料纵横剪切试验方法47. GB/T 3356-1999 单向纤维增强塑料弯曲性能试验方法48. GB/T 3365-1982 碳纤维增强塑料孔隙含量检验方法 (显微镜法)49. GB/T 3366-1996 碳纤维增强塑料纤维体积含量试验方法50. GB/T 3398-1982 塑料球压痕硬度试验方法1

  • 各种塑料材料检测标准,塑料试验标准

    同科橡胶塑料研究所检测标准(部分一) GB/T1033.1-2008塑料 非泡沫塑料密度的测定 第1部分:浸渍法、液体比重瓶法和滴定法 ASTM D792-08塑料用替代法测密度和相对密度的标准试验方法 GB/T 1034-2008塑料吸水性的测定 GB/T 606-2003 化学试剂 水分测定通用方法 卡尔.费休法 GB/T1040.1-2006塑料 拉伸性能的测定 第1部分:一般原则 ISO527-1:1993塑料 拉伸性能的测定 第1部分:一般原则 GB/T1040.2-2006塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件 ISO527-2-1993塑料 拉伸性能的测定 第2部分:模压和挤压塑料试验条件 GB/T1040.3-2006塑料 拉伸性能的测定 第3部分:薄膜和薄片的试验条件 ISO527-3:1995塑料 拉伸性能的测定 第3部分:薄膜和薄板材的试验条件 ASTM D638-08塑料拉伸性能的标准试验方法 GB/T 1041-2008塑料压缩性能的测定 ISO 604:2002塑料.压缩性能的测定 ASTM D695-08硬质塑料压缩性能的标准试验方法 GB/T 8813-2008硬质泡沫塑料压缩试验方法 GB/T1043.1-2008塑料 简支梁冲击性能的测定 第1部分:非仪器化冲击试验 ISO179-1:2000塑料 简支梁冲击性能的测定 第1部分:非仪器化冲击试验 ISO179-2:1997塑料——简支梁冲击性能的测定 第2部分 仪器化冲击试验第一版 技术勘误1ASTM D6110-08塑料缺口试样简支梁冲击的标准试验方法 GB/T1633-2000热塑性塑料维卡软化温度(VST)的测定 ISO 306:2004塑料——热塑性材料——维卡软化温度(VST)的测定 ASTM D1525-07测定塑料维卡软化温度的标准试验方法 GB/T1634.1-2004塑料 负荷变形温度的测定 第1部分:通用试验方法 GB/T1634.2-2004塑料 负荷变形温度的测定 第2部分: 塑料、硬橡胶和长纤维增强复合材料 GB/T1634.3-2004塑料 负荷变形温度的测定 第3部分: 高强度热固性层压材料 ISO 75-2:2004 塑料.弯曲负载热变形温度的测定.第2部分:塑料和硬橡胶 ASTM D648-07塑料弯曲负载在边缘的热变形温度的标准试验方法 GB/T 1843-2008塑料悬臂梁冲击强度的测定 ISO 180:2000塑料——悬臂梁冲击强度的测定

  • “环境中微塑料检测与分析”主题网络研讨会——雷尼绍拉曼光谱系统在微塑料领域的应用,6月30日开播!

    “环境中微塑料检测与分析”主题网络研讨会——雷尼绍拉曼光谱系统在微塑料领域的应用,6月30日开播!

    [font=&] 近年来,微塑料日益受到学术界和社会公众的关注。微塑料的痕迹已遍布世界上的各个角落,国内外的相关研究团队已经在淡水、深海、高山、土壤以及北极海冰,甚至婴儿胎盘内发现了微塑料的存在,并且数量还在不断增加。[/font][font=&] “微塑料”表面积,吸附污染物的能力强。自然界存在的有毒有害物质,如多环芳烃、双酚A等都有可能吸附在微塑料的表面。因此与不可降解的“白色污染”塑料相比,“微塑料”对环境的危害程度更深、更严重。[/font][font=&] 为探讨微塑料最新研究成果,加深对微塑料的认知,[/font][font=&][color=#ff0000]6月30日[/color][/font][font=&],仪器信息网将举办“[/font][font=&][color=#ff0000]环境中微塑料检测与分析[/color][/font][font=&]”主题网络研讨会,邀请微塑料领域专家及仪器厂商工程师,分享微塑料最新研究成果及最新仪器,欢迎大家报名参会。[/font][font=&][size=24px][color=#ff0000]点击链接报名[/color][/size][/font][font=&]:[/font][url]https://insevent.instrument.com.cn/t/5h[/url][img=,690,609]https://ng1.17img.cn/bbsfiles/images/2021/06/202106281921453259_3103_2507958_3.jpg!w690x609.jpg[/img]

