当前位置: 仪器信息网 > 行业主题 > >

超辅助萃取仪

仪器信息网超辅助萃取仪专题为您提供2024年最新超辅助萃取仪价格报价、厂家品牌的相关信息, 包括超辅助萃取仪参数、型号等,不管是国产,还是进口品牌的超辅助萃取仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超辅助萃取仪相关的耗材配件、试剂标物,还有超辅助萃取仪相关的最新资讯、资料,以及超辅助萃取仪相关的解决方案。

超辅助萃取仪相关的资讯

  • 悬“珠”济世——单液滴微萃取(SDME)的妙用
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 单液滴微萃取(single drop microextraction,SDME)类似于SPME,只是把萃取丝换成一滴有机溶剂液滴(悬于注射针头或毛细管口)。用单滴溶剂作为用液体吸着分析物在分析化学中的应用可以追溯到上世纪90年代中期的Dasgupta的工作,Dasgupta 研究组在1995年首次开发了用单滴液体作为吸着气体的界面来萃取空气中的氨和二氧化硫等气体( Anal Chem 1996,68:1817-1882),用石英毛细管口的水滴作吸着剂来收集被分析物,然后用在线光度法进行测定。1996年们又用滴中滴(水滴包围有机溶剂液滴)小型化溶剂萃取系统,他们把十二烷基硫酸钠和亚甲基蓝作为离子对萃取到氯仿液滴中,如图1所示 。他们利用一个蠕动泵把萃取后的液滴排除,用光纤检测器进行光度分析。 图 1 滴中滴液-液微萃取 ( Anal Chem 1996,68:1817-1882)   Cantwell 研究组首次把单滴溶剂微萃取技术直接与色谱分析相结合(Jeannot M A , Cantwell F F, Anal Chem,1996,68:2236),他们在一只聚四氟乙烯棒底端做成一个窝,其中可容纳8&mu L辛烷液滴,把液滴浸入要萃取的水溶液中,搅拌水溶液进行萃取,他们把这一过程叫做&ldquo 溶剂微萃取&rdquo (&ldquo solvent microextraction&rdquo ,SME),见图 2 ,萃取之后用注射器抽取一部分辛烷液滴用气相色谱进行分析。 图 2 &ldquo 溶剂微萃取&rdquo 示意图 ( Anal Chem 1996,68:2236)   1997年Jeannot和 Cantwell 首次使用注射器针头的有机溶剂液滴浸入水相进行液-液微萃取,然后把注射器进样到气相色谱仪中进行分析。 图 3 &ldquo 用注射器针头下液滴进行溶剂微萃取&rdquo 示意图 (M A Jeannot, F F Cantwell, Anal Chem,1997,69 :235-239)   进入新世纪之初,把SDME 延伸到顶空(HS)分析,是由Przyjazny、Jeannot、和Vickackaite研究组分别各自进行的( Przyjazny A, Kokosa J M, J Chromatogr A,2002 ,977:143   Theis A L, Waldack A J, Hansen S M, Jeannot M A, Anal Chem,2001,73 :5651) Tankeviciute A, Kazlauskas R, Vickackaite V, Analyst,2001, 126 :1674)。SDME 顶空(HS)分析如图 4所示 图4 顶空溶剂微萃取示意图   通常用高沸点有机溶剂如1-辛醇或正十六烷作萃取溶剂,适合于测定挥发或半挥发性分析物, HS-SDME 可以得到较大液滴的稳定性,避免液滴被污染,不会由于样品基体&ldquo 脏&rdquo 而受到影响,与浸入法相比有些情况下会得到更快的萃取速度。   SDME 和SPME类似,快速、简单可以自动化,但是它很便宜,无需什么设备。通过选择适当的萃取溶剂改变其选择性,从而可以降低检测限。与常规的液-液萃取(LLE)不同的是只需要极少量溶剂,由于每次都使用新鲜的溶剂(每次更新溶剂)不会有携留问题。也不像SPME每次都要脱附。在SPME情况下,吸着剂涂渍在萃取丝的表面上,被分析物的吸着主要是吸附,在某些应用中全部被分析物能被吸附的很有限。在SDME中液滴不仅可以吸附还可以吸收,所以它的吸着容量要大于SPME。 1、SDME 的模式   到目前SDME有7种模式,可以分为双相和三相微萃取,决定于相平衡中共存的相数。双相模式有直接浸入(DI)式,连续流动(CF)式,液滴到液滴(DD) 式,和直接悬浮(DSD)式。而三相模式有顶空(HS),液-液-液(LLL)式和LLL 与 DSD结合的模式。见图 5 单滴微萃取(SDME) 双相 三相 直接浸入 (DI) 连续流动 (CF) 液滴-液滴 (DD) 直接悬浮 (DSD) 顶空 (HS) 液-液-液 (LLL) 液-液-液+直接悬浮 (LLL + DSD) 图 5 SDME的7种模式   SDME 各种模式的使用频率如图 6所示,双相萃取占52%,三相萃取占48%。 图 6 SDME各种模式的使用频率   到目前为止,在SDME各种模式中使用最多的是顶空SDME,占到全部SDME的41%,其次是直接浸入SDME,占38%。所以如此是由于这两种模式简单,所需设备便宜,但也是由于他们是文献中第一个溶剂微萃取方法,其他5种模式使用不多,可能是由于要使用附加的设备如泵(CF),或者由于应用于分析物的范围小(如LLLME大多用于可离子化的化合物)。   为了改善传质速率,顶空SDME和直接浸入SDME可以使用动态模式,在动态模式下不仅供给相(样品),而且接受相(萃取溶剂)都可以流动。动态SDME可以使用两种方法:暴露液滴和不暴露液滴,在不暴露液滴(或者在注射器中)方法中,溶剂连同样品1&ndash 3 &mu L液体或顶空液滴一起抽吸到注射器中,保持一定时间(停留时间),然后把样品排出,把这一过程循环30-90次,分析萃取出来的样品。在暴露液滴方法中进行萃取的注射器针头下的溶剂液滴是暴露于被萃取样品的,在液滴周围的样品持续一定的时间后被吸入注射器中,停留一段时间后,再把液滴推出针头,但是样品没有排除注射器。不暴露液滴法是He和Lee首先开发出来,他们是以手动操纵注射器活塞完成推出和吸入操作的。此后有人使用重复性更好的注射泵完成注射器活塞的推出和吸入操作(Anal Chem 1997,69:4634)) 。He和Lee比较了静态和动态SDME方法的效果。   静态方法的操作:(1) 用10&mu L 注射器吸取1&mu L甲苯,(2)把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 推动活塞形成1&mu L甲苯液滴到样品溶液里,在甲苯和样品之间平衡15min, (4) 把甲苯液滴抽回到注射器中并从样品瓶中拔出注射器,(5) 把注射器针插入气相色谱仪进样口进行分析。   动态方法的操作:(1) 用10&mu L 注射器吸取1&mu L甲苯,(2) 把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 在大约2 s 时间内抽取3&mu L样品水溶液到注射器中,滞留约3 s的时间,然后在大约2 s 时间内再推出3&mu L样品水溶液,等待3 s ,这样的操作,约3 min 重复一次,进行20次。最后把样品溶液推出注射器,留下1&mu L甲苯,(4) 把注射器 从样品瓶中拔出, (5) 把注射器针插入气相色谱仪进样口进行分析。   暴露液滴法和不暴露液滴法的全盘自动化是由中山大学的欧阳钢锋等完成的( Ouyang G,.Zhao W, Pawliszyn J, J Chromatogr A ,2007,1138: 47),使用商品计算机与自动进样器连接来控制溶剂吸取、活塞速度、停留时间和注射器进样等动作。   两种使用最多的模式&mdash &mdash 直接浸入和顶空溶剂微萃取&mdash &mdash 具有一些不同的应用领域(尽管有一些分析物可以使用任何这两种样品制备方法),因为直接浸入SDME法的萃取溶剂要和水溶液样品直接接触,所用溶剂必须和水溶液不能混溶,即要使用非极性或弱极性溶剂,所以这一方法适合于从干净样品(如自来水或地下水)中分离和富集非极性或中等极性的挥发和半挥发物质。因为挥发性化合物最好使用顶空SDME,而直接浸入SDME最好用于半挥发性分析物,如有机氯农药、邻苯二甲酸酯类、或药物。   一般讲直接浸入SDME 萃取溶剂应该是挥发性溶剂,如己烷或甲苯,它们可以和气相色谱配合。因此气相色谱曾经是与直接浸入SDME 萃取相结合的主要方式,在文献中有超过62%是直接浸入SDME和气相色谱进行配合的。和其他分析方法配合的有液相色谱(超过21% 的 DI-SDME是和HPLC一起使用的),使用HPLC可以分析极性半挥发性物质如苯酚类化合物,但是在此情况下萃取溶剂一定要更换,包括把原来的萃取溶剂慢慢蒸发掉,再用可以与HPLC 流动相兼容的溶剂,或者HPLC 流动相溶解蒸发后的残留样品。   除去HPLC之外,可以用DI-SDME把样品处理之后进行分析的方法有:大气压基质辅助激光解析/电离质谱(AP-MALDI-MS),这一方法使用者日益增加。如果使用DI-SDME进行无机组分的分离/浓缩(如金属离子),那么在进行衍生化之后就可以用原子吸收光谱或诱导耦合等离子质谱进行分析。   DI-SDME的最大优点是使用的设备简单(至少在静态模式下是这样)费用低,在最简单的情况下,只用一个萃取样品瓶和一个隔垫盖,一只搅拌棒和电磁搅拌器,一支微量注射器,以及少许溶剂即可。DI-SDME的缺点是-在萃取过程中液滴容易从针头处脱落,这样就限制了样品溶液的搅拌速度,以及样品要相对干净一些(没有固体颗粒),典型的搅拌速度最大到1700 rpm。在液-液萃取系统中由于扩散系数小,传质速度慢,所以就需要激烈搅拌,或者使用动态模式,这样也就造成DI-SDME模式要比其他SDME模式要用较长的萃取时间。   顶空SDME 是萃取挥发和半挥发化合物样品的选项,无论是极性还是非极性都可以,样品复杂也好、脏也好都可以,含有固体颗粒也可以适应,除去液体样品之外,固体或气体也可以使用这一模式进行萃取。   在最简单的条件下,使用手动HS-SDME,通常用一只注射器抽取1 到 3 &mu L溶剂,较大的溶剂体积可以提高检测灵敏度,但是有使液滴从针头脱落的危险,一些实验人员建议把针头弄粗糙一些,这样有助于保留住液滴。样品可以使用20 mL大小的顶空瓶,用水浴加热20 到 30 min,并进行搅拌。萃取之后把液滴吸入针头内,注射到气相色谱仪中进行分析。   HS-SDME 可适应各种各样分析物,因为它对萃取溶剂除去挥发性之外没有什么限制,经常使用HS-SDME 萃取的样品例子如三卤甲烷、BTEX烃类、挥发性有机化合物、无机和金属有机化合物(萃取前要进行衍生化)。HS-SDME常常用于萃取极性挥发物如醛类化合物,之后或者同时进行衍生化,例如 Stalikas 等(Anal Chim Acta, 2007,599:76&ndash 83)就是用2&mu L正辛醇液滴(含有4.0× 10&minus 6M 浓度的正十五烷和2.0× 10&minus 3M浓度的 2,4,6-三氯苯肼)进行萃取并衍生化醛类,之后进行色谱分析。HS-SDME 也可用于萃取半挥发性化合物,如多环芳烃、多氯联苯、酚类和氯代酚。萃取溶剂可以使用非极性的或极性的,后者包括离子液体、水溶液甚至纯水。在HS-SDME中使用水基溶液很有意思,因为它完全回避了使用有机溶剂。例如Yi He(Anal Chim Acta, 2007,589:225)使用磷酸水溶液液滴萃取尿液中的甲基苯丙胺和苯丙胺。   在HS-SDME中普遍使用的萃取溶剂是1-辛醇、十六烷、十二烷和十烷,因为这一模式是三相系统,其平衡时间要比直接浸入两相平衡模式长,但是 HS-SDME可以通过增加顶空的容量即增加在顶空中被萃取物的量来提高效率,顶空容量等于顶空(空气)体积Va,和空气-水之间的分配系数Kaw,只要增加Va或Kaw,或二者都增加就会大大提高顶空容量,如果被分析物萃取到有机溶剂中的量小于顶空容量(小于5%),那么从顶空中萃取分析物就几乎不可能了。这样在快速萃取中只要几分钟就可以完成,因为在气相中的扩散系数要比在液相中扩散大得多(约4个数量级)。要提高传质速率提高样品温度是最简单的办法,这样可以使样品中的被测组分更多地蒸发到顶空中,但是提高温度又会降低溶剂液滴-顶空之间的分配系数,降低测试的灵敏度,如果把液滴温度降低就可以避免灵敏度的降低。如图7是华南理工大学杭义萍等在分析水溶液中的氟化物时,用冰袋冷却注射器,从而使萃取液滴得到降温。 图 7 把液滴温度降低的设备图 1&mdash 电磁搅拌器 2&mdash 水 3--电磁搅拌棒 4&mdash 样品溶液 5&mdash 液滴 6&mdash 冰袋 7&mdash 微量注射器 8&mdash 聚四氟乙烯喇叭口 (Anal Chim Acta,2010,661:161)   图 7的方法简单,但是温度不能正确控制,中科院大连化学物理研究所关亚风研究组设计的冷却方法可以精确控制冷却温度。他们的方法是在萃取瓶上的特殊瓶盖(图8中的a),盖顶端有一个直径为3mm 的洞,洞中可以容纳40&mu L溶剂而不会流出,用它做萃取溶剂液滴窝,在进行萃取时先用注射器往液滴窝中注入20&mu L溶剂(实验证明20&mu L溶剂萃取效果最好)(图中 b),把瓶盖拧到萃取瓶上(图中e),然后把冷却用热电冷却器装在瓶盖上(图中f),萃取溶剂的冷却。 图8 用热电冷却器冷却萃取溶剂 (J Chromatogr A,2010,1217:5883) 2、SDME 与分析仪器的配合   与HS-SDME配合进行最后分析的技术主要是气相色谱仪,占到到过75%,而使用HPLC配合HS-SDME的只有不到10%,原子吸收光度分析的占5%,用毛细管电泳分析的占3.5%。   各种模式SDME 的配合所占比例见图 8 图 8 SDME 与分析仪器的配合的比例   国内外期刊近几年有关用一滴溶剂微萃取进行分析的文献 1 SDME 结合GC-FPD分析水中6种有机磷农药 在5&mu L注射器针头装一个2mm 长的锥形物,抽取3.5&mu L萃取溶剂在水样中进行萃取 Tian F,Liu W,Fang H ,et al,Chromatographia,2014,77:487&ndash 492(暨南大学) 2 通过衍生化SDME分析复杂体系中测定短链脂肪酸的有效预处理方法 用BF3-乙醇衍生化短链脂肪酸经SDME萃取,1.0 &mu L邻苯二甲酸二丁酯做萃取溶剂,萃取20min Chen Y, Li Y,Xiong Y,et al,J Chromatogr A,2014,1325:49&ndash 55(中科院地球化学所) 3 用全自动裸露和注射器内动态单滴微萃取在线搅动测定珠江口和南中国海表面水中多环麝香 在优化条件下浓缩比达110-182,回收率为84.9 - 119.5%, Wang X,Yuan K,Liu H,et al, J Sep Sci,2014, 37: 1842&ndash 1849(中山大学) 4 动态超声雾化萃取结合顶空离子液体单滴液体微萃取分析连翘中的精油 3 &mu L离子液体( 1-甲基-3-辛基咪唑六氟磷酸盐)作萃取液滴,50mg 样品萃取13min Yang J, Wei H, Teng X,et al, Phytochem. Anal. 2014, 25:178&ndash 184(吉林大学) 5 新的纳米纤维-碳纳米管-离子液体三元萃取剂进行单滴微萃取 使用三元萃取剂可以有效地萃取烧烤食品中的2-氨基-3,8-二甲基咪唑并 [4,5-f] 喹喔啉 Ruiz-Palomero, C,LauraSoriano M, Valcá rcel M,Talanta,2014,125:72&ndash 77(西班牙科尔多瓦大学) 6 单滴微萃取-液相色谱-质谱快速分析主流烟草烟雾中六种有毒酚类化合物 用1-十二醇作萃取液滴,萃取12min.六种酚类为苯酚、邻苯二酚、间苯二酚、对苯二酚、邻甲酚、和对甲酚 Saha S, Mistri R,Ray B C,Anal Bioanal Chem, 2013,405:9265&ndash 9272(印度贾达普大学) 7 用自动注射器中单滴溶剂顶空萃取测定白酒中的乙醇 注射器中液滴为8 mol /L硫酸中3 mmol/ L重铬酸钾,使乙醇还原后进行光度分析,测定乙醇含量 &Scaron rá mková I, Horstkotte B , Solich P, et al, Anal Chim Acta 2014,828:53&ndash 60(捷克查尔斯大学) 8 单滴微萃取-气相色谱测定水样中的吡氟草胺,灭派林,氟虫腈,丙草胺 1&mu L庚烷液滴浸入4.0 mL样品中,在室温下以500rpm搅拌30min进行萃取 Araujo L, Troconis M E, Cubillá n D,et al, Environ Monit Assess, 2013,185:10225&ndash 102339 用Fe2O3磁性微珠微波蒸馏和单滴溶剂顶空萃取测定花椒中的精油 2.0 &mu L十二烷液滴作萃取剂,在微波炉中蒸发精油被液滴吸收 Ye Q,J Sep Sci, 2013, 36: 2028&ndash 2034(上饶师范大学) 10 用香豆素作荧光开关以单滴微萃取分析化妆品中残留的丙酮 2.5&mu L水溶液液滴,含有3 x10-4mol/L 7-羟基-4-甲基香豆素或6 x10-6mol/L 7-二甲基胺-4-甲基香豆素(40%乙醇溶液),在4 ℃下萃取3min Cabaleiro N,Calle I De la,Bendicho C,et al,Talanta,2014,129:113-118(西班牙维戈大学) 11 以单滴微萃取GC-MS分析细辛中的挥发物 正-十三烷:乙酸丁酯(1:1)作萃取液滴,10 lL在70℃下萃取15min Wang G, Qi M,Chinese Chemical Letters,2013, 24:542&ndash 544(北京理工大学) 12 微波蒸馏顶空单滴微萃取-GC-MS分析具刺杜氏木属植物DC中的挥发物 10 &mu L注射器取2.5 &mu L正-十七烷溶剂液滴,萃取微波加热蒸馏出来的被测组分 Gholivand M B, Abolghasemi M M , Piryaei M, et al, Food Chemistry, 2013,138:251&ndash 255(伊朗Razi大学) 13 表面活化剂辅助直接悬浮单液滴微萃取浓缩气相色谱分析生物样品中的曲马朵的多变量优化 把有机溶剂液滴用注射器注入含有Triton X-100和 曲马朵的水性样品中,在搅拌样品溶液条件下进行萃取,之后再用注射器把有机溶剂抽出进行色谱分析 Ebrahimzadeh H,Mollazadeh N, Asgharinezhad A A,et al, J Sep Sci,2013, 36:3783&ndash 3790 14 用离子液体辅助微波蒸馏单液滴微萃取及GC&ndash MS快速分析香鳞毛蕨精油 1-乙基-3-甲基咪唑乙酸盐离子液体用作样品细胞破坏剂进行微波蒸馏,2 &mu L正-十七烷溶剂作萃取液滴 Jiao J ,Gai Q Y,Wang W,et al, J Sep Sci,2013, 36:3799&ndash 3806 (东北林业大学) 15 农田土壤中阿特拉津和甲氨基粉的快速测定&mdash 使用单液滴中鼓泡微萃取浓缩GC-MS分析 往注射器中吸入1 &mu L萃取溶剂,之后再吸入0.5 &mu L空气,满满地把溶剂和空气泡注入被萃取的水溶液中,让空气在溶剂中形成一个气泡,萃取20min 后把溶剂吸入注射器,用GC-MS分析 Williams D B G,George M J, Marjanovic L,J Agric Food Chem. 2014, 62:7676&minus 7681 16 用SDME/GC&ndash MS测定椰子水中19种农药残留(有机磷、有机氯、拟除虫菊酯、氨基甲酸酯、硫代氨基甲酸酯、嗜球果伞素) 10 mL样品用甲苯作萃取剂,液滴1.0 &mu L,样品用HCl酸化,不加盐,200 rpm搅拌下萃取30 min dos Anjos P J, de Andrade J B, Microchem J,2014,112 :119&ndash 126 17 动态超声雾化萃取结合顶空离子液体单滴液体微萃取分析果汁中的风味化合物 1-羟基-3-咪唑四氟硼酸盐离子液体作萃取液滴,萃取液体12.5 mL,萃取5min,萃取温度80 ℃ 萃取时间主要是为了最高的分析物信号,并保证得到满意的准确和再现的结果,传质速度决定时间的长短,一般来讲萃取时间增加会增加萃取量,然而时间太长液滴会变得不稳定,并增加整个分析时间,一般提高搅拌速度会缩短萃取时间,但是搅拌太快会使液滴从注射器针头脱落。   (4)样品溶液离子强度的影响   往样品溶液中加入盐广泛地用于液-液萃取中,水分子在盐离子周围形成一个水化的球,所以溶解萃取物的水量就相对降低,从而降低了萃取物在水中的溶解度,所以加入盐可以提高萃取效率,但是也有报告证明加入盐有相反的作用,其解释是盐的分子与被萃取物分子间的相互作用,或者说是改变了Nernst扩散层的物理性质,所以盐的加入要考虑萃取物的性质和盐的加入量。这一矛盾现象迫使人们在确定萃取条件时要考虑这一因素。   (5)搅拌萃取溶液速度的影响   在萃取过程中进行搅拌可以提高水相的传质速度,这样在水相和顶空气相或者说在水相和有机溶剂液滴之间的平衡加快了,所以在萃取过程中都要进行搅拌,可以提高样品的萃取效率,缩短萃取的时间,当然也不能搅拌太快,否则液滴会脱落。   小结:   一滴溶剂微萃取是一种简便易行的样品处理技术,可以和多种分析仪结合使用,简化了样品处理的时间和步骤,是固相微萃取的一个很好的补充,是液-液萃取技术的一次跃升,所以这一技术还在进一步研究和改进中。   下一讲和大家讨论&ldquo 扭转乾坤&mdash 神奇的反应顶空分析&rdquo
  • 上海新拓CW-2000超声-微波协同萃取/反应仪”获BCEIA金奖
    2007年第十二届北京分析测试学术报告会及展览会在北京圆满落幕。此次,由上海新拓微波公司多项自主研发、设计的分析测试仪器获得了与会者的极大关注。其中,CW-2000超声-微波协同萃取/反应仪更是得到了评委们的广泛认可,荣获2007年BCEIA展览会仪器金奖。CW-2000超声-微波协同萃取/反应仪正是凭借其独特新颖先进的技术组合、良好的用户评价和广阔的应用前景成为了今年BCEIA会上在众多微波仪器中唯一获得这一殊荣的仪器。 上海新拓微波公司总经理张和清在此衷心感谢广大用户对公司产品的厚爱和支持,公司承诺将继续坚持创新,不断进取,为我国分析仪器的发展作出自己的贡献。 screen.width-300)this.width=screen.width-300" border=0 screen.width-300)this.width=screen.width-300" border=0 在分析化学研究中样品的前处理过程(萃取/消解、分离和富集)是决定分析检测速度和质量的关键。通常样品的预处理过程所花费的工时约是后继仪器分析操作用时的十数倍或数十倍。因此,新技术和新仪器,一直是理化检验与分析界研究领域之一。在诸多样品预处理方法中,超声波和微波萃取技术的发展较为迅速,应用也较广泛。在美国环保局(USEPA)一些标准方法中(http://www.epa.gov),超声波和微波技术已被列为样品预处理的重要手段。 为填补我国样品预处理萃取仪器的空白,中山大学化学学院邹世春博士等人在多年大量样品预处理方法研究工作的基础上,将超声波和微波有机地结合起来,充分利用超声波的空化作用以及微波的高能作用,率先提出了在低温常压条件下进行微波-超声波协同作用进行样品前处理的新构想,并与我公司技术人员一起,联合研制出了CW-2000型微波-超声波协同萃取仪。 该仪器中直接固定于超声波换能器(50W)上的样品容器,巧妙地置于功率可调,温度可控的微波超声波辐射腔内,通过一系列电子自控技术,实现了直接超声波萃取、开放式微波萃取和微波-超声波二者协同萃取等各种不同的萃取、消解或合成方法。 本仪器的研发得到了广东省自然科学基金的资助,可广泛应用于环保、农业、食品、卫生防疫、地质、医学、化学化工、商检以及教育科研等领域中,是无机分析、有机分析和生物分析等样品前处理极为有效的手段之一,特别适合比重小,体积大的样品前处理(如:橡胶、塑料、中药、农产品和土壤等)。此外,该新型仪器还可作为一种新型反应器,用于高校和科研单位在化学反应、有机合成、样品消解、样品萃取和合成等方面展开许多有意义的研究工作。 仪器主要性能特点: ● 采用新型专利技术,该仪器具有超声波、微波以及微波-超声波协同萃取三种功能,可根据样品性质和分析要求,任意选择一种工作方式,真正做到一机多用; ● 低温常压环境,可减小对样品中目标物,尤其是对有机物结构的破坏; ● 根据容器体积,样品量可高达100 g或以上,尤其适用于比重小、体积大的样品处理(如中草药、橡塑等样品); ● 微波功率和辐照时间、目标溶液温度连续可调,超声振动、微波加热方式和程度可任意根据工作方式、时间和温度任意组合和设定; ● 采用直接超声波振荡方式(不需要超声波液体传递介质),萃取效率高、能耗低、噪声低;嵌入式无线设计,使样品容器置入、取出更为方便; ● 毋须加工或购置特殊材料的样品容器,并可根据用户要求制作不同容量容器,使用成本低; ● 采用控制磁控管阳极电流的方式(专利技术)获得准确稳定的连续微波输出功率(非脉冲方式),尤其适于低功率微波输出控制; ● 触摸式参数设置和显示,液晶视频监视样品处理全过程,实现真正的人机对话; ● 液晶显示器,人机对话,操作更为方便。 ● 非接触式红外测温;电视显示反应状;控温范围:室温-120℃ 精度±1℃;三种控制模式:时控制微波功率/温控微波功率/恒定微波功率。 ● 根据用户目的和要求,新仪器可广泛用于高等院校、科研院所及各生产部门等进行样品消解、萃取、无机或有机反应、合成等。 欢 迎 浏 览 我 们 的 网 站:www.sh-xintuo.com.
