当前位置: 仪器信息网 > 行业主题 > >

塑料痕硬定仪

仪器信息网塑料痕硬定仪专题为您提供2024年最新塑料痕硬定仪价格报价、厂家品牌的相关信息, 包括塑料痕硬定仪参数、型号等,不管是国产,还是进口品牌的塑料痕硬定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合塑料痕硬定仪相关的耗材配件、试剂标物,还有塑料痕硬定仪相关的最新资讯、资料,以及塑料痕硬定仪相关的解决方案。

塑料痕硬定仪相关的资讯

  • 常用硬度测试仪器 ,布、洛、维硬度计之洛氏硬度计(含一般洛氏、表面洛氏、双洛氏、塑料球压痕硬度计)
    洛氏硬度测试硬度是表征材料局部抵抗硬物压入其表面能力的物理量,常用洛氏硬度(Rockwell),维氏硬度(Vickers)和布氏硬度(Brinell)。洛氏硬度检测法最初是由美国人洛克威尔(S.P.Rockwell和H.M.Rockwell)在1914年提出。1919年和1921年对硬度计的设计进行了改进,奠定了现代洛氏硬度计的雏形。 基本知识 产品推荐 洛氏硬度计测试的国际标准EN-ISO 6508GB/T230ASTM E-18JIS Z 2245洛氏硬度测试 洛氏硬度检测的最大试验力是150kgf,所产生的压痕比布氏压痕小,对制件表面没有明显损伤。操作简单、测试迅速、使用范围广。 适于成批大量检测的半成品和成品检验。荷兰轶诺硬度计的FENIX、NEXUS、VERZUS、 NEMESIS、HAWK系列均由力传感器闭环控制。由轶诺集团研发、设计、并完成耐久测试。 洛氏硬度测试原理 洛氏硬度测试原理 将特定尺寸、形状和材料的压头按照标准规定分两级试验力压入试样表面:初试验力加载后,测量初始压痕深度;随后施加主试验力,在卸除主试验力后保持初试验力时测量最终压痕深度,从而计算出洛氏硬度值。 洛氏标尺及表示方法 洛氏硬度的标尺和表示方法洛氏共有30个标尺,分为一般洛氏和表面洛氏,即: 一般洛氏:HRA、HRB、HRC、HRD、HRE、HRF、HRG、HRH、HRK、HRL、HRM、HRP、HRR、HRS、HRV表面洛氏:HR15N、HR30N、HR45N、HR15T、HR30T、HR45T、HR15W、HR30W、HR45W、HR15X、HR30X、HR45X、HR15Y、HR30Y、HR45Y 常用的洛氏标尺常用的洛氏标尺有HRA, HRB, HRC等:HRA --适于测坚硬或薄硬材料硬度,如硬质合金、渗碳后淬硬钢、经硬化处理后的薄钢带、薄钢板等。HRB--适于测中等硬度的材料,如经退火后的中碳和低碳钢、可锻铸铁、各种黄铜、青铜、硬铝合金等。HRC--适于测经淬火及低温回火后的碳素钢、合金钢以及工、模具钢,也适于测冷硬铸铁、珠光体可锻铸铁、钛合金等。 洛氏硬度的表示方法洛氏硬度的表示方法:硬度值+HR符号+标尺。例如, 60HRC, 表示用洛氏C标尺测试的洛氏硬度值为60 洛氏硬度检测的特点和应用 洛氏硬度检测的特点和应用1) 可以测量从较软到较硬材料的硬度,使用范围宽广。可测试各种黑色金属和有色金属,测试淬火钢、回火钢、退火钢、表面硬化钢、各种厚度的板材、硬质合金材料、粉末冶金材料、热喷涂层的硬度,以及塑料等。2) 有初试验力,所以试件表面轻微的不平度对硬度值的影响比布氏、维氏小。因此,适用于成批生产大量检测的机械、冶金热加工过程中以及半成品或成品检验。特别适用于刃具、模具、量具、工具等的成品制件检测。3) 当遇到材料较薄,试样较小,表面硬化层较浅或测试表面镀覆层时,可用表面洛氏硬度试验。HR洛氏硬度计轶诺硬度计轶诺洛氏硬度计 涵盖了从传统手动型到闭环力传感器型等多种不同型号;无论您的需求是传统工业,还是高精尖航空实验室的硬度测试,都能在轶诺找到合适的解决方案。VERZUS 720 洛氏硬度计可以满足7x24不间断的高速测试需求。对于需要将工件位置固定,并有高速、全自动测试的需求,NEMESIS6200是当之无愧的优选之选。 NEMESIS 6200洛氏硬度计洛氏硬度计 NEMESIS 6100 NEMESIS 9100RS --- 洛氏硬度计洛氏硬度计 VERZUS 720洛氏硬度计 FENIX 200 DCL洛氏硬度计 FENIX 200 ACL FENIX 200 AR洛氏硬度计FENIX 300RS-IMP---洛氏硬度计洛氏硬度计 FENIX 300RS FENIX 300XL洛氏硬度计HAWK 652RS-IMP凸鼻子洛氏凸鼻子洛氏 HAWK 651RS HAWK 400RS凸鼻子洛氏凸鼻子洛氏 HAWK 250RS更多信息,欢迎联系轶诺中国。
  • 全国首个热塑性塑料餐具标准实施
    由广州市质量监督检测研究院制定的全国首个热塑性塑料餐具标准———《热塑性塑料餐具地方技术规范》已于8月1日起实施,其总体水平与日本标准相当,基本涵盖了市场上所有热塑性塑料餐具。   消费者选购塑料餐具时,首先要看标识是否完整,其次看产品。产品的表面应平滑,没有污点、杂质、划痕、裂纹等,没有脱色、褪色现象,还可闻一闻看有没有刺激性味道等异味。   “最重要的还是要看产品标识。”国家包装产品质量监督检验中心(广州)包装检验部部长孙世彧表示,此次标准规定,产品须标明厂家名称或商标、材质、使用温度等说明,若产品有不耐热水、不适用于微波炉、不能接触油质等要求,也应标明。
  • 微塑料登上世界最高峰|上海净信冷冻研磨仪解决塑料难题
    珠峰是一个遥远、纯净的地方,在世界之巅却发现了微塑料的痕迹!    据英国《新科学家》周刊网站11月20日报道,首次在珠峰上发现直径不足5毫米的塑料微粒。英国普利茅斯大学的伊莫金纳珀及其同事从珠穆朗玛峰多个地点采集了8个900毫升的溪水样本和11个300毫升的积雪样本。该研究小组发现,在所有积雪样本和3个溪水样本中都发现了微塑料。       报道称,“污染最严重的样本来自位于尼泊尔境内的珠峰大本营,那里是珠峰上人类活动最集中的地方。每公升积雪含有79个微粒。最高取样地点位于海拔8440米处,即位于珠峰峰顶下方408米处,该样本中每公升积雪含有12个塑料微粒。在珠穆朗玛峰上发现的微塑料大都源自合成纤维,包括聚酯纤维和丙烯酸纤维,系制作登山者衣服和装备所用的材料。“    在过去的几年里,我们在全球各地收集的样本中都发现了微塑料,足迹遍布从北极到河流、深海。那么,什么是微塑料?    微塑料是指粒径很小的塑料颗粒以及纺织纤维。由于学术界对于微塑料的尺寸还没有普遍的共识,通常认为粒径小于5mm的塑料颗粒为微塑料。相比于“白色污染”塑料,因微塑料体积小,意味着就有更大的比表面积(比表面积是指多孔固体物质单位质量所具有的表面积)。而比表面积越大,吸附污染物的能力越强,这就是其与一般的不可降解塑料相比,对于环境的危害程度更深的原因。    它的污染分布如何呢?这些从几微米到几毫米不等的污染物,能从大块塑料制品上脱落下来,轻易排入外界环境中,污染水体、土壤和植被。    大气中:纺织产品生产使用过程中产生的超细合成纤维、工业上材料切碎和磨削等加工产生;质轻,可作为污染物载体,通过呼吸道进入人体。    水域中:塑料污染主要来源,海洋、地表河流、湖泊、水库、居民饮用水中均已发现;市政污水排放、大气微塑料干湿沉降、工业产生塑料废弃物、纺织行业废水排放、个人日用护理品及其包装等。    土壤中:市政污泥的土地利用、有机肥的长期施用、农用地膜的残留分解、大气微塑料的沉降、地表径流和农用灌溉水的带入等;通过食物链传递并富集。    上至世界之巅,下至世界最深的海沟,微塑料可谓无处不在。有研究指出,每年每人平均会摄入70000颗微塑料。目前微塑料对人体的危害如何还需要深入的研究,但这类无孔不入的物质无疑为我们人类敲响了警钟!我们必须加强对微塑料的研究,尽早提出可行的塑料减排和处理方案。    提到塑料研究,不得不提塑料的前处理。由于塑料制品对温度极其敏感,且加热后会变形、变性,只有在超低温环境下,才能保证样品的完整性。所以,在样品前处理这块着实让科研工作者头疼,因为常规的仪器根本搞不定它。    上海净信浸入式液氮冷冻研磨仪(JXFSTPRP-MiniCL),却完全可以做到!    这款仪器体积小方便携带,拥有三项专利,真正的液氮冷冻,全程-196度低温下研磨粉碎。保持了生物物质活性,确保易挥发物质的保留;防止热不稳定化合物的受热降解,对热和机械压力敏感的代谢物、异构体和复杂化合物保持原有的敏感特性物质。传统需要五分钟的粉碎研磨,而本设备只需要三十秒,称得上是研磨界的终极手段!
  • 微塑料检测技术,解决微塑料难题!
    微塑料指的是直径小于5毫米的塑料微粒,常见化学成分有聚乙烯、聚氯乙烯、聚苯乙烯、聚丙烯等。相关研究表明,微塑料在鱼类、贝类等水生生物体内普遍存在,可通过食物链不断向上一级传递,位于食物链顶端的人类将不可避免成为微塑料的摄入和蓄积体。随着各方对微塑料的关注日益增多,微塑料的相关科学研究正如火如荼地开展着,如何精准快速的识别微塑料,对微塑料领域的研究至关重要。多年来,研究人员通过对水陆空环境与生物体等各类样品中的塑料微粒含量、大小、成分等进行科学分析,开展各类型的科研课题研究、环境本底调查,为我国环境微塑料污染防控与监控和常规产品检测等提供技术依据。为了了解当前微塑料检测分析技术和应用进展,加强沟通交流,7月27日-28日,仪器信息网将举办第四届环境新污染物检测网络会议,在28日的下午,以“微塑料的检验检测”为主题的会议专场,将邀请相关领域专家与大家分享当前针对该领域的技术研究与应用进展等。“微塑料的检验检测”专场日程如下:07月28日微塑料的检验检测14:00--14:30“流域-近海-大洋”微塑料观测研究进展与趋势分析蔡明刚厦门大学 教授14:30--15:00岛津GCMS在环境新型污染物检测中的应用王子君岛津企业管理(中国)有限公司 产品专员15:00--15:30污水处理厂微塑料的去除行为解析与探讨安立会中国环境科学研究院 研究员15:30--16:00传感器在渔业环境中新污染物检测应用吴立冬中国水产科学研究院 研究员嘉宾介绍:蔡明刚 教授厦门大学蔡明刚,教授,博士生导师。现任厦门大学海洋与地球学院教授,海洋与海岸带发展研究院兼职教授,福建省高校重点实验室副主任。主要研究方向:基于海洋学视角的开阔海域污染物传输动力学过程研究,及其作为新型示踪剂在海洋科学上的应用。研究海域涉及我国南海等边缘海、全球大洋及两极海区,课题组近10次参加中国南、北极科学考察。个人系中国第3、5次北极科学考察队队员,先后入选福建闽江科学传播学者、福建省杰出青年基金计划、新世纪优秀人才计划、CSC中德合作团队项目等人才计划。主持国家及省部级项目10余项,在Environmental Science & Technology、Environmental Pollution、Deep Sea ResearchⅠ、Marine Chemistry等环境、海洋期刊发表论文70余篇,获得专利授权12项,获得多项省部级奖项。 主要科研与应用成果如下:1)开展我国主要边缘海和极区持久性有机污染物的时间序列变化和储量估算,提出全球变化背景下边缘海POPs海/气交换与垂直传输的海洋生物泵调控机制。2)较早开展大洋海水中细颗粒微塑料研究,发现南海存在数量可观的微塑料。3)利用氟利昂等污染物开展海洋学过程的示踪与人为碳估算,取得创新性成果,组装了国内第1套海水超痕量氟利昂/六氟化硫的吹扫捕集-气相色谱分析系统,获批多项发明专利,分析精度达到国际同类水平。4)构建和应用海湾陆源污染物排海总量估算技术及其系统,提出基于长时间序列观测的沿海社会、经济和环境生态协调发展的计量统计学方法。5)建立基于工业化生产的雨生红球藻培养技术和配方,搭建了微藻多级培养系统并研发新型LED藻类培养设备,拥有多项专利,服务于企业生产并产生实际效益。王子君 产品专员岛津企业管理(中国)有限公司毕业于天津大学应用化学专业,具有丰富的分析仪器产品经验,擅长环境应用解决方案。安立会 研究员中国环境科学研究院安立会(1975 -),博士,中国环境科学研究院研究员,博士生导师。主要从事天然与合成环境污染物的水生态毒理效应、环境质量基准与标准及生态风险评价研究,近年重点关注环境塑料垃圾与微塑料对生态系统安全和人体健康的影响,并致力于塑料污染来源及其控制对策,为开展我国环境微塑料的管控措施和治理提供科学依据。吴立冬 研究员中国水产科学研究院吴立冬,博士、研究员、博士生导师,入选中国水产科学研究院“百人计划”,国家市场监督管理总局食品补充检验方法和快检方法等国标方法审评专家。受邀成为“Biosensor and Bioelectronics”杂志编委(IF 12.545),Agriculture Communications 和Journal of Analysis and Testing杂志青年编委,Micromachines杂志(IF 3.523)专题主编。主持国家自然科学基金、国家重点研发计划、国家标准等国家级及省部级项目10余项。2022年获得了中国农学会青年科技奖、中国仪器仪表学会青年创新奖(朱良漪青年创新奖)和中国分析测试协会一等奖(排名第一)。主要从事水产品危害物快速检测方法及渔业环境智能化监测器件研发。迄今,吴立冬博士在Informat(IF 24.7)、Chemical Engineering Journal(16.7)、ACS nano、Food Chemistry、Biosensor and Bioelectronics、Anal. Chem等杂志发表80多篇论文,申请专利22项(其中美国专利1项,国际专利2项),授权7项(已转让2项)。免费报名点击:第四届环境新污染物检测网络会议:https://www.instrument.com.cn/webinar/meetings/newpollutant2023/诚邀您的参与!
  • 一周的微塑料检测量?一小时搞定!