  • 【第三届原创大赛】塑料洛氏硬度测试注意事项及结果误差分析

    【第三届原创大赛】塑料洛氏硬度测试注意事项及结果误差分析

    [align=left][color=#f10b00]维权声明:本文为abrahamz原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。[/color][color=#fe2419][size=6][b] 塑料洛氏硬度测试注意事项及结果误差分析[/b][size=4][b] abrahamz[/b][/size][/size][/color]摘要: 本文总结了在塑料洛氏硬度测试过程中应注意的事项并对影响测试结果的误差进行了简单的分析。关键词: 洛氏硬度,注意事项,误差分析[size=4][/size][color=#0021b0][font=SimSun][b][/b] [color=#000000]硬度是表征材料局部抵抗硬物压入其表面的能力,是一种重要的力学性能,是比较各种材料软硬的指标。硬度没有统一的意义,硬度值的物理意义随试验方法的不同,其含义不同,各种硬度单位也不同。 硬度测试方法很多,主要有划痕法和压入法。本文讨论的洛氏硬度测试法,属于压入法。其原理为:用测量压痕深度值的大小来表示材料的硬度值。 引用标准:ASTM D785-08(图1)。[/color] [img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008031351_233946_2034074_3.jpg[/img] [/font][/color]图1. 塑料洛氏硬度测试标准ASTM D785-08 所用仪器:日本SHIMADZU公司生产的L-2020型洛氏硬度计(图2)。[color=#0021b0][font=SimSun][size=4] [img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008031355_233947_2034074_3.jpg[/img] [/size][/font][/color]图2. L-2020型洛氏硬度计一、注意事项 洛氏硬度测试依靠试件上的压头深度值,影响深度值的每个因素都会导致读数的错误,现分述如下: 1.试件 为了得到准确值,试件必须有一定的厚度,保证测试后试件的下表面无很小的压痕,这个极限厚度值随着测试材料的硬度而变化。通常厚度对深度的极限比率应超过8。如果一个试样的厚度不满足要求,可以将两个或两个以上的试样叠加至厚度符合标准。标准ASTM D785-08中规定的尺寸如下: 表1. 标准ASTM D785-08中的规定尺寸 [img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008031418_233952_2034074_3.jpg[/img] 在尺寸方面,还要注意,压痕的中心不小于从试件任何边缘算起的直径的2倍,两个相邻压痕线间必须保持压痕直径的4倍距离。 试件的表面要保持清洁,不要被污染,不要有划痕,或人为损伤。 2.测量头 测试时要选用合适的测量头,使试件不会滑动、滚动或下垂,如果试件未被放在合适的测量头上,不但得不到准确读数,而且压头还会滑动,损坏。 本人知道的测量头有以下3种: 平测量头:它具有平的表面,用于测试具有平底的重物。 点测量头:它具有小的可升高的平面,可用于小件、薄件或底不是全平的物体的测试。因为测试时试件和压头底部的测量头接触的点是很关键的。 V型测量头:小型,它具有V型槽,用于圆形试件(直径小于3mm) 大型,用于大直径圆形试件,如圆棒状物体。 3.负载速度和负载支撑时间 测量大负载的速度由装有轴润滑油的减振油缸来控制。速度会因油的粘度变化而受影响,油的粘度变化受季节变化及操作室温度变化影响。对于操作者来讲,有必要根据待测材料确定负载速度和负载控制时间。 4.压头 L-2020型硬度计的压头是球形压头,不是金刚石压头。 在硬球使用时,在比HRB还柔软的材料上,很难会改变自己的形状,除非是在未知钢体的硬度之前进行测试,有可能被硬钢体试件磨损。这样的测试会引起球体永久变形,这就必须时刻修补球体,并且球座的制造也考虑到应适用于球的修补。 更换球体时,要注意:压头帽控制球的适当位置。该帽必须为球留有至少1/3来暴露与压头之下。如果压头帽拧在球上,仅用手指压在球上使其易于控制。球定位螺旋末端要吹扫干净。支座的肩部与试件底部接触处不应有灰尘及碎片。 稍微拧松压头螺丝,然后再拧上。压头螺丝内部是带有弹簧的双重构造,由它来控制压头的垂直吊锤。 二、误差分析 1.读数偏高 首先看压头压点,由于球变平而引起读数偏高,工作中摩擦,灰尘或碎片的存在也会引起读数偏高。 2.读数偏低 测试时仪器受到振动或压头松动会造成读数偏低。 3.读数不一致 这是由于试样未放牢,或者压头,负载选择不正确造成的。三、总结 洛氏硬度测试看似一个简单的测试,其中的影响因素还是不少的,要想获得一个准确的数据,各方面因素都要考虑到,以上分析了洛氏硬度测试过程中应注意的问题和影响结果的因素,只要我们在实际的测试过程中注意这些,相信我们就能得到比较准确的数据。 以上是小弟在洛氏硬度计使用过程中的一点心得,欢迎大家不吝指正,相互交流,共同提高。[/align]

  • 塑料容量瓶能检定合格吗?

    请问各位前辈,塑料容量瓶怎么检定,能合格吗?我们买了一批Vitlab的A级容量瓶,校准结果根本达不到±0.10mL的要求,这要怎么保证量值溯源?CNAS对这块有严格的要求吗?

  • 【分享】塑料弯曲试验方法

