当前位置: 仪器信息网 > 行业主题 > >

光散射粒子计

仪器信息网光散射粒子计专题为您提供2024年最新光散射粒子计价格报价、厂家品牌的相关信息, 包括光散射粒子计参数、型号等,不管是国产,还是进口品牌的光散射粒子计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光散射粒子计相关的耗材配件、试剂标物,还有光散射粒子计相关的最新资讯、资料,以及光散射粒子计相关的解决方案。

光散射粒子计相关的资讯

  • 用于表面增强拉曼散射检测的半包裹金纳米粒子
    研究人员一直在努力开发高度可靠和灵敏的表面增强拉曼散射(SERS)基底,用于检测复杂系统中的化合物。在这项工作中,我们提出了一种用不完全包裹的普鲁士蓝(PB)构建Au核的策略,用于高可靠性和高灵敏度的SERS衬底。包裹的铅层可以提供内标(IS)来校准SERS信号浮动,而金岩心的暴露表面提供增强效应。信号自校准和增强之间的平衡(因此SERS可靠性和灵敏度之间的折衷)通过Au核上PB层的近似半包裹配置(即SW-Au@PB)来获得。提出的SW-Au@PB纳米粒子(NPs)表现出与原始Au NPs相似的增强因子,并有助于使用R6G作为探针分子的校准SERS信号的超低RSD (8.55%)。SW-Au@PB NPs同时实现的可靠性和灵敏度还可以检测草本植物中的有害农药残留,如百草枯和福美双,平均检测准确率高达92%。总的来说,这项工作主要为不完全包裹的纳米粒子提供了一种可控的合成策略,最重要的是,探索了在具有不同溶解度的危险物质的精确和灵敏的拉曼检测中的概念验证实际应用的潜力。a)IW-金@PB纳米颗粒的制造。b)IW-金@PB纳米粒子系统信号自校准能力的原理。c)模拟原始金纳米颗粒、IW-金@PB纳米颗粒和基于核壳的FW-金@PB纳米颗粒的局部电场分布。d)IW-金@PB纳米颗粒的拉曼光谱。e)具有不同铅包裹度的IW-金@PB纳米颗粒的典型TEM图像,包括LW-金@PB、SW-金@PB和NFW–金@PB纳米颗粒。f)原始金纳米颗粒、PB纳米颗粒和具有不同PB层包裹程度的IW-金@PB纳米颗粒的紫外/可见吸收光谱。g)关于IW-金@PB纳米颗粒红移的吸收光谱的放大图。R6G的典型SERS光谱,其中原始Au NPs、LW-Au@PB NPs、SW-Au@PB NPs和NFW–Au @ PB NPs作为SERS基底。b)当在硅片上蒸发SW-Au@PB NPs/R6G时,R6G特征峰(612cm-1)和IS峰(2155cm-1)的SERS强度以及它们在随机选择的15个点上的强度比。c)当在硅晶片上蒸发Au NPs/R6G时,R6G特征峰(612cm-1)的SERS强度穿过随机选择的15个点。d)硅晶片上SW-Au@PBNPs分布的典型SEM图像。e-f)硅晶片上蒸发的SW-Au@PB NPs/R6G (e)的校准SERS信号和Au NPs/R6G (f)的SERS信号的映射结果。g)疏水纸上SW-Au@PB NPs分布的典型SEM图像。h-I)SW-Au @ PB NPs/R6G(h)的校准SERS信号和Au NPs/R6G (i)的SERS信号在疏水纸上蒸发的映射结果。a-b)在硅片(a)和疏水纸(b)上具有不同R6G浓度的SW-Au@PB NPs/R6G的典型SERS光谱。c)R6G特征峰的校准SERS强度与R6G浓度的对数之间的对应关系。d)基于SW-Au@PB NPs和疏水纸,跨10个批次的R6G特征峰的相对SERS强度,在每个批次中随机选择5个点。e)长期储存SW-Au@PB NPs和疏水纸后R6G的典型SERS光谱。f)长期稳定性试验中R6G特征峰的相应相对SERS强度。a)基于SW-Au @ PB NPs/疏水纸系统的不同浓度百草枯的典型SERS光谱。b)百草枯特征峰的相对SERS强度与百草枯浓度对数的对应关系。c)基于SW-Au @ PB NPs/疏水纸系统的不同浓度的福美双的典型SERS光谱。d)福美双特征峰的相对SERS强度与福美双浓度的对数的对应关系。三种草本植物中百草枯(e)和福美双(f)的典型SERS光谱。相关成果以“Semi-wrapped gold nanoparticles for surface-enhanced Raman scattering detection”,发表在国际学术期刊“Biosensors and Bioelectronics”上。
  • 全自动激光粒度仪散射理论的应用
    由于运用光散射参数的组合不同,形成了众多基于散射的颗粒粒径测量理论,米氏散射理论,夫朗和费衍射,衍射式散射,全散射,角散射等,不同理论的运用形成了多种粒度测试仪器共存的现状。   米氏理论是对均质的球形颗粒在平行单色光照射下的电磁方程的精确解,它适用于一切大小和不同折射率的球形颗粒。而夫朗和费衍射理论只是经典米氏理论的一个近似或一个特例,仅当颗粒直径与入射光波长相比很大时才能适用。这就决定了基于夫朗和费衍射理论的激光粒度仪的测量下限不能很小。正因如此,应用经典米氏散射理论的激光粒度仪以其适用范围广,在小粒径范围测量的极高精度,受到了广泛认可。
  • 《中国药典》粒度和粒度分布测定法增订动态光散射法、光阻法
    目前《中国药典》0982 粒度和粒度分布测定法仅收载了激光光散射法测定样品中的粒度分布,尚未收载动态光散射法和光阻法。各国药典均已收载动态光散射法和光阻法,且在《中国药典》丙泊酚乳状注射液、脂肪乳注射液(C14~24)等品种标准中已有应用。为此,《中国药典》增订上述两种方法,将进一步满足相关品种质量控制的需要。2023年12月12日,国家药典委员会将拟修订的《中国药典》0982粒度和粒度分布测定法第三法动态光散射法、第四法光阻法公示征求社会各界意见(详见附件),公示期自发布之日起三个月。第三法(光散射法)新增动态光散射法、新增第四法光阻法;第三法用于测定原料药、辅料和药物制剂粉末或颗粒的粒度分布,第四法用于测定乳状液体或混悬液的微米级粒子数量、粒度分布及体积占比。国家药典委员会截图本次标准草案的公示意味着动态光散射粒度仪(俗称纳米粒度仪)与光阻法颗粒计数器将被写进《中国药典》。动态光散射法当溶液或悬浮液中颗粒做布朗运动并被单色激光照射时,颗粒散射光强度的波动与颗粒的扩散系数有关。依据斯托克斯-爱因斯坦方程,通过分析检测到的散射光强度波动可以计算出颗粒的平均流体动力学粒径和粒度分布。平均流体动力学粒径反映粒度分布中值的流体动力学直径。平均粒径直接测定,既可以不计算粒度分布,也可以从光强加权分布、体积加权分布或数量加权分布,以及拟合(转换)的密度函数中计算得到。动态光散射的原始信号为光强加权光散射信号,得到光强加权调和平均粒径。很多仪器可通过对光强加权光散射信号的分析计算得到体积加权或数量加权的粒径结果。 在动态光散射的数据分析中,假设颗粒是均匀和球形的。本法测量范围为 1~1000nm。光阻法单色光束照射到颗粒后会由于光阻而产生光消减现象。应用基于光阻或光消减原理的单粒子光学传感技术进行测定。应用单粒子光学传感技术时,当单个粒子通过狭窄的光感区域阻挡了一部分入射光线,引起光强度瞬间降低,此信号的衰减幅度理论上与粒子横截面(假设横截面积小于传感区域的宽度),即粒子直径的平方成比例。用系列不同粒径的标准粒子与光消减信号之间建立校正曲线,当样品中颗粒通过光感区产生信号消减,可根据已建立的校正曲线计算出颗粒的粒度大小和加权体积。本法测量范围一般为 0.5~400μm,使用具有单粒子光学传感技术的仪器时,需知道重合限和最佳流速。重合限为传感器允许的最大微粒浓度(个/mL)。 上述两种方法的内容包括对仪器的一般要求和测定法,详见附件。附件 0982 粒度和粒度分布测定法第三法动态光散射法、第四法光阻法草案公示稿(第一次).pdf
  • 新品发布 | 安东帕 Litesizer DLS 700 动态光散射粒度分析仪
    新品发布Litesizer DLS 系列是安东帕公司的动态光散射粒度/Zeta 电位分析仪产品,用于表征从纳米到微米粒子的粒度、粒度分布、Zeta 电位、分子量、粒子浓度、透光率等特性,具有适用浓度范围宽、一键操作完成测试、功能全面等优点。在 Litesizer DLS 100 和Litesizer DLS 500 取得了优秀销售和应用成绩的基础上,安东帕推出了功能更为强大的Litesizer DLS 700。Litesizer DLS 700安东帕 Litesizer DLS 700动态光散射粒度分析仪携全新复杂基质测试方案登场:MAPS系统:复杂样品的简单方案PCON系统:样品中不同颗粒浓度及总浓度的直观表达MAPS多角度联合测试简单的单峰样品测试已无法满足日益多样的测试需求,Litesizer DLS 700 正式推出多峰样品的最佳测试方案:MAPS 系统拥有更高的分辨率,解决复杂样品的粒径问题;更准确的粒径分布结果;更优秀的分离度,粒径比例大于1:2 即能准确分辨。不同角度分管样品中不同大小颗粒的结果,将其连立计算,即可获得,不同大小颗粒的准确结果。实验分析NIST 标准物质:已知粒径分别为150nm和300nm(粒径大小比值为1:2),将两者混合,混合比为3:1用背散射角测量/MAPS 测量使用Maps进行三角度测量背散射角度测试显示单峰背散射测量只显示一个峰值无法将其分为双峰,MAPS 结果,准确的解出了两个峰值。Litesizer DLS 700 测试显示双峰PCON颗粒浓度测试借助 PCON 系统强大的功能,现在您可以更了解样品中颗粒的浓度。Litesizer 700 不单单提供样品中颗粒的总浓度,通过 MAPS 对样品进行解析,还可以确定不同大小颗粒各自的浓度。结果显示:峰大小、相应浓度、总浓度