    在买奶茶可能都要排两个小时队的如今,1 小时似乎做不了什么正经事,但是如果说1小时就能完成一周的微塑料检测工作呢?对,说的就是微塑料检测。点击以下链接下载安捷伦微塑料检测解决方案:1、微塑料:利用可移动 FTIR 及红外成像光谱仪完成微塑料从现场到实验室研究的整体测量方案2、使用 FTIR 成像分析微塑料 — 鉴定与定量分析废水、沉积物和动物群中的微塑料“快”就一个字我们都知道,微塑料,也就是“水中的PM2.5”,可能给海洋生物乃至整个海洋生态系统带来严重危害。海洋环境领域的科学家对微塑料进行了10多年的研究。但其微小的尺寸、庞大的颗粒样本量、不同类型颗粒的快速区分等等,一直严重影响着实验进度,让科学家头痛不已。但是,安捷伦“焦平面”红外成像技术就是这么优秀,能将传统方法需要一周才能完成的检测量压缩至一小时,极大提升实验效率。微塑料颗粒的定性,通常需要将样品进行前处理后过滤到滤膜上,再用红外显微镜来检测。这个过程看起来简单,但是实际上却是一个“力气活”,费时又费力。使用单点红外显微镜,分辨率为10um时,若逐点扫描1cm*1cm的区域,需要数百小时;使用线阵列红外显微镜,分辨率为10um时,若逐行扫描1cm*1cm的区域,需要数十小时;使用安捷伦焦平面红外成像系统,128*128焦平面,分辨率为5.5um时,若扫描1cm*1cm的区域,只需要数十分钟。一小时内便可完成传统检测手段一周的工作。 全自动分析进行到底以往的微塑料检测多集中于定性,定量相对困难。复杂繁杂的手工分类、统计常常令人崩溃。不要怕,安捷伦已经为您准备好了解决之策,微塑料全自动定量分析进行到底。安捷伦与丹麦奥尔堡大学Jes Vollertsen团队合作成果:微塑料统计分析“神器”——MPhunter软件,不仅能帮您区分微塑料和其它物质,并将它们以不同颜色进行分类,还能对所有颗粒计数统计,甚至告诉您每个颗粒的面积、质量、所占比例。更重要的是,所有工作全!部!自!动!完!成!图为:MPHunter软件采用不同颜色将微塑料颗粒分类显示图为:MPHunter软件计算得到每种塑料颗粒所占比例结果图为:MPHunter软件得到每个颗粒物尺度、体积,及重量等信息 想了解安捷伦焦平面检测微塑料的更多细节?那就请在7月26日,锁定仪器信息网,安捷伦焦平面红外成像技术微塑料解决方案及海洋污染检测整体解决方案。我们邀请了安捷伦资深红外成像专家,为您详细讲述安捷伦微塑料检测解决方案。安捷伦经过多年经验积累,推出的《安捷伦海洋环境保护解决方案》,届时也会向您进行介绍。除了焦平面红外成像,安捷伦还有哪些微塑料检测利器?关注安捷伦公众号“安捷伦视界”(agilentchem),阅读《一周的微塑料检测量,一小时搞定!》文章,获取更多微塑料检测相关资料,先睹为快。
  • 塑料一次性餐饮具新标准实施
    据悉,自从国家质检总局对食品用塑料制品实行市场准入制度之后,一次性塑料餐具质量有了明显提高,劣质餐盒也因为消费者食品安全意识的不断提高而慢慢淡出市场,一次性快餐餐盒向着密封性、透明性、防烫性等多功能方向发展。业内人士指出,《塑料一次性餐饮具通用技术要求》新国标的实施,使一次性塑料餐饮具行业的分类和管理有了可依据的标准,便于各有关部门顺利开展监管工作,逐步规范行业秩序,对生产者、销售者、使用者做出三方规定,淘汰不符合标准的生产企业,规范中小型企业。同时,有关部门也将根据相关法规,对市场进行严格监管。安全性能好、回收利用价值高的一次性塑料餐饮具将在未来市场更具竞争力。   新的国家标准gb18006.1-2009《塑料一次性餐饮具通用技术要求》从2009年12月1日起实施。据了解,此前我国尚未有一次性塑料餐具的国家标准,而是由每个企业制定企业标准,一次性塑料饭盒等不可降解餐具长期无标准可依,虽未明文禁止,却始终没有合法身份。新国标的施行将彻底结束这一现状,为进一步规范塑料一次性餐饮具的生产及使用起到重要的作用。   明确界定范围   《塑料一次性餐饮具通用技术要求》规定了塑料一次性餐饮具的定义和术语、分类、技术要求、检验方法、检验规则及产品标志、包装、运输、贮存要求,并对一次性餐饮具的范围进行了明确的界定:是指预期用餐或类似用途的器具,包括一次性使用的餐盒、盘、碟、刀、叉、勺、筷子、碗、杯、罐、壶、吸管等,也包括有外托的一次性内衬餐具,但不包括无预期用餐目的或类似用途的食品包装物,如生鲜食品托盘、酸奶杯、果冻杯等。而塑料一次性餐饮具指树脂或其他热塑性材料通过热塑成型加工得到的一次性餐饮具。   据了解,新标准对塑料一次性餐饮具的技术要求更加严格和规范,主要表现在严把“两关”上:一是严把原材料关。新标准对塑料一次性餐饮具的原料制定了专门的规定,如使用的树脂等应为食品级 添加剂的用量应符合gb9685的规定 在感官上不得有异嗅 色泽正常 成型品不能有裂缝口及填装缺陷 无油污、尘土、霉变及其他异物 表面平整洁净、质地均匀,无划痕,无皱褶,无剥离,无破裂,无穿孔等。二是严把使用性能关。新标准主要对塑料一次性餐饮具的容积偏差、负重性能、跌落性能、盖体对折性能等方面提出了一系列规范性要求,尤其对塑料一次性餐饮具的耐温性能,如耐热水、耐热油方面制定了具体的要求。   根据新标准,塑料一次性餐饮具按照其材质可以分为通用塑料一次性餐饮具、植物纤维模塑一次性餐饮具、淀粉基塑料一次性餐饮具、其他覆塑一次性餐饮具 按照其使用时的耐温程度,可以分为耐温和不耐温一次性餐饮具 按照降解性能可以分为非降解一次性餐饮具和可降解一次性餐饮具 还可以分为可微波炉用和非微波炉用一次性餐饮具。   同时,该标准对一次性餐饮具的耐热水性能、耐热油性能、漏水性能、负重性能以及微波炉耐温性能等,都作出了具体的规定。例如,标准规定,一次性餐饮具耐热水试验后,不应变形、起皮、起皱,对容器功能的餐饮具不应变形、阴渗及渗漏 一次性餐饮具耐热油试验后,不应变形、起皮、起皱,对容器功能的餐饮具不应阴渗及渗漏 对盛装液体功能的盒、碗、杯等一次性餐饮具,试验后不应漏水 一次性餐盒、碗、杯等餐饮具,其负重前后高度变化应不大于5% 微波炉试验应无变形、缺陷、渗漏和异常……这些规定为消费者科学选购、安全使用餐饮具提供了指南。   “可降解”不可随意标注   伴随着新国标的实施,执行了近十年的gb18006.1-1999《一次性可降解餐饮具通用技术条件》标准被替代。《塑料一次性餐饮具通用技术要求》不适用于一次性纸餐具、纸杯、木筷子、竹筷子等非热塑性材料制作的一次性餐饮具,同时较之原标准,修改了分类办法,修改了对原料的技术要求,增加了感官指标内容中的异嗅等,使用性能检验上明确了适用范围和样品的检验数量。增加了淀粉基塑料一次性餐饮具淀粉含量的要求,明确淀粉含量不小于40%。   增加了对标识可微波炉使用的一次性餐饮具的微波炉使用性能及检验方法,补充了淀粉基塑料一次性餐饮具和其他一次性餐饮具卫生理化指标的新要求,修改了检验规程以及降解性能要求适用范围、检验方法和技术指标。降解性能要求和检验方法也由原标准采用gb/t18006.2-1999《一次性可降解餐饮具降解性能试验方法》改为采用gb/t20197-2008《降解塑料的定义、分类、标志和降解性能要求》。   标准明确规定,对于标称其可生物降解的一次性餐饮具,其生物降解率不得低于60%。据了解,一直以来,市面上一些假冒伪劣的所谓“可降解饭盒”大行其道,因为真正可降解的餐具成本要比不可降解的高出20%,而旧的技术标准难以保证执法力度。根据新标准,一次性塑料餐具不能再随意标注“可降解”字样。《塑料一次性餐饮具通用技术要求》规定,只有能完全降解变成二氧化碳或甲烷、水等物质的一次性餐饮具,才能标注“可降解餐具”,对可降解餐饮具有更为具体、量化的成分要求。   行业监管有标可循   在新国标实施前,一次性塑料餐饮具种类繁多、功能各异,但许多产品的包装标识都过于简单、欠缺规范,多款产品均采用一般的塑料包装袋进行简易封装,外包装上仅仅注明了产地、生产商等信息,而无产品的化学成分、组成物质、卫生标准、耐高温性能等关键信息。新标准的实施将给一次性餐饮具生产企业明确的标准依据、新的机会和挑战。
  • 焦塑料——经过火焚烧转变而来的一种新型塑料污染
    p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/1400f8bf-32a9-4176-aba4-1392bd6a7d02.jpg" title=" 塑料垃圾.jpg" alt=" 塑料垃圾.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 人们在康沃尔海滩上收集的塑料垃圾& nbsp 图片来源:ROB ARNOLD /span /p p   在环绕英国西南部海岸线的沙湾上,人们可以找到各种各样的石头,从小鹅卵石到厚重的镇纸石,散落在漂浮物中。它们的颜色是深浅不一的灰色,表面平滑、没有棱角,看起来很不起眼。 /p p   但如果你拿起它们看时,很快就会发现,这些看起来毫不起眼的“石块”其实根本不是岩石。 /p p   这是焦塑料——经过火焚烧转变而来的一种新型塑料污染。地质学家甚至也对它们的外表感到困惑。英国普利茅斯大学环境科学家Andrew Turner最近在《全环境科学》上发表的一篇论文中对这种物质进行了描述。他认为,这种污染可能隐藏在世界各地。 /p p   “因为它们看起来像地质变化形成的,这让很多人经过时都不会留意到它们。”Turner说。 /p p   几年前,康沃尔塑料污染联盟志愿者联系到Turner时,他第一次听说了这种奇怪的新垃圾。 /p p   海滩拾荒者发现了一些奇怪的鹅卵石和石块的塑料仿制品,它们非常轻,可以漂浮在水面上。Turner说,一些志愿者已经收集了数千块。环境艺术家Rob Arnold甚至为当地一家博物馆设计了一个展览,让游客在塑料中找真正的石块。很少有人能够分辨出来。 /p p   “这个活动非常成功,但也令人震惊。”Arnold说,“人们很惊讶他们居然完全没有注意到这些污染。” /p p   一年前,Turner决定更系统地研究这一现象。在社交媒体上发出呼吁后,他收到了从苏格兰到英属哥伦比亚等地的垃圾样本,他的分析最终集中在从惠特桑德湾附近收集的垃圾上。这是一个受保护的大海湾,其中包括康沃尔郡一部分最好的海滩。在进行大小和密度测量后,该团队用X射线和红外光谱检测了塑料的化学成分。 /p p   他们了解到,这些“石头”是由聚乙烯和聚丙烯构成的,这是两种最常见的塑料。它们还含有大量的化学添加剂,但最让研究人员吃惊的是它经常和铅、铬一起出现。 /p p   Turner认为,这些是铬酸铅的痕迹。几十年前,制造商将这种化合物添加到塑料中,使其呈现出鲜艳的黄色或红色。而这些颜色可能由于燃烧而变暗。该团队在实验室里熔化了一些颜色鲜艳的塑料,验证了这个想法。果然,它们变成了深灰色。 /p p   与此同时,多年的风和水的侵蚀可以让这些经过高温的塑料形成光滑的边缘和风化的外观。 /p p   “想象一下,如果一块卵石在地质学上发生这样的变化,它会需要几十万年的时间。”Turner说,“我们在这些塑料上看到了同样的情况,但它发生的速度要快得多。” /p p   康沃尔热塑性塑料的确切起源仍然是个谜。Turner认为可能有很多来源,从篝火到旧的垃圾填埋场,篝火与夏威夷塑料—岩石混合物“塑小球”的形成就存在关联。他认为,其中一些塑料垃圾可能是从萨克岛漂到英吉利海峡对岸,因为最近的报告显示,萨克岛的垃圾在焚烧后被倾倒在海里 另一种可能是从加勒比海岸一路漂到英吉利海峡对岸。 /p p   无论如何,高温塑料已经在世界上出现了,Turner想知道它们会对环境造成什么样的危害。他发现几个蠕虫样本中似乎富含铅,这表明这些生物可以摄取塑料,并将重金属引入食物链。 /p p   Turner与美国的一位合作者分享了一些样本。这位合作者正在做进一步分析,以确定这些样本中是否也含有有害的有机化合物。“在不受控制的环境下燃烧塑料,会产生各种有害物质。”他说。 /p p   除了直接的生态效应,热塑性塑料的出现还表明环境中的塑料无处不在。英国莱斯特大学古生物学教授Jan Zalasiewicz想知道,这些东西最终是否会在岩石记录中留下痕迹。 /p p   无论高温塑料的最终命运如何,Zalasiewicz说,很清楚的是,塑料正在“成为地质循环的一部分”。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/60eaff85-f756-497e-837e-d605b32afed6.jpg" title=" 绿· 仪社.jpg" alt=" 绿· 仪社.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加“绿· 仪社”为好友 了解更多对科学仪器市场的分析评论! /span br/ /p
  • 又一顶刊!微塑料快速检测新成果!
    研究证实,人体中微塑料的主要来源,除了生活中的塑料制品,还包括我们平时吃的海产品等。那么,生物体内的微塑料从何而来?根据有关报告,海产品似乎是目前了解最多的人类摄入微塑料的来源。正因为如此,近几年,微塑料污染对养殖水产品的影响引起了广泛关注。而渔业环境中的微塑料主要来源于陆地上大型塑料垃圾的降解及养殖过程中塑料的使用,长期暴露于高浓度微塑料环境中,养殖水生物的质量安全和生殖发育都将受到较大影响。顶刊新技术:淡水及海水养殖环境中微塑料快速检测及去除技术近日,中国水产科学研究院质量与标准研究中心吴立冬副研究员与东海水产研究所渔业生态环境实验室合作研发出一种可快速富集渔业环境(淡水及海水养殖环境)中微塑料的磁性纳米材料(mANM)。此项成果发表在环境科学顶级期刊《Journal of Hazardous Materials》。该复合材料对水体中不同粒径、多种典型微塑料均有作用,并且可通过调节pH控制磁性纳米颗粒聚团大小,实现在强磁场中30秒快速分离微塑料。为了更好地促进微塑料检测技术发展,网络讲堂邀请到论文通讯作者——中国水产科学研究院吴立冬副研究员,在8月25日做精彩的技术分享。(点击图片,立即报名)同时,本次会议特邀嘉宾——中科院烟台海岸带研究所陈令新研究员,将分享课题组在近海环境中分析新污染物样品前处理技术的最新研究进展。陈令新研究员作为海洋环境分析监测领域的资深权威专家,科技成果丰富,并著有海洋监测领域的宝典书籍——《海洋环境分析监测技术》,报名并观看本次直播,有机会免费领取哦!免费报名:https://www.instrument.com.cn/webinar/meetings/ocean20220825/(京东售价:161.90元)
  • 塑料一次性餐饮具新国家标准已正式实施
    新的国家标准GB18006.1-2009《塑料一次性餐饮具通用技术要求》从2009年12月1日起正式实施。据了解,此前我国尚未有一次性塑料餐具的国家标准,而是由每个企业制定企业标准,一次性塑料饭盒等不可降解餐具长期无标准可依,虽未明文禁止,却始终没有合法身份。新国标的施行将彻底结束这一现状,为进一步规范塑料一次性餐饮具的生产及使用起到重要的作用。   明确界定范围   《塑料一次性餐饮具通用技术要求》规定了塑料一次性餐饮具的定义和术语、分类、技术要求、检验方法、检验规则及产品标志、包装、运输、贮存要求,并对一次性餐饮具的范围进行了明确的界定:是指预期用餐或类似用途的器具,包括一次性使用的餐盒、盘、碟、刀、叉、勺、筷子、碗、杯、罐、壶、吸管等,也包括有外托的一次性内衬餐具,但不包括无预期用餐目的或类似用途的食品包装物,如生鲜食品托盘、酸奶杯、果冻杯等。而塑料一次性餐饮具指树脂或其他热塑性材料通过热塑成型加工得到的一次性餐饮具。   据了解,新标准对塑料一次性餐饮具的技术要求更加严格和规范,主要表现在严把“两关”上:一是严把原材料关。新标准对塑料一次性餐饮具的原料制定了专门的规定,如使用的树脂等应为食品级 添加剂的用量应符合GB9685的规定 在感官上不得有异嗅 色泽正常 成型品不能有裂缝口及填装缺陷 无油污、尘土、霉变及其他异物 表面平整洁净、质地均匀,无划痕,无皱褶,无剥离,无破裂,无穿孔等。二是严把使用性能关。新标准主要对塑料一次性餐饮具的容积偏差、负重性能、跌落性能、盖体对折性能等方面提出了一系列规范性要求,尤其对塑料一次性餐饮具的耐温性能,如耐热水、耐热油方面制定了具体的要求。   根据新标准,塑料一次性餐饮具按照其材质可以分为通用塑料一次性餐饮具、植物纤维模塑一次性餐饮具、淀粉基塑料一次性餐饮具、其他覆塑一次性餐饮具 按照其使用时的耐温程度,可以分为耐温和不耐温一次性餐饮具 按照降解性能可以分为非降解一次性餐饮具和可降解一次性餐饮具 还可以分为可微波炉用和非微波炉用一次性餐饮具。   同时,该标准对一次性餐饮具的耐热水性能、耐热油性能、漏水性能、负重性能以及微波炉耐温性能等,都作出了具体的规定。例如,标准规定,一次性餐饮具耐热水试验后,不应变形、起皮、起皱,对容器功能的餐饮具不应变形、阴渗及渗漏 一次性餐饮具耐热油试验后,不应变形、起皮、起皱,对容器功能的餐饮具不应阴渗及渗漏 对盛装液体功能的盒、碗、杯等一次性餐饮具,试验后不应漏水 一次性餐盒、碗、杯等餐饮具,其负重前后高度变化应不大于5% 微波炉试验应无变形、缺陷、渗漏和异常……这些规定为消费者科学选购、安全使用餐饮具提供了指南。   “可降解”不可随意标注   伴随着新国标的实施,执行了近十年的GB18006.1-1999《一次性可降解餐饮具通用技术条件》标准被替代。《塑料一次性餐饮具通用技术要求》不适用于一次性纸餐具、纸杯、木筷子、竹筷子等非热塑性材料制作的一次性餐饮具,同时较之原标准,修改了分类办法,修改了对原料的技术要求,增加了感官指标内容中的异嗅等,使用性能检验上明确了适用范围和样品的检验数量。增加了淀粉基塑料一次性餐饮具淀粉含量的要求,明确淀粉含量不小于40%。   增加了对标识可微波炉使用的一次性餐饮具的微波炉使用性能及检验方法,补充了淀粉基塑料一次性餐饮具和其他一次性餐饮具卫生理化指标的新要求,修改了检验规程以及降解性能要求适用范围、检验方法和技术指标。降解性能要求和检验方法也由原标准采用GB/T18006.2-1999《一次性可降解餐饮具降解性能试验方法》改为采用GB/T20197-2008《降解塑料的定义、分类、标志和降解性能要求》。   标准明确规定,对于标称其可生物降解的一次性餐饮具,其生物降解率不得低于60%。据了解,一直以来,市面上一些假冒伪劣的所谓“可降解饭盒”大行其道,因为真正可降解的餐具成本要比不可降解的高出20%,而旧的技术标准难以保证执法力度。根据新标准,一次性塑料餐具不能再随意标注“可降解”字样。《塑料一次性餐饮具通用技术要求》规定,只有能完全降解变成二氧化碳或甲烷、水等物质的一次性餐饮具,才能标注“可降解餐具”,对可降解餐饮具有更为具体、量化的成分要求。   行业监管有标可循   在新国标实施前,记者走访部分超市时看到,一次性塑料餐饮具种类繁多、功能各异,但许多产品的包装标识都过于简单、欠缺规范,多款产品均采用一般的塑料包装袋进行简易封装,外包装上仅仅注明了产地、生产商等信息,而无产品的化学成分、组成物质、卫生标准、耐高温性能等关键信息。新标准的实施将给一次性餐饮具生产企业明确的标准依据、新的机会和挑战。   据悉,自从国家质检总局对食品用塑料制品实行市场准入制度之后,一次性塑料餐具质量有了明显提高,劣质餐盒也因为消费者食品安全意识的不断提高而慢慢淡出市场,一次性快餐餐盒向着密封性、透明性、防烫性等多功能方向发展。业内人士指出,《塑料一次性餐饮具通用技术要求》新国标的实施,使一次性塑料餐饮具行业的分类和管理有了可依据的标准,便于各有关部门顺利开展监管工作,逐步规范行业秩序,对生产者、销售者、使用者做出三方规定,淘汰不符合标准的生产企业,规范中小型企业。同时,有关部门也将根据相关法规,对市场进行严格监管。安全性能好、回收利用价值高的一次性塑料餐饮具将在未来市场更具竞争力。
  • 珠峰顶部已发现微塑料?当前微塑料的检测技术,你可能不知道
    11月24日 英媒称,地球zui高处和最深处都出现了微塑料。此前在太平洋11公里深的马里亚纳海沟发现了塑料微粒,如今又在珠穆朗玛峰上探测到了。英国普利茅斯大学的伊莫金纳珀及其同事从珠穆朗玛峰多个地点采集了8个900毫升的溪水样本和11个300毫升的积雪样本。该研究小组发现,在所有积雪样本和3个溪水样本中都发现了微塑料。微塑料进入环境后很难被降解,在环境中的半衰期长达数百年,给自然环境及生态系统造成极大危害,还可能通过食物链威胁到人类,因此微塑料的污染问题引起了全球的重视。微塑料的来源解析是当前的重点,微塑料的检测是来源解析的重要手段。本文主要是基于化学表征微塑料的检测技术汇总,为未来的研究开展提供思路。化学表征分析最常用的是傅立叶变换红外光谱(FTIR )、拉曼光谱、 ESM-EDS和气相色谱-质谱联用技术。1、FTIRFTIR依靠物质偶极矩改变产生红外光谱,可以实现20μm以上的微塑料的鉴定。不受滤膜和杂质的干扰,尤其适用于极其微小尺寸微塑料的检测。2、拉曼光谱拉曼光谱依靠分子化学键极化率的变化产生指纹图谱,可以实现20μm以下微塑料的鉴定,和 FTIR 相比,拉曼光谱空间分辨率更高、光谱覆盖范围广,但是容易受色素、添加剂、污染物等有机质和矿物质产生的荧光干扰,奥谱天成拉曼光谱仪1064nm 系列在抗荧光干扰方面有着出色的表现,加上软件的优化处理,将结果调到zui优状态,用于微塑料检测方面有着独特的技术优势。3、气相色谱-质谱联用技术通过对微塑料的热降解产物进行分析判断其种类,将峰面积与同位素标记的内标进行比较实现微塑料的定量,但是应用范围较窄。微塑料检测方法虽然多,但还有很多问题需要解决,微塑料在环境中存在的不规则性问题,不仅困扰着检测手段,同时也对采样有较大的挑战。
  • 科学仪器小知识:冷却循环水机在塑料,电子工业领域的应用和指导
    冷却循环水机在塑料、电子、超声波清洗、电镀、机械以及其他行业有哪些应用,本篇文章将为您详细陈述:  分析仪器:控制原子吸收石墨炉及石墨管及ICP(ICP-MX)X光管温度,使仪器连续长时间运行,提高分析测试效率;   塑料工业:准确的控制各种塑料加工之模温,缩短啤塑周期,保证产品质量的稳定。用于塑料加工机械成型模具冷却,能够大大提高塑料制品表面光洁度,减少塑料制品表面纹痕和内应力,使产品不缩水、不变形,便于塑料制品的脱模,加速产品定型,从而极大地提高塑料成型机的生产效率   电子工业:稳定电子元件内部在生产线上的分子结构,提高电子元件的合格率   超声波清洗行业,有效地防止昂贵的清洗剂挥发和挥发给人带来的伤害   电镀行业:控制电镀温度,增加镀件的密度和平滑,缩短电镀周期,提高生产效率,改善产品质量   机械工业:控制油压系统压力油温度,稳定油温油压,延长油质使用时间,提高机械润滑的效率,减少磨损   建筑工业:供给混凝土用之冷冻水,使混凝土分子结构适合建筑用途要求,有效地增强混凝土的硬度与韧性   真空镀膜:控制真空镀膜机的温度,以保证镀件的高质量   食品工业:用于食品加工后的高速冷却,使之适应包装要求。另外还有控制发酵食品的温度等   化纤工业: 冷冻干燥空气,保证产品质量   制药工业:主要用于生产车间温度、湿度的控制及生产原料药过程中反应热的带出   化工工业:主要用于化工反应釜(化工换热器)的降温冷却,及时带走因化学反应而产生的巨大热量从而达到降温(冷却)的目的,用以提高产品质量   机床行业:应用于数控机床、坐标镗床、磨床、加工中心、组合机床以及各类精密机床主轴润滑和液压系统传动媒的冷却,能够精确地控制油温,有效地减少机床的热变形,提高机床的加工精度。
  • 中国石油首次在塑料管材领域主导制定国际标准
    4月23日,石油化工研究院申报的制定标准提案ISO/NP 24994《塑料管道、管件及接头中的金属迁移量的测定》,以28票赞同、9个成员国参与的投票结果在流体输送用塑料管材、管件及阀门标准化技术委员会通过立项。这是中国石油首次在塑料管材领域主导制定国际标准,对公司国际标准化工作的推进具有重大意义。为提升输水管材的质量监管水平,石化院经过7年时间准备,对REACH限制物质清单、ROHS指令、国内外管材相关标准进行详细调研和梳理,提出采用电感耦合等离子体质谱(ICP-MS)法,测定塑料管材中重金属铅、锡、镉、铬、铜、钡等元素迁移量的方法提案。这个国际标准发布后,将为输水管材质量控制提供数据支持,为居民的用水安全保驾护航。
  • 卡塞尔塑料制品的气味和VOC排放论坛
    已经有20年历史的论坛会议:‘Odour and Emissions of Plastic Materials’(塑料制品的气味和VOC排放论坛),也别称为卡塞尔会议,欧洲及来自世界各地对该议题感兴趣的分析研究人员齐聚于此,探索讨论聚合物及材料中VOC排放的最新研究趋势。以下是会议中一些亮点:识别微塑料中的聚合物卡塞尔2019年的主题演讲是关于微塑料的,也是目前全球最热门的研究领域之一。来自柏林Bundesanstalt für Material forschungund-prüfung(BAM)的Ulrike Braun博士讲述了他的团队是如何开发识别空气中和水中的微弹性聚合物的方法,尽管该方法曾因制备样品耗时长,样本量受限可能引发的重现性等问题受到质疑。Braun博士的方法是对塑料样品进行完全热分解,并对产物进行萃取并富集到吸附相上,再进入TD-GC-MS阶段。在演讲中,Braun博士向我们展示了如何应用该方法识别水体中的塑料,以及塑料在空气和灰尘中展现出的微小碎片状态。识别车内空气中有异味硫化物的难点中国汽车技术研究中心(CATARC)今年第一次有代表来到卡塞尔会议向大家分享经验。CATARC一直以来都是Markes的重要客户,来自天津研究所的王焰孟博士就最新的车内空气质量测试(VIAQ)进行演讲。当前,车辆气味是中国消费者最关注的一个议题,CATARC则是在VIAQ业内最权威的机构。王博士解释,目前项目的重点是对硫化物进行半定量,但同时也面临着三重挑战:即痕量,气味物质不稳定,需要惰性化的分析系统。他还比较了不同的采样方法和分析方法,并提出使用电子鼻来辅助气味检测的可能性。当然,如何选择最优的检测手段从来不是一件易事,特别是涉及到这些有检测难度的待测组分时。当然,Markes也将一如既往同CATARC共同合作,通过优化TD系统,力求获得最佳效果和响应。如何判断塑料是否有异味?本次论坛中许多演讲都在讨论如何将塑料制品的气味分析结果与感官数据关联起来,结合多年的研究,研究人员发现异味通常是由痕量级化合物引起的。也因此聚合物的气味很难预测,而且目前人类鼻子对于个体分子结构的响应情况也没有统一定论。弗赖辛Fraunhofer Institute for Process Engineering and Packaging IVV(弗劳恩霍夫过程工程与包装研究所)的Christoph Wiedmer明确提出:“仅仅基于未知化合物的分子结构无法预测未知化合物的气味特征”,并在他的演讲中给出了详细说明。皮革中的气味化合物——什么才是最好的采样方法?您知道皮革在供消费者使用之前需要至少经过47道工序吗?这是来自德累斯顿工业大学的Thomas Simat博士向我们普及的小知识。同时,Simat博士及其同事比较了不同生产阶段中(例如:软化,起绒,挤水,淋涂等),皮革中VOC的差异排放数据。Simat博士演讲中还包括了从皮革基质中分离活性气味物质的方法比较。其中,溶剂辅助蒸发进行气味提取(SAFE)较繁琐且依赖溶剂萃取效果,而蒸馏萃取(SDE)会根据温度不同带来引入杂质的风险。相较于以上方法,Markes提供的解决方法是将待测组分浓缩在吸附剂上——正如该项目中所使用的(从皮革家具中去除VOC和SVOC的直接脱附法),该方法实施的外界条件与消费者生活环境相似,并且是唯一一种能够同时研究湿度影响的方法。 Simat博士描述了他们是如何识别50多种化合物,并开发出针对关键气味的指示剂,作为标准物质。用于研究聚合物VOC排放的设备本届卡塞尔的“塑料制品的气味和VOC排放论坛”是一次分析研究届的交流盛会,我们在Markes的展位上与我们的新老用户进行交流,建立联系。Markes的Micro-Chamber / Thermal Extractor备受瞩目,新推出的用于制备喷涂聚氨酯泡沫样品和校准表面VOC排放的新配件也激起了用户的兴趣。卡塞尔会议一直以来都是一个十分有趣的会议,我们也期待在下一次的见面中获得更多新发现、新惊喜!