    1.概述(塑料拉力试验机) 弯曲试验主要用来检验材料在经受弯曲负荷作用时的性能,生产中常用弯曲试验来评定材料的弯曲强度和塑性变形的大小,是质量控制和应用设计的重要参考指标。弯曲试验采用简支梁法,把试样支撑成横梁,使其在跨度中心以恒定速度弯曲,直到试样断裂或变形达到预定值,以测定其弯曲性能。 2.试验原理 弯曲试验在《塑料弯曲性能试验方法》(《GB/T 9341-2000》)中使用的是三点式弯曲试验。三点式弯曲试验是将横截面为矩形的试样跨于两个支座上,通过一个加载压头对试样施加载荷,压头着力点与两支点间的距离相等。在弯曲载荷的作用下,试样将产生弯曲变形。变形后试样跨度中心的顶面或底面偏离原始位置的距离称为挠度,单位mm。试样随载荷增加其挠度也增加。弯曲强度是试样在弯曲过程中承受的最大弯曲应力,单位MPa。弯曲应变是试样跨度中心外表面上单元长度的微量变化,用无量纲的比或百分数(%)表示。3.试验方法 3.1试验应在受试材料标准规定的环境中进行,若无类似标准时,应从GB/T2918中选择最合适的环境进行试验。另有商定的,如高温或低温试验除外。 3.2测量试样中部 的宽度b,精确到0.1mm; 厚度h,精确到0.01mm,计算一组试样厚度的平均值h。剔除厚度超过平均厚度允差±0.5%的试样,并用随机选取的试样来代替。调节跨度L,使L=(16±1)h ,并测量调节好的跨度,精确到0.5%。 除下列情况外都用上式计算: 3.2.1对于较厚且单向纤维增强的试样,为避免剪切时分层,在计算两撑点间距离时,可用较大L/h比。 3.2.2对于较薄的的试样,为适应试验设备的能力,在计算跨度时应用较小的L/h比。c、对于软性的热塑性塑料,为防止支座嵌入试样,可用较大的L/h比。 3.3.3试验速度使应变速率尽可能接近1%/min,这一试验速度使每分钟产生的挠度近似为试样厚度值的0.4倍,推荐试样的试验速度为2mm/min。 试样应对称地放在两个支座上,并于跨度中心施加力,如图所示:4.结果计算和表示 4.1弯曲应力是试样跨度中心外表面的正应力,按式(1)计算,单位MPa。 σf=3FL/2bh2 (1) 式中:F——施加的力,N;L——跨度,mm;b——试样宽度,mm; h——试样厚度,mm。 4.2弯曲模量的测量,先根据给定的弯曲应变εf1=0.0005和εf2=0.0025,按式(2)计算相应的挠度s1和s2: si=εfiL2/6h(i=1,2) (2) 式中:si——单个挠度,mm;εfi——相应的弯曲应变,即上述的εf1和εf2值;L——跨度,mm;h——试样厚度,mm。 4.3弯曲弹性模量或弯曲模量Ef,单位MPa,根据式(3)计算: Ef=(σf2-σf1)/ (εf2)-( εf1) (3) 式中:εf1=0.0005,εf2=0.0025,, σf1——挠度为s1时的弯曲应力, MPa; σf2——挠度为s2时的弯曲应力,MPa。5.试验影响因素: 5.1试样尺寸 横梁抵抗弯曲形变的能力与跨度和横截面积有很大关系,尤其是厚度对挠度影响更大。同理,弯曲试验如果跨度相同但试样的横截面积不同,则结果是有差别的。所以标准方法中特别强调(规定)了试样跨度比,厚度和试验速度等几方面的关系,目的是使不同厚度的试样外部纤维形变速率相同或相近,从而使各种厚度之间的结果有一定可比性。在《塑料弯曲性能试验方法》(《GB/T 9341-2000》)中规定了跨度L,使其符合式(4): L=(16±1)h (4) 同时规定若选用推荐试样,则尺寸为:长度l=80±2;宽度b=10.0±0.2;厚度h=4.0±0.2。当不可能或不希望采用推荐试样时,须符合下面的要求: 试样长度和厚度之比应与推荐试样相同,如式(5)所示: l/h=20±1 (5) 试样宽度应采用表1给出的规定值。表1 与厚度相关的宽度值b mm 公称厚度hb±0.51)热塑性模塑和挤塑料以及热固性板材织物和长纤维增强的塑料1)含有粗粒填料的材料,其最小宽度应在20~50 mm 之间5.2试样的机械加对结果有影响。 有必要时尽量采用单面加工的方法来制作。试验时加工面对着加载压头,使未加工面受拉伸,加工面受压缩。 5.3加载压头圆弧半径和支座圆弧半径 加载压头圆弧半径是为了防止剪切力和对试样产生明显压痕而设定的。一般只要不是过大或过小,对结果影响较小。但支座圆弧半径的大小,要保证支座与试样接触为一条线(较窄的面)。如果表面接触过宽,则不能保证试样跨度的准确。 5.4 应变速度 试样受力弯曲变形时,横截面上部边缘处有最大的压缩变形,下部边缘处有最大的拉伸变形。所谓应变速率是指在单位时间内,上下层相对形变的改变量,以每分钟形变百分率表示,试验中可控制加载速度来控制应变速度。随着应变速率和加载速度的增加,弯曲强度也增加,为了消除其影响,在试验方法中对试验速度作出统一的规定,如《GB/T 9341-2000》规定了从表2中选一速度值,使应变速率尽可能接近1%/ min,这一试验速度使每分钟产生的挠度近似为试样厚度值的0.4倍,例如符合推荐试样的试验速度为2mm/min。一般说来应变速率较低时,其弯曲强度偏低。 表2 试验速度推荐值1)厚度在1 mm至3.5 mm之间的试样,用最低速度 试验速度一般都比较低,这是因为塑料在常温下均属粘弹性材料,只有在较慢的试验速度下,才能使试样在外力作用下近似地反映其松弛性能和试样材料自身存在不均匀或其他缺陷的客观真实性。 5.5试验跨度 弯曲试验大多采用“三点式”方式进行。这种方式在受力过程中,除受弯矩作用外,还受剪力的作用。故采用“三点式”方式进行测试,对于反映塑料材料的真实性能是存在一定问题的。因此,国内外有人提出采用“四点式”方式进行测试。目前进行工作较多的还是采用“三点式”方式,用合理的选择跨度和试样厚度比(L/h)来达到消除剪力影响的目的。 试样跨度与厚度比目前基本上有两种情况,一种是L/h=10;另一种是L/h=16。从理论上讲,最大正应力与最大剪应力的关系是τmax/σmax=1/2(L/h),由此可以看到随着跨度比的增大,剪应力应减小。从式中看出,L/h愈大,剪力所占的比愈小,当L/h=10~4时,其剪力分配为5~12.5%。可见剪力效应对试样弯曲强度的影响是随着试样所采用跨度与试样厚度比值的增大而减小的。但是,跨度太大则挠度也增大,且试样两个支承点的滑移也影响试验结果。 5.6环境温度 和其他力学性能一样,弯曲强度也与温度有关。试验温度无疑对塑料的抗弯曲性能有很大影响,特别是对耐热性较差的热性塑料。一般地,各种材料的弯曲强度都是随着温度的升高而下降,但下降的程度各有不同。 5.7试样不可扭曲,表面应相互垂直或平行,表面和棱角上应无刮痕、麻点。6.结论 从以上的试验过程来看影响其结果的因素是多方面的,应严格把握好试验的每个步骤。