  • 光散射法在难溶性药物粒度检测中的应用
    p style=" text-indent: 2em " 编者按:药品安全需要一致性的保障!在药物研究行业,仿制药的一致性评价试点工作早在2012年就已开展。现如今,该项工作早就由业界“雷声大雨点小”的评价,转入了如火如荼的燎原之势。根据国家《关于改革药品医疗器械审评审批制度的意见》 ,《国家基本药物目录》中自2007年10月1日前批准上市的化学药品仿制药口服固体制剂的质量一致性评价工作,将在2018年底迎来截止日期。 /p p style=" text-indent: 2em " 作为仿制药一致性评价中必须考察的一部分,原料药的粒度控制与检测也随着这股东风,越来越受到业内的重视。而对于药物检测,特别是难溶性药物的粒度检测来说,光散射法无疑是重要手段,江苏省苏州工业园区食品药品监督管理局专家关玉晶等的条分缕析,将带我们走入光散射法在难溶性药物粒度检测中的应用天地…… /p p style=" text-indent: 2em " strong 专家观点: /strong /p p style=" text-indent: 2em " 药物粒度的测定方法有显微镜法、筛分法、光散射法等。对于原料药的粒度测定首选光散射法,是中国药典规定方法之一。采用的仪器为激光粒度仪,通常由激光光源、透镜、颗粒分散装置、检测器、控制系统构成,具有测量速度快、测试精度高、可测粒径范围宽等优点。其测定的理论依据是米氏散射理论和弗朗霍夫近似理论,将样品分散到分散介质中,用单色光束照射颗粒样品,即发生散射现象,散射光的能量分布与颗粒的大小有关,通过测量散射光的能量分布,即可计算出颗粒的粒度分布。 /p p style=" text-indent: 2em " 光散射测定法光散射测定法有两种,即湿法测定和干法测定,根据样品的性状和溶解性能不同进行选择。湿法测定用于测定不溶于分散介质的混悬样品,测定时使用较少的样品就能取得较好的分散效果,测定结果准确、重现性好。干法测定用于测定水溶性或无合适分散介质的固态样品,方便快捷,但测定时使用样品量大,重现性稍差,尤其是粘性物料测定结果误差较大。难溶性药物的粒度测定常选择湿法测定。 /p p style=" text-indent: 2em " 在用激光粒度仪进行粒度测定时需设定的主要仪器参数有分散介质折射率、样品折射率、样品吸收率。对于较大颗粒,使用弗朗霍夫近似理论,可不考虑样品折射率,对于较小颗粒,选择米氏散射理论,需提供分散介质与样品的折射率。分散介质的折射率可通过文献查得,水的折射率为 1. 33,乙醇的折射率为 1. 36。待测样品的折射率需要根据具体情况决定,如表面粗糙度、颜色、透明度、成分等进行选择输入,并结合粒度分布图形、数据拟合、残差值综合判断,选择与实际折射率一致或者接近的输入折射率,待测样品输入折射率与实际折射率偏差直接影响测量结果的准确性与可靠性。样品的吸收率体现了其吸收光量的特性,可通过在显微镜下,对处于悬浮介质中的物质进行观察而近似估算,样品的吸收率在 0 到 1 之间,晶体粉末为 0. 01、浅色粉末为 0. 1、深色粉末或金属粉末为 1。 /p p style=" text-indent: 2em " 对于湿法测定,选择适宜的分散介质,制备具有稳定的分散体系的样品是获得准确结果的关键,需保证颗粒之间的分散性并且在测定过程中颗粒不进一步破裂或溶解。将药物加入分散介质中,通过超声、搅拌等物理分散的方法使药物形成稳定的分散体系,如需要可加入少量的化学分散剂或表面活性剂,如六偏磷酸钠、吐温、十二烷基硫酸钠等,以消除样品的聚集及电荷效应。需确定的因素有分散介质的种类、药物分散浓度、外力因素等。选择分散介质需要满足以下条件:①液体与颗粒无反应,②颗粒在液体中无溶解和膨胀,③液体在激光波长下应是可透过(不吸收)的,④液体与颗粒的折射率不同。 /p p style=" text-indent: 2em " 常用的分散介质有水、乙醇、丙三醇水溶液、乙醇和丙三醇混合液等。考虑到实验成本、环境危害、操作方便等因素,分散介质首选水。为减少分散介质中杂质颗粒对样品测定的影响,分散介质应选择高纯度的溶剂且在使用前应过滤处理。药物分散浓度需满足仪器灵敏度要求并使粒子保持单个原始态。浓度过高可能产生多重散射,浓度过低可能信噪比太低难以代表真实物质的颗粒分布。一般情况下,待测样品粒径越小光散射性越强,分散浓度略低。激光功率越强则仪器的散射光信号越强,分散浓度越低。药物分散的浓度常根据检测器遮光度来确定,湿法测定所需的供试品量通常应达到检测器遮光度范围的 8 ~ 20%。在合适浓度范围内,测量结果基本保持稳定。分散体系在分散后易发生再凝结,其体系的稳定性一方面取决于样品颗粒及分散液体的特性,另一方面取决于外力因素,如超声搅拌等机械处理方法、表面活性剂、添加离子化合物、分散体系的 pH 值等。超声波是打开凝结的最佳方式。样品分散的好坏可以通过改变分散能量是否引起粒度分布变化来确定,当样品分散较好时,测定过程中粒度分布不会发生明显改变。 /p p style=" text-indent: 2em " 样品的粒度需要满足以下几个方面的因素: /p p style=" text-indent: 2em " (1)精密度:精密度要求根据样品的用途、物料特点及粒度分布不同而确定。一般情况下,取一批原料药样品,重复测定 6 次,统计 6 次测定结果的 RSD,D 50 的 RSD 不大于 10%,D 10 、D 90 的 RSD 不大于 15%,对于粒径小于 10μm 的样品,RSD 可增加至 2 倍。 /p p style=" text-indent: 2em " (2)重现性:不同时间、不同分析人员取同一批原料药样品,用同样的方法重复测定 6 次,统计 6 次测定结果的 RSD,要求与精密度相同。 /p p style=" text-indent: 2em " (3)溶液稳定性考察:将样品液放置一定时间,取不同时间点的样品进行测定,统计测定结果的 RSD,要求与精密度相同。 /p p style=" text-indent: 2em " (4) 准确度:将测定结果与显微镜法所得到的结果进行比较,验证结果准确性。 /p p style=" text-indent: 2em " (5)耐用性:在分析方法开发时就应考虑,考察测定条件有小的变动时,测定结果不受影响的程度,以满足样品日常检验需要。湿法测定常需考虑的测定条件有超声(或搅拌)强度及时间、测量时间、平衡时间等。超声强度和时间应保证样品稳定分散又不得发生溶解和破裂。搅拌速度应适中,转速过快易产生气泡被当作颗粒测量使结果出现第二峰值,转速过慢大颗粒容易沉底结果不具有代表性,搅拌时间过长易导致颗粒溶胀或溶解。在保证测量结果准确性的基础上尽量缩短测量时间和平衡时间。 /p p style=" text-indent: 2em " 对于原料药粒度标准的制定是测量原料药粒度的重要一环,制定原料药的粒度标准限度需综合考虑制剂的生产工艺、体外溶出、体内吸收等因素。原料药粒度越小,流动性越差,物料粘着性增加,混料时原料药不易混匀,从而影响制剂外观及含量均匀度。在研究中,应以休止角、外观、混合均匀性、含量均匀度等为考察指标,研究粒度分布对其造成的影响,确定符合产品要求的粒度范围。另外,需结合药物自身特性,如刺激性的药物,粒径愈小,刺激性愈大 稳定性差的药物,粒子越小,分解速度越快。原料药粒径减小,粒子比表面积增大,溶解性增强,药物能较好地分散溶解在胃肠道内,易于吸收,生物利用度高,但并不是原料的粒径越小越好,过度微粉化可能会导致过细的粉末形成静电堆积,在颗粒周围形成一层气泡囊,阻碍水分进入颗粒,从而阻碍药物的溶出。 /p p style=" text-indent: 2em " 在仿制药体外研究中,需测定不同粒径的原料药的溶解度,找出具有区分能力的溶出条件,考察粒径大小对溶出度的影响,通过比较自制品与原研品的溶出曲线确定原料药粒度范围。进一步根据生物等效性研究结果判断粒度范围的合理性,必要时进行调整。在确定粒度测定方法及限度后,制定质量标准时方法描述要详尽,需规定参数设置、样品制备方法、分散条件等,以保证在标准的执行过程中的方法重现性和测定结果准确性。粒度分布的限度以 D 50 、D 90 或(和)D 10 来表示。 /p p style=" text-indent: 2em " 讨论粒度研究是保证药品安全有效的基础,在研究中应确保测定结果的准确性。光散射法是原料药粒度测定的理想方法,在测定过程中要全面考虑测定因素对结果的影响,还需注意仪器校正、粒子形状、取样代表性、环境等因素。研究者在药物开发过程中,应进行详细的研究,准确的测定原料药的粒度并考察其对制剂的影响,确定符合产品特性的粒度分布范围,制得符合临床需求的药品。 /p