  • 日本准备修订关于塑料等商品质量标签规则
    日本经济产业省2009年6月24日发布了G/TBT/N/JPN/303号通报,标题为:根据家庭用品质量标签法,部分修订省颁通告   通报说,为了反映消费者和行业的要求、技术进步和产品周围环境的变化,准备修订关于塑料、纺织品,以及各种各样的商品质量标签规则的符合性条款。涉及根据家庭用品质量标签法规定的纺织品 女用内衣、蕾丝,由废纤维、落棉和再生纤维制成的气流纺线,以及气流纺线制成的织物等 反面有毛绒的针织织物等,各种各样的制成品,热水瓶,全部或部分由皮革或合成皮革制成的手套,由皮革或合成皮革制成的服装、炊事用具、水壶等产品。   该通告拟批准日期:2009年8月。拟生效日期:2010年8月。提意见截止日期:自分发日期起60天。
  • 达成合作:中美两国决心终结塑料污染,全球塑料污染防治条约将迈向何方?
    11月15日,中美两国发表《中美关于加强合作应对气候危机的阳光之乡声明》,其中表示,将在循环经济和资源利用效率方面达成合作:中美两国决心终结塑料污染,并将与各方一道制订一项具有法律约束力的塑料污染(包括海洋环境塑料污染)国际文书。这份声明在塑料污染的第三次国际谈判过程中发出,为当前全球协同应对塑料污染释放出了积极信号。11月13日—19日,“塑料条约”第三届政府间谈判会议(INC-3)在位于肯尼亚内罗毕的联合国环境规划署总部举行。会议谈判进程如何?全球塑料污染防治条约又将迈向何方? 记者联系到作为观察员机构的深圳零废弃政策顾问刘华进一步分享。INC-3大会现场全球塑料污染防治:存在共识基础却艰难启动目前,INC-3 如期于 11月19日晚间落幕。深圳零废弃政策顾问刘华坦言:“INC-3的‘显著进展’是确定了INC-4和INC-5的会议时间、地点等安排。但在实质性内容,特别是关于生命周期边界、定义等关键性文本方面的进展仍然有限” 。塑料污染是当前最显著也是关注度颇高的全球环境问题之一,也有多项多边环境协议涉及塑料污染,例如《控制危险废物越境转移及其处置巴塞尔公约》《关于持久性有机污染物的斯德哥尔摩公约》以及国际海事组织(MO)负责船舶运输相关的塑料垃圾管理。但三者各自侧重于危废、持久性有机污染物(POPs)和海洋污染。塑料污染自身一直缺乏系统性、直接性的国际协定来推动相关污染防治工作。2022年3月,第五届联合国环境大会续会在肯尼亚首都内罗毕召开。来自175个国家的政府首脑、环境部长和其他部门代表通过了一项历史性决议,即《终止塑料污染决议(草案)》(以下简称塑料条约)。决议指出,建立一个政府间谈判委员会(INC),到2024年年底前,达成一项具有国际法律约束力的协议,涉及塑料制品的整个生命周期,包括其生产、设计、回收和处理等。联合国环境署执行主任英格安德森表示:“这是自《巴黎协定》以来最重要的环境多边协议” 。“可以说自此之后,塑料污染正式从一个国家或地区的局部问题上升至全球化、国际化的环境问题。”在绿色创新发展研究院日前举办的全球塑料条约背景下中国塑料污染治理进程与展望论坛中,刘华评价道。分歧仍在:零草案讨论仍延续前次会议本次INC-3会议之前,2022年11月,在乌拉圭埃斯特角城召开了INC-1,主要讨论文书框架并选举了INC主席;2023年5月,在法国巴黎召开了INC-2,此次会议授权INC主席在秘书处的支持下,在INC-3召开之前准备一份“零草案”协议(Zero Draft)。“我们过去参与的两次会议中,会发现不同国家的代表看待塑料污染的出发点并不一样。例如,有些岛国更关注海洋污染问题,内陆国家更多从固废的角度考虑,而另一些则更关注生态。不同国家和地区基于其产业结构、对于塑料的使用情况及其在不同的发展阶段形成了对塑料污染的不同观点,这也解释了为什么各国在对塑料污染治理存在共识却仍然艰难地启动了几次会议。”刘华说。本次INC-3会议主要是基于“零草案”进行进一步商讨,而“零草案”的第二部分——塑料及塑料产品的全生命周期,仍然保留了INC-2中较为焦灼的讨论内容。“例如,塑料聚合物是否需要纳入塑料污染管控的生命周期范畴内仍然存在较大争议。一些国家坚持认为其作为原生塑料的重要生产要素应该限制和减少,另一些国家则持反对态度,认为塑料文书应聚焦管控塑料污染,而不是消灭塑料。这也是会议期间较有争议的热点话题。”刘华举例。记者注意到,此前包括欧盟、日本、加拿大和肯尼亚在内的数十个国家曾呼吁塑料污染防治条约其中应包含“具有约束力的条款”,以减少生产和使用从石化产品中提炼出来的原始塑料聚合物,并消除或限制问题塑料,如聚氯乙烯(PVC)和其他含有有毒成分的塑料。但这一立场遭到了塑料行业以及沙特阿拉伯等石油和石化出口国的反对。他们认为,该条约应着重关注塑料的回收和再利用——即塑料供应的“可循环性”。国际化学协会理事会发言人Matthew Kastner也曾在一份声明中称,“塑料协议应该专注于结束塑料污染,而不是塑料生产”。刘华认为,“零草案”第二部分第三项“有问题和可避免的塑料产品,包括短寿命和一次性塑料产品,以及有意添加的微塑料”也值得关注,这一项主要是对 “有问题和可避免的塑料产品”进行定义厘清。“但是什么是有问题,什么是可避免,这一定义难以达成一致。”刘华说。他介绍,因为团队长期关注化学品的问题,实际检测中会发现一些塑料制品添加了并没有必要、并不合适的化学物质,这种情形会为塑料制品的循环利用设置极大障碍,这就属于有问题的产品类型。但定义价值体现在,一旦塑料产品以附件形式被列为有问题和可避免的产品或产品类别的标准、确定有问题和可避免的特定产品或产品类别,就会对其明确其削减或淘汰的时间范围。刘华介绍:“上述争议几乎持续了整个会议阶段,但由于各方的观点分歧显著,直至闭幕仍然无法形成统一意见,各方代表通过接触组会议等方式表达了不同的观点,很多条款被打上方括号需要进一步讨论。本次全球塑料大会依然最终未能在实质性内容上突破,在这是令人遗憾的,也意味着明年内是否能达成最终共识仍然面临挑战”。中美两国决心终结塑料污染,成会议期间热点话题全球塑料公约被寄予终结塑料污染的厚望同时,一些大国也被寄予厚望。本次全球塑料公约大会期间,中美两国联合发表了《中美关于加强合作应对气候危机的阳光之乡声明》。声明在第15条明确提出,“中美两国决心终结塑料污染并将与各方一道制订一项具有法律约束力的塑料污染(包括海洋环境塑料污染)国际文书。”,以及第14条提及,“认识到循环经济发展和资源利用效率对于应对气候危机的重要作用,两国相关政府部门计划尽快就这些议题开展一次政策对话,并支持双方企业、高校、研究机构开展交流讨论和合作项目”。刘华介绍,这对塑料公约谈判期间带来积极信号,也迅速成为会议期间的热点话题。中国作为塑料生产和消费大国,在塑料污染的治理发挥着举足轻重的角色。刘华表示:“从会场的反馈来看,无论是国际NGO组织还是科学家联盟包括我们接触到的一些不同利益相关方,我能感受到他们对于中国在塑料污染治理议题上的期待还是很高的。因为他们会认为,中国宣布禁止进口‘洋垃圾’后,不仅对中国国内产生了极大效益,也推动了国际的废弃物的贸易变革”。在历次INC会议中,中国代表团在多轮讨论中积极陈述,坚持问题导向,聚焦易向环境泄露的塑料制品,针对不同种类的塑料制品采取分类管控措施,加强回收利用和安全处置。在国内层面,我国政府对塑料污染治理高度重视,2022年10月21日,中国已全面禁止“洋垃圾”入境,实现固体废物零进口目标。在国内层面,2007年,中国限制生产销售使用塑料购物袋。2020年年初,中国进一步加强塑料污染治理,在餐饮行业禁止了一次性塑料袋和吸管的使用。目前,国家发展改革委联合多部门发布的《关于进一步加强塑料污染治理的意见》《“十四五”塑料污染治理行动方案》《商务领域经营者使用、报告一次性塑料制品管理办法》等政策文件正持续保障塑料污染治理从全链条、重点领域开展。
  • 微纳塑料光学与质谱检测技术发展期望:微观化、可视化——访南开大学汪磊教授
    十八年前,英国普利茅斯大学研究人员发表在《Science》上一篇的文章,让“海洋微塑料”进入人们的视野。海洋微塑料是典型的人类污染物,任何一个海洋国家都存在着海洋微塑料的污染,南北极也不例外。这与地区的经济发展程度和人类活动密度直接相关,我国沿海地区多为人口密度大、经济较发达的地区,也不可避免地存在海洋微塑料污染。如今,微塑料已经成为我国乃至全球环境领域的研究热点,而且随着研究的深入,微塑料的介质、粒径以及研究方向均有了进一步的发展。近日,仪器信息网采访了南开大学汪磊教授,就环境微塑料研究现状、痛点和瓶颈及其对生态和人类健康造成的危害等话题进行了深入交流。汪磊教授 南开大学微塑料研究进一步发展:介质、粒径、研究方向微塑料的研究语境不再仅限于海洋,其介质已从海洋环境拓展到淡水环境、陆地环境及大气环境。如大量使用农膜,造成土壤环境出现微塑料;日常洗衣服时,涤纶和尼龙等材质的衣服释放出来的纤维也属于微塑料,进入淡水水环境,造成淡水环境的污染;空气环境中,微小的塑料颗粒通过扬尘进入大气环境,一些更小的颗粒可能会长期悬浮于大气当中,甚至会进一步向大气层上层迁移,并随着气团进行长距离的迁移。这些都是已经有科学证据的环境行为。因此,整个地球面临广泛的微塑料污染。随着微塑料研究的持续开展,研究方向和粒径方面也都有了更进一步的发展。研究方向从最开始的环境调查逐渐深入到毒理学效应和机制的研究;研究对象的粒径也越来越小,从最早微塑料定义的粒径5mm以下,到后来欧洲科学家提出的2mm以下,如今,动物实验发现亚微米级和纳米级的颗粒物更有可能在环境暴露后被吸收并进入到内循环,从而带来更大的健康风险,这引起科学家更为广泛的关注。微塑料研究难点:样品检测和源解析目前,微塑料研究的难点和瓶颈主要在于样品检测。实验室里对纯的化学品、塑料聚合物开展研究相对容易,因为这些物质在检测时加入的成分和剂量都是可控的,甚至还可以用一些染色或同位素标记的方法进行示踪。但环境里的微塑料本身表面粒径很小,比表面积很大,发生同质和异质聚集的能力较强,且有时易在环境中发生老化而与初始状态不同,给检测带来困扰。环境微塑料源解析也是一大瓶颈问题。微塑料的源头和归趋永远是大家关注的问题,由于塑料聚合物本身结构往往是由简单的碳氢结构组成的,很难建立特征性的指纹图谱去分析不同地域环境微塑料到底有哪些差别,所以常规通过化学成分指纹图谱进行污染物溯源的方法不一定适用于微塑料的污染研究。因此,找到合适的、能够对环境微塑料进行科学源解析的方法,也是目前研究当中的瓶颈问题。此外,亚微米级和纳米级别的颗粒已经成为研究人员关注的重点,同时,更小的粒径也使它们的检测难度也非常大,需要科学家和仪器公司技术人员共同努力来实现突破。首创化学解聚质谱检测技术 获学术界认可由于自身具有痕量污染物的环境行为和环境检测研究背景,汪磊自2015年开始关注环境微塑料,当时国内已经有许多团队在开展相关研究工作,但这其中环境分析化学领域的团队还不多。起初,环境生物学专家研究塑料污染时采用的检测技术仍以显微镜下对颗粒观察计数为主,汪磊认为镜检方法虽然可以满足部分实验要求,但由于偶然因素干扰较多,且受前处理过程和操作人员的限制,该方法不适用于痕量微塑料和亚微米尺寸的塑料颗粒检测,也难以实现方法的标准化,且其检测结果也难以用于环境微塑料的释放和迁移通量计算。结合自身研究专长,汪磊团队以将塑料聚合物通过化学解聚的手段解聚成具有特异性的单体化合物,以质谱对单体化合物进行分析检测,进而回溯到聚合物本身的质量思路,开发出聚酯、聚碳酸酯、聚乳酸、尼龙等微塑料的质谱检测技术,搭配镜检技术一起使用,具有更好的准确性和灵敏度。采用该方法,汪磊团队进行了包括污染调查和微塑料环境行为方面的研究,相关检测方法分别发表在美国化学会刊物Environmental Science & Technology Letters(EST Lett)、和Analytical Chemistry上,并被EST Lett杂志评为2017年年度最佳论文。采用质谱检测-镜检结合方法,汪磊团队对一些典型塑料污染场景进行了研究,如提出以质谱检测配合光学显微方法能更准确地评估洗衣废水对污水处理厂进水中微塑料污染的贡献;评估了大气沉降与剩余污泥再利用对陆地环境中微塑料污染的输入通量;发现了垃圾填埋场矿化垃圾土中微塑料和它的前体物以及塑化剂在成分分布上的变化与填埋时间存在相关性;并结合环境微生物学技术,揭示了室内灰尘中较高浓度的微塑料特别是生物可降解塑料微粒会影响室内环境中微生物的群落结构,这些研究成果于在EST、科学通报等刊物上连续发表。此外,汪磊还对微塑料的长距离迁移、“双碳”战略背景下生物质塑料和可降解塑料等新课题进行了一些初步的探索。由于从事环境微塑料技术的研究,2021年,汪磊团队获得安捷伦公司的全球开放型课题的支持,汪磊表示:“我很感谢安捷伦,我们很多研究工作都是用安捷伦的仪器完成的,如Agilent 8700 LDIR激光红外成像系统,以及LC/MS/MS产品。安捷伦特别关注微塑料方面的技术开发,也愿意与科研单位合作,因此我们双方一拍即合。”汪磊团队合影质谱技术在反映聚合度和粒径方面存在局限性当前,环境微塑料研究主要用到光学和质谱学两种技术手段,光学手段包括普通光学显微镜和结合聚合物特征光谱开展的显微光学技术,后者如显微红外、显微拉曼等,实验室研究还可用到电镜、原子力显微镜等。大部分微塑料研究工作只会采用两种手段中的一种。在微塑料检测中,光学手段使用更为广泛,该技术简单直接,对研究条件要求较低,方便使用。光谱学手段可以识别塑料聚合物,因此红外光谱在微塑料检测中迅速成为主流技术。质谱学方法在采用不同解聚或裂解处理后,以液质或气质联用仪对相对完整的聚合物功能单体化合物或聚合物的分子碎片进行检测,再回溯聚合物质量。微塑料的质谱检测技术还存在一定局限性,如热裂解技术在产生碎片时一些环境基质会产生同类碎片,对样品分析造成干扰。而相对温和的化学解聚手段也并不能有效解聚所有塑料聚合物,且如果产生的功能单体不具有特异性,该方法将同样面临基质干扰的问题,这些问题限制了质谱技术的应用发展。质谱分析样品解聚手段的另一大局限性是无法有效区分不同聚合度的聚合物,低聚物也会产生相同的碎片和功能单体,因而会对微塑料的定量产生干扰。“在研究过程当中,我们也不断地被要回答编辑和审稿人提出的这类问题,尽管这些低聚物相对于高聚物来说体量常常微小到可以忽略不仅,但它总归是一个客观存在的误差。”汪磊讲到,“但低聚物本身是否也有环境风险和研究的意义呢?”光学技术需更微观 质谱技术期待原位可视化当前,两种主要的微塑料检测技术都存在一定的局限性,汪磊详细讲述了局限问题并提出了对微塑料分析技术的发展期许。光学技术最大的局限性体现在更小粒径的微塑料检测灵敏度不足。目前市场上常见显微红外技术产品灵敏度多在10~20微米左右,这个尺度以下的环境微塑料很难被识别;显微拉曼技术灵敏度相对较高,但对5微米以下的样品也很难检测。因此,光学技术,需要在灵敏度方面进一步发展,使分析更加微观化。质谱方面,希望能发展对高分子聚合物直接进行检测的质谱技术,虽然据悉已有相关技术,但尚未能应用到塑料聚合物的检测上;另外,现有质谱方法分析塑料聚合物时,只能间接证明它的存在,不能实现微塑料的直接原位检测,说服力不足,期待适用于微纳塑料的质谱成像检测技术出现,从而更直观地揭示这些人造高分子聚合物的生物富集行为和毒理学作用机制。政策监管尚空白 制定相关标准应考虑多技术结合目前,在政策方面,针对塑料本身的地方性和行业性的约束,如各类“限塑令”时有颁行,但目前尚未出台针对微塑料的监管或污染治理标准。据悉,国家海洋监测中心编制了《海洋微塑料监测评价技术规程(试行)》。全球公认的环境微塑料污染监测标准技术尚未形成,各国和各团队使用的方法不同程度上存在差别。“因为环境微塑料的检测本身有很大的困难,同时又要考虑到自身的污染现状、科研能力和软硬件条件,因此构建科学、实用的监测和检测标准方法十分具有挑战性。”汪磊解释。汪磊认为,在制定环境微塑料相关监测法规或标准时,应考虑多种技术结合,例如光学检测的计数结果不利于数据之间的比较,质谱学技术无法直接反映颗粒形态和聚合度,两种技术的结合可以提高检测结果的准确性和科学性。大众应正确面对微塑料危害 减少环境中的微塑料排放微塑料对于生态环境和人类健康都存在一定的风险。较大粒径的微塑料易被动物摄食,导致海洋生物食道阻塞、厌食甚至死亡;附着到珊瑚礁表面的微塑料会引起珊瑚病变,而由于珊瑚礁对于海洋环境调节十分重要,珊瑚礁的死亡会引起一系列不良海洋环境生态效应的出现;也有研究表明,土壤环境中,微塑料会影响营养物质的传质,导致植物对营养物质的吸收障碍;浮萍类水生植物容易与悬浮的微塑料结合在一起,影响生物表面膜的通透性;微塑料表面普遍具有疏水性,其负载的内生和外源污染物对生物也可能存在毒性,这些都反映了微塑料对生态环境的潜在风险。同时,微塑料的人体暴露广泛存在,由于微塑料中存在未聚合的单体化合物、及其含有的添加剂和吸附的其他污染物,人体摄入微塑料后,这些物质可在人体内释放,造成人类对这些化学品的额外摄入;微塑料表面微生物的特异性定植可能形成独特的微生物 “塑料域”,在致病菌和抗性基因传播方面可能导致新的风险。此外,塑料纳米颗粒本身也可能对人类健康产生危害,这方面的研究仍“在路上”。但由于人体摄入微塑料的机会和剂量都不大,微塑料对人体健康的已知影响并不显著。塑料是人造高分子聚合物,而自然界中动物、植物、微生物也都在制造高分子聚合物。人们每天都可能摄入木质素颗粒,这些植物聚合物颗粒无法被消化吸收而会自行排出体外,所以对人造聚合物也没必要过分紧张。汪磊认为,对于大众来说,还应正确面对其对健康产生的潜在影响。最后,汪磊建议,减少微塑料的污染,应该从减少塑料的污染。“塑料作为20世纪最伟大的发明之一,给人类带来了巨大的便利,减少塑料污染并不等于放弃使用塑料,而是增加其循环使用和回收再生,从而减少环境中的塑料排放,这对我们每一个人或者说对每一个消费者来说是最容易做到的事情。”人物简介:汪磊,南开大学教授、博士生导师,环境科学系系主任,“环境污染过程与基准”教育部重点实验室副主任。主要研究领域为新型污染物的环境行为与环境暴露。曾获得国家海洋科技进步二等奖、天津市科技进步一等奖、教育部高等学校科学研究优秀成果奖自然科学二等奖;首届全国环境化学青年奖。获得国家基金委优青基金项目、天津市杰青项目,入选天津市中青年创新领军人才、131创新人才第一层次,并担任Bulletin of Environmental Contamination and Toxicology亚洲副主编、Ecotoxicology and Environmental Safety编委、环境科学学会环境地学分会、环境化学分会委员。
  • 天津启动新污染物治理,985高校齐助阵微塑料检测!