  • 亚临界水萃取仪
    成果名称 亚临界水萃取仪 单位名称 天津出入境检验检疫局动植物与食品检测中心 联系人 宓捷波 联系邮箱 mijb@tjciq.gov.cn 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 合作方式 □技术转让 □技术入股 □合作开发 &radic 其他 成果简介:   样品前处理技术是食品分析检测的最关键步骤之一。食品样品中的目标化合物一般含量极小,基体复杂、干扰物多,必须经过样品的制备、目标物质的提取、净化、浓缩等前处理过程才能最终进行检测。然而,提取和净化过程中通常需要大量使用乙腈、二氯甲烷等有毒试剂,并进行液固提取、转移、洗脱和最终的浓缩,残余溶液的废弃,这些都会对环境造成一定程度的污染,同时也会危害科学技术人员的生命健康。加强样品前处理技术的研究,在提高对食品样品中残留农兽药提取效率的同时,减少甚至不用有毒害的有机试剂,对于保障国家的食品安全、环境质量、人体健康都具有重大意义。   在食品分析检测过程中,目前广泛应用的前处理技术主要有微波辅助萃取(MAE)、加速溶剂萃取(ASE)、超临界流体萃取(SFE)等。这些方法提取效率高,定量准确,但同时也存在一些缺陷。一是操作处理时间过长。二是有机试剂用量大,对环境有污染。   天津检验检疫局围绕该关键点,广泛进行资料调研,认真分析,努力寻求方法的突破,积极尝试了亚临界水萃取后的多种反萃模式,并针对进出境食品中农兽药的残留情况进行方法开发。该项目利用固相吸附填料对亚临界水萃取后的目标物进行适时反萃和动态连接技术有效地克服了亚临界水萃取后目标物反萃的难点,建立了一套快速、灵敏、绿色、环保的亚临界水萃取-填料吸附的检测体系,并开发了简易、实用动态亚临界水萃取仪器。 应用前景:   该项目是一个以具有自主知识产权的新技术为基础的食品中农兽药残留检测的前处理技术平台。项目采用了亚临界水萃取,填料组合吸附,动态连接和针对性优化等技术,同时利用该技术组装的动态萃取装置材料普遍,连接简便,适于基层实验室自行组装使用,便于推广。   该项目具有四项核心技术:亚临界水萃取温度优化,吸附填料的模式优化装填法,溶剂组合反萃技术,动态萃取连接交替冲洗技术。该项目建立的静态和动态亚临界水萃取-反萃技术立足于检验检疫的实际工作,解决了实验室一线的前处理难题,并具有实际推广的应用前景。该项目利用绿色、环保的萃取溶剂-水取代了有机溶剂,基于节能、环保的科技发展理念,充分考虑技术的实用性和可发展性。该技术的特点是萃取溶剂无毒无害,实验材料获取容易、方法灵敏,对蔬果、粮谷、肉类中绝大多数农兽药都可以进行定量的萃取,且动态亚临界水装置结构简单,可以根据实验要求进行不同的改进。   目前,该项目构建的加速溶剂萃取的静态亚临界水萃取-C18吸附净化前处理技术平台可以在蔬果、粮谷和肉类基质中较好地完成农兽药提取,其检测低限可达0.05mg/kg,回收率及精密度均符合分析要求;由液相色谱泵和气相柱温箱以及管线自组装的动态亚临界水萃取装置,可以在蔬果、中药材以及肉类制品中进行多种农兽药的提取、检测,对农药和喹诺酮类药物的检测低限均达到0.1mg/kg。
  • 新能源电池行业中,海道尔夫提升金属萃取剂利用率的密码
    金属萃取剂在新能源行业中扮演着至关重要的角色,特别是在锂离子电池和其他类型电池的制造和回收过程中。随着电动汽车和储能系统的快速发展,对锂、钴、镍、锰、钒等金属的需求日益增加。这些金属是制造高性能电池的关键原材料,而金属萃取剂则是从矿石、废料或其他原料中提取这些金属的有效工具。金属萃取剂在新能源行业的应用主要有以下几个方面: 1.金属提取:在矿山中,使用金属萃取剂可以从矿石中提取锂、钴、镍等金属。萃取剂能够选择性地与目标金属形成配合物,从而与其他成分分离。2.金属回收:从废旧电池中回收金属是一个重要的环节,有助于减少对新矿产资源的依赖。金属萃取剂可以有效地从废旧电池中回收锂、钴、镍等金属。3.电池制造:在电池制造过程中,金属萃取剂可以帮助提纯和回收金属,以保证电池性能和一致性。某化学用户是一家专注于稀贵金属湿法冶炼技术的企业,其在新能源金属萃取剂领域取得了显著成就。该用户采用湿法冶金技术,特别是萃取法,包括磷酸类萃取剂和羟肟类萃取剂,这些技术具有成本低、污染小的优点。在金属萃取剂的制备、纯化和回收过程中,通过使用海道尔夫旋转蒸发仪,高效的完成了回收率提升实验探索以及整个实验流程。01金属萃取剂的制备金属萃取剂通常是通过化学合成制备而成的。在合成过程中,需要使用溶剂来溶解原料,并通过化学反应生成目标萃取剂。其中需要利用旋转蒸发仪去除这些溶剂,同时浓缩产物,从而提高产率。02金属萃取剂的纯化在萃取剂合成完成后,还需要进行纯化以去除副产物或未反应的原料。利用旋转蒸发仪通过减压蒸馏的方式除去不需要的溶剂或杂质,从而获得纯净的萃取剂。03金属萃取剂的回收在实际的金属萃取过程中,萃取剂会被多次使用,但随着时间的推移,萃取剂会逐渐降解或被污染物污染。这时需要通过旋转蒸发仪用来回收和再利用萃取剂,从而降低生产成本。使用Heidolph旋转蒸发仪的优势1.高效蒸发,提高溶剂回收率:海道尔夫旋转蒸发仪通过其高效的蒸发效率以及优异的真空密封性,可以快速蒸发溶剂,缩短蒸馏时间降低能耗,提高萃取剂的纯度和回收效率,减少溶剂的消耗,降低生产成本。2.温度控制:海道尔夫旋转蒸发仪能够通过控制旋钮,快速且精确的控制加热温度,对于处理热敏性萃取剂尤为重要,可以避免高温对其结构的破坏。3.自动化程度高:海道尔夫控制型旋转蒸发仪配备有自动化的功能,比如定时、内置溶剂数据库、收藏夹和程序设定等功能,可以减少操作人员的工作量并提高处理效率。Promax 1020 往复式摇床助力金属提取金属作为金属萃取剂合成过程中的重要部分。金属萃取剂的合成通常涉及有机化学反应,而金属或其化合物在这些反应中的角色包括:催化作用、原料或中间体以及助剂或调节剂。矿物资源常被用作金属的来源,例如,铜矿石、金矿石等被粉碎、磨细后,通过浮选、氰化浸出等方法提取金属。Promax 1020往复式摇床在浮选技术中被用作浮选前后的辅助处理手段来进行金属的提取。Promax 1020往复式摇床与浮选机的联合使用可以形成一个更完整的选矿流程。例如,在处理某些类型的矿石时,Promax 1020往复式摇床可用于初步富集,随后浮选用于进一步精选,或者相反,先浮选后用摇床进行精炼,在浮选技术中被用作浮选前后的辅助处理手段来进行金属的提取。01预处理在浮选前,Promax 1020可以用于预选,32mm振幅有助于初步分离出部分易于通过重力分离的矿物,这样可以减少后续浮选的负荷,提高浮选的效率和经济性。同时,有效去除大块的杂质,改善浮选原料的质量,减少不必要的浮选药剂消耗。Promax 1020摇床可设置定时范围1至999分钟,允许长时间无人值守操作,有效提高浮选前处理的效率。02精矿再处理对于浮选得到的粗精矿,通过Promax 1020进一步处理,通过重力分离提高精矿的纯度,去除未完全浮选的脉石矿物,从而提高最终产品的品质。特别是在处理细粒级矿物时,Promax 1020可以作为一种高效的选矿设备。03尾矿回收浮选尾矿的处理中,通过Promax 1020回收其中可能存在的有价值矿物。由于浮选尾矿中可能含有未完全回收的细粒级金属矿物,Promax 1020可以作为一种有效的补充回收手段。04工艺优化在实验室或小型测试中,浮选的预处理结果可以用来评估矿石的可选性,为浮选工艺的设计和优化提供数据支持。END关于HeidolphHeidolph集团是创新型实验室前处理设备的制造厂商。磁力搅拌器、顶置式搅拌器、台式旋转蒸发仪、工业大型旋转蒸发仪、蠕动泵、混匀器、恒温摇床等相关产品构成了Heidolph实验室设备的产品线。集团总部位于德国南部的纽伦堡附近的施瓦巴赫市。作为Heidolph集团全资子公司,海道尔夫仪器设备(上海)有限公司于2019年正式成立,旨在为中国用户提供更为直接、更快速的服务。如需更多详细信息请致电400-021-7800或邮件sales@heidolph-instruments.cn,我们将竭诚为您服务。
  • 如何选择固相萃取柱
    p style=" text-indent: 2em " 固相萃取柱是从层析柱发展而来的一种用于萃取、分离、浓缩的样品前处理装置,常见的固相萃取柱大都以聚乙烯为材料的注射针筒型装置,该装置内装有两片以聚丙烯或玻璃纤维为材料的塞片,两个塞片中间装填有一定量的色谱吸附剂(填料)。 /p p style=" text-indent: 2em " 选择固相萃取柱的关键除了要求的规格之外,决定分离性能的是它的填料。在选择萃取柱时,必须根据待检测样品的种类及其物化性质选择合适的填料。固相萃取填料通常是色谱吸附剂,大致可以分为三大类,分别是以硅胶、高聚物、无机材料为基质。 /p p style=" text-indent: 2em " 第一类是以硅胶为基质,如:Waters& nbsp Sep-Pak& nbsp C18固相萃取小柱,硅胶极性很强,呈弱酸性,可被用于正相或反相两种分离模式:正相提取时,极性比硅胶弱,反相提取时非极性比C18& nbsp 或& nbsp C8& nbsp 的弱。对于类固醇有着较好的萃取效果通常用于非极性或弱极性化合物的萃取或极性杂质的去除。主要用于血样、尿样中药物及其代谢物、多肽脱盐、环境样品中的痕量有机化合物富集、饮料中的有机酸。 /p p style=" text-indent: 2em " 第二类是以高聚物为基质,如:聚苯乙烯-二乙烯苯等。高纯度、高交联度的苯乙烯-二乙烯基苯聚合物为固定相填装的萃取小柱具有高载样量,可耐受极端& nbsp pH& nbsp 条件和不同的溶剂,对极性化合物具有优异的保留能力。可用作酸性、中性和碱性化合物的通用型吸附剂,通常用于反相条件下保留含有亲水基团的疏水性化合物如:酚类、硝基芳香类、硝胺类、硝酸酯类等。 /p p style=" text-indent: 2em " 第三类是以无机材料为主的,如:弗罗里硅藻土、氧化铝、石墨化碳等。弗罗里硅土是一种氧化镁复合的极性硅胶吸附剂,以此为基质的萃取小柱适合于从非极性基质中吸附极性化合物,如多氯联苯、多环芳烃、有机氯农残等;石墨化碳黑(CARB)萃取小柱,& nbsp 以石墨化碳黑为填料,萃取过程非常迅速。且对化合物的吸附容量比硅胶大一倍有余,由于石墨化碳黑表面的正六元环结构,使其对平面分子有极强的亲和力,非常适用于很多有机物的萃取和净化,尤其适于分离或去除各类基质如水果、蔬菜中的色素、甾醇、苯酚等物质;以氧化铝为基质的填料有酸、碱、中性三种类型,适用于酸性、碱性、中性溶剂的分离萃取。 /p p style=" text-indent: 2em " 固相萃取柱容量是指固相萃取柱填料的吸附量,在选择固相萃取柱时,必须考虑柱容量。由于我们面对的样品基质通常都较为复杂,在固相萃取中,固相萃取吸附剂对目标化合物吸附的同时,也会吸附同类性质的杂质。因此,在考虑柱容量是应该是目标化合物加上可被吸附的杂质总量不能超过柱容量。否则在载样的过程中就可能有部分目标化合物不能被吸附,造成回收率偏低。 /p
  • 北京吉天快速溶剂萃取仪填补国内空白
    北京吉天APLE-1000/2000/3000快速溶剂萃取仪新品鉴定会召开   仪器信息网讯 2010年8月17日,北京市技术创新服务中心受北京经济和信息委员会委托,在北京主持召开了北京吉天仪器有限公司(以下简称“吉天公司”)和中科院大连化学物理研究所联合研制的“APLE-1000/2000/3000快速溶剂萃取仪”新产品鉴定会。 鉴定会现场   在会上,由中国环境监测总站魏复盛院士、中国计量科学研究院李红梅研究员、中国仪器仪表学会分析仪器分会闫成德理事长、中国分析测试协会汪正范研究员、河北大学孙汉文教授、北京大学刘虎威教授等10余位来自国内知名高校、研究院所的专家组成了专家鉴定委员会,魏复盛院士、李红梅研究员为专家鉴定委员会的正副组长。 参加鉴定会的部分专家   北京吉天仪器有限公司刘明钟董事长对专家们的到来表示欢迎,并介绍了吉天公司的概况,以及简要介绍了吉天公司在“APLE-1000/2000/3000快速溶剂萃取仪”研发过程。 刘明钟董事长   会上,吉天公司的工程师分别向与会专家详细介绍了关于“APLE-1000/2000/3000快速溶剂萃取仪”的工作总结报告、技术总结报告、工艺审查报告、质量检验报告、检测报告、查新报告等。   早在2009年,APLE-2000快速溶剂萃仪便已开发成功,并连续获得“BCEIA2009金奖”、“自主创新金奖”、“科学仪器优秀新产品”等多项大奖。该系列仪器的研发成功,不仅填补了国内空白,打破了国外公司在该领域的垄断,同时还迫使国外产品在国内大幅降价,为国家节省大量外汇,取得了良好的社会效益。目前,应用该系列仪器已开发出了20多种实际样品的萃取方法。 APLE-1000/2000/3000快速溶剂萃取仪   在APLE-1000/2000/3000快速溶剂萃取仪的技术创新方面,吉天公司主要介绍了以下几个方面:   高级输液泵“三级变速加压”:输液泵根据萃取池体积的大小不同选择大小不同的泵速打压,同时可根据萃取池中压力的升高情况逐渐降低加液的速度,从而有效避免了加压过程中的压力过冲现象,这一点对提高仪器的长期稳定性和安全性都是非常有力的。   压力控制中心:全新的“压力控制单元”采用平衡式压力控制和机械过压保护系统,确保仪器运行安全可靠。   独立研发的耐高压萃取池:使用方便,收紧密封,密封寿命长(≥500次),使用成本忽略不计。   加热保护体:采用了全新的“360°全周加热炉”设计,萃取池受热更均匀,可加快电热炉与样品池之间的平衡。   采用了创新技术的APLE-1000/2000/3000快速溶剂萃取仪具有如下性能:温度范围为室温~200℃,压力范围为大气压~20MPa。其中,APLE-2000萃取池体积包括11、22、33ml三种,可连续萃取24个样品 APLE-3000萃取池体积包括1、5、10、22、34、66、100ml七种,可连续萃取12个样品。而配套150ml萃取池的单路快速溶剂萃取仪APLE-1000的开发,主要是解决某些实验室样品数量并不是很多,但样品处理量却可能较大,或某些样品中目标化合物的含量很低,每次萃取需要较大样品量等问题。其价格低廉,结构简单,可为用户提供单个样品的快速高效萃取。 清华大学郭玉凤教授在作用户使用报告   专家鉴定组在听取了吉天公司的产品报告、用户使用报告,审查了所有技术文件资料,并观看了产品的现场演示之后,经过认真讨论,给出如下鉴定意见:   1、 提供鉴定技术资料齐全,符合鉴定要求。   2、 该产品通过消化吸收在创新,形成了高压密封萃取池、压力平衡控制、360°全周加热等专利技术和专有技术,其中高温(200℃)高压(20MPa)同时运行及大体积萃取池(150ml)技术方面在国内外同领域属于首创设计。   3、 该产品符合快速准确自动化的前处理技术发展要求,环保、高效,重复性好,可广泛用于固体、半固体样品的快速高效萃取,在环保、食品、农业、地质、法庭科学等领域具有良好的市场前景。   4、 该产品生产工艺文件齐全,符合国家相关规范要求。   鉴定委员会一致认为:北京吉天仪器有限公司和中国大连化学物理研究所联合研制开发的“APLE-1000/2000/3000快速溶剂萃取仪”整体技术达到国内领先水平,其中双极限同时运行及大体积萃取池技术达到国际先进水平,同意通过新产品鉴定。建议尽快投入批量生产,以满足日益增长的市场需求。 专家鉴定组观看产品现场演示   作为北京吉天仪器有限公司合作伙伴的中科院大连化学物理研究所关亚风研究员在会上表示,他与吉天公司的合作很成功,这归功于他们采用了全新的合作方法。“‘APLE-1000/2000/3000快速溶剂萃取仪’的研发成功,开创了国产仪器产业化的先例,其合作模式值得推广”。 关亚风研究员   北京吉天仪器有限公司王安邦常务副总经理表示,吉天公司一直把“推动国产仪器的产业化发展”作为企业自己的责任,在此基础上,吉天公司明年将继续推出7个科学仪器新产品。 王安邦常务副总经理   编者后记:   经常有人提到“企业发展的动力源于创新”,而笔者认为,企业发展的动力源自在创新的基础上,能经常发现自己的缺点与不足,从而提出解决方案加以改善,进而不断进行良性循环,促进企业更好的发展。   吉天公司在此次发布会上,不只是提到“在技术指标和生产工艺上达到或超过国外同类产品水平、满足实验室需求、与国外同类产品相比价格较低、操作简单”等对仪器的溢美之词,他同时指出了该仪器存在技术问题并给出了解决方案:   1、 萃取潮湿或粘性较大的样品时存在填装样品困难,转移不完全的问题,吉天公司下一步的工作是要寻找合适的一次性辅助样品的填装或转移,真正提高萃取效率   2、 相配套的前处理设备(诸如自动化的浓缩、净化、定容设备)还不够完善,未能完全满足样品前处理的要求,下一步将进一步开发相应的方法和仪器,解决好固体样品前处理的配套问题。   希望在吉天公司能够继续这种良性循环,从而使这家科学仪器民族企业更加快速健康发展。
  • 130万!华东师范大学快速溶剂萃取浓缩仪采购项目
    项目编号:0705-224204049015项目名称:华东师范大学快速溶剂萃取浓缩仪预算金额:130.0000000 万元(人民币)最高限价(如有):130.0000000 万元(人民币)采购需求:序号货物名称单位数量简要技术要求交货期1快速溶剂萃取浓缩仪台1*1、使用气体辅助萃取方法,气体与溶剂混合后进入萃取池内进行萃取。非纯溶剂萃取方法;*2、萃取时间:2-300min;*3、氮气流速:0–200 mL/min;*4、蒸发功能与萃取功能需同时内置于仪器,非独立两台设备;*5、花洒功能,使用溶剂对蒸发瓶壁进行均匀喷洒,确保目标化合物的完整性,喷洒体积:0.5–4 mL;*6、萃取池由机械臂进行装载或取出,无需手动操作。合同签订且免税办理完毕后 60 天 合同履行期限:合同签订且免税办理完毕后60天本项目( 不接受 )联合体投标。
  • 对付兽药残留的”好家伙”——HLB固相萃取柱
    4月18日,有记者了解到,江西省市场监管局组织食品安全监督抽检,抽取粮食加工品、食用农产品两大类食品共303批次食品,检出10批次食用农产品不合格,涉及农兽药残留和重金属污染问题。 图1:江西省食品安全抽检不合格 兽药残留问题看似离我们很遥远,实际长时间积累对人体危害极大!一旦产品翻车,企业难辞其咎。 无独有偶,在其他城市的抽检也查出了同样的问题,例如,青海、西藏、重庆等。但另一方面,这些消息也表明我国对于食品中农兽药残留的安全问题越来越重视。 小编曾经讨论过关于农药残留问题,我们可以通过高效液相-柱后衍生法去检测。 那么如何检测兽药残留? 兽药残留检测法食品中的兽药残留检测——可以先将样品被提取后经过固相萃取柱的净化,再通过液相色谱-质谱质谱法进行检测。除此之外,相关检测方法还有气相色谱—质谱法等。 检测方法相关标准具体如下:gb/t 21315-2007 动物源性食品中青霉素族抗生素残留量检测方法 液相色谱-质谱质谱法;gb/t 21313-2007 动物源性食品中β-受体激动剂残留检测方法 液相色谱-质谱-质谱法;gb 29685-2013 食品安全国家标准 动物性食品中林可霉素、克林霉素和大观霉素多残留的测定气相色谱—质谱法;gb 29682-2013 食品安全国家标准 水产品中青霉素类药物多残留的测定 高效液相色谱法;sn/t 2222-2008 进出口动物源性食品中糖皮质激素类兽药残留量检测方法 液相色谱-质谱/质谱法;gb 31658.17-2021 动物性食品中四环素类、磺胺类和喹诺酮类药物多残留量的测定液相色谱-串联质谱法;… … hlb固相萃取柱在兽药检测中的应用在进行液相色谱-质谱质谱检测前,我们将提取好的样品加入到已经活化的hlb固相萃取柱中,进行净化、经过一系列淋洗、洗脱等过程,得到我们的被测物质。以动物肌肉组织中喹诺酮的检测及动物源食品青霉素的检测为例—— ⚪动物肌肉组织中喹诺酮的检测活化:使用6ml甲醇、6ml水活化固相萃取柱;净化:将提取后的上清液全部过柱子;淋洗:然后用2ml 5%(体积比)的甲醇水溶液淋洗柱子,弃去淋洗液;洗脱:用6ml甲醇洗脱并收集洗脱液。 ⚪ 动物源食品青霉素的检测活化:使用6ml甲醇、6ml水活化固相萃取柱;净化:将上清液通过柱子净化;淋洗:用2ml 0.05mol/l的磷酸盐缓冲液淋洗2次,再用1ml纯水淋洗2次;洗脱:用3ml乙腈洗脱并收集洗脱液。 在这个过程中,用到的hlb固相萃取柱,它其中填料具备了良好的水润湿性、重现性等特点。 hlb是什么?hlb是hydrophile lipophilic balance的英文缩写,翻译成中文就是亲水亲油平衡。hlb亲水亲脂平衡填料可作为固相萃取柱填料的一种。 关于hlb亲水亲脂平衡填料 图2:水相调节亲水-亲脂平衡 hlb亲水亲脂平衡填料由特殊的共聚合技术制备而成,含有特定比例的亲水基和疏水基:疏水性的二乙烯基苯结构保留非极性化合物,亲水性的n-乙烯基吡咯烷酮结构保留极性化合物。该填料具有良好的水润湿性,可通过水相调节亲水-亲脂平衡,从而获得理想的选择性。 hlb对非极性至中等极性的酸性、中性、碱性化合物均有较好的回收率,特别适合血液、尿液和食物等复杂基质的处理。 hlb亲水亲脂平衡填料的特点hlb亲水亲脂平衡填料参数:比表面积:600 m2/g平均粒径:40 μm平均孔径:300 å hlb亲水亲脂平衡填料还具备了以下特点:● 作为一种通用型填料,应用范围广;● 高水可浸润性,不怕溶剂抽干,不易穿透;● 回收率高,重现性好;● 吸附容量和载样量远高于c18键合硅胶(3-10倍); ● 可耐受ph 1-14,兼容大多数溶剂 hlb固相萃取柱型号及规格填料量(mg)体积(ml)包装(支/盒)型号60350223-13002200630223-13003500630223-13004150630223-13009 当然,我们要根据样品性质,选择最适宜的spe小柱。除了hlb基质以外,市面上也还有硅胶(正反相)、复合萃取、以及专用型的固相萃取产品,英诺德甚至提供多种quechers和色谱散装填料,以满足各种各样的分离需求。 在后续的文章中我们将陆续和大家分享介绍,请关注我们,敬请期待。 *更多资讯,请关注innoteg英诺德公众号