  • 【分享】塑料测试方法国家标准清单

    网上查找整理的,不好意思,希望对各位能有一点点用1.GB1033-70 塑料比重试验方法2.GB1034-70 塑料吸水性试验方法3.GB1035-70 塑料耐热性(马丁)试验方法4.GB1036-70 塑料线膨胀系数试验方法5.GB1037-70 塑料透湿性试验方法6.GB1038-70 塑料薄膜透气性试验方法7.GB1408-78 固体电工绝缘材料工频击穿电压、击穿强度和耐电压试验方法8.GB1409-78 固体电工绝缘材料在工频、音频、高频下相对介电系数和介质损耗角正切试验方法9.B1410-78 固体电工绝缘材料绝缘电阻、体积电阻系统和表面电阻系数试验方法10.GB1411-78 固体电工绝缘材料高压小电流间歇耐电弧试验方法11.GB1039-79 塑料力学性能试验方法总则12.GB1040-79 塑料拉伸试验方法13.GB1041-79 塑料压缩试验方法14.GB1042-79 塑料弯曲试验方法15.GB1043-79 塑料简支梁冲击试验方法16.GB1633-79 热塑性塑料软化点(维卡)试验方法17.GB1634-79 塑料弯曲负载热变形温度(简称热变形温度)试验方法18.GB1635-79 塑料树脂灰分测定方法19.GB1636-79 模塑料表观密度试验方法20.GB1841-80聚烯烃树脂稀溶液粘度试验方法21.GB 1842-80 聚乙烯环境应力开裂试验方法22.GB1843-80 塑料悬臂梁冲击试验方法23.GB1846-80 聚氯醚树脂稀溶液粘度试验方法24.GB1847-80 聚甲醛树脂稀溶液粘试验方法25.GB2406-80 塑料燃烧性能试验方法氧指数法26.GB2407-80 塑料燃烧性能试验方法炽热棒法27.GB2408-80 塑料燃烧性能试验方法水平燃烧法28.GB2409-80 塑料黄色指数试验方法29.GB2410-80 透明塑料透光率和雾度试验方法30.GB2411-80 塑料邵氏硬度试验方法31.GB2412-80 聚丙烯等规指数测试方法32.GB1657-81 增塑剂折光率的测定33.GB1662-81 增塑剂结晶点的测定34.GB1664-81 增塑剂外观色泽的测定(铂-钴比色法)35.GB1665-81 增塑剂皂化值及酯含量的测定36.GB1666-81 增塑剂比重的测定(韦氏天平法)37.GB1667-81 增塑剂比重的测定(比重瓶法)38.GB1668-81 增塑剂酸值的测定(一)39.GB1669-81 增塑剂加热减量的测定40.GB1670-81 增塑剂热稳定性试验41.GB1671-81 增塑剂闪点的测定(开口杯法)42.GB1672-81 增塑剂体积电阻系数的测定43.GB1673-81 增塑剂外观色泽的测定(碘比色法)44.GB1674-81 增塑剂酸值的测定(二)45.GB1675-81 增塑剂酸值的测定(三)46.GB1676-81 增塑剂典值的测定47.GB1677-81 增塑剂环氧值的测定(盐酸——丙酮法)48.GB1678-81 增塑剂环氧值的测定(盐酸——吡啶法)49.GB1679-81 增塑剂氯含量的测定50.GB1680-81 增塑剂热分解温度的测定51.GB2812-81 安全帽试验方法52.GB1658-82 增塑剂灰分的测定53.GB1659-82 增塑剂水分的测定(比浊法)54.GB1660-82 增塑剂运动粘度的测定(品氏法)55.GB1661-82 增塑剂运动粘度的测定(恩氏法)56.GB1663-82 增塑剂凝固点的测定57.GB2895-82 不饱和聚酯树脂酸值的测定58.GB2896-82 聚苯乙烯树脂中甲醇可溶物的测定59.GB2913-82 塑料白度试验方法60.GB2914-82 聚氯乙烯树脂挥发物(包括水)测定方法61.GB2915-82 聚氯乙烯树脂水萃聚液电导率测定方法62.GB2916-82 聚氯乙烯树脂干筛试验方法63.GB2917-82 聚氯乙烯热稳定性测试方法——刚果红法和pH法64.GB2918-82 塑料试样状态调节和试验的标准环境65.GB3354-82 定向纤维增强塑料拉伸性能试验方法66.GB3355-82 纤维增强塑料纵横剪切试验方法67.GB3356-82 单向纤维增强塑料弯曲性能试验方法68.GB3357-82 单向纤维增强塑料层间剪切强度试验方法69.GB3393-82 聚合级乙烯、丙烯中微量氢的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法70.GB3395-82 聚合级乙烯中微量乙炔的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法71.GB3397-82 聚合级乙烯、丙烯中微量硫的测定 微库仑法72.GB3398-82 塑料球压痕硬度试验方法73.GB3399-82 塑料导热系统试验方法 护热平板法74.GB3400-82 通用型聚氯乙烯树脂增塑剂吸收量的测定75.GB3401-82 聚氯乙烯树脂稀溶液粘数的测定76.GB3560-83 食品包装材料聚丙烯树脂卫生检验方法77.GB3681-83 塑料自然气候曝露试验方法78.GB3682-83 热塑性塑料熔体流动速率试验方法79.GB3854-83 纤维增强塑料巴氏(巴柯尔)硬度试验方法80.GB3855-83 碳纤维增强塑料树脂含量的试验方法81.GB3856-83 单向纤维增强塑料平板压缩性能试验方法82.GB3857-83 不饱和聚酯树脂玻璃纤维增强塑料耐化学药品性能试验方法83.GB3904-83 鞋类耐折试验方法84.GB3905-83 鞋类耐磨试验方法85.GB3960-83 塑料滑动摩擦磨损试验方法86.GB4218-84 化工用硬聚氯乙烯管材的腐蚀度试验方法87.GB4550-84 试验用单向纤维增强塑料平板的制88.GB4608-84 部分结晶聚合物熔点试验方法 光学法89.GB4609-84 塑料燃烧性能试验方法 垂直燃烧法90.GB4610-84 塑料燃烧性能试验方法 点着温度的测定91.GB4611-84 悬浮法聚氯乙烯树脂‘鱼眼’测试方法92.GB4612-84 环氧化合物环氧当量的测定93.GB4613-84 环氧树脂和缩水甘油酯无机氯的测定94.GB4614-84 用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定聚苯乙烯中残留的苯乙烯单体95.GB4615-84 聚氯乙烯树脂中残留氯乙烯单体含量测定方法96.GB4616-84 酚醛模塑料丙酮可溶物(未模塑态材料的表观树脂含量)的测定97.GB4617-84 酚醛模塑制品丙酮可溶物的测定98.GB4618-84 环氧树脂和有关材料易皂化氯的测定99.GB6111-85 长期恒定内压下热塑性塑料管材耐破坏时间的测定方法100.GB 6112-85 热塑性塑料管材和管件耐冲击性能的测试方法(落锤法)101.GB6342-86 泡沫塑料和橡胶线性尺寸的测定102.GB6343-86 泡沫塑料和橡胶表观密度的测定103.GB6344-86 软质泡沫聚合物拉伸强度和断裂伸长的测定104.GB6669-86 软质泡沫聚合材料压缩永久变形的测定105.GB6670-86 软质泡沫塑料回弹性能的测定106.GB6671.1-86 硬聚氯乙烯(PVC)管材纵向回缩率的测定107.GB6671.2-86 聚乙烯(PE)管材纵向回缩率的测定108.GB6671.3-86 聚丙烯(PP)管材纵向回缩率的测定109.GB6672-86 塑料薄膜和薄片厚度的测定 机械测量法110.GB673-86 塑料薄膜与片材长度和宽度的测定111.ZBY28004-86 塑料薄膜包装袋热合强度测定方法112.SG390-84 硬质泡沫塑料水蒸汽透过量试验方法113.HG2-146-65 塑料耐油性试验方法114.HG2-151-65 塑料粘接材料剪切强度试验方法115.HG2-161-65 塑料低温对折试验方法116.HG2-162-65 塑料低温冲击压缩试验方法117.HG2-163-65 塑料低温伸长试验方法118.HG2-167-65 塑料撕裂强度试验方法119.GB1033-86 塑料密度和相对密度试验方法120.GB1034-86 塑料吸水性试验方法121.GB1037-87 塑料薄膜和片材透水蒸气性试验方法 杯式法122.GB3904-83 鞋类耐折试验方法123.GB3905-83 鞋类耐磨试验方法124.GB4857.1-84 运输包装件基本试验 总则125.GB4857.2-84 运输包装件基本试验 温湿度调节处理126.GB4857.3-84 运输包装件基本试验 堆码试验方法127.GB4857.4-84 运输包装件基本试验 压力试验方法128.GB4857.5-84 运输包装件基本试验 垂直冲击跌落试验方法129.GB4857.6-84 运输包装件基本试验 滚动试验方法130.GB4857.7-84 运输包装件基本试验 正弦振动(定频)试验方法131.GB4857.8-85 运输包装件基本试验 六角滚筒试验方法132.GB4857.9-86 运输包装件基本试验 喷淋试验方法133.GB4857.10-86 运输包装件基本试验 正弦振动(变频)试验方法134.GB5470-85 塑料冲击脆化温度试验方法135.GB5478-85 塑料滚动磨损试验方法136.GB6595-86 聚丙烯树脂“鱼眼”测试方法137.GB7056-86 拖、凉鞋帮带拔出力试验方法138.GB7131-86 裂解[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法鉴定聚合物139.GB7141-86 塑料热空气老化试验方法(热老化箱法)通则140.GB7142-86 塑料长期受热作用后的时间-温度极限的测定141.GB7155.1-87 热塑性塑料管材及管件密度的测定142.GB7155.2-87 热塑性塑料管材及管件密度的测定143.GB8323-87 塑料燃烧性能试验方法烟密度法144.GB8332-87 泡沫塑料燃烧性能试验方法 水平燃烧法145.GB8333-87 硬泡沫塑料燃烧性能试验方法 垂直燃烧法146.GB8801-88 硬聚氯乙烯(PVC-U)管件坠落试验方法147.GB8802-88 硬聚氯乙烯(PVC-U)管材及管件维卡软化温度测定方法148.GB8803-88 注塑硬聚氯乙烯(PVC-U)管件热烘箱试验方法149.GB8804.1-88 热塑性塑料管材拉伸性能试验方法 聚氯乙烯管材拉伸性能的测定150.GB8804.2-88 热塑性塑料管材拉伸性能试验方法 聚乙烯管材拉伸性能的测定151.GB8805-88 硬质塑料管材弯曲度测量方法152.GB8806-88 塑料管材尺寸测量方法153.GB8807-88 塑料镜面光泽试验方法154.GB8808-88 软质复合塑料材料剥离试验方法155.GB880