    随着《重点管控新污染物清单(2023年版)》的发布,各省关于新污染治理的行动方案也相继公布。近日,天津市发布了《天津市新污染物治理工作方案》,启动新污染物治理,并制定了16项重点任务。据悉,天津将建立新污染物环境调查监测制度,开展天津市新污染物环境调查监测,2025年底前,初步建立新污染物环境调查监测体系。同时,启动全市新污染物筛选及“一品一策”管控行动;启动天津近岸海域微塑料监测行动,开展以渤海近岸海域典型区域为试点的微塑料监测。此外,方案指出,天津鼓励科研院所、高新技术企业申报国家和市级相关重点科研项目,推动技术创新中心、产业创新联盟、企业重点实验室等平台开展新污染物相关新理论基础研究和有毒有害化学物质管控关键核心技术攻关,加强涉新污染物科学研究,提升创新能力。为促进分析测试技术在环境新污染物领域的应用与发展,助力高校、科研院所科研能力提升,天津分析测试协会联合仪器信息网,将于2023年3月2日组织召开“天津分析测试新技术与前沿应用高端论坛——环境新污染物分析与检测创新技术论坛”。届时将邀请环境领域知名专家学者围绕分析测试最新技术与前沿应用,以线上报告、圆桌讨论等形式展开深度交流。985高校专家亲临,合力助阵微塑料检测南开大学汪磊教授、天津大学的刘宪华教授,将共同出席本次会议,聚焦微塑料检测的最新成果、技术进展。与此同时,来自天津科技大学、天津工业大学、农业农村部环境保护科研监测所的专家将出席,分享关于新污染物识别、痕量检测、纳米材料识别、微流控检测技术等方面内容。诚邀参会。点此报名:https://www.instrument.com.cn/webinar/meetings/tjaia230111/ 报告主题报告嘉宾嘉宾单位环境微塑料的检测方法开发与应用汪磊南开大学环境学院 教授/博士生导师植物对有机磷酸酯的转化途径及机理研究刘青天津科技大学海洋与环境学院 博士后微塑料的分析测试及其环境影响研究刘宪华天津大学环境学院 副教授/博士生导师典型纳米材料环境识别技术及植物风险效应研究穆莉农业农村部环境保护科研监测所 副研究员膜基微流控耦合系统应用于痕量污染物检测研究王捷天津工业大学环境科学与工程学院 教授/博士生导师
  • 微塑料研究最前沿丨微塑料监测遇难题,我们该何去何从?
    近年来,塑料污染在水环境(海洋和淡水)中的问题日益严重,得到广泛报道和关注。据《Science》杂志研究报告,2010 年全球192 个沿海和地区共制造2.75 亿吨塑料垃圾,其中约有800 万吨排入海洋,并且塑料垃圾数量不断增多,到2015 年已有超过900 万吨塑料垃圾排入海洋。如果不加以控制,科学家预计到2050年海洋中的塑料垃圾排放量将会是2010年的两倍。这些污染物正在持续威胁海洋生物和人类自身的安全与健康。近期,科学家再次发现塑料会在机械作用、生物降解、光降解、光氧化降解等过程的共同作用下逐渐被分解成碎片,形成微塑料,被海洋生物吞食,在生物体内不断积累,随着生物链,造成更广泛的危害。这一发现引起科学家的广泛关注,同时,也引起了各国政府的高度重视。近期,生态环境部发布的《生态环境监测规划纲要(2020-2035年)》也着重强调应加强海洋微塑料监测,加快形成相关领域监测支撑能力,为国际履约谈判和全球新兴环境问题治理提供支撑。在微塑料监测中,由于微塑料的物理特性(大小、形状、密度、颜色)以及化学组分等差异,不同类型微塑料在不同环境中流动过程(输入、输出和存留)的时间均不相同,使微塑料监测变成一大难题。目前,对微塑料的分析方法主要有目视分析法、光谱法 (如傅立叶变换红外光谱法和拉曼光谱法)、热分析法以及其他分析方法等 (如质谱法以及扫描电子显微镜-能谱仪联用法)。其中,红外光谱及Raman光谱分析,由于具有无破坏性、低样品量测试、高通量筛选以及所获取的结构信息互补等特点,成为检测和鉴别微塑料的主要分析技术;而在实际操作中上述技术仅可对几微米颗粒物进行检测(FT-IR为10~20μm、Raman 低仅为1 μm),使微塑料的研究仍处于起步阶段。作为先进仪器平台,Quantum Design中国时刻关注重大科研发展方向,并致力于引进先进表征技术及设备,为我国科研搭建先进科技平台。聚焦于微塑料监测难题,Quantum Design中国表面光谱部门认为需要考虑三个关键因素:尺寸、微观形貌以及聚合物类型。理论上可用于测量两者的方法均适用于微塑料分析,但是由于疑似微塑料样品的干扰,使得仅用一种分析方法难以准确的识别微塑料,为了提高准确度以及检测效率,需要采用多组合分析测试方法对其进行监测。目前,我司主要有Neaspec纳米傅里叶红外光谱仪(nano-FTIR)、IRsweep微秒时间分辨超灵敏红外光谱仪和PSC非接触式亚微米分辨触红外拉曼同步测量系统mIRage三款先进光谱表征设备。其中,非接触式亚微米分辨触红外拉曼同步测量系统mIRage采用的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500 nm的空间分辨率。不仅如此,该设备将显微成像、红外及Raman测试集成于一体,多测试方法同步测量有效提高检测效率及准确度。同时,它具有更简单,更快速的测量模式,无需复杂的样品制备过程等优势,让更快、更准确地进行微塑料追踪、监测和研究成为可能,正成为下一代标准的方法。为更好的服务国内科研用户,Quantum Design中国北京样机实验室引进了非接触式亚微米分辨触红外拉曼同步测量系统mIRage,为国内科研用户开放,以期为微塑料监测技术的发展做出一定的贡献。 Quantum Design中国非接触亚微米红外光谱系统mIRage样机操作过程示意 精选案例:目前,mIRage在塑料领域的研究中大放异彩,助力美国特拉华大学Isao Noda教授课题组对PLA和PHA的复合薄片塑料结合方式及内在机理的研究,向我们展示了mIRage在微塑料领域研究中的潜力。该工作中,作者先对PHA和PLA的结合面进行了固定波数下的红外成像(图1)。通过对比发现,在约330 nm的范围内(空气/PHA界面)1725 cm-1处的红外信号出现了急剧的下降,而在PHA/PLA界面处几微米范围内1760 cm-1处的变化较为平缓,且无清晰的边界,表明PHA和PLA可能有某种程度的分子混合。由于使用光学光热红外技术,不存在困扰传统红外成像设备的米氏散射效应,因此能够确定这一模糊的边界是来自于两种材料间的相互渗透而非光学伪影。图1. PLA和PHA在固定波数下的红外成像。(A)红外成像图(红色1725 cm-1为PHA;绿色1760 cm-1 为PLA);(B)A图中黑色线性区域PHA/PLA红外吸收强度分布对比 为了进一步研究PHA/PLA界面处的化学成分变化,作者对这大概2 μm左右交界面的红外图谱进行了间隔200 nm的线性红外扫描分析(图2)。从羰基(C=O)伸缩振动区和指纹区(图2 A和B)的线性扫描红外谱图可以清晰的区分PHA(1720和1740 cm-1)和PLA分子(1750-1760 cm-1)。区别于理想的简单二元系统(不互溶或无分子相互作用),PHA/PLA薄片羰基伸缩振动红外叠加图谱(图2C)并不存在一个明显的等吸收点,反映了在界面区域存在着复杂的组分变化及两种以上不同物种的分布。图2. PHA/PLA界面区域每200 nm间隔的羰基伸缩振动区域(A)和指纹图谱区域 (B) 以及羰基区域伸缩振动的叠合图谱(C) 为获取更详细的界面处PHA/PLA组分的空间分布规律,采用同步和异步二维相关光谱(2D-COS,two-dimensional correlation spectroscopy)来分析羰基拉伸区域采集到的红外谱图(图3A和3B),并以等高线的图形式展现,详细的分析方法可以参考相关信息(Combined Use of KnowItAll and 2D-COS, https://www.youtube.com/watch?v=0UCcD3irVtE)。结果显示,在主要为PHA的混合界面区域同时观测到来源于PLA的1760 cm-1红峰外,表明部分PLA渗透到PHA层,且与PHA层的其余部分相比,界面附近的PHA结晶度明显降低。在对指纹图谱区域进行2D PHA/PLA相关光谱同步和异步对比时,也得到了同样的结果(可参照发表文章,在此不再显示), 即PLA向PHA渗透,且PHA的晶型有所改变。另外,作者还通过非接触式亚微米分辨触红外拉曼同步测量系统对该区域进行了同步红外和拉曼分析(图3C),两者选择性和灵敏度不同却可以很好的互补,进一步验证了这一发现的可靠性。结果证实,即使是表面上不混相的PHA和PLA聚合物对,也存在一定程度的分子混合,这种混合可能发生在界面只有几百纳米的空间水平上,很好的解释了这两种生物塑料之间的高度相容性。 图3. PHA/PLA羰基伸缩振动区域二维同步(A)和异步(B)相关光谱(2D-COS)分析以及交界区域红外和拉曼光谱分析(左为红外,右为拉曼)。 参考文献:[1] Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy,Journal of Molecular Structure,DOI: 10.1016/j.molstruc.2020.128045.
  • 10万美元赏金!好氧颗粒污泥还能治微塑料污染?
    上个月,美国水研究基金会(WRF)公布了其2022年度Paul L. Busch水业创新奖(下文简称PLB奖)的得主,来自堪萨斯大学的Belinda Sturm教授获此殊荣。PLB奖已设立超过20年,过去两年的PLB奖均由华人获得,包括美国范德堡大学的林士弘教授以及普林斯顿大学任智勇教授。该奖以WRF前主席Paul Busch命名,以纪念他对水处理的卓越贡献,获奖者多为正值当年的水业研究学者。获奖之余,Sturm教授还获得了10万美元的研究奖金。她将用这笔经费评估好氧颗粒污泥如何影响污水中的病原体和微塑料的去除效果。最近几年,欧美水圈出现了越来越多污水厂用低成本完成主流好氧颗粒污泥工艺(AGS)的升级改造。例如小编此前在专栏里介绍的瑞士Glarnerland污水厂的案例,又或者是2020年美国水环境联盟(WEF)的杰出项目奖(Project Excellence Award)的得主科罗拉多的Pueblo城的污水处理厂,该厂据称用不到200万美元打造了一套在传统活性污泥工艺中养出AGS的自控系统。这些案例的产出,是相关研究进展的成果,其中的代表文章是今年1月,著名学术期刊《Science》刊登的题为《Intensifying existing urban wastewater》的文章。作者是大家熟知的TU Delft的Mark van Loosdrecht教授以及西雅图华盛顿大学的Mari Winkler(2015年的PLB奖得主),他们介绍了AGS技术优势、应用现状以及未来对连续流AGS技术的研发设想。其中传达的一个重要信息就是——现有的活性污泥法污水厂无需扩建,或许只需要增设一个选择分离器,就能完成好氧颗粒污泥的原位改造,不仅能提高污水厂的处理能力,还为日后打造水资源回收工厂奠定基础。Belinda Sturm教授则认为,如果能进一步加深对AGS原理的认识,也许我们还能发觉出它在去除病原体和微塑料方面的应用潜力。关于重力的研究Belinda Sturm目前是美国堪萨斯大学土木、环境与建筑工程系的教授,曾担任各种创新研究项目的首席研究员,包括一些 WRF 项目。在她攻读博士学位的时候,就开始研究好氧活性污泥(AGS)。从那以后,她逐渐成为AGS研究的领先者之一。在此,小编强烈推荐大家阅读一下她在2020年做过的报告:她在报告中指出,好氧颗粒污泥工艺的应用进展是五十多年来污水处理研究人员对活性污泥的沉降性能的持续研究的成果。她也在报告中用大字标题指出——活性污泥的致密化是提高污水厂处理能力的关键所在(Densifying Activated Sludge Is Key to Increasing Capacity at WRRFs)。更大的潜力Sturm教授表示:“水质研究的最大成就,是将知识用于实践,并为社会创造更安全的水环境。我很荣幸获得Paul L. Busch奖,这将使我能够与公用事业合作伙伴合作探索新的研究应用。我相信创新需要通过这些合作得以实现,我感谢水研究基金会提供这个平台。”Sturm教授将利用PLB奖的10万美元奖金,开展题为“设计好氧颗粒系统的反应表面以去除污染物和病原体(Engineering the Reactive Surface of Aerobic Granular Systems for Contaminant and Pathogen Removal)”的研究项目,进一步了解 AGS 生物膜的基础特性,从而如何优化病原体和微塑料的去除。她正在与堪萨斯州劳伦斯城和科罗拉多州丹佛市的污水处理厂合作,考察好氧颗粒污泥生物膜中的原生动物(protozoa)对除病原体的效果,以及微塑料在好氧颗粒污泥颗粒的吸附情况。Sturm教授认为,这项研究将有助于进一步加深我们对活性污泥生物膜的基础特性的认识,最终促进污水处理厂的出水水质。正如上边提到的,Sturm教授除了这个研究项目,她还参与着一个更大的项目,就是和美国两家污水处理咨询公司Brown & Caldwell和Black & Veatch,一起研究低溶解氧的生物脱氮除磷系统。这个项目的参与者之一,Black & Veatch的首席工艺工程师Leon Downing最近也在行业某杂志上发表题为《When Density is Desirable》的文章,总结了活性污泥致密化的关键因素。这个研究团队将继续探索低溶解氧条件下的生物脱氮除磷的管理方法,阐明工艺机制,协助水务公司制定决策树,编写设计/运行/建模指南。该项目预计在2024年完成,届时小编会为读者带来项目的最新进展。
  • 微塑料分析新技术及其应用
    TED-GC-MS“热萃取热脱附 - 气相色谱 - 质谱”法是GERSTEL与德国联邦材料研究所(BAM)共同研发并且申请专利的微塑料检测新技术,可以对微塑料做到全面定性、准确定量、快速检测。TED-GC-MS 分析分两步:样品首先在热重分析仪 (TGA) 中进行热萃取,然后气态分解产物被捕获在固相吸附层上。随后,用热脱附气相色谱质谱法(TDU-GC-MS)分析固相吸附剂。这个技术的优势在于:1. 热萃取和热脱附分开,降低了GCMS被污染的风险,提高了仪器稳定性并最大限度地减少了维护工作2. TGA样品量大,可达100mg,提高了样品的重现性和检测准确性。3. 检测时间快,仅需几小时,可用于对环境样品做快速筛查4. 通过GC-MS可以实现定量分析TED-GC-MS: 热重分析(TGA)耦合热脱附-气质联用(TDU-GC-MS)TGA的样品制备简单,并且样品容量大自2014年以来,德国联邦材料研究所的Braun博士带领的团队,已经发表了数篇文章,下面是最新文献的总汇:01Determination of tire wear markers in soil samples and their distribution in a roadside soil(2022)“土壤样品中轮胎磨损标记物的测定及其在路边土壤中的分布”轮胎磨损是陆地生态系统中微塑料的重要来源。众所周知,道路排放的颗粒物对邻近区域的影响可达100米。这里首次应用热萃取热脱附气相色谱-质谱法 (TED-GC-MS) 通过检测丁苯橡胶 (SBR) 的热分解产物来测定土壤样品中的轮胎磨损,无需额外富集。TED-GC-MS测定丁苯橡胶的标准偏差均小于 10%, 是一种合适的分析工具,无需使用有毒化学品、富集或特殊样品制备即可确定土壤样品中的轮胎磨损。02Development of a Routine Screening Method for the Microplastic Mass Content in a Wastewater Treatment Plant Effluent (2022)“污水处理厂出水中微塑料质量含量常规筛查方法的开发”对经过三级处理的市政污水处理厂 (WWTP) 出水中的微塑料 (MP) 进行了调查。通过应用分级过滤方法(500、100 和 50 μm 网孔尺寸)采集1立方米的代表性样品体积。首次通过热萃取热脱附-气相色谱-质谱 (TED-GC-MS) 检测微塑料质量分数,而无需进行先前需要的额外样品预处理。测试了用于评估 TED-GC/MS 数据的不同类型的量化方法,其准确性和可行性已在实际样品中得到验证。在出水样品中鉴定出聚乙烯、聚苯乙烯和聚丙烯。聚合物质量含量在5到50mg/m3 之间变化很大。TED-GC/MS测定1 mg滤渣中检出聚合物的峰面积;50、100 和 500 表示分馏过滤后以 µ m 为单位的分数粒径截止值。03Smart filters for the analysis of microplastic in beverages filled in plastic bottles (2021)水样中微塑料的高效收集与检测食品中微塑料 (MP)的出现,如塑料瓶装饮料,引起了公众的高度关注。现有的分析方法侧重于确定粒子数量,需要复杂的采样工具、实验室基础设施和通常耗时的成像检测方法。在目前的工作中,我们展示了智能过滤坩埚作为采样和检测工具的开发。过滤并干燥滤出的固体后,可以通过热萃取热脱附-气相色谱-质谱 (TED-GC-MS) 来直接测定样品中微塑料的质量含量。新的过滤坩埚允许过滤粒径小至5 μm的微塑料。 结果显示,所测塑料瓶装饮料中微塑料含量低于0.01 μg/L到 2 μg/L,具体取决于饮料瓶类型。几种塑料瓶类型中的饮用水,可乐以及苹果汽水样品中测到的微塑料含量04Evaluation of thermoanalytical methods equipped with evolved gas analysis for the detection of microplastic in environmental samples(2020)“评估几种逸出气体分析的热分析方法,用于检测环境样品中的微塑料”在这项工作中,比较了四种热分析方法,并讨论了它们的优点和局限性。 其中之一是热萃取热脱附气相色谱质谱法 (TED-GC-MS),这是近年来建立起来的一种微塑料检测分析方法。 此外,还应用了热重分析与傅里叶变换红外光谱 (TGA-FTIR) 和热重分析与质谱 (TGA-MS) 相结合的方法,这两种方法在该领域不太常见,但仍在其他研究领域使用。 最后,应用了微型燃烧量热仪 (MCC),这是一种尚未用于微塑料检测的方法。结果发现,TED-GC-MS 是最适合基质未知、微塑料种类和含量未知的样品的方法。 TGA-FTIR 是一种可靠的方法,适用于具有已知基质和定义种类的微塑料的样品。TGA-MS 可能会在未来为检测 PVC 颗粒提供解决方案。MCC 可用作一种非常快速和简单的筛选方法,用于识别未知样品中标准聚合物的潜在微塑料负载。用于通过 TED-GC/MS 检测 PE、PP、PS 和 PET 的定性和定量物质列表。使用三种 TGA 方法的实验室间测试样品的目标值和结果, TED-GC-MS的结果最好。05Development and testing of a fractionated filtration for sampling of microplastics in water(2019)“开发和测试用于水中微塑料采样的分馏过滤技术”采样、样品制备和检测的协调是获得环境中微塑料 (MP) 可比数据的关键。本文开发并提出了一种适用于水体的采样技术,该技术考虑了环境中不同的塑料特性和影响因素。给定微塑料质量浓度的人工水和废水处理厂的处理过的废水都用于验证衍生的采样程序、样品制备。