  • analytica China之新拓仪器:看好固相微萃取未来发展
    p    strong 仪器信息网讯 /strong 2016年10月10-12日,第八届慕尼黑上海分析生化展(analytica China 2016)在新国际博览中心召开。 /p p   新拓仪器自成立20余年以来,一直致力于实验室样品前处理仪器设备的研发与销售,以微波消解仪作为核心产品,研发、生产涉及固相萃取仪、大气采样及其他实验室常规处理设备等多个领域。目前,公司的高端产品系列包括:高压密闭微波消解/萃取仪器系列、常压微波辅助萃取/反应仪系列、大流量空气细颗粒物采样器、SPME固相微萃取系列、多样品均质仪、多通道营养盐分析系统(特别针对车载/船载实验环境设计)、全自动氮吹浓缩仪、多通道正压式固相萃取仪、石墨消解仪等。 /p p   在本届展会上,新拓仪器携全新推出的MASS-6027多样品全自动固相微萃取仪精彩亮相。仪器信息网编辑借机采访了上海新拓分析仪器科技有限公司副总经理余伟杰,就新产品的技术特点、创新点以及固相微萃取技术未来的发展进行了深入的探讨。更多精彩内容,请观看视频。 /p script src=" https://p.bokecc.com/player?vid=C0481AC747765C859C33DC5901307461& amp siteid=D9180EE599D5BD46& amp autoStart=false& amp width=600& amp height=490& amp playerid=621F7722C6B7BD4E& amp playertype=1" type=" text/javascript" /script
  • 多快好省测中药!均相液液萃取配合UFMS同步分析多种中药活性成分
    研究背景对于具有多成分、多靶点特点的中药来说,多组分共存时主要成分的体内过程研究对揭示中药体内复杂药效物质基础有重要意义。但由于中药成分的多样性和各成分间理化性质的差异性,中药生物样品中多成分的同步、灵敏、快速定量检测仍是一个艰巨的挑战。近年来,均相液液萃取方法已经成为蛋白分离纯化的重要手段之一。 该研究发现通过添加一定浓度盐或糖的水溶液,可使均相混合体系(如由血浆和有机相乙腈组成) 分层,同时利用相似相溶原理对目标分析物进行萃取。作者发现通过向有机溶剂-血浆均相体系加入质谱友好的挥发性盐(如甲酸铵、乙酸铵)的盐析辅助均相液液萃取方法兼具操作步骤简单、基质干扰低、提取回收率稳定的特点,可同步对多种不同极性的待测物进行提取分离,在保证选择性和灵敏度的同时提高了分析方法的通用性。 01方法与结果目标待测化合物中(结构见图1),3种生物碱类成分和3种萜类成分在质谱正离子模式下有较好响应,而3种黄酮类成分在负离子模式的灵敏度更佳。利用岛津LCMS-8050高速正负极切换的性能特点,在保证高灵敏度的同时,单次分析中同时进行正负离子的多通道MRM监测(图2)。图1 柳胺酚内标和目标待测化合物的化学结构 图2 大鼠血浆QC样品中LIQ、DHE、ILIQ、LIQN、IS、RVN、LIM、OBA、EVO和RUT的代表性MRM色谱图 在样品前处理方法优化过程中,作者对比了6种前处理步骤对血浆样品中目标待测化合物基质效应和提取回收率的影响,6种方法分别为:(1) 甲醇蛋白沉淀(方法A),(2) 乙腈蛋白沉淀(方法B),(3)甲基叔丁基醚-二氯甲烷液液萃取(方法C),(4)乙酸乙酯-正丁醇液液萃取(方法D),(5)乙酸铵盐析辅助均相液液萃取(方法E),(6)葡萄糖糖析辅助均相液液萃取 (方法F)。结果显示,对于9种目标待测化合物,使用乙腈蛋白沉淀的方法基质干扰明显;使用弱极性萃取溶液的液液萃取方法对极性较大的甘草苷和异甘草苷提取回收率低,进而影响分析方法的定量下限;而使用挥发性盐溶液和有机溶剂的盐析辅助均相液液萃取方法,既可以降低基质干扰又能保证各待测成分的提取回收率,对比另外两种原理的前处理方法,扩大了分析物的适用范围(图3)。 图3 空白血浆加标QC样品的萃取方法基质效应和回收率结果 作者还对盐析辅助均相液液萃取方法的挥发性盐种类和浓度进行了探究。总体上,同浓度的甲酸铵和乙酸铵溶液对盐析辅助均相液液萃取方法基质效应和提取回收率的影响相似(图4),但对待测成分精密度和准确度的影响略有差异。此外,对于乙腈-血浆的均相体系,当体系中乙酸铵浓度增加到0.5 M后才会出现分层趋势(图5)。高浓度盐溶液的加入有利于均相体系盐析分层,但较高的盐浓度会降低负离子模式下的黄酮类成分的检测灵敏度。 图4 空白血浆加标QC样品的SALLE方法基质效应和回收率结果 图5 乙酸铵浓度对SALLE性能的影响 最后,对优化的方法进行了方法学验证,并成功应用于中药吴茱萸-甘草配伍的大鼠体内药代动力学研究中。 02 总结与讨论本研究开发优化了一种操作步骤简单、检测灵敏度高、化合物适用范围广的血浆样品LC-MS/MS高通量分析方法,利用岛津LC-30AD高速梯度精密送液和LCMS-8050高速正负极切换的技术特点,同步对极性差异较大的3种生物碱类、3种萜类和3种黄酮类成分进行了定量测定。LCMS-8050 03文献简介 文献题目《Simultaneous LC-MS/MS bioanalysis of alkaloids, terpenoids, and flavonoids in rat plasma through salting-out-assisted liquid-liquid extraction after oral administration of extract from Tetradiumruticarpum and Glycyrrhiza uralensis: a sample preparation strategy to broaden analyte coverage of herbal medicines》 使用仪器LCMS-8050,LC-30AD 作者Manlin Li1, Hanxue Wang1, Xiaohan Huan1, Ning Cao1, Huida Guan1, Hongmei Zhang2, Xuemei Cheng1, Changhong Wang1*1. Institute of ChineseMateria Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, 1200 Cailun Road, Shanghai 201203, China2. School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China* Corresponding author. Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. Tel: 086-021-51322511, Fax: 086-021-51322519, E-mail: wchcxm@shutcm.edu.cn wchcxm@hotmail.com (Changhong Wang). 原标题:通过盐析辅助均相液液萃取方法和LC-MS/MS技术同步对大鼠血浆中的生物碱类、萜类和黄酮类成分进行定量分析上海中医药大学 中药研究所文章发表于Analytical and Bioanalytical Chemistry文章链接:https://doi.org/10.1007/s00216-021-03568-1 致谢本研究得到《上海市中医药事业发展三年行动计划》[ZY(2018-2020)-CCCX-5002]的资助。 声明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。3、本文内容非商业广告,仅供专业人士参考。
  • 温度压力曲线全面分析,认准得泰快速溶剂萃取一体机
    实验室内各类样品提取手段中,加压溶剂提取法利用高温、高压条件处理样品,有效节省提取用时,进一步减少提取溶剂用量,广泛应用于环境SVOCs(土壤、沉积物、固废等)、粮谷油料农残,中药材成分、化工制品等检测领域。快速溶剂萃取流程快速溶剂萃取流程中,常需进行数次升压热平衡、静态萃取循环,待处理样品数量增多时,通过曲线图实时监控样品通道的升温和升压状态,可为保障批量样品提取的稳定性、平行性带来更直观,更全面的数据支持。点击观看下方视频,即刻开启iQSE-06智能人机交互体验之旅。一体化终端,双界面显示▷ 萃取流程图:图形化界面直观显示运行环节、状态参数、各个样品萃取通道和各管路阀门的工作状态。▷ 实时曲线图:无需任何外接电脑辅助监控,可直接勾选查看任意样品通道升压曲线,便于同时比对不同样品通道的升压效果,便于筛查。 方法易归类,报告直接出▷ 可编辑和保存多个萃取方法,支持中文、英文、数字输入法命名便于区分。一键调用方法可确保操作的重现性。▷ 可查询萃取记录,并运行曲线图记录发送至指定邮箱,或导出至U盘等便捷储存工具中,便于实验室进行数据溯源追踪。异地物联网,无需常值守▷ 无任何距离限制,通过DTLabs微信小程序实时监测仪器运行状态及实时参数、可以直接控制进程。▷ 样品萃取流程完成后,推送通知提示至用户微信端,耗材采购、技术支持、延保服务功能一应俱全。多重性能保障,实现高效萃取l 6通道式立体环绕加热设计l 各样品通道均可独立控制l PID控温范围:室温-200℃l 萃取压力可设:0-220barl 运行前自动预检泄漏性l 智能溶剂管理功能模块l 支持10-120ml等萃取池l 萃取收集瓶=定量浓缩杯iQSE-06应用领域部分检测标准HJ 782 2016 固体废物 有机物的提取 加压流体萃取法HJ 891-2017 固体废物 多氯联苯的测定 气相色谱-质谱法HJ 892-2017 固体废物 多环芳烃的测定 高效液相色谱法HJ 912-2017 固体废物 有机氯农药的测定 气相色谱-质谱法HJ 951-2018 固体废物 半挥发性有机物的测定 气相色谱-质谱法HJ 963-2018 固体废物 有机磷类等47种农药的测定 气相色谱-质谱法HJ 783-2016 土壤和沉积物 有机物的提取 加压溶剂萃取法HJ 805-2016 土壤和沉积物 多环芳烃的测定 气相色谱-质谱法HJ 834-2017土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法HJ 890-2017 土壤和沉积物 多氯联苯混合物的测定 气相色谱法HJ 921-2017 土壤和沉积物 有机氯农药的测定 气相色谱法HJ 1023-2019 土壤和沉积物 有机磷类和拟除虫菊酯类等47种农药的测定 气相色谱-质谱法GB 22996-2008 人参中多种人参皂甙含量的测定 液相色谱-紫外检测法GB 23200.9-2016 食品安全国家标准 粮谷中475种农药及相关化学品残留量测定 气相色谱-质谱法… …
  • 无溶剂香气萃取和分析研究进展
    11月22日至23日,由365bet体育在线、上海香料研究所、上海化工研究院有限公司共同主办,中国香料香精化妆品工业协会等单位协办的“2019 中国国际香料香精化妆品科学技术论坛”在上海举办。国内外高校、科研院所、香料香精化妆品行业专家学者、企业家等共200余人出席论坛。前美国化学学会农业和食品化学分会主席,美国化学学会会士 (fellow), 美国化学学会农业和食品化学分会会士(fellow),农业与食品化学杂志顾问委员, 美国俄勒冈州立大学michael qian教授被邀做了“无溶剂香气萃取与分析研究进展”,介绍了一下几个内容:传统香气分析概述传统溶剂提取法与溶剂辅助风味蒸发法顶空和吹扫捕集固相微萃取法 pdms搅拌棒萃取法eg-silicone搅拌棒吸附萃取法分析挥发性酚热脱附薄膜固相微萃取首先钱教授给大家一个确定风味重要化合物的思路。首先提取样品中的化合物(isolation),然后对其进行富集浓缩(concentration),通过一维或二维气相色谱进行分离(separation), 对其中的气味化合物可通过嗅觉检测器(olfacrometry)来进行识别, 然后通过气味强度评估(osme odor intensity assessment) 或是风味稀释分析(flavor dilution analysis)等评估法对重要气味化合物进行锁定。最后通过质谱(ms 或 ms/ms)或质谱红外(ms/ir)或核磁共振(nmr)进行鉴(identification)。 对浓度很低的化合物,可以在色谱分离之后,通过馏分的收集(preparative gc )来进一步对其浓缩, 以达到检测器的检测下限,进行成果的鉴定。 钱教授的学生正在使用odp来识别香味化合物钱教授把多年来的工作研究香气香味的经验与大家分享,比如如何才能提高监测灵敏度和提高分离效率,以下三个点非常重要:样品的制备和浓度通过优化色谱法来提高分离效率了解并利用检测的特异性 还比如几种的传统萃取技术(溶剂萃取,safe,同时蒸馏萃取)的优缺点,- 适合高浓度香气物质的萃取- 可同时萃取极性和非极性化合物- 耗时久- 重复性差- 需要使用同位素进行内标定量和现代化的无溶剂风味萃取的原理,丰富的应用案例以及他们的优缺点。静态顶空- 类似于食品上的气味成分- 有限的伪影生成- 无溶剂峰,可自动化- 低灵敏度- 适用于白酒中主要成分分析:乙醛,乙酸乙酯, 异戊醇, 乙酸异戊醇动态顶空- 无需样品制备- 高效富集- 自动化- 潜在的热伪影- 对低挥发物回收率低- 高酒精度会影响微量成分的分析固相微萃取在风味分析方面的挑战- 灵敏度- 选择性- 竞争吸附- 纤维重现性- 需要加入内标来定量(同位素稀释分析)pdms 搅拌棒吸附萃取- 可提取非极性和半极性的风味物质- 萃取相负荷是spme的100倍- 可用于直接接触或顶空模式- 使用方便,经久耐用, 可重复使用- 对高挥发性化合物回收率低(如乙醛,丙醛,丁醛,乙酸和短链酸)- 不能回收强极性化合物eg-silicone 搅拌棒吸附萃取- 有效提取高挥发性化合物,如乙醛,乙酸乙酯- 有效提取极性化合物,如酚类化合物, 短链酸- 可与pdms搅拌棒互相补充- 背景噪音较大- 稳定性和持久性较pdms搅拌棒差重要的挥发性酚类化合物有:装有微型瓶的热脱附管,和热脱附单元tdu2 此方法成果的萃取了marionberry (marion 黑莓)中的多种风味化合物, 其中包括呋喃酮,以及重要的酚类化合物,还有覆盆子酮等。 覆盆子酮是树莓类中重要的气味化合物,而此化合物只有在使用spe法才被检测到。spe法在这里更接近于液液萃取法的效果。在总结时,钱教授说到:”分析化学的不断发展将使快速的风味分析成为可能,并提供新的痕量风味成分的鉴定。” 并且强调:“有效的分析和鉴定关键风味成分需要将仪器分析与感官评估相结合。” 各种样品前处理的技术都有其优缺点,正确选择和结合最适合样品的技术是关键。哲斯泰为您提供各种无溶剂的萃取技术,给您一个强大的技术平台。我们也希望可以助所有的风味化学家一臂之力, 在样品前处理和嗅觉检测领域,更好的为大家服务! (china)和第三届(chile)国际香料会议的发起者和主席。
  • 超详尽干货!微萃取新技术TF-SPME及其不同行业应用汇总