  • 【转帖】欧盟禁止婴儿奶瓶使用含双酚A塑料

    欧盟食品链和动物健康委员会近日通过欧盟委员会一项决定,禁止使用含有化学物质双酚A的塑料生产婴儿奶瓶。此项措施将从2011年年中开始生效。近几个月来,欧委会与欧洲食品安全署、欧盟成员国政府及一些生产企业一直探讨这项禁令。欧委会负责卫生和消费事务的委员达利说:“最新研究显示,双酚A存在某些不确定性或副作用,可能对发育、免疫反应等产生影响。今天的决定对欧洲家长们是个好消息。”根据欧盟新规定,成员国将从2011年3月1日起禁止使用含双酚A塑料生产婴儿奶瓶,并从2011年6月1日起禁止进口此类塑料婴儿奶瓶。目前,法国和丹麦已经禁止销售这类奶瓶。

  • 【塑料袋禁限令追踪】报道:专家认为对厂家有益

    塑料购物袋将于6月1日起有偿使用,同时停止生产使用超薄塑料袋。春节期间,一则信息再次引起人们对塑料袋的关注———国家标准委出台首个塑料购物袋国家标准的征求意见稿,向社会广泛征求意见,截止日期为3月4日。塑料购物袋制定国家标准,将给生产厂家带来什么影响,近日,北京塑料厂的刘工程师在接受记者采访时表示:标准的制定对生产厂家来说是件有益的事情。特别是按照标准生产直接接触食品用的塑料购物袋对生产企业影响不大,只需对生产工艺稍作调整即可达到要求。   据了解,塑料购物袋国家标准由国家标准委和中国轻工业联合会完成。其中规定,塑料购物袋的厚度必须≥0.025毫米。颜色方面,直接接触食品用塑料购物袋应为本色。外观上,不允许出现气泡、穿孔等瑕疵。  在食品安全方面,直接接触食品的塑料购物袋必须标有“食品用”字样;在使用安全方面,塑料袋必须有安全性说明和警告语,如“为了避免和防止窒息等危险,请远离婴儿和幼儿”等;在环保方面,塑料袋必须标有“为了保护环境和节约资源,请多次使用”文字。同时,还应明确标识生产厂家名称,明确标识公称承重,单位为千克。

  • 常用塑料词汇(转贴)