使用热萃取热脱附-气相色谱-质谱法 (TED-GC-MS) 对微塑料进行分析。在给定微塑料质量浓度的人工水中,回收率范围为80%至110%,具体取决于不同的微塑料类型和大小等级。在处理过的废水中,我们发现了不同尺寸等级和数量的聚乙烯和聚苯乙烯。06Automated thermal extraction-desorption gas chromatography massspectrometry: A multifunctional tool for comprehensivecharacterization of polymers and their degradation products(2019)“自动热萃取热脱附气相色谱质谱法:一种用于全面表征聚合物及其降解产物的多功能技术”自动化TED-GC-MS代表了一种用于综合分析聚合物的新型灵活多功能方法,类似的聚合物表征以前只能通过多种独立分析方法的组合来实现。三个例子证明了这一点:第一个是木塑复合材料的分析,其中聚合物和生物聚合物(木材)的分解过程可以通过使用顺序分馏收集清楚地区分吸附剂。其次,通过与参考材料比较确定未知聚烯烃共混物的重量浓度,展示了定量的应用。第三是环境样品中微塑料浓度的测定正成为越来越重要的分析必需品。结果表明,TED-GC-MS校准曲线对最重要的微塑料前体显示出良好的线性,甚至可以成功分析复杂的基质材料(悬浮颗粒物)。六个选定降解产物峰的样品质量归一化的重复性积分结果。平均值显示为一条直线。四种化合物的RSD约为 6%,两种化合物的RSD约为 12%。纯 PE 的 TED 色谱图 (m/z = 55),放大了三萜(C31H62;MW = 434.8)保留时间附近的区域,叠加了 m/z = 434 的质量碎片离子。PE/PP 混合物参考样品的 TED 色谱图(上)和未知样品的色谱图(下);标记了 PE 和 PP 的特定峰,用于确定重量比。悬浮物基质 (SPM) 中 PE(左上)、PP(右上)和 PS(下)的特定降解化合物的线性回归。07Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method (2015) “使用热分解法分析环境样品中的聚乙烯微塑料”直径小于5毫米的小聚合物颗粒称为微塑料,通过聚合物碎片和工业生产进入环境。需要一种方法来识别和量化各种环境样品中的微塑料,以生成可靠的浓度值,这对于评估环境介质中的微塑料是必要的。通过热萃取热脱附-气相色谱-质谱 (TED-GC-MS) 来直接测定样品中微塑料的质量含量。与热解气相色谱质谱 (Py-GC-MS) 等其他色谱方法相比,TGA中可以使用相对较高的样品质量(比Py-GC-MS 中使用的样品质量高约200倍)。聚乙烯 (PE) 是微塑料最重要的代表之一,被选作识别和量化的示例。土壤中PE的校准曲线的线性达到了约 0.99 ,该方法的相对误差从约为10%。土壤中 PE 的校准曲线达到了约 0.99 的 R2 因子,该方法的相对误差从约为 10%
  • 吃顿外卖=千亿个塑料颗粒下肚!每人每周摄入的5g「微塑料」
    每人每周吃下5g微塑料相当于一张银行卡 微塑料(Microplastic),是指直径小于5毫米的塑料碎片和颗粒,在塑料制品使用过程中释放,特别是食物用途的塑料制品。纳米塑料(Nanoplastics)则是目前已知最小的微塑料,尺寸在1μm以下,体积小到可以穿过细胞膜。虽然不会有人直接吃塑料,但食物的包装——塑料袋、塑料瓶、塑料盒等,则会将大量的微塑料直接送入人们的口中。微塑料对人的影响往往是温水煮青蛙式的,容易被忽视,但对健康的危害却是积年累月的。 去年4月20日,来自美国国家标准与技术研究院(NIST)的化学家Christopher Zangmeister团队开展的一项新研究,以食品级尼龙袋和低密度聚乙烯(LDPE)成分的产品作为样本,探究微塑料的来源及释放情况。事实上,以这两种成分为主的塑料用品在日常生活中很普遍,比如烘焙衬垫和一次性外带咖啡杯的内衬塑料薄膜。 结果显示,在普通的外带咖啡杯中放一杯100℃的水,静置20min后,研究者在每升水中能检测到万亿个塑料纳米颗粒。也就是说,当你享用喝一杯500ml的热咖啡或热奶茶时,将有5千亿个塑料纳米颗粒进入你的身体内! DOI: 10.1021/acs.est.1c06768 不仅如此,其实早在婴儿时期,人们就已经开始摄入微塑料。据Nature Food上刊登的研究Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation估计,在使用聚丙烯塑料瓶制备的每升婴儿配方奶粉中,婴儿可能摄入多达1600万个微塑料颗粒。 该研究中,研究人员按照世界卫生组织制备婴儿配方奶粉的标准,将聚丙烯婴儿奶瓶消毒、风干,然后倒入加热到70℃的水。在摇晃瓶子一分钟后,他们过滤了液体并在显微镜下进行分析,发现了数以百万计的微塑料颗粒。仅装瓶1分钟就能检测到,证实了微塑料产生的即时性。 此外,研究者还发现,冲奶粉使用的水温会极大地影响释放的污染颗粒的数量。当水温从25℃上升到95℃,每升释放的微塑料颗粒从60万增加到5500万个。也就是说,水温越高,释放的量就会越多。 https://doi.org/10.1038/s43016-020-00171-y 由于人们不断地吃外卖、喝咖啡、吨瓶装饮料,微塑料自然也不停地被摄入进人体内。 加拿大的Kieran D. Cox教授和他的团队以美国人饮食为基础,根据食物消费种类以及不同种类食物所含有的微塑料数量,估算出每人每年会吃掉5万个微塑料颗粒,如果算上漂浮在空气中、被呼吸吸入的微塑料,那么每人每年吃掉的微塑料颗粒数量在7.4万-12.1万之间。按照重量计算的话,每人每周大约吃掉5g微塑料,相当于一张银行卡的重量。 还真是活到老,吃塑料到老呢。以每周5g塑料颗粒计算,人这一辈子估计要吃下一个乐高玩具,想想还有点小刺激(bushi)。 人类血液中首次发现微塑料的存在! 2019年,《Annals of Internal Medicine》在线发表的一项研究显示,健康志愿者的粪便样本中检测到了微塑料。研究人员发现,所有粪便样本都检测出微塑料呈阳性,每10克人类粪便中平均有20个微塑料颗粒。 如果光是“吃下去,拉出来”的简单关系,微塑料倒不值得担心。然而,实际并非如此。随着大量研究的开展,科学家们陆续在人类切除的结肠标本,甚至胎盘组织中发现微塑料的存在。 更令人担忧的是,来自荷兰阿姆斯特丹自由大学的科学家首次在人类血液中发现了微塑料的存在。这表明微塑料可能随着血液流经全身,对各器官造成影响! DOI: 10.1016/j.envint.2022.107199 研究者在22名健康志愿者的静脉血中检测到了5种最常见的塑料成分,分别是PET、PS、PE、PMMA和PP。 5种最常见的塑料成分及其来源 在严格控制了采样、样品准备及分析过程中的可能存在的塑料污染后,研究者在近8成志愿者的血液里检测到了微塑料的存在(77%,17/22),平均下来,每个志愿者每毫升血样里有1.6ug的微塑料。 测出比例最高的为PET,在50%的志愿者血液中都检测到这种物质的存在,血液浓度最高为2.4ug/ml,提示大部分人体内都含有瓶装水释放的微塑料。 其次为:PS(36%)、PE(23%),最高血液浓度分别为4.8ug/ml及7.1ug/ml,这两类塑料主要应用在保鲜膜、一次性泡沫饭盒、塑料杯等,表明来自食物包装的微塑料也会进入人体血液循环中,并且进入的量不容小觑。 最后是PMMA,仅在5%的志愿者血液中发现,在所有志愿者血液中均未检测到PP的存在。 这项研究首次在人体血液中发现微塑料的存在,考虑到血液循环在体内四通八达,为各器官供给氧气和营养物质,带走代谢废物,不难想象微塑料也随着血流流经全身。“在血液样本中发现微塑料存在”的事实,也说明了人体清除微塑料的速度是低于从外界摄入的速度。 进入血液的微塑料可能通过肾脏过滤或胆汁排泄的方式排出体外,也可能通过有孔的毛细血管沉积在肝脏、脾脏等器官。换句话说,微塑料早已无孔不入,甚至遍布全身。 肠道疾病患者粪便中含有的微塑料颗粒是健康的1.5倍 微塑料究竟会对健康造成什么样的危害呢?这才是人们更为关心的话题。 此前,已有动物实验证明,微塑料可以扰乱内分泌系统,导致出生缺陷,减少精子的产生,引发胰岛素抵抗,并损害学习和记忆。此外,科学家们还观察到了由于微粒刺破和摩擦器官壁而引起的物理损伤迹象,例如炎症。 DOI: 10.1098/rstb.2008.0281 为了进一步探究微塑料对人类的影响,来自美国哈佛大学和罗格斯大学的科学家们还构建了模拟消化道的体外系统,探究微塑料颗粒是否会干扰营养物质的消化和吸收。 结果显示,微塑料的存在会对脂肪吸收带来健康上的负面影响,即当脂肪与微塑料颗粒一起摄入时,脂肪的生物利用度会随之增加,导致更多的脂肪进入血液(这可能就是外卖越吃越胖的原因之一)。此外,该研究中还显示微塑料会影响微量营养素吸收、增加小肠渗透性,以及促进某些细菌繁殖等。 现阶段,有关微塑料对人体健康影响的试验有限,但已初见端倪。2021年12月,发表在《Environmental Science & Technology Letters》期刊上的一项学术研究显示,炎症性肠病(IBD)(包括克罗恩病和溃疡性结肠炎)患者的粪便中的微塑料比健康对照组多,表明这些微塑料可能与疾病的发展过程存在相关性。 研究团队从不同地区的50名健康人和52名IBD患者中获取了粪便样本。分析结果表明,IBD 患者的粪便中含有的微塑料颗粒是健康受试者粪便的1.5倍。患者体内的微塑料含量越高,疾病相关的腹泻、直肠出血和腹部绞痛症状就越明显。 具体结果为: ①IBD患者和健康人粪便中微塑料的浓度分别为41.8和28.0个/g dm,IBD患者的粪便中每克的微塑料颗粒比健康人的多1.5倍左右。 ②该研究共检测到15种微塑料,以PET(用于瓶子和食品容器)和PA(聚酰胺;用于食品包装和纺织品)为主,主要形态分别为片状和纤维状。 ③通过问卷调查,研究人员发现,喝瓶装水、吃外卖食品、并且经常暴露在灰尘中的患者,其粪便中含有更多的微塑料。 该研究首次表明 IBD 患者粪便中微塑料(MPs)的浓度与健康人存在显著差异,且IBD患者粪便中微塑料水平显著高于健康人。这一结果提醒人们,微塑料对人体健康的损害可能不容小觑。 然而,“微塑料”是否对人类健康构成重大风险仍存在巨大未知,亟需更多相关学术领域的探究,以应对其未知风险。 众所周知,塑料降解速度很慢,通常会持续数百年甚至数千年,这也增加了微塑料被摄入并累积在许多生物体和组织中的可能性。为了避免人类的五脏六腑变成“塑料制品”,最简单的办法就是——尽量在生活中减少塑料制品的使用并及时治理塑料污染,别让地球被塑料“攻陷”之后再追悔莫及。
  • 印度创建塑料大学!塑机企业的机遇来了!
    p style=" text-indent: 2em " 印度塑料基金会贸易协会和美国马萨诸塞州大学洛维尔分校签订合作备忘录,由美方提供课程、基础设施、工业和技术学位授予等方面的咨询意见,双方共同建立印度塑料行业国际大学。该大学旨在促进印度塑料行业的教育和培训,提高印度塑料行业的技术水平。除工程类课程外,印度塑料行业国家大学还将设置现代化的研发实验室,增加塑料工程类的课程设置。目前该校已经接受来自塑料、化工和机械工程师的入学申请。 br/ & nbsp & nbsp 作为世界第二大人口大国,印度一直备受国际关注。随着本届印度政府一系列改革措施的推进,不少媒体和分析人士认为,印度会取代中国,成为新的“世界工厂”。资料显示,2017年印度经济增速为7.2%,成为世界第七大经济体。经济的快速增长,伴随着政府改革的深入,印度制造定会在不久的将来登上国际舞台。而塑料工业是印度重点发展的工业之一,从建立塑料行业国际大学可见一斑。我国塑机企业应该抓住当前机遇进入印度市场。 br/ & nbsp & nbsp 和中国相比,印度在诸多领域有着一定的优势。中国的人口红利逐渐消失,劳动力价格持续上涨,劳动力成本优势不再。反观印度,不仅有着不逊于中国的人口基数,还拥有着全世界最多的人口结构和优越的劳动力结构。据世界银行2016年统计,印度人口为13.24亿,仅与中国的13.79亿相差5500万人。印度人口年龄中位数为27.6岁,而中国是37.1岁。良性的人口结构、充沛的劳动力资源,使印度在承接产业转移过程中不用考虑劳动力成本问题。 br/ & nbsp & nbsp 除劳动力优势外,印度政府的改革措施也是吸引国际社会目光的原因之一。自2014年以来,印度政府进行了一系列大刀阔斧的改革。无论是加强基建,还是解决财政赤字,亦或是改革税制等措施都推动了印度经济进一步快速发展。尤其是建立全国统一的税收体系、合并税种等措施,不仅打破了印度国内各邦之间的贸易壁垒、建立了统一的印度市场,还减轻了企业的税收成本,改善了投资环境促进了商品的流通,为外部资本进入印度投资创造了良好的条件。 br/ 相关媒体报道,世界其他地区的塑机企业,如赫斯基、威猛巴顿菲尔、索尔维和科思创等国外知名塑机企业已经开始在印度设厂或者扩大厂区。印度塑料市场正以蓬勃的生机吸引着世界各地的优秀企业投资生产,我国也有塑机企业跟随国外塑机企业的步伐进入印度。 br/ & nbsp & nbsp 在积极抓住机遇进入印度市场,享受优惠的同时,我国塑机企业也要直面印度市场存在的一些弊端。尽管印度有着充沛的劳动力资源,但是其劳动力素质较为低下,大量的劳动力资源能否与市场发展,尤其是塑机行业相匹配还是一个问题。贫富差距过于悬殊,印度农村有着近10亿的人口,但是农村普遍较为贫穷,购买力低下。印度农村能为印度发展贡献多大力量还有待进一步观察。大国关系较为微妙,尤其是与中国因众所周知的原因,关系较为紧张,中国企业在印度能否得到与其他国家相同的待遇考验着印度政府。 br/ & nbsp & nbsp 印度正以开放的姿态吸引国际投资的到来,尽管印度市场存在着种种问题,但是在其政府的努力下,印度市场发展的前景是乐观的。我国塑料行业有关企业要清楚认识印度市场动态,应积极参与印度塑料产业发展建设,努力形成互利共赢局面。 /p p br/ /p
  • 岛津推出塑料分析仪及配套方法包
    基于傅立叶变换红外光谱的塑料分析专用系统 塑料分析的要求是什么? 分析塑料时会使用红外谱库对其材质进行定性。但因受热或紫外光照发生变性(老化)的塑料红外光谱会与标准品光谱的形状有所不同,从而导致难以顺利进行定性。 岛津新发布的塑料分析仪及配套方法包通过搭载老化谱库,能够实现反映老化状态的高精度定性分析。 塑料分析方法包 紫外光照老化塑料谱库该谱库使用岩崎电气株式会社生产的加速老化人工环境气候箱,收录了相当于自然光老化10年的一系列塑料的红外光谱。其中包括针对14种常见塑料,通过紫外光照射不同时间进行老化的200多张红外光谱。 紫外光照老化塑料谱库中收录的硬质PVC 热老化塑料谱库该谱库收录了静冈县工业技术研究所滨松工业技术支援中心所测量、获取的热老化塑料红外光谱。其中包括针对13种常见塑料,在200 ~ 400℃下进行老化的100多张红外光谱。 热老化塑料谱库中收录的聚乙烯(PE) IR Pilot 专用分析程序/方法包其中附带了可便于直接开始测量光谱以及自动创建报告的IRSpirit专用程序 IR Pilot以及用于塑料测量的一般性红外方法参数,因此可方便地对目标样品进行快速测量、分析及打印报告。 即使不熟悉FTIR分析的用户也能够立刻上手。 IRSpirit 专用向导式程序IR Pilot
  • 大咖交流 | 谱育科技与中科院共同探讨ICP-MS在单颗粒、纳微塑料领域的应用
    纳米颗粒和微塑料随着纳米颗粒和微塑料在生态环境中广泛存在,甚至在人体内也已经发现了微塑料的痕迹,其对生态环境和人体健康潜在的影响关注度越来越高。2022年,生态环境部将微塑料被纳为四大新污染物之一,如何在各类复杂的赋存介质、赋存基体中进行纳米颗粒与微塑料的精确表征吸引了环境化学、材料化学、分析化学等诸多领域学者的关注。由于ICP-MS(ICP-Q-MS、ICP-MS/MS、ICP-Q-TOF-MS等)对瞬态信号具有优异的检测能力,基于亚毫秒级驻留时间下的SP-ICP-MS分析技术,可以获得样品中目标粒子的等效球体尺寸、粒径分布、颗粒数量等关键信息,使得其在对纳米颗粒物和微塑料表征中的应用潜力获得了业内广泛关注。协同交流,技术探讨作为国产ICP质谱技术研发应用的代表性企业之一,谱育科技针对ICP-MS在单颗粒及微塑料领域的应用也开展了深入研究。应中国科学院生态环境研究中心谭志强老师研究员团队邀请,谱育科技无机质谱售前产品经理高尔乐博士与应用研究副经理吴智威博士携团队,就ICP-MSMS、ICP-Q-TOF在单颗粒分析、纳微塑料领域系列解决方案,通过线上线下多次与谭志强研究员团队人员及相关受邀专家学者展开深入交流。谱育科技ICP质谱团队与中国科学院生态环境研究中心谭志强研究员团队交流现场会议上,吴智威博士就ICP-Q-MS、ICP-MS/MS、ICP-Q-TOF-MS在单颗粒、微塑料领域中的技术优势与应用潜力进行了详细的介绍,并展示了最新的应用案例示范。双方就相关应用以及前处理、分析方法等展开了充分交流。谭志强老师指出,针对SP-ICP-MS技术中颗粒响应阈值判断方式、离散信号处理技术、连续颗粒信号判别与处理方法,谱育科技所进行的针对性研究让人印象深刻,希望日后可以进一步合作。目前,谭志强老师团队已使用谱育科技 SUPEC 7000型ICP-MS开展自然水体、植物组织、土壤提取液等样品中的金属/非金属及其氧化物细颗粒的精确表征,从而研究金属/非金属及其氧化物细颗粒在土壤-作物系统中的迁移转化;同时也将其与自行搭建的中空纤维流场流分离装置/电场流分离装置联用,进行准确的细颗粒识别表征。▲ 吴智威博士与同学们展开深入探讨谱育科技ICP-MS分析应用通常ICP-MS可以对单颗粒及微塑料的粒径及浓度进行表征,但进行数据处理时,业内较常使用单一的传输效率(如只使用颗粒粒径传输效率或颗粒浓度传输效率)对测试数据同时进行颗粒粒径与颗粒数量的数据校正处理,而最新研究表明这种数据处理方式容易引入额外的误差。对此谱育科技提供了全新的颗粒粒径与颗粒数量独立的二维校准方法,可彻底避免由于传输效率不一致带来的系统误差。此外,谱育科技SP-ICP-MS技术具备单次样品采集事件≥30min (1800万数据量)的功能,还特别开放了高斯、泊松、自定义等多种颗粒信号筛选算法,并提供包括颗粒事件长度、颗粒间隔系数等新兴校正系数的处理功能,分析化学家可根据应用研究需求,选择最为合适的算法处理参数与颗粒校正方法,从而得到可靠、精准的分析结果。▲ 颗粒粒径与颗粒数量独立的二维校准方法SUPEC 7000系列ICP质谱分析不同粒径、不同浓度的单颗粒结果如下:▲ 不同粒径Au-Nano的信号(左)/粒径(右)-频次分布图厚积薄发,技术引领谱育科技深耕质谱领域超15年,先后发布多款质谱产品。其中可应用于单颗粒与微塑料领域的ICP质谱,包括以下三款系列产品:单四极杆ICP-MS可满足一般基质下的单颗粒及微塑料的表征分析;三重四极杆ICP-MS/MS使得超痕量元素分析的方法开发不再单纯地高度依赖仪器硬件的绝对性能(如灵敏度、质量分辨能力、丰度灵敏度等),而是可依赖分析化学科学家的科研思维,以严谨可控的化学分辨的方式,优雅、巧妙地完成分析方法学的研究与开发,有效解决如Si、Ti、S等存在诸多质谱干扰的单颗粒表征分析;四极杆飞行时间串联质谱ICP-Q-TOF-MS不同于四极杆“顺序扫描”,其可在几微秒或者几十微秒就可记录一个完整的质谱,这使得分析工作者们不再局限于单次只能获得单颗粒或微塑料中1~2种元素信息,而是可单次获得所有元素信息,以此进行更为全面、深入的研究,如标记不同稀土元素的塑料,探究其在土壤环境的迁移,转化,相互作用;多元素指纹更精准地识别微塑料以及追溯污染来源等。
