当前位置: 仪器信息网 > 行业主题 > >

醚质谱凤分析

仪器信息网醚质谱凤分析专题为您提供2024年最新醚质谱凤分析价格报价、厂家品牌的相关信息, 包括醚质谱凤分析参数、型号等,不管是国产,还是进口品牌的醚质谱凤分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合醚质谱凤分析相关的耗材配件、试剂标物,还有醚质谱凤分析相关的最新资讯、资料,以及醚质谱凤分析相关的解决方案。

醚质谱凤分析相关的资讯

  • MALDI质谱成像分析——杀虫剂到底对蜜蜂有何影响?
    巴西圣保罗州立大学的研究人员进行了一项研究,利用基质辅助激光解吸电离(MALDI)质谱成像(MSI)分析了工蜂大脑中蛋白质表达和分布的可能变化,该工蜂曾暴露于亚致死浓度的吡虫啉(LC50/100或1%的LC50)下。 在世界范围内使用杀虫剂进行作物生产已经非常普遍,其中一个相当令人关注的问题是,这些杀虫剂不仅对害虫有害,对于在作物授粉过程中起重要作用的昆虫也是有害的。由于杀虫剂的使用,在蜜蜂中报告了许多亚致死效应,包括对发育、觅食方式、喂养行为、学习表现和神经生理学的影响。所以,评估农药对蜜蜂可能产生的有害影响的毒理学研究很重要,可以帮助制定保护和传粉媒介保持策略。 图片来源于Pixabay研究旨在评估暴露于亚致死浓度吡虫啉(LC50/100: 0.014651 ng 吡虫啉 μL?1 饮食)对蜜蜂的大脑中某些蛋白质分布的影响。研究人员通过MALDI-MSI方法对这些蛋白质进行了鉴定。MALDI-MSI技术通过监测特定脑神经在特定时间发生的生物化学过程的时空动态来实现组织原位蛋白质组学分析。为此,研究人员将觅食蜜蜂暴露在含有亚致死浓度吡虫啉的饮食中8天,然后,在暴露的第8天搜集蜜蜂,并使用蛋白质密度图分析它们的大脑。 图:参与学习和记忆获取的酶的MALDI质谱成像结果。(a)蛋白激酶C;(b)14-3-3 Leonardo蛋白;(c)肌动蛋白-5C;和(d)转铁蛋白。 结果表明,吡虫啉的暴露导致了蜜蜂大脑的一系列生化变化,包括突触调节、凋亡调节和氧化应激的改变,这些变化可能对这些蜂群的生理产生不利影响。 最早的质谱成像技术是MALDI质谱分子成像技术,是由范德堡大学(Vanderbilt University)的Richard Caprioli等在1997年提出的。如今,作为质谱最年轻的应用,质谱成像技术已经在医学研究(如癌症病理)、生物学研究(如上述研究所示)、药物研究(如药物代谢)等诸多领域显示了巨大的价值,并得到飞速发展,成为质谱研究的一大热点。基于新一代宽谱定量飞行时间质谱平台QuanTOF,融智生物于2017年推出了QuanTOF质谱成像系统,该系统拥有强大的5,000Hz长寿命半导体激光器,以及自主开发的数据采集软件。2018年7月,融智生物宣布实现可达500像素/秒的成像速率,提升传统MALDI-TOF MS成像速率达10倍以上,普通样本成像只需几十分钟,使得质谱成像实现了“立等可取”。经过进一步的研发,目前QuanTOF质谱成像系统已经实现高达1000像素/秒的成像速率,在5-10微米的高空间分辨率下仍然保持极灵敏度。QuanTOF质谱成像系统使得质谱成像真正可用于临床病理分析、术中分析等领域,为广大人民造福。
  • 东西分析携手德米特构建临床质谱发展生态链!
    2023年新年伊始,北京东西分析仪器有限公司医疗事业部部长、东西分析仪器(天津)有限公司总经理李晓雯女士与医疗销售总监房爱山先生,莅临湖南德米特仪器有限公司(DEMETER)交流合作,双方就科学仪器深入临床化达成高度一致,致力打造强强联手新局面,推动中国仪器向高端、高质量、临床化深度发展,构建中国“科学仪器—临床转化—临床应用”的生态链。中国高端科学仪器的临床转化分析  众所周知,科学仪器类的色谱、质谱、光谱等技术向临床端快速渗透,力图成为高端医疗器械设备。近5年,资本不断涌入该赛道,但大部分企业创新、产品与服务能力严重不足,尤其是临床质谱领域,重营销、玩概念、快餐化现象层出不穷,真正拥有核心技术、能突破科学仪器临床应用瓶颈的企业凤毛麟角,绝大部分临床质谱企业同质化严重 另外,临床用全自动二维色谱领域,使用技术欺骗,商业输送操作的企业不在少数。据不完全统计,购买或投放手段落地到检验科室端的液相色谱质谱系统,在用率不足20%,IVD产出率不足5%,存在大量技术、产品与服务合规合法性欠缺问题,已经严重伤害市场本身。可见,科学仪器与临床化技术企业的高质量生态链结合势在必行,扩大技术与品牌叠加效应,引领行业健康良性发展。  率先突破色谱质谱的临床应用瓶颈  DEMETER(德米特)专注于质谱色谱临床化研究及应用体系研究,原研的FLC/MLC临床化全自动二维液相色谱,在测定能力、自动化方面拥有独特优势,同时,德米特掌握质谱学科底层技术及核心部件制造能力,独有的专利技术解决了质谱稳定化问题、去专业化问题、难现场化问题以及应用标准化问题,从根本上推动色谱质谱仪器从科学向临床医疗器械的变革。  头部科学仪器企业 积极探索新临床落地模式  北京东西分析仪器有限公司位于中关村国家自主创新示范区,为改革开放后最早成立的民营分析仪器科技企业之一。历经三十五载,已成为国内分析行业著名的高新技术企业,产品涵盖光谱、色谱、质谱三大领域,共获得40多项国家专利。多次参与国际及市级重大科研项目、多项国标及行标的起草。2007年中国首台自主产权商业化气质联用仪的腾空出世,成为中国分析仪器发展的一个里程碑,吹响了国内分析仪器走向高端科学仪器的号角。目前“东西分析”质谱产品线包括气质联用仪、全二维气相色谱-飞行时间质谱联用仪、飞行时间质谱仪、质子转移质谱仪(国家十三五项目)、电感耦合等离子体飞行时间质谱仪等。  东西分析仪器(天津)有限公司为北京东西分析仪器有限公司的全资子公司,产品专注于高端精准医疗和生命科学领域。“东西分析”目前基于飞行时间质谱系统等质谱平台已开发出多项具有自主知识产权的临床医疗和健康领域应用成果并产业化:微生物鉴定、核酸基因分型(食源性致病菌、呼吸道疾病及癌症筛查等)和疾病蛋白标志物的检测等。“东西分析”拥有强大的质谱技术研发团队、高质量的医疗器械质量管理体系、强大的产业化能力、高效完善的销售和售后服务团队。  强强联合 推动科学仪器临床化  双方经过深入的交流,东西分析具有核酸质谱、气相质谱、光谱等高端设备,德米特具有临床色谱质谱核心技术,并具有大规模临床市场运行体系,具有很好的结合点,双方一致表示:“中国的科学仪器和临床应用企业具有很强的战略合作契机,市场前景广阔 将中国的前端制造和临床的前端应用完美结合在一起,在药物浓度监测、精准医疗、伴随诊断、术中治疗、疾病筛查等方向都能产生更好的效果……”
  • 津津有“卫”丨食品中米酵菌酸质谱分析技术
    自然界中广泛存在的椰毒假单胞菌很容易在食品表面生长,在26摄氏度、中性偏酸的条件下能产生大量米酵菌酸(Bongkrekic acid),分子量486.605。发酵玉米面制品、河粉、肠粉、粿条、米粉等湿米粉,以及银耳和木耳等食物,受椰毒假单胞菌污染而产生米酵菌酸毒的风险比较大。米酵菌酸具有很好的耐热性,正常的烹饪加热无法让其失活,食品一旦产生了米酵菌酸毒素,加热后食用仍可引起中毒。 目前我国仅对银耳中米酵菌酸的最高含量规定为250 μg/KG,其它食品中尚未有具体规定。米酵菌酸结构式 液相色谱质谱联用技术分析食品中米酵菌酸 样品前处理:称取2 g试样(精确至0.01 g)于50mL离心管中,加入25 mL 1%氨水80%甲醇水溶液,充分混匀,超声提取30 min(干样超声前需要暗处放置1 h),10000r/min离心5 min,取上清液5 mL于PAX小柱(阴离子固相萃取小柱,60mg/3 mL,预先用3 mL甲醇和2 mL水活化),待流干后依次用2 mL水和3 mL甲醇淋洗除杂,并弃去所有流出液。最后用5 mL 1%甲酸甲醇溶液洗脱,洗脱液于50℃氮吹浓缩近干,用50%乙腈水定容到1 mL,过滤膜后测定。 液相色谱条件:BEH C18色谱柱(100 mm× 2.1 mm,2.5 μm);柱温:30 ℃;进样体积:5.0 μL;流动相:(A)0.1 %甲酸水溶液和(B)乙腈;流速:0.35 mL/min;梯度洗脱程序:0 ~ 3.0 min,30 % B~90 % B;3.0 ~ 5.0 min,90 % B;5.0 ~ 5.5 min,90 % B~30 % B;5.5 ~ 9.0 min,30 % B。质谱条件:仪器型号:LCMS-8045/50/60系列 ESI—:离子源接口电压:4.5 kV;干燥气:氮气,10 L/min;加热气:空气,10 L/min;碰撞气:氩气;脱溶剂管温度:250 ℃;接口温度:250 ℃;ESI负离子多反应监测模式(MRM):m/z 485.2441.2 (CE 14V,定量离子对),485.2397.2 (CE 18V)。米酵菌酸标准溶液1ng/mL 某阳性米粉样品中检测到米酵菌酸 不管是在餐馆还是在自家厨房,只要这些食物的外观气味出现异常,就应立即停止食用。如果吃了之后身体出现不适,疑似中毒,需尽快催吐,排出胃内容物,以减少毒素的吸收,同时保存好可疑食品,及时就医。 其它相关内容请向岛津索取:1、鱼贝类毒素之质谱分析2、蘑菇毒素之质谱分析3、真菌毒素分析4、生物毒素分析质谱数据库5、食品安全应用文集
  • 老牌国产质谱企业 东西分析在传统中创新——2019质谱新品大探秘
    p style=" text-indent: 2em text-align: justify line-height: 1.75em " strong 仪器信息网讯 /strong & nbsp 为更全面展现BCEIA期间展出的质谱新产品、新技术,仪器信息网特别开设BCEIA质谱新品大探秘的视频采访路线,为用户提供新产品新技术的相关信息。本路线得到仪器信息网专家委老师的大力支持,国家生物医学分析中心杨松成、赵晓光老师亲临展位现场,与展商深入沟通并了解新产品的技术及应用特点。 /p p style=" text-indent: 2em text-align: justify line-height: 1.75em " br/ & nbsp script src=" https://p.bokecc.com/player?vid=840A957C27969B5E9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script /p p style=" text-indent: 2em text-align: justify line-height: 1.75em " br/ /p p style=" text-indent: 2em text-align: justify line-height: 1.75em " 本次质谱新品路线来到了北京东西分析仪器有限公司的展位,其研发部总监顾好粮就东西分析的质谱新产品进行了介绍,并重点讲解了PTR-QMS 3500型质子转移反应质谱仪及Ebio ReaderTM& nbsp 3700型全自动生物信息智能阅读器新品的应用领域及发展前景。 /p
  • 中国科学院徐明:基于光谱和质谱成像的纳米单颗粒原位分析研究
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。徐明 研究员中科院生态环境研究中心人物简介:徐明,中国科学院生态环境研究中心,研究员,博士生导师。主要从事重金属(离子态、颗粒态)的健康效应、分子靶点及分析方法研究。获国家基金委优秀青年科学基金、入选中国科学院青年创新促进会。主持并参与国家自然科学基金、科技部973、科技部重点研发计划、中国科学院战略性先导科技专项B等9项。发表论文72篇,申请和授权国家发明专利3项。本次会议中,中科院生态环境研究中心徐明研究员分享了《贵金属纳米颗粒的体内示踪与原位成像谱学方法研究进展》(点击回看》》》)引发行业关注。会后,我们也再次邀请徐明研究员分享其团队在纳米颗粒原位分析的系列研究成果。1、成果简介纳米材料已被广泛应用于工业、农业、食品、医药等领域。例如,银纳米颗粒作为抗菌剂被用于病原微生物的消杀,金纳米颗粒因其优良的光学性能和生物相容性被用于疾病诊断与治疗等等。一旦进入生物体内,纳米颗粒会经历复杂的转化过程,包括溶解、聚集、解聚等。纳米颗粒的体内转化会改变其物理化学特性,进而对纳米颗粒的功能产生影响。然而,目前针对纳米颗粒体内转化、分布的原位分析表征极具挑战。通常使用电子显微镜对组织或细胞内的纳米颗粒进行检测,该种方式成本高,操作难,不易于推广。其它成像技术,如质谱、红外光谱、拉曼光谱、荧光光谱等,成像分辨率难以达到纳米级别,无法实现单颗粒分析。针对上述难题,为实现生物组织和细胞中纳米颗粒转化与分布的精确分析,徐明研究员研究团队近期开展了基于光谱成像和质谱成像的纳米单颗粒原位分析研究。成果一:细胞内金纳米颗粒聚集行为的单颗粒成像分析为观测金纳米颗粒(AuNPs)的细胞内聚集行为,我们基于高光谱暗场显微镜(EHDFM)开发了一种单颗粒成像分析新方法。利用局域表面等离子共振现象(LSPR)产生的散射光谱信号,可对AuNPs的聚集程度进行定性和定量分析,实现生物介质中和细胞内AuNPs的原位单颗粒分析(图一)。该方法具有很好的特异性与灵敏度,相关研究成果近期已发表于Journal of Physical Chemistry B(https://doi.org/10.1021/acs.jpcb.2c08289)。图一成果二:利用间充质干细胞进行肿瘤靶向递送金纳米颗粒的原位成像分析为观测金纳米颗粒(AuNPs)的体内行为与分布特征,其团队整合了激光溅射电感耦合等离子体质谱(LA-ICP-MS)和高光谱暗场显微镜(EHDFM)技术,可实现生物组织中AuNPs的定性与定量成像分析(图二)。针对纳米颗粒肿瘤靶向效率低的问题,我们比较了间充质干细胞(MSC)介导的AuNPs肿瘤靶向与增强渗透滞留效应(EPR)间的递送效率差异,证实MSC介导的肿瘤靶向递送效率比EPR效应提高了2.4~9.3倍,可将更多AuNPs递送至肿瘤坏死核心。相关研究成果近期已发表于ACS Nano(https://doi.org/10.1021/acsnano.2c07295)。图二成果三:新型核壳结构纳米探针成像分析银纳米颗粒的胃肠道转化为观测纳米颗粒的体内转化过程,我们开发了一种以星形金纳米颗粒为内核,外层包覆银壳的球形核壳结构纳米探针(Au@AgNPs)。在体内,一旦该探针的银壳发生溶解等转化,就伴随着元素和光谱信号的变化,进而可通过LA-ICP-MS和EHDFM进行成像分析(图三)。利用该纳米探针,其团队成功示踪了颗粒银在小鼠胃肠道中的转化与吸收过程,揭示了颗粒银和离子银的体内行为与分布特征的差异。相关研究成果近期已发表于Advanced Functional Materials(https://doi.org/10.1002/adfm.202302366)。图三2、产业化意向上述相关的成果正在申请国家专利,后续将发展更多面向应用的技术方法和成像探针,欢迎相关的科研与产业合作。3、课题组未来研究计划后续研究中,徐明研究员研究团队将重点开发针对生物分子和纳米材料的质谱、光谱成像技术。
  • 沃特世推出Xevo TQ-S micro串联四极杆质谱仪,是UPLC/MS/MS定量分析的可靠选择
    新型质谱仪设计紧凑却不失卓越性能巴尔的摩–2014年6月16日–沃特世公司(纽约证券交易所代码:WAT)今天在美国质谱协会第62届年会上推出了紧凑小巧的新型台式串联四极杆质谱仪Waters Xevo TQ-S micro。Waters Xevo TQ-S micro设计用于在提升的采集速率下为不同浓度的多种分析物灵敏、稳定且可靠地采集数据。沃特世拟于第三季度开始Xevo TQ-S micro系统的供货。Waters Xevo TQ-S micro “从性价比上来说,Xevo TQ-S micro所向披靡。综合而言,Xevo TQ-S micro是市面上最小巧的高性能串联四极杆质谱仪,并且是食品、环境、农药、药物生物分析和多肽筛查领域科研人员的绝佳新选择。”沃特世MS产品管理部门主管Gary Harland说道。凭借全新的Xtended Dynamic Range技术,Xevo TQ-S micro质谱仪实现了可达到六个数量级的线性动态范围。这对于各种分析物浓度差异较大的样品的化合物定量分析十分重要。此外,检测动态范围越宽,不同灵敏度的仪器之间的方法转换就越容易。Xevo TQ-S micro的新型Xcelerated Ion Transfer(XIT)电子器件让仪器能够以高达500 MRM/秒的速度进行采集,而且不会显著降低峰强度,这是其它串联四极杆仪器目前无法做到的。这样的性能提升意味着进行农药筛查、药物和多肽分析的实验室所能监控的分析物范围将比以往任何时候都更加宽泛。Xevo TQ-S micro因其小巧的尺寸超出了我们对质谱仪的预期,与入门级串联四极杆仪器相比,实现了绝对灵敏度和信噪比的显著提升。通过稳定性测试证实它可在更长的时间段内保持多次重复进样之间的绝佳重现性,这对于以快速周转和准确度而闻名的实验室尤为重要。Xevo TQ-S micro设计用于与Waters MassLynx数据管理软件配合使用,可与多种沃特世入口技术兼容,包括标准流UltraPerformance LC(ACQUITY UPLC H-Class和I-Class)、微升/纳升级超高效液相色谱(ACQUITY UPLC M-Class)和气相/液相合相色谱(ACQUITY UPC2),以及通过大气压气相色谱离子源(APGC)连接的气相色谱。关于沃特世公司(www.waters.com)50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2013年沃特世拥有19亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。###媒体联系:Vivian Qian沃特世科技(上海)有限公司市场服务部Vivian_Qian@waters.com 孙玲玲(Linda Sun)泰信策略(PMC)18027283917Linda.sun@pmc.com.cn
  • 清谱推出Cell微型质谱 为个性化医疗&快速检测提供有利分析工具——2021质谱新品大探秘
    随着质谱技术的发展和应用逐渐成熟,全球范围内质谱仪器销售增速迅猛,进入快速发展期。2021年,中国市场各厂商的质谱产品推陈出新,为更全面展现2021年中国市场推出的质谱新产品、新技术,仪器信息网特别策划MS GO:2021质谱新品大探秘的系列视频采访,向广大用户带来最新最前沿的质谱新产品速报。跟随仪器信息网的镜头,可以看到2021年多家国产厂商的质谱产品扎堆发布,品类囊括了ICP-MS、ICP-TOFMS、GC-MS、GCMS/MS、小型质谱以及核酸质谱等,可以说是你方唱罢我登场,好不热闹。自20世纪60年代以来,色谱质谱联用技术将色谱优越的分离性能与质谱提供结构信息的能力完美结合,满足了对复杂样品定性定量的需求,也使该联用技术广泛应用于食品安全、生态环境、药物以及生物医学等领域。其所用的离子化技术则基本依赖于20世纪80年代发明的电喷雾离子化和基质辅助解吸附离子化。而如今,质谱技术逐渐开始展现其直接分离离子的能力,离子源技术得到快速发展。原位电离(Ambient Ionization)最初由普渡大学教授、美国科学院院士R.Graham Cooks命名,特指在不做样品前处理的情况下直接对待测目标物实现离子化。业内专家评论道,在过去的15年间以原位电离和小型质谱为主要技术平台的即时化学及生物监测逐渐成为质谱分析发展的新方向,并在未来有可能形成更为强劲的质谱发展主流趋势。此外,随着现场检测对分析仪器的大量需求,便携式和小型化质谱已经成为发展趋势。我国学者在质谱仪器小型化方面已有不少成果,该进展极大地推动了相关研究领域的发展。北京清谱科技有限公司是由清华大学精密仪器系欧阳证教授创办的高科技企业,团队与清华大学及美国普渡大学深度合作,主营质谱检测设备的研发、生产和服务,为现场检测、科学研究等领域提供实时简便的检测方案。2021年,清谱科技在第一代 Mini β小型质谱分析系统的基础上推出了又一“开创性”的小质谱,即Cell微型质谱分析系统。清谱科技市场总监李玉玉表示,Cell系统的研发理念基于3A,"Anytime, Anywhere, by Anybody",其小巧精致且功能强大,倾注了清谱技术团队很多先进的理念和心血,也是构建未来即时化学检测完整生态系统的基本单元,因此该系统被称为“Cell”。据了解,Cell微型质谱分析系统仅重8.5kg,无需外接任何其他设备,内含锂电池,可以检测质荷比在50-1000之间的化学物质,是清谱科技为个性化医疗、快速检测等领域提供的又一有力分析工具。点击收看完整采访视频:
  • 《蜂蜜中17-三十五烯含量的测定 气相色谱质谱法》国家标准征求意见中
    《蜂蜜中17-三十五烯含量的测定 气相色谱质谱法》国家标准征求意见中我们从全国标准信息公共服务平台了解到,国家标准计划《蜂蜜中17-三十五烯含量的测定 气相色谱质谱法》由 SWG2(全国蜂产品标准化工作组)归口 ,主管部门为中华全国供销合作总社。主要起草单位 秦皇岛海关技术中心 、浙江大学 、中国农业科学院蜜蜂研究所 。征求意见稿:《蜂蜜中17-三十五烯含量的测定 气相色谱质谱法》征求意见稿编制说明:《蜂蜜中17-三十五烯含量的测定 气相色谱质谱法》编制说明部分截图:
  • 聚焦疾病标志物分析方法研究|衡昇质谱与四川大学分析测试中心共建质谱实验室