    TF-SPME是什么?薄膜固相微萃取技术(Thin Film SPME),以下简称TF-SPME, 是以传统Fiber为原型,把吸附相涂在碳网片上的固相微萃取新技术。SPME和TF-SPME都是由滑铁卢大学的加拿大皇家科学院院士Janusz Pawliszyn教授发明,用于分析痕量VOCs和SVOCs等挥发性有机物。 图1:TF-SPME薄膜固相微萃取TF-SPME与SPME fiber的对比为了解决SPME fiber有限的吸附容量和萃取速率而开发了TF-SPME技术,TF-SPME通过大大提高了其涂层的表面积/体积比(Surface-volume vadio),不仅增加吸附容量,一定的预平衡时间内具有更*的灵敏度。同样为PDMS涂层,TF-SPME薄膜的表面积比100um SPME fiber的表面积增加了20倍[9]。 图2:TF-SPME涂层表面积增加20倍[9]TF-SPME优势汇总TF-SPME最为突出的特点是吸附相的高表面积/体积比,带来的不仅仅萃取容量和萃取效率的提升,对水基质中萃取极性较强的化合物也有良好的效果,对萃取宽极性范围化合物十分友好。 图3:宽极性范围萃取● 缩短达到平衡所需的时间,萃取效率更高;● 增大吸附容量,提高灵敏度,降低检出限;● 适用于极性和非极性的挥发性有机物和半挥发性有机物;(log P从0.34-6.53)● 机械及化学稳定性好,可以在恶劣环境中现场采样;● TF-SPME应用场景十分广泛,适用于现场采样、活体采样及常规采样。● 是一种绿色环保的无溶剂萃取技术。● 适用于所有标准尺寸的热脱附仪(3.5x1/4’’)。TF-SPME类型及使用方法英诺德提供两种规格TF-SPME薄膜,分别是20 x4.7mm和40 x4.7mm。 Part.1 涂层类型及规格(1) PDMS:非极性VOCs和SVOCs (2) PDMS/DVB:挥发性和半挥发性有机物VOCs和SVOCs (3) PDMS/HLB:更广泛的极性和非极性挥发性有机物VVOCs、VOCs和SVOCs。 Part.2 HLB涂层是什么?HLB(Hydrophile Lipophilic Balance)是一种亲水亲油平衡颗粒,由二乙烯基苯结构和N-乙烯基吡咯烷酮骨架结构共聚而成,其特殊结构同时保留非极性化合物和极性化合物[13]。 图4:左图为HLB亲油性基团;右图为HLB亲水性基团 Part.3 使用方法TF-SPME可以从固体、液体、气体中萃取挥发性有机物,是分析痕量挥发性有机物的新利器。萃取——既可以顶空萃取或直接浸入式萃取,也可以作为被动采样器进行TWA采样。 解析——吸附完成的TF-SPME置于空的脱附管中进行热解析,英诺德生产的TF-SPME薄膜固相微萃取适用于市面上所有标准尺寸的热脱附仪(1/4 x 3.5’’的脱附管)。 应用汇总TF-SPME薄膜固相微萃取借助热脱附设备把分析物引GC/GC-MS, 以实现更高的萃取效率和灵敏度,已被广泛应用于食品饮料、酒类、环境(水/空气)、生物样品等中的挥发性有机物分析。 食品 TF-SPME技术高效提取食品饮料(橙汁、葡萄汁、橄榄油、鱼肝油)、酒类(啤酒、葡萄酒)中的各类挥发性香味有机化合物,在一定程度上降低检出限和缩短萃取时间,对把关产品质量和了解不同品种的风味特性以改善食品风味起到了关键作用。 TF-SPME首次被用于测定不同品种的特级初榨橄榄油的风味特性(M.Pilar Segura-Borrego,等人,2020)。(D.Gruszecka,等人,2021)使用PDMS/HLB涂层的TF-SPME直接浸提商业鱼肝油样品,测定5个多氯正构烷烃(PCA)含量,以把关产品质量。酒类的风味与发酵原料的品质和品种有直接的关系,例如葡萄的芳香成分*会影响葡萄酒的品质, (Rom´ an,S.M.等人,2022)使用TF-SPME技术测定葡萄汁中的挥发性成分分析。(M. N. Wieczorek等人,2022)使用两片不同涂层的TF-SPME薄膜先后提取啤酒中非极性和极性化合物风味物质,高性能提取宽极性范围化合物(log P=0.34~6.53)。具体可阅读文章《1+1>2,分布TF-SPME法同时分析啤酒风味物质》(点击链接可查看往期推文)。 图5:分步TF-SPME提取啤酒VOCs 环境 TF-SPME技术特别适用于环境基质样品的现场采样,以解决恶劣环境的采样困难和减少采样、运输、储存、转移样品时带来的损失,同时可作为被动采样装置(TWA时间加权平衡采样)对流动的水体或空气污染物进行长期监控。(Bragg等人, 2006;Qin等人,2009;F.Ahmadi,等人,2017;Jiang,R.2014) TF-SPME已被广泛用于监测环境不同水体的污染物分析。2003年,TF-SPME逐渐被用于以测定湖水的多环芳烃或地表水中的农药残留 (Bruheim等人,2003,H.Piri-Moghadam等人,2017)。萃取法升级!TF-SPME法分析地表水农残的效率翻倍(点击链接可查看往期推文)2016年,在工厂附近的湖水检测出甲苯、二甲苯等污染物,借助薄膜固相微萃取PDMS/DVB涂层和Needle Trap动态捕集针两种技术,实现便携式GC-MS的现场采样和分析(Grandy,J.J.等人,2016)。(Boyac1,E.等人,2016)测定海水中的石油工业废弃物氟代苯甲酸(FBAs)。2018年,诞生新的涂层PDMS/HLB现场萃取私人消毒热水池中的消毒副产物(Grandy等人,2018)。VOC神器?TF-SPME破解游泳池消毒副产物的秘密(点击链接可查看往期推文)2020年,TF-SPME技术与无人机联用,现场采样水中的苯系物(Grandy等人,2020)。 图6:环境水体现场采样-无人机联用 生物样品 近年来,越来越多学者把SPME技术运用在活体/体内采样,TF-SPME也不例外。TF-SPME技术是一种简单的、非侵入性(无创)的挥发性有机物分析方法,被应用于分析皮肤、唾液、呼吸气体等样品,为疾病诊断提供新的可能性。 图7:皮肤&唾液活体采样TF-SPME技术提取人体皮肤散发的VOCs成分和人体呼吸气体中的33种VOCs(R.Jiang,等人,2013,K. Murtada,等人2021)。同时使用TF-SPME和Blade两种薄膜(片)固相微萃取技术在人体内快速提取唾液样品5min,验证49种违禁物质和唾液中内源性类固醇(V.Bessonneau,等人,2015)。生物体内散发的VOCs成分往往含量非常低,TF-SPME由于其较大表面积体积比,可以提供更高的萃取效率和灵敏度。发展历程 INNOTEG 英诺德英诺德(INNOTEG)是一家专业从事科学仪器设备研发生产的高科技企业,是集实验室设备研发生产、方法开发、实验室仪器销售和技术服务为一体的专业厂家。公司重视技术的研究和储备,一直保持高比例研发投入,创建了一支由博士、硕士和行业专家等构成的经验丰富,技术精湛的研发团队;与各大科研院所、高校合作,积极推进科技成果项目的产业化;同时,英诺德与国内外知名仪器设备厂家建立长期战略合作伙伴关系,为广大客户提供更多产品及一站式的解决方案。参考文献[1] M. Pilar Segura-Borrego, Rocío Ríos-Reina, Cristina Ubeda, Raquel M. Callejón ,M. Lourdes Morales, Foods ,2020, 9(6), 748.[2] D.Gruszecka , J. Grandy , E.Gionfriddo, V.Singh ,J.Pawliszyn , Food Chemistry ,353 (2021) 129244.[3] Sandra Marín-San Rom´ an, Jos´ e Miguel Carot, Itziar S´ aenz de Urturi, Pilar Rubio-Bret´ on,,Eva P. P´ erez-´ Alvarez , Teresa Garde-Cerd´ an, Anal Chim Acta ,1226 (2022) 340254.[4] M. N. Wieczorek , W.Zhou , J. Pawliszyn, Food Chemistry ,389 (2022) 133038.[5] L. Bragg, Z. Qin, M. Alaee, J.Pawliszyn, J. Chromatogr. Sci,44(2016)317.[6] Z. Qin, L. Bragg, G. Ouyang, V.H. Niri, J. Pawliszyn, J. Chromatogr. A. 1216 (2009) 6979.[7] F.Ahmadi ,C, Sparham, E, Boyac&imath , J.Pawliszyn, Environ Sci Technol, ( 2017) 51(7):3929-3937.[8] R. Jiang,J.Pawliszyn, Anal Chem, (2014)86(1):403-10.[9] Bruheim, X. Liu, J. Pawliszyn, Anal. Chem. 75 (2003) 1002.[10] H.Piri-Moghadam, E.Gionfriddo, A. Rodriguez-Lafuente ,J. J. Grandy, H. L. Lord , T. Obal , J. Pawliszyn, Anal Chim Acta ,964(2017)74-78.[11] J.J. Grandy, E。Boyac&imath , J. Pawliszyn, Anal. Chem, (2016)88(3):1760-7.[12] E.Boyac&imath , K. Gory´ nsk, C. R. Viteri, J.Pawliszyn, J.Chromatography A, 1436 (2016) 51–58.[13] J.J. Grandy, V.Singh, M.Lashgari, M.Gauthier, J.Pawliszyn, Anal Chem, 90(2018) 14072&minus 14080.[14] J. J. Grandy, V.Galpin, V.Singh, J.Pawliszyn, Anal Chem, (2020)92(19):12917-12924.[15] R. Jiang, E.Cudjoe, B.Bojko, T.Abaffy, J. Pawliszyn, Anal Chim Acta 804 (2013) 111– 119.[16] K. Murtada, V. Galpin, J.J. Grandy, V.Singh , F.Sanchez,J. Pawliszyn. Sustain Chem and Pharm 21 (2021) 100435.[17] V.Bessonneau, E.Boyaci, , M.Maciazek-Jurczyk, J.Pawliszyn, Anal Chim Acta,856(2015)35-45.*部分图片来源文献,旨在分享,如有侵权请联系删除
  • 安东帕微波萃取设备在土壤化合物检测方面的应用
    不知道大家有没有注意到,最近天空的颜值是越来越高啦!今年是十四五时期的开局年,环境保护,推动绿色发展,促进人与自然和谐共生仍是发展的重中之重。然而在工业高速发展的今天,人们所从事的工业活动仍不可避免地会排放出一些化合物,这类化合物例如芳香族化合物,它们结构稳定,不易分解,可能会对环境造成严重的污染,通常在环境固体样品中可以被检测到。安东帕的前处理设备在土壤化合物检测方面一向有着非常优异的表现!相比于传统的萃取法,微波萃取具有快速、高效以及利用率高的优势。实验方案称取300 - 500 mg下列样品:BCR 392 -污水污泥工业土壤-自然污染萃取溶剂-溶剂1:20mL环己烷-丙酮,6:4(v/v),用于污水污泥-溶剂2:25mL正己烷-丙酮,7:3(v/v), 用于八氯苯乙烯工业土壤测量采用对应萃取溶剂的萃取程序,得到了有色萃取物。通过离心分离萃取物。实验结果证实了快速有效的微波加热萃取与灵敏GC-MS分析方法结合可以缩短整个分析过程!微波萃取时间短,并且能同时萃取多个样品,与需要耗时24小时的索氏萃取相比为实验室高通量处理节省大量时间。另一方面,小型实验室可在一台设备上同时完成无机和有机的样品制备。反应管和转子的独特设计, Multiwave 5000可以用于精确微量元素测定的酸消解,也可用于高效、多功能的溶剂萃取。通过磁性搅拌器辅助,可提高萃取效率,同时缩短反应时间。
  • 采用沃特世MV-10 ASFE和超高效合相色谱系统简化目前可萃取物分析方法
    采用沃特世MV-10 ASFE和ACQUITY UPC2 系统简化目前可萃取物分析的方法 Baiba Cabovska、Andrew Aubin和Michael D. Jones 沃特世公司(美国马萨诸塞州米尔福德) 应用效益 ■ 超临界流体萃取法比微波萃取法更具可行性,与索氏萃取法(Soxhlet extraction)相比,可节省大量的溶剂消耗和运行时间。 ■ UPC2TM 技术通过精简工作流程,提高了萃取物分析的能力。 沃特世解决方案 ACQUITY UPC2 系统配备二级管阵列(PDA)检测器和SQD检测器 MV-10 ASFE&trade 系统 Empower&trade 3软件 关键词 可萃取物、SFE、UPC2、超临界流体、合相色谱 引言 制药和食品包装行业中的可萃取物的分析流程的建立已经很完善1-3。分析流程可能会涉及到各种技术。类似地,容器密闭系统的评价可能涉及到各种萃取技术。ACQUITY UPC2TM 系统可针对萃取操作中所用的各种常用溶剂体系来灵活选择分析溶剂,简化分析流程4。超临界流体在改善分析流程的过程中扮演重要角色的同时,也遇到了一个这样的问题:&ldquo 样品萃取操作能不能简化至仅采用一种技术,即仅采用超临界流体萃取法?&rdquo 在可萃取物分析过程中,样品的萃取可采用数种方法。通常采用的方法是索氏萃取法、微波萃取法或超临界流体萃取法(SFE)。萃取溶液必须涵盖各种极性范围,以保证非极性和极性分析物均能从包装材料中被萃取出来。索氏萃取器因其相对廉价而深受青睐。但是,如果考虑萃取溶剂及其废液处理的价格时,微波萃取法和超临界流体萃取法具有节省成本的优点,包括减少溶剂消耗量和废液处理量,以及节约宝贵的分析时间。 在本应用纪要中,对四种不同类型的包装材料进行萃取,包括:高密度聚丙烯(HDPE)药瓶、低密度聚丙烯(LDPE)瓶、乙烯-乙酸乙烯酯血浆袋(EVA)和聚氯乙烯(PVC)泡罩包装材料。萃取后,使用配有PDA和SQD质谱检测的超效合相色谱(UPC2)系统对所得溶剂中的14种普通聚合物添加剂进行快速筛选。微波萃取法和索氏萃取法采用异丙醇和正己烷萃取液,而各种不同浓度的异丙醇用作超临界流体萃取的辅助溶剂。在本文中,我们对各种方法的萃取表现进行了对比。 实验 方法条件 UPC2条件 系统: ACQUITY UPC2 系统配备二级管阵列(PDA)检测器和SQD检测器。 色谱柱: 3.0 x100mm、1.7&mu m 辅助溶剂: 1:1甲醇/乙腈 流速: 2 mL/min 梯度: 1% B保持1min、2.5min达到20%、保持30s、重新平衡回归至1% 柱温: 65 ℃ APBR: 1800 psi 进样量: 1.0&mu L 运行时间: 5.1min 波长: 220nm MS扫描范围: 200~1200m/z 毛细管电压: 3kV 锥孔电压: 25V 补给流量: 0.1%蚁酸甲醇溶液,速度为0.2mL/min 数据管理: Empower 3软件 样品描述 微波萃取 将高密度聚丙烯(HDPE)、低密度聚丙烯(LDPE)、乙烯-乙酸乙烯酯(EVA)和聚氯乙烯(PVC)(各2g)切成1x1cm的小块,然后以10mL异丙醇或10mL己烷在50℃下萃取3个小时。 索氏萃取 索氏萃取的做法是将切碎的材料(聚氯乙烯(PVC)3g,高密度聚丙烯(HDP E)、低密度聚丙烯(LDP E)或乙烯-乙酸乙烯酯(EVA)各5g)小块(约1x1cm),放到华特曼33x94mm纤维萃取套管内。然后,将萃取套管置于普通的索氏萃取器中,其中包括冷凝管、索氏萃取室和萃取烧瓶。在索氏萃取器中加入大约175mL萃取溶剂(正己烷或异丙醇)。所有样品将使用热沸溶剂混合物萃取8小时。萃取完成后,将萃取溶剂几乎蒸干,重新以正己烷或异丙醇溶解。分析前,萃取物以0.45-&mu m玻璃纤维注射器滤头过滤,除去各种微粒。 SFE 超临界流体萃取(SFE)使用Waters® MV-10ASFE系统进行。对于每个超临界流体萃取实验,将材料切成小块(大约1x1cm),加到10mL的不锈钢萃取容器中(聚氯乙烯(PVC)2g、高密度聚丙烯(HDPE)、低密度聚丙烯(LDPE)或乙烯-乙酸乙烯酯(EVA)各3g)。对于每种材料,进行两次不同的萃取。第一次使用5.0mL/min二氧化碳和0.10mL/min异丙醇,第二次使用4.0mL/min二氧化碳和1.0mL/min异丙醇。所有萃取操作均在50℃和300bar背压的条件下,采用30-min动态、20-min静态、10-min动态程序进行,重复该程序2次。异丙醇用作补充溶剂,速度为0.25mL/min。对于高体积异丙醇萃取,在完成萃取过程后,收集溶剂(共溶剂和补充溶剂的混合物),将收集的溶剂几乎蒸干并重新溶于异丙醇(对于聚氯乙烯(PVC)为10mL,对于高密度聚丙烯(HDPE)、低密度聚丙烯(LDPE)或乙烯-乙酸乙烯酯(EVA)分别为9mL)。对于低体积异丙醇萃取,收集的溶剂相应地补足至体积。分析前,萃取物以0.45-&mu m玻璃纤维注射器滤头过滤,除去各种微粒。每个样品的总萃取时间为2个小时。 结果与讨论 将各种萃取方法进行对比,索氏萃取法每个样品的萃取时间是8小时;微波萃取法在时长为3小时的萃取操作中可同时处理多达16个样品。超临界流体萃取法处理每个样品需要2个小时,可同时加载多达10个样品。即使同时使用更多的索氏萃取器,其萃取的总时间仍然远远超过微波萃取和超临界流体萃取所需的时间。 就溶剂用量而言,索氏萃取需要多达175mL的溶剂,然后将溶剂蒸馏,以减少样品体积。微波萃取需消耗10mL溶剂,如果需要提高灵敏度,可以将这些溶剂量降低。超临界流体萃取法在样品预浓缩方面,具有最大的灵活性。在低体积异丙醇萃取条件下,最终收集的体积大约为5mL,将加至相应体积,使样品浓度与微波萃取和索氏萃取样品浓度相当。在高异丙醇萃取条件下,收集的溶剂总体积大约为30mL,蒸出部分溶剂,以达到最终的浓度。 经微波萃取提取后,在聚氯乙烯(PVC)和乙烯-乙酸乙烯酯(EVA)样品中,可萃取物的数量最少。使用正己烷或异丙醇萃取低密度聚丙烯(LDPE)样品时,可萃取物的数量最多,如图1所示。 图1使用微波萃取方法得到的正己烷和异丙醇萃取物 使用索氏萃取,在聚氯乙烯(PVC)色谱图中可观察到一些附加的峰,如图2所示,而在微波萃取的色谱图中并未观察到这些峰。这种可观察到的差异可能是由于使用索氏萃取时,萃取时间较长,萃取温度较高。 图2使用索氏萃取法得到的正己烷和异丙醇萃取物 通过观察,将超临界流体萃取与其他两种方法进行对比,超临界萃取法萃出的聚氯乙烯(PVC)分析物的量与索氏萃取法萃出的量相似,但比微波萃取法萃出的量大,如图3所示。高体积异丙醇萃出的低密度聚丙烯(LDPE)的量高于低百分浓度异丙醇萃出的低密度聚丙烯(LDPE)的量。这就说明了用于确定改性剂百分含量的方法调整的灵活性和简易性,而这种灵活性和简易性正是塑料材料成功分析可萃取物所需的。 图3使用低体积异丙醇和高体积异丙醇得到的超临界流体萃取物 对于低密度聚丙烯(LDPE)样品,所有使用异丙醇作为溶剂的萃取方法得到的色谱图形状相似,如图4所示。增加可萃取物的浓度可以通过在微波萃取和索氏萃取中延长萃取时间、升高萃取温度,或者在超临界流体萃取中增加异丙醇的量得以实现。正己烷萃取不采用超临界流体萃取法进行,因为二氧化碳是一种非极性溶剂,与正己烷的化学性质相似,因而将会得到类似的结果。 图4 低密度聚丙烯的异丙醇萃取物 在低密度聚丙烯萃取物中鉴别的化合物示例如图5所示。 图5 在低密度聚丙烯、超临界流体萃取物中鉴别的可萃取物 总的来说,就萃出的化合物种类而言,所有方法大体相当。但是,经过确定,如果时间和资源成为重要的因素,则超临界流体萃取法相对于其他萃取方法具有诸多优势。MV-10 ASFE系统由软件控制,可进行自动化的方法开发。可使用的共溶剂达4种之多,在方法中可设定各种比例和萃取时间。在方法开发中,索氏萃取和微波萃取需要手动更换每一操作步骤的溶剂进行质量设计研究时,相当费时。 结论 与索氏萃取法相比,超临界流体萃取法可减少80%至97%的溶剂消耗量,同时可减少75%的萃取时间。通过软件控制的超临界萃取法使自动化方法开发能够确定最佳的萃取溶剂的比例和溶剂的选择。此外,与微波萃取法相比,超临界流体萃取法提供了样品预浓缩操作的灵活性。 参考文献 1. Containers Closure Systems for Packaging Human Drugs and Biologics Guidance for Industry U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) and Center for Biologics Evaluation and Research (CBER) Rockville, MD. 1999 May. 2. Norwood DL, Fenge Q. Strategies for the analysis ofpharmaceutical excipients and their trace level impurities. Am Pharm Rev. 2004 7(5): 92,94,96-99. 3. Ariasa M, Penichet I, Ysambertt F, Bauza R, Zougaghc M, Rí os Á . Fast supercritical fluid extraction of low- and high-density polyethylene additives: Comparison with conventional reflux and automatic Soxhlet extraction. J Supercritical Fluids. 2009 50: 22-28. 4. Cabovska B, Jones MD, Aubin A. Application of UPC2 in extractables analysis. Waters Application Note 720004490en. 2012November. 下载完整清晰应用纪要 请点击:http://www.waters.com/waters/library.htm?lid=134715590&cid=511436
  • 应用文章 | 磁固相萃取技术助您告别“瘦肉精”隐患!