  • 大塚电子发布大塚电子小角激光散射仪PP-1000新品
    小角激光散射仪 PP-1000 PP-1000小角激光散射仪利应用了小角光激光光散射法(Small Angle Laser Scattering,简称SALS),可以对高分子材料和薄膜进行原位检测,实时解析。与SAXS和SANS的装置相比,检测范围更广。利用偏光板的Hv散射测量可以进行光学各向异性的评价,解析结晶性胶片的球晶半径,Vv散射测量可以进行聚合物混合的相关距离的分析。 特点l 0.33 ~ 45°散射角度的测量,最短测试时间10 毫秒l 检测范围0.1μm ~数十微米l 可以在专用溶液单元中测量溶液样本l Hv散射,Vv散射测量可以在软件上轻松切换 用途l 高分子材料评价→结晶性胶片结晶化温度、球晶直径、结晶化速度配光、光学异方性→聚合物混合相分离过程和相关距离(分散度)→高分子凝胶三维架桥结构的大小→树脂热硬化树脂和UV硬化树脂的硬化速度 l 粒子物性评价粒子直径,凝聚速度 检测原理 小角激光散射仪由光源、偏振系统、样品台和记录系统组成。单色激光照射到样品时发生散射现象,散射光投射到屏幕上并被拍摄下来,得到样品的散射条纹图。操作过程:1.在样品台上放置样品。2.根据想要测量的对象调整检偏片。3.来自样品的散射图案会被相机记录下来。 当起偏片与检偏片的偏振方向正交时,得到的光散射图样叫做Hv散射;当起偏片与检偏片的偏振方向均为垂直方向时,得到的光散射图样叫做Vv散射。从这些散射图形中可以获取球晶半径、相分离结构、分散相颗粒平均粒径、配向状态等信息。l Hv散射 球晶半径解析:R = 4.09 / qmax(R:球晶半径,qmax:散射光强度最大的散射向量) q = 4πn/λsin(θ/ 2)(q:散射向量, λ:介质中的波长,n:样品折射率,θ:散射角) l Vv散射 对聚合物混合的相分离过程的评价连续相与分散相的大小,分散相颗粒平均粒径(分散度)粒子直径的评价相分离构造与相关距离检测 技术参数 应用案例 l PVDF球晶半径分析 溶融温度230℃結晶化温度160℃PP-1000散射图样 偏光显微镜图样 各时间45°方向的散射向量提取 球晶半径计算创新点:1.0.33 ~ 45° 散射角度的测量,最短测试时间10 毫秒 2.检测范围0.1μ m ~数十微米 3.可以在专用溶液单元中测量溶液样本 4.Hv散射,Vv散射测量可以在软件上轻松切换 大塚电子小角激光散射仪PP-1000
  • 我国成功研制先进的高速高精度激光汤姆逊散射仪
    p   近日,中国科学院空天信息研究院和中国科学技术大学等单位联合研制出高速高精度激光汤姆逊散射仪。 /p p   今年5月,在“科大一环”磁约束聚变等离子体装置开展实验中,基于重复频率200赫兹、单脉冲能量5焦耳的激光脉冲,实现了小于5电子伏特的电子温度测量精度,电子温度安全预警时间间隔达5毫秒,所获得的预警时间是国际同类系统的一半,指标提高一倍。这标志着我国在该领域进入国际领先水平行列,为我国未来磁约束聚变能装置的高精度测量奠定了坚实基础。 /p p   据了解,在磁约束聚变反应装置工作过程中,偏滤器将承受巨大的能量泄放,需要对等离子体电子温度进行提前预警和实时反馈控制,实现脱靶而避免等离子体损伤器壁进而导致灾难性后果。基于高频高能激光的汤姆逊散射测量是精确测量等离子体电子温度的唯一可靠测量手段,激光的工作频率决定了温度预警的采样时间间隔,间隔越小系统预警越及时,装置运行安全系数越高。 /p p   受限于激光器能量和频率水平,我国以往等离子体温度诊断采用数十赫兹的低频激光器,采样间隔宽,遇到紧急情况无法及时预警,导致装置运行存在巨大风险。虽然采用多台低频率激光器合束技术可以满足预警时间间隔要求,但是这种方法可靠性大幅降低。欧洲和日本已经掌握了100赫兹工作频率的高能激光技术,预警时间间隔达到10毫秒,但这个预警时间间隔仍然较长,无法完全保证装置安全运行。 /p p   从2015年起,空天信息研究院联合中国科学院光电技术研究所和同济大学等单位历时3年时间,突破了高能量高光束质量激光传输与放大、激光相位共轭波前畸变校正、大口径/大尺寸激光放大模块、大功率脉冲激光驱动电源等关键技术,于2017年4月在国际上首次发布重复频率200赫兹、脉冲能量5焦耳、脉冲宽度6.6纳秒、光束质量1.7倍衍射极限的高频高能激光指标,将我国纳秒脉宽激光器的功率水平提高了1个数量级。研究团队研发出基本完善的工艺流程,核心器件/部件实现国产化,形成整机工程化制造能力。以200赫兹/5焦耳激光器为光源,中国科学技术大学攻克了大功率激光传输系统综合降噪、收集光学精准对焦、弱光信号探测提取等难题,成功地研制我国迄今精度最高的激光汤姆逊散射检测系统。 /p p   未来,研究团队将开展更高功率、更高频率激光器研发和更高精度的诊断实验,计划将激光器的工作频率提高至500赫兹,检测系统提供2毫秒的安全预警时间间隔和1电子伏特的电子温度测量精度,为下一代磁约束聚变装置安全运行提供高速预警手段。 /p p br/ /p
  • 讲座:动态光散射技术在生物大分子及其蛋白中应用
    主讲人:Vincent Hsieh, Ph.D. (美国Wyatt公司,Senior scientist) 时间:2012/02/15(星期三) 下午14:00 地址:中国科学院微生物研究所A203室 主要内容: Introduction to light scattering (LS): Dynamic LS A brief history of LS and Wyatt Technology Corp. Basic DLS theory 简要介绍动态光散射技术原理 DLS: NanoStar & PlateReader 动态光散射介绍 (包括高通量动态光散射介绍)及其在蛋白上的应用 MUBIU&zeta & DLS 大分子迁移率与DLS技术在生物大分子中的应用 Conclusions & Questions 联系人:Wyatt北京代表处 兰先生 010-82292806
  • 动态光散射技术入门及仪器采购指南
    作者:马尔文仪器公司纳米颗粒及分子鉴定产品营销经理 Stephen Ball   动态光散射(DLS)是一项用于蛋白质、胶体和分散体的极具价值的粒度测量技术,其应用范围可轻松扩展到1 nm以下。本文中,马尔文仪器公司产品营销经理Stephen Ball将向您介绍DLS的工作原理,并就购买光散射系统时的关注事项为您并提供一些专业建议。   通过观察散射光,可以测定粒子分散体系或分子溶液的特性,如粒度、分子量和zeta电位。光散射系统充分挖掘利用这些特性之间关联,并在近几十年间经过不断完善,目前已经能为常规实验室应用提供高度自动化的检测。利用光散射仪器的检测快速而高效,可用来表征分散体系、胶体和蛋白质。   理论上,光散射仪器中使用的各种技术看起来可能很相似,但它们的功能和检测结果却在实际应用中千差万别,从而对仪器的寿命期价值产生显著影响。光散射系统中的组件和设计的差异也会导致数据质量及仪器适用范围产生很大的差异。例如,某些光散射系统可通过测量蛋白质电泳迁移率对蛋白质电荷以及粒度进行测定,从而成为生物制药应用中高效的选择方案。   撰写本文的目的在于为考虑采用动态光散射DLS技术的读者提供一个入门指南。本文将考察DLS的主要用途、应用领域,尤其会侧重系统设计中对于特定性能的重要性,从而为那些正为自身需求而关注DLS技术的用户提供背景信息和理论支持。   了解基本知识   当我们要开始对一种新的分析技术进行评估时,第一个重要步骤就是要了解它的基本工作原理。DLS的优势之一是它操作非常简单,而这直接源于它的测量原理。   由于热能,溶剂分子不断运动,和悬浮的颗粒物产生碰撞,使得分散体或溶液中的小颗粒做无规则的布朗运动。可以通过观测散射光随时间的波动性得到颗粒布朗运动的速度,这种技术被称为光子相关光谱法(PCS)或准弹性光散射法(QELS),但现在通常称作动态光散射法(DLS)。   