    常用塑料英语缩略语 英文简称 英文全称 中文全称 ABA Acrylonitrile-butadiene-acrylate 丙烯腈/丁二烯/丙烯酸酯共聚物 ABS Acrylonitrile-butadiene-styrene 丙烯腈/丁二烯/苯乙烯共聚物 AES Acrylonitrile-ethylene-styrene 丙烯腈/乙烯/苯乙烯共聚物 AMMA Acrylonitrile/methyl Methacrylate 丙烯腈/甲基丙烯酸甲酯共聚物 ARP Aromatic polyester 聚芳香酯 AS Acrylonitrile-styrene resin 丙烯腈-苯乙烯树脂 ASA Acrylonitrile-styrene-acrylate 丙烯腈/苯乙烯/丙烯酸酯共聚物 CA Cellulose acetate 醋酸纤维塑料 CAB Cellulose acetate butyrate 醋酸-丁酸纤维素塑料 CAP Cellulose acetate propionate 醋酸-丙酸纤维素 CE Cellulose plastics, general 通用纤维素塑料 CF Cresol-formaldehyde 甲酚-甲醛树脂 CMC Carboxymethyl cellulose 羧甲基纤维素 CN Cellulose nitrate 硝酸纤维素 CP Cellulose propionate 丙酸纤维素 CPE Chlorinated polyethylene 氯化聚乙烯 CPVC Chlorinated poly(vinyl chloride) 氯化聚氯乙烯 CS Casein 酪蛋白 CTA Cellulose triacetate 三醋酸纤维素 EC Ethyl cellulose 乙烷纤维素 EMA Ethylene/methacrylic acid 乙烯/甲基丙烯酸共聚物 EP Epoxy, epoxide 环氧树脂 EPD Ethylene-propylene-diene 乙烯-丙烯-二烯三元共聚物 EPM Ethylene-propylene polymer 乙烯-丙烯共聚物 EPS Expanded polystyrene 发泡聚苯乙烯 ETFE Ethylene-tetrafluoroethylene 乙烯-四氟乙烯共聚物 EVA Ethylene/vinyl acetate 乙烯-醋酸乙烯共聚物 EVAL Ethylene-vinyl alcohol 乙烯-乙烯醇共聚物 FEP Perfluoro(ethylene-propylene) 全氟(乙烯-丙烯)塑料 FF Furan formaldehyde 呋喃甲醛 HDPE High-density polyethylene plastics 高密度聚乙烯塑料 HIPS High impact polystyrene 高冲聚苯乙烯 IPS Impact-resistant polystyrene 耐冲击聚苯乙烯 LCP Liquid crystal polymer 液晶聚合物 LDPE Low-density polyethylene plastics 低密度聚乙烯塑料 LLDPE Linear low-density polyethylene 线性低密聚乙烯 LMDPE Linear medium-density polyethylene 线性中密聚乙烯 MBS Methacrylate-butadiene-styrene 甲基丙烯酸-丁二烯-苯乙烯共聚物 MC Methyl cellulose MDPE Medium-density polyethylene 中密聚乙烯 MF Melamine-formaldehyde resin 密胺-甲醛树脂 MPF Melamine/phenol-formaldehyde 密胺/酚醛树脂 PA Polyamide (nylon) 聚酰胺(尼龙) PAA Poly(acrylic acid) 聚丙烯酸 PADC Poly(allyl diglycol carbonate) 碳酸-二乙二醇酯 烯丙醇酯树脂 PAE Polyarylether 聚芳醚 PAEK Polyaryletherketone 聚芳醚酮 PAI Polyamide-imide 聚酰胺-酰亚胺 PAK Polyester alkyd 聚酯树脂 PAN Polyacrylonitrile 聚丙烯腈 PARA Polyaryl amide 聚芳酰胺 PASU Polyarylsulfone 聚芳砜 PAT Polyarylate 聚芳酯 PAUR Poly(ester urethane) 聚酯型聚氨酯 PB Polybutene-1 聚丁烯-[1] PBA Poly(butyl acrylate) 聚丙烯酸丁酯 PBAN Polybutadiene-acrylonitrile 聚丁二烯-丙烯腈 PBS Polybutadiene-styrene 聚丁二烯-苯乙烯 PBT Poly(butylene terephthalate) 聚对苯二酸丁二酯 PC Polycarbonate 聚碳酸酯 PCTFE Polychlorotrifluoroethylene 聚氯三氟乙烯 PDAP Poly(diallyl phthalate) 聚对苯二甲酸二烯丙酯 PE Polyethylene 聚乙烯 PEBA Polyether block amide 聚醚嵌段酰胺 PEBA Thermoplastic elastomer polyether 聚酯热塑弹性体 PEEK Polyetheretherketone 聚醚醚酮 PEI Poly(etherimide) 聚醚酰亚胺 PEK Polyether ketone 聚醚酮 PEO Poly(ethylene oxide) 聚环氧乙烷 PES Poly(ether sulfone) 聚醚砜 PET Poly(ethylene terephthalate) 聚对苯二甲酸乙二酯 PETG Poly(ethylene terephthalate) glycol 二醇类改性PET PEUR Poly(ether urethane) 聚醚型聚氨酯 PF Phenol-formaldehyde resin 酚醛树脂 PFA Perfluoro(alkoxy alkane) 全氟烷氧基树脂 PFF Phenol-furfural resin 酚呋喃树脂 PI Polyimide 聚酰亚胺 PIB Polyisobutylene 聚异丁烯 PISU Polyimidesulfone 聚酰亚胺砜 PMCA Poly(methyl-alpha-chloroacrylate) 聚α-氯代丙烯酸甲酯 PMMA Poly(methyl methacrylate) 聚甲基丙烯酸甲酯 PMP Poly(4-methylpentene-1) 聚4-甲基戊烯-1 PMS Poly(alpha-methylstyrene) 聚α-甲基苯乙烯 POM Polyoxymethylene, polyacetal 聚甲醛 PP Polypropylene 聚丙烯 PPA Polyphthalamide 聚邻苯二甲酰胺 PPE Poly(phenylene ether) 聚苯醚 PPO Poly(phenylene oxide) deprecated 聚苯醚 PPOX Poly(propylene oxide) 聚环氧(丙)烷 PPS Poly(phenylene sulfide) 聚苯硫醚 PPSU Poly(phenylene sulfone) 聚苯砜 PS Polystyrene 聚苯乙烯 PSU Polysulfone 聚砜 PTFE Polytetrafluoroethylene 聚四氟乙烯 PUR Polyurethane 聚氨酯 PVAC Poly(vinyl acetate) 聚醋酸乙烯 PVAL Poly(vinyl alcohol) 聚乙烯醇 PVB Poly(vinyl butyral) 聚乙烯醇缩丁醛 PVC Poly(vinyl chloride) 聚氯乙烯 PVCA Poly(vinyl chloride-acetate) 聚氯乙烯醋酸乙烯酯 PVDC Poly(vinylidene chloride) 聚(偏二氯乙烯) PVDF Poly(vinylidene fluoride) 聚(偏二氟乙烯) PVF Poly(vinyl fluoride) 聚氟乙烯 PVFM Poly(vinyl formal) 聚乙烯醇缩甲醛 PVK Polyvinylcarbazole 聚乙烯咔唑 PVP Polyvinylpyrrolidone 聚乙烯吡咯烷酮 S/MA Styrene-maleic anhydride plastic 苯乙烯-马来酐塑料 SAN Styrene-acrylonitrile plastic 苯乙烯-丙烯腈塑料 SB Styrene-butadiene plastic 苯乙烯-丁二烯塑料 Si Silicone plastics 有机硅塑料 SMS Styrene/alpha-methylstyrene plastic 苯乙烯-α-甲基苯乙烯塑料 SP Saturated polyester plastic 饱和聚酯塑料 SRP Styrene-rubber plastics 聚苯乙烯橡胶改性塑料 TEEE Thermoplastic Elastomer,Ether-Ester 醚酯型热塑弹性体 TEO Thermoplastic Elastomer, Olefinic 聚烯烃热塑弹性体 TES Thermoplastic Elastomer, Styrenic 苯乙烯热塑性弹性体 TPEL Thermoplastic elastomer 热塑(性)弹性体 TPES Thermoplastic polyester 热塑性聚酯 TPUR Thermoplastic polyurethane 热塑性聚氨酯 TSUR Thermoset polyurethane 热固聚氨酯 UF Urea-formaldehyde resin 脲甲醛树脂 UHMWPE Ultra-high molecular weight PE 超高分子量聚乙烯 UP Unsaturated polyester 不饱和聚酯 VCE Vinyl chloride-ethylene resin 氯乙烯/乙烯树脂 VCEV Vinyl chloride-ethylene-vinyl 氯乙烯/乙烯/醋酸乙烯共聚物 VCMA Vinyl chloride-methyl acrylate 氯乙烯/丙烯酸甲酯共聚物 VCMMA Vinyl chloride-methylmethacrylate 氯乙烯/甲基丙烯酸甲酯共聚物 VCOA Vinyl chloride-octyl acrylate resin 氯乙烯/丙烯酸辛酯树脂 VCVAC Vinyl chloride-vinyl acetate resin 氯乙烯/醋酸乙烯树脂 VCVDC Vinyl chloride-vinylidene chloride 氯乙烯/偏氯乙烯共聚物