    应用文章 | 磁固相萃取技术助您告别“瘦肉精”隐患!在1989年至1990年,西班牙首次发生多人食用含β-受体激动剂的畜产品中毒事件,由动物性食品中β-受体激动剂残留引起的中毒事件已经几乎遍布全球。在这种背景下,我国采取了全面禁止动物养殖过程中使用β-受体激动剂的措施,并实施了广泛而严格的监管措施。因此,检测动物源食品中β-受体激动剂对于保障食品安全和养殖环节违法行为溯源十分必要。只有通过严格的检测和监管,才能有效地防止这些有害物质对人体健康造成危害,保障食品安全,维护公众的身体健康。动物源食品中β-受体激动剂的确证检测包括样品前处理和仪器分析两部分。样品前处理中, MSPE材料合成技术现已发展迅速,广泛应用于食品中农药、兽药和重金属等危害物分析的样品前处理中。由于MSPE属于分散萃取,能够克服传统SPE柱加压操作导致批量处理一致性差的问题,并且操作简单,通过外加磁场即可实现固-液相分离,无需离心过滤等繁琐步骤,易于实现自动化。自动磁性固相萃取(MSPE)原理示意图实验案例由中国农业科学院农业质量标准与检测技术研究所联合普敦科技、中国农业科学院农产品加工研究所和河南兽药监察所的协助下,结合LC-MS/MS法,搭配M-MCX吸附剂和普敦科技磁性固相萃取仪,建立了动物肝脏中3种不同β-受体激动剂的快速检测方法。实验结果结果表示,此方法对3种不同β-受体激动剂检测回收率为 88.2%~110.5%,相对标准偏差(RSD)为 2.9%~10.3%,满足 GB/T22286-2008的要求和日常分析需求。与SPE方法相比,本方法的灵敏度高3倍以上,准确度和精密度基本一致。与传统柱填充式 SPE 相比,本方法具有操作简单、快速、高效等优点,适用于动物组织样品中 β-受体激动剂的日常监测。实验设备普敦科技磁性固相萃取仪,结构简单、运行高效,结合方法学优化。适用于临床小分子疾病标志物、食品安全和法医毒物检测。全自动磁性萃取平台普敦科技一直深耕磁性技术,现已研发出MagicFlux全自动磁性萃取平台。专为磁性萃取前处理过程推出的一款快速、灵活的全自动化设备。系统搭载全新的磁性萃取材料,专用于小分子物质的提取。结合超声波辅助萃取、变距移液等多种全自动智能化设计。成为食品、农产品、养殖饲料、法医和环境等理化分析领域专业人员的理想前处理帮手。全自动磁性萃取平台现拥有MagicFlux 1000/1250两款设备,均已获得相关专利,获取更多参数及资料可联系普敦科技。补充资料《基于磁固相萃取-自动前处理分离和富集动物肝脏中的β-受体激动剂》的应用文章已被《分析化学》收录并刊登,详细实验步骤和更多数据可在后台私信“磁性固相萃取”获得。
  • 海能技术子公司新仪科学获得发明专利 应用于固相萃取仪
    海能未来技术集团股份有限公司(以下简称“海能技术”)披露《关于子公司获得发明专利证书的公告》,海能技术全资子公司苏州新仪科学仪器有限公司(以下简称“新仪科学”)于 2022年12月23日收到国家知识产权局核发的一项《发明专利证书》。海能技术表示,该发明专利主要应用于新仪科学的固相萃取仪产品。新仪科学获得上述专利,符合海能技术业务整体发展需要,能够增强海能技术整体研发实力,也有利于进一步提高子公司的研发水平,树立“新仪”品牌在样品前处理产品领域的技术优势,对促进子公司业务的可持续发展具有积极意义。海能技术致力为食品、药品、医疗、农业、环保、地质、化工等领域提供仪器与方法的解决方案。2006年成立以来,已拥有海能、新仪、G.A.S.、悟空4个品牌,涵盖有机元素分析系列、样品前处理系列、电化学系列、物理光学系列、气相离子迁移谱系列、光谱系列、色谱系列、药品检验系列等近百款仪器。苏州新仪科学仪器有限公司成立于2018年11月07日,经营范围包括分析仪器、微波、仪器仪表、计算机软硬件、分析测试科技领域内的技术开发、技术服务、技术咨询、技术转让;组装:电子产品;销售:配电设备、机械设备、五金交电、橡塑制品、计算机、软件及辅助设备、电子产品、照相器材、数码产品、仪器仪表。
  • 液体快检技术突破 中科院合肥所发展超声雾化萃取-质子转移反应质谱
    p   近日,中国科学院合肥物质科学研究院医学物理与技术中心光谱质谱研究室在体液检测研究中取得进展,发展了超声雾化萃取-质子转移反应质谱(UNE-PTR-MS)技术,可实现对一滴尿液中挥发性有机物(VOCs)的高灵敏快速检测,相关研究结果发表在Analytical Chemistry上。 /p p   尿液VOCs反映人体代谢状况或疾病特征,以往的尿液VOCs测量方法存在一些缺陷:要么速度慢,要么尿液用量大。为此,科研人员设计制作了一种简便的超声雾化装置,用于微量尿液中的VOCs快速高效萃取,通过与自主研制的质谱仪PTR-MS联用,实现尿滴VOCs的快速和高灵敏监测。该方法具有微升进样量、秒量级响应时间和纳克级检测限等特点,将在体液疾病标志物检测中发挥作用,也可用于环境水体挥发物的快速检测。 /p p   研究工作得到了国家自然科学基金等的资助,使用的装置和方法已获国家发明专利授权。 /p p   论文题目:Rapid detection of volatile organic compounds in a drop urine by ultrasonic nebulization extraction proton transfer reaction mass spectrometry /p p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/596b1801-ddb2-47df-aaa9-6b31c327b7e3.jpg" / /p p style=" text-align: center " UNE-PTR-MS检测尿液示意图和检测质谱图 /p p & nbsp /p
  • 傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 固相微萃取(Solid Phase Micro Extraction,SPME)顶空气相色谱是一种简洁、便捷、环保、一举三得(萃取、浓缩、进样)的制样和分析并举的方法。SPME不仅可以和气相色谱仪器结合使用还可以和其他分析方法如液相色谱及各种质谱分析相结合。SPME有八大优点:1、操作简单,2、功能多样,3、设备低廉,4、萃取快捷,5、无需溶剂,6、在线、活体取样,7、可自动化,8、可在分析系统直接脱附。所以SPME是一种神通广大的样品制备技术。 1. 固相微萃取的由来   加拿大的 Pawliszyn 研究组在1987年研究气相色谱(GC)的快速进样技术,他们使用激光加热样品,使之快速汽化,这种 GC进样技术是把样品涂渍在激光光导纤维头部,把光导纤维头置于GC 汽化室中,用激光使样品中挥发性组分进入色谱系统,在研究中发现样品化气样速度很快,但是样品前处理却要耗费很长的时间。为了把样品处理时间缩短,他们就把处理和GC进样合二为一。即把光导纤维的石英丝涂渍上固定相(高聚物或吸附剂),因为当时 GC 毛细管石英色谱柱的涂渍工艺已经是成熟技术了,把涂渍固定相的石英丝放在样品水溶液中,吸收(吸附)被分析物,一段时间后取出石英丝置于 GC 汽化室中进行 GC 分析[3,4],这就是SPME 的开始。   为了把涂渍固定相的石英丝放入和取出 GC 的进样口不并且不影响 GC 气路系统的密封性,他们把涂渍固定相的石英丝粘接到 Hamilton 7000 型注射器针头上,如图 1 所示。用一支内径略大的不锈钢毛细管代替注射器的金属活塞棒,取一段 1.5 cm 石英丝,剥去一端0.5cm 的保护涂层,把另一端用环氧树脂粘接插入到不锈钢毛细管中,这个粘接着涂有固定相石英丝的不锈钢毛细管可以伸出或缩回到注射器针头中,以便通过隔垫把微萃取丝插到GC进样口中。其结构如图2所示。   图1 原始的SPME装置 图2 原始的SPME 针头和萃取丝装置 2.SPME 的理论研究   为了更好地理解 SPMEP 的本质和影响吸收过程的因素,Pawliszyn 研究组在发明了 SPME 以后就立刻进行了理论研究,考察了 SPME 萃取头在从水溶液中直接吸收被分析物的动力学过程,他们研究的一个模型说明,在充分搅拌溶液的条件下,样品吸收的时间只取决于样品在固定相中的扩散速度。另一个模型说明在静止的溶液中,样品吸收的时间取决于样品在溶液中的扩散速度,在使用标准的搅拌器械时,SPME 的萃取过程受溶质扩散过围绕 SPME 萃取丝周围一层静止的溶液液膜的控制。   他们还考察了SPME 萃取头在顶空情况下萃取挥发性样品的过程,这一研究说明:在溶液静态不搅拌情况下,进行顶空SPME 萃取,适合于具有高亨利常数、疏水性较强有机物的分析, 而且这种有机物在萃取固定相和空间气氛之间的分配系数较小,这一方法对测定难挥发性物质中的挥发性有机物有利。同时也详细研究了在充分搅拌被测溶液情况下进行顶空 SPME 萃取的过程,各种参数对萃取的影响。这些模型的研究促进了对 SPME 过程的理解,有利于这一方法的推广。 3.国内近年使用顶空固相微萃取气相色谱案例   我们从实际出发,看看国内近两年使用这一方法的进展,表 1 列出2013-2014年国内期刊上发表的HS-SPME-GC-MS分析案例。从这些发表的文章刊出:(1) HS-SPME-GC-MS使用十分广泛 (2) 国内的研究工作相比前几年有很大的提高(都使用了GC-MS作深入一些的研究) (3)研究工作大都使用商品化产品。 表 1 国内期刊上发表的HS-SPME-GC-MS分析案例 序号 分析对象 主要设备 文献 1 3种山茶属花香气成分的HS-SPME-GC-MS分析 安捷伦6890-5975C GC-MS联用仪,50mL顶空采样瓶、手动固相微萃取装置(美国Supelco公司);萃取纤维头2cm.50/30&mu m DVB 甘秀海,梁志远,王道平等,食品科学,2013,34(6):204-207 2 HS-SPME-GC-MS分析刺梨种子挥发性香气成分 安捷伦6890-5975C GC-MS联用仪,15mL顶空采样瓶手动固相微萃取装置(美国Supelco公司);萃取纤维头70&mu m PDMS 陈青,高健,中国酿造,2014,33(1):141-142 3 HS-SPME-GC-MS分析香荚兰豆中挥发性成分 安捷伦6890-5973 GC-MS联用仪,15mL顶空采样瓶, 萃取纤维头德国IKA公司),65&mu m聚二甲基硅氧烷.二乙烯基苯(PDMS&mdash DVB)萃取纤维头及100 17),手动固相微萃取(SPME)进样器装置(美国Supelco公司),65 Ixm聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco公司),15 mL样品瓶。m PDMS萃取纤维头(美国Supelco公司) 卢金清,李雨玲,张锐等,中国实验方剂学杂志,20414,20(3):79-82 4 HS-SPME-GC-MS结合化学计量法对不同产地艾叶药材挥发性成分的比较分析 安捷伦6890-5973 GC-MS联用仪65 &mu mPDMS/DVB萃取头(美国Supelco公司),手动固相微萃取进样器装置(美国Supelco公司), 梁欢,卢金清,戴艺等,中国实验方剂学杂志,2014,20(18):85-90 5HS-SPME和VDE两种方法对普洱茶香气成分分析的比较研究 HS-SPME手动进样,500顶空采样瓶, 谢吉林,肖海军&rdquo ,鲍治帆等,云南农业大学学报,2014,29(6):873&mdash 879 6 SD-HS-SPME-GC-MS分析华中碎米荠挥发性成分 Agilent 6890/5973 GC-MS联用仪,17),手动固相微萃取进样器装置(美国Supelco公司),65 &mu m聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco公司),15 mL样品瓶。 卢金清,李婷+,郭彧等,中国实验方剂学杂志,2013,19(1):148-152 7 SPME-GC-MS法分析金华火腿风味物质的条件优化 Trace Ultra气相色谱.DSQ II质谱联用仪器、Triplus自动进样器美国, Thermo公司;75 gm CAR/PDMS萃取头(美国Supelco公司) 李鑫,刘登勇,李亮等,食品科学,2014,35(4):122-126 8 SPME-GC-MS法分析室内空气中挥发性有机物 Varian 4000 GC/MS气相色谱-质谱仪&rsquo ,分流/不分流进样口和离子阱质谱检测器。固相微萃取装置(美国Supelco公司),包括手柄和100 &mu m PDMS、65}&mu m PDMS/DVB、75肚m Carboxen/PDMS三种吸附纤维,15 mL顶空瓶(德国CNW公司)。 降升平,张小红,张玲玲等,太原理工大学学报,2013,44(3):272-277 9 SPME-GC-MS分析高梁 、大豆丹贝和大豆丹贝中的挥发性成分 SPME手动进样柄及75&mu m CAR/PDMS萃取头(美国Supelco公司); 1200 GC(美国瓦里安公司) 丁一,肖愈,黄瑾等,食品科学,2013,34(20):131 - 134 10 SPME-GC-MS 分析商品藤茶中环烃类化合物 Agilent 6890/5975C GC/ MS 联用仪, 手动固相微萃取装置(美国Supelco 公司),萃取纤维头为:2 cm - 50/30 &mu m DVB/ CAR/ PDMS 赖茂林,郁建平,山地农业生物学报,2014,33(4) :092 - 094, 11 SPME-GC-MS检测不同中西方奶酪的挥发性风味物质及比较 Agilent 6890N,59731气相色谱-质谱联用仪:SPME手柄、75&mu m CAR/PDMS萃取头(美国Supelco公司) 马艳丽,曹雁平,杨贞耐等,食品科学,2013,34(20):103 - 107 12 SPME-GC-MS联合分析槟榔花香气成分 岛津QP 2010 Plus型气相色谱-质谱联用仪(GC&mdash MS); 自动SPME进样器;5&mu mPDMS&mdash DVB萃取纤维头。 张明,黄玉林,宋菲等,热带作物学报,2014,35(6):1244-1249 13 薄皮甜瓜品种&lsquo 白玉糖&rsquo 香气成分的HS-SPME/GC-MS 分析 100&mu m PDMS(聚二甲基氧硅烷)萃取头(美国Supelco),Agilent 7890A/5975C GC-MS 气相色谱质谱联用仪 赵光伟,徐志红,孔维虎等,中国瓜菜,2014,27(5):14-17 14 保留指数在茶叶挥发物鉴定中的 应用及保留指数库的建立 SPME 65 &mu m 聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco 公司);6890 气相色谱-5973 质谱仪(Agilent 公司);自制改良顶空瓶(容积150 mL 玻璃试验瓶) 林杰,陈莹,施元旭等,茶叶科学, 2014,34(3):261-270 15 不同高山杜鹃品种杂交后代花瓣香气成分的HS-SPME.GC.MS分析 Trace GCMS&mdash DSQ II气相色谱-质谱联用仪(Thermo,USA),萃取头的材料未报道 苏家乐,何丽斯,刘晓青等,江苏农业学报,2014,30(1):227-229 16 顶空固相微萃取结合气相色谱.质谱法分析兔肉的挥发性风味物质 QP 2010气相色谱-质谱联用仪(日本岛津公司);手动SPME进样器、75&mu m碳分子筛/ 聚二甲基硅氧烷(CAR/PDMS)涂层萃取头(美国Supelco公司):萃取瓶美国Perkinelmer公司 王琚,贺稚非,李洪军等,食品科学,2013,34(14):212-217 17 顶空固相微萃取-气相色谱-质谱法分析东北油豆角挥发性成分 6890N-5975气相色谱-质谱联用仪,20 mL钳口项空样品瓶(美国Agilent公司);65&mu m PDMS,DVB萃取头(美国Supelco公司) 王艳,宋述尧牢,张越等,食品科学,2014,35(12):169-173 18 顶空固相微萃取-气相色谱-质谱法分析玉兰花的挥发性成分 Agilent 6890 GC-5975MS气质联用仪(美国安捷伦公司);固相微萃取装置,75 &mu mCAR/PDMS萃取头(美国Supelco公司) 许柏球,栾崇林,刘莉萍等,香料香精化妆品 ,2014,(3): 19 顶空- 固相微萃取-气相色谱- 质谱联用法分析 &ldquo 无锡毫茶&rdquo 中的香气成分 Trace MS 气相色谱-四极杆质谱联用仪(美国Finnigan 公司);手动SPME 进样器(美国Supelco 公司);100 &mu m 聚二甲基硅氧烷(PDMS)萃取头、75 &mu m 碳分子筛/ 聚二甲基硅氧烷(CAR/ PDMS)萃取头、65 &mu m 二乙烯基苯/ 聚二甲基硅氧烷( DVB/ PDMS)萃取头、50/30 &mu m 二乙烯基苯/ 碳分子筛/ 聚二甲基硅氧烷(DVB/ CAR/ PDMS)萃取头、15 mL 顶空瓶(上海安谱科学仪器有限公司) 曾 茜,曹光群,李 明等,分析测试学报,2014,3(10):1136 -1141 20 顶空固相微萃取.气质联用分析并比较两种延胡索挥发性成分 Trace DSQ型气质联用仪(美国Thermo Finnigan公司),手动固相微萃取装置,聚二甲基硅氧烷涂层萃取头 (100 &mu m聚二甲基硅氧烷)和125 m1带聚四氟乙烯涂层硅橡胶垫的螺口玻璃瓶(美国supelco公司) 施华青,陈彬,寿佳妮等,中国医药工业杂志, 2014,45(1):66-68,75 21 顶空固相微萃取一气质色谱联用技术分析海州香薷与石香薷中挥发性成分 Agilent 7890N-5973N GC.MSD气相色谱质谱联用仪(美国Agilent公司),GC-MSD数据分析系统65&mu m PDMS/DVB(聚二甲基硅氧烷/二乙烯苯)SPME萃取头。 李佳,刘红燕,张永清,中国实验方剂学杂志,2013,19(16):118-122 22 发酵牛肉肠挥发性成分固相微萃取条件优化分析 , SCION TQ气质联用仪(德国布鲁克公司),固相微萃取头和57330U固相微萃取手柄美国(Supelco公司), 用DVB/CAR/DMS、PDMS/DVB,CAR/PDMS 3种萃取头 董琪,王武宰,陈从贵等,食品科学,2014,35(12):174-178 23 固相微萃取条件对橙汁主要挥发性成分GC-FID测定的影响 6890-5973气相色谱(美国Agilent公司); SP3400气相色谱仪(北分瑞利分析仪器公司),固相微萃100&mu m PDMS(美国Supelco公司) 牛丽影,郁萌,吴继红等,食品科学,2013,34(22):224-233 24 酒醅微量挥发性成分的HS-SPME和GC-MS分析 6890N-5973I气相色谱-质谱联用仪(美国安捷伦公司),PC420固相微萃取仪,萃取头(75&mu m CAR/PDMS、65&mu m PDMS/DVB,50/30&mu m DVB,CAR/PDMS 100&mu m PDMS(颜色分别为黑色、蓝色、灰色、红色,美国Supelo公司) 赵爽,张毅斌,张弦等,食品科学,2013,34(4):118-124 25 食用油品中己醛的分析 GC-2010气相色谱仪(本岛津公司), SPME手柄及SPME纤维(Supelco公司), 100 &mu m PDMS, 65 &mu m PDMS/DVB, 85 &mu m PA, 85 &mu m CAR/PDMS 和70 &mu m CW/DVB,最终选取 85 &mu mCAR/PDMS 陈冬梅, 福建分析测试, 2014,23(3):22-26 26 同时蒸馏萃取法和固相微萃取法分析棕榈油与菜籽油复合火锅底料中的风味物质 QP2010型气相色谱-质谱联用仪(日本岛津公司),固相微萃取手柄、75 &mu m CAR/DMS固相微萃取头(美国Supelco公司) 张丽珠,黄湛,唐洁等,食品科学,2014,35(18):156-160 27 应用SPME-GC-MS分析变温压差膨化干燥香蕉脆片香气成分 萃取头65 &mu m DVB/PDMS(美国Supelco公司),QP 2010 Plus气相色谱-质谱联用仪(日本岛津公司) 李宝玉,杨君,尹凯丹等,食品科学,2014,35(14):184-18828 HS-SPME-GC-MS分析河南产牛至挥发性成分 美国安捷伦公司GC 6890 N GC/5975 MS型气相色谱-质谱联用仪,美国Supelco公司手动固相微萃取(SPME)装置,萃取头为65&mu m PDMS-DVB 尹震花,王海燕,彭涛, 中国实验方剂学杂志,2014,20(6):77-80 29 HS-SPME-GC-MS分析藿香蓟花中的挥发性成分 美国安捷伦公司GC 6890 N GC/5975 MS气相色谱-质谱联用仪,美国supelco公司手动固相微萃取(SPME)装置,萃取头为100&mu m PDMS-DVB 张橡楠,张一冰,张勇等,中国实验方剂学杂志,2014,20(9):99-101 30 SPME与SD提取八角茴香挥发性风味成分的GC-MS比较 美国安捷伦公司GC 6890 N GC/5973 MS型气相色谱-质谱联用仪,65&mu mPDMS/DVB萃取纤维头, 顶空瓶15mL(德国IKA公司) 黎强,卢金清,郭胜男, 中国调味品,2014,39(7):107-109 31 SPME-GC/MS/O法分析水性涂料的气味问题 气相色谱-质谱-嗅觉测量联用仪(Agilent 6890-5973 MSD-O),固相微萃取装置(Combi&mdash PAL,CTC-SPME),萃取纤维(Supelco,50/30&mu m DVB/CAR/PDMS StableFlex/SS l cm),20 mL顶空样品瓶 董婕,朱莉莉,方芳等,涂料工业,2014,44(5):53-55 32 SPME-GC-MS法研究竹叶柴胡和北柴胡挥发性成分差异 6890-5973N型气相色谱-质谱联用仪 (美国Agilent公司),手动固相微萃取装置(美国Supelco公司),萃取纤维头(100&mu m PDMS,7&mu m PDMS,85&mu m PA),5 mL SPME.GC专用采样瓶(美国Supelco公司) 王砚,王书林, 中国实验方剂学杂志,2014,20(14):104-108 33 SPME/GC-MS鉴别地沟油新方法(Ⅲ) Agilent 6890 GC/5973i MS气相色谱-质谱联用仪(美国安捷伦公司);自制SPME固相微萃取头NACC-1。 吴惠勤,黄晓兰,林晓珊等,分析测试学报,2014,32(11):1277-1282 34 巴氏灭菌对不同品种菠萝蜜汁挥发性香气成分的影响 Thermo Trace 1300-ISQ气相色谱一质谱联用仪,20mL样品瓶、固相微萃取自动进样手柄美国Thermo公司;固相微萃取头(65 &mu m PDMS/DVB) 美国Supelco公司。 皋香,施瑞城,谷风林等,食品科学,2014,35(9):63-68 35 保留指数在茶叶挥发物鉴定中的应用及保留指数库的建立 SPME 手持器(SAAB-57330U)和65 &mu m聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco 公司);6890 气相色谱-5973 质谱仪(Agilent公司);自制改良顶空瓶(容积150 mL 玻璃试验瓶) 林杰,陈莹,施元旭等,茶叶科学, 2014,34(3):261-270 36 不同地区黄酒挥发性物质差异性分析 75 &mu mCAR/PDMS固相微萃取头(美国Suplco公司), Trace MS气相色谱-质谱联用仪(美国Finnigan公司) 王培璇,毛健,李晓钟等,食品科学,2014,35(6):83-89 37 不同性别伊拉兔肉挥发性风味物质的SPME-GC-MS分析 QP 2010气相色谱-质谱联用仪(日本岛津公司);手动固相微萃取进样器、75&mu m CAR/PDMS涂层萃取头(美国Supelco公司) 陈康,李洪军,贺稚非等,食品科学,2014,35(6):96-102 38 顶空固相微萃取-气相色谱.质谱联用法分析仔姜与老姜的挥发性成分 QP 2010型气相色谱-质谱联用仪(日本岛津公司;固相微萃取装置(配有50/30&mu m DVB/CAR/PDMS萃取头) 美国 Supelco公司;萃取瓶美国Perkin Elmer公司 汪莉莎,陈光静,张甫生等,食品科学,2014,35(10):153-157 39 顶空固相微萃取与气相色谱.电子捕获技术联用检测软木塞中2,4,6.三氯苯甲醚 CP-3800气相色谱仪(美国Varian公司),20 mL项空瓶,;手动固相微萃取手柄,100&mu m聚二甲基硅氧烷涂层萃取头(美国sigma公司) 张哲琦,王玉春,陈臣等,食品科学,2014,35(12):148-150 40 多种提取方法分析蛇莓挥发性组分 QP 2010-Plus 气相色谱-质谱联用仪(日本岛津公司),顶空进样针PDMS 100 &mu m, PDMS-DVB 65 &mu m, CAR-PDMS 75 &mu m,PA 85&mu m (美国Sigma 公司) 王晨旭,于兰,杨艳芹等,分析化学,2014,42(11):1710 -1714 41 海南主要地域生咖啡豆挥发性化学成分对比研究 QP 2010 Plus气质联用系统(日本岛津公司),20 mL顶空瓶,未报道萃取头品种 胡荣锁,初众,谷风林等,光谱学与光谱分析,2013,33(2):548-55342 葎草鲜品不同部位的挥发油成分及含量 仪器:Aghilent 6890-5973 GC/MS ;手动固相微萃取(美国Supelco公司),萃取纤维头为:100&mu mPDMS 彭小冰,邵进明,刘炳新等,贵州农业科学,2014,42(4):178-181  43 熟化方式对小米粉制品挥发性成分的影响 气相色谱质谱联用仪(美国Varian公司);顶空固相微萃取装置(美国Supelco公司), DVB/CAR/PDMS萃取头 李雯,陈怡菁,任建华等,中国粮油学报,2014,29(4):93-97 44 GC-MS分析比较3个特产香椿品种的挥发性成分 Varian 4000 GC-MS(美国瓦里安公司);顶空固相微萃取装置(包括手持式手柄,50/30&mu m DVB/PDMS、75 &mu m CAR/PDMS、lOO&mu m PDMS、65&mu m PDMS/DVB 4种萃取头,40mL顶空瓶)( 美国Supelco公司) 刘常金,张杰,周争艳等,食品科学,2013,34(20):261-267 45 HS-SPME-GC-MS法分析肉桂子挥发性化学成分 QP2010气相色谱-质谱联用仪(日本岛津公司),;手持固相微萃取设备(美国,Supelco公司)100&mu m PDMS ,75&mu m PDMS/CAR ,65&mu m PDMS/DVB 和50/30&mu m PDMS/DVB/CAR萃取 头 熊梅,张正方,唐军等中国调味品,2013,38(1):88-91 46 HS-SPME-GC-MS分析两种南瓜瓤挥发性成分 Agilent GC 6890 N /5975 MS,Supelco SPME 65&mu m PDMSA-DVB 萃取头物膜(聚二甲基硅氧烷)   小结:SPME 是现今和气相色谱仪连接使用最多的一种结合样品处理与分离分析在一起的方法,应用模式和应用范围还在发展。   下一讲讨论样品处理的另一种模式&mdash &mdash &ldquo 悬空济世&mdash 单滴液体微萃取的妙用&rdquo 。   最后预祝读者羊年快乐!万事如意!