斯托克斯 - 爱因斯坦方程定义了颗粒布朗运动速度与颗粒大小之间的关系:      其中,D = 扩散速度, k = 波尔兹曼常数,T = 绝对温度,h = 粘度,DH = 流体力学直径   上述关系式清楚地表示了在样品温度和连续相粘度已知的情况下,如何根据扩散速度测定粒径。尽管必须是控制检测温度,但很多商用仪器还是会对温度进行测量 而对于许多分散剂,尤其是水而言,粘度是已知的。在很多情况下,DLS实验所需的补充信息也仅仅是粘度测量。   DLS的优势   DLS固有的操作简便性意味着操作者无需具备很强的专业知识就能得到详尽而有用的数据,这个优点在最新的高度自动化系统中表现得尤为明显&mdash &mdash 一般分析只需要几秒钟的时间,并且分散剂的选择余地比较大,不管是水性还是非水性的,只要它们呈透明状并且不太粘稠,就都可以使用。这种测试方法所需的样品量也很小,最少时只需要几微升即可,这一点对于涉及宝贵的样品的早期研究而言是极具吸引力的。   实际上,DLS法在测量0.1 nm ~ 10 µ m范围的粒径时十分出色。它在测量小颗粒方面的能力尤为突出,对于绝大多数待测体系提供2nm及以上的准确、可重复的数据。从理论上讲,检测低密度分子的粒径仅仅受到仪器灵敏度的限制,但对致密颗粒而言,沉降是可能导致分析不准确的一个潜在问题。例如,对于密度为10g/ml的颗粒,最大检测粒径通常会限制在大约100nm以内。   无论是稀释样品还是混浊样品都可以用DLS法来进行测量,可分析的浓度范围最低可至0.1ppm,最高可达40%w/v。不过,由于样品浓度会大大影响其外观尺寸,因此当粒子含量较高时对样品的制备需要加倍小心。   上述适用的粒径和浓度范围以及该测量技术的高重现性(粒径20nm时可达到+/- 0.1nm),使得DLS这种测量方法具有广泛的适用性。比如,它特别适合检测平均粒径的细微变化,这种变化可能会反映出胶体样品的稳定性 它也可以测得少量聚集体的出现。上述这些现象很有可能是某种样本解体的前兆,当用于药物的蛋白质研究时,这类情况的出现有可能对药物性能产生不利甚至有害的影响。   DLS法的局限性   DLS方法的大多数局限性可以或已经通过对实验操作过程进行改进,或对DLS技术进行改进来加以克服 但在区分仪器类型,尤其是对于那些要求异常苛刻的应用而言,它的局限性仍然值得我们加以关注。一般来说,DLS使用过程中遇到的大多数问题是出于以下原因:   &diams 存在较大的颗粒   超出仪器最高量程范围的颗粒应该事先被过滤掉。或者,如果大颗粒的存在量极少也可以通过软件进行处理。   &diams 沉淀   这种现象在较为致密的颗粒中尤其比较容易出现。提高分散液密度是比较有效的抑制方法(比如在系统中加入蔗糖),但这种方法仅适用于密度不高于1.05 g/ml的样品体系。   &diams 分辨率较低   DLS不属于高分辨率的技术。当样品的粒度分布排列十分密集,且存在三种以上的粒度分布差异时,DLS 将无法对多重分散样品进行精确表征。在这种情况下,建议最好在测量之前对样品进行分离 而在测量方法上,则需要将DLS与制备技术如凝胶渗透法或尺寸排除色谱法(GPC / SEC)和(或)流场分离技术(FFF)联合使用。   &diams 多重光散射   多重散射是指从一个颗粒发出的散射光在到达探测器之前又会被其它粒子再次散射,在较致密的样品中,这种现象会使粒径计算的精确度受到影响。背散射检测器以大于90° 的角度进行测量,大大抑制了这一现象,从而扩大了该技术的测量范围。   &diams 分散剂的选择   虽然大多数分散剂都适用于DLS,但如果分散剂粘度大于100mPa.s,往往会影响测量的可靠性,另外分散剂对光的吸收也会对检测产生干扰。比如有色样品的散射光强度可能会有所降低。一种可行的解决方案是根据系统的灵敏度,采用不同的激光波长进行分析或对样品进行稀释。样品中的荧光也会对信噪比造成影响,但可以通过使用窄带滤波器来解决,以排除荧光杂散光的影响。   界定DLS检测仪的特性   上述的讨论是在对DLS仪器的界定特征进行检验的背景下展开的。对于任何分析技术,灵敏度都是最基本的要素,对于DLS系统,这方面的性能是由光学硬件和相应的设置来确定的。稀释度较高时,具有优越光学设置的系统能对较小的颗粒进行可靠测量,但对于在这些功能方面要求不高的应用而言,替代方案可能会更为经济。光学设置的主要元件包括:   &diams 激光源   具有低噪特性的稳定激光源最为合适,如某些氦氖气体激光器。也可以使用某些特定的固态激光器,但价格要贵得多 低成本的固态激光器使测量结果的精度和可重现性受到极大影响。   &diams 光学设置   光学设置的核心是进行测量的散射角。测量角固定于90o 时,可使系统简便而经济高效,为许多应用(见图1)提供合适的灵敏度级别。这类系统已得到广泛使用。   当实验需要灵敏度更高,或样品浓度更高时,最好选择较大的测量角度。例如马尔文仪器公司Zetasizer Nano系列激光粒度仪,采用非侵入式背散射检测器 (NIBS),将测量角度调到175o(参见图1),扩大了颗粒粒度与浓度的测量范围。由于入射光无需通过整个样品,因此显著减少了多重散射引起的测量不准确性,同样也排除了大灰尘颗粒的影响。   在上述两种类型的设置中采用了光纤光学收集组件,其提供的信噪比优于传统的相应部件,从而大大提高了数据质量。   &diams 检测器   检测器有两种类型:一种是便宜、灵敏度较低的光电倍增管PMT,另一种是较昂贵的、性能更好的雪崩光电二极管检测器(APD)。后者宣称效率高达65%,远远优于替代产品PMT4-20%的效率,从而使数据收集最大化,测量速度更快、质量更高。   要获得精确的DLS测量,另一项基本要求是必须对温度进行很好的控制。如同分散剂粘度一样,颗粒的布朗运动也直接和温度相关,因此温度控制较差造成的影响非常严重。例如,在环境温度下对水性体系进行测量,1oC的温度误差将导致2.4%的检测结果偏差,超过ISO13321 [1] 标准规定的+/-2% 或更新的 ISO 22412[2] 标准规定的范围。对于使用的各类比色皿,DLS仪器温度控制的合理目标是 +/-0.2oC。   比起在检测仪外部连接水浴装置,内置温度控制器在使用上更加方便,在测量精度、稳定性和重现性方面也更加可取。此外,具有高性能控制系统的仪器,既能进行快速的系统预热,又能迅速调整温度,从而对温度变化所产生的影响(如蛋白质热不稳定性)进行研究。   日常使用   当选择仪器时,评估整体性能特点尤为重要。然而,如果每天使用一个不太符合操作要求的系统所造成的不便会令人非常烦恼,甚至不想再去用它。因此,当需要在最终几个备选仪器之间进行选择时,以下几个问题是值得考虑一番的:   &diams 我最重要的需求是什么:速度还是准确性?   &diams 我的样品粒径的范围?   &diams 我要测量的样品属于什么类型,比如是否有毒?或者具有特别强的腐蚀性?   &diams 今后仪器的操作者是专家还是新手?他们具备多少关于光散射的专业知识?   速度与准确性   DLS测量通常成批进行,样品通常不同、且体积较小。测量时间一般按照能达到要求的重复性水平设置,但一般不大会超过几分钟。不过,分析效率可能因样品制备和系统清洗要求而有所不同,不同系统的使用方便性也会有较大的差异。如果DLS系统被用作 GPC/SEC 检测器,系统将设置为流体工作模式。由于样品流经仪器,为达到必要的精度,测量必须在短短几秒钟之内完成。   具有良好测试速度和准确性的仪器通常都价格较高,但考虑使用寿命期的成本更为重要。考虑到因不能满足重复性标准而进行反复实验所花费的时间和成本,以及因仪器装备不能满足常规实验室使用要求而造成的分析效率下降等因素,更昂贵一些的系统也许更能体现物有所值。   适用于各种样品类型的比色皿   大多数光散射系统在批量样品分析期间使用各种比色皿池或比色皿来盛放样品。它们通常是塑料(通常是聚苯乙烯)、玻璃或石英材质的,但大小各不相同。样品的最小用量取决于光学设置,通常为2-3 ml。不过,如果不考虑任何样品回收要求,也有一些系统测量只需要2µ l的样品用量。   一次性塑料比色皿无需清洗,消除了交叉污染的风险,特别适用于盛放有毒材料 有些比色皿只有50 &mu L大小。采用比色皿可以避免产生&lsquo 非比色皿&rsquo 系统(即把样品直接放在玻璃片上进行测量)因清洗不彻底而导致测量不准确的问题。石英比色皿具有更佳的测量质量,尤其是用于低浓度或小粒径样品时,这是因为石英材料具有优异的光学特性和抗划伤性。   减轻分析负担   光散射通常只是许多研究人员在实验室中常规使用的多种技术之一。仪器操作者可能不是光散射方面的专家,因而仪器操作的简便性是很有帮助的。   一些DLS系统在数据收集过程中即对数据进行评估,剔除因大颗粒存在而被污染的结果。这类些系统有助于提高样品制备的速度和容许范围。