  • 塑料模具钢的种类

    塑料模具钢是塑料模具的制备原材质,其性能高低与塑料生产企业息息相关,只有对其种类有比较清楚的了解,才能选择出合适的模具。一般塑料模具钢按其使用特性分为渗碳型、预硬型、时效硬化型、耐蚀型等类型。  1、渗碳型  渗碳钢退火后硬度低、塑性好,可以采用冷挤压成型。渗碳型塑料模具钢含碳量较低,常加元素Cr,同时加入适量的Ni、Mo、V,以提高淬透性和渗碳能力,退火后的应对≤100HBS。典型的牌号是瑞典的8416、美国的P2和P4等。国内的12CrNi3A和12Cr2Ni4A、20Cr2Ni4A,及最近新研制的0Cr4NioV(LJ钢)。  2、预硬型  预硬型是为避免大、中型精密模具热处理后的变形,保证模具的精度和使用性能而开发的一种模具钢。预先进行调质处理,硬度为30-40HRC。这类钢一般为中低碳合金钢,含碳量为0.35%-0.65%,常用合金元素有Cr、Ni、Mn、V等,为改善其切削性,加入S、Ca等。列入国标的预硬型塑料模具钢仅有3Cr2Mo(P20)钢和3Cr2MnNiMo两种。  3、调质型  是模具在加工后,再进行调质处理,使模具的性能更佳。主要有3类  1)45、55等碳素钢,适宜于形状简单或精度要求不高、使用寿命不长的模具。  2)40CrMo、42CrMo。前者有良好的低温冲击韧性和低的缺口敏感性,适宜制作中型模具;后者属于高强度钢,且有较高的疲劳极限,低温冲击性好,适宜制造要求一定强度和韧性的大、中型塑料模具。  3)38CrMoAl、5CrNiMo。前者适用于PVC、PC的塑料模具。后者主要用于使用温度较高、耐磨性要求高的模具,如热固性塑料模。  4、时效硬化型  时效硬化型主要用于制造高精度、复杂型腔塑料模具,价格昂贵。有马氏体时效硬化和析出沉淀硬化钢两大类。典型的牌号有新开发的低钴、无钴、低镍的马氏体时效钢,调质后的钢的硬度在30HRC左右,时效处理后的硬度可达38-42HRC。还有是MAST马氏体时效钢,固溶后的硬度为28-32HRC,时效后可到48-52HRC,钢的强韧性高、时效尺寸变化小、焊接性能好。  5、耐蚀型  主要用于有聚氯乙烯、聚苯乙烯、ABS加抗燃树脂等生产中会分解出腐蚀性气体这一类的材料。典型牌号国外常用的耐蚀塑料钢有马氏体不锈钢和析出硬化型不锈钢两类,如瑞典的ASSAB公司的STVAX(4Cr13)和ASSAB~8407等。国内常见的是高碳高铬型耐蚀钢如1Cr17Ni2马氏体不锈耐酸钢、0Cr16Ni4Cu3Nb析出硬化不锈钢等。脉搏制造网外协加工-机械加工-数控加工-专注加工制造业B2B平台

  • 【转帖】塑料绿色包装行业的9种发展趋势

    目前,业内专家指出,塑料绿色包装行业存在9种发展趋势:  1.研究开发可回收利用的绿色包装材料  包装废弃物法规因地而异,但有一个共同的原则:鼓励少用原材料。在包装设计上应尽量使用同一材料、可分离可共存的材料并趋向于使用结构简单、容易循环再生的材料。在满足包装功能的前提下,尽量减少垃圾的产生量,从而呈现包装薄膜轻量化发展趋势。  2.研究塑料稳定化技术塑料稳定技术发展的关键是进行新的抗氧剂、紫外线稳定剂和自由基捕获剂的制备及其应用的研究开发。日用化学品重灌装塑料容器,食品用的托盘或周转箱等,可利用塑料稳定化技术,制造高质量的塑料制品,以提高它的再使用或回收再利用的价值  3.研究塑料可降解技术可降解塑料一般分为生物降解塑料、光降解塑料和生物/光降解塑料等。国内研发的品种已涵盖光降解、光生物降解、光氧生物降解、高淀粉含量型生物降解、高碳酸钙填充型光氧降解、全生物降解等大类;可降解塑料制品在包装方面的应用,已遍及于普通包装薄膜、收缩薄膜、购物袋、垃圾袋等等,对于改善环境质量发挥了积极的作用。从保护生态平衡出发,研究完全生物降解塑料已迫在眉睫,特别是食用粉或无机矿物质填充的高质量、低成本全生物降解塑料是可降解塑料目前的重要研究课题。  4.研发焚烧回收热能或采用炼钢炉再利用塑料废弃物的研究开发焚烧回收热能是塑料废弃物再资源化的一个主要手段,也是治理塑料废弃物的最现实的选择。今后应研究开发塑料垃圾处理提供热能的有关设备,设计出使用更为简便、寿命更长、价格更低的设备,以加速我国焚烧回收热能和利用炼钢炉再利用塑料废弃物的研究开发。  5.可食性薄膜可食性包装膜是以天然可食性物质(如多糖、蛋白质等)为原料,通过不同分子间相互作用而形成的具有多孔网络结构的薄膜。如壳聚糖可食性包装膜、玉米蛋白质包装膜、改性纤维素可食性包装膜及复合型可食包装膜等,可食性薄膜可应用于各种即食性食品的内包装,在食品行业应具有巨大的市场。6.水溶性塑料包装薄膜水溶性塑料包装薄膜作为一种新颖的绿色包装材料,在欧美、日本等国被广泛用于各种产品的包装,例如农药、化肥、颜料、染料、清洁剂、水处理剂、矿物添加剂、洗涤剂、混凝土添加剂、摄影用化学试剂及园艺护理的化学试剂等。  7.重点进行循环经济型塑料发展相应的对策、法律、法规和制度的制订和实施办法的研究  目前,我国固体塑料废弃物分放的设施在上海市已经出现,但仍有很多人随意投放。相当多的地区、部门和企业,表现出只顾眼前利益的短期行为。  8.CT材料日本中央化学公司经过10年的努力,已研制成功符合环保原则的食品包装容器专用塑料CT。C T不仅耐高温,还有一个最突出的优点,就是它的功能与俗称"泡法沫塑料"的PSP塑料制品相仿,而其体积只相当于后者的1/4。这样在回收时避免了因体积庞大而产生的诸多麻烦,并为消除对环境的负面影响创造了极有利的条件。  9.新型高阻隔性塑料包装材料新型高阻隔性塑料在国外已广泛应用,国内也已引进这项技术。使用高强度高阻隔性塑料不仅可以提高对食品的保护,而且在包装相同量食品时可以减少塑料的用量,甚至可以重复使用。现在国内常用的高阻隔性材料有铝箔、尼龙、聚酯、聚偏二氯乙烯等。随着食品对保护性要求的提高,阻隔性更好的乙烯、乙烯醇共聚物、聚乙烯醇等也开始应用。