  • 海洋微塑料危害不容忽视
    p   塑料的发明,为人类生产生活带来极大便利。自20世纪50年代起,全球塑料年均增长率保持在8.5%。到2016年,全球塑料产量达3.35亿吨。我国是世界塑料生产和使用大国,且进一步增长的潜力十分巨大。 /p p   然而,塑料在使用后,一部分由于收集处理不及时而进入环境,发生破碎、降解,给地表水、土壤和海洋等带来严重环境污染。近年来,我国开展的多次大洋和极地科考中,均在海洋中检测出微塑料。 /p p   海洋微塑料究竟是什么?其危害何在?该如何防范、治理? /p p   国家海洋环境监测中心副主任王菊英长期从事海洋垃圾和微塑料方面研究。她介绍,学术界和管理者普遍认同,微塑料是小于5毫米的塑料颗粒,在各种海洋介质中均有存在,包括生物体。 /p p   据自然资源部报道,我国载人潜水器“蛟龙号”去年从大洋深处带回了海洋生物样品。令人意想不到的是,在4500米水深下生活的海洋生物体内,竟检出了微塑料。今年初,自然资源部第一海洋研究所研究员孙承君等人在南极鲍威尔海盆开展科学考察。他们通过船载泵取得500升表层海水样本,用显微镜观察时,也发现有小于0.3毫米的微塑料。这是中国科学家首次在南极海域发现微塑料。 /p p   根据全球科研人员的实地调查发现,从近海到大洋,从赤道到极地,从海洋表层到大洋深处,海洋微塑料无处不在。 /p p   “不管是水体还是沉积物,从海表到海底,以及海洋沉积物中,都发现微塑料的存在。”王菊英表示,2017年他们实验室开展过相关研究,结果显示,约76%的鱼类肠道、消化道都检出有微塑料。 /p p   不过王菊英指出,微塑料是一个新型环境问题,当前研究仍存在进一步拓展的空间,包括监测方法的标准化。目前,微塑料分析方法尚不统一,不同研究之间的可比性并不强。对此,学术界正在努力推出相应的标准化分析方法。目前,在大部分微塑料对生物体影响的实验室研究中,其浓度都高于实际环境浓度。而从非常高的实验室加标浓度外推实际的生物效应,仍存在一定不确定性。 /p p   与大型塑料一样,海洋微塑料对地球生态环境也有负面影响。但据联合国粮农组织报道,目前尚无直接证据表明,通过食用海产品可以对人类健康产生影响。王菊英认为,关于微塑料对生态系统和人体健康的影响,目前仍在研究中,但其潜在影响不容小视。因为小于5毫米的微塑料颗粒,还能继续分解为更细的颗粒,对人体健康的影响需要格外关注。 /p p   “它们本身含有增塑剂,并能从环境中吸附有毒有害物质。当被海鸟、鱼类、底栖动物等海洋生物摄食后,会损害海洋生物的消化道,或刺激其胃肠组织产生饱胀感而停止进食 其所携带的有毒有害物质也会对海洋生物产生不利影响。”王菊英介绍。 /p p   微塑料是近年来国际社会高度关注的环境问题。2016年,联合国环境大会将海洋塑料垃圾和微塑料问题等同于全球气候变化等全球性重大环境问题,相关国家和环境组织还出台了行动措施和法规。 /p p   中国是最早颁布限塑令的国家之一——禁止生产、销售和使用厚度小于0.025毫米的塑料袋。此外,国内相关海洋环保法律法规、条例、水污染防治行动计划等,也要求加强塑料陆源入海污染防控,严控塑料垃圾入海。 /p p   王菊英表示,国内实施的生活垃圾分类制度方案有效减少了陆源和海源垃圾输入,固废特别是塑料废弃物的回收利用也从源头上防止陆源垃圾入海。 /p p   就塑料回收利用率排名而言,欧盟30%,位居第一 中国25%,位居第二。而世界平均回收利用率是9%。“因此,中国在固废回收利用的相关措施上还是较为有力的。”王菊英说。 /p p   近期实施发布的农业农村污染治理攻坚行动计划,明确提出了地膜回收要求,旨在进一步从源头上防止陆源塑料垃圾入海的输入。科技部则启动了重点研发专项,专门针对海洋微塑料的来源、分布和防治技术开展研究。相关部门也从2007年起实施业务化海洋垃圾监测,并于2016年开始监测海洋微塑料。此外,我国还积极提升公众意识,转变公众消费方式,降低一次性消费制品使用率。 /p p   王菊英表示,今后将从研究方案、加强监测、科学评估、社会参与、宣传教育以及国际合作等6方面开展海洋微塑料污染防治 并应加强海洋垃圾监测,掌握海洋垃圾和微塑料分布规律,开展相关领域科学研究,更加科学地评估海洋垃圾的环境影响,特别是微塑料对海洋生态和人体健康的影响。“另外,还要加大社会参与垃圾分类的支持力度,加强塑料垃圾的回收和资源化利用 推动公众参与,转变消费方式 参与应对海洋垃圾和塑料污染的国际进程,积极推进全球海洋垃圾治理。”王菊英说。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/ea627375-85ce-4938-91db-0ff6719e1d10.jpg" title=" 绿· 仪社.jpg" alt=" 绿· 仪社.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加“绿· 仪社”为好友 了解更多对科学仪器市场的分析评论! /span /p
  • 德国VITLAB公司移液枪、实验室塑料产品诚招经销商
    德国VITLAB品牌代表着高品质的实验室塑料产品器具和移液产品。成立于1989年,VITLAB采用PP,PMP,PFA等高级塑料研发和制造实验室产品, 如各种容器,烧杯,A级,B级量具(刻度量筒,容量瓶,移液管等),锥型瓶,一次性移液管,吸头,以及用于痕量分析的多种PFA产品(独家生产A级PFA容量瓶)。以上产品均在严格执行ISO9001质量管理体系下生产。 VITLAB最新款活塞式单通道微量移液器,能完美的满足绝大部分实验室中最严格的应用需求,并包括了用户要求的所有功能:坚固的结构、简单的操作、整支灭菌、高精确度和实用的易校准技术,保证长期使用的可信赖性。 符合DIN标准,可在121℃高压湿热下整支灭菌 上海恒奇自2005年开始代理VITLAB产品,移液产品和常用塑料量器具长期备有现货,以快速响应客户需求,现诚招经销商,欢迎来电咨询洽谈。 地址:上海市长宁区金钟路658弄1号楼甲4层 网址:www.hq17.com 联系电话:021-51693889-85 传真:021-61304216 联系人:郑锐 先生(13917626257) 其它相关产品: 大龙实验室产品惊喜大促销-参数-报价-价格-恒奇仪器 德国VITLAB优质容量瓶特价促销-参数-报价-价格-恒奇仪器 美国Branson(必能信)珠宝及光学器件清洗器-B200-参数-报价-价格-恒奇仪器 美国AIRMETRICS便携式PM2.5/PM10/TSP空气采样器-参数-报价-价格-恒奇仪器 连续式数字滴定器-参数-报价-价格-恒奇仪器 马来西亚TOP GLOVES普通无粉乳胶手套-参数-报价-价格-恒奇仪器 马来西亚TOP GLOVES丁腈检验手套-参数-报价-价格-恒奇仪器 merck优级纯溶剂和无机酸碱盐-参数-报价-价格-恒奇仪器 merck指示剂-参数-报价-价格-恒奇仪器 培养基添加剂(一)-参数-报价-价格-恒奇仪器 颗粒状脱水培养基(九)-参数-报价-价格-恒奇仪器 优级纯溶剂-参数-报价-价格-恒奇仪器 pH标准浓缩缓冲溶液-参数-报价-价格-恒奇仪器 电导率标准溶液-参数-报价-价格-恒奇仪器 常用有机合成试剂-参数-报价-价格-恒奇仪器 痕量分析试剂、农残级分析试剂、超纯试剂-参数-报价-价格-恒奇仪器 无水溶剂-参数-报价-价格-恒奇仪器 当量溶液-参数-报价-价格-恒奇仪器 原子吸收、离子标准溶液、ICP标准溶液-参数-报价-价格-恒奇仪器 美国BRANSON(必能信)2000bdc连续流大功率超声波破碎系统-参数-报价-价格-恒奇仪器 美国Branson(必能信)超声波破碎仪/细胞破碎仪(sonifier)-参数-报价-价格-恒奇仪器 美国BRANSON(必能信)SLP系列超声波细胞破碎仪-参数-报价-价格-恒奇仪器 美国Branson(必能信) IC系列超声波清洗系统-参数-报价-价格-恒奇仪器 美国Branson(必能信) DHA1000型大容量超声波清洗器-参数-报价-价格-恒奇仪器 美国Branson(必能信)原装台式超声波清洗器-参数-报价-价格-恒奇仪器 DR5000多参数水质分析仪(紫外可见分光光度计)-参数-报价-价格-恒奇仪器 DR890便携式多参数水质分析仪-参数-报价-价格-恒奇仪器 LDOTM 便携式溶氧仪-参数-报价-价格-恒奇仪器 DR2800多参数水质分析仪(分光光度计)-参数-报价-价格-恒奇仪器 2100AN实验室浊度仪-参数-报价-价格-恒奇仪器 2100N台式浊度仪-参数-报价-价格-恒奇仪器 2100Q便携式浊度仪-参数-报价-价格-恒奇仪器 DR1010 COD分析仪-参数-报价-价格-恒奇仪器 BODTrak 生化需氧量分析仪-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质圆底烧瓶-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质蒸发皿-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质样品管-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质样品管-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质样品罐-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质宽口瓶-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质窄口瓶-经济型-参数-报价-价格-恒奇仪器 德国VITLAB PFA材质窄口瓶-参数-报价-价格-恒奇仪器 德国VITLAB PFA 材质经济型洗瓶-参数-报价-价格-恒奇仪器 德国VITLAB 移液管架(可放置94支移液管)-参数-报价-价格-恒奇仪器 德国VITLAB PP材质B级容量瓶-参数-报价-价格-恒奇仪器 德国VITLAB PP材质B级容量瓶-参数-报价-价格-恒奇仪器 FG3便携式电导率仪-参数-报价-价格-恒奇仪器 FE30台式电导率仪-参数-报价-价格-恒奇仪器 瑞士梅特勒托利多FG2基础型便携式PH计-参数-报价-价格-恒奇仪器 METTLER电位滴定仪-参数-报价-价格-恒奇仪器 MJ33水分测定仪-参数-报价-价格-恒奇仪器 卤素快速水份测定仪-参数-报价-价格-恒奇仪器 梅特勒XS精密天平-参数-报价-价格-恒奇仪器 梅特勒XP精密天平-参数-报价-价格-恒奇仪器 超越系列XS分析天平-参数-报价-价格-恒奇仪器 超越系列XP分析天平-参数-报价-价格-恒奇仪器 Newclassic MS天平-参数-报价-价格-恒奇仪器 Newclassic ML天平-参数-报价-价格-恒奇仪器 便携式荧光溶解氧DO分析仪-参数-报价-价格-恒奇仪器 美国Myratek便携式悬浮物/TSS测定仪(Portable TSS Analyzer)-参数-报价-价格-恒奇仪器 WTW BOD培养箱TS 606i/1006i-参数-报价-价格-恒奇仪器 WTW 实验室浊度仪Turb550/555-参数-报价-价格-恒奇仪器 WTW 实验室多参数计inoLab pH Cond 720/inoLab Multi 720-参数-报价-价格-恒奇仪器 WTW 实验室电导率仪inoLab Cond 720/730/740-参数-报价-价格-恒奇仪器 WTW 实验室溶氧仪BOD测定仪inoLab Oxi730/740-参数-报价-价格-恒奇仪器 WTW 实验室离子浓度计inoLab pH ION735-参数-报价-价格-恒奇仪器 WTW 实验室pH酸度计inoLab pH 720/730/740-参数-报价-价格-恒奇仪器 WTW 便携式光度计/COD测定仪-参数-报价-价格-恒奇仪器 WTW 便携式浊度测试仪-参数-报价-价格-恒奇仪器 WTW 便携式多参数测试仪Multi 340i-参数-报价-价格-恒奇仪器 WTW 便携式电导率仪-参数-报价-价格-恒奇仪器 WTW 便携式离子浓度计 pH ION 340i-参数-报价-价格-恒奇仪器 笔式电导率/TDS/盐分计-参数-报价-价格-恒奇仪器 9P多参数水质分析仪-参数-报价-价格-恒奇仪器 4P,6P便携式PH/电导率仪-参数-报价-价格-恒奇仪器 美国麦隆指针式 电导/TDS/pH表-参数-报价-价格-恒奇仪器 美国麦隆Ultrameter Ⅱ多参数电导/pH表-参数-报价-价格-恒奇仪器 意大利kartell样品瓶-参数-报价-价格-恒奇仪器 意大利kartell灰色小口瓶-参数-报价-价格-恒奇仪器 意大利kartell广口瓶-参数-报价-价格-恒奇仪器 意大利kartell刻度广口瓶-参数-报价-价格-恒奇仪器 意大利kartell刻度广口瓶-参数-报价-价格-恒奇仪器 意大利KARTELL移液管架-参数-报价-价格-恒奇仪器 移液管、滴定管自动冲洗装置-参数-报价-价格-恒奇仪器 连续移液器及吸头-参数-报价-价格-恒奇仪器 外置活塞移液器-参数-报价-价格-恒奇仪器 Transferette electronic电动移液枪-参数-报价-价格-恒奇仪器 Transferpette8道12道移液器-参数-报价-价格-恒奇仪器 Transferpette S8道/12道移液器-参数-报价-价格-恒奇仪器 Transferpette单道移液枪-参数-报价-价格-恒奇仪器 TransferpetteS单道整支灭菌移液枪-参数-报价-价格-恒奇仪器 seripettor简易瓶口分配器-参数-报价-价格-恒奇仪器 Dispensette 瓶口分配器-参数-报价-价格-恒奇仪器 数字显示滴定器-参数-报价-价格-恒奇仪器大龙高速微量离心机-参数-报价-价格-恒奇仪器 大龙高速个人离心机-参数-报价-价格-恒奇仪器大龙高速微量冷冻离心机-参数-报价-价格-恒奇仪器 瓶口分配器-参数-报价-价格-恒奇仪器 StepMate连续分配器-参数-报价-价格-恒奇仪器 MicroPette 手动(可调式&固定式)移液器-参数-报价-价格-恒奇仪器 TopPette手动(可调式&固定式)移液器-参数-报价-价格-恒奇仪器 圆周(线性)数显型摇床-参数-报价-价格-恒奇仪器 10通道型磁力搅拌器(加热&不加热)-参数-报价-价格-恒奇仪器 96孔板混匀仪-参数-报价-价格-恒奇仪器 可调式&固定式混匀仪-参数-报价-价格-恒奇仪器 数显型磁力搅拌器(加热&不加热)-参数-报价-价格-恒奇仪器 不锈钢紧急冲淋器-参数-报价-价格-恒奇仪器 紧急喷淋装置-参数-报价-价格-恒奇仪器 白大褂-参数-报价-价格-恒奇仪器 台式洗眼器-参数-报价-价格-恒奇仪器 组合式紧急冲淋洗眼器-参数-报价-价格-恒奇仪器 安全喷淋洗眼器-参数-报价-价格-恒奇仪器 安全鞋-参数-报价-价格-恒奇仪器 金佰利擦拭纸-参数-报价-价格-恒奇仪器 Ansell 4-644PVC手套-参数-报价-价格-恒奇仪器 Ansell 8-354氯丁橡胶手套-参数-报价-价格-恒奇仪器 Ansell 29-865氯丁橡胶手套-参数-报价-价格-恒奇仪器 Ansell 78-150抗低温手套-参数-报价-价格-恒奇仪器 Varian PCX固相萃取柱-符合测试三聚氰胺国标方法-参数-报价-价格-恒奇仪器 NOVA60多参数水质分析仪-参数-报价-价格-恒奇仪器 ET1200 红外分光油分析仪-参数-报价-价格-恒奇仪器 Chemvak系列防腐蚀隔膜真空泵-参数-报价-价格-恒奇仪器 Staurt样品浓缩仪(氮吹仪)-参数-报价-价格-恒奇仪器 ATAGO数字式阿贝折光仪-参数-报价-价格-恒奇仪器 ATAGO阿贝折光仪-参数-报价-价格-恒奇仪器 ATAGO手持式折射计-参数-报价-价格-恒奇仪器 ATAGO MASTER系列手持式折射计-参数-报价-价格-恒奇仪器 ATAGO手持数字折射计-参数-报价-价格-恒奇仪器ATAGO手持数字糖度计PR-&alpha 系列-参数-报价-价格-恒奇仪器 ATAGO迷你数字折射计PAL系列-参数-报价-价格-恒奇仪器 WTW BOD分析仪 OxiTop IS6、IS12-参数-报价-价格-恒奇仪器 WTW COD快速测定仪(PhotoLab S6+ CR 3200)-参数-报价-价格-恒奇仪器 Picco COD分析仪-参数-报价-价格-恒奇仪器 澳大利亚AQUADIAGNOSTIC快速COD分析仪P100在线型-参数-报价-价格-恒奇仪器 澳大利亚AQUADIAGNOSTIC快速COD分析仪L100实验室型-参数-报价-价格-恒奇仪器 澳大利亚AQUADIAGNOSTIC快速COD分析仪F100便携式-参数-报价-价格-恒奇仪器 WTW 便携式pH酸度计-参数-报价-价格-恒奇仪器 梅特勒SevenEasy pH计-参数-报价-价格-恒奇仪器 FiveEasy系列台式pH计(FE20)-参数-报价-价格-恒奇仪器 WTW 菌落计数器BZG 30-参数-报价-价格-恒奇仪器 WTW 便携式溶氧测定仪Oxi 3205/3210/3310-参数-报价-价格-恒奇仪器 Pharo300多参数水质分析仪(紫外可见分光光度计)-参数-报价-价格-恒奇仪器 Pharo100多参数水质分析仪(可见分光光度计)-参数-报价-价格-恒奇仪器 测试盒-参数-报价-价格-恒奇仪器 梅特勒-托利多PB-S经典系列标准型精密天平-参数-报价-价格-恒奇仪器 梅特勒-托利多AB-S/FACT经典系列先进型分析天平-参数-报价-价格-恒奇仪器 Hitech-Kflow系列超纯水系统-参数-报价-价格-恒奇仪器 英国ELGA实验楼中央纯水整体解决方案 &mdash CENTRA S200/R200-参数-报价-价格-恒奇仪器 英国ELGA UHQ小型超纯水系统-参数-报价-价格-恒奇仪器 英国ELGA PURELAB Option实验室必备Ⅱ级纯水系统-参数-报价-价格-恒奇仪器 英国ELGA PURELAB Ultra提供实验室用超纯水-参数-报价-价格-恒奇仪器 英国ELGA PURELAB Classic经济型超纯水仪-参数-报价-价格-恒奇仪器 德国Heidolph最新旋转蒸发仪-参数-报价-价格-恒奇仪器 ATAGO自动恒温数显折光计RX-5000&alpha -参数-报价-价格-恒奇仪器 ATAGO数字式半自动旋光仪 POLAX-2L-参数-报价-价格-恒奇仪器 ATAGO全自动旋光仪/旋光糖度仪 AP-100-参数-报价-价格-恒奇仪器 显微镜-参数-报价-价格-恒奇仪器 标准型磁力搅拌器(加热&不加热)-参数-报价-价格-恒奇仪器 培养皿-参数-报价-价格-恒奇仪器 接种环-参数-报价-价格-恒奇仪器 Merck微生物检测耗材-参数-报价-价格-恒奇仪器 德国VITLAB 移液管泵-参数-报价-价格-恒奇仪器 德国VITLAB 安全洗耳球-参数-报价-价格-恒奇仪器 烧杯-参数-报价-价格-恒奇仪器 双刻度低型烧杯-参数-报价-价格-恒奇仪器 DURAN® 多孔螺旋盖系统-参数-报价-价格-恒奇仪器 DURAN® Premium Bottle-参数-报价-价格-恒奇仪器 DURAN® GLS 80宽口玻璃瓶-参数-报价-价格-恒奇仪器 DURAN® 实验室棕色玻璃瓶-参数-报价-价格-恒奇仪器 DURAN® 实验室玻璃瓶-参数-报价-价格-恒奇仪器 德国VITLAB PMP材质B级容量瓶-参数-报价-价格-恒奇仪器 德国VITLAB PMP材质B级容量瓶-参数-报价-价格-恒奇仪器