粒径大于10微米的颗粒主要发生向前散射,因此含背散射检测器的仪器对这些颗粒的存在不太敏感。测量浓度范围宽的系统尽可能降低了样品稀释的需求,进一步提高了测量效率。   大多数现代化测量系统在数据采集过程中都无需操作员干预,从而减少了分析师的工作量,并提高测量的可重复性。但是有些比较复杂的样本可能需要采用特殊方法进行测量,因此应在标准操作程序(SOPs) 中包含这些特殊方法,从而确保应用的标准化。   虽然自动测量现在已很普遍,但在内置数据分析支持程度方面,不同仪器之间的差异很大。如果是给非专业人员使用的光散射测量系统,那么含有内置数据分析和专家意见的先进软件将极富价值,就好像在电话另一端有一位可靠的、活生生的专家一样。   总结   DLS是一项比较成熟的技术,可为各种类型的样品进行粒径和分子尺寸测量。因此,在选择仪器时,必须将系统能力与用户要求紧密联系起来,使两者相匹配。光散射系统在测量粒径的同时,还可以测量分子量、蛋白质电荷和Zeta电位,甚至还能具有微流变学测量功能。   不同系统之间的灵敏度有很大差别,如同在高浓度下也能进行测量一样,也可对各种大小的颗粒或分子进行有效的测量。与那些90o 度探测器相比,背散射仪器具有很实际的优势。   除了性能以外,还有其它因素也会影响仪器使用寿命期内的价值,包括易于清洁 能获得的支持以及友好的用户软件界面。无论是什么规格的仪器,最好的建议是在购买前进行测试,看看你能否轻松得到有用的数据。DLS问世已经多年,因此不论你的用途是什么,你都可以期望拥有一套有使用针对性的、富有成效并且易于操作的测量系统。   结束   参考文献:   [1] ISO 13321 (1996) 粒度分析 - 光子相关光谱。   [2] ISO 22412 (2008) 粒度分析 - 动态光散射   [3] GPC / SEC静态光散射技术说明,(马尔文仪器公司白皮书)。下载网址:www.malvern.com/slsforgpc   [4] www.malvern.com/aurora   图片   图1:DLS系统的关键组件包括(1)激光器,(2)测量单元,(3)检测器,(4)衰减器,(5)相关器和(6)数据处理PC。探测器可置于90° 或更大的角度,例如这里所显示的NIBS检测器设置在175° 。   图2:在悬浮液稳定性研究中采用Zeta电位对粒子之间斥力进行量化   laser:激光器   attenuator:衰减器   detector:检测器   digital signal processor 数字信号处理器   correlator:相关器   Electrical double layer:双电层   Stern layer:严密电位层   Diffuse layer:扩散层   Negatively charged particle:带负电荷的颗粒   Slipping plane:滑动面   Surface potential:表面电位  Zeta potential:Zeta电位   Distance from particle surface:到颗粒表面的距离
  • 蔡小舒教授:浅谈光散射颗粒在线测量技术
    p style=" text-align: justify text-indent: 2em " strong 编者按: /strong SARI疫情无疑是当前最牵动人心的事件,肆虐的疫情对新冠病毒快速检测、肺部用药、医疗方案等方面的研究提出了越来越高的要求。而“粒度”作为重要的颗粒物理参数对于这些研究也有重要意义。例如,2019-nCoV病毒就属于纳米颗粒,而呼吸道不同位置的用药对粒度也有不同要求。因此在医药领域,颗粒在线测量还有巨大的潜力空间待科学家们挖掘。因此,仪器信息网特约 span style=" color: rgb(0, 176, 240) " strong 上海理工大学蔡小舒教授 /strong /span 为广大网友畅叙颗粒在线测量技术的脉络。虽不能直接为抗疫一线带来助益,但在家隔离的诸位仁人志士若能有缘读到,或将对未来医学等的发展和颗粒检测技术的应用带来更多的思考和契机。 /p p style=" text-align: justify text-indent: 2em " 在今天的文章中,蔡老师重点介绍了光散射在线测量方法(正文如下): /p p style=" text-align: justify text-indent: 2em " 颗粒,包括固体颗粒、液体颗粒(如喷雾液滴、水中的油滴等)和气体颗粒(如液体中的气泡,气体中悬浮的气泡等)在动力、化工、材料、医药、冶金等各行各业中广泛存在。据有文献报道,80%以上的产品与颗粒有关。 /p p style=" text-align: justify text-indent: 0em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/d57d16e5-39e5-4d52-af56-4628425d716d.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术1.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术1.png" / /p p style=" text-align: justify text-indent: 2em " 颗粒的粒度是描述颗粒最重要的物理参数,不同的应用对于颗粒粒度的要求是不同的。如在呼吸道疾病治疗中用的鼻喷剂及喷雾剂,就需要控制药物雾滴的大小来达到雾滴沉积到呼吸道具体需要药物治疗部位的目的,这才能保证药液的效果。对于需要肺部用药,药液雾滴粒度应比较很小,才能随吸入的空气流动到达肺部。大一些的药液液滴会沉积在支气管或气管里,达不到肺部用药的目的。而对于喉部或气管的疾病,液滴的粒度就必须比较大,让它们能在喉部或气管里沉积。对于支气管部位的疾病,其雾滴的粒度就要介于2者之间。这就需要对鼻喷剂的喷嘴进行精心设计,以保证雾滴的粒度可以满足治疗不同疾病的需要。 /p p style=" text-align: justify text-indent: 2em " 在工业生产等中,经常遇到需要对颗粒进行在线检测要求,如颗粒的制备、雾化、管道输运等过程中。对颗粒粒度进行在线实时检测,然后将检测结果实时送到控制系统,对生产系统进行调整和控制,不仅可以提高产品质量,还可以提高产品生产效率。如在燃烧过程中,在线实时检测燃料粒度可以提高燃烧效率,降低污染物的产生。磨料生产中在线检测磨料粒度并反馈控制,可以极大提高磨料的质量。这样的例子可以在许许多多的场合找到。 /p p style=" text-align: justify text-indent: 2em " 目前已有许多颗粒粒度测量仪器能对从数纳米到数千微米的颗粒进行测量,但这些仪器基本上是用于实验室分析,并不能用于在线测量。颗粒在线测量的特点是: /p p style=" text-align: justify text-indent: 2em " 1.& nbsp 测量环境复杂,条件恶劣,如可能有高温、高压、高湿、工作环境温度变化大、存在振动、颗粒流动速度快、信号发射和接收部分的污染等,还必须考虑测量装置的磨损等; /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 测量要求高,测量时间要短,实时性好,不能因为仪器问题影响生产过程等; /p p style=" text-align: justify text-indent: 2em " 3.& nbsp 测量对象要求不同,如高浓度及浓度变化大、被测材料不同、粒度范围不同、或粒度范围变化大等; /p p style=" text-align: justify text-indent: 2em " 4.& nbsp 希望在线测量仪器结构简单、可靠、抗干扰、易安装、易维护或免维护等。 /p p style=" text-align: justify text-indent: 2em " 5.& nbsp 不仅测量颗粒粒度及分布,还经常希望得到颗粒的浓度,流量、形貌等参数,甚至成分参数。 /p p style=" text-align: justify text-indent: 2em " 在线测量按照取样方式可以分成直接在线测量(in-line)和取样在线测量(on-line)2类。在直接在线测量(in-line)方法中,测量装置不对被测颗粒进行取样,被测颗粒直接流过测量区进行测量。在这类测量方法中,由于不能对被测颗粒的浓度进行调整来满足测量方法的需要,并且用户对颗粒在线测量的要求和测量对象及环境等的不同,仪器的通用性差,必须精心考虑设计测量系统来满足测量的要求。因此,这类在线测量仪器一般都是个性化的仪器,需要根据测量现场要求来设计研制。