    2023年12月11日,衡昇质谱(北京)仪器有限公司宣布与四川大学分析测试中心(以下简称“川大分测中心”)共建质谱实验室。双方将依托该共建实验室,深耕元素标记与单纳米颗粒领域研究,力争取得更多科研成果。四川大学分析测试中心主任吕弋、衡昇质谱总经理祝敏捷等领导出席了签约仪式,并为实验室揭牌。衡昇质谱总经理 祝敏捷(左)与四川大学分析测试中心 主任 吕弋 签约合影聚焦ICPMS检测和金属元素/纳米探针标记四川省学术技术带头人,四川大学分析测试中心 主任吕弋谈到,近几年,ICP-MS应用范围大大拓展,利用原子光谱和无机质谱技术,对生物分子的高灵敏和高准确度分析新方法,为蛋白质和核酸的高灵敏和高准确度分析提供了新策略和新途径。吕弋介绍到,近年来,川大分测中心以ICP-MS检测和金属元素/纳米探针标记为基础,系统地开展了疾病标志物分析方法研究,包括:高灵敏度定量-基于单颗粒纳米粒子计数和信号放大探针的金属元素/纳米标记分析研究;高准确度定量-基于金属稳定同位素比率的疾病标志物准确定量研究;多组分定量-基于金属元素/纳米标记的多组分疾病标志物同时分析研究。吕弋表示,近两年通过很多业内专家了解到,衡昇质谱的ICP-MS性能很不错,这也让我们对衡昇质谱公司和产品产生了兴趣。在装机验收过程中,仪器的表现让我们心里有了底。非常高兴国产无机质谱取得这样的成绩,期望衡昇质谱的仪器和技术,持续支持我们的科研工作。四川大学分析测试中心 主任 吕弋 致辞祝敏捷表示,“非常感谢吕弋主任对我们的认可,以及对我们的要求和期望。衡昇质谱的既定目标就是发展有自主知识产权的质谱。无机质谱中,四极杆质谱是目前应用最广泛的技术。衡昇质谱聚焦在四极杆质谱,也是将目标定位在这个最广泛的市场。在目前近2000台ICPMS每年的中国市场,我们聚焦高端,依靠性能优势扎实赢得市场。目前我们一些核心指标,已经与国际先进水平非常接近,甚至已经超越。在软件方面也在不断更新,尤其在与色谱、激光剥蚀等联用应用的功能,以及电子稀释等独特的功能,不断在客户处得到验证。目前市场上越来越多专家,逐渐体会到了这一点。衡昇质谱已经在地质检测、食药、核工业,高校等很多领域赢得了第一批关键客户。祝敏捷补充到,很高兴能和川大分测中心达成合作,让衡昇质谱的ICP-MS更好的支持吕老师团队的科研工作。也希望我们仪器新性能不断在川大分测中心得到验证。借助共建实验室的成立,我们将以依托我们的质谱产品,以及技术服务,逐步展开单纳米颗粒分析与元素标记相关研究的合作。衡昇质谱(北京)仪器有限公司 总经理 祝敏捷 致辞  双方共同为示范合作实验室揭幕  从左至右:衡昇质谱市场总监冯旭,应用部经理李孟婷,四川大学分析测试中心孙明霞副研究员,衡昇质谱西大区经理蒲裕伟,总经理祝敏捷,四川大学分析测试中心中心主任吕弋,副主任李成辉,刘睿教授,宋红杰 高级实验师,冯洋副研究员。在随后谈到国产仪器替代的话题,吕弋和祝敏捷进一步谈了感受。吕弋讲到,目前国家对国产仪器的支持和政策环境都是很正向。在此环境下,我们高校科研工作者也希望在分析仪器,尤其是高端科学仪器有更多的国产仪器选择。目前国内国际环境下,开始考虑选择国产仪器的用户越来越多。这对国产仪器厂商是机遇也是挑战。关键在核心部件国产化谈到仪器的国产化替代,祝敏捷表示,核心部件的国产化非常关键。衡昇质谱早期的产品,很多关键部件都是依赖进口。虽然仪器的性能出众,但核算下来仪器成本会很高,在市场上不会占优势。经过多年的潜心研发,关键部件国产化替代的努力,我们很多核心部件逐步实现国产化,比如我们自研的RF发生器,四极杆电驱动系统QPS,质量分析器,真空腔等等,在保证性能的前提下,实现越来越高的国产化率。不断迭代,必经之路祝敏捷补充到:“国产仪器,不断迭代非常重要。研发出一款优秀的产品固然重要,但这不是终点,最多只是一个节点。因为与国外先进技术相比还有很多差距。接下来的关键就是笔耕不辍,不断投入。只有持续的在已取得技术成果上,不断技术迭代,才是实现超越的必经之路。这需要一点信仰,需要一点成就感驱动。仪器行业需要一些‘笨’的人,‘笨’的人愿意坐冷板凳、下苦功夫。这是成功的唯一诀窍。总有人要做难而正确的事。我们衡昇质谱已经做好在质谱研发方向,十年投入的决心。如川之逝,不舍昼夜。与四川大学分析测试中心共建质谱实验室的建成,是衡昇质谱在定位发展高端质谱坚实的一步,也体现了顶尖科研团队对国产质谱产品初步的认可。接下来,衡昇质谱以仪器以及技术服务为基础,在这个领域助力取得更多科研成果。并且,以“数十年磨一剑”的奋斗精神,聚焦国家战略需要,构建国产仪器新局面,助力仪器国产梦的实现。
  • 罗氏全自动质谱方案最新解读|2024准备好进入质谱分析新维度了吗?
    距离上一年度罗氏的半年报中公布了比较多的临床质谱方案细节后,又过去了半年时间,按其规划,2024年底将会在欧洲率先上市。  随着上市时间的临近,按着新品上市的一般推进流程,罗氏公司也不断对外公布了一些最新细节,使得其质谱方案的神秘面纱也一层一层的逐渐揭开。  在临床质谱火热之际,我们之所以如此关注罗氏公司的质谱项目,还是基于业界对罗氏公司全自动质谱方案的高度期望,尤其在科学仪器巨头赛默飞世尔(Thermo Fisher)公司全自动质谱一体机Cascadion项目以失败告终之后,我们更期待IVD巨头的解决方案。  看从IVD企业的方向是否可以走通,彻底解决临床质谱自动化,推进临床质谱进入临床检测科室,完成临床质谱普及的最后一公里路。  本文仅为分享临床质谱相关知识、探讨质谱自动化方案,以期质谱技术在临床端的进一步发展。质谱技术的普及,需要各级别企业的共同努力,有大象起舞,也有蚂蚁雄兵。文中内容仅为技术探讨,是对公开信息的进一步学习、推测和探讨,如有理解偏差、不准确的地方,请仅以罗氏公司未来官方资料及解释为准。我们敬重头部企业罗氏这么有创新的技术尝试且需保护相应的专属设计,也期待各家质谱相关公司凭借独立的创新精神取得各自的突破。  上市计划进展  简言之,如期推进!  落地时间与之前公布的信息没有变化,侧面证明在欧美地区的注册工作顺利、项目的研发按期望进展。  2024年1月9日,在第42届摩根大通医疗健康大会(JPM 2024)上,罗氏公司CFO Alan Hippe 以Entering the next growth cycle(进入下一个增长周期) 为题汇报了罗氏公司的一些主要进展,其中有两页提到了诊断部的质谱项目,确定其对未来增长的重要性,并再次提到其上市计划,2024年底CE欧盟区域落地,2025年预计美国FDA获批。  2024年2月初发布的2023年财报中,在诊断部CEO Matt Sause的报告部分,也看到他把i601全自动质谱系统在2024年CE落地作为他的首条关键任务。    我们还注意到,2023年5月,在意大利罗马举行的第25届国际临床化学与检验医学大会(IFCC WORLDLAB)暨第25届欧洲临床化学与检验医学大会(EUROMEDLAB)上,罗氏也将其质谱系统进行了揭幕,为欧洲市场的上市预热。  关于中国的上市时间,按业内推测及罗氏新产品在中国上市的规划传统,预计在2026年争取拿到国内上市资质。  值得提及的一件事情,在2023年12月国家卫健委临检中心第二届临床质谱的培训班上,很高兴的看到罗氏公司RA注册部相关人员也来学习质谱相关内容。  质谱技术对于罗氏公司也是一项新技术、新方法,为了做好相关注册工作、确保注册进度,相关人员主动学习相关知识,值得认可肯定!  设备整体结构  从左到右依次为进出样单元(含STAT急诊端口)、加样及磁珠前处理部分、色谱质谱部分。总体的尺寸并没有相关资料公布,但参照图片里其他模块的尺寸(e801及进样模块尺寸),按比例可大致估算,整体的设备长度约3.8米(含进样单元)。  其中色谱质谱部分从图中可以看出比e801(含MSB样本缓冲区)尺寸略短一些,我们姑且按1.4米算。  关于重量,我们也做个大概估算:考虑到色谱质谱部分有泵单元、分子涡轮泵、质量分析器等重量较大组件,整体重量应大于等于e801的730公斤,所以三者相加(190+730+730)整体重量应在1.7吨上下。  设备的整体结构,可以理解为进样单元,加上e801系统(含MSB样本缓冲区、无ECL电化学发光的检测系统),后面再加一个液相色谱及质谱分析仪部分。  此系统的e801部分,负责样品的进出样,传输,样品的加入,试剂的加入,基于磁珠的前处理等的流程,最后转移至液相色谱部分,进行液质分析相关步骤。  质谱试剂产线  在公布了质谱系统的型号i601之后,质谱的试剂盒也有了它的名称:Ionify(已注册商标),并形成Ionify® reagent line。很显然,这个词来自于离子的词根,这也正是质谱的工作原理,使物质离子化,测量待检物的质荷比M/Z。  至此,我们又可以大胆的猜测i601质谱系统这个cobas i系列的命名起源,那就是也是源于Ion离子这个词,与其免疫系统的e来自Electro ChemiLuminescence (ECL)elecsys电化学发光系统、临床生化的c来自Clinical Chemistry形成家族化命名逻辑,共同组成cobas中心实验室的主力机型系列。  试剂盒形式沿用cobas生化、免疫系统的cassettes式设计,即试剂多联包形式,从截图可看出也为3组分、尺寸与免疫e green package一致,这也使得其能兼容使用免疫系统e801的试剂处理单元,享用在线装卸载试剂功能。  若如猜测与e pack green试剂盒大小一致且试剂仓一致,则单模块也可以放置48个试剂。  我们可以对比下罗氏的质谱试剂与赛默飞世尔的Cascadion质谱系统的试剂,从临床使用角度,罗氏的即开即用、成分整合、可高度自动化的试剂更符合临床工作人员的喜好。  样本前处理工作流程  质谱检测与生化免疫等其他间接检测(检测器隔检测杯读值、非直接接触待检物)不同,其待检物质是被吞进检测单元的,是直接读取待检物M/Z质荷比的一种技术,无需标记物。  但血清中的成分非常复杂,有大量的磷脂、蛋白等基质杂质成分,待检成分只是非常少的一些物质,所以质谱检测是需要进行样本纯化后才能进样的,尽可能纯的待检物质可降低基质干扰,提升检测的灵敏度和准确性。样本前处理工作由于步骤复杂,目前是临床质谱分析的一个难点和重点,也是各家临床质谱自动化方案主要需解决的关键步骤。在众多的前处理方法中,磁珠法(或称萃取磁珠法)是最有希望实现高通量、自动化、标准化的,国内也有很多公司在这个方向下取得了卓有成效的进展。  这里我们看到罗氏采用的是磁珠法的方案,其过程简要整理如下:  此部分用到的各类试剂应主要来自Ionify的试剂包部分,从图中可大致判断罗氏的磁珠方案为正向抓取待检物的模式,磁珠依靠binder正向结合、抓取待检物质,最后洗脱下待检物质与内标物,进行后续检测。  这里稍微补充一句,磁珠法其实也能做除杂的方式,即沉降基质等成分,用上清部分作为为后续待检样品。  色谱质谱部分  前处理纯化后的样本转移到色谱部分,经过色谱柱,再到质谱检测器进行检测,得到信号。  为了提高检测通量,罗氏方案中设计了8个色谱柱单元,柱子放在cartridge中,这是一种特殊盛放色谱柱的弹夹式结构的装置,它还具有RFID标签。  此种设计与Cascadion的Quick Connect Cartridge有相似的设计理念,都是为了使其安装更换更加便捷,易于临床客户上手。  我们在上一次解读中提及到其设计检测通量可达到100个样品/小时,有过质谱使用经验的都知道,若按传统的单线程标准过色谱柱模式,要实现此速度非常困难。  罗氏采用了多线程模式,即有8根色谱柱可供样本通过,后面将顺序出锋而陆续进入质谱检测。  为便于理解整个实验流程,附简易功能模块示意图。  布局仅为推测,最终布局请以官方公布为准。  还有个非常重要的细节我们从图中可以看出,8个色谱柱单元长短并不一样,其中5个短柱子,3个长(常规)柱子区域。  从如此高的检测通量设计来推测,短柱子是做单项目(或小组合)测试的,这类柱子应与常规的色谱柱不同,是为这些快速检测项目而设计的,如激素类单项。  在结果界面的截图中,我们看到睾酮的色谱图里,单个测试是36秒的检测时间(注:色谱质谱系统里,30秒处为保留时间或出峰时间),按此检测模式恰好可以达到标称的100标本/小时(3600秒/36秒)的速度。  而对于长柱子(相对于短柱子的称呼),应该与传统色谱系统中的常规柱子更接近,预估是做一些联检类的项目,会有较长的检测时间来处理套餐类的项目组合。具体哪些是组合项目和色谱柱具体工作模式,还请大家静待罗氏公司的最终公布吧。  在设备的下方,则应是流动相溶剂等液体耗材部分及质谱仪部分(右侧)。  分析软件  检测流程的最后一部分,将会对数据进行自动处理,软件应用复杂的算法对结果进行验证,然后传输至LIS系统。这相比于传统的质谱分析软件有很大的改善,减少了很多人为参与、调整、确认结果的过程。  在软件界面我们可以看到峰型整合和结果验证的细节,如这个睾酮结果的界面中,分别显示了内标物与待检物质的响应值与峰型情况,依靠峰面积得出待检物的浓度。  在这个过程中,将自动完成待检物质与内标物的峰型质量检查、质谱仪与色谱仪的状态确认、整合与定标质量的确认、结果确认。  项目菜单  检测菜单也是质谱项目是否能成功的重要因素,罗氏公司一直以规划检测项目见长,这次在项目规划上也进行了大量的前期调研和顾问工作。  按规划i601将有一个超过60多个项目、全面的试剂套餐组合,分两批上市。  项目大类为以下5类:类固醇类激素类、维生素D类、TDM药物浓度检测、免疫抑制剂药物检测、滥用药物类检测。  未来质谱模块的灵活配置  模块化的设计一直是罗氏诊断产品的特点,从最早的Modular时代开始,到cobas 6000/8000。  作为cobas Pro的一个模块,罗氏的质谱方案同样拥有灵活的配置形式,在以下图片中我们可以看到i601可以进行双模块的拼接,以便进一步的扩展检测通量和项目数。  当然,还有几种与cobas Pro里其他模块的联机,与免疫模块e801的连接、与生化模块c503的连接,及与生化、免疫混合模块的连接 同样在今年落地的高速生化分析模块c703作为cobas Pro方案里的一员,未来也应可以参与到质谱模块的灵活配置中。  但请注意,在官网的标注中,明确的告知:在上市初期,将仅以单模块形式提供,所有其他的包括生化、免疫的配置将会在随后的日期提供。  一个有意思的探讨: 一套i601质谱系统算几个模块?  我的猜测是算2个,那么一个线体分支就最多可连接2个i601(4个模块),为什么?  视频里的2个i601联机展示图可作为依据吗? 不是仅仅从这里。  我的考量如下:通量的需求、设备长度、系统的复杂度、人员动线、通讯的限制、标本周转时间等等。  但需要进一步的官方消息确认,仅作猜测探讨。  补充知识:罗氏的多模块联机方案中,cobas 8000及Pro系列的模块连接数量,最多可扩展至4个。  我们再看一下罗氏公司的一个整体规划图,这是一套CCM2.0的流水线系统,颇为壮观,从图中可以看出P系列前处理+后处理、日立的轨道系统与生化、免疫、质谱、分子、尿机、血球、凝血组成的强大多学科布局,i601质谱系统作为一个新学科模块,占据着极为重要的战略意义位置。  写在最后  近些年,临床质谱一直是热门赛道,资本方、客户端、企业端,一直期待这一技术在精准医学中大展拳脚,但其发展速度一直不如预期,这里面有很多的因素限制。  我们非常期待有更多的企业在解决诸多困难中取得实质性突破,带我们进入临床质谱的新维度、新时代。  如罗氏官网中质谱项目的标题:Are you ready to enter a new dimension in mass spectrometry?  你准备好进入质谱分析的新维度了吗?  作为相关从业者中的一员,也意识到,临床质谱的普及除了产品维度外,还需要更多的质谱相关知识的推广,让大家理解这一检测利器,最终懂它、用它,真正发挥其作用。  希望今天的分享能起到一点点的作用。作者:IVD崔哥
  • 新型蛋白质结构分析手段-氢氘交换质谱技术进展
    贾伟、陈熙 沃特世科技(上海)有限公司实验中心 氢氘交换质谱法是一种研究蛋白质空间构象的质谱技术。它在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位及活性位点鉴定方面有着广泛的应用。随着氢氘交换质谱技术的不断发展,它正在成为结构生物学家及生物药物研发的重要手段。 氢氘交换质谱(HDX MS,hydrogen deuterium exchange mass spectrometry)是一种研究蛋白质空间构象的质谱技术。其原理是将蛋白浸入重水溶液中,蛋白的氢原子将于重水的氘原子发生交换,而且蛋白质表面与重水密切接触的氢比位于蛋白质内部的或参与氢键形成的氢的交换速率快,进而通过质谱检测确定蛋白质不同序列片段的氢氘交换速率,从而得出蛋白质空间结构信息[1]。这个过程就像将握着的拳头浸入水中,然后提出水面并张开手掌。这时,湿润的手背表明它在&ldquo 拳头&rdquo 的结构中处于外表面,而较为干燥的手心表明它是&ldquo 拳头&rdquo 的内部。除样品制备外,氢氘交换质谱法的主要过程包括:交换反应、终止反应、将蛋白快速酶切为多肽、液相分离、质谱检测、数据解析。其中交换步骤需要在多个反应时长下进行,如0s、10s、1min、10min、60min等,以绘制交换率曲线,得到准确全面的信息。氢氘交换质谱技术在蛋白质结构及其动态变化研究[1]、蛋白质相互作用位点发现[2]、蛋白表位及活性位点鉴定方面有着广泛的应用[3]。 与经典的蛋白质结构研究方法相比,如X射线晶体衍射(X-Ray Crystallography)和核磁共振(NMR. Nuclear Magnetic Resonance)等方法,氢氘交换质谱不能够提供精确的蛋白空间结构,它直接提供的主要信息包括哪些氨基酸序列位于蛋白质空间结构的表面位置(包括动态变化中的)、可能的活性位点和蛋白-蛋白相互作用位点等。但是氢氘交换质谱技术有着其他经典方法不具备的优点:首先,可以进行蛋白质结构动态变化的研究是氢氘交换质谱的一个突出优点,包括变化中的活性位点及表位;其次,氢氘交换质谱在蛋白复合体构象的研究中也具有独到的优势;此外,氢氘交换质谱还具有对样品需求量小、纯度要求相对较低、研究对象为溶液环境下的蛋白质的天然构象而非晶体中构象等优势[1,4,5]。自1991年第一篇研究论文发表起,氢氘交换质谱技术不断发展,已经成为结构生物学及质谱技术中一个非常重要的应用领域[6]。但是氢氘交换质谱实验的复杂的实现过程在一定程度上影响了其应用的广泛度。主要的难点有:1、如何避免交换后氘代肽段的回交现象;2、实验控制的高精确性和重现性要求;3、交换后造成的叠加的质谱峰如何准确分辨;4、简易高效的分析软件需求;5、以氨基酸为单位的交换位点辨析。沃特世公司自2005年起,针对以上难点不断进行攻关,推出了目前唯一商业化的全自动氢氘交换质谱系统解决方案&mdash &mdash nanoACQUITY UPLC® HD-Exchange System(图1)。在全世界范围内,这套系统已经帮助科学家在包括Cell、Nature等顶级研究期刊中发表研究论文[7,8]。除科研需求外,沃特世氢氘交换质谱系统也受到众多国际领先制药公司的认可,并用于新药开发中蛋白药物活性位点及表位的研究工作中。 氢氘交换实验中的回交现象将严重影响实验数据的可信度,甚至导致错误结果的产生。要避免回交需要做到两点:尽量缩短液质分析时间和保证液质分析中的温度和pH为最低回交反应系数所要求的环境。沃特世UPLC® 系统采用亚二纳米色谱颗粒填料,较HPLC使用的大颗粒填料,UPLC具有无与伦比的分离度。因此UPLC可以做到在不损失色谱分离效果的要求下,极大缩短液相分析时间的要求[9]。对于对温度和pH控制问题,在多年的工程学改进中,nanoACQUITY UPLC HD-Exchange System已经实现了对酶切、液相分离等步骤的全程控制[10]。 对氢氘交换质谱实验精确性和重现性的要求是其应用的第二个主要难点。在实验中一般需要采集0s、10s、1min、10min、60min、240min等多个时间点的数据。如果进行人工手动实验,很难做到对10S-10min等几个时间点的精确操作。再考虑到重复实验的需求,人工手动操作会对最终数据可信度产生影响。而且实验过程重复繁琐,将给实验人员带来非常大的工作压力。nanoACQUITY UPLC HD-Exchange System完全通过智能机械臂,精确完成交换、终止交换、进样、酶切等一系列实验过程,而且始终保证各个步骤所需不同的温度环境。这些自动化过程不但保证了实验数据的可靠性,提高了实验效率,也将科学家从繁琐的重复实验中解放出来。 氢氘交换实验的质谱数据中,随着交换时间的延长,发生了交换反应的多肽,由于质量变大,其质谱信号将逐渐向高质荷比方向移动。因此,这些质谱峰可能与哪些未发生交换反应的多肽质谱峰逐渐叠加、相互覆盖。相互叠加的质谱信号,不但影响对峰归属的判断,更会增加交换率数据的误差。因为交换率判断需要通过对发生交换的多肽进行定量,毫无疑问因叠加的而混乱的质谱数据将极大的影响对质谱峰的准确定量。这点对于单纯通过质荷比进行分析的质谱仪来说完全无能为力。但是,这个看似不可能完成的任务却被沃特世 nanoACQUITY UPLC HD-Exchange System攻克了。这是因为,不同于其它常见质谱,沃特世的SYNAPT® 质谱平台还具备根据离子大小及形态进行分离的功能(行波离子淌度分离)。在数据处理时,除多肽离子的质荷比信息外,还可以通过离子迁移时间(离子淌度维度参数)将不同离子区分。因此这种SYNPAT独有的被命名为HDMSE的质谱分析技术可以将因质荷比相同而重叠的多肽分离开,轻而易举地解决了质谱信号叠加的问题,得到准确的交换率数据[11,12](图2)。SYNPAT质谱平台一经推出就夺得了2007年PITTCON金奖,目前已经推出了新一代的SYNAPT G2HDMS、SYNAPT G2-S HDMS等型号,并具备ESI、MALDI等多种离子源。除氢氘交换技术外,SYNAPT质谱系统在蛋白质复合体结构研究中也是独具特色,已有多篇高质量应用文献发表[13,14,15]。 实现氢氘交换质谱技术的第四个关键点,是如何高效分析实验产生的多时间点及多次重复带来的大量数据。人工完成如此巨大的信息处理工作,将消耗科学家大量的时间。沃特世氢氘交换质谱解决方案所提供的DynamX软件可以为科学家提供简便直观的分析结果,并包含多种呈现方式。 在某些特殊研究中,要求对蛋白氢氘交换位点做到精确到氨基酸的测量,这是氢氘交换质谱研究的又一个难点。在常规的研究中采用CID(碰撞诱导解离)碎裂模式,可能导致氘原子在多肽内重排,而致使不能对发生交换的具体氨基酸进行精确定位。SYNPAT质谱提供的ETD(电子转移解离)碎裂模式可以避免氘原子重排造成的信息混乱,并具有良好的碎裂信号[16]。 沃特世的nanoACQUITY UPLC HD-Exchange System为氢氘交换质谱实验提供了前所未有的简易的解决方案,强有力地推动了氢氘交换技术在蛋白质结构及动态变化研究、蛋白质相互作用位点发现、蛋白表位以及活性位点鉴定方面的应用,正在成为众多结构生物学科学家和生物制药企业必不可少的工作平台。 参考文献 (1) John R. Engen, Analysis of Protein Conformation and Dynamics by Hydrogen/Deuterium Exchange MS. Anal. Chem. 2009,81, 7870&ndash 7875 (2) Engen et al. probing protein interactions using HD exchange ms in ms of protein interactions. Edited by Downard, John Wiley & Sons, Inc. 2007, 45-61 (3) Tiyanont K, Wales TE, Aste-Amezaga M, et al. Evidence for increased exposure of the Notch1 metalloproteasecleavage site upon conversion to an activated conformation. Structure. 