  • 固相萃取中常见的问题及解决方法
    固相萃取是一种利用固体吸附剂对样品中不同组分的选择性吸附能力差异来分离、纯化样品的前处理方法。固相萃取技术是食品检测中最常用到的技术手段,下面列举了一些在固相萃取中常见的问题及解决方法。 目标化合物回收率偏低(目标化合物没有或部分被吸附在SPE柱上)原因1:SPE柱没有很好地被预处理解决方法:反向柱:用甲醇,异丙醇或乙醇处理柱子,然后用稀释样品的溶剂处理柱子,注意不能让SPE柱变干。原因2:SPE柱的极性不合适解决方法:选择对目标化合物有明显选择性的SPE柱。原因3:目标化合物对样品溶液的亲和力远远大于对SPE柱的亲和力解决方法:改变极性或样品溶液的pH使目标化合物在样品溶液中的亲和力降低。原因4:当大体积水样品通过SPE柱时,反相柱填料失去柱子预处理留下的甲醇解决方法:在样品溶液中加入1%-2%的甲醇或异丙醇或乙腈。 目标化合物回收率偏低(目标化合物没有被洗脱出SPE柱)原因1:SPE柱的极性不合适解决方法:选择其他低极性或者选择性弱的SPE柱。原因2:洗脱溶剂不够强,无法将目标物化合物从SPE柱上洗脱解决方法:改变洗脱溶剂的pH以增加其对目标化合物的亲和力。原因3:洗脱溶剂体积太小解决方法:增加溶剂体积。原因4:目标化合物被不可逆地吸附在SPE载体上解决方法:反相:选择疏水性弱的载体。如果原来用的C18,则改为C8,C2,CN。阳离子交换:用羧酸取代苯磺酸。阴离子交换:用伯胺、仲胺代替叔胺。 萃取重现性差原因1:在添加样品之前SPE柱已干燥解决方法:重新进行SPE预处理。原因2:SPE柱超容量解决方法:减少样品量或选择大容量柱。原因3:样品过柱流速太快解决方法:降低流速。原因4:洗脱液流速太快解决方法:在使用外力之前让洗脱液渗透过柱。两次5ml洗脱可能比一次10ml,更有效。原因5:目标化合物在样品中的溶解度太大,样品过柱时与样品同时通过柱子而没有被保留解决方法:通过改变样品极性或pH而改变目标化合物的溶解度。原因6:SPE柱用极性溶剂处理而洗脱剂是不兼容的非极性溶剂解决方法:在使用非极性溶剂之前对SPE柱进行干燥。原因7:洗涤杂质用的溶剂太强,部分目标化合物与杂质同时被从SPE柱洗脱。目标化合物在这一步损失的多少取决于洗涤溶剂的流速,SPE的特性以及洗涤溶剂的体积。解决方法:降低洗涤溶剂的强度。原因8:洗脱液体积太小解决方法:增加洗脱液的体积。 在用反相SPE柱萃取时,洗脱馏分中有水原因:目标物化合物洗脱之前SPE柱没有很好地干燥解决方法:用氮气或空气干燥SPE柱:用20~100μL含60%-90%甲醇-水将SPE柱上的残留水分除去。 洗脱馏分中含有干扰物原因1:干扰物与目标化合物被同时洗脱解决方法1:在洗脱目标化合物之前选用中等极性的溶剂将干扰物洗涤出SPE柱。可将两种或更多种的溶剂混合以达到不同的极性。解决方法2:选用对目标物化合物亲和力更大而对干扰物亲和力低的SPE柱。原因2:干扰物来自SPE柱解决方法1:用两根不同极性的SPE柱以除去干扰物。如反相柱和离子交换柱或硅胶柱。解决方法2:在柱子预处理之前用洗脱溶剂洗涤SPE柱。 SPE柱流速降低或者阻塞
  • 他,誓做固相微萃取中国先行者
    “这个长度只有一厘米多的搅拌棒作用可不小,以前进行海水增塑剂检测,至少需要一瓶矿泉水那么多的样本,每次出海需要在上百个监测点取样,这意味着出一次海至少要带回上千瓶矿泉水那么多的液体样本̷̷有了这个搅拌棒,每次检测只要一个矿泉水瓶盖的液体样本就足够了。”在位于城阳区的青岛博士创业园的实验室里,靳钊博士指着各种型号的搅拌棒和探针自豪地介绍着。  其实,真正神奇的不是这些黑色小棒或银色探针,而是靳钊与爱人坚持十余年的研发成果——固相微萃取技术。  固相微萃取,是很多人难以理解的专业名词,这门“小众”技术,高分子材料学博士毕业的靳钊与爱人坚持钻研了十余年。目前,这项技术已获得两项国家发明专利和一项实用新型专利,他所创立的青岛贞正分析仪器有限公司也成为国内在该领域首家拥有自主知识产权的企业。  靳钊说,他想做中国固相微萃取技术的先行者,事实上,他已经做到了。  民族的情怀:誓做固相微萃取中国先行者  固相微萃取技术这个看似高深难懂的专业术语,却是与食品安全息息相关的检测技术,更是中国对外贸易取得平等话语权的重要工具。  中国是全球最大的茶叶生产国,欧洲是我国茶叶出口的主要地区之一。有数据表明,2000年我国出口欧盟茶叶量比“全盛时期”的1998年减少了34.5%。“使这一数字锐减的,是1999年应用于茶叶农残检测的固相微萃取技术。使用这一新技术,农残的最小检出浓度降低了100倍。”靳钊说。当时,国内分析检测技术尚不能检测如此低含量的农药残留,出口茶叶面临因农残超标被遣回的风险,这严重制约茶叶出口。“没有先进的检测技术,在对外贸易中我们就无法取得与对方平等对话的权利,这成为我国对外贸易中最大的掣肘之一。”  因此,靳钊誓做固相微萃取的中国先行者。  人生“合伙人”协作 打破欧美技术垄断  2003年,在大连理工大学主修高分子材料学的靳钊博士收到一封邮件:一位分析化学专业的女博士在研究 “固相微萃取”课题时遇到了瓶颈,邀请靳博士共同进行科研攻关。  “固相微萃取技术是利用一种特殊的涂层,对检测物质进行定向吸附浓缩,以解决痕量(超微量)物难以检测的难题。”涂层所使用的材料,对于这项技术的稳定性、效率等具有决定性意义。当时国内虽然也有科研人员进行该技术的研究,但材料单一、性能不稳定,无法满足产业化应用的要求。  “我们共同开发了几款材料,没想到效果很好。经过四年的不懈努力,在试用了几十种材料、加工工艺与应用方法后,终于研制出了一款性能优异、产品稳定性强的固相微萃取产品。”  在过去二十年,固相微萃取技术及产品始终被欧美国家垄断,靳钊的研究成果不仅打破了技术和产品的国外垄断,还取得了更优的性能。“就以搅拌棒为例,我们的产品磨损率低,萃取效率高,品使用寿命更长,性能更好。德国产品平均一根棒能使用60-80次,而我们的能使用150-200次,大大降低企业的使用成本。”靳钊介绍说,此后他又与研发团队相继研发出十多款固相微萃取产品,广泛应用于环境监测、水质监测、食品安全、香精香料等领域的快速、痕量检测,填补了国内市场空白。  在这一过程中,两位博士也从技术 “合伙人”,发展成为一生的“合伙人”。  注册公司:在自家厨房开辟研发地点  既做科研又接触市场,科技成果产业化的思路深深根植于靳钊心中:“如果研发成果不进入市场,那这项研究就失去了意义。”2013年,随着产品体验者的增多,产品量产和市场化的需求凸显,成立公司成为顺其自然的选择。  “当时资金有限,根本没有钱去外面租专门的办公室,只能把公司注册在家里,研发地点是自家厨房。”靳钊用了一周时间拿到了小区单元42家住户的签字,又征求了街道同意,才算完成了公司的注册。  场地问题解决了,资金成为摆在靳钊面前的头等难题。这些年他为了搞研发、维系公司运转,陆续投入了70万。“这些钱都是从我和爱人每月工资里省出来的。”直到 2015年,靳钊在市人社局人才中心帮助下入驻青岛博士创业园,免费获得了100多平的办公用房,税务、工商等繁琐的手续也可以在园区的公共服务大厅一站办理。靳钊坦言,这让他能够把精力放在研发推广上,使公司真正快速发展。  造福于人:要把小众科技带进大众生活  前不久的一件小事让靳钊颇有感触:有位大妈从李沧专门坐车到城阳找他,想测测买的保健品成分合不合格。这让靳钊意识到,现实生活中,百姓对食品药品乃至环境安全如此重视,但权威、高效、便捷的检测手段太匮乏了。  “原本只是单纯地想做技术、做研究,但真做成了却发现,研究成果真正的意义是用在实践领域,是用来改变生活的。这更坚定了我把固相微萃取这项小众科技带进大众生活的信念。”  固相微萃取技术在食品安全领域还没有国家标准,所以技术的推广、百姓的认知度提升都还有一个漫长的过程。但今年初,国家有关部委明确提出要用固相微萃取检测水中有害物质,并力争在两年内建立环境监测领域固相微萃取的国家标准。“仿佛吹来了一阵春风,感觉固相微萃取这项技术的春天就要来了,十几年的坚持没有白费。”说着,靳钊脸上绽放出坚定的笑容。
  • 富耐立--氮吹仪、固相萃取仪8折优惠,优质更优价
    烟台富耐立仪器科技有限公司是由海诚高科技有限公司仪器事业部发展而来,海诚公司是山东省高新技术企业、国家火炬计划企业。公司与中科院联合成立研发中心,致力于开发具有独立知识产权的分析仪器,已拥有食品安全检测分析和海洋环境监测仪器二十余种。 秉承新老客户的关注及支持,富耐立将对现有常规产品实行促销活动--氮吹仪、固相萃取仪8折优惠。一次性订购5台享受75折优惠,订购10台赠送1台同型号的仪器并赠送萃取小柱1盒30支。 促销时间:2012年2月14日-2012年6月14日,促销热线:0535-2109295 400-688-1503
  • 赛默飞发布革新的SOLA固相萃取小柱
    全新塞板设计,无与伦比的重现结果2012年5月9日 ——服务科学的世界领导者赛默飞世尔科技,近日发布新一代赛默飞 SOLA 固相萃取 (SPE) 小柱和提取板产品。SOLA™ 对筛板设计和制造工艺做了革命性的改变,将聚乙烯筛板材料和基质融为一体式柱床,从而提供卓越的重现性、回收率和更洁净的实验结果。SOLA 产品的一体式设计理念与传统的固相萃取小柱形式相比有巨大的优势:传统固相萃取小柱在两层筛板之间装填松散的填料,在生产和运输过程中容易沉降或流失;SOLA新的设计避免了传统小柱通常存在的空洞、涡流和装填不一致的问题。SOLA 产品有小柱和96孔板两种形式,有反相和离子交换等多种键合相,在高通量生物分析和临床分析中有巨大的应用优势。更多有关 赛默飞SOLA SPE 产品的信息,请访问: www.thermoscientific.com/sola-spe. 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity™ Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com关于赛默飞中国赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳等地设立了分公司,目前已有超过1900名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 美国Advion公司液滴萃取表面分析技术交流会将举办
    The Liquid Extraction Surface Analysis (LESA): A Novel Tool in Mass Spectrometry 液滴萃取表面分析:新颖的质谱分析工具   演讲人: Dr. Mark Baumert ,美国Advion公司技术支持经理   时间: 2013年9月27日星期五上午 9:00 - 11:30   地点: 北京北三环东路18号中国计量科学研究院化学所17号楼6楼会议室   交通:地铁5号线和平西桥站或乘坐367、601、718、运通104等公交车在和平西桥站   联系人:王争女士 010-6439 9978 (华质泰科公司)   宋德伟博士 010-6452 4789 (中国计量科学研究院)   摘要   液滴萃取表面分析(LESA)为最新的、全自动的、基于芯片的多通道纳升电喷雾离子化质谱分析法(Chip-based nanoESI-MS)。它的出现为运用灵敏度和选择性高但耗时、难重现及低通量的传统nanoLC-nanoESI-MS法进行简单、快捷的表面(例如组织切片、MALDI点样板、干血斑)分析成为可能。 Mark Baumert 将首先对LESA-MS 如何补充并提高商业界多年以来所沿用的黄金标准般的 nanoLC-MS 技术和其他质谱方法如 MALDI-MSI 质谱成像技术、充分发挥现代高端质谱仪的潜能展开讨论。同时,他将说明如何通过 LESA-MS 研究药物在组织内的分布和代谢,以获取比 MALDI-MSI 技术提供的更加有效和更加丰富的信息。此外,他还将对开发并应用包含高分辨&ldquo shotgun&rdquo 质谱法、&ldquo 靶标&rdquo 串联质谱分析法、结合特定官能团化学修饰和实时液滴萃取细胞培养液样品等组合方案来完整鉴定、表征和定量各种细胞株中多种脂质类物质加以详细的介绍。最后,他将阐明如何运用新开发的 Chip-Mate nanoESI 解决方案来获得稳定的纳升电喷雾,以减少 nanoLC-MS 样品分析中的失败几率。   演讲人简介   Baumert 为美国 Advion 公司质谱离子源欧洲技术支持经理,有着25年的液质联用、基质辅助激光解吸电离质谱、纳升液相色谱、DNA测序及合成、肽合成及氨基酸分析经验 10年的脂质组学、蛋白质组学、代谢产物结构鉴定、临床及药物等方面的质谱应用研发和管理经历,在液质联用尤其是离子源和质谱仪的应用和支持方面有着丰富的知识和经验。
  • 双核:在无锡,感受固相萃取和微波萃取
    4月8-9日,EMIF生态环境检测技术创新论坛在无锡成功举办。出席会议的有来自全省分析测试机构、高校科研单位和企业的代表,以及安捷伦、赛默飞、PE、沃特世、岛津、屹尧科技等仪器厂商。来自无锡、南京、常州、镇江等市环境检测中心的专家对环境监测的热点和方向、江苏省环境监测条例和现场监测的新标准做了分析解读,并分享了水质中藻毒素和酞酸酯的测定,以及环境空气中VOCs的测定技巧。江苏省环境检测中心的陈老师则介绍了检测行业飞行检查需要注意的要点以及检测机构内部质量管理的要点。前处理仪器作为环境监测中重要的一环,屹尧科技产品部齐经理在会上做了《水质和土壤中污染物分析自动化前处理方法》的报告。无论固相萃取还是微波萃取,屹尧科技都可以针对不同应用需求,为您提供更合适的解决方案。好的固相萃取仪什么样?它不应该只能测水样,还可以同时测土壤、食品和生物样!真正的全自动固相萃取仪,不会因为体积大小不同,或者用到不同的SPE柱子,就不得不手动更换配件。是的,EXTRA固相萃取仪作为真正全自动的“时间管理大师”,能同时轻松搞定各种类型的样品,并实现多种SPE柱的自动切换。除了便捷高效之外,再好看的数据,也首先要真实才有意义。用户一直苦恼的固相萃取过程中的交叉污染,对EXTRA早已不再是问题。它采用极其巧妙的流路设计,移液针配套高精度注射泵实现样品通过缓冲环进样方式,样品不经过泵阀,从源头上避免了交叉污染。随着样品量的不断增加,检测需求的不断提高,微波萃取在土壤和沉积物、固体废物等样品分析前处理中的应用也越来越多。密闭微波溶剂萃取利用微波加热的优势,大大提高了目标分析物在提取溶剂中的溶解度,增加其从样品基质中脱吸的速率,且更大程度的保留了易挥发组份。屹尧科技精确的温度控制保证了提取的重复性,110mL萃取管满足了标准中大样品量需求,45分钟即可完成27个样品的提取。屹尧科技,为您提供更高效可靠的微波萃取与更便捷精准的全自动固相萃取双核驱动的样品前处理。
  • 傅若农第二十一讲:碳用于固相萃取的演变
    p 往期讲座内容见: a style=" color: rgb(0, 176, 240) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/zt/frnqxsp" target=" _blank" span style=" color: rgb(0, 176, 240) " strong 傅若农老师讲气相色谱技术发展 /strong /span /a   /p p   碳是有机世界的“主角”,在地球上按重量计算,占地壳中各元素总重量的0.4%,按原子总数计算不超过0.15%。而元素碳是一种十分神奇的物质,像碳纤维是比钢轻而抗拉强度高于钢7-9倍的材料。尤其是近20年纳米级大小的碳(富勒烯,碳纳米管,石墨烯等)人们给以前所未有的重视。 /p p   在利用各种吸附剂进行混合物分离发展的早期,人们就利用各种形态的碳做吸附剂用于分离各种混合物,现在人们又把目光投向富勒烯,碳纳米管,石墨烯等纳米级材料做新型分离材料用作固相萃取的吸附剂。 /p p    strong 1. 活性炭作固相萃取吸附剂 /strong /p p   活性碳是最早使用的固相萃取吸附剂,开始主要使用工业级别的活性碳,但是,使用了一段时间以后,吸附性能不能令人满意,就把它改性,以适应萃取分离的要求。在制备活性碳当中,要得到所需要的性能,碳化和活化过程的参数中最重要的是原料的选择和预处理。活性碳的基本性质取决于所用原料,使用的原料有自然的木头、泥炭、煤、果核、坚果的外壳以及人工合成物质——主要是 a style=" color: rgb(255, 0, 0) text-decoration: underline " title=" " target=" _self" href=" http://www.instrument.com.cn/application/SampleFilter-S08001-T000-1-1-1.html" span style=" color: rgb(255, 0, 0) " strong 聚合物 /strong /span /a 。在没有空气和化学品条件下的碳化过程中,首先是大多数非碳元素(氢、氧和微量硫和氮)由于裂解的破坏而分解挥发了,这样元素碳就留下来,形成结晶化的石墨,其结晶以无规则方式相互排列,而碳则无规律地存在于自由空间里,这一空间是由于滞留在这里的物质被沉积和分解而形成的。进行碳化的目的是使之形成适当的空隙并形成碳的排列结构,碳化过程使碳吸附剂具有较低的吸附容量,使其比表面只有几个 m2/g,使之没有过高的吸附性。为了得到高空隙度和一定的比表面积,碳化还要进行活化过程。从天然原料制得的活性碳要比从合成物制得的活性碳具有较高的灰分,从合成化合物制得的活性碳几乎没有灰分,并且具有很好的机械性能,不易压碎和被磨损。由天然原料制得的活性碳其吸附性能受到它表面化学结构的影响,而其表面性质又决定于与其键合在一起各种杂原子(如氧、氮、氢、硫、氯等)的种类,活性碳是没有特殊选择性,或选择性很小的吸附剂。制备良好的活性碳为多孔结构,主要是各种直径的微孔和介孔,其比表面可达1000 m2/g到2m2/g,或者更高一些,使其具有高的吸附容量。活性碳表面具有很高的化学和几何不均一性,特别是工业用活性碳尤为严重。 /p p   固相萃取(SPE)使用活性炭始于上世纪 50 年代初,Braus 等人使用活性碳做吸附剂,在铁管中装1200-1500 g 碳纤维,用以富集水中的污染物,之后用索氏萃取器提取被吸附的有机物,包括水中的有机氯农药。(Anal Chem,1951,23:1160)。萃取管长91.44 cm,直径在10.16 cm,装填1200-1500 g 颗粒状活性碳,通过 5000 gal - 7500 gal 地表水吸附有机氯氯农药。 /p p   由于活性碳的缺点妨碍其使用,即吸附性不均一,重复性不好,有过高的吸附性,有不可逆活化点,回收率低。所以从上世纪 60 年代末到80 年代初,一直在寻找更为合适的适应性更强的 SPE 填料。 /p p    strong 2. 碳分子筛作固相萃取吸附剂 /strong /p p   在上世纪 70 到 80 年代,在研究聚合物吸附剂和键合有机物硅胶的同时,再次使用了性能改进的碳吸附剂——碳分子筛。这是由于当时的碳吸附剂结构改进、材质均一、性能稳定,同时它对极性化合物的吸附有好的选择性。碳分子筛的性能与 XAD-4 大孔树脂(以苯乙烯和丙烯酸酯为单体、乙烯苯为交联剂进行聚合)相同。 /p p   1968年 Kaiser 制备出一种碳吸附剂叫“碳分子筛”,国外的商品名是 Carbosieve B,它是用偏聚氯乙烯小球进行热裂解,得到固体多孔状的碳,其比表面为1000 m2/g,平均孔径为 1.2 nm 。这种吸附剂用于气-固色谱的固定相,我国称之为碳多孔小球(TDX),自然可以用作固相萃取的吸附剂。早年我国上海高桥化工厂、中科院化学所和天津试剂二厂相继研制成功这类碳分子筛,商品名叫做:碳多孔小球(Tan Duokong Xiaoqiu,TDX), 具体的牌号有 TDX-01 TDX-02。它们的堆积密度为 0.6 g/mL,比表面为 800 m2/g。碳多孔小球的特点是:非极性很强,表面活化点少,疏水性强,耐腐蚀、耐辐射,寿命长。表1列出国外厂家的碳分子筛的性能。 /p p style=" text-align: center " 表 1 商品碳分子筛的性能 /p table border=" 1" cellpadding=" 0" cellspacing=" 0" tbody tr td valign=" top" width=" 108" p 吸附剂商品名 /p /td td valign=" top" width=" 84" p 厂家 /p /td td valign=" top" width=" 79" p 比表面/(m2/g) /p /td td valign=" top" width=" 65" p 孔径/nm /p /td td valign=" top" width=" 128" p 堆积密度/(g/mL) /p /td /tr tr td valign=" top" width=" 108" p Carbosieve & nbsp & nbsp B /p /td td valign=" top" width=" 84" p a id=" OLE_LINK3" name=" OLE_LINK3" /a Supelco /p /td td valign=" top" width=" 79" p 1000 /p /td td valign=" top" width=" 65" p 1-1.2 /p /td td valign=" top" width=" 128" p 0.226 /p /td /tr tr td valign=" top" width=" 108" p Carbosieve & nbsp & nbsp S /p /td td valign=" top" width=" 84" p Supelco /p /td td valign=" top" width=" 79" p 560 /p /td td valign=" top" width=" 65" p 1-1.2 /p /td td valign=" top" width=" 128" p 0.5-0.7 /p /td /tr tr td valign=" top" width=" 108" p Carbosieve & nbsp & nbsp S-II* /p /td td valign=" top" width=" 84" p Supelco /p /td td valign=" top" width=" 79" p 548 /p /td td valign=" top" width=" 65" p 0.5-0.7 /p /td td valign=" top" width=" 128" p 0.55-0.60 /p /td /tr tr td valign=" top" width=" 108" p Carbosieve & nbsp & nbsp G* /p /td td valign=" top" width=" 84" p Supelco /p /td td valign=" top" width=" 79" p & nbsp 204 /p /td td valign=" top" width=" 65" p 0.5-0.7 /p /td td valign=" top" width=" 128" p 0.25-0.28 /p /td /tr tr td valign=" top" width=" 108" p Spherocarb /p /td td valign=" top" width=" 84" p Foxboro /p /td td valign=" top" width=" 79" p 1200 /p /td td valign=" top" width=" 65" p 1.5 /p /td td valign=" top" width=" 128" p 0.5+0.05 /p /td /tr tr td valign=" top" width=" 108" p Carbosphere /p /td td valign=" top" width=" 84" p Chrompack /p /td td valign=" top" width=" 79" p 1000 /p /td td valign=" top" width=" 65" p 1.3 /p /td td valign=" top" width=" 128" br/ /td /tr /tbody /table p    strong 3 近年用碳纳米材料作固相萃取吸附剂 /strong /p p   自从1991年日本学者饭岛澄男(Sumo Iijima)发现了碳纳米管(CNTs)之后,改变了人们过去对碳的三种形态(金刚石、石墨和无定形碳)的认识,对碳纳米管不断进行研究,并竞相把这种新奇的材料用在各个领域。在2004年又出现了另外一种有趣的碳物质——石墨烯,G),CNTs和G是碳的两种同素异形体,它们具有sp2杂化网络,但是结构不同,CNTs具有管状纳米结构,由石墨烯片卷成管状,形成准一维结构,而G是打开纳米管形成的平面二维薄片。CNTs可分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs),石墨碳家族的各种形态如图1所示。 /p p style=" text-align: center " img style=" width: 295px height: 298px " title=" 图1.png" src=" http://img1.17img.cn/17img/images/201603/insimg/bcb66e42-ef71-4d27-964f-3618bb6e1ce4.jpg" height=" 345" width=" 314" / /p p style=" text-align: center " 图 1 碳家族的各种形态 /p p style=" text-align: center " (TrAC,2016, 77:23–43) /p p    strong (1) 富勒烯及其衍生物作固相萃取吸附剂 /strong /p p   自从1990年Huffman 和 Kratschmer发表了能大量制备富勒烯(C60)之后,对这类物质进行大量研究,对这类化合物的制备和性能有不少文章和综述发表,日本的 Jinno Kiyokatsu研究组对富勒烯进行了大量研究(Anal. Chem., 1995, 67:2556),把富勒烯键合到硅胶上用作HPLC的固定相,分离多环芳烃。Gallego等揭示了C60作为吸附剂在分离富集金属离子的潜力(Anal Chem,1994, 66:4074),它对金属离子的分离富集能力优于常规萃取剂——键合烷基硅胶和活性炭。例如超痕量镉在C60富勒烯微柱上进行分离, 形成中性配合物,用200mL对甲基异丁基酮洗脱吸附的镉,用原子吸收光谱进行测定。用双螯合试剂,即吡咯烷铵(APDC)和8-羟基喹啉,在一个流路中进行检测。APDC和C60富勒烯对镉进行选择性吸附,与含有的铜、铅、锌、铁中分离出来。与其他方法对比, C60和APDC的方法得到更为准确的结果(J Anal Atom Spectrom, 1997, 12: 453–457)。 /p p   2000年M Valcá rcel等使用一个简单的流动注射系统,在C60富勒烯吸附柱上在线富集金属二硫代氨基甲酸盐(杀菌剂),无需使用常规方法的酸水解,以便释放CS2,也不用衍生化,它可以直接保留在吸附柱上,随后用稀硝酸洗脱。将洗脱的馏分直接送入火焰原子吸收光谱仪进行测定(Analyst,2000, 125:1495–1499)。 /p p   2004年M Gallego等用富勒烯萃取柱选择性吸附汞的二乙基二硫代氨基甲酸配合物,分析水中的无机和有机汞,免除许多金属离子的干扰(J Chromatogr A, 2004, 1055 : 185–190)。 /p p   2009年M Gallegoa 等利用C60富勒烯萃取柱区分非芳香族(脂族和环状)和芳香族亚硝胺,用C60和LiChrolut EN组成一组串联萃取柱,25ml样品通过C60柱只有芳香族亚硝胺保留,然后通过LiChrolut EN柱非芳香亚硝胺馏分被保留。用150& amp #956 L乙酸乙酯–乙腈溶液(9:1)洗脱非芳香亚硝胺,进样1& amp #956 L萃取物到GC-MS中进行测定。通过比较C60和C70富勒烯和碳纳米管的研究,显示C60富勒烯是选择性地保留芳香族馏分最佳。(J Chromatogr A,2009,1216 :1200–1205)。 表 2 是勒烯及其衍生物作固相萃取吸附剂的用例。 /p p style=" text-align: center " 表 2 富勒烯及其衍生物作固相萃取吸附剂的用例 /p table border=" 1" cellpadding=" 0" cellspacing=" 0" tbody tr td valign=" top" width=" 35" p 1 /p /td td valign=" top" width=" 107" p 富勒烯C60 /p /td td valign=" top" width=" 66" p Cd /p /td td valign=" top" width=" 65" p 水,牡蛎组织,猪肾牛肝 /p /td td valign=" top" width=" 75" p AAS /p /td td valign=" top" width=" 70" p -- /p /td td valign=" top" width=" 138" p J Anal At Spectrom,1997,12 :453–457 /p /td /tr tr td valign=" top" width=" 35" p 2 /p /td td valign=" top" width=" 107" p 富勒烯C60 /p /td td valign=" top" width=" 66" p 汞(II)、甲基汞(I) br/ & nbsp & nbsp & nbsp 与乙基汞(I) /p /td td valign=" top" width=" 65" p 海水,废水和河水 /p /td td valign=" top" width=" 75" p GC-MS /p /td td valign=" top" width=" 70" p 80–105 /p /td td valign=" top" width=" 138" p J Chromatogr A,2004,1055:185–190 /p /td /tr tr td valign=" top" width=" 35" p 3 /p /td td valign=" top" width=" 107" p 富勒烯C60 /p /td td valign=" top" width=" 66" p 有机金属化合物 /p /td td valign=" top" width=" 65" p 水溶液 /p /td td valign=" top" width=" 75" p GC-MS /p /td td valign=" top" width=" 70" p -- /p /td td valign=" top" width=" 138" p J Chromatogr A,2000, 869:101–110 /p /td /tr tr td valign=" top" width=" 35" p 4 /p /td td valign=" top" width=" 107" p 富勒烯C60 /p /td td valign=" top" width=" 66" p 金属二硫代氨基甲酸盐 /p /td td valign=" top" width=" 65" p 粮 /p /td td valign=" top" width=" 75" p FAAS /p /td td valign=" top" width=" 70" p 92–98 /p /td td valign=" top" width=" 138" p Analyst,2000,125:1495–1499 /p /td /tr tr td valign=" top" width=" 35" p 5 /p /td td valign=" top" width=" 107" p 富勒烯C60 /p /td td valign=" top" width=" 66" p BTEX /p /td td valign=" top" width=" 65" p 海水,废水,地表水,雨水,湖水,饮用水和河水 /p /td td valign=" top" width=" 75" p GC-MS /p /td td valign=" top" width=" 70" p 94–104 /p /td td valign=" top" width=" 138" p J Sep Sci,2006,29:33–40 /p /td /tr tr td valign=" top" width=" 35" p 6 /p /td td valign=" top" width=" 107" p 富勒烯C60,C70 /p /td td valign=" top" width=" 66" p 芳烃和非芳烃,亚硝化单胞菌 /p /td td valign=" top" width=" 65" p 游泳池水,废水,饮用水和河水 /p /td td valign=" top" width=" 75" p GC-MS /p /td td valign=" top" width=" 70" p 95–102 /p /td td valign=" top" width=" 138" p a id=" OLE_LINK25" name=" OLE_LINK25" /a a id=" OLE_LINK24" name=" OLE_LINK24" /a J& nbsp Chromatogr A,2009,1216 :1200–1205 /p /td /tr tr td valign=" top" width=" 35" p 7 /p /td td valign=" top" width=" 107" p 富勒烯C60-键合硅胶 /p /td td valign=" top" width=" 66" p 阿马多瑞多肽 /p /td td valign=" top" width=" 65" p 人血清 /p /td td valign=" top" width=" 75" p MALDI-TOF MS /p /td td valign=" top" width=" 70" p -- /p /td td valign=" top" width=" 138" p Anal Biochem,2009,393: br/ & nbsp & nbsp & nbsp 8–22 /p /td /tr /tbody /table p    strong (2)碳纳米管及其衍生物作固相萃取吸附剂 /strong /p p   碳纳米管(CNTs)是由管状碳同素异形体,由一个单一的石墨薄片卷形成的结构,即单壁碳纳米管(SWCNT)或几个同心排列的碳纳米管结构,即多壁碳纳米管。单壁碳纳米管的直径可达3nm,多壁碳纳米管最多至100 nm。由于CNTs具有表面积大、活化点多、& amp #960 -& amp #960 键作用力强等特殊性能,适合于在固相萃取中应用,而且它的纳米级多孔性能有利于减小传质阻力,有利于平衡。碳纳米管具吸附性?,特别是多壁碳纳米管有很强的吸附性,比如它对TCDD(2,3,7,8-四氯代二苯并二恶英)的吸附性比一般活性碳吸附剂高1034倍(J Am Chem Soc,2001,123:2058.)。开始CNTs用于从水中分离双酚,壬基酚和辛基酚(Anal Bioanal Chem,2003,75:2517),回收率可达102.8%。其他多壁碳纳米管的SPE应用于包括极性和离子性化合物的目标物,如磺脲类除草剂,头孢菌素,抗生素、磺胺类和酚类化合物,苯氧羧酸类除草剂。(Anal Sci,2007,23 :189 Anal Chim Acta,2007,594: 81 Microchim Acta,2007,159:293)。 /p p   碳纳米管的一个有趣的特点是它们的表面可以进行化学改性,得到功能化具有独特性能的吸附剂。例如,有人在原单壁碳纳米管进行氧化,以便引入羧酸基团,可以萃取非甾体类抗炎药如布洛芬 从尿液萃取托美汀和吲哚美辛(J Chromatogr A,2007,1159 :203)。碳纳米管进行表面修饰使其具有高选择性,如吉首大学的张华斌等在多壁碳纳米管表面通过酰胺化反应接枝双键,以L-组氨酸为模板,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯交联剂,偶氮二异丁腈为引发剂,利用表面印迹技术,在多壁碳纳米管表面制备印迹聚合物(MWNTs-MIPs)。可选择性吸附红霉素从鸡组织制剂中提取红霉素回收率达95.8%。(Anal Bioanal Chem,2011,401:2855 J Chromatogr B,2011,879:1617)。图 2 是 多壁碳纳米管(a 和c)和多壁碳纳米管的分子印迹聚合物(MWNTs-MIPs)(b和d)的扫描电镜(a 和b)和透射电镜(c和d)图。 /p p style=" text-align: center " img style=" width: 484px height: 338px " title=" 图2.png" src=" http://img1.17img.cn/17img/images/201603/insimg/3da93819-d98a-40eb-9e3f-152c16f09360.jpg" height=" 590" width=" 629" / /p p style=" text-align: center " 图 2 多壁碳纳米管和和多壁碳纳米管的分子印迹聚合物的扫描电镜 /p p   另外他们(J Chromatogr B,2011,879:1617)在Fe3O4磁性纳米粒子的表面涂渍了用羧基改性的多壁碳纳米管,并在表面接枝了牛血清白蛋白(BSA),使其具有印迹吸附功能(MIP)选择性吸附剂。 /p p   碳纳米管通过表面化学修饰,使之成为有选择性的吸附剂,成为近年研究的热点。表面修饰使碳纳米管物理和化学性能改性,这不仅扩大了其应用范围还可以提高其溶解性,这是由于提高了它和溶剂的色散作用力,可与大多数溶剂作用。表面化学修饰功能化过程通常包括酸化、氧化处理,提供了可作用的功能团,也减少了在碳纳米管的合成过程中造成的杂质。可以使用简单的或复杂的方法获得共价键合或非共价方式修饰碳纳米管。直接键合可通过碳纳米管壁形成的羧基可以直接与想要的功能团进行结合。另一方面,可通过范德华力、静电力、堆积作用、氢键和疏水相互作用形成非共价聚集体。两个或多个相互作用的结合,可提高了系统稳定性和选择性。表 3 是使用碳纳米管作样品前处理的应用实例。 /p p style=" text-align: center " 表 3 使用碳纳米管进行样品处理的应用 /p table border=" 1" cellpadding=" 0" cellspacing=" 0" tbody tr td valign=" top" width=" 32" br/ /td td valign=" top" width=" 71" p 分析物 /p /td td valign=" top" width=" 79" p 样品基体 /p /td td valign=" top" width=" 64" p 分析方法 /p /td td valign=" top" width=" 129" p 碳纳米管特点 /p /td td valign=" top" width=" 68" p 回收率/% /p /td td valign=" top" width=" 124" p 文献 /p /td /tr tr td valign=" top" width=" 32" p 1 /p /td td valign=" top" width=" 71" p 邻苯二甲酸酯 /p /td td valign=" top" width=" 79" p 水样 /p /td td valign=" top" width=" 64" p GC–MS/MS /p /td td valign=" top" width=" 129" p MWCNTs,o.d.:& lt 8 nm,长:0.5–2& amp #956 m,比表面:& gt 500 m2/g /p /td td valign=" top" width=" 68" p 86.6–100.2 /p /td td valign=" top" width=" 124" p J Chromatogr A, 2014, 1357:53–67 /p /td /tr tr td valign=" top" width=" 32" p 2 /p /td td valign=" top" width=" 71" p a id=" OLE_LINK16" name=" OLE_LINK16" /a a id=" OLE_LINK15" name=" OLE_LINK15" /a a id=" OLE_LINK14" name=" OLE_LINK14" /a 邻苯二甲酸酯 /p /td td valign=" top" width=" 79" p 饮料,自来水,香水 /p /td td valign=" top" width=" 64" p GC–MS /p /td td valign=" top" width=" 129" p MWCNTs,o.d.:10–20 nm,长:5–15& amp #956 m & nbsp /p /td td valign=" top" width=" 68" p 64.6–125.6 /p /td td valign=" top" width=" 124" p a id=" OLE_LINK20" name=" OLE_LINK20" /a a id=" OLE_LINK19" name=" OLE_LINK19" /a 同上 /p /td /tr tr td valign=" top" width=" 32" p 3 /p /td td valign=" top" width=" 71" p 邻苯二甲酸单酯 /p /td td valign=" top" width=" 79" p 人尿 /p /td td valign=" top" width=" 64" p GC–MS /p /td td valign=" top" width=" 129" p MWCNTs,o.d.:30–60 nm,长:3–5& amp #956 m, /p /td td valign=" top" width=" 68" p 92.6–98.8 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 4 /p /td td valign=" top" width=" 71" p 直链烷基苯 br/ & nbsp & nbsp & nbsp 磺酸盐 /p /td td valign=" top" width=" 79" p 湖水,河水,污水 br/ & nbsp & nbsp & nbsp 人工湿地 /p /td td valign=" top" width=" 64" p HPLC–UV /p /td td valign=" top" width=" 129" p MWCNTs,o.d.:30–60 nm,长:~20& amp #956 m,比表面:~60 & nbsp & nbsp m2/g /p /td td valign=" top" width=" 68" p 87.3–106.3 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 5 /p /td td valign=" top" width=" 71" p 对羟基苯甲酸酯 /p /td td valign=" top" width=" 79" p 饮料 /p /td td valign=" top" width=" 64" p HPLC–DAD /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: 20–40 nm, a id=" OLE_LINK23" name=" OLE_LINK23" /a 长:5–15& amp #956 m & nbsp /p /td td valign=" top" width=" 68" p -- /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 6 /p /td td valign=" top" width=" 71" p 神经剂及其标记蒸馏水 /p /td td valign=" top" width=" 79" p 自来水,浑浊水 /p /td td valign=" top" width=" 64" p GC–FPD /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: 7–15 nm,, br/ & nbsp & nbsp & nbsp i.d.: 3–6 nm, 长:0.5–200& amp #956 m & nbsp /p /td td valign=" top" width=" 68" p 55.5–96.3 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 7 /p /td td valign=" top" width=" 71" p (氟)喹诺酮类 /p /td td valign=" top" width=" 79" p 人血浆 /p /td td valign=" top" width=" 64" p UPLC–UV /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: 110–170 nm, 长:5–9 & amp #956 m /p /td td valign=" top" width=" 68" p 70.4–100.2 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 8 /p /td td valign=" top" width=" 71" p 氟喹诺酮类 /p /td td valign=" top" width=" 79" p 矿泉水,蜂蜜 /p /td td valign=" top" width=" 64" p CLC /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: & lt 8 nm,长:0.5–2& amp #956 m /p /td td valign=" top" width=" 68" p 84.0–112 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 9 /p /td td valign=" top" width=" 71" p 苯并[a]芘 br/ & nbsp & nbsp & nbsp 解决方案 /p /td td valign=" top" width=" 79" p 有机溶剂、水溶液 /p /td td valign=" top" width=" 64" p MALDI–TOF–MS /p /td td valign=" top" width=" 129" p MWCNTs /p /td td valign=" top" width=" 68" p -- /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 10 /p /td td valign=" top" width=" 71" p PAHs /p /td td valign=" top" width=" 79" p 食用油 /p /td td valign=" top" width=" 64" p GC–MS /p /td td valign=" top" width=" 129" p WCNTs, o.d.: & nbsp & nbsp 10–20 nm, 长:5–15& amp #956 m& nbsp /p /td td valign=" top" width=" 68" p 87.8–122.3 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 11 /p /td td valign=" top" width=" 71" p PAHs /p /td td valign=" top" width=" 79" p 活性炭/烧烤肉 /p /td td valign=" top" width=" 64" p GC–MS /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: & nbsp & nbsp 30–60 nm, 长:5–3& amp #956 m& nbsp /p /td td valign=" top" width=" 68" p 81.3–96.7 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 12 /p /td td valign=" top" width=" 71" p 雌激素 br/ & nbsp & nbsp & nbsp , /p /td td valign=" top" width=" 79" p 自来水,矿泉水, br/ & nbsp & nbsp & nbsp 珠江水,蜂蜜 /p /td td valign=" top" width=" 64" p EC–UV /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: & nbsp & nbsp & lt 8 nm, :0.5–2& amp #956 m& nbsp /p /td td valign=" top" width=" 68" p 89.5–99.8 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 13 /p /td td valign=" top" width=" 71" p 雌激素 /p /td td valign=" top" width=" 79" p 牛奶 /p /td td valign=" top" width=" 64" p HPLC–FLD /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: & nbsp & nbsp 10–20 nm, a id=" OLE_LINK18" name=" OLE_LINK18" /a a id=" OLE_LINK17" name=" OLE_LINK17" /a 长:5–15& amp #956 m& nbsp /p /td td valign=" top" width=" 68" p 93.7–107.2 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 14 /p /td td valign=" top" width=" 71" p 核酸相关蛋白质 /p /td td valign=" top" width=" 79" p 人细胞裂解物,肝癌BEL-7402细胞 /p /td td valign=" top" width=" 64" p Nano-LC–MS/MS /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: & nbsp & nbsp 20–30 nm /p /td td valign=" top" width=" 68" p -- /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 15 /p /td td valign=" top" width=" 71" p 核酸相关蛋白质 /p /td td valign=" top" width=" 79" p 人肝癌BEL-7402细胞 /p /td td valign=" top" width=" 64" p Nano-LC–MS/MS /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: & nbsp & nbsp 20–30 nm /p /td td valign=" top" width=" 68" p -- /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 16 /p /td td valign=" top" width=" 71" p 双酚A,双酚F和缩水甘油 br/ & nbsp & nbsp & nbsp 醚 /p /td td valign=" top" width=" 79" p 自来水,河水, br/ & nbsp & nbsp & nbsp 雪水 /p /td td valign=" top" width=" 64" p GC–MS/MS /p /td td valign=" top" width=" 129" p MWCNTs, i.d.: 60–100 nm /p /td td valign=" top" width=" 68" p 88.5–115.1 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 17 /p /td td valign=" top" width=" 71" p Se(IV) /p /td td valign=" top" width=" 79" p 自来水,湖水 /p /td td valign=" top" width=" 64" p HG–AFS /p /td td valign=" top" width=" 129" p MWCNTs 平均20 nm /p /td td valign=" top" width=" 68" p 96.3–102.3 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 18 /p /td td valign=" top" width=" 71" p Pb(II) /p /td td valign=" top" width=" 79" p 废水、河水,大米,红茶,绿茶,洋葱,马铃薯 /p /td td valign=" top" width=" 64" p FAAS /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: & nbsp & nbsp 8–15 nm,比表面:233 m2/g /p /td td valign=" top" width=" 68" p 97–104.5 /p /td td valign=" top" width=" 124" p 同上 /p /td /tr tr td valign=" top" width=" 32" p 19 /p /td td valign=" top" width=" 71" p 六种邻苯二甲酸酯 /p /td td valign=" top" width=" 79" p 茶油 /p /td td valign=" top" width=" 64" p GC-MS /p /td td valign=" top" width=" 129" p MWCNTs, o.d.: 1–2 nm, 长:0.5–2& amp #956 m& nbsp 比表面:380 m2/g /p /td td valign=" top" width=" 68" p 86. 4-111. 7 /p /td td valign=" top" width=" 124" p 色谱,2014,32(7):735-740 /p /td /tr tr td valign=" top" width=" 32" p 20 /p /td td valign=" top" width=" 71" p 114种农药残留 /p /td td valign=" top" width=" 79" p 烟草 /p /td td valign=" top" width=" 64" p LC-MS/MS /p /td td valign=" top" width=" 129" p MWNCTs1-5:外径:<8->50 nm,长度: 10-30& amp #956 m,比表面:40-500m2/g /p /td td valign=" top" width=" 68" p 93-114 /p /td td valign=" top" width=" 124" p 烟草科技,2015,48(5):47-55 /p /td /tr tr td valign=" top" width=" 32" p 21 /p /td td valign=" top" width=" 71" p 金刚烷胺 /p /td td valign=" top" width=" 79" p 鸡肉 /p /td td valign=" top" width=" 64" p LC-MS/MS /p /td td valign=" top" width=" 129" p MWNCTs1-5:外径:<8->50nm长度: 10-30& amp #956 m,比表面:40-500m2/g /p /td td valign=" top" width=" 68" p 97.8-103.6 /p /td td valign=" top" width=" 124" p 肉类研究,2014,28(4):14-18 /p /td /tr tr td valign=" top" width=" 32" p 22 /p /td td valign=" top" width=" 71" p 16种有机磷农药 /p /td td valign=" top" width=" 79" p 水样 /p /td td valign=" top" width=" 64" p GC-FPD /p /td td valign=" top" width=" 129" p MWNCTs1-5:直径:20-40,nm长度:5-15& amp #956 m,比表面:40-500m2/g /p /td td valign=" top" width=" 68" p & nbsp & gt 75 /p /td td valign=" top" width=" 124" p 分柝化学,2009,37(10):1479-1483 /p /td /tr tr td valign=" top" width=" 32" p 23 /p /td td valign=" top" width=" 71" p 有机氯和除虫菊农药 /p /td td valign=" top" width=" 79" p 蔬菜 /p /td td valign=" top" width=" 64" p GC-ECD /p /td td valign=" top" width=" 129" p 多壁碳纳米管(L-MWNT-2040),20-40,nm长度:5-15& amp #956 m, /p /td td valign=" top" width=" 68" p & gt 70 /p /td td valign=" top" width=" 124" p 色谱,2011,29(5):443-449 /p /td /tr tr td valign=" top" width=" 32" p 24 /p /td td valign=" top" width=" 71" p 溶菌酶 /p /td td valign=" top" width=" 79" p 蛋清 /p /td td valign=" top" width=" 64" p SDS-PAGE凝胶电泳 /p /td td valign=" top" width=" 129" p MWNCTs :外径:40-60nm, /p /td td valign=" top" width=" 68" p 96.4 /p /td td valign=" top" width=" 124" p 高等学校化学学报,2—8,29(5): 902-905 /p /td /tr tr td valign=" top" width=" 32" p 25 /p /td td valign=" top" width=" 71" p 有机磷农药 /p /td td valign=" top" width=" 79" p 水样 /p /td td valign=" top" width=" 64" p GC-PFPD /p /td td valign=" top" width=" 129" p -- /p /td td valign=" top" width=" 68" p 70 /p /td td valign=" top" width=" 124" p 厦门大学学报(自然科学版),2004,43(4):531-535 /p /td /tr tr td valign=" top" width=" 32" p 26 /p /td td valign=" top" width=" 71" p 有机磷农药 /p /td td valign=" top" width=" 79" p 大蒜 /p /td td valign=" top" width=" 64" p 方波伏安法 /p /td td valign=" top" width=" 129" p -- /p /td td valign=" top" width=" 68" p 97.0-104.0 /p /td td valign=" top" width=" 124" p 分析试验室,2007,26(增刊)(10):216-217 /p /td /tr tr td valign=" top" width=" 32" p 27 /p /td td valign=" top" width=" 71" p 酰胺类除草剂 /p /td td valign=" top" width=" 79" p 饮用水 /p /td td valign=" top" width=" 64" p GC-MS/MS /p /td td valign=" top" width=" 129" p -- /p /td td valign=" top" width=" 68" p 82-93.5 /p /td td valign=" top" width=" 124" p 分析试验室,2009,28(增刊)(5):82-84 /p /td /tr tr td valign=" top" width=" 32" p 28 /p /td td valign=" top" width=" 71" p 唑4种磺胺类药物 /p /td td valign=" top" width=" 79" p 环境水 /p /td td valign=" top" width=" 64" p (HPLC—PDA /p /td td valign=" top" width=" 129" p 己基-3.