而对于取样在线测量(on-line)中,由于连续取出的颗粒样品可以根据测量装置对于颗粒浓度的要求进行稀释调整,同时可以对其中的团聚颗粒采取分散措施,大都可以设计生产相对通用的在线测量仪器。 /p p style=" text-align: justify text-indent: 2em " 目前常用的在线颗粒粒度测量仪器的基本测量原理有光散射,超声,图像等。其中光散射大都用于气固或气液颗粒的在线测量,而超声则用于液体中颗粒的在线测量,图像法既可以用于气固、气液颗粒的测量,也可以用于液固、液液颗粒的测量。下面先重点介绍光散射在线测量方法: /p p style=" text-align: center text-indent: 2em " span style=" color: rgb(0, 0, 0) " strong 光散射在线测量方法 /strong /span /p p style=" text-align: justify text-indent: 2em " 光散射的基本原理是当一束激光入射到颗粒时,颗粒会向整个空间散射入射光,如图是激光入射到有颗粒的水中,颗粒向各个方向散射入射激光的照片。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/a6f9425c-dcf9-47c9-b4c9-22f75bfea916.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术2.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术2.png" / /p p style=" text-align: justify text-indent: 2em " 根据测量颗粒散射光原理的不同,可以把光散射颗粒在线测量方法分成几类:前向静态光散射法,侧向光散射法,后向光散射法,消光法,光脉动法等。在实际应用中针对不同的测量对象,须采用不同的测量方法。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 前向静态光散射法: /span /strong 这与常用的激光粒度仪的测量原理一样,一束激光从被测颗粒一端入射,在透射端安装接收散射光信号的探测器,对测量得到的散射信号进行分析反演计算,最终得到颗粒的粒度分布和平均粒径等参数。国内外一些颗粒仪器测量公司都有基于该原理的激光在线测量仪。该类仪器的特点是:颗粒粒度测量范围大,可以从亚微米到数百微米,测量速度快,一般采用连续取样方式(on-line)实现连续实时测量。但仪器复杂,安装使用要求高,无法识别颗粒是否团聚,而团聚颗粒会造成较大的测量偏差。为防止环境振动对测量的影响,除在仪器结构上采取措施外,在安装结构上也要采取措施,尽量保证仪器运行时的稳定。为防止被测颗粒对激光器和接收透镜表面的污染,须设置无油无水的压缩空气保护(俗称扫气或气帘)光学元件表面。 /p p style=" text-align: justify text-indent: 2em " 基于该原理的在线激光粒度测量仪器可用于管内粉体颗粒的粒度在线测量和喷雾液滴测量。在在线测量管内粉体粒度时,由于颗粒浓度较高,都配有连续取样系统,将被测颗粒样品连续从管道中取出,经分散和稀释到合适浓度后送到仪器的测量区。下图是安装在现场的激光颗粒粒度在线测量仪以及仪器输出的在线测量结果。根据需要,软件可以输出实时的颗粒粒度分布,以及D50等随时间变化的曲线。为防止取样出来的颗粒发生团聚,影响测量的准确性,在取样系统中应布置使颗粒分散的气流,以尽可能保证进入测量区的颗粒处于分散良好的状态。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/b22b2599-d21f-4f9e-b16e-537e32d204fc.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术3.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术3.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 消光法: /strong /span 当激光入射到被测颗粒时,部分入射光被颗粒散射,偏离原入射方向,部分被颗粒吸收,其余部分则透射到另一侧。透射光强由于消光作用而衰减,其衰减程度含有被测颗粒的粒度信息和浓度信息。当采用多个不同波长的激光入射,颗粒对不同波长光的散射作用不同,透射光强的衰减也不同。根据多波长消光法的理论模型,由测得的不同波长的透射光强的衰减,可以反演计算得到被测颗粒的粒度和浓度。 /p p style=" text-align: justify text-indent: 2em " 该方法的特点是结构简单,对振动不敏感,但粒度测量范围较小,合适的测量范围是大约0.05微米到5微米左右。对于浓度不高的测量对象,发射和接收可以直接安装在管道2侧。在管道上开设装有石英玻璃的透明测量窗,激光束从1侧从测量窗入射,在另一侧测量窗外布置光接收器件和信号放大电路等。为防止颗粒污染测量窗口,同样需要设置无油无水的压缩空气进行保护。下图是消光法测量原理的示意图和测量装置安装在工业管道上在线测量颗粒粒度和浓度,以及烟道上在线测量烟尘的浓度。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/06be3f94-1969-48f0-a900-3db071faadcd.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术4.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术4.png" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " & nbsp & nbsp /span br/ /p p style=" text-align: justify text-indent: 2em " 由于消光法的光路结构简单,可以做成探针形式,用于浓度相对较高的颗粒在线测量。下图是用于汽轮机内湿蒸汽水滴粒度和浓度测量的探针系统。在探针端部的矩形窗口就是测量区。含有细微水滴的蒸汽高速流过该测量区,仪器就可以测得水滴的大小和浓度,进而得到蒸汽的湿度。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/2cf913f6-abe3-41f3-b835-2248a3818d08.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术5.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术5.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 光脉动法: /strong /span 在消光法测量中,测量光束的直径远大于被测颗粒的粒度,在测量区中颗粒数目巨大,透射光强的变化仅与测量区中的颗粒浓度变化有关,与颗粒粒度无关。但将测量光束减小到与被测颗粒粒度同一数量级时,且测量区长度较小时,透射光强信号会出现随机变化,这种随机变化是由于在测量区内颗粒数目和大小随时间变化造成的。分析这种随机变化的信号,根据光脉动原理,可以得到颗粒的平均粒度和浓度。并可能可以得到颗粒的粒度分布。下图是光脉动法的原理示意图和透射脉动光强信号。 /p p style=" text-align: justify text-indent: 2em " 这种测量方法的最大特点是测量原理简单,易于实现在线测量,粒度测量范围可根据测量对象的大小,通过改变光束直径来调整,可以在10-数千微米之间。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/d69f90e5-d64b-409e-9232-b2c847816b4c.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术6.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术6.png" / /p p style=" text-align: justify text-indent: 2em " 根据该原理可以在线测量粉体颗粒的粒度和浓度。如果间隔一定距离布置1对测量光束,对2个随机序列信号用互相关法原理处理,不仅可以得到颗粒的粒度,还可以得到颗粒的速度, span style=" text-indent: 2em " 进而得到颗粒的流量。