2011, 19, 546-554 (4) Heck AJ. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods. 2008, 5, 927-933. (5) Esther van Duijn, Albert J.R. Heck. Mass spectrometric analysis of intact macromolecular chaperone complexes. Drug Discovery Today. Drug Discovery Today: Technologies Volume 3, 2006, 21-27 (6) Viswanat ham Katta, Brian T. C hait, Steven Ca r r. Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 214&ndash 217 (7) Chakraborty K, Chatila M, Sinha J, et al. Chaperonin-catalyzed rescue of kinetically trapped states in protein folding. Cell. 2010 Jul 9 142(1):112-22. (8) Zhang J, Adriá n FJ, Jahnke W, et al. Targeting Bcr-Abl by combining allosteric with AT P-binding-site inhibitors. Nature. 2010,463, 501-506 (9) Wu Y, Engen JR, Hobbins WB. Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry. J Am Soc Mass Spectrom. 2006 , 17, 163-167 (10) Wales T E, Fadgen KE, Gerhardt GC, Engen JR. High-speed and high-resolution UPLC separation at zero degrees Celsius. Anal Chem. 2008, 80, 6815-6820 (11) Giles K, Pringle SD, Worthington KR, et al. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom. 2004, 18, 2401-2414 (12) Olivova P, C hen W, C ha kra borty AB, Gebler JC. Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-offlight mass spectrometry. Rapid Commun Mass Spectrom. 2008, 22,29-40 (13) Ruotolo BT, Benesch JL, Sandercock AM, et al. Ion mobilitymass spectrometry analysis of large protein complexes. Nat Protoc.2008, 3, 1139-52. (14) Uetrecht C, Barbu IM, Shoemaker GK, et al. Interrogatingviral capsid assembly with ion mobility-mass spectrometry. Nat Chem.2011, 3,126-132 (15) Bleiholder C, Dupuis NF, Wyttenbac h T, Bowers MT. Ion mobility-mass spectrometry reveals a conformational conversion from random assembly to &beta -sheet in amyloid fibril formation. Nat Chem. 2011, 3, 172-177 (16) Kasper D. Rand, Steven D. Pringle, Michael Morris, John R., et al. ETD in a Traveling Wave Ion Guide at Tuned Z-Spray Ion Source Conditions Allows for Site-Specific Hydrogen/Deuterium Exchange Measurements. J Am Soc Mass Spectrom. 2011, in press
  • 沃特世出席第三届全国质谱分析学术报告会,展示最新质谱技术
    由中国化学会质谱分析专业委员会主办、厦门大学承办、中国质谱学会和中国分析测试协会协办的第三届全国质谱分析学术报告会于12月8日至11日在厦门成功召开。本次会议以“高速发展中的中国质谱分析”为主题,吸引了来自全国的质谱技术与应用专家学者、质谱厂商与用户共1500余人参加。该会议旨在促进中国质谱分析技术的快速发展,展示中国在该领域取得的成绩及增进同行间的学术交流,全国质谱分析学术报告会已成功举办两届,本次的会议内容包括:新仪器新技术、离子源、蛋白与代谢组学、质谱在精准医学中的应用、环境与食品安全分析、无机质谱、质谱成像、有机/生物质谱新方法、青年论坛。作为深耕质谱技术几十载的行业领导者,沃特世公司全方位参与了此次会议,并展示了一系列质谱分析技术领域的最新成果,包括三重四极杆质谱、高分辨质谱以及离子淌度技术等,引起了众多参会者的高度关注和浓厚兴趣。其中,作为Xevo家族最新成员的Xevo TQ-XS,以其极高的灵敏度和整体创新设计已先后荣获ACCSI“2016科学仪器行业优秀新产品”和分析测试百科AnTop奖殊荣。Waters Xevo TQ-XS三重四极杆质谱仪值得一提的是,今年恰逢沃特世推出全球第一台行波离子淌度质谱(IMS)10周年、全球第一台商品化QTof 20周年。从第一台淌度质谱SYNAPT HDMS,到新型淌度质谱VION IMS QTof,淌度质谱已不再神秘,可以应用到每一个实验室的常规分析中,帮助研究人员更有把握地进行分析物的探索、鉴定和定量。会议现场,沃特世公司特意设置了离子淌度知识答题活动,吸引了众多与会者踊跃参与。沃特世展台现场人头攒动,离子淌度答题活动气氛热烈在分会报告上,沃特世公司应用科学家殷薛飞博士作了题为“原位电离质谱技术及其在生物分析中的应用”的报告,详细介绍了沃特世独有的REIMS技术及无损的DESI技术在生物分析中的应用,包括微生物鉴定、质谱成像、药物分布等。原位电离质谱技术是近年来发展迅速的质谱离子化技术,因其无需复杂样品前处理即可实时进行样品分析的优点被广泛应用于快速检测。REIMS技术及无损的DESI技术是两类非常有用的原位电离质谱技术,已被广泛应用于生物科学、食品、制药等行业。沃特世公司应用科学家殷薛飞博士报告现场此外,为了鼓励和表彰本次会议的青年论坛优秀报告和墙报,会议特设“优秀青年报告奖”和“优秀墙报奖”。沃特世公司质谱产品市场发展总监舒放先生为获得“优秀墙报奖”的诸位作者颁奖,并表示:“沃特世非常荣幸能够赞助此次优秀墙报评选活动。作为质谱分析领域的领导者,沃特世将在未来继续大力支持中国质谱领域的创新发展和各项工作,加大与业内专家学者的学术交流,共同促进中国质谱事业的发展。”“优秀墙报奖”颁奖现场(左二为沃特世公司质谱产品市场发展总监舒放先生)关于沃特世公司沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。
  • 色质谱分析及其新技术在石化中的应用
    石油化工行业在国民经济发展中具有重要意义,是我国的支柱产业之一。而石油化工产品的品质如何,就需要分析检测技术来把关。因此,分析检测技术成为石油化工行业高质量发展的重要支撑。石油、化工相关的产品种类丰富,各类指标参数复杂,涉及到名目繁多的检测方法,如色谱法、质谱法、光谱法等。因此,在即将召开的第七届石油化工分析技术及应用新进展网络会议,特别邀请了多位嘉宾分享色质谱分析及其新技术在石化中的应用。部分报告预告如下:中国石油大学(北京)教授 韩晔华报告题目:《面向石油分子工程的石油组学分析》点击报名韩晔华,教授,博士生导师。毕业于北京大学分析化学专业,美国加州大学伯克利分校联合培养博士。现就职于中国石油大学(北京)化学工程与环境学院,重质油国家重点实验室,校青年拔尖人才、青年骨干教师。专业领域为质谱分析、石油分子工程。作为负责人主持9项国家级、省部级自然科学基金。在分析化学、能源化学领域的国际知名期刊发表学术论文45篇,包括多篇TOP期刊论文及封面论文,撰写英文专著篇章2部,担任《Separation Science Plus》副主编、《石油科学通报》 副主编、《Petroleum Science》青年编委。报告摘要:本报告分析石油组学研究所遇到的研究瓶颈,并介绍通过分析方法的创新将石油化学、催化化学、地球化学在分子层面进行有效链接并获得新发现、新认知。石油组学的本质是分子表征与构效关系研究,报告人通过质谱离子化方法的创新,使得更多未知的重组分“被看见”;利用石油分子的序列性,创新性的提出复杂体系中分子结构的集总表征;开发多种数据统计及可视化模型,建立与反应网络的关联。在此基础上,报告人在不同成熟度及海、陆相原油中发现了新型生物标志物,为地质演化及油藏勘探提供新视角;依托新建立的分子表征方法设计分子离子反应、研究实际工艺体系的反应路径,揭示了石油催化加氢脱硫反应机理、催化剂失活机理等,为油品清洁生产及定向转化提供指导。中海油化工与新材料科学研究院高级工程师 黄少凯报告题目:《重油中杂原子化合物分子组成分析方法研究》点击报名黄少凯,博士,高级工程师,现任中海油化工与新材料科学研究院分析表征首席工程师,主要研究领域为原油分子水平表征、原油评价、重油组成与结构分析、重油结构与加工性能研究以及高酸原油腐蚀特性等。2005年3月至2017年1月,在中石化石油化工科学研究院第一研究室工作,历任工程师、高级工程师及课题组组长;2017年1月2022年6月,任中海油炼油化工科学研究院分析表征首席工程师;2022年7月至今,任中海油化工与新材料科学研究院分析表征首席工程师。工作期间,主持2项集团公司级科研项目、12项地级科研项目,参与2项国家自然科学基金科研项目、2项集团公司项目;发表论文12篇,获得软件著作权3项,参与1项石化行业标准(排名第5)和1项炼化公司标准制定等。报告摘要:介绍工作内容。采用酸/碱改性固相萃取柱分离重油中含氧、氮(中性氮与碱性氮)化合物,采用甲基衍生化方法将硫化物转化为强极性的甲基锍盐分离重油中含硫化合物;然后采用超高分辨率的傅里叶离子回旋共振质谱(FT-ICR MS)结合电喷雾电离源(ESI)得到杂原子化合物的精确分子量,进而获得化合物的分子式,由化合物的质谱峰强度归一化计算得到相对含量。试验结果表明,采用样品预处理技术结合超高分辨率的FT-ICR MS可以得到重油中杂原子化合物的分子组成数据;采用上述分离方法对含氧、氮和硫化合物进行分离富集,其回收率分别为90%以上、80%以上和80%以上;FT-CRT MS测试含氧、氮和硫化合物的相对标准差小于5%。中国石油石油化工研究院工程师 郑方报告题目:《基于色谱质谱技术的石油卟啉形态研究》点击报名郑方,工学博士、理学博士;中国石油石油化工研究院工程师;致力于从分子水平认识石油,尤其是重质油的分子组成,研究石油分子在分离过程中的走向及化学加工过程中的转化规律。在Fuel、Energy & Fuels、Petroleum Science、《燃料化学学报》等期刊发表论文10余篇。报告摘要: 全面认识石油中金属卟啉类化合物的结构形态可以为完善石油加工工艺提供科学依据,有助于认识石油沥青质的分子组成,也可以通过解析石油卟啉的演化过程更加深入了解石油成因等地球化学信息。岛津企业管理(中国)有限公司系统气相专员 李学伟报告题目:《岛津色谱特色技术助力石化高效分析》点击报名李学伟,岛津企业管理(中国)有限公司 系统气相专员,从事气相色谱相关工作十余年,在石油化工领域系统气相定制方案上有着丰富的工作经验。现主要负责岛津系统气相产品线技术支持和应用方案推广工作。报告摘要:主要介绍岛津气相色谱自动进样系统、检测器系统、数据处理软件等特色技术在石油化工领域的应用,以及超临界流体色谱(SFC)和GC-FID联用技术,实现各种油品中烃族组分的高效分析。北京莱伯泰科仪器股份有限公司应用工程师 刘石磊报告题目:《热裂解在石油化工分析中的应用》点击报名刘石磊,北京莱伯泰科仪器股份有限公司应用工程师,主要负责莱伯泰科旗下品牌CDS热裂解产品线的应用研究与技术支持。 从事分析仪器应用等相关工作15年,工作经历主要围绕GC、GCMS的应用支持。报告摘要: 主要介绍热裂解仪在石油化工材料分析中应用,和热裂解仪在石油化工催化裂解中应用。SCIEX中国首席应用专家 李立军报告题目:《SCIEX 液质技术在石油化工行业有效成分分析与表征的典型应用案例分享》点击报名李立军,毕业于北京大学医学部,作为国内最早一批技术专家进入质谱分析行业,在食品、环境、药物及法医毒物市场等小分子领域拥有超过35年应用技术工作经验。报告摘要:主要介绍SCIEX液质技术在石油化工行业有效成分分析与表征的典型应用: 1、SCIEX QTOF液质技术靶向、半靶向、非靶向化合物鉴定流程介绍;2、油田开采过程中钻井液聚合物有效成分的分析;3、石油钻井液样本中表面活性剂分析;4、PET(聚对苯二甲酸二乙醇酯)解聚反应产物定性分析。第七届石油化工分析技术及应用新进展网络会议为促进石油、化工企事业单位高质量发展,推动分析检测技术进步,促进科技成果转化,同时也给石油化工相关工作者提供一个学习交流的平台,仪器信息网将于2023年5月31日-6月1日举行第七届石油化工分析技术及应用新进展网络会议,力争把最新的政府决策、最前沿的行业信息、最新的技术进展与研究成果呈现给大家。会议主办方:仪器信息网参会指南:1、点击会议官方页面(https://www.instrument.com.cn/webinar/meetings/petrochemical2023)进行报名。扫描下方二维码,进入会议官网报名2、报名开放时间为即日起至2023年6月1日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(微信号:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)6、赞助联系人:周老师(微信号:nulizuoxiegang 邮箱:zhouhh@instrument.com.cn)
  • 基于质谱成像技术对芦笋的可视化分析
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 摘 要: /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 随着近年来人们对功能性食品的关注度越来越高,芦笋被认为是对抗高血压比较有效的一种食物。芦笋中所含的Asparaptine是抗高血压的有效成分,但是目前还没有其在芦笋内的分布信息的相关研究。我们利用基质辅助激光解吸质谱成像(MALDIMSI)技术阐释了Asparaptine 在芦笋内的分布情况。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 230px " src=" https://img1.17img.cn/17img/images/202006/uepic/f446df0a-84bd-404c-a084-cecaa126ce76.jpg" title=" 1.png" alt=" 1.png" width=" 300" height=" 230" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1. 背景介绍 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 已有研究表明芦笋粗提取物有降低血压的功效。长期以来芦笋的降压功效一直被认为是来源于其中所含有的某些含氮化合 span style=" text-indent: 2em " 物,但近些年来,一些研究认为,芦笋的降压功效应该来源于其中的某些含硫化合物而非含氮化合物。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在这种背景下,2015年的一项研究发现了一种由精氨酸和芦笋酸组成的新物质——Asparaptine1)。这项研究提出,Asparaptine的降血压功效来源于其对血管紧张素转化酶(ACE)的抑制作用。Asparaptine的发现使芦笋作为功能性食品更受欢迎,因而对其也需要进行更加详细的研究。作为研究此物质的一种方法,我们尝试阐释芦笋中Asparaptine的定位信息。近些年来,MALDI-MSI作为一种可直接用肉眼观察到各化合物定位信息的方法而备受关注。这种方法可以通过单次分析实现对大量分子信息的成像,并且由于其具有可区分靶向目标和代谢物的能力,目前已经被广泛应用于诸如神经递质可视化2)和药代动力学成像3)的研究中。此外,除了在医药领域,MALDI-MSI技术也已经被应用于食品领域,涉及食品样品的范围非常广泛,从作为日本的主要粮食的大米4),到土豆5)和草莓6)。提供“可视化”信息,比如功能性化合物的分布信息,可以从增加食品附加值的角度来吸引消费者。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 图1展示了MALDI-MSI的标准操作流程。使用冷冻切片机将冷冻样品切成厚度在10 μm至30 μm之间的切片。将冷冻切片放置 span style=" text-indent: 2em " 在导电板上,例如涂有氧化铟锡(ITO)的载玻片。之后将作为辅助电离试剂的基质涂敷于样品表面,然后进行质谱分析。在MALDI-MSI过程中,我们可以确定被测区域和测量点之间的距离,得到每个测量点的质谱和位置信息。通过选择目标分子在每个测量点的质谱中的质荷比,我们可以从每个测量点的强度数值得到目标分子在样品中的分布信息。在本研究中,我们按照上述流程进行实验,以明确Asparaptine的定位信息。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/38b7a373-f224-416d-96f0-1ca09b8eba71.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 图1 MALDI-MSI的实验流程 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2. 实验部分 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2.1 样品及样品冷冻方法 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 将芦笋按照尖部、中部和下端切成三份,使用切片机(CM1950)将三部分分别制成20μm厚度的切片。芦笋的侧面有三角形的叶片,称为鳞片,其作用是保护枝杆(图2A)。在这项研究中,对这四个部位均进行了成像。目标成分是之前已经描述过的Asparaptine。在MALD-MSI中,样品的冷冻是影响成像结果的一个重要过程。在本研究中,我们将对液氮冷冻法和真空密封袋冷冻法两种方式进行比较(图2B)。前一种冷冻方法是将芦笋包裹在铝箔中,放入液氮中冷冻。后一种方法是将芦笋放入真空袋中,将袋中抽成真空,然后在-80° C的冰箱中慢慢冷冻。为了比较这两种方法,我们使用甲苯胺蓝染色对组织切片进行检查。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2.2 基质喷涂 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 我们通过喷涂的方式将α-氰基-4-羟基肉桂酸(CHCA)加载于样品表面,基质溶液是10mg/mL的浓度(30%乙腈,10% 2-丙醇,0.1%甲酸)进行配制的。使用喷笔(PS-270)将400 μL基质溶液喷涂于样品切片表面,喷枪的尖端与组织表面之间的距离保持在10 cm。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2.3 MSI分析条件 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 我们使用iMScope TRIO& #8482 (图3)来进行MALDI-MSI分析。配置355nm Nd:YAG激光光源,激光频率1000 Hz,每点激光照射次数100,每个像素点累积次数为1次。激光光斑直径为25μm,强度为47,样品电压和检测器电压分别设为3.5 kV和2.1 kV。采集模式为正离子模式,采集范围m/z 100-350, 并以Asparaptine的质子加和产物m/z 307.09作为前体离子进行二级质谱分析。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 270px " src=" https://img1.17img.cn/17img/images/202006/uepic/35c9f0fd-485f-47e8-8c46-d661f6a0528a.jpg" title=" 3.png" alt=" 3.png" width=" 600" height=" 270" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3. 