  • 出口童装需注意塑料装饰安全
    7月5日,欧盟委员会非食品类快速预警系统对中国产婴儿服装组合品牌“1.MOMO STAR 2.SWEET KATTY”发出消费者警告。本案的通报国为西班牙。由于该婴儿服装组合帽子上以及裤子上都带有脱落的装饰,这些小装饰(零件)容易发生分离并被孩子尤其是婴幼儿吞噬,存在窒息的危险,不符合相关的国家标准UNE40902。目前,西班牙已对该产品采取拒绝进口的强制措施。   塑料装饰因其物美价廉且易塑造出各种美丽的造型而被服装企业所青睐,但易脱落的塑料装饰所隐含的窒息危险需引起服装企业,特别是童装企业的高度重视。类似于欧盟相关法规已明确规定儿童服装不得构成绞勒风险或因空气阻塞导致的窒息,童装中塑料装饰因缝制不良易脱落存在儿童舔食的可能也应引起相关部门和出口企业的高度重视。   我国产儿童服装近年来被通报或召回比例呈逐年上升趋势,欧美国家对中国产品实施的强制性措施,不仅给出口企业造成直接经济损失,也损害了中国制造的国际声誉。为此,检验检疫部门提醒相关出口企业:一是密切关注进口国童装质量安全标准及召回动态,重视儿童服装绳带、小部件等机械安全的要求,加强企业自检自控能力,消除出口安全隐患 二是强化企业责任意识,主动对产品开展风险评估、监测和管理,充分评估产品设计存在的缺陷,避免在儿童嘴部易接触到的手臂、领口等部位使用塑料装饰,切忌盲目组织生产,埋下安全隐患 三是加强与检验检疫联系沟通,获取RAPEX和CPSC召回信息和技术支持。对于新产品或者有疑问的产品,及时联系检验人员,将隐患消灭在萌芽中,确保出口产品质量安全。
  • 澳大利亚对带有闪光塑料粒的婴儿安抚奶嘴颁布永久性禁令
    澳大利亚议会秘书David Bradbury称,将在澳大利亚范围内永久禁止生产及销售不符合严格安全标准的以水晶、闪光塑料粒或其他装饰品装饰的婴儿安抚奶嘴。   该项“baby bling”永久性禁令根据7月的暂时性禁令制订,适用范围将涵盖这个澳大利亚。原因是此前有公平贸易监管机构发现这类产品可能对婴儿造成严重的安全风险。   澳大利亚竞争和消费者委员会(ACCC)在对产品进行检测后表示,永久性禁令能确保安抚奶嘴在澳大利亚境内销售前符合严格的安全标准。   Bradbury认为,永久性禁令能确保安抚奶嘴上的小珠子、塑料粒和其他装饰品不会轻易掉落,为婴儿创造更为安全的环境,特别是减少婴儿窒息及其他严重的伤害事故的发生。   据悉,该禁令在新的《澳大利亚消费者协调法规》下颁布,将于不久后正式在每个州和区域内开始实施。
  • 我国废弃塑料污染防治战略
    一、前言材料是人类社会发展的基础和先导,高分子材料,如塑料、橡胶和合成纤维等具有密度小、易加工、高性能、多功能等优异性能,广泛应用于国民经济各领域 。塑料工业是国民经济的支柱产业, 2019 年我国塑料加工制品高达 8.184×107 t,产量和消费量均居世界第一 。但不规范生产、使用塑料制品和堆放塑料废弃物等问题,造成废弃塑料在环境中的长期累积,导致严重的环境污染和能源资源浪费,必须进行治理。据统计,截至 2015 年全球已累积生产了约 8.3×109 t 塑料制品,废弃量约 6.3×109 t,仅有 9% 被回收利用 。2019 年我国产生废弃塑料 6.3×107 t,仅回收利用 1.89×107 t 。废弃塑料污染防治事关人民群众健康,事关我国生态文明建设和高质量发展,是实施党中央建设绿水青山、美丽中国战略的重要组成部分。本文在分析废弃塑料污染现状及回收利用技术的基础上,从塑料全生命周期评价、废弃塑料全方位全链条污染防治等方面提出了我国废弃塑料污染防治的措施建议,为促进我国塑料工业和国民经济绿色可持续发展、建设绿水青山、美丽中国提供政策及技术参考。二、废弃塑料污染与防治现状分析(一)废弃塑料的污染现状1. 废弃塑料的来源废弃塑料根据其来源不同,可分为工业源、农业源、医用源和生活源四大类。工业源废弃塑料主要指塑料成型加工过程中产生的废弃料及废弃工业塑料制品,大多来源明确,相对集中,原料品质较好,回收利用价值高;农业源废弃塑料主要包括废弃农用地膜、棚膜、农用管道、农药包装等,其中农膜废弃量最大,使用废弃后处理困难,残留在田间,不易降解,污染农田,危害生态环境;医用源废弃塑料主要源于医疗卫生及防疫过程中使用的一次性塑料制品,如防护服、医用外科口罩、防护目镜等,是具有直接或者间接感染性、毒性以及其他危害性的危险废物;生活源废弃塑料为日常生活活动产生的废弃塑料制品,品种多、分散广、难收集,如塑料瓶、塑料包装袋、纸塑复合材料及其他失去使用价值的塑料制品等。2. 废弃塑料的危害目前,我国固体废物年产生总量超 1×1010 t,其中废弃塑料约为 6.3×107 t,占固体废物的 0.6% 左右,但由于塑料化学结构稳定,难以自然降解,其不当使用和处置以及多年的累积效应造成了严重的环境污染和极大的资源浪费,引起全社会高度关注。特别是塑料快餐盒、塑料包装袋和农业塑料薄膜等一次性塑料制品,其使用量大、面广,使用周期短,废弃后大部分与生活垃圾或土壤混合,回收难度大,因而严重污染土壤、高山、海洋等,导致城市“垃圾围城”,珠峰“海拔最高的垃圾场”等环境污染事件。部分难回收废弃塑料在焚烧处理过程中释放大量有毒气体,产生大量粉尘和烟雾,严重污染大气环境,引起雾霾。同时,我国石油资源匮乏,2018 年对外依赖度超过 70%,进口石油约 1/3 用于合成塑料制品。废弃塑料如不能循环回收利用,是对石油、煤和天然气等不可再生资源的巨大浪费。废弃塑料是放错地方的资源,极具回收利用价值。通过废弃塑料有效处理处置,尤其是回收利用,有望解决塑料污染难题。(二)全球废弃塑料污染防治现状20 世纪 90 年代以来,全球日益重视废弃塑料的污染治理。联合国环境规划署不断发起多项大规模全球运动,以减少、再利用和再循环废弃塑料制品,如 2017 年启动全球“清洁海洋运动”,呼吁政府、行业和消费者减少塑料的生产和过度使用; 2019 年将废塑料纳入《巴塞尔公约》的管控范围。美国、欧洲、日本等发达国家和地区制定了一系列公约、政策和法规,建立了塑料污染防治法律体系,如美国的《资源保护与回收利用法》、欧盟的《欧盟限塑令》、日本的《资源有效利用促进法》等。发达国家人工成本高昂,环保措施严苛,长期将废塑料大量出口到其他国家,如据美国废料回收工业协会(ISRI)统计,2017 年美国出口废塑料达 2×106 t,其中出口到中国的约占其出口量的 70%,中国禁止洋垃圾进口后,如何处理巨量废弃塑料是其需解决的问题。(三)我国废弃塑料污染防治现状1. 我国废弃塑料治理现状我国废弃塑料处置方式主要包括回收利用、焚烧、填埋等方式,建国以来废弃塑料流向如图 1 所示。2019年我国塑料废弃量约为6.3×107 t,其中,一次性塑料产品如塑料袋、农膜、饮料瓶,年废弃量超过 2×107 t,是造成“白色污染”的主要来源。另外,家电、汽车、建筑等塑料制品,也随着相关产品进入淘汰期,成为废弃塑料的重要来源。我国废弃塑料流向主要包括回收利用、焚烧、填埋处理和环境中积累等四个方面:30% 废弃塑料被回收利用,14% 被焚烧发电回收热能,36% 被填埋或任意丢弃,大量积累在自然环境中,造成严重的环境污染。图 1 1949—2019 年我国废弃塑料流向统计 2. 我国废弃塑料防治的主要原则及法律体系我国十分重视废弃塑料的污染防治,1995 年颁布了《中华人民共和国固体废弃物污染环境防治法》,国家各部委、地方陆续出台了一系列规范性文件,制定了相关的国家和行业标准,逐步完善了废弃塑料防治法律体系,提出固体废物“减量化、无害化、资源化”、全过程管理、分类管理等原则。最近,为应对日益严重的废弃塑料污染,国家推出了新的塑料污染治理法规。2019 年 9 月 9 日,习近平总书记主持召开中央全面深化改革委员会第十次会议,审议通过《关于进一步加强塑料污染治理的意见》。2020 年 1 月 16 日,国家发展和改革委员会、生态环境部联合发布《关于进一步加强塑料污染治理的意见》,明确提出规范塑料废弃物回收利用,推动塑料废弃物资源化利用的规范化、集中化和产业化,强化创新引领、科技支撑,有力有序有效治理塑料污染。此外,我国还出台了“无废城市”“美丽乡村”建设等一系列政策,为我国废弃塑料污染防治和废塑料回收利用行业健康发展指明了方向。3. 我国废弃塑料污染防治科技支撑情况国家各部委高度重视废弃塑料污染防治与综合利用的科技立项。科学技术部多次立项废旧塑料制品污染防治与综合利用系列科研项目,在“十三五”期间开展“固废资源化”重点研发计划,在全生物降解塑料及其新型制品、废旧塑料制品智能化回收与再利用、二次资源高值化综合利用等领域进行技术创新布局,初步形成了较为健全的塑料垃圾回收利用技术链条,带动了废弃塑料循环利用产业的快速发展,如图 2 所示。图 2 我国塑料垃圾污染防治与回收利用全流程技术体系4. 我国废塑料回收利用行业及企业现状废旧塑料回收行业是战略性新兴产业,发展潜力很大。近年来,我国大力推进废旧塑料回收利用体系建设,以中国塑料加工协会、中国合成树脂协会、中国物资再生协会等三大行业协会为依托,形成了一批较大规模的再生塑料回收交易市场和加工集散地,建成了 25 个再生资源–循环经济产业园,包含 21 个废弃塑料回收利用园区 。据统计, 2019年国内废塑料回收利用量为 1.89×107 t,回收率接近 30%,回收总值达 1000 亿元以上,国内登记注册从事废塑料加工的企业共有 3000 多家,年再生塑料加工能力超过 1×104 t 的企业达到 300 家,年再生塑料加工能力超过 5×104 t 的企业达到 50 家 。(四)废弃塑料回收利用技术废弃塑料的回收利用主要包括物质回收和能量回收两大类,各种主要回收方法详见图 3。国际回收标准指南按回收优先顺序,将废弃塑料回收利用分为四级,第一、二级为材料再生,即物理回收,第三级为化学回收,制取化学品或油品,第四级为废弃塑料焚烧,回收能量。图 3 废弃塑料回收利用技术1. 物理回收物理回收不改变塑料化学组成,主要通过收集—粗略分类挑选—简单清洗破碎—熔融加工等制备再生塑料制品,广泛用于单一材质的热塑性废弃塑料回收利用,如回收利用废弃聚酯瓶制备再生涤纶纤维、废弃聚苯乙烯泡沫制备装饰制品等。但塑料制品 60% 以上是应用于航空航天、电子电器、交通运输等领域的结构件和功能件,其所需的高性能多功能通过共混复合、交联等实现,废弃后难以回收利用。传统熔融加工方法,因共混复合型器件难分类难分离,组分相容性差、熔点差异大、熔体黏度不匹配,再生制品相畴尺寸大,性能差,无应用价值;交联型不熔不溶,难再加工,大多只有填埋或焚烧,造成严重的环境污染和能源资源浪费,已成为解决塑料污染治理的瓶颈和难点。2. 化学回收化学回收采用裂解技术将废弃塑料降级回收为可再次使用的燃料(汽油、柴油等)或化工原料(乙烯、丙烯等)。由于化学回收装备复杂、能耗高,从经济角度一直被认为难以推广应用。近年来化学回收技术发展迅速,许多企业已做到了商业化,并拟在未来扩大规模。但是高温热裂解温度高,反应时间长,产率低,产物复杂,易产生有害废气造成二次污染,经济性较差;催化裂解和溶剂分解是化学回收的发展方向,但尚需提高催化剂效率和发展绿色溶剂 。3. 能量回收能量回收,即燃烧回收热能,主要适用于传统物理法和化学法无法回收利用的污染严重的废旧塑料,通过垃圾焚烧产生高温气体用于发电。但焚烧会产生氯化氢、二噁英、多环芳烃等有毒气体,造成大气二次污染。应加大开展先进的绿色高温焚烧设备的研制,实现安全清洁焚烧。三、全方位全链条防治废弃塑料污染(一)塑料全生命周期评价对塑料生命周期管理基于其制品综合环境评价,即:从最初的原油开采、合成、加工、应用,到最终的废弃物处理,进行全过程跟踪,评价其在整个生命周期间的所有投入及产出对环境造成的潜在影响,如图 4 所示。同时,根据应用和处理方式,反过来指导合成和加工,改进工艺、改善管理,实现塑料的循环利用,最大限度降低塑料污染。采用高效的办法对塑料进行生命周期管理,发展资源安全利用集成技术,可以提高塑料的使用效率,减少其对环境的影响。图 4 塑料生命周期示意图(二)从合成 - 加工 - 应用 - 废弃物处理等环节全方位全链条防治废弃塑料污染通过对塑料制品合成、加工、应用和废弃物处理等阶段全生命周期评价和分析,提出废弃塑料污染防治必须坚持节约资源和保护环境的基本国策,通过开展塑料制品源头减量、原料及产品替代、废塑料高值利用及安全处理等措施来全方位全链条防治废弃塑料污染。1. 从合成环节防治废弃塑料污染大多数塑料来源于不可再生石化资源,合成工艺成熟、规模大、成本低,应用相当广泛,产量持续增加。但石油为不可再生资源,我国石油进口依存度高达 70.9%,且这些塑料大分子主链以 C—C 键连接,自然界中难降解;而环氧树脂、酚醛树脂等热固性塑料材料为三维网状结构,不溶不熔,难回收利用。对废弃塑料污染防治需从源头出发,建立源头减量合成技术体系,合成高性能、长寿命、易回收的石油基高分子材料,加强可循环、易回收产品开发;发展高性价比生物降解塑料,如聚乳酸、二氧化碳共聚物等,实现可控降解、提升材料综合性能;发展低成本、高产量的新型聚合技术,重点发展我国已规模化工业生产的可生物降解塑料材料如聚乙烯醇等,替代需填埋处置的一次性制品;发展清洁规模化利用生物质资源如纤维素、甲壳素等的先进技术,从源头实现塑料污染防治。2. 从加工环节防治废弃塑料污染塑料制品性能不仅与其分子结构有关,还依赖于加工过程中形成的多层次多尺度结构。通过共混复合、填充增强、交联、发泡等加工方法,可实现塑料制品高性能、多功能、轻量化、长寿命及生态化。但是废弃后的共混复合型塑料难分类、难分离,交联型塑料不熔不溶、难再加工,不能采用传统回收方法进行回收再利用。因此,亟需发展先进的塑料加工新技术,减少共混复合,实现同质异相增强,提高塑料制品性能,延长服役周期,减少废弃量;实现零部件同质制造,发展环保型助剂,便于塑料制品废弃后回收再利用;设计和制造可多次循环使用的塑料制品,减少塑料废弃,并发展先进的塑料回收再利用装备及技术,如塑料拉伸流变塑化输运加工技术,固相剪切碾磨加工技术等,高值高效回收共混复合型、交联型塑料。3. 从应用环节防治废弃塑料污染提倡塑料合理适度使用、消费,鼓励循环使用,从源头减量。加强管理,实现“谁生产谁处理,谁购买谁交回,谁销售谁收集”。完善废弃塑料回收利用政策体系,提升公众对废弃塑料制品回收利用的认同,开辟合法、合适的应用途径,如农田水利、道路材料、室外设施等,为其再利用提供法律保障。塑料制品应用不同,其性能要求不同,应根据不同塑料制品使用特性,从应用环节开展废弃塑料污染防治,如对共混复合、交联型工业用结构件和功能件,应大力提倡循环再利用,充分延长塑料制品的使用周期;发展环境友好型高分子回收利用技术;对寿命短、废弃后难收集、对环境影响大的塑料包装制品,应避免过度包装,设计制造可多次使用的制品,实现塑料包装制品的循环利用;对服役后难机械化回收的农用薄膜,应建立先进的加工技术,能全回收再加工利用;研发全生物降解塑料,推动生物降解塑料在一次性塑料制品中的使用,解决塑料在环境中难降解的问题;医疗防护用品应采用无毒的聚烯烃塑料,同时对医疗废弃物及危废塑料进行高温焚烧处理。4. 从废弃物处理环节防治废弃塑料污染基于全方位全链条防治废弃塑料污染的理念,在处理或回收前,对废弃塑料制品进行合理、科学分类,发展针对不同类型塑料垃圾的回收、处理方式,不仅能够有效解决废弃塑料处置不当带来的环境污染问题,也能实现废弃塑料的物质、能量再利用。构建废弃塑料回收利用完整产业链,提高废弃塑料制品的回收率,可以有效促进塑料资源的综合利用。根据废弃塑料多产地、多源头、差异化的特点,创新本地化回收利用模式和推广应用模式,对可回收利用的废弃塑料,优先发展环境友好的物理回收利用技术,完善单材废塑料回收加工技术,突破混杂废塑料回收加工难题;填埋处理餐厨混杂湿垃圾等,仅用生物降解塑料包装,实现安全填埋。焚烧处理危废塑料及废弃医疗塑料,需发展环保焚烧装备和工艺,实现绿色排放,回收能量。四、对策建议(一)强化政府引领,加强部门联动借鉴抗击新冠肺炎疫情成功经验,实行联防联控机制,群防群治。在党中央、国务院统一领导下,突破部门、地区、行业界限,形成政府统领、企业施治、市场驱动、公众参与的废弃塑料污染防治新机制。统筹固、水、气三位一体污染治理,借鉴大气、水污染治理成功经验,构建责任明确、协调有序、监管严格、保护有力的废塑料污染防治机制。(二)完善法律法规,加快标准建设将塑料污染防治明确纳入国家相关法律法规。明确塑料制品生产、销售、消费、回收等各环节主体在废弃塑料回收利用中承担的责任与义务,完善生产者责任延伸制度,引入保证金返还等政策和法规。制定再生塑料及制品国家标准,为再生塑料开辟合法合适的应用途径,鼓励和强制使用再生塑料和制品,制定或修订降解塑料产品的国家标准和认证体系,杜绝伪降解、假降解塑料制品。(三)完善废弃塑料回收利用体系建立和完善分层次全覆盖的废弃塑料污染防治网络,实行“谁生产谁处理,谁购买谁交回,谁销售谁收集”,生活塑料垃圾分类落实到村镇、小区和个人。建立从国家级回收基地、回收加工企业,至小微企业废弃塑料回收利用战略新兴产业体系,解决环境污染,减轻能源资源压力,提供就业岗位,把废弃塑料污染治理与“无废城市”“美丽乡村”建设相结合。(四)加大财政支持,完善优惠政策加大财政投入和税收优惠政策,支持废塑料回收利用产业发展。建议塑料合成、加工、销售、应用的利益方缴纳废弃塑料回收处置费,专款专用于废弃塑料回收利用的科研、企业和处理部门。(五)加强科技支撑,引领塑料污染防治开展不同类型塑料制品全生命周期环境风险评价的研究。研发高性能、长寿命、易回收的塑料合成新技术,攻克可生物降解塑料的低成本合成技术。发展先进的塑料制品高性能、轻量化加工新方法,实现同质异相增强、同器同材,研发可多次使用的塑料制品;建立基于高分子态高值高效回收利用混杂废弃塑料的新装备和技术。发展环保节能焚烧炉、烟气净化技术及灰渣固定化技术;研究难回收再生的废塑料化学回收新技术及环境影响评价研究等。(六)加强宣传引导,全民参与治理加强塑料污染防治的科学性和权威性宣传,既要加强治理,也要避免妖魔化塑料。提高公民环保意识,提倡合理消费、适度消费,自觉主动参与废弃塑料污染防治,自觉实施废弃塑料规范分类回收。五、结语废弃塑料污染防治事关人民群众健康,事关我国生态文明建设和高质量发展,是实施党中央建设绿水青山、美丽中国战略的重要组成部分。废弃塑料污染防治,实现塑料制品源头减量、原料及产品替代、废弃塑料高值利用及终极塑料垃圾安全处理,必须从塑料合成、加工、应用和处理等各环节进行全方位全链条治理。同时,也要加强政策引导,强化行政监管,强化塑料回收利用领域科技创新,加大科研经费投入,增强公民环保意识,鼓励全民参与废弃塑料污染防治,通过群防群治措施提高废弃塑料制品的回收利用,以促进废弃塑料的污染控制和资源保护的协同发展。作者简介王琪 轻工装备(塑料加工装备)专家,中国工程院院士 长期从事塑料加工新装备新技术新原理的研究和工程化应用,如固相力化学加工,塑料管旋转挤出加工,聚乙烯醇热塑加工和熔融纺丝,高值高效回收利用废弃塑料橡胶,制备无卤阻燃塑料和泡沫塑料,聚合物基微纳米功能复合材料微型加工和3D打印加工等。 瞿金平 轻工机械工程专家,中国工程院院士长期从事高分子材料加工成型装备技术与理论研究,提出振动剪切形变和体积拉伸形变动态塑化输运方法及原理、系统发展了高分子材料加工成型理论、发明并研制成功一系列聚合物及其复合材料加工成型新装备。石碧 皮革化学与工程专家,中国工程院院士主要从事制革化学、制革清洁技术、皮胶原高值转化利用研究。
  • 微塑料“百问百答”整理回顾,“百家代表”首次公开!