下图是安装在现场的基于该原理的颗粒粒度在线测量装置。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/a489deae-c7cf-405b-a5f6-765c92c0bdf5.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术7.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术7.png" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 消光起伏相关光谱法:& nbsp /strong /span 与消光法和光脉动法不同,在该测量方法中,光束的直径小于被测颗粒的粒径,其透射光强不再是如消光法那样是平稳的,也不是如光脉动法那样是连续的高频脉动信号,而是如下图所示,成不连续的脉动信号。当颗粒通过测量光束时,由于颗粒尺寸大于测量光束的直径,入射激光被完全遮挡住,透射光强为零。当没有颗粒通过测量光束时,透射光强为1。采用消光起伏相关光谱法的模型对测得的时间序列信号进行分析,同样可以得到被测颗粒的粒度分布。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/788dfd6a-64c4-4942-a74b-a23cd1c19bbf.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术8.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术8.png" / /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 后向散射法: /span /strong 对于高浓度悬浮液、乳剂等,光无法透射过被测颗粒,散射光也会被颗粒所吸收或散射,但会产生后向散射。颗粒浓度越高,这种后向散射光的强度也越高,且与颗粒的粒度有关。根据该原理,可以采用后向散射方法进行高浓度液液或液气颗粒体系,如悬乳剂、高浓度微气泡等的在线测量。该测量方法的特点是浓度测量范围大,可以到体积浓度百分之几十,而粒度测量范围较小,从亚微米到数微米。经过标定,还可以测量颗粒的浓度。 /p p style=" text-align: justify text-indent: 2em " 合适的光路设计还可以用于气固颗粒的在线测量,以及测量气、液、固3相流动中的离散相颗粒的粒度和浓度。 /p p style=" text-align: justify text-indent: 2em " 后向散射法测量可以做成结构非常紧凑的光纤探针形式,带尾纤的激光器发出的激光经光纤入射到被测颗粒,其后向散射光被同一根光纤接收,也可以是另一根光纤接收,然后由光纤另一端的光电探测器将后向散射光信号转换成电信号进行反演计算处理,最后得到颗粒的粒度。下图是后向散射测量的原理示意图和后向散射探针。该探针可以插入如悬乳液等高浓度颗粒两相流中进行在线测量。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/40bb4eb7-28dd-4fb5-8750-9533e649894a.jpg" title=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术9.png" alt=" 肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术9.png" / /p p style=" text-align: justify text-indent: 2em " strong style=" text-indent: 2em " 作者简介: /strong br/ /p p style=" text-align: justify text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 300px height: 217px float: left " src=" https://img1.17img.cn/17img/images/202002/uepic/1a4277d5-fe8a-48ce-a42e-05a480160d54.jpg" title=" 蔡小舒.jpg" alt=" 蔡小舒.jpg" width=" 300" height=" 217" border=" 0" vspace=" 0" / 蔡小舒,上海理工大学教授。研究领域涉及到颗粒测量、两相流在线测量、燃烧检测诊断、排放和环境监测、湍流等,近年来开始涉足生命科学的测量研究。先后承担了国家两机项目、国家自然科学基金重点项目、仪器重大专项项目、面上项目、科技部和上海市项目等纵向项目,国际合作项目以及企业委托项目。 /p p style=" text-indent: 2em text-align: justify " 曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等学术组织的副理事长、常务理事、理事、理事长等,是《Proceedings of IMechE Part A: Journal of Power and Energy》、《Particuology》、《KONA Powder and Particle Journal》、《Frontiers in Energy》等SCI刊物和一些国内学术刊物的编委,多个国际学术会议的名誉主席,主席等。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span br/ /p p style=" text-align: center text-indent: 0em " strong span style=" text-indent: 2em " 欲知相关仪器可点击进入 /span span style=" text-indent: 2em text-decoration: underline " a href=" https://www.instrument.com.cn/zc/670.html" target=" _self" style=" color: rgb(0, 176, 240) " span style=" text-decoration: underline text-indent: 2em color: rgb(0, 176, 240) " 在线粒度仪 /span /a /span span style=" text-indent: 2em " 专场 /span /strong /p
  • 东曹携新型光散射检测器亮相BCEIA2019,助力生物大分子分析研究
    2019年10月23日-26日, 第十八届北京分析测试学术报告会暨展览会(BCEIA2019)在北京国家会议中心召开。今年展会上,东曹(上海)生物科技有限公司携四款新品亮相,分别是:高性能亲和色谱柱TSKgel FcR-IIIA-NPR、超高效液相色谱分析柱TSKgel UP-SW2000、第八代高速凝胶渗透色谱仪8420GPC,以及即将于全球上市的多角度光散射检测器LenS3四款新品。其中,FcR-IIIA-NPR色谱柱专为抗体药物糖链结构的分析和活性测定而开发,而8420GPC凝胶渗透色谱仪可以进一步减少易受温度变化影响的溶剂的基线波动,从而获得更稳定的基线信号。东曹展台凝胶渗透色谱仪GPC和新型多角度光散射检测器 在今年的JASIS2019上,东曹也首次展出公司研制的多角度光散射检测器LenS3。LenS3采用独有的光学专利光路设计与计算方法,解决了其他同类产品无法检测低分子物质的绝对分子量和回转半径这一难点,可用于测量合成聚合物、蛋白质、多糖等生物大分子的绝对分子量和分子尺寸。 东曹(上海)生物科技有限公司董事、副总经理潘明祥接受了中国分析测试协会联合仪器信息网的采访。对于东曹为何选择进入光散射检测器这一细分市场,潘明祥解释说:“仪器方面东曹拥有GPC、离子色谱,我们的客户更集中于企业的品质管理部门,检测器相对而言比较单一。许多来自高校、科研院所的科研工作者向我们提出需求,能否提供更多的检测器产品。几年间经过与合作伙伴的联合攻关,东曹多角度光散射检测器终于正式推出,除了传统的熔融性高分子分析业务外,我们更关注生物大分子市场,相信LenS3在上述市场将大有可为。”点击视频查看更多详情:https://www.instrument.com.cn/news/20191101/515998.shtml