结果与讨论 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3.1 样品冷冻方法比较 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 将通过液氮冷冻和真空密封袋冷冻两种方式进行冷冻的样品切成20 μm 厚的切片,并将切片用甲苯胺蓝染色,然后使用光学显微镜进行检查(图4)。如图4A 中所示,使用真空袋冷冻的样品制备切片有可能不损害样品形态。另一方面,样品经液氮冷冻后,由于在冷冻过程中会产生裂纹,使得样品切片难以保持其形貌。样品冷冻在真空密封袋里,也同样可以保持组织细胞的形态,而用液氮冷冻的组织细胞会被破坏,可观察到很多包含裂缝的部分(图4B)。真空密封袋冷冻的样品之所以能够保持细胞组织形态,其重要原因是高压冷冻法原理发挥了作用7)。通常情况下,当水结成冰时细胞内就会形成冰晶8)。然而,在高压冻结方法中,通过在冻结过程中对样品施加高压(一般在2000 atm 左右),水的熔点会降低,粘度会增加,所以通过这种方法可以抑制导致细胞组织破坏的冰晶的形成。在本实验中,虽然没有施加2000 atm 的压力,但样品可能在外力的作用下,产生了不同于常压下冻结状态的现象。另一方面,在使用液氮冷冻时,样品本身可能会由于水的膨胀而产生了裂纹。同时,由于样品在液体中沸腾,在样品周围形成一层氮气层。一旦这种现象发生,冷冻效率将被极大降低。此外当使用高压冷冻方法时,水以非晶形态冻结的深度是5 到20 μm,而以液态氮冷冻时,这个深度可达5 到200 μm9)。这种现象在诸如芦笋这样的体积较大且含有大量水分的样本中尤为明显。根据上述原理,真空 span style=" text-indent: 2em " 密封袋冷冻是一种又好又简单的方法,它可以在冷冻植物样品时保持样品组织的形态。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/92efb3ee-ebd0-486c-96dc-c20258228867.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/fedec6ff-3915-4260-816d-5f99173c4594.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3.2 Asparaptine 定位信息的可视化分析 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在本实验中,首先通过成像质谱来进行Asparaptine定位信息的可视化分析。如图5A所示,代表Asparaptine的m/z 307.09的质谱峰被检测到。然后通过在离子阱中的一级质谱筛选出m/z 307.09的碎片,再通过飞行时间质谱分析二级碎片离子信息,从而确认是否m/z 307.09的碎片来源于靶向物质。图5B所示的质谱图是由二级质谱获得的,我们成功检测到来自一级前体离子m/z 307.09的碎片离子m/z 248.05。由于m/z 248.05是Asparaptine结构可以产生的碎片离子,因此m/z 307.09被认为是Asparaptine的质谱峰。因此,采用m/z 248.05碎片离子对Asparaptine进行成像,结果如图6所示。分析结果表明,Asparaptine的分布方式是从中心向外扩展,从下端向尖端扩展。同时在鳞片和维管束周围分布有大量的Asparaptine。通过借助MALDIMSI技术,我们成功实现了对一种此前尚不明晰其分布的物质的详细定位信息的分析和确认。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/bf3940c1-723a-4252-a89f-9bb061662a51.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/caab745a-1d80-44fb-888a-503a995397e9.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 4. 结 论 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在本研究中,我们首次使用iMScope TRIO 对芦笋中的Asparaptine 进行了定位分析。我们还发现冷冻法在植物样品分析中具有重要的意义。通过借助MALDI-MSI 这种有力手段,我们可以通过可视化的定位信息来获得全新的发现,甚至对于那些合成机理和功能尚未明晰的物质也是如此。今后,把MALDI-MSI 应用于植物和食品样品将有助于我们明确样品中成分的定位信息,并有望在功能性食品的高效开发、目标物质合成机理的阐释等方面得到更多应用。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 5. 参考文献 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1) R. Nakabayashi et al., J. Nat. Prod., 78, 1179 (2015) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2) Enomoto Y. et al., Anal. Sci., 34(9), 1055 (2018) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3) Ohtsu S. et al., Anal. Sci., 34(9), 991 (2018) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 4) N. Zaima et al., Rapid Commun. Mass Spectrom., 24, 2723 (2010) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 5) S. Taira et al., Int. J. Biotechnol. Wellness Industry, 1, 61 (2012) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 6) Anna C. Crecelius et al., J. Agric. Food Chem., 65, 3359 (2017) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 7) H. Moor, U. Riehle, Proc. 4th Eur. Reg. Conf. Electron Microsc., 33 (1968) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 8) H. Moor, Cryotechniques in Biological Electron Microscopy, 175 (1987) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 9) Y. Ito, Plant Morphology, 25, 35 (2013) /p p br/ /p
  • 中国化学会首届全国质谱分析研讨会召开
    仪器信息网讯 2014年4月26-27日,由中国化学会、国家自然科学基金委员会主办,中国化学会质谱分析专业委员会(以下简称为:质谱分析专业委员会)、清华大学化学系/分析中心承办的&ldquo 中国化学会首届全国质谱分析学术研讨会&rdquo 在北京西郊宾馆召开,来自全国各地79个单位的代表约420人参加了此次会议,汇集了院士、杰青、千人、百人等一批优秀人才。 会议现场 清华大学林金明教授主持开幕式   研讨会由质谱分析专业委员会秘书长、清华大学林金明教授主持。质谱分析专业委员会主任、南京大学陈洪渊院士,国家自然科学基金委化学部分析化学学科主任庄乾坤教授分别致开幕辞。 质谱分析专业委员会主任、南京大学陈洪渊院士 国家自然科学基金委化学部 分析化学学科主任庄乾坤教授   据陈洪渊院士介绍,随着质谱的快速发展和普及,中国化学会2013年批准成立质谱分析专业委员会,而此次研讨会是专业委员会成立后举办的首个全国性学术活动。为了迎接本次会议的召开,质谱分析专业委员会与《中国科学· 化学》共同推出了质谱分析专刊,专刊共收录22篇评述报告,集中展示中国学者在质谱分析领域的研究进展。   本次研讨会设大会报告、分会报告、墙报展,并由岛津公司赞助了优秀论文奖,内容涵盖质谱仪器研制与新技术、新方法,以及质谱在环境、食品、生命科学、医药等领域的应用。   从15个大会报告内容来看,生命科学研究仍然是中国学者研究的重点,15个大会报告中8个与生命科学有关,蛋白质组学更是热点,有4个报告涉及此。 中科院大连化物所张玉奎院士 复旦大学杨芃原教授   据中科院大连化物所张玉奎院士介绍,其所在的中科院分离分析化学重点实验室拥有各类质谱仪器76台套。复旦大学杨芃原教授也在报告中表示,中国用于蛋白质研究的质谱数量很大,如:蛋白质科学基础设施(北京)质谱规模在50台,蛋白质科学基础设施(上海)30台,华大基因(深圳)100台,复旦大学生物医学研究院30台。可见,对于蛋白质组学研究,质谱已经成为不可或缺的工具。 军事医学科学院钱小红研究员 中科院大连化物所叶明亮研究员   凭借先进高端的质谱设备,蛋白质组学的研究已经有了飞速的发展,目前中国科学家鉴定到的蛋白质数量已达到12000个左右,但专家们也提出,蛋白质组学研究仍然面临巨大挑战。人类蛋白质丰度范围很广,目前可鉴定到的蛋白大多数为高丰度蛋白,对于低丰度蛋白的鉴定还缺乏有效的方法。此外,对于蛋白质大规模、非标记的绝对定量也是难题。在本次研讨会上,张玉奎院士、杨芃原教授、中科院大连化物所叶明亮研究员、军事医学科学院钱小红研究员分别介绍了应对上述挑战的一些新方法和新技术,如改变样品前处理的方式,使用新的富集及分离材料 使用新的质谱数据处理方法,以及搭建集成化的蛋白质质谱分析平台等。 中科院高能物理研究所柴之芳院士 清华大学张新荣教授 安捷伦公司杜伟博士   此外,中科院高能物理研究所柴之芳院士介绍了利用质谱研究金属组学和金属蛋白质组学,并将此方法用于阿尔茨海默病的病因研究。清华大学张新荣教授介绍了&ldquo 单细胞质谱分析&rdquo ,据其介绍,2014年,美国《科学》杂志将单细胞生物学列为值得特别关注的领域,单细胞质谱分析可以给科学家提供许多新的生物学信息,不仅可以验证过去的经典方法的结论,而且可以发现许多未曾意料或被掩盖的规律,质谱工作者应该关注,可以将其作为一个新的研究方向。安捷伦公司杜伟博士介绍了安捷伦在系统生物学中的最新技术及应用。 北京大学刘虎威教授 中国医学科学院药物研究所再帕尔· 阿不力孜研究员 岛津公司端裕树博士 中科院化学所陈义研究员   质谱离子化新方法研究则是大会报告中居于第二热度的内容,15个报告中有5个报告与此相关。敞开式离子源(AIM)是2004年才出现的一种新型的离子源,其具有快速、可直接分析等优势,由此也得到了科学家们的亲睐。北京大学刘虎威教授介绍实时直接分析离子源DART离子化的新技术&mdash &mdash 等离子体辅助激光解吸附离子化及敞开式表面辅助解吸附离子化,以提高DART的灵敏度。中国医学科学院药物研究所再帕尔· 阿不力孜研究员介绍了其课题组研制的敞开式质谱分子成像装置及应用,据其介绍,相比于现有的质谱成像技术,空气动力辅助离子化质谱成像技术(AFAI-MSI)可适用于大体积样品,可远距离检测,并可兼容多种质谱仪,可获得更丰富更全面的信息,AFAI-IMS在药物及其代谢物研究方面有很大优势。岛津公司端裕树博士介绍了岛津公司最新研制的敞开式离子源解析电晕束离子源(DCBI)及应用。中科院化学所陈义研究员介绍了其课题组进行的质谱离子化新方法探索,研制了位置可调的双枪离子化方法,并用运载离子化、镀金光子晶体离子化等方法提高测定的灵敏度。 中科院生态环境研究中心江桂斌院士   此外,在大会报告环节,中科院生态环境研究中心江桂斌院士介绍了&ldquo 色谱质谱在新污染物发现中的应用&rdquo ,据其介绍目前环境污染物中,PFOS含量在ppt级,并呈下降趋势 PBDEs在ppb级,也呈下降趋势 SCCPs在ppm级,呈现上升趋势。除了现有已知的污染物外,江桂斌课题组还利用MC-ICP-MS、 FT-ICR-MS等技术用于新污染物发现研究。 浙江大学潘远江教授   清华大学林金明则介绍了液滴形成与质谱联用,其主要研究了两种不同的液滴混合的方式,并通过质谱分析两种不同种类液滴混合后发生的反应。浙江大学潘远江教授则介绍了电喷雾质谱中苄基迁移反应的机理。 现场展示   本次研讨会还设立了仪器展示,岛津、安捷伦、赛默飞、天瑞仪器、威思曼、迪马、瑞达、磐合、兰博、正红塑料等进行了现场展示。   据悉,2015年秋天,中国化学会第二届全国质谱分析学术研讨会将在美丽的杭州召开,由浙江大学承办。(撰稿:杨娟)
  • 中国农科院蜜蜂研究所774万采购色谱、质谱等多套仪器
    p   中国农业科学院蜜蜂研究所近期欲采购一批仪器设备包括:超高效液相色谱仪、(四极杆-超高分辨)质谱检测器、 a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(255, 0, 0) " 遗传分析系统 /span /a 、超高速冷冻离心机、 span style=" color: rgb(255, 0, 0) " 荧光定量PCR仪 /span 、激光共聚焦显微镜系统、活细胞工作站、流式细胞仪等,预算共计774万元。 /p p   一、采购人名称:中国农业科学院蜜蜂研究所 /p p   地址:北京市海淀区香山北沟一号 /p p   二、招标代理机构名称:中国乡镇企业总公司 /p p   三、招标编号:CTEC2015B331 /p p   四、采购项目名称:中国农业科学院蜜蜂研究所授粉昆虫生物学重点实验室建设项目仪器设备购置 /p p   五、项目批准文号:农办计【2015】49号 /p p   六、招标内容: /p p style=" text-align: center " img width=" 500" height=" 269" title=" QQ截图20151228172517.jpg" style=" width: 500px height: 269px " src=" http://img1.17img.cn/17img/images/201512/insimg/1f8ba841-e217-4067-a41f-5cc85bba5b92.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   七、招标文件发售: /p p   1、时间:2015年12月28日至2016年1月8日(节假日除外),上午9:00至11:00;下午1:00至4:00。 /p p   2、地点:北京市朝阳区农展南路5号京朝大厦8层811房间,100125 /p p   八、开标时间及地点 /p p   1、投标截止时间:2016年1月19日下午13:30时。 /p p   2、开标时间:2016年1月19日下午13:30时。 /p p   3、开标地点:北京市朝阳区农展南路5号京朝大厦8层806房间 /p p   九、联系方式 /p p   联系人:李京晶 /p p   电话: 010-59193843 59193837 /p p   传真:010-59193811 /p p   电子信箱:240400813@qq.com a href=" mailto:yymou@aliyun.com" yymou@aliyun.com /a /p
  • 蜂蜜中链霉素和双氢链霉素的测定液相色谱-串联质谱法(BJS202103)解读
    链霉素和双氢链霉素(DHSTR)属于氨基糖苷类抗生素,对革兰氏阴性菌有明显的抗菌活性效果,可以预防和治疗多种动物疾病。由于链霉素和双氢链霉素能够有效地治疗蜜蜂的幼虫病,在养蜂行业应用普遍,但由于管理和使用的不科学,会造成蜂产品中该类物质的残留。长期食用链霉素和双氢链霉素超标的蜂产品,会对健康产生一定的危害,尤其是听觉神经。因此,国内和国际对蜂产品中链霉素、双氢链霉素的限量均有相关的规定。我国《绿色食品蜂产品》(NY/T 752-2012)中规定了蜂蜜中链霉素的最大残留限量为20μg/kg;英国食品标准署规定蜂蜜中链霉素的限量为50μg/kg;德国规定蜂蜜中链霉素的限量为20μg/kg。在山东省食品药品检验研究院组织的蜂蜜风险监测中,链霉素检出率较高。因此,建立蜂蜜中链霉素、双氢链霉素残留量的先进、高效、准确的检测方法,对保障公众的饮食健康具有重要意义。研制背景  原有蜂蜜中链霉素和双氢链霉素的检验标准有三项,这三个标准存在如下问题:(1)在流动相或提取剂中使用离子对试剂,离子对试剂的使用会污染色谱柱,且与质谱检测器不兼容,易造成离子源污染和信号抑制,甚至造成其他目标物无法检测;(2)净化方式均采用双柱串联,检测成本较高,步骤繁琐、耗时、检测效率低;(3)对花粉含量较高的蜂蜜,净化时易造成固相萃取柱的阻塞;(4)采用液相色谱法测定链霉素,需衍生化,重现性差,对同时含有链霉素和双氢链霉素的样品无法准确定量。因此,各检验机构无法利用原有方法进行蜂蜜中链霉素和双氢链霉素的检测。检验方法的不完善造成2018年-2021年,蜂产品的国家风险监测方案将链霉素和双氢链霉素两项目取消。方法简介  本方法适用于蜂蜜中链霉素和双氢链霉素的测定。方法采用含三氯乙酸的磷酸盐缓冲溶液提取试样中的链霉素和双氢链霉素,经离心和过滤后,HLB固相萃取柱净化,混合型两性离子键合的SIELC Obelisc R色谱柱分离,液相色谱-串联质谱仪进行检测,外标法定量。  本标准与原有检测标准相比,具有以下优势:(1)摒弃了离子对试剂,与质谱检测器更好地兼容;(2)突破常规的双柱串联固相萃取方式,采用单柱净化模式,提高了检测效率,节约了检验成本。技术要点  蜂蜜含有大量的果糖和葡萄糖,为了达到去除杂质的目的,需要在前处理过程中对目标物进行净化、富集。固相萃取因简单、快速、高效等特点被广泛应用于蜂蜜中链霉素和双氢链霉素的净化。HLB固相萃取柱在去除糖类、蛋白等杂质上有一定的优势,虽不能直接保留目标物,但是借助一定的提取溶剂,两种化合物均能得到很好地保留。  链霉素和双氢链霉素属于碱性化合物,易溶于水,难溶于甲醇、乙腈等有机溶剂,因此可采用缓冲液进行提取。链霉素和双氢链霉素极性大,文献多采用提取溶液中添加离子对试剂或三氯乙酸的方法,以增加两种目标物在固相萃取柱上的保留。若前处理过程中离子对试剂去除不彻底,对色谱柱和质谱检测器将会有一定程度的污染,因此,本标准选择添加三氯乙酸的方法。研究发现,含20 g/L三氯乙酸的缓冲液pH在6~7之间时,回收率较高且比较稳定,之后再增加溶液的pH,回收率逐渐下降。  在实际样品测定中,用2%TCA(pH 6.8)提取后,不同蜂蜜样品之间回收率差别较大,且回收率偏低。对提取后的样品处理液进行pH值测定,发现pH在3.5~6.2之间,这是引起回收率偏低的重要原因。蜂蜜样品含有多种有机酸,而提取液无缓冲能力,经提取后样品处理液的pH值会发生变化。为解决此问题,研究人员在提取液中加入10 mmol/L~50 mmol/L磷酸盐。研究结果表明,50mmol/L磷酸盐缓冲效果较好,样品处理液的pH值稳定在6.2~ 6.7。综合以上因素,50 mmol/L磷酸盐缓冲液(含20 g/L三氯乙酸,pH 6.8)作为最终的提取溶剂。  研究人员进一步对洗脱溶剂中甲酸的浓度和洗脱体积对链霉素和双氢链霉素回收率的影响进行了考察,甲酸-乙腈-水(2: 5:93,v/v/v)溶液1.0 mL为最佳洗脱条件。操作注意事项  蜂蜜在存放过程中很容易析出结晶,为保证分析结果的准确性和代表性,对无结晶的实验室样品,直接将其搅拌均匀;对有结晶的样品,检验前,在密闭情况下,置于不超过60℃的水浴中温热,振荡,待样品全部融化后搅匀,分出0.5 kg作为待测试样用于检验。  在标准溶液配制过程中还需注意,若采用非本标准中形式的标准物质,需进行分子量折算后再进行标准品称量;若经常使用,建议将标准储备液分装成小包装,每次将小包装解冻使用。此外,氨基糖苷类药物易与玻璃器皿发生吸附,实验过程中尽量使用塑料器皿;提取溶液的pH值将影响目标物在固相萃取柱上的保留效果,因此需采用pH计准确调节pH值至指定范围。  SIELC Obelisc R色谱柱是在硅胶表面修饰了羧酸类的官能团,醇类会酯化硅胶表面键合的羧酸,影响物质的保留时间与重现性,因此色谱柱使用过程不能接触甲醇。建议严格按照色谱柱使用说明进行色谱柱的活化与维护。方法应用  BJS 202103《蜂蜜中链霉素和双氢链霉素的测定液相色谱-串联质谱法》已于2021年1月发布实施,已列入2022年全国食品安全风险监测计划中,在全国范围内得到广泛应用。本方法的发布实施可以为企业和监管部门提供技术支持,对市场监管具有重要意义。□山东省食品药品检验研究院 薛 霞
  • 广东省分析测试协会征集《血清中米酵菌酸的测定 超高效液相色谱串联质谱法》团体标准参编单位
    各有关单位:根据粤测协字〔2023〕33号文件,《血清中米酵菌酸的测定 超高效液相色谱串联质谱法》(立项编号GAIA/JH20230202)团体标准项目已获广东省分析测试协会批准立项。为使标准更具广泛性、代表性,协会现征集上述标准的参编单位,申报事项如下:一、参编单位要求具有独立法人资格、标准相关领域的企事业单位,能选派专家根据要求参与标准编制工作;选派专家应熟悉相关工作,并能积极参与标准编制的各项工作,确保标准的适用性、有效性和先进性。二、责任与义务参与标准编制的单位应能积极承担、合作完成标准编写小组安排的各项工作任务,并缴纳一定费用,用于标准立项、技术审查、批准发布、标准管理等费用。三、申报要求及审核意向参与标准编制的单位,请填写《参与编制T/GAIA标准项目申请表》(见附件),并将申请表盖章扫描后的电子版发送至协会秘书处邮箱gdaia@fenxi.com.cn。经审核符合要求的单位,由秘书处通知参与标准编制的相关事宜。四、联系方式广东省分析测试协会秘书处联系人:杨熙,020-37656885-833,18922377359 苏艳凤,020-37656885-227,15307841521附件:参与编制T/GAIA标准项目申请表广东省分析测试协会2023年12月11日附件:参与编制T GAIA标准项目申请表.doc广东省分析测试协会关于征集《血清中米酵菌酸的测定 超高效液相色谱串联质谱法》团体标准参编单位的通知.pdf
  • 揭秘公安司法行业毒品分析检测技术!几类质谱关键原理方法及技术要求!