    近年来,微塑料日益受到学术界和社会公众的关注。微塑料的痕迹已遍布世界上的各个角落,国内外的相关研究团队已经在淡水、深海、高山、土壤以及北极海冰,甚至婴儿胎盘内发现了微塑料的存在,并且数量还在不断增加。“微塑料”表面积,吸附污染物的能力强。自然界存在的有毒有害物质,如多环芳烃、双酚A等都有可能吸附在微塑料的表面。因此与不可降解的“白色污染”塑料相比,“微塑料”对环境的危害程度更深、更严重。为探讨微塑料最新研究成果,加深对微塑料的认知,6月30日,仪器信息网举办了“环境中微塑料检测与分析”主题网络研讨会,邀请微塑料领域专家及仪器厂商工程师,分享微塑料最新研究成果及最新仪器。 会议共邀请10位专家,就微塑料的分离分析、检测表征、监测防控等内容展开分享。会议现场共有百余条学术提问,报告专家分别做了现场语音答疑和文字答疑(提问情况与内容与样本人群的相关性、报告顺序等相关)。现对于会议报告人、视频回放、Q&A部分、参会用户部分单位节选等整理如下: 报告1题目:《环境中微纳塑料的分离测定方法研究》【报告人】于素娟,博士,中国科学院生态环境研究中心副研究员,主要研究方向为微纳颗粒物的分析方法与环境行为。主持基金委面上项目、青年基金项目及国家重点研发子课题等,参与多项基金委国家重大科研仪器研制项目、重点国际(地区)合作研究项目等,在本领域著名SCI期刊Environ. Sci. Technol.、Environ. Sci.: Nano、Environ. Pollut.等发表多篇综述及研究论文。【视频回放】因涉及未发表最新成果等内容,与专家沟通后,确定不予回放【问答摘取】Q1:老师,您好我想问一下环境水样中自来水、龙头水、污水处理厂的水样体积是多少? Ins_9764bb9b A1:不同方法用的水体体积是不同的,像浊点萃取一般10-几十毫升,膜过滤可以到几百毫升,而单颗粒ICPMS大概10毫升左右Q2:老师,您好我想问一下对于环境水样微塑料检测的形状、颜色等信息可以获取么?Ins_9764bb9b A2:我们的方法更多针对小粒径的,形状只能用电子显微镜来观察,而但粒径足够小时,颜色信息基本是得不到的Q3:老师您好,土壤中的微纳塑料如何定量?土壤的前处理如何处理m3017712A3:我们目前这些方法主要针对环境水体中微纳塑料的测定,土壤基质复杂,目前这些方法不太实用。我们课题组发表的综述文章综述过其他一些检测方法,可能会用到土壤中的定量,感兴趣可以看一下。土壤和底泥样品一般采用浮选方法,根据塑料跟基质密度的差异进行分离。也有一些方法例如加速溶剂萃取方法,但这种方法是破坏性的,不能追踪塑料的原始状态。Q4:老师您好,请问小颗粒的微塑料在分离过程中是否会出现凝聚结块难以分离的情况 Ins_0b77df4aA4:用浊点萃取的方法,分离过程不会改变形貌,但如果用膜过滤的方法过滤富集微塑料,塑料很难从滤膜上分离,是有可能凝聚的Q5:老师,消解用的是酸消解吗 Insp_5f5d4e20A5:因为有好几个工作,针对不同的干扰物,消解方法不同。环境水体中的有机质我们采用的是芬顿试剂消解,我们发展的单颗粒ICPMS,一些无机颗粒会进行干扰,我们先用酸消解消除无机颗粒物干扰。Q6:于老师,您好,微塑料为什么是带负电荷的?谢谢 189****0785A6:塑料在环境中经老化后,表面往往会带有羧基、羟基等,使其带负电Q7:最小检测的颗粒为0.5um,仅仅只是微塑料吧?不能说包含纳塑料?v3041647A7:纳塑料的分类一般认为小于1um,我们浊点萃取方法可以萃取几十个nm,单颗粒ICPMS考察时候也能用到几十个nmQ8:于老师,您好。您认为电镜+阴极荧光对微塑检测,有更好吗138****6145A8:我们没有用过阴极荧光的方法,因此不好直接推论。Q9:于老师,您好,在提取环境中的微塑料时怎么保证提取的都是微塑料,不是其他物质? Ins_0a4be34aA9:我们萃取的过程,不能保证只萃取到微塑料。但是最重要的是后面的定量识别的过程。用热裂解GCMS定量时,不同塑料有特征的裂解碎片,来识别进而定量Q10:于老师,请问,膜分离那一节,玻璃纤维滤膜碾磨后进PY-GC-MS,能进多少质量的样品? 环境样品浓度低的话能达到检出限吗? Ins_e6420099A10: 滤膜研磨后再转移,体积是很小的,因为量杯很小,也就80微升左右的容量,我们一般分步转移,先转移一部分液体,干燥,再转移。环境样品浓度低的话,我们采用的是加大样品体积,但每种方法都有检出限,膜过滤这个对微塑料和纳塑料的检出限都在ppb量级,再低可能是检测不到的Q11:于老师,请问回收率是如何得到的? Ins_b6dac33eA11: 浊点萃取,膜分离我们条件优化过程会添加标准品,萃取分离后,检测到的样品量与标准添加量对比能得到回收率 同样单颗ICPMS我们添加的塑料有标准粒径,通过质量可以折算出颗粒数,然后经检测以后的颗粒数对比原始颗粒数得到回收率Q12:于老师好,您讲的浊点萃取和膜分离方法提取出来的微纳米塑料可以使用拉曼仪器检测吗? Ins_d1d3bb13A12: 不是,用热裂解GC/MS进行测定Q13:于老师,您好,请问您实验室用的是哪种滤膜(粒径多大),分离实际水体的微米和纳米塑料 Insm_bb36572aA13: 玻璃纤维膜,用的1微米的Q14:于老师,您好!微纳塑料的粒径怎么表征? v3041647A14:我们研究中的粒径一般小一些,一般用透射电子显微镜或扫面电子显微镜来表征Q15:于老师,请问一下膜过滤的塑料如果发生凝聚结块有什么分离的办法吗?Ins_0b77df4aA15:因为膜过滤后,有些颗粒已经是嵌入到膜的结构中,我们尝试过用表面活性剂超声将它们洗脱下来,但回收率有限,只能部分洗脱下来Q16:于老师您好,请问浊点萃取的操作大概需要多长时间呢,谢谢老师Ins_d1d3bb13A16: 取样-加萃取剂、盐等(很快)-水浴(大约15分钟)-离心(大约5分钟)-分离(2分钟左右)Q17:于老师,微塑料能嵌入到0.45微米的滤膜吗?Ins_8b928ff1A17:如果单从滤膜的孔径大小出发,微塑料能够被0.45微米的膜截留,但是否被嵌入其中这个不好下结论。Q18:于老师,请问可以用spICPMS表征纳米塑料的粒径吗? v3041647A18:单颗粒ICPMS是间接通过测定表面生长Au的信号进行检测,只能给出颗粒数的浓度,不能给出纳塑料的粒径信息报告2题目:《安捷伦8700 LDIR激光红外成像在土壤微塑料定性定量测试中的应用》【报告人】2012 年加入安捷伦科技(中国)有限公司,担任分子光谱产品线应用工程师支持的产品包括红外、拉曼、紫外以及分子荧光等产品,主要负责售前/售后应用支持和应用方案开发。【视频回放】https://www.instrument.com.cn/webinar/video_115151.html 【问答摘取】Q19:张老师,用乙醇对样品进行处理,乙醇会不会溶解部分微塑料,有测过回收率吗? Insp_1bb81f77 A19:使用乙醇溶液的目的是将滤膜上的所有颗粒萃取出来,其易挥发且无毒,对聚合物不会有伤害。目前土壤样品的解决方案是与用户合作共同开发的,回收率大概在80%以上Q20:安捷伦张老师好,请问这个方法对生物样品可用吗? Ins_f0b8dbc4A20:关于生物样品前处理,请登陆安捷伦官网,查看 Agilent 8700 LDIR 激光红外成像系统微塑料定性/定量分析解决方案Q21:老师好,请问这个方法对生物样品可用吗? Ins_f0b8dbc4A21: 老师您好,请直接登陆网址下载吧,https://www.agilent.com.cn/cs/library/brochures/5994-2462ZHCN.pdfQ22:张老师,这台仪器主要是用于测微塑料么?还可以应用于其他什么样品?Insm_0fb1c2e8 A22: 老师您好,这台仪器可以应用的领域有很多,如制药行业内组分分布测试,材料行业多层膜分析等。它是一台红外成像设备。针对微塑料方向,我们是在仪器和软件的基础上,开发了专门的微塑料测试方法,测试微塑料样品时直接调用方法即可。Q23:请问工程师,最多可同时检测几种微塑料?种类间光谱重叠干扰情况如何?p3336596A23: 老师您好,目前安捷伦的微塑料谱库涵盖了最常见的聚合物,且谱库是对用户开放的,用户可以根据自己需求,不断的往谱库里面添加不同组成的聚合物进去。样品转移到乙醇溶液后,在转移至窗片前,会进行超声震荡,尽可能的让颗粒在溶液内分散开。转移至标准反射测试窗片前,我们会对样品进行一个评估,确认一下样品内颗粒含量的高低。如果浓度很高,会添加乙醇溶液进行稀释,然后转移至窗片后,随着乙醇溶液扩散,所有颗粒会比较混匀的分散在整个窗片上,尽可能的避免颗粒叠加。Q24:老师您好,想问问这个能不能应用于生物样本? Ins_a592db20A24: 老师您好,请您见问题21,登录安捷伦官网下载白皮书,里面有关于生物样品的前处理流程Q25:老师您好,想问问这个能不能应用于生物样本?因为生物样本通常含有油脂,会凝固包裹样品 Ins_a592db20A25: 老师,请登陆该网址直接下载吧Q26:接着上面,请问这个需要怎么进行处理呢 Ins_a592db20A26: https://www.agilent.com.cn/cs/library/brochures/5994-2462ZHCN.pdfQ27:张老师,请问红外成像与拉曼成像相比有哪些优势? p3081015A27:很多微塑料颗粒因为是带颜色的,所以是含有荧光的。拉曼光谱在测试荧光样品时会受到荧光干扰,谱图信号较差或仅有荧光信号,进而导致识别不出聚合物颗粒。Q28:张老师您好,请问前期的浮选的时候与浮选液密度相近的微塑料如何筛出?油分离是否可以作为另一种处理方法 Ins_0b77df4a A28:老师您好,目前浮选试剂使用最多的是氯化锌、氯化钠和碘化钠。氯化钠的优点是无毒,但是密度较低。氯化锌密度会大一些,但是低毒。所以用户可根据自己样品的实际情况来选择合适的浮选试剂。油分离的方法目前我们这边没有接触过,但油本身是有机材料,即使能成功浮选,后面进行油去除的工作,可能也是您需要考虑的问题。Q29:想问一下这个波束范围,能测到1000-4000左右的微塑料吗?Ins_abd8311eA29: 老师您好,激光红外成像技术目前使用的光源是量子级联激光光源,它的波长范围覆盖到整个指纹区间,而此区间对于区分不同的塑料样品是能够完全满足的。Q30:张老师,安捷伦能检测微塑料样品的颜色吗? 188****1870A30:老师您好,我们刚才报告中的数据来源就是真实的土壤样品的测试结果。红外对于测试带颜色的样品是没有任何问题的。Q31:张老师,请推送一下白皮书吧,谢谢 Ins_f0b8dbc4A31: https://www.agilent.com.cn/cs/library/brochures/5994-2462ZHCN.pdf 报告3题目:《雷尼绍拉曼光谱系统在微塑料领域的应用》【报告人】李兆芬,2007年毕业于东华大学,并获得硕士学位。现任雷尼绍拉曼事业部应用工程师,主要负责拉曼技术在各个领域的应用开发及使用。【视频回放】https://www.instrument.com.cn/webinar/video_115147.html 【问答摘取】Q32:李兆芬老师,您好,如果先用荧光染料定位塑料位置,然后再用拉曼进行点扫描,会影响定性识别么?如果影响,如何消除荧光影响 Ins_9764bb9bA32: 已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q33:李老师您好,咱们这是有拉曼光谱的标准图谱库么?玩吗可以获取么Ins_80aa760eA33: 老师您好,雷尼绍拉曼光谱仪根据咱们测试的需求配备不同的数据库,常见的微塑料的谱图在聚合物数据库里面,您如果有需要,可以和我联系,181****7526李兆芬(后期已隐藏)Q34:李兆芬老师方便留下联系方式,想跟老师直接沟通一下Ins_80aa760eA34:181****7526李兆芬(后期已隐藏)Q35:请问 李老师,微塑料主要的材料类别是哪几种 高分子材料?谢谢!p3154711A35:微塑料目前的有聚乙烯,聚丙烯,聚对苯二甲酸乙二醇酯,聚氯乙烯,聚氨酯,聚苯乙烯等等Q36:李老师你好,我想问一下滤膜的干扰通常如何解决,除了用银膜,有其他滤膜的推荐吗?Insm_1c1f0b88 A36:对于拉曼光谱来说,目前咱们检测的时候,用的银膜比较多,但是也有用铝膜的,避免背底的干扰Q37:李老师,咱们的微塑料富集在膜上,咱们的拉曼光谱能够做到自动识别膜上微塑料么 Ins_80aa760eA37:正如咱们刚刚沟通的,如果颗粒直径可是,滤膜上的颗粒在白光图像上能够区分出来,这个时候可以借助颗粒分析软件自动定位颗粒,然后进行测试Q38:李老师好,请问拉曼检测时用聚碳酸酯膜会有很大影响吗 Ins_0b77df4aA38:您好,一般咱们不建议用聚合物膜,会有微塑料采集有一些影响,因为微塑料本身就是聚合物的碎片报告4题目:《Perkinelmer红外显微成像和多联机技术对微塑料的测试方案》【报告人】珀金埃尔默材料表征产品线技术工程师;主要负责分子光谱类仪器及其联机技术的应用方法开发及技术支持工作。【视频回放】https://www.instrument.com.cn/webinar/video_115149.html 【问答摘取】Q39:查老师您好,10um以下的 使用ATR模式进行测试,是挑选出来检测还是自动识别膜上的小于10um的微塑料 Ins_80aa760eA39:您好,不需要挑出来的,直接在滤膜上 通过自动聚焦到微塑料分布的区域,原位测试。Q40:请问查老师,ATR成像模式下如何解决ATR测试两个颗粒间的互相干扰?以及怎么识别哪些颗粒已经测了,哪些颗粒还没有测? m3303707A40:您好,如果两个颗粒成分不一样 的话,红外谱图就是不一样的,如果成分一样的话,主要是显微下的微观形状和分分的区域来区分。ATR成像压制完的区域和没压制过的区域是可以区分开的。Q41:查老师您好,请问红外成像是如何进行定位的,谢谢老师 Ins_d1d3bb13A41:您好,红外成像有显微镜的可见光放大聚焦定位功能,这套系统有可见光和红外光两种光的同轴光路,可见光定位后,红外光检测,都是软件实现的,无需手动切换光路。Q42:请问查老师,10um的分辨率下,滤膜面积2cm*2cm,透射模式和反射模式需要多长时间?m3303707A42: 您好,透射和反射膜模式下,需要大约5小时。Q43:査老师咱们在北有测试点嘛 Ins_80aa760eA43:您好,北京有用户体验实验室的,在酒仙桥兆维工业园,感兴趣欢迎来看看。Q44:查老师好,请问这些滤膜是在网上购买还是在您所在的公司购买?Ins_d1d3bb13A44:您好,可以从生产滤膜的公司购买,我们公司可以给您提供我们购买的滤膜的规格信息和购买途径。Q45:查老师好!请问ATR成像一次能测多少颗粒,或者是多大面积?谢谢songzhangA45:您好,一次性能测试 1.1厘米*1.1厘米的面积,颗粒的多少是根据选择的空间分辨了有关。这种测量模式对于10微米以下尺寸微塑料比较合适。Q46:查老师好,请问这些滤膜是在网上购买还是在您所在的公司购买?Ins_d1d3bb13A46:您好,可以从生产滤膜的公司购买,我们公司可以给您提供我们购买的滤膜的规格信息和购买途径。Q47:查老师,请问如何联系您呢?是在公司官网吗 Ins_d1d3bb13A47:您好,您可以通过仪器信息网的助教联系到我,谢谢报告5题目:《海岸带微塑料污染监测与防控》【报告人】目前就职于中国科学院烟台海岸带研究所,研究员,主要从事海洋生态与环境科学研究,关注近海微塑料污染及其生态风险。作为负责人先后主持国家重点研发计划课题,国家自然科学基金面上项目、青年项目,中国科学院装备研制项目、先导专项子课题等10余项。发表SCI论文60余篇,其中第一作者和通讯作者SCI论文30篇,论文总引用次数1500余次。入选中国科学院青年创新促进会,获得中国科学院“沈阳分院第五届优秀青年科技人才奖”,2017年度获得中国科学院科技促进发展奖(排名第3)。【视频回放】因涉及未发表最新成果等内容,与专家沟通后,确定不予回放【问答摘取】Q48:王老师您好,关于水体中加入聚合物使得微塑料加速沉积,这个方法有没有成熟应用的案例呢? Ins_78b98181A48:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q49:王老师,您好,您的报告很精彩,问问内陆河的微塑料的污染状况如何,国内分布如何?Ins_0a4be34aA49:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q50:王老师,您好,现在海洋微塑料的检测采用的方法是什么呢?现在是检测颗粒大小在多少的范围 185****5895A50:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q51:王老师好,海参等生物肠道中微塑料如何定性和定量的?谢谢!Insp_b3bb0338A51:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q52:王老师好,请问如果检测20微米以下的话,还可以用显微拉曼直接检测吗,谢谢老师 Ins_d1d3bb13A52:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q53:王老师,你们选择疑似颗粒的时候,有什么规则吗?一张膜上Insm_5b221eccA53:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q54:好的,谢谢王老师,看了一些文献,感觉没有一个标准去定义这个微塑料污染的状况,什么样算正常,什么样算严重,目前世界上有一些定义嘛?Ins_0a4be34aA54:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q55:王老师您好,国内主要微塑料检出鉴定机构有哪些?可以面向社会接受样本的 Ins_78b98181A55:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q56:老师好,请问图像分析和拉曼分析的过程中,微塑料是如何转移的呢,20微米以下的太小了,挑选不太现实,可以直接转移滤膜进行检测吗,谢谢老师Ins_d1d3bb13A56:已在会议现场做语音答疑,该部分仅限参与直播的听众共享
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制