甲基咪唑六氟磷酸([C。MIM][PR])离子液体自聚集于磁性多壁碳纳米管上 /p /td td valign=" top" width=" 68" p 0.6-99.99 /p /td td valign=" top" width=" 124" p 分析化学,2015,43(5):669-674 /p /td /tr tr td valign=" top" width=" 32" p 29 /p /td td valign=" top" width=" 71" p 多环芳烃 /p /td td valign=" top" width=" 79" p 河水 /p /td td valign=" top" width=" 64" p GC-MS /p /td td valign=" top" width=" 129" p -- /p /td td valign=" top" width=" 68" p 60.4-89.3 /p /td td valign=" top" width=" 124" p 分析化学,2009,37,(增刊):D025 /p /td /tr tr td valign=" top" width=" 32" p 30 /p /td td valign=" top" width=" 71" p 甲硝唑 /p /td td valign=" top" width=" 79" p 食品 /p /td td valign=" top" width=" 64" p LC-UV /p /td td valign=" top" width=" 129" p -- /p /td td valign=" top" width=" 68" p 68-112 /p /td td valign=" top" width=" 124" p 分析测试学报。2010,29(8):807-8ll /p /td /tr /tbody /table p    strong (3) 石墨烯作固相萃取吸附剂 /strong /p p   石墨烯是由碳六元环组成的两维(2D)周期蜂窝状点阵结构, 它可以翘曲成零维(0D)的富勒烯(fullerene),卷成一维(1D)的碳纳米管(carbon nano-tube, CNT)或者堆垛成三维(3D)的石墨(graphite), 因此石墨烯是构成其他石墨材料的基本单元。石墨烯的基本结构单元为有机材料中最稳定的苯六元环, 是目前最理想的二维纳米材料.。理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大& amp #960 键,& amp #960 电子可以自由移动,赋予石墨烯良好的导电性。二维石墨烯结构可以看是形成所有sp2杂化碳质材料的基本组成单元。石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料。自然,人们不会忘记把它用作吸附剂用于固相萃取。因为它有高比表面积,2630 m2/g,高的吸附能力,良好的化学和热稳定性,高机械强度,价格便宜,网上戏称是白菜价。基于它的离域& amp #960 -电子体系,它可以和带有苯环的化合物形成& amp #960 -& amp #960 堆积相互作用,因而对这类化合物有很强的吸附作用。氧化石墨烯(GO),石墨烯的含氧基团,如羧基和羟基,可以化合物以共价键,静电或氢键结合。 /p p   基于石墨烯的吸附剂已用于含苯环化合物的预富集。2011年江桂斌院士的研究组利用石墨烯作吸附剂制成固相萃取柱,萃取水中的8种氯代酚,比较了几种吸附剂对8种氯代酚的回收率,见图 3(J Chromatogr A,2011,1218:197-204). /p p style=" text-align: center " img title=" 图3.png" src=" http://img1.17img.cn/17img/images/201603/insimg/66d0d73e-ed22-4204-ab95-04acf1533f4e.jpg" / /p p   新加坡国立大学的H K Lee等使用磺化石墨烯片作为吸附剂的固相微萃取,测定水中8种多环芳烃(J Chromatogr A,2012,1233:16-21),萃取效率远高于C8和C18萃取剂,见图4. /p p style=" text-align: center " img style=" width: 470px height: 268px " title=" 图4.png" src=" http://img1.17img.cn/17img/images/201603/insimg/801e4915-231e-42b0-9fb5-370f33f4f323.jpg" height=" 252" width=" 473" / /p p style=" text-align: center " 图 4 磺化石墨烯与C8和C18吸附效率的比较 /p p style=" text-align: center " G1,G2—磺化石墨烯 /p p style=" text-align: center " Nap—萘 Ace—苊 Flu—芴 Phe—菲 Ant—蒽 Flt—荧蒽 Pyr—芘 /p p 表 4 是石墨烯用作固相萃取吸附剂的用例 /p p style=" text-align: center " 表4 石墨烯用作固相萃取吸附剂的用例 /p table width=" 574" border=" 1" cellpadding=" 0" cellspacing=" 0" tbody tr td valign=" top" width=" 35" br/ /td td valign=" top" width=" 107" p 萃取剂 /p /td td valign=" top" width=" 66" p 被分析物 /p /td td valign=" top" width=" 65" p 样品基质 /p /td td valign=" top" width=" 75" p 检测 /p /td td valign=" top" width=" 70" p 回收率/% /p /td td valign=" top" width=" 157" p 文献 /p /td /tr tr td valign=" top" width=" 35" p 1 /p /td td valign=" top" width=" 107" p 石墨烯, /p /td td valign=" top" width=" 66" p Pb /p /td td valign=" top" width=" 65" p 环境水和蔬菜 /p /td td valign=" top" width=" 75" p 火焰原子吸收光谱(FAAS) /p /td td valign=" top" width=" 70" p 95.3–100.4 /p /td td valign=" top" width=" 157" p Anal Chim Acta,2012,716:112–118 /p /td /tr tr td valign=" top" width=" 35" p 2 /p /td td valign=" top" width=" 107" p 石墨烯 /p /td td valign=" top" width=" 66" p 谷胱甘肽 /p /td td valign=" top" width=" 65" p 人血浆 /p /td td valign=" top" width=" 75" p 荧光分光光度计 /p /td td valign=" top" width=" 70" p 92-108 /p /td td valign=" top" width=" 157" p Spectrochim Acta,2011,79:860–186 /p /td /tr tr td valign=" top" width=" 35" p 3 /p /td td valign=" top" width=" 107" p 氧化石墨烯 /p /td td valign=" top" width=" 66" p 氯苯氧酸除草剂 /p /td td valign=" top" width=" 65" p 河水与海水 /p /td td valign=" top" width=" 75" p CE /p /td td valign=" top" width=" 70" p 93.3- 102.4 /p /td td valign=" top" width=" 157" p J Chromatogr A,2013,1300:227–235 /p /td /tr tr td valign=" top" width=" 35" p 4 /p /td td valign=" top" width=" 107" p RGO-silica(氧化石墨烯衍生物-硅胶) /p /td td valign=" top" width=" 66" p 氟喹诺酮 /p /td td valign=" top" width=" 65" p 自来水和河水 /p /td td valign=" top" width=" 75" p LC-FLR /p /td td valign=" top" width=" 70" p 72–118 /p /td td valign=" top" width=" 157" p J Chromatogr& nbsp A,2015,1379:9–15 /p /td /tr tr td valign=" top" width=" 35" p 5 /p /td td valign=" top" width=" 107" p 磺化石墨烯 /p /td td valign=" top" width=" 66" p 多环芳烃 /p /td td valign=" top" width=" 65" p 河水 /p /td td valign=" top" width=" 75" p GC-MS /p /td td valign=" top" width=" 70" p 81.6 -113.5 /p /td td valign=" top" width=" 157" p J Chromatogr& nbsp A,2012,1233:16–21 /p /td /tr /tbody /table p    strong 3.碳用作萃取吸附剂的综述文献 /strong /p p   表5 是碳纳米材料用作吸附剂近几年发表的综述文献,读者可以了解到更多的有关碳纳米材料在固相萃取中的应用情况。 /p p style=" text-align: center "   表5 碳纳米材料用作吸附剂近几年发表的综述文献 /p table border=" 1" cellpadding=" 0" cellspacing=" 0" tbody tr td valign=" top" width=" 28" p a id=" _Hlk399763599" name=" _Hlk399763599" /a 1 /p /td td valign=" top" width=" 234" p 碳纳米管在分析化学中的应用(引用273篇文献) /p /td td valign=" top" width=" 151" p style=" text-align: left " SPE,SPME,膜,吸附棒 /p /td td valign=" top" width=" 151" p style=" text-align: left " J.Chromatogr. A,2014,1357:110–146 /p /td /tr tr td valign=" top" width=" 28" p 2 /p /td td valign=" top" width=" 234" p 碳基吸附剂—碳纳米管(引用194篇文献) /p /td td valign=" top" width=" 151" p SPE,SPME,吸附棒 /p /td td valign=" top" width=" 151" p J & nbsp & nbsp ChromatogrA,2014, 1357: 53–67 /p /td /tr tr td valign=" top" width=" 28" p 3 /p /td td valign=" top" width=" 234" p 石墨烯基材料—制备及其在分析化学中的吸附应用(引用203篇文献) /p /td td valign=" top" width=" 151" p SPE,SPME,色谱固定相 /p /td td valign=" top" width=" 151" p J Chromatogr & nbsp & nbsp A,2014, 1362 :1–15 /p /td /tr tr td valign=" top" width=" 28" p 4 /p /td td valign=" top" width=" 234" p 石墨烯作吸附剂在分析化学中的应用 /p /td td valign=" top" width=" 151" p SPE,SPME中的应用 /p /td td valign=" top" width=" 151" p TrAC,2013,51:33-43 /p /td /tr tr td valign=" top" width=" 28" p 5 /p /td td valign=" top" width=" 234" p 碳纳米管在分离科学中的应用-综述(引用241篇文献) /p /td td valign=" top" width=" 151" p SPE,SPME & nbsp & nbsp LC,GC,CE,ECE,中的应用 /p /td td valign=" top" width=" 151" p Anal Chim Acta,2012, 734: 1–30 /p /td /tr tr td valign=" top" width=" 28" p 6 /p /td td valign=" top" width=" 234" p 碳纳米管在分析科学中的应用(引用93篇文献) /p /td td valign=" top" width=" 151" p 在分离、传感器、样品制备中的应用 /p /td td valign=" top" width=" 151" p Microchim Acta,2012,179:1–16 & nbsp /p /td /tr tr td valign=" top" width=" 28" p 7 /p /td td valign=" top" width=" 234" p 碳纳米管在分离科学中的应用研究进展(引用90篇文献) /p /td td valign=" top" width=" 151" p 在SPE,SPME,LC,GC,CE中的应用 /p /td td valign=" top" width=" 151" p 色谱,2011,29(1):6-14 /p /td /tr tr td valign=" top" width=" 28" p 8 /p /td td valign=" top" width=" 234" p 碳纳米材料在分析化学中的应用(引用215篇文献) /p /td td valign=" top" width=" 151" p 在样品制备、分离及检测中的应用 /p /td td valign=" top" width=" 151" p Anal Chim Acta,2011,691:6-17 /p /td /tr tr td valign=" top" width=" 28" p 9 /p /td td valign=" top" width=" 234" p 碳纳米管用于原子吸收光谱分析金属的固相萃取吸附剂(引用140篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p Anal Chim Acta,2012,749:16-35 /p /td /tr tr td valign=" top" width=" 28" p 10 /p /td td valign=" top" width=" 234" p 碳纳米管用于磁固相萃取吸附剂(引用116篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p Anal Chim Acta, 2015,892:10-26 /p /td /tr tr td valign=" top" width=" 28" p 11 /p /td td valign=" top" width=" 234" p 碳纳米管用于杀虫剂分析的吸附剂(引用 53篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p Chemosphere,2011, 83:1407–1413 /p /td /tr tr td valign=" top" width=" 28" p 12 /p /td td valign=" top" width=" 234" p 碳基吸着剂-碳纳米管(引用194篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p J Chromatogr A, 2014, 1357:53–67 /p /td /tr tr td valign=" top" width=" 28" p 13 /p /td td valign=" top" width=" 234" p 固相萃取新倾向——新吸附介质(引用153篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p TrAC,2016,77:23–43 /p /td /tr tr td valign=" top" width=" 28" p 14 /p /td td valign=" top" width=" 234" p 色谱分析样品处理中的固相萃取吸附剂进展(引用214篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p TrAC,2014,59:26-41 /p /td /tr tr td valign=" top" width=" 28" p 15 /p /td td valign=" top" width=" 234" p 固相萃取吸附剂中新材料及倾向(引用 68篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p TrAC,2013,43:14-:3 /p /td /tr tr td valign=" top" width=" 28" p 16 /p /td td valign=" top" width=" 234" p 碳纳米管应用研究进展(引用 47 篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p 化工进展,2006,25(7):750-754 /p /td /tr tr td valign=" top" width=" 28" p 17 /p /td td valign=" top" width=" 234" p 磁纳米材料的功能化修饰及在环境分析中的应用研究(引用 116 篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p 湖南大学邹瑩硕士论文,2014 /p /td /tr tr td valign=" top" width=" 28" p 18 /p /td td valign=" top" width=" 234" p 多壁碳纳米管固相萃取--高效液相色谱技术联用在有机污染物分析中的应用 /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p 河南师范大学刘珂珂硕士论文,2012 /p /td /tr tr td valign=" top" width=" 28" p 19 /p /td td valign=" top" width=" 234" p 多壁碳纳米管在痕量元素分离富集中的应用 /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p 华中师范大学丁琼硕士论文,2006 /p /td /tr tr td valign=" top" width=" 28" p 20 /p /td td valign=" top" width=" 234" p 基于碳纳米管表面分子印迹固相萃取材料研究(引用 131 篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p 吉首大学张华斌硕士论文,2011 /p /td /tr tr td valign=" top" width=" 28" p 21 /p /td td valign=" top" width=" 234" p 生物功能化碳纳米管的合成、表征及分析应用(引用 147 篇文献) /p /td td valign=" top" width=" 151" p 碳纳米管作为吸附剂的研究 /p /td td valign=" top" width=" 151" p 南开大学刘越博士论文,2009 /p /td /tr tr td valign=" top" width=" 28" p 22 /p /td td valign=" top" width=" 234" p 碳纳米材料在环境分析化学中的应用研究(引用 107 篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p 河南师范大学汪卫东硕士论文,2006 /p /td /tr tr td valign=" top" width=" 28" p 23 /p /td td valign=" top" width=" 234" p 新型纳米材料与传统吸附材料 br/ & nbsp & nbsp & nbsp 性能比较研究(引用 131 篇文献) /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p 东南大学邓思维硕士论文,2014 /p /td /tr tr td valign=" top" width=" 28" p 24 /p /td td valign=" top" width=" 234" p 新型吸附材料在样品前处理技术中的应用研究(引用 170 篇文献) /p /td td valign=" top" width=" 151" p 固相萃取碳纳米管 /p /td td valign=" top" width=" 151" p 西南大学汪卫东博士论文,2009 /p /td /tr tr td valign=" top" width=" 28" p 25 /p /td td valign=" top" width=" 234" p 修饰碳纳米管对砷的吸附及其应用研究 /p /td td valign=" top" width=" 151" p 固相萃取吸附剂 /p /td td valign=" top" width=" 151" p 西南大学李璐硕士论文,2009 /p /td /tr /tbody /table p & nbsp /p p /p
  • 戴安公司ASE快速溶剂萃取仪有奖市场调查
    致戴安公司ASE快速溶剂萃取仪用户的一封信 尊敬的用户,您好: 感谢您购买了我们公司的ASE快速溶剂萃取仪,为了更好地了解您的需求,解决您在使用ASE进行样品萃取时遇到的问题,帮助我们更好地了解ASE现在的使用状况从而更好地有目的地为您提供相应的技术支持,我们希望您能抽出一点时间,认真完整地填写下面的用户调查表,传真或者发邮件到戴安公司市场部,市场部会根据填写人资料随后邮寄一份精美礼品作为酬谢。 再次感谢您对我公司的支持!顺祝工作顺利,万事如意! 传真:010-64434148/64432350 Email:wangqiong@dionex.com.cn 电话:010-64436741-8002 地址:北京朝阳安定路33#化信大厦A座606室(100029) 戴安中国有限公司 市场部敬上 2009年3月 点击这里下载问卷调查 您只需填写好该表发送到戴安公司邮箱wangqiong@dionex.com.cn即可收到一份精美礼物。
  • CNW SPE固相萃取小柱调价通知
    下载:CNW SPE固相萃取小柱调价通知.pdf 具体详情欢迎访问安谱网站: http://www.anpel.com.cn
  • 萃取技术的奥秘揭秘——萃取实验装置助力学生掌握工业化工过程
    萃取是一种常用的分离和纯化技术,特别适用于分离提纯液体或乳浊液中的溶质。萃取原理类似于吸收,利用溶质在两相之间的溶解度差异进行分离操作。在化工类专业的实践教学中,萃取实验装置扮演着重要角色,通过实践操作装置,学生可以深入理解萃取技术的原理和应用。本文将介绍萃取实验装置在实践教学中的应用与成果,以及其特点和优势。 一、实践教学中的萃取实验装置应用 实践教学中的萃取实验装置主要用于验证性实验,如苯甲酸在水煤油中的萃取过程。装置包括萃取剂槽、水泵、流量计、塔部进料口、塔部出料口、油水液面控制管等。原料液则通过油泵、流量计,从塔部出料口流入设备。萃取剂和原料液在装置中进行接触,利用其密度差异和溶解度不同,实现苯甲酸的分离提取。 二、装置特点与优势 1. 萃取工艺的应用前景良好:萃取工艺成本较低,应用前景良好。实践教学中的萃取实验装置可以使学生了解并掌握萃取工艺的基本原理和操作技术,为将来的工作实践奠定基础。 2. 结构简单、操作方便:萃取实验装置采用欧标铝型材框架设计,整体结构简单紧凑,使用方便。硬质PVC透明管路设计使实验现象更直观,学生能够清晰观察和理解萃取过程。 3. 智能学习系统的配套:萃取实验装置配备智能学习系统,通过预习视频、3D仿真、在线考评测试等功能,培养学生的自主学习意识,激发学生的学习兴趣。同时,教师也可以借助该系统减轻教学压力,并提供学生个性化的辅导和指导。 4. 提供质保服务:为了解决用户后顾之忧,该装置提供6年质保服务,确保用户在使用过程中的顺利进行。这为教师和学生提供了更大的安心和保障。 总结: 萃取实验装置在化工类专业的实践教学中具有重要应用和优势。通过实践操作装置,学生可以了解萃取技术的原理和应用,提高实践动手能力、掌握分离原理和操作技巧,培养科学认识和实际工作能力。装置的特点和配套智能学习系统进一步增强了实践教学的效果和学习体验。为了确保用户的使用体验和满意度,该装置还提供质保服务。通过萃取实验装置的应用,将为化工类专业的学生提供更好的实践教学环境和机会,培养出更多优秀的化工人才。
  • 三聚氰胺专用萃取柱—双倍积分,多买多得!
    促销产品:三聚氰胺专用萃取小柱 ProElut PXC SPE 小柱 规格:60mg/3ml 货号: 68203 促销详情: 原价 2400.00元/2盒(100个) 现售价1920.00元/2盒(100个) 该产品同时参与迪马科技的汇通卡积分计划,并且促销期间,积分翻倍. 积分兑换:积分可以兑换各种精美的礼品以及多种形式供您选择,积分操作简单,即买即得,并且和迪马科技的其他产品一起积分,您将收获持续不断的惊喜。具体的积 分计划请询问迪马科技。 优惠期: 2009.3.1&mdash 2009.9.1 迪马科技有限公司 联系电话: 010-62317719 三聚氰胺专用萃取小柱 ProElut PXC SPE 小柱 迪马科技三聚氰胺专用萃取小柱相关描述: 迪马科技在本次奶粉三聚氰胺事件中,反应快速。在当时全国缺,断货的情况下,应用实验室,生产部门,全天候24小时工作,及时,准确的将三聚氰胺前处理方法,分析测试条件提供给客户。并以回收率高,稳定性好,货源充足,发货迅速,赢得了广大客户的信任和青睐。 本次事件中,迪马科技以雄厚的技术力量和员工的敬业精神为基础,强大的销售网络为支撑,凭借超群的综合实力,短短2个月左右的时间内,共生产,销售出几十万支ProElut PXC SPE小柱。其中,某国内知名龙头奶制品企业,一次性购买9.5万只!优异的表现,得到了市场的认可。 尤为可贵的是,在本次事件中未发生一例因产品质量问题,导致耽误客户工作的事发生。再次验证了迪马科技产品的高端品质! 迪马科技将秉承一贯的严谨,踏实,科学的做事风格,急客户所急的服务意识,在三聚氰胺的检测工作中贡献自己应尽的力量!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制