    当下,在毒品问题全球化的大背景下,毒情形势日益严峻,芬太尼类、合成大麻素类、卡西酮类等新型毒品更新换代速度极快,毒品毒物的检测判定作为执法依据变得尤为关键,加之毒品成瘾机理领域还有很多亟待科学解答的内容,也对分析方法提出了更高要求。仅2021-2022年我国发布并实施的毒品检测国家标准、行业标准已超二十项,可见我国毒品检测国家标准、行业标准发布进入快车道,国家对禁毒工作的关注度不断提升。就行业标准而言有分为公安类检测标准和司法类检测标准。司法类检测标准对于毒品类型鉴定有更加清晰的分类,如:苯丙胺类、色胺类、合成大麻素类、芬太尼类等。公安类检测标准更加注重检测样品的类型:毛发中毒品检测、污水中毒品检测、血液、尿液等生物样品中毒品检测以及疑似物中毒品检测等。与发达国家相比,我国毒品检验技术研究起步较晚,但近年来发展迅速。20 世纪 80 年代前,我国毒品检验多采用薄层色谱检验(TCL)结晶法、 红外光谱 法(IR)、 紫外线(UV) 检验及化学显色法;80年代后,气相色谱(GC)法开始应用,90年代开始普及;1990-2009年气相色谱串联质谱(GCMS)技术成为毒品检测的主力军;2010-2022年液相色谱串联质谱(LCMS/MS)类分析技术开始布局公安司法行业毒品检测领域。此外,近年国内外禁毒形势愈发严峻,现场快速便携的稽查技术和检测设备亟待发展,幸运的是,不少仪器企业和科研团队也已推出了相应的便携式现场快速筛查质谱仪。公安及司法行业在实际应用场景中,如何选择适合的毒品分析技术手段?不同质谱技术的原理差异性如何?如果超出各类毒物数据库的检索范围,未知物的识别该选择何种技术手段?便携式质谱技术如何持续助力毒品快筛?毒情监测体系是否建立?……2022年12月13-16日,仪器信息网策划举办年度一次的“质谱网络会议(iCMS)”,每年的会议内容设置都会将当年度最新、最重磅的技术应用进展带给听众,十二年来,质谱网络会议受到广大用户的热烈好评。去年年底的直播间,我们共同约定在2022年末,再次为大家呈现关于质谱领域的最新技术成果和进展。带着这份承诺,3i讲堂将于12月14日举办“第十三届质谱网络会议”的“质谱在禁毒/司法领域毒品分析的新进展”专场,与4位重量嘉宾,在直播间共同寻找答案:(福利:点击此处,快速免费报名,优先审核)嘉宾一:王学虎 江苏省公安厅物证鉴定中心 正高级警务报告:未知药毒物的高分辨液质筛查与识别检验在法庭科学实验室对投(中)毒、缴获毒品,多采用GC-MS、LC-MS技术,配合各类毒药物数据库,如果超出这几个常见的数据库检索范围,就会变成难题——未知物,就需要更多手段进行甄别。本次报告且听王老师通过案例形式介绍使用高分辨液质联用进行未知毒药物的识别技巧。嘉宾二:刘冰洁 SCIEX FEF领域全国应用支持经理报告:QTRAP液质系统在公安司法领域的应用报告将介绍应用QTRAP质谱的EPI模式进行复杂基质样本中的假阳性判定,以及应用QTRAP质谱进行代谢产物的鉴定和新型结构衍生物的分析。嘉宾三:花磊 中国科学院大连化学物理研究所 研究员 报告:基于原位质谱的毒品快速检测技术及应用花磊研究员深耕开发在线质谱关键技术和质谱联用技术的研究多年,目前基于原位质谱的毒品快速检测技术和最新应用有哪些?且听花老师娓娓道来。嘉宾四:金洁 公安部第三研究所 副研究员报告:便携式质谱在现场毒品检测中的应用报告将介绍当前便携式质谱用于毒品检测存在的困难,以及当前EI电离源便携式质谱合成大麻素数据库标准化和操作规程。(点击图片,免费报名,优先审核)
  • 2017中国(广州)分析测试论坛召开 色谱质谱技术“炙手可热”
    仪器信息网讯 2017年2月21日,CHINA LAB 2017广州国际分析测试及实验室设备展览会暨技术研讨会在广州保利世贸博览馆如约举行。由中国广州分析测试中心、广东省科技合作研究促进中心(原广东省对外科技交流中心)、国药励展展览有限责任公司联合主办的“2017中国(广州)分析测试论坛”同期召开。下午的“色谱质谱”分会场中,5位来自科研院校、仪器厂商的专家带来最新技术及应用分享。会议现场座无虚席,色谱质谱分析技术依然“炙手可热”。“色谱质谱分析技术分会场”现场《细颗粒污染物的表征与溯源》中国科学院生态环境研究中心,环境化学与生态毒理学国家重点实验室刘倩研究员  围绕“细颗粒污染物的表征与溯源”主题,刘倩研究员带来“色谱质谱”分会场首个报告。在明确纳米颗粒物在PM2.5毒性健康效应中具有的关键作用后,刘倩研究员就如何对复杂样品中的纳米颗粒物进行快速鉴定和表征、如何甄别复杂环境介质中纳米颗粒物的来源、如何利用天然稳定同位素对PM2.5溯源等问题,介绍了团队建立的CE-ICP-MS鉴定表征复杂样品中的纳米颗粒等新型分析方法,探讨了北京地区PM2.5的来源和生成机制。《固相微萃取/气相色谱-质谱联用鉴别沉香真伪方法研究》中国广州分析测试中心,广东省测试分析研究所吴惠勤研究员  针对传统和现有沉香鉴别方法中所存在的缺乏科学数据和量化数据、取样时易损坏收藏品等问题,吴惠勤研究员介绍了团队建立的一种新型鉴别沉香真伪方法。通过采用固相微萃取(SPME)富集沉香香气成分,GC-MS测定沉香的化学组成;通过研究不同产地沉香及假沉香的香气成分,确定天然沉香的6种特征成分;通过天然沉香的GC-MS指纹图谱以及特征成分对比,即可判断沉香样品的真伪。该方法具有样品用量小、操作简便快速、检测灵敏度高、特征性强、结果准确可靠等特点,已成功用于沉香药材及其收藏品的真伪鉴别。《如何根据应用正确用水》赛多利斯中国张燕芬  赛多利斯中国产品经理张燕芬带来题为《如何根据应用正确用水》的报告,与到场观众一同探讨了GB国标对实验室用水的要求、纯水等级划分制备方法、如何在分配环节保证纯水水质等问题。通过比较现有纯水设备的技术及指标性能,介绍赛多利斯在实验室纯水领域提供的 系列代表性产品。《微生物降解多环芳烃的代谢机制》中山大学生命科学学院栾天罡教授  多环芳烃(PAHs)具有“三致效应”,来源于自然和人类生活,在环境中具有普遍性,微生物降解则是环境中PAHs的重要去除方式。基于上述考虑,栾天罡教授团队以珠江口红树林湿地生态系统为研究对象,通过采取SPME-GC-MS等分析方法,深入探讨PAHs的细菌降解途径与机理,揭示菌-菌、菌-藻可协作参与PAHs的降解并提高对PAHs的去除效率;复合微生物降解体系可用于PAHs的去除和污染修复;PAHs污染能导致抗生素耐药基因污染等关联机制。《固相微萃取探针研制与活体检测》中山大学化学与化学工程学院环境化学研究所欧阳钢锋教授  固相微萃取(SPME)作为一项快速简便的国际前沿绿色采样及样品前处理技术,自上世纪70年代诞生以来,已被列入1990-2000年分析化学领域六个“GREAT IDEAS”之一,广泛应用于环境、食品、香料、生物、药物分析等领域。欧阳钢锋教授团队将重点放在固相微萃取探针的研制和活体检测上,在基于有机金属框架材料、碳材料和高分子材料等系列SPME探针的研制和表征方面取得的进展,并利用SPME技术对动植物活体中的有机污染物进行采样分析和跟踪检测。
  • BCEIA2023质谱学分会精彩预告:质谱分析引领交叉学科前沿研究
    第二十届北京分析测试学术报告会暨展览会(BCEIA 2023) 将于2023年9月6-8日在北京 中国国际展览中心(顺义馆)召开。作为中国分析与生化技术交流与展示的“峰会”,BCEIA2023将营造浓郁的学术会展氛围,同期举办大会报告、分会报告、高峰论坛、同期会议、墙报展等精彩学术活动,面向世界科技最前沿,邀请国内外顶尖学者分享最具前瞻性的研究进展。2023年9月7-8日,BCEIA2023学术报告会——质谱学分会将在学术会议区W-105会议室举行,以“质谱分析引领交叉学科前沿研究”主为题,围绕质谱基础理论研究与应用、质谱仪器研制与新技术创新、蛋白质及修饰组学分析、表观遗传修饰与基因组学分析、质谱分析技术与样品前处理、质谱分析在生命、医药、食品、能源、资源与环境等领域等几个专题方向,邀请到40余位国内外质谱领域资深科学家及青年才俊带来精彩报告。召集人简介中科院生态环境研究中心研究员,杰青,基金委创新群体负责人。主要从事高灵敏DNA表观遗传修饰的质谱分析新方法新技术研究,并开展DNA 损伤修复、表观遗传与分子毒理方面研究。发现高等生物的N6-甲基腺嘌呤(Cell, 2015, Cover),是表观遗传领域的原创性突破。已发表SCI 论文260 篇,包括Cell、Nature、Science、Cancer Cell、Cell Stem Cell、Mol Cell、Cell Res、J. Am. Chem. Soc.、PNAS、Cell Discovery、Nucleic Acids Research、EHP、Anal Chem、 ES&T 等。中国化学会质谱分析专委会副主任兼秘书长。 先后获得中科院院长特别奖(1997),中国分析测试协会科学技术奖特等奖(2015、2020)、一等奖(2010、2013)和优秀奖(1998、1995),教育部优秀成果一等奖(2007),中科院“优秀研究生导师奖”(2012),中科院“优秀研究生指导教师奖”(2013),中科院“杰出成就奖”(主要完成者)(2013)。主旨报告人报告摘要Exposure to environmental organic pollutants has triggered significant ecological impacts and adverse health outcomes, which have been received substantial and increasing attention. The contribution of unidentified chemical components is considered as the most significant knowledge gap in understanding the combined effects of pollutant mixtures. To address this issue, remarkable analytical breakthroughs have recently been made.Advances in analytical methods have resulted in lower detection limits, a broader range of observable analytes, and faster data acquisition rates. The number of organic contaminants found in complex environmental matrices is steadily increasing. The emerging HRMS techniques have the theoretical potential to search for and tentatively identify all molecules present in a sample, whether known or unknown. The chemical analysis in the future is expected to gradually evolve from targeted analysis of priority pollutants and biomarkers to automated “big data” nontarget screening analysis in combination with multiplexed bioassays. This evolution is bound to contribute significantly in cutting-edge research.专家简介中国科学院院士,发展中国家科学院院士,分析化学、环境化学家。现任中国科学院大学资环学院院长,环境化学与生态毒理学国家重点实验室主任,中国分析测试协会理事长,中国化学会副理事长,中国毒理学会副理事长,美国化学会ES&T杂志副主编。现任或曾任国家973顾问组成员,国家纳米重大研究计划专家组成员,国家环境咨询委员会委员,国家食品安全风险评估专家委员会委员,国务院食品安全专家委员会成员等。研究领域涉及化学形态和环境毒理与健康等。分别参加过我国南极和北极科学考察。推进了我国持久性有毒污染物的研究,开始了新型环境污染物发现与毒理研究等新学术方向。曾负责和完成我国环境内分泌干扰物筛选与控制的第一期和第二期863项目,负责和完成两期国家POPs 973项目,承担和完成我国POPs控制技术的第一个国家支撑项目,负责和完成2期国家基金委创新群体项目,负责和完成国家基金委重大基金项目“典型持久性有机污染物的环境过程与毒理效应”。现为中国科学院战略先导科技专项(B类)“环境污染的健康效应”首席科学家和国家基金委重大研究计划“大气细颗粒的毒理与健康效应”专家组组长。报告摘要Nitrogenous organic compounds in raw water are problematic for drinking water treatment because they can react with disinfectants to produce a variety of byproducts, including some odorous and toxic compounds. Determination of these nitrogenous compounds is critical for the optimization of treatment processes and ultimately for their removal. We describe here a set of analytical tools for the characterization nitrogenous organics in water. To selectively detect reactive nitrogenous organics, we have developed hydrogen/deuterium (H/D) stable isotopic methyl labeling with HPLC- high resolution mass spectrometry (HRMS) for nontargeted analysis. The optimized selective labeling reaction and the unique MS isotope pair patterns of H/D-labeled compounds enabled detection of reactive nitrogenous compounds in water samples. However, nontargeted analysis generated a large amount of data consisting of a vast number of unidentified nitrogenous and non-nitrogenous organics in source water. When H/D-labeled pairs were selected manually from the raw HPLC-HRMS data, analysis using the existing program was time-consuming and inefficient. Thus, we developed the automated data processing platform HDPairFinder.R. This platform integrates several modules into a freely available R package, and automatically extracts H/D-labeled nitrogenous organics from the raw HPLC-HRMS data. We demonstrate the capability of HDPairFinder for rapid processing of H/D isotopic methyl labeling-based nontargeted analysis of water samples, facilitating a better understanding of nitrogen-containing reactive chemical compounds in source water.专家简介Dr. Li is Professor and Canada Research Chair (Tier 1) in the Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, at the University of Alberta, Canada. She is anelected Fellow of the Royal Society of Canada, Academy of Science. Dr. Li is the recipient of the 2020 Ricardo Aroca Award for “a distinguished contribution to the field of analytical chemistry”, the 2017 Environment Division Research & Development Dima Award for “distinguished contributions to research and/or development in the fields of environmental chemistry or environmental chemical engineering”, and the 2010 W.A.E. McBryde Medal for “a significant achievement in pure or applied analytical chemistry”, presented by the Canadian Society for Chemistry and the Chemical Institute of Canada.Dr. Li received her Ph.D. in Environmental/Analytical Chemistry from the University of British Columbia (1990-1994). She did her NSERC Industrial postdoctoral research in bioanalytical chemistry under the supervision of Professor Norm Dovichi at the University of Alberta (1995-1997). She worked as a scientist with an instrumentation company and as Director of Analytical Department with a biopharmaceutical company for four years and was then recruited back to the university in 2001. She was promoted through the ranks to Full Professor in 2010.Dr. Li’s research group develops innovative analytical and molecular techniques that enable ultrasensitive detection of environmental contaminants, microbial pathogens, and biomolecular interactions. Her team of students, postdoctoral associates, and collaborators carry out diverse research that contributes to water safety and public health protection.特邀报告人报告摘要Small molecule metabolites represent important indicators of biological metabolic processes. Various isoform forms and different kinds of isomers were observed and verified relevant to specific biological functions. For example, L-amino acids (AA) serve as the primitive unit of proteins among mammals, while several D-AA are the vital components of bacterial membranes. L-Hydroxy acids (HA) act as the intermediates of glycolysis, instead, some D-HA are the key regulators in cell signal transduction.Chiral analysis of lactate by enzymatic dehydrogenation derivatization− nanoelectrospray ionization mass spectrometry. We have developed an on-probe enzymatic dehydrogenation derivatization single-cell mass spectrometry approach with ultra-high sensitivity. Results showed that the cocultured normal cells were similar to cancer cells at the metabolic level.Enantiomeric separation of α‐hydroxy/amino acids (α‐HA/AA) by chiral derivatization-ion mobility−mass spectrometry (IM−MS). We have designed and synthesized a powerful mass-tagged chiral selector in regards of amino and hydroxy compounds, named [d0]/[d5]-estradiol-3-benzoate-17β-chloroformate ([d0]/[d5]-17-EBC). Good separation was achieved for the 17β-EBC-HA/AA epimers of 23 chiral AA and 10 chiral HA. Identification of unsaturated fatty acid (UFA) isomers by bi-derivatization−ion mobility−mass spectrometry. We have developed a 4-plex stable isotope labeling bi-derivatization strategy for the trace and chemically unstable UFA in complex matrix, in order to one-pot selectively label carbon-carbon double bond (C=C) and carboxyl group. It rapidly elucidated the structures of UFA by one-pot bi-derivatization coupled with IM−MS, pinpointing C=C positional and geometric isomers.专家简介Prof. Yinlong Guo is currently a professor at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences. Prof. Guo obtained his doctoral degree from China Pharmaceutical University in 1993. His research interests mainly focus on the capture and detection techniques of organic reaction intermediates, derivatization reagents for mass spectrometry detection, and the development of new open ion sources. Prof. Guo has published over 300 research papers in Nature Catalysis and Angelw Chem Int. Ed., J. Am. Chem Soc., Anal. Chem, and has obtained over 30 invention patents.报告摘要Elemental analysis of solids is of utmost importance in the field of modern instrumental determination of element concentrations down to trace and ultratrace levels because a significant proportion of samples are solids. Direct solid analysis techniques offer crucial advantages compared with other conventional analytical methods, such as little or no sample pretreatment, little sample consumption, and fast analysis speed, especially for samples that are difficult, hazardous, or tedious to digest. The lack of suitable solid standards is the main difficulty that limits the application of direct solid analysis because most direct solid analysis techniques need solid standards for calibration and quantification. These solid standards must both be matrix matched and contain the nec
  • 环境领域多项最新标准发布!涉及色谱、质谱、光谱等多类仪器分析方法