  • 【资料】包装材料塑料薄膜性能的测试方法

    在塑料包装材料中,各种塑料薄膜、复合塑料薄膜具有不同的物理、机械、耐热以及卫生性能。人们根据包装的不同需要,选择合适的材料来使用。如何评价包装材料的性能呢?国内外测试方法有很多。我们应优先选择那些科学、简便、测量误差小的方法。优先选择ISO国际标准、国际先进组织标准,如ASTM、TAPPI等和我国国家标准、行业标准,如BB/T标准、QB/T标准、HB/T标准等等。 笔者在从事检验工作中,使用过一些检测方法,下面向大家简单介绍一下。 GBT 2918-1998 塑料试样状态调节和试验的标准环境规格、外观   塑料薄膜作为包装材料,它的尺寸规格要满足内装物的需要。有些薄膜的外观与货架效果紧密相连,外观有问题直接影响商品销售。而厚度又是影响机械性能、阻隔性的因素之一,需要在质量和成本上找到最优化的指标。因此这些指标就会在每个产品标准的要求中作出规定,相应的要求检测方法一般有: 1.厚度测定   GB/T6672-2001《塑料薄膜和薄片厚度测定 机械测量法》该非等效采用ISO4593:1993《塑料-薄膜和薄片-厚度测定-机械测量法》。适用于薄膜和薄片的厚度的测定,是采用机械法测量即接触法,测量结果是指材料在两个测量平面间测得的结果。测量面对试样施加的负荷应在0.5N~1.0N之间。该方法不适用于压花材料的测试。 2.长度、宽度   GB/T 6673-2001《塑料 薄膜与片材长度和宽度的测定》非等效采用国际标准ISO 4592:1992《塑料-薄膜和薄片-长度和宽度的测定》。该标准规定了卷材和片材的长度和宽度的基准测量方法。   塑料材料的尺寸受环境温度的影响较大,解卷时的操作拉力也会造成材料的尺寸变化。测量器具的精度不同,也会造成测量结果的差异。因此在测量中必须注意每个细节,以求测量的结果接近真值。   标准中规定了卷材在测量前应先将卷材以最小的拉力打开,以不超过5m的长度层层相叠不超过20层作为被测试样,并在这种状态下保持一定的时间,待尺寸稳定后在进行测量。 3.外观   塑料薄膜的外观检验一般采取在自然光下目测。外观缺陷在GB/T 2035 《塑料术语及其定义》中有所规定。缺陷的大小一般需用通用的量具,如钢板尺、游标卡尺等等进行测量。 物理机械性能 1.塑料力学性能——拉伸性能   塑料的拉伸性能试验包括拉伸强度、拉伸断裂应力、拉伸屈服应力、断裂伸长率等试验。   塑料拉伸性能试验的方法国家标准有几个,适用于不同的塑料拉伸性能试验。   GB/T 1040-1992 《塑料拉伸性能试验方法》一般适用于热塑性、热固性材料,这些材料包括填充和纤维增强的塑料材料以及塑料制品。适用于厚度大于1mm的材料。   GB/T13022-1991《塑料 薄膜拉伸性能试验方法》是等效采用国际标准ISO1184-1983《塑料 薄膜拉伸性能的测定》。适用于塑料薄膜和厚度小于1mm的片材,该方法不适用于增强薄膜、微孔片材、微孔膜的拉伸性能测试。  以上两个标准中分别规定了几种不同形状的试样,和拉伸速度,可根据不同产品情况进行选择。如伸长率较大的材料,不宜采用太宽的试样;硬质材料和半硬质材料可选择较低的速度进行拉伸试验,软质材料选用较高的速度进行拉伸试验等等。 2.撕裂性能   撕裂性能一般用来考核塑料薄膜和薄片及其它类似塑料材料抗撕裂的性能。   GB/T 16578-1996《塑料薄膜和薄片耐撕裂性能试验方法 裤形撕裂法》是等效采用国际标准ISO 6383-1:1983《塑料-薄膜和薄片-耐撕裂性能的测定 第1部分;裤形撕裂法》适用于厚度在1mm以下软质薄膜或片材。试验方法是将长方形试样在中间预先切开一定长度的切口,像一条裤子。故名裤形撕裂法。然后在恒定的撕裂速度下,使裂纹沿切口撕裂下去所需的力。使用仪器同拉伸试验仪中的非摆锤式的试验机。   QB/T1130-1991《塑料直角撕裂性能试验方法》适用于薄膜、薄片及其它类似的塑料材料。试验方法是将试样裁成带有900直角口的试样,将试样夹在拉伸试验机的夹具上,试样的受力方法与试样方向垂直。用一定速度进行拉伸,试验结果以撕裂过程中的最大力值作为直角撕裂负荷。试样如果太薄,可采用多片试样叠合起来进行试验。但是,单片和叠合试样的结果不可比较。叠合试样不适用于泡沫塑料片。   GB/T11999-1989《塑料薄膜和薄片耐撕裂性试验方法 埃莱门多夫法》是等效采用国际标准ISO 6383/2-1983《塑料薄膜和薄片耐撕裂性的测定――第二部分:埃莱门多夫法》适用于软塑料薄膜、复合薄膜、薄片,不适用于聚氯乙烯、尼龙等较硬的材料。原理是使具有规定切口的试样承受规定大小摆锤贮存的能量所产生的撕裂力,以撕裂试样所消耗的能量计算试样的耐撕裂性。 3.摩擦系数   静摩擦系数是指两接触表面在相对移动开始时的最大阻力与垂直施加于两个接触表面的法向力之比。   动摩擦系数是指两接触表面以一定速度相对移动时的阻力与垂直施加于两个接触表面的法向力之比。   试验是由水平试验台、滑块、测力系统和使水平试验台上两试验表面相对移动的驱动机构等组成。   试验通过是将两试验表面平放在一起,在一定的接触压力下,使两表面相对移动,测得试样开始相对移动时的力和匀速移动时的力。通过计算得出试样的摩擦系数。   静(动)摩擦系数=目前常用的方法标准为GB/T10006-1988《塑料薄膜和薄片摩擦系数测定法》它非等效采用国际标准ISO 8295-1986《塑料-薄膜和薄片-摩擦系数的测定》。 4.热合强度   塑料薄膜作为包装材料,常常用热合的方法将被包装物封装在内,是否达到良好的密封,热合的质量很重要,目前试验室常用的仪器设备是“热梯度仪”是一台可设定不同温度、压力、时间的热合试验设备,它可用于试验某种材料在某种条件下封合的最佳效果,封合质量可用QB/T 2358-1998 《塑料薄膜包装袋热合强度试验方法》是常用的方法标准。本标准适用于各种塑料薄膜包装袋的热合强度测定。   试验是将条形试样的两端夹在拉力试验的两个夹具上,进行拉伸,破坏试样封合部位的最大力值,就是热合的力值,结果一定以单位长度的试样所用的力值来表示,即热合强度。所用的力用N/m来表示。 *]:bP&{i9 5.剥离力   复合薄膜是用干复式或共挤式将不同单膜复合在一起,复合的好环直接影响着复合膜的强度,阻隔性及今后的使用寿命。所以在选用包装材料前测试复合层的剥离力很重要。   GB/T8808-1988《软质复合塑料材料剥离试验方法》是将预先剥开起头的被测膜的预分离层的两端夹在拉力试验机上,测试剥开材料层间时所需的力。 6.抗冲击性能   GB/T8809-1988《塑料薄膜抗摆锤冲击试验方法》适用于各种塑料薄膜抗摆锤冲击试验。试验是测量半圆形摆锤冲击在一定速度下冲击穿过塑料膜所消耗的能量。   GB/T9639-1988《塑料薄膜和薄片抗冲击性能试验方法 自由落标法》适用于塑料薄膜和厚度小于1mm的薄片。试验是在给定的自由落标冲击下,测定50%塑料薄膜和薄片试样破损时的能量。以冲击破损质量表示。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制