    近日,为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,国家生态环境部连续发布多项环境领域标准,包括环境空气领域:环境空气颗粒物中甲酸、乙酸和乙二酸的测定离子色谱法 (HJ 1271—2022);环境空气 26 种多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法。水质领域:水质6种苯氧羧酸类除草剂和麦草畏的测定高效液相色谱法(HJ 1267—2022);水质甲基汞和乙基汞的测定液相色谱-原子荧光法(HJ 1268—2022)。土壤领域:土壤和沉积物甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)。仪器信息网摘录部分要点如下:1.环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法 (HJ 1271—2022)本标准规定了测定环境空气颗粒物中甲酸、乙酸和乙二酸的离子色谱法,适用于环境空气和无组织排放监控点空气颗粒物中甲酸、乙酸和乙二酸的测定。其方法原理为环境空气颗粒物样品中的甲酸、乙酸和乙二酸经水超声提取、离子色谱柱分离后,用抑制型电导检测器检测。根据保留时间定性,峰面积或峰高定量。其中涉及到的仪器及设备包括:环境空气颗粒物采样器:性能和技术指标应符合 HJ 93 和 HJ/T 374 的规定;离子色谱仪:具有电导检测器、阴离子抑制器。若使用氢氧根淋洗液,需配有淋洗液在线发生装置或二元以上梯度泵;色谱柱:阴离子分析柱和保护柱,能实现对甲酸、乙酸和乙二酸的分离;滤膜盒:聚苯乙烯(PS)或聚四氟乙烯(PTFE)材质;样品管:聚乙烯(PE)、聚丙烯(PP)或聚四氟乙烯(PTFE)材质,容积≥100 ml,具螺旋盖;超声波清洗器:功率 400 W 以上,频率 40 kHz~60 kHz;注射器:1 ml~10 ml;水系微孔滤膜针筒过滤器:孔径 0.45 μm;以及一般实验室常用仪器和设备等。2. 环境空气 26 种多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法 (HJ 1270—2022)本标准规定了测定环境空气中多溴二苯醚的高分辨气相色谱-高分辨质谱法。本标准适用于环境空气气相和颗粒相中BDE 7、BDE 15、BDE 17、BDE 28、BDE 47、BDE49、BDE 66、BDE 71、BDE 77、BDE 85、BDE 99、BDE 100、BDE 119、BDE 126、BDE 138、BDE153、BDE 154、BDE 156、BDE 175/183、BDE 184、BDE 191、BDE 196、BDE 197、BDE 206、BDE207和BDE 209 共 26 种多溴二苯醚的测定。其中涉及到的仪器及设备包括:高分辨气相色谱仪,需要配置低流失石英毛细管柱,一根为耐高温柱,柱长 15 m,内径0.25 mm,膜厚0.10μm;另一根柱长 30 m,内径 0.25 mm,膜厚 0.10 μm。固定相为 5%苯基 95%二甲基聚硅氧烷,或其他等效的低流失色谱柱;高分辨质谱仪,要求静态分辨率大于 8000,动态分辨率大于 6000;前处理装置等。3. 水质 6种苯氧羧酸类除草剂和麦草畏的测定 高效液相色谱法 (HJ 1267—2022)本标准规定了测定地表水、地下水、生活污水、工业废水和海水中 6 种苯氧羧酸类除草剂和麦草畏的高效液相色谱法,适用于地表水、地下水、生活污水、工业废水和海水中麦草畏(3,6-二氯-2-甲氧基苯甲酸)、2,4-滴(2,4-二氯苯氧乙酸)、2-甲-4-氯(2-甲基-4-氯苯氧乙酸)、2,4-滴丙酸(2-(2,4-二氯苯氧基)-丙酸)、2,4,5-涕(2,4,5-三氯苯氧乙酸)、2,4-滴丁酸(4-(2,4-二氯苯氧基)-丁酸)和2,4,5-涕丙酸(2-(2,4,5-三氯苯氧基)-丙酸)等 7 种除草剂的测定。其中涉及到的仪器及设备包括:高效液相色谱仪,要求耐压≥60 MPa,具紫外检测器或二极管阵列检测;器。色谱柱,要求填料粒径 2.7 µm,柱长 15 cm,内径 4.6 mm 的 C8反相色谱柱,或其他适用于酸性条件的等效色谱柱;浓缩装置;固相萃取装置;pH计等。4. 水质 甲基汞和乙基汞的测定 液相色谱-原子荧光法 (HJ 1268—2022)本标准规定了测定地表水、地下水、生活污水、工业废水和海水中甲基汞和乙基汞的液相色谱-原子荧光法,适用于于地表水、地下水、生活污水、工业废水和海水中甲基汞和乙基汞的测定。其中涉及到的仪器及设备包括:液相色谱-原子荧光联用仪,由液相色谱系统、在线紫外消解装置及原子荧光光谱仪组成;色谱柱,要求填料粒径为 5 μm,柱长 15 cm,内径 4.6 mm 的 C18反相色谱柱,或其他等效色谱柱;汞空心阴极灯;分液漏斗等。5. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)本标准规定了测定土壤和沉积物中甲基汞和乙基汞的吹扫捕集/气相色谱-冷原子荧光光谱法,适用于土壤和沉积物中甲基汞和乙基汞的测定。其中涉及到的仪器及设备包括:全自动烷基汞分析仪,要求包括吹扫捕集装置、气相色谱仪、色谱柱、裂解装置和冷原子荧光光谱仪;真空冷冻干燥仪,要求空载真空度达13Pa以下;离心机,要求转速可调;恒温振荡器;涡旋振荡器;尼龙筛;离心管;进样瓶等。
  • 核磁、质谱等多种分析技术在中药质量控制中的应用
    p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 中药发展几千年,如今已在世界各地广泛使用。近年来,随着人们用药安全意识的普遍提升,中药质量标准不一致、临床安全性及有效性的不稳定性和不确定性越来越受到被行业内外诟病。而各种分析技术的快速发展,极大的推动了中药质量控制的进步。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 479px height: 319px " src=" https://img1.17img.cn/17img/images/201906/uepic/4911cd41-6d52-40c3-9a89-e2bfe9cd7bdd.jpg" title=" 微信截图_20190604225110.png" alt=" 微信截图_20190604225110.png" width=" 479" height=" 319" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 在上一篇文章 a href=" https://www.instrument.com.cn/news/20190531/486312.shtml" target=" _self" 《中药质量控制中的科学仪器——色谱、光谱篇》 /a 中,小编对中药质量控制中应用到的色谱和光谱技术及相关仪器进行了梳理盘点,本文中,将从核磁共振波谱技术、质谱及其联用技术和DNA分子标记技术等几种重要分析技术进行梳理。 /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " strong span style=" color: rgb(255, 0, 0) " 中药质量控制之核磁共振波谱 /span /strong /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 核磁共振最主要的应用是通过物理方法测定化合物的分子结构,而中药有效性的物质基础研究是中药质量控制中的重要环节。利用核磁共振技术能够获得中药中有效成分的化学结构。 /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 除单独利用核磁共振技术,HPLC-NMR联用技术也被应用到中药质量控制中。通过该联用技术,能够实现色谱分离和波谱结构鉴定连续进行,避免了传统分析方法中,先分离纯化再进行鉴定从而浪费时间及人力物力的问题。 /p table border=" 0" cellspacing=" 0" cellpadding=" 0" width=" 556" style=" border-collapse:collapse" tbody tr style=" height:35px" class=" firstRow" td width=" 100" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 35" p style=" text-align:center vertical-align:middle" strong span style=" font-size:15px font-family:宋体 color:black" 技术类型 /span /strong strong /strong /p /td td width=" 140" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 35" p style=" text-align:center vertical-align:middle" strong span style=" font-size:15px font-family:宋体 color:black" 技术原理 /span /strong strong /strong /p /td td width=" 100" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 35" p style=" text-align:center vertical-align:middle" strong span style=" font-size:15px font-family:宋体 color:black" 应用方向 /span /strong strong /strong /p /td td width=" 215" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 35" p style=" text-align:center vertical-align:middle" strong span style=" font-size:15px font-family:宋体 color:black" 应用举例 /span /strong strong /strong /p /td /tr tr style=" height:144px" td width=" 100" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 144" p style=" text-align:center vertical-align:middle" a href=" https://www.instrument.com.cn/zc/43.html" target=" _self" span style=" font-size: 15px font-family: 宋体, SimSun " NMR技术 /span /a /p /td td width=" 140" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 144" p style=" text-align:left vertical-align:middle" span style=" font-family: 宋体, SimSun " span style=" font-size: 15px font-family: 宋体 " 通过化学位移值、谱峰多重性 /span span style=" font-family: 宋体, SimSun font-size: 15px " 、偶合常数值、谱峰相对强度和在各种二维谱及多维谱中呈现的相关峰,提供分子中原子的连接方式 & nbsp 、空间的相对取向等定性的结构信息。 /span /span /p /td td width=" 100" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 144" p style=" text-align:left vertical-align:middle" span style=" font-size:15px font-family:宋体" ( span 1 /span )结合其他分析手段如质谱对化合物进行定性分析 span br/ & nbsp /span ( span 2 /span ) span 1H /span 核磁共振波谱适用于定量分析 /span /p /td td width=" 215" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 144" p style=" text-align:left vertical-align:middle" span style=" font-size:15px font-family:宋体" ( span 1 /span )崖藤生物碱的碳谱和氢谱全归属 span br/ & nbsp /span ( span 2 /span )预测青蒿素分子的核磁共振碳谱和氢谱 span br/ & nbsp /span ( span 3 /span )根据有无原小檗碱型生物碱的特征峰,鉴别黄连与黄连伪品 /span /p /td /tr /tbody /table p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 中药质量控制之质谱及其联用技术 /strong /span /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 质谱主要用于分析鉴定天然产物中提取的化合物,有机质谱能够给出有机化合物的分子量、分子式及碎片离子裂解方式和有机分子结构类型规律等信息。因质谱及其联用技术在物质化学结构鉴方面功能强大,被广泛应用于多种中药材的质量控制中。 /p table border=" 0" cellspacing=" 0" cellpadding=" 0" width=" 556" style=" border-collapse:collapse" tbody tr style=" height:36px" class=" firstRow" td width=" 96" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 36" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:宋体 color:black" 联用技术类型 /span /strong strong /strong /p /td td width=" 236" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 36" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:宋体 color:black" 技术简介 /span /strong strong /strong /p /td td width=" 224" nowrap=" " style=" background: rgb(220, 230, 241) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 36" p style=" text-align:center vertical-align:middle" strong span style=" font-size:13px font-family:宋体 color:black" 应用举例 /span /strong strong /strong /p /td /tr tr style=" height:124px" td width=" 96" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 124" p style=" text-align:center vertical-align:middle" span style=" font-size: 13px font-family: 宋体, SimSun " 质谱 /span /p /td td width=" 236" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 124" p style=" text-align:center vertical-align:middle" span style=" font-family: 宋体, SimSun " span style=" font-size: 13px font-family: 宋体 " 质谱法可提供分子质量和结构的信息 /span span style=" font-family: 宋体, SimSun font-size: 13px " ,定量测定可采用内标法或外标法 /span /span /p /td td width=" 224" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 124" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" ( span 1 /span )确定朝鲜淫羊藿分离组分的化学成分 span br/ & nbsp /span ( span 2 /span )通过比较炮制乌头与乌头质谱智文峰的差异,作为乌头类中药是否经炮制的判断 /span /p /td /tr tr style=" height:95px" td width=" 96" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 95" p style=" text-align:center vertical-align:middle" a href=" https://www.instrument.com.cn/zc/290.html" target=" _self" span style=" font-size:13px font-family:宋体" 气质联用 /span /a /p /td td width=" 236" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 95" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" 具有高灵敏度和强抗干扰能力,是分析鉴定具有挥发性成分的首选 /span /p /td td width=" 224" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 95" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" ( span 1 /span )冬虫夏草中挥发性成分鉴定 span br/ & nbsp /span ( span 2 /span )比较不同来源莪术中莪术醇等物质的含量 /span /p /td /tr tr style=" height:92px" td width=" 96" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 92" p style=" text-align:center vertical-align:middle" a href=" https://www.instrument.com.cn/zc/51.html" target=" _self" span style=" font-size:13px font-family:宋体" 液质联用 /span /a /p /td td width=" 236" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 92" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" 同事进行多成分检测,可通过保留时间、分子量和碎片等信息用于目标化合物鉴别 /span /p /td td width=" 224" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 92" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" ( span 1) /span 判断东北红豆杉及其伤愈组织粗提物中紫杉醇色谱峰归属 span br/ & nbsp /span ( span 2 /span )鉴定八味地黄方与人参汤共煎时产生的毒性物质 /span /p /td /tr tr style=" height:56px" td width=" 96" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 56" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" 毛细管电泳 span - /span 质朴联用 /span /p /td td width=" 236" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 56" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" 多数毛细管电泳操作模式可与质谱联用。选择接口时 /span span style=" font-size: 13px " , span style=" font-size: 13px font-family: 宋体, SimSun " 应注意毛细管电泳的低流速特点并使用挥发性缓冲液 /span /span /p /td td width=" 224" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 56" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" 粉防己甲醇提取物中的生物碱分离鉴定 /span /p /td /tr tr style=" height:81px" td width=" 96" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 81" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family:宋体" 超临界流体色谱 /span span style=" font-size:13px font-family:& #39 Times New Roman& #39 ,serif" - /span span style=" font-size: 13px font-family: 宋体, SimSun " 质谱联用 /span /p /td td width=" 236" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 81" p style=" vertical-align:middle" span style=" font-size:13px font-family:宋体" 主要采用大气压化学离子化或电喷雾离子化接口。色谱流出物通过一个位于柱子和离子源之间的加热限 /span span style=" font-size: 13px font-family: 宋体, SimSun " 流器转变为气态,进入质谱仪分析 /span /p /td td width=" 224" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 81" p style=" text-align:center vertical-align:middle" span style=" font-size:13px font-family: 宋体" / /span /p /td /tr /tbody /table p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 中药质量控制之DNA分子标记技术 /strong /span /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " DNA分子标记技术可用来比较药材间DNA分子遗传多样性差异,从而鉴别药材基源、确定学明的方法。DNA指纹图谱技术在药材鉴别、GAP实施、道地药材研究、遗传育种和种植资源研究以及中成药质量控制等领域有重要价值和广阔的应用前景。 /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 目前已有研究人员利用DNA分子标记技术对不同地区的三七进行DNA指纹图谱的鉴别研究,根据其遗传特征的不同,鉴别不同地域的三七药材。此外,有研究人员利用此技术建立起了中药材鹿鞭的分子分类学鉴定试剂盒。 /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 除上述技术方法外,近年来有更多先进的分析方法也在被不断被发展应用,如超高效液相色谱、二维液相色谱、联合在线鉴定技术等等,在中药材真伪鉴别、成分分离鉴定、毒性物质检出等等方面,发挥重大作用。 /p p style=" margin-top: 10px line-height: 1.5em text-indent: 2em " 随着科学技术不断提升,相应的仪器设备更加精密、高效,色谱、质谱、光谱、核磁共振波谱及DNA分子标记等多种分离、分析、检测技术共同推动中药质量控制的发展,确保中药更好的履行维护人类健康的使命。 /p p style=" margin-top: 10px text-indent: 2em line-height: normal " span style=" font-size: 14px " 注:本文部分内容引自 /span /p p style=" margin-top: 10px text-indent: 2em line-height: normal " span style=" font-size: 14px " 1.& nbsp & nbsp 蒋庆峰, 金松子, 蔡振华,等. 现代分析技术在中药质量控制中的应用[J]. 现代仪器与医疗, 2007, 13(3):1-8. /span /p p style=" margin-top: 10px text-indent: 2em line-height: normal " span style=" font-size: 14px " 2.& nbsp & nbsp 马艳芹, 张蓉蓉, 房吉祥, et al. 现代分析技术在中药质量控制中的应用进展[J]. 首都医药, 2013(16):14-15. /span /p
  • “发展前沿技术,解决分析疑难问题”- 布鲁克质谱高层谈质谱新技术与市场发展
    p    strong 仪器信息网讯 /strong span style=" font-family: times new roman " 2016年9月10日-12日,布鲁克作为高端质谱生产制造商参加了在青海西宁举办的第34届中国质谱学会学术年会。继去年推出用于完整的组织成像的rapifleX MALDI tissuetyper之后,布鲁克在今年的美国质谱年会(ASMS 2016)发布了全新的质谱技术平台捕集型离子淌度QTOF( timsTOF)和rapilfeX TOF/TOF。仪器信息网编辑在西宁会议现场就布鲁克质谱的最新技术与市场情况采访了布鲁克质谱中国区高级商业总监王克非与全国销售经理鲁静。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" 布鲁克道尔顿中国区高级商业总监王克非与全国销售经理鲁静.jpg" src=" http://img1.17img.cn/17img/images/201609/insimg/97e1da20-fbb8-4bc1-be16-50fd7b344b15.jpg" / /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " strong 布鲁克道尔顿中国区高级商业总监王克非与全国销售经理鲁静在布鲁克展位合影 /strong /span /p p span style=" font-family: times new roman "   timsTOF是一款将布鲁克专利TIMS(Trapped Ion Mobility Spectrometry)技术与ESI-QTOF质谱联用的布鲁克最新技术。王克非博士在本届质谱会质谱检测新方法的研究分会场详细介绍了timsTOF捕集离子淌度高分辨质谱原理及应用,到场听众对该技术表现出浓厚的兴趣。 /span /p p style=" text-align: center " img title=" 质谱检测新方法的研究分会场.jpg" src=" http://img1.17img.cn/17img/images/201609/insimg/15fd8de7-94ec-405c-b7bc-9e888fe6786a.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " strong 质谱检测新方法的研究分会场 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " strong img title=" 王克非博士.jpg" src=" http://img1.17img.cn/17img/images/201609/insimg/b5809cd5-a6eb-493f-94b6-1daf12d41e27.jpg" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " strong 王克非博士在质谱检测新方法的研究分会场介绍timsTOF捕集离子淌度高分辨质谱原理及应用 /strong /span /p p span style=" font-family: times new roman "   在报告之后,仪器信息网编辑针对timsTOF的原理与技术创新采访了王克非博士。据王克非介绍,捕集型离子淌度技术(Trapped Ion Mobility)是近几年新发展的离子淌度新技术,布鲁克成功将这一技术用在了液质Q-TOF产品中。其离子淌度分析部分包含离子漏斗和淌度分析器,能够捕获聚集离子以达到更高的分析效率。与传统离子淌度的载气与离子同方向流动不同,tims的分析是载气与离子在电场作用下反方向流动,较大离子因淌度较小而先流出进入质谱分析。 /span /p p span style=" font-family: times new roman "   timsTOF能够提供高分辨的淌度和质谱分析。据介绍,该系统的离子淌度分辨率R超过了200。而独特的离子淌度扩展技术imeX能够调整淌度的分辨能力。用户可以在分辨率与所需求的分析质量数(m/Z)范围之间平衡选择,给科研工作带来了灵活性。timsTOF可应用于同分异构化合物的分析,因为异构体在一般的LC-MS/MS上很难分析。timsTOF还可分离和排除母离子干扰离子,极大程度降低背景噪音,提高二级图谱质量。timsTOF在分析中可以得到准确的(& lt 0.5%) 碰撞截面值(CCS),为复杂物质定性定量分析提供了另一个关键参考信息。 /span /p p span style=" font-family: times new roman "   王克非还提到,离子淌度质谱系统的软件是体现系统优越性的重要一环。timsTOF采用开放的数据格式(*.tdf)和开源格式SQLite支持用户定制分析过程与算法。灵活的软件使用户能根据高分辨的离子淌度质谱数据实现在热图、mobilograms和质谱谱图之间的相互分析研究。 /span /p p span style=" font-family: times new roman "   布鲁克在离子淌度技术发展方面做出新的技术突破,于今年把捕集离子淌度技术与QTOF的结合带给了用户。对此,王克非感叹说:“匠人匠心,德国先进技术一直在传承,在这背后是对高端质谱技术的坚持和热爱”。和布鲁克其他Q-TOF质谱一样,timsTOF能够获得精确的同位素峰形以及干净的MS/MS谱图,得到真实性更强的同位素分布(TIP)。 /span /p p span style=" font-family: times new roman "   除此之外,今年布鲁克先进的MALDI产品家族又添了新成员MALDI TOF/TOF –rapilfeX TOF/TOF,以满足更高应用需求,是科研工作者在生物药和生物仿制药的Top-down测序、糖基化结构分析、二硫键或三硫键定位分析和错配分析、组织成像等方面的最佳选择。 /span /p p span style=" font-family: times new roman "   王克非对布鲁克质谱的在中国的销售情况比较乐观。2016年上半年,受欧洲经济疲软的影响,布鲁克质谱在全球的销售业绩出现小幅下滑,但布鲁克质谱在中国的销售额却获得了2位数的增长。他透露,“今年MALDI质谱在中国销售额已经超过了100%的增长。布鲁克MALDI质谱在政府机构、科研、临床及工业微生物市场全面开花。” /span /p p style=" text-align: left " span style=" font-family: times new roman "   今年7月份,布鲁克质谱对内部进行了重新部署,正式任命原区域销售经理鲁静为全国销售经理。对于布鲁克MALDI质谱在中国的发展情况,鲁静补充说:布鲁克MALDI Biotyper是取得国内医疗器械许可证为数不多的质谱仪器之一,目前在国内医院微生物检验科、食品安全系统、疾病控制等系统得到了用户好评。除此之外,我们也能够为临床医院、科研院所等用户提供用于分子成像、蛋白组学研究等领域的高端研究级MALDI质谱。目前,在微生物鉴定之外的医学领域是我们的高增长区,主要是质谱用于精准医疗的热潮中。MALDI-TOF由于操作便捷易学、图谱简单易解等特点已成为医生和新兴的医疗企业首选的质谱平台,各种围绕着MALDI-TOF的诊断解决方案不断被开发出来。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" 布鲁克新技术交流会:应用专家潘晨松.jpg" src=" http://img1.17img.cn/17img/images/201609/insimg/cdcda811-91ac-4b65-ae6b-44917541eb47.jpg" / /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " strong 布鲁克新技术交流会:应用专家潘晨松介绍《基于液相色谱-质谱联用的代谢组学研究中代谢物的结构鉴定进展》 /strong /span /p p style=" text-align: left " span style=" font-family: times new roman "   对于布鲁克独有的傅里叶变换离子回旋共振质谱仪(FTMS),鲁静透露:在继中科院生态环境研究中心和中科院大连化物所之后,石油化工科学研究院将成为国内第三家拥有最高分辨率15T FTMS的研究机构。鲁静对FTMS的应用充满信心,她表示:目前在国内拥有2台和2台以上FTMS的单位逐渐增加,FTMS的应用技术正在不断发展。 /span /p p span style=" font-family: times new roman "   在2016年8月的国际质谱大会(IMSC 2016)上,布鲁克发布了最新的FT质谱solariX 2XR。该产品具有7T磁场价格适中,在1秒检测时间内能够达到120万的检测分辨(m/z 200),可以稳定的获得未知小分子化合物的分子式。用户能够利用solariX 2XR质谱获得1千万以上的分辨率,清晰分辨出其他质谱技术无法分辨的质谱峰,可用于进行石油、可溶性有机质、质谱成像、代谢组学及自上而下蛋白质组学等研究领域中的极度复杂样品。 /span /p p style=" text-align: left " span style=" font-family: times new roman "   在问到对今年的最新产品timsTOF的市场前景预估时,鲁静表示,布鲁克的QTOF具有很多优势,如鉴定的重要指标同位素峰型最为接近真实值。再加上timsTOF融入了最新的捕集IMS技术,已经引起了很多用户的关注,截止目前已经产生了订单。她表示,希望timsTOF能够帮助更多的科研工作者解决分析难题。 /span /p p style=" text-align: right " span style=" font-family: times new roman " 仪器信息网编辑:郭浩 /span 楠 br/ /p
  • 院士成果在穗转化精典案例:质谱强国 自主研发EIT质量分析器
    科学仪器被称作科学家的“眼睛”。质谱仪作为国际上最尖端的科学仪器之一,是直接测量物质原子量、分子量的唯一手段,被誉称为“科学仪器皇冠上的明珠”。 十多年前,质谱技术在国内基本还是一片空白。海归博士周振把“做中国人的质谱仪器”作为自己的终身奋斗目标。他创办了广州禾信仪器股份有限公司,并带领公司建成了我国第一个质谱仪器正向研发平台,实现了我国高性能飞行时间质谱仪国产化和产业化,使我国成为世界上少数几个掌握飞行时间质谱核心技术的国家之一。 2021年11月,在同一梦想与追求的驱动下,放射化学家、中国科学院院士柴之芳把院士专家工作站设立在禾信仪器。禾信仪器正联合院士团队向质谱仪的关键核心技术发起攻关。他们的目标是自主研制一款超高分辨率、快速分析的EIT质量分析器,质量分析器正是质谱仪的关键核心零部件。打响国产质谱仪“突围战”科学发现往往离不开新工具的发明与使用。相比于天文望远镜与显微镜,大众对于质谱仪却是陌生的。质谱仪便是最精密、最灵敏的科学分析仪器之一,可以准确测定物质的分子量以及根据碎片特征进行化合物的结构分析。 诺贝尔化学奖得主弗朗西斯威廉阿斯顿曾有一句名言:“要做更多仪器,要多加测量。” 阿斯顿便是质谱仪的发明者。质谱仪让阿斯顿在同位素的研究如虎添翼,他先后发现天然存在的287种核素中的212种,提出同位素的普遍存在性,证实“自然界中某元素实际上是该元素的几种同位素的混合体,因此元素的原子量是依据同位素在自然界的占比而得到的平均原子量。” 鉴于质谱技术对引领科学发展的巨大作用,不仅是弗朗西斯威廉阿斯顿,欧内斯特劳伦斯、沃尔夫冈保罗等多位科学家都曾因对质谱技术作出贡献而获得过诺贝尔奖。 高端科研仪器的创新、制造和应用水平,往往考验着国家科技实力和工业实力。质谱仪涉及精密电子、精密机械、高真空、软件工程、自动化控制、电子离子光学等多项技术及学科,研发难度大、周期长、投入大。而中国每年对质谱仪进口额达到上百亿元,这已成为制约我国自主创新能力提升的一个重要因素。 怀抱着质谱强国梦,海归博士周振2004年来到广州创办了中国第一家专业质谱仪器公司一一禾信仪器。“质谱仪是一项对国家科学水平具有标志性意义的尖端技术,中国发展自己质谱仪刻不容缓,这就是我创办禾信的原因。” 周振说。 禾信创立之时,基本没有人相信中国人能造出质谱仪。但是周振带领团队逐步攻克了单颗粒气溶胶在线电离源、双极飞行时间质谱技术、真空紫外光电离源、膜进样系统等核心技术,研发出单颗粒气溶胶飞行时间质谱仪、VOCs在线监测飞行时间质谱仪、微生物鉴定质谱仪等多款产品。禾信已经成为少数掌握高分辨飞行时间质谱核心技术的企业之一。继续向关键核心技术发起冲击经过十余年的研发积累,禾信仪器已经构建了质谱研发、生产、测试、售后服务、品质控制及应用开发的整套技术创新链条,形成了从基础研究成果向产业化应用转化的技术创新能力体系,包括技术顶层设计能力、产品规划设计能力、产品创新优化能力等。质谱强国梦正逐渐照入现实,但是禾信仪器也面临着挑战。目前国内质谱行业上下游产业发展不成熟,精密电子、精密机械、特殊材料等上游产业的支撑能力还不足。沃特世、丹纳赫、布鲁克、安捷伦、赛默飞、岛津、生物梅里埃等巨头依然合计占据了全球质谱仪市场约90%的份额。“我头脑从来没有发热膨胀的时候。” 周振心里深知,禾信仪器只是打破了完全依赖进口的局面,要发展自己的民族品牌,推动国内质谱仪器行业良性发展,还要靠几代人的努力。为了在这场长跑中实现“反超”,周振正带领团队培育与发展整个质谱产业链,打造质谱生态圈。在2019年于广州举办的首届粤港澳大湾区高端科学仪器产业发展论坛上,禾信及国内科学仪器行业有关单位联合发起的广东粤港澳大湾区高端科学仪器产业促进会进入筹备阶段,禾信更宏大的愿景是推动粤港澳大湾区高端科学仪器创新中心的建立。“我们希望创新中心十年内实现每年培育四五十家仪器制造企业,二三十家核心零部件企业。”周振说,这是一条覆盖“政产学研用金”的完整链条。同样是在这场论坛上,包括柴之芳院士在内的一批行业专家与禾信等产业链企业代表一同发起《关于支持高端科学仪器产业发展的建议书》,共同呼吁将高端科学仪器研发列入广东省各级政府“十四五”和中长期科技发展规划的重点发展领域,培育建立完整的高端科学仪器产业链,制定切实有效的国产科学仪器政府采购政策,支持高端科学仪器创新中心建设。2021年8月广东省政府印发了《广东省制造业高质量发展“十四五”规划》,明确提出,支持广州加快建设粤港澳大湾区高端科学仪器创新中心,以质谱仪器开发为主线,重点攻克相关关键核心技术。攻克高端科学仪器关键核心技术同样一直是柴之芳院士的梦想。在2011年和2017年,禾信曾牵头承担2项国家专项,柴之芳院士担任项目总体组、技术专家组及用户委员会专家,为项目的应用研究及管理提供技术支持。在柴之芳院士看来,没有先进的仪器和方法,是无法做出重大原创性成果的。我国的科学研究高度依赖国外仪器的情况现在虽然正在改变,但仍十分严重,已成为制约我国攀登科学顶峰的一个瓶颈。自主研发EIT质量分析器柴之芳是著名的放射化学和核分析研究专家,曾在2005年摘得国际放射分析化学和核化学领域的最高奖一一乔治冯海维希奖。他将核技术、核分析和放射化学方法应用于一些交叉学科中,在若干重要元素的分子-中子活化分析、铂族元素丰度特征、金属组学、环境毒理学和纳米安全性、核试验快中子谱等方面取得了一批成果。质谱技术起源于同位素的发现,发展初期主要是为了满足核工业领域同位素丰度比值的测定要求,并伴随着物质组分分析技术的发展而逐渐得到完善。随着核工业的兴起和快速发展,质谱技术被应用于核燃料与核材料中杂质分析、核燃料燃耗的测定以及核反应过程中的裂变产额测定等。质谱测量技术的进步推动了核工业的可持续发展,核工业的发展也对质谱技术提出了更新的要求。铀资源勘查、铀矿治、铀同位素分离、同位素应用、核医学、乏燃料后处理和长寿命核素分离嬗变、核保障监督等都离不开先进的质谱测量技术。柴之芳院士专家工作站的研究项目是《超高分辨率、快速分析的静电离子阱质量分析器的研制》。质量分析器是质谱仪的核心,是决定质谱仪检测精度和准度的关键,但高端质量分析器仍被海外龙头企业垄断。而院士专家工作站要自主研发的静电离子阱质量分析器 (EIT质量分析器) 便是一种具备超高质量分辨率、高质量精度、高灵敏度、快速分析等特点的通用型质量分析器。该项目结合柴之芳院士在放射化学、核化学等研究方向中丰富的质谱应用经验,实现EIT质量分析器性能指标达到国际先进水平,并在核物理、放射化学、环境科学等领域的应用。基于该项目的研究成果,可以进一步开发以EIT质量分析器为核心的有超高分辨率、高精度质量分析需求领域的定制产品,也可以开发用于环境监测、食品检测、生物医疗等领域的通用在线超高分辨率大气压电离质谱产品。目前,院士专家工作站已完成EIT质量分析器的原理研究、质谱整机各模块的设计与制造,研制出原理样机,申请发明专利3项,与院士团队联合发表论文1篇。柴之芳院士常教导弟子,有志于科学研究的人要安心,要清净,要踏实。周振率领的禾信同样是一家愿意“十年磨一剑”的科技企业。如今两支有共同梦想的团队聚在一起,正在以共同步调向质谱强国梦继续进发。
  • 气溶胶质谱在线分析北京雾霾成分
    16日夜间开始,北京经历今年来持续时间最长、程度最重的雾和霾天气过程。北京南部部分站点空气质量指数爆表,天地间一片昏暗。此时,网络上、朋友圈里各类关于空气质量的言论开始流传,其中人们最为关注的是“这次雾霾里主要是含硫酸铵,̷̷原来伦敦有次硫酸铵超标,有好多人没有防护而死亡”。  网络流传硫酸铵会致命。  此次重污染天气过程中,我们呼吸的空气里这到底包含什么物质?和之前的重污染天气相比有何不同?硫酸铵会直接导致死亡吗?为此,中国天气网记者采访了中国气象科学研究院大气成分所副研究员张养梅。  北京的霾里到底有哪些成分?  中国气象科学研究院位于北京市海淀区中国气象局大院内,在气科院大楼的楼顶,气溶胶质谱仪一直默默值守,在线采集、分析北京亚微米气溶胶的成分。张养梅介绍道,所谓亚微米气溶胶是指直径在1微米以下的粒子。大家熟悉的PM2.5其实是一个总称,包括空气中直径小于或等于2.5微米的固体颗粒或液滴。研究显示,直径1微米及以下的粒子占PM2.5的60%左右,因此质谱仪采集的数据对于分析大气成分是具有代表性的。  各类颗粒在采样颗粒中所占比重。绿色代表有机气溶胶,橙色为硫酸盐、蓝色为硝酸盐,粉色为氯化物,浅橙色为铵盐。有机气溶胶所占比重最大,硝酸盐次之。  16日至20日,北京采样颗粒中有机气溶胶占比最多。  通过仪器采集数据及分析,12月5日至20日采集到的1微米及以下的粒子,主要包括有机气溶胶、硝酸盐、硫酸盐等构成。有机气溶胶是一个总称概念,具体的组成目前还没有完全研究清楚,大家经常听说的多环芳烃就是有机气溶胶的一种。硫酸盐主要来自燃煤,燃煤排放的二氧化硫发生一系列氧化反应,成为硫酸铵。硝酸盐主要来自燃煤和机动车排放,氯化物的主要来源包括垃圾焚烧、燃煤以及燃放烟花爆竹等。  16日至20日,北京采样颗粒中有机气溶胶占比最多。  通过对12月16日至20日对北京的采样颗粒进行分析后,结果显示有机气溶胶是其中占比最大的颗粒,高达45% 硝酸盐颗粒占比24%排第二,主要来自燃煤和机动车排放等 硫酸盐占比15%,主要来自燃煤等 铵盐占比12%,氯化物占比4%。  北京霾和伦敦烟雾一样吗?有致命成分?  就在北京空气质量持续恶化之时,网络谣言也开始流传。针对网上流传的硫酸铵会致命,张养梅表示这是不可能的。空气质量好时,空气中也存在有机气溶胶、硫酸盐等颗粒,只是浓度较低、颗粒物较小。霾天气时,仪器不会观测到硫酸铵,观测到的是硫酸、铵两个离子,他们结合成硫酸铵的可能性很大,空气重污染时浓度更高一些。空气中含有硫酸铵并不是政府发布红色预警的必要条件。  硫酸铵是颗粒物,和二氧化硫气体有明显区别,颗粒物对人体健康的影响程度没有气体迅速。如果空气中二氧化硫气体浓度很高的话,相当于人在“吸毒气”,对人体有致命影响。当年的伦敦烟雾在短短几天内造成数千人死亡,就是因为空气中酸性气体浓度太高。监测显示,12月5日以来,北京硫酸盐的浓度峰值出现在20日,达40-50微克/立方米,远远低于伦敦烟雾事件时的浓度。  当然,硫酸铵等颗粒物也会影响人体健康。它们会随着呼吸进入人体肺部,引发心脑血管和呼吸道的疾病。另外,北京的空气污染物中,含有一定比例的铵,会和硫酸、硝酸发生中和形成颗粒,和酸性气体相比,颗粒的危害性相对轻一些。  污染物浓度日间变化明显 夜间高白天低  分析还表明,空气中各种污染物的浓度整体呈现白天低、夜间高的变化规律。分析时,将12月5日至20日每天同一时次颗粒浓度做分类平均统计,显示颗粒物夜间浓度明显偏高,白天下降明显。  各类颗粒的浓度白天下降明显,夜间明显上升。  张养梅表示,浓度变化主要受排放量和气象条件两个因素影响。在排放量相同的情况下,从气象条件来说,夜间湿度增大,可以吸附更多污染物。同时,冬季夜间气温较低,大气边界层下压。在气体容量不变的情况下,体积变小,空气污染物浓度升高。白天,大气边界层抬升,体积增大,污染物浓度降低。  和2008年相比硫酸盐浓度下降  总体来说,和之前相比,北京空气中的颗粒种类的浓度分布排位没有太大变化,有机气溶胶的浓度一直是最大。但是分析显示,今年12月和2008年1月相比,硫酸盐在不同颗粒物比重的排位下降。  从图中可见,今年12月5日至20日,硝酸盐(蓝色)在颗粒物组成中浓度上升,基本都排在第二位,硫酸盐下降排在第三位 而2008年1月5日至2月2日,硫酸盐浓度排第二位,硝酸盐排第三位。张养梅表示,这一数据的变化也可以说明,政府对二氧化硫排放的监管和控制,比如煤改气措施、工厂加装脱硫设备等发挥了作用。硝酸盐浓度的上升,则与燃煤、机动车排放增加有一定关系。  北京的雾霾将在明天减弱消散,但在近几年中,霾仍将在秋冬季反复出现。张养梅提醒大家,虽然霾天气对人体的危害没有那么“激烈”,但仍需防护,尽量减少在户外活动的时间,外出时戴口罩。在室内时,也可启动空气净化器等设备,营造相对安全的空气环境。
  • SYNAPT G2-S为质谱分析开启新篇章
    1996年Waters公司推出了世界上首台商业化Q-TOF质谱,从那时起Waters就成为引领Q-TOF质谱发展的旗手。2007年Waters创造性地将行波离子淌度(T-Wave)嵌入质谱中,推出SYNAPT HDMS&mdash 一举获得了当年PITTCON金奖。从此质谱不仅可提供质量信息,而且可以根据离子的形态进行分离、分辨。加之在液相领域至今所向披靡的UPLC技术,Waters为使用者呈现出了一个由质量、形态、色谱构成的多维分析空间。SYNAPT已帮助科学家在蛋白质复合体四级结构、蛋白单体变化及聚合物分析等领域,在Cell、Nature等期刊发表诸多论文。 SYNAPT没有止步,它带来了越来越多的惊喜。首先是T-Wave与前后两个碰撞池结合的TriWave技术。这个巧妙的设计使Q-TOF质谱具备了三级质谱性能。更令人兴奋的是,此三级远非常见的三级方法:母离子在第一个碰撞池产生的碎片,可在之后的T-Wave迁移腔中根据形态分离,因此当碎片离子按照形态顺序依次进入第二个碰撞室后,最终产生的三级碎片不仅包含质量信息,而且蕴含了结构信息。这种被称为时间排列平行碎裂(TAP,TimeAligned Parallel Fragmentation)的三级质谱技术,在糖肽结构分析中,可巧妙地分别采集糖链及多肽的碎片信息,为蛋白质糖基化及其它化合物分析提供了全新的策略。 T-Wave还可以提高质谱信号强度,提升信噪比!使用两个T-Wave组成的离轴迁移腔被命名为Step-Wave。它在使分析离子&ldquo 上一个台阶&rdquo 进入质谱分析器的同时,让中性干扰物&ldquo 下一个台阶&rdquo 而远离质量分析器。因此采用Step-Wave的SYNAPT G2-S对痕量物质的分析具有了前所未有的分析能力。较前代产品,SYNAPT G2-S的信号检测强度提高了约30倍,信噪比提高了5-6倍,最低检测限也下探了一个数量级。灵敏度的显著提高、无与伦比的选择性和分析能力、以及离子淌度分离等多重优势,使SYNAPT G2-S能够以在低于任何其它高分辨率质谱仪的分析浓度条件下定性、定量分析物。HDMSE是T-Wave技术的又一创新应用,它使沃特世独有的MSE专利技术进一步升华。MSE通过碰撞池在低、高能量匀速高频切换,分别得到全部母离子与所有碎片离子信息。之后通过母离子与其碎片具有一致色谱行为的性质,进行碎片离子归属,从而得到所有母离子的二级碎片信息。MSE的优势在于它不仅采集了最全的离子信息,而且&ldquo 完美&rdquo 地记录了色谱数据。这对于分析物的定性和定量堪称绝佳的解决方案。 HDMSE技术的推出,进一步对色谱行为相近的分析物通过离子淌度区分,极大地改善了数据的信噪比,使定性结果更加准确(图2左)。使用MSE以及HDMSE采集多肽GVIFYESHGK二级图谱的对比实验中可以看到,在MSE数据中有多达254个碎片信号,其中大部分是干扰信号,如果这些信号都被用来检索,将可能影响鉴定的准确性;而通过HDMSE得到的潜在产物离子碎片仅有35个,也就是说绝大多数干扰信号都被去除了,这极大地提升了最终的鉴定可信度(图2右上)。更让人兴奋的是,HDMSE技术在对复杂体系蛋白鉴定的数量上,较MSE也有了近一倍的提升(图2右下),产生了质的飞跃。 配备MALDI离子源的SYNAPT G2-S还可进行MALDI Imaging实验。较常规的MALDI Imaging技术,通过T-Wave技术的使用,科学家可以得到更加丰富、可信的实验数据,因此得到了广泛的应用。此外,ETD(电子传递解离)等丰富的研究手段都可在SYNAPT G2-S上实现。SYNAPT G2-S还具有最广泛的离子源,包括:电喷雾(ESI)、大气压化学电离(APCI)、双电喷雾和APCi(ASCi)、大气压电离(APPI)、常压气相色谱法(APGC)、NanoFlowR(ESI)、基质辅助激光解吸(MALDI)、大气固体分析探头(ASAP)和微控UPLC(T RIZAIC UPLC)等。它还可与包括DESI(Prosalia)、DART(IonSense)、LDTD(Phytronix)和TriVersa nano Mate(Advion)源在内的诸多第三方离子源兼容。 SYNAPT G2-S质谱作为2011年Waters最新发布的尖端质谱,正在融入生命、材料、环境、食品、农业、中药等领域的研究与实践应用中。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 质谱怎么选?各类质谱仪质谱能力分析
    四极杆质谱仪QMSQMS是最常见的质谱仪器,定量能力突出,在GC-MS中QMS占绝大多数。优点: 结构简单、成本低、维护简单; SIM功能的定量能力强,是多数检测标准中采用的仪器设备。缺点: 无串极能力,定性能力不足; 分辨力较低(单位分辨),存在同位素和其他m/z近似的离子干扰; 速度慢,质量上限低(小于1200u)。飞行时间质谱仪TOFMSTOFMS是速度最快的质谱仪,适合于LC-MS方面的应用。优点: 分辨能力好,有助于定性和m/z近似离子的区别,能够很好的检测ESI电喷雾离子源产生多电荷离子; 速度快,每秒2~100张高分辨全扫描(如50~2000u)谱图,适合于快速LC系统(如UPLC); 质量上限高(6000~10000u)。缺点: 无串极功能,限制了进一步的定性能力; 售价高于QMS; 较精密,需要认真维护。三重四极杆质谱仪QQQQQQ质谱给四极杆质谱仪在保留QMS原有定量能力强的特点上,提供了串级功能,加强了质谱的定性能力,检测标准中常作为QMS的确认检测手段。优点: 有串极功能,定性能力强; 定量能力非常好,MRM信噪比高于QMS的SIM是常用的QMS结果确认仪器; 除一般子离子扫描功能外,QQQ还具有SRM、MRM、母离子扫描、中性丢失(Neutral loss)等功能(离子阱不行); 对特征基团的结构研究有很大帮助。缺点: 分辨力不足,容易受m/z近似的离子干扰; 售价较高; 需要认真维护。四极离子阱,QTrap 技术上而言,在传统QQQ的四极杆中加入了辅助射频,可以做选择性激发;或者就功能而言,为QQQ提供了多级串级的功能。优点: 同时具备MRM、SRM、中性丢失和多级串级功能,非常适合于未知样品的结构解析。缺点: 分辨力还是低了点。离子阱质谱仪ITMS离子阱质谱仪是最简单的串联质谱,常用于结构鉴定。优点: 成本比QQQ低廉,体积小巧; 具备多级串级能力,适合于分子结构方面的定性研究,能够给出分子局部的结构信息,比QQQ好; 有局部高分辨模式(Zoom Scan),分辨力比四极杆质谱高数倍,达到6000~9000,适合于确定离子质量数。缺点: 定量能力不如QMS和QQQ,所以大多数GCMS不采用离子阱质谱; 不能够像QQQ一样做母离子扫描和中性丢失,在筛选特征结构分子的时候能力不足。线性离子阱,Linear Ion Trap传统3D离子阱的增强版本。优势: 相对于传统3D离子阱,灵敏度高10倍以上多级串级质谱。缺点: 相对于QQQ,还是不能做MRM、中性丢失等特征基团筛选功能四极杆飞行时间串联质谱QTOFQTOF以QMS作为质量过滤器,以TOFMS作为质量分析器。优点: 能够提供高分辨谱图; 定性能力好于QQQ; 速度快,适合于生命科学的大分子量复杂样品分析。缺点: 成本高。离子阱-飞行时间质谱,Trap TOF 需要仔细维护; 以3D离子阱作为质量选择器和反应器,结合了离子阱的多级质谱能力和飞行时间质谱的高分辨能力。优点: 同时具有多级串级和高分辨能力,适合于未知样品的定性工作,如糖蛋白的定性。缺点: 由于离子阱容量限制,对于混合样品的灵敏度欠佳; 定量能力弱。线性离子阱-飞行时间质谱,LIT-TOF 以线性离子阱为质量选择器和反应器,结合了线性离子阱的高灵敏度多级串级能力和飞行时间质谱的高分辨能力。如直接耦合线性离子阱-飞行时间串联质谱。优点: 高灵敏度、高分辨、多级串级; 定量能力强。缺点: 功能复杂,维护复杂。磁质谱Sector MS磁质谱的定量能力是各种质谱中最强的。现在已较少使用,仅用于地质元素和痕量二恶英的检测。优点: 技术经典、成熟,NIST等MS库采用的仪器; 分辨力非常好(100k,m/&Delta m FWHM),干扰少; 灵敏度高,定量能力是各种质谱中最好的。缺点: 体积、重量大; 售价很高,速度慢; 维护复杂,很费电。傅立叶变换质谱仪FT-ICR-MSFourier Transform Ion Cyclotron Resonance Mass Spectrometer 傅立叶变换质谱仪的分辨能力最高,常作为高端科学研究的装备; 在蛋白组学和代谢组学起到了超强作用。优点: 能够做多级串级,定性能力极好; 分辨力极高,灵敏度很好; 可以有不同的电离源联用实现对不同极性的化合物进行检测。缺点: 体积重量大,售价极高,速度较慢; 维护费用非常昂贵。静电场傅立叶变换质谱,Orbitrap优点: 高分辨,60k~120kFWHM,质量精度高; 相对FT-ICR而言,价格稍低(~450kUSD)。缺点: 不能单独做串级; 分辨力、灵敏度、质量稳定性等离FT-ICR还有距离。
  • 进展|糖型解析层面的抗体middle-down质谱分析
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Internal Fragment Ions from Higher Energy Collision Dissociation Enable the Glycoform-Resolved Asn325 Deamidation Assessment of Antibodies by Middle-Down Mass Spectrometry。本文的通讯作者是罗氏集团的Tilman Schlothauer和Feng Yang。  治疗性单克隆抗体(mAb)分析中翻译后修饰(PTMs)的表征是一个主要的挑战,单个PTM通常采用bottom-up的方法进行分析,但PTM之间的关联性信息丢失 middle-down方法提供了分辨率、位点特异性和蛋白型异质性的良好平衡,其表征工作流程主要依赖于末端片段离子。内部片段离子的纳入提高了序列覆盖率和PTM分辨率,使其成为一种有前途的方法。先前,糖工程单克隆抗体的研究表明,一组有限的高甘露糖、乙酰氨基葡萄糖和糖基化蛋白型不同程度地影响了PTMs的敏感性质,如脱酰胺和氧化。Asn 325的脱酰胺是一种功能相关PTM,在传统bottom-up方法中由于其较短的肽段和较高的亲水性而经常被忽略,目前没有研究调查Asn 297糖型对Asn 325脱酰胺敏感性的影响。在这篇文章中,作者提出了一种纳入内部片段的middle-down工作流程,在糖型解析层面上评估mAb上Asn 325脱酰胺修饰。  图1. 糖型解析的Asn 325脱酰胺的middle-down分析流程。(A) IdeS酶切后的Fc/2序列,及相关的糖基化(Asn 297)和脱酰胺(Asn 325)位点。(B)工作流程示意图,包括样品制备、RP-LC亚基分离、MS1电荷态选择、四极杆糖型分离、MS2内部片段搜索,以及基于提取的单同位素质量离子色谱(未修饰与修饰)的定量策略。  图2. Asn 325脱酰胺鉴定中内部片段SNKAL的定性评价。未修饰(对照)、热应力样品(8w, 40°C)、HC Asn 325 Asp序列突变体的代表性MS2谱图叠加,以及修饰的内部片段离子SDKAL的模拟单同位素质量。*表示未修饰的SNKAL的+1同位素对修饰的SDKAL的单同位素具有足够的分辨率。  本研究使用标准IgG1单抗(G1m17, Km3)和突变体(HC Asn 325 Asp)。对于热应激,标准单抗在40°C的配方缓冲液中孵育2、4和8周。在IdeS酶切之前,将10%的突变单抗插入标准单抗中,生成加标样品。抗体经IdeS酶切、还原后,用标准RPLC流程分析(图1B) 针对Asn 325脱酰胺位点周围的内部片段离子的覆盖率,作者对HCD碰撞能量和捕获气体参数进行了优化。共分配了覆盖Asn 325的7个内部片段离子,根据片段强度和定量精度,与bottom-up分析确定的目标脱酰胺值相比,选择SNKAL作为Asn 325的代表性特征离子。SNKAL对无应力对照组的特异性通过包含Asp 325的序列突变体(N325D)得到证实,该突变体在未修饰的Asn 325的单同位素质量处没有片段离子(图2)。因此,排除了其他片段离子的中性丢失引起的歧义或重叠。Asn 325对照、Asp 325突变体和分离的糖型(G0F、G1F、G2F)的MS2具有高度可比性。修饰后的单同位素质量和未修饰的Asn 325的第一个同位素之间获得了足够的分辨率(图2)。  使用middle-down MS对所有糖型的相对脱酰胺评估与bottom-up分析确定的水平一致(图3)。与热应力持续时间无关,单个糖型(G0F、G1F和G2F)的middle-down脱酰胺评估没有显著差异(图4)。Asp 325突变体的插入实验证实了middle-down策略评估单个糖型脱酰胺水平差异的能力。由于未修饰的Asn 325单抗和Asp 325单抗之间的糖型相对丰度的差异,与总加标量(10%)相比,蛋白型(糖型% ×脱酰胺%)混合的比例不同。因此,在加标样品中,G0F的脱酰胺率低于10%,而由G1F和G2F的脱酰胺率高于10%(图4)。Middle-down脱酰胺评估的精度取决于糖型丰度和脱酰胺水平,单个样本的相对标准偏差范围为2.8%至16.4% (n = 9),样本间中位相对标准偏差为7.4% (n = 16)。总蛋白型丰度和相对标准偏差显示出明显的相关性,并证明了middle-down方法的敏感性,允许在0.2%的相对丰度下评估蛋白型。  图3. middle-down工作流程对Asn 325脱酰胺定量分析的能力评估。在2w、4w和8w热应力(40°C)下,应力样品bottom-up和middle-down(所有糖型)分析的相关性。数据点表示middle-down分析的技术重复的中位数(n = 9, 3天内重复3次)。误差条显示95%置信区间。CTRL显示n = 3时无应力样品的背景水平。  图4. Asn 325脱酰胺的糖型解析水平的middle-down分析。从2w, 4w和8w热应力样品和10% Asp 325加标样品中提取所有糖型和分离糖型(G0F, G1F, G2F)的相对脱酰胺结果。技术重复的中位数和95%置信区间为n = 9时[G2F在2w (n = 4)和4w (n = 8)时除外]。ns =不显著。*表示假定值范围(* 0.05, ** 0.01, **** 0.0001)。  本文引入了一种新的middle-down策略,通过利用HCD碎片的内部碎片离子来分析单克隆抗体Fc中的PTM动力学,将复杂性降低到Fc/2亚基水平,并保留了相关的蛋白质形态完整性,同时获得了bottom-up方法的分辨率和位点特异性,并成功地证明了IgG1抗体的Fc半乳糖基化变体不会影响热应激下Asn 325脱酰胺的程度。  撰稿:夏淑君  编辑:李惠琳  文章引用:Internal Fragment Ions from Higher Energy Collision Dissociation Enable the Glycoform-Resolved Asn325 Deamidation Assessment of Antibodies by Middle-Down Mass Spectrometry
  • 这30项行业标准和光谱、色谱、质谱等分析方法紧密相关
    p   2020年8月11日,工业和信息化部科技司发布通知,对申请立项的489项行业标准、1项国家标准和4项行业标准外文版计划项目予以公示,截止日期为2020年9月10日。 /p p   489项行业标准中,多项涉及光谱、色谱、质谱分析方法,包括辉光放电质谱法、气相色谱法、离子色谱法、红外光谱法、电感耦合等离子体原子发射光谱法、波长色散X射线荧光光谱法等。 /p p   摘录30项如下: /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 605" align=" center" tbody tr class=" firstRow" td width=" 13%" p style=" text-align:center " strong 申报号 /strong /p /td td width=" 22%" p style=" text-align:center " strong 项目名称 /strong /p /td td width=" 5%" p style=" text-align:center " strong 性质 /strong /p /td td width=" 5%" p style=" text-align:center " strong 制修 br/ & nbsp & nbsp & nbsp 订 /strong /p /td td width=" 5%" p style=" text-align:center " strong 完成 br/ & nbsp & nbsp & nbsp 年限 /strong /p /td td width=" 11%" p style=" text-align:center " strong 部内主管司局 /strong /p /td td width=" 17%" p style=" text-align:center " strong 技术委员会或 br/ & nbsp & nbsp & nbsp 技术归口单位 /strong /p /td td width=" 19%" p style=" text-align:center " strong 主要起草单位 /strong /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=XBCPZT20662020" XBCPZT2066-2020 /a /p /td td width=" 22%" p style=" text-align:center " 稀土氧化物中杂质元素化学分析方法 strong 辉光放电质谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2021 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国稀土标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 包头稀土研究院、国标(北京)检验认证有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=SHCPZT22082020" SHCPZT2208-2020 /a /p /td td width=" 22%" p style=" text-align:center " 工业用乙烯、丙烯中痕量氢气、一氧化碳、二氧化碳的测定 strong 气相色谱-氦离子化检测法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国化学标准化技术委员会石油化学分技术委员会 /p /td td width=" 19%" p style=" text-align:center " 中国石油化工股份有限公司上海石油化工研究院、中安联合煤化有限责任公司 上海赛科石油化工有限责任公司 安捷伦科技(上海)有限公司 上海华爱色谱分析技术有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=SHCPXT22092020" SHCPXT2209-2020 /a /p /td td width=" 22%" p style=" text-align:center " 工业用乙烯、丙烯 痕量硫化物的测定 strong 气相色谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 修订 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国化学标准化技术委员会石油化学分技术委员会 /p /td td width=" 19%" p style=" text-align:center " 中国石油化工股份有限公司上海石油化工研究院、中国石化扬子石油化工有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=SHCPZT22142020" SHCPZT2214-2020 /a /p /td td width=" 22%" p style=" text-align:center " 塑料 聚丙烯三氯苯可溶物含量的测定 strong 红外光谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2021 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国塑料标准化技术委员会石化塑料树脂产品分技术委员会 /p /td td width=" 19%" p style=" text-align:center " 中国石油天然气股份有限公司石油化工研究院、北京燕山石化高科技术有限责任公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT22322020" YBCPZT2232-2020 /a /p /td td width=" 22%" p style=" text-align:center " 金属铬 痕量杂质元素含量的测定 strong 辉光放电质谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国生铁及铁合金标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 国合通用测试评价认证股份公司、国标(北京)检验认证有限公司、峨眉半导体材料有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT22412020" YSCPZT2241-2020 /a /p /td td width=" 22%" p style=" text-align:center " 铝合金时效析出相的检验 strong 透射电镜法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 国标(北京)检验认证有限公司、国合通用测试评价认证股份公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23012020" YBCPZT2301-2020 /a /p /td td width=" 22%" p style=" text-align:center " 焦化废水 硫氰酸盐含量的测定 strong 离子色谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2023 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国钢标准化技术委员会炭素材料分技术委员会 /p /td td width=" 19%" p style=" text-align:center " 唐山首钢京唐西山焦化有限公司、冶金工业信息标准研究院等 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23132020" YBCPZT2313-2020 /a /p /td td width=" 22%" p style=" text-align:center " 连铸保护渣 二氧化钛含量的测定 二安替吡啉甲烷 strong 分光光度法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国钢标准化技术委员会冶金非金属矿产品分技术委员会 /p /td td width=" 19%" p style=" text-align:center " 鞍钢股份有限公司、山西太钢不锈钢股份有限公司、内蒙古包钢钢联股份有限公司、冶金工业信息标准研究院等 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23142020" YBCPZT2314-2020 /a /p /td td width=" 22%" p style=" text-align:center " 连铸保护渣 二氧化硅、氧化钙、氧化镁、三氧化二铝、五氧化二磷、全铁、氧化锰的测定 strong 电感耦合等离子体原子发射光谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2023 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国钢标准化技术委员会冶金非金属矿产品分技术委员会 /p /td td width=" 19%" p style=" text-align:center " 山东钢铁股份有限公司莱芜分公司、山西太钢不锈钢股份有限公司、鞍钢股份有限公司、冶金工业信息标准研究院等 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23152020" YBCPZT2315-2020 /a /p /td td width=" 22%" p style=" text-align:center " 冶金用膨润土 多元素含量检测 strong 波长色散X射线荧光光谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国钢标准化技术委员会冶金非金属矿产品分技术委员会 /p /td td width=" 19%" p style=" text-align:center " 首钢京唐钢铁联合有限责任公司、首钢集团有限公司、山西太钢不锈钢股份有限公司、武汉钢铁有限公司、冶金工业信息标准研究院等 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23182020" YBCPZT2318-2020 /a /p /td td width=" 22%" p style=" text-align:center " 钛精矿(岩矿) 二氧化钛含量的测定 二安替吡啉甲烷 strong 分光光度法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2021 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国铁矿石与直接还原铁标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 鞍钢股份有限公司、冶金工业信息标准研究院等 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23192020" YBCPZT2319-2020 /a /p /td td width=" 22%" p style=" text-align:center " 铁矿石 strong 物相显微分析方法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国铁矿石与直接还原铁标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 北京欧波同光学技术有限公司、冶金工业信息标准研究院 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23202020" YBCPZT2320-2020 /a /p /td td width=" 22%" p style=" text-align:center " 铁矿石 金属铁含量的测定 strong 火焰原子吸收光谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2021 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国铁矿石与直接还原铁标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 长沙矿冶研究院有限责任公司、冶金工业信息标准研究院 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23212020" YBCPZT2321-2020 /a /p /td td width=" 22%" p style=" text-align:center " 铁精矿 全铁含量的测定 strong 便携式能量色散X射线荧光光谱法(半定量法) /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国铁矿石与直接还原铁标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 朗多科技(北京)有限公司、冶金工业信息标准研究院 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23222020" YBCPZT2322-2020 /a /p /td td width=" 22%" p style=" text-align:center " 铁矿石 strong 高能脉冲激光全元素在线分析方法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2023 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国铁矿石与直接还原铁标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 力鸿智信(北京)科技有限公司、贝恩讯谱(北京)科技有限公司、冶金标准信息研究院等 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23232020" YBCPZT2323-2020 /a /p /td td width=" 22%" p style=" text-align:center " 铁矿石 铅含量的测定 strong 原子荧光光谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2021 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国铁矿石与直接还原铁标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 宁波检验检疫科学研究院、中国检验认证集团宁波有限公司、冶金工业信息标准化研究院 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23242020" YBCPZT2324-2020 /a /p /td td width=" 22%" p style=" text-align:center " 高铬型钒钛磁铁矿 钒、钛、铬、钙、镁、铝、硅、锰和磷含量的测定 strong 波长色散X射线荧光光谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国铁矿石与直接还原铁标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 攀钢集团攀枝花钢钒有限公司、冶金工业信息标准研究院 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YBCPZT23252020" YBCPZT2325-2020 /a /p /td td width=" 22%" p style=" text-align:center " 铁矿石的鉴别 strong 激光诱导击穿光谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2021 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国铁矿石与直接还原铁标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 上海海关工业品与原材料检测技术中心、上海交通大学、冶金工业信息标准研究院 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPXT23302020" YSCPXT2330-2020 /a /p /td td width=" 22%" p style=" text-align:center " 高纯铝化学分析方法 痕量杂质元素含量的测定 strong 辉光放电质谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 修订 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 国标(北京)检验认证有限公司、新疆众和股份有限公司、昆明冶金研究院、金川集团股份有限公司、包头铝业有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPXT23322020" YSCPXT2332-2020 /a /p /td td width=" 22%" p style=" text-align:center " 镓化学分析方法 汞、砷含量的测定 strong 原子荧光光谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 修订 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 中铝矿业有限公司、中铝郑州有色金属研究院有限公司、平果铝业有限公司、国标(北京)检验认证有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT23332020" YSCPZT2333-2020 /a /p /td td width=" 22%" p style=" text-align:center " 铝土矿石化学分析方法 第27部分:元素含量的测定 strong 电感耦合等离子体原子发射光谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 中铝郑州有色金属研究院有限公司、中铝矿业有限公司等 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT23442020" YSCPZT2344-2020 /a /p /td td width=" 22%" p style=" text-align:center " 粗氢氧化镍钴化学分析方法 第8部分:铜、铝、锂、锌、镉、铅、砷含量的测定 strong 电感耦合等离子体原子发射光谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 广东邦普循环科技有限公司、湖南邦普循环科技有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT23502020" YSCPZT2350-2020 /a /p /td td width=" 22%" p style=" text-align:center " 锡及锡合金分析方法 strong 光电直读光谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 云南锡业股份有限公司、昆明冶金研究院、北京康普锡威科技有限公司、云南锡业锡材有限公司、个旧市自立矿冶有限公司、个旧市凯盟工贸有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPXT23512020" YSCPXT2351-2020 /a /p /td td width=" 22%" p style=" text-align:center " 硫化钴精矿化学分析方法 第2部分:铜含量的测定 strong 碘量法和火焰原子吸收光谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 修订 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 浙江华友钴业股份有限公司、金川集团股份有限公司、衢州华友钴新材料有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT23542020" YSCPZT2354-2020 /a /p /td td width=" 22%" p style=" text-align:center " 铜阳极泥化学分析方法 第10部分:铱和铑含量的测定 strong 火试金富集-电感耦合等离子体质谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 紫金铜业有限公司、紫金矿业集团股份有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT23552020" YSCPZT2355-2020 /a /p /td td width=" 22%" p style=" text-align:center " 铜阳极泥化学分析方法 第11部分:铟含量的测定 strong 火焰原子吸收光谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 紫金铜业有限公司、紫金矿业集团股份有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT23572020" YSCPZT2357-2020 /a /p /td td width=" 22%" p style=" text-align:center " 锂硅合金化学分析方法 第2部分:铁、镍、铬含量的测定 strong 电感耦合等离子体原子发射光谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 国标(北京)检验认证有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT23582020" YSCPZT2358-2020 /a /p /td td width=" 22%" p style=" text-align:center " 锆及锆合金中织构的测定 strong 电子背散射衍射法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 国核锆铪理化检测有限公司、国核宝钛锆业股份公司、宝钛集团有限公司、国家钛材产品质量监督检验中心、西安汉唐分析检测有限公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT23652020" YSCPZT2365-2020 /a /p /td td width=" 22%" p style=" text-align:center " 铍精矿、绿柱石化学分析方法 第8部分:氧化铍、三氧化二铁、氧化钙、磷含量的测定 strong 电感耦合等离子体原子发射光谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 新疆有色金属研究所、西北稀有金属材料研究院宁夏有限公司、湖南省五矿铍业公司 /p /td /tr tr td width=" 13%" p style=" text-align:center " a href=" http://219.239.107.155:8080/TaskBook.aspx?id=YSCPZT23732020" YSCPZT2373-2020 /a /p /td td width=" 22%" p style=" text-align:center " 高纯锇化学分析方法 痕量杂质元素的测定 strong 辉光放电质谱法 /strong /p /td td width=" 5%" p style=" text-align:center " 推荐 /p /td td width=" 5%" p style=" text-align:center " 制定 /p /td td width=" 5%" p style=" text-align:center " 2022 /p /td td width=" 11%" p style=" text-align:center " 原材料工业司 /p /td td width=" 17%" p style=" text-align:center " 全国有色金属标准化技术委员会 /p /td td width=" 19%" p style=" text-align:center " 国标(北京)检验认证有限公司、有研工程技术研究院有限公司 /p /td /tr /tbody /table p br/ /p p br/ /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制