  • 高分子表征技术专题——光散射技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!光散射技术在高分子表征研究中的应用Laser Light Scattering and Its Applications in Polymer Characterization作者:郑萃,刘芷君,梁德海 作者机构:中国石化北京化工研究院,北京,100013 北京大学化学与分子工程学院,北京,100871作者简介:梁德海,男,1971年生. 1994年获南开大学环境科学系理学学士,同年进入南开大学化学系攻读硕士. 2001年在美国纽约州立大学石溪分校获得理学博士学位,并留任博士后. 2006年加入北京大学化学与分子工程学院高分子科学与工程系,任副教授;2012年任教授. 2011年得到教育部新世纪优秀人才计划的支持,2015获得Elsevier第九届冯新德高分子奖最佳文章奖. 研究方向为高分子溶液物理,主要项目包括:基于生物大分子的非平衡态原始细胞模型的构筑及动态行为研究;多肽诱导脂质体膜内吞及外吐机理研究;大分子拥挤及限制作用的定量化研究.摘要光散射技术是高分子领域中重要的表征手段之一. 静态光散射和动态光散射的结合能够获得丰富的关于高分子的信息,如重均分子量、回转半径、第二维里系数、流体力学半径、尺寸分布、分子链构象等. 除合成高分子外,光散射技术同样适用于研究生物大分子、微生物、胶体、纳米粒子、病毒、囊泡等在溶液或悬浮液中的行为. 本综述重点介绍稀溶液中静态光散射和动态光散射的历史、基本理论和实验技巧. 对于浓溶液适用的交叉相关技术和扩散波谱技术以及固体光散射也做简要介绍. 为了帮助初学者更好地理解并掌握光散射技术,综述的最后介绍了4个应用实例:动、静态光散射相结合跟踪研究线团到密实球的转变过程,光散射确定超支化分子的标度关系,时间可分辨的光散射来剖析聚合诱导胶束化的机理,以及去偏振动态光散射研究纳米粒子在生物介质中的聚集行为.AbstractLaser light scattering (LLS), which includes static light scattering (SLS) and dynamic light scattering (DLS), has been widely applied in characterization of polymer samples in dilute solutions. SLS measures the angular dependence of the excess scattered intensity, from which the weight average molecular weight, radius of gyration, and second viral coefficient are obtained. DLS measures the intensity-intensity time correlation functions, from which the hydrodynamic radius and size distribution are obtained. The combination of SLS and DLS enables information on chain conformation. Beside synthetic polymers, LLS is also suitable for the solutions and suspensions of biopolymers, microbial, colloids, nanoparticles, virus, and vesicles. The history, theory, and experimental techniques of SLS and DLS specific for dilute solutions are summarized. In recent years, the cross-correlation techniques, diffusing wave spectroscopy, and other related techniques have been developed to expand LLS to study samples in semi-dilute and even concentrated solutions. These techniques, as well as solid light scattering, are also briefly introduced in this review. In the last, we provide four typical examples of light scattering experiments: the coil-to-globule transition as studied by the combination of SLS and DLS, the scaling of hyperbranched polymers as determined by LLS, the polymerization-induced micellization process as monitored by time-resolved LLS, and the aggregation of nanoparticles in biological media as investigated by depolarized DLS.关键词光散射  高分子表征  分子量  回转半径  相关函数KeywordsLaser light scattering  Polymer characterization  Molecular weight  Radius of gyration  Correlation function 1光散射技术的发展简史人们对光散射的认识最早可以追溯到1869年著名的丁达尔(Tyndall)凝胶散射实验. 1871年,瑞利对空气中的光散射现象进行了理论研究[1],推导出了球形粒子的散射公式,解释了晴空蓝和夕阳红的成因[2]. 之后,德拜(Debye)和甘(Gans)分别把瑞利的散射理论拓展到了非球形粒子[3] 和大尺寸的粒子[4],完善了气体中粒子的光散射理论.在液体等凝聚相(condensed phase)中,散射强度的实测值通常比瑞利理论的预测值小一个数量级以上,这是由散射波的相消干涉造成的. 针对这种现象,斯莫鲁霍夫斯基(Smoluchowski)和爱因斯坦(Einstein)[5]从密度涨落的角度出发,提出了光散射的涨落理论(fluctuation theory of light scattering),极大地拓展了光散射的应用范围. 1940年前后,德拜和齐姆(Zimm)将涨落理论与溶液中的高分子表征相结合,实现了光散射对高分子的分子量、分子尺寸、分子形状和分子间相互作用的测量[6].静态光散射(static lightscattering, SLS)也称为弹性光散射,是指不考虑散射波长(或能量)变化的光散射. 1914年,布里渊(Brillouin)预测固体中热声波的散射光频率会出现双峰分布,后被实验所证实,从而开启了人们对准弹性光散射,即动态光散射(dynamic light scattering, DLS)的研究. 由于对光源单色性的苛求,动态光散射技术直到1960年前后激光光源趋于成熟之后,才得到了较好的发展. 1964年,佩科拉(Pecora)[7]利用高分子溶液中散射光的频率变化,计算出了高分子的扩散系数,并得到了高分子的流体力学半径、链柔顺性等信息.当溶液中粒子的浓度增加到一定程度时,就会发生多重散射,即散射光再次或多次与粒子发生作用. 这种浓度下溶液的光散射理论较为复杂. 近年来,科学家们针对这类体系设计了许多特殊的方法或仪器,如折射率匹配法(1991年)[8],微样品池法(1998年)[9,10]、光纤准弹性散射法(fiber optical quasi elastic light scattering, FOQELS,1991年)[11,12]、时间交叉相关法(1981年)[13]、3D交叉相关法(1999年)[14]、互相关法(1997年)[15]等. 2006年,得益于电荷耦合器件(charge coupled device,CCD)以及计算机的发展,基于光斑(speckles)的互相关法得到了实质性发展[16],得以对亚浓溶液或浓溶液进行较为深入的研究. 当溶液体系达到浑浊状态时,极其严重的多重散射使得光在体系中的行进可以按扩散过程来处理,扩散波谱(diffusing wave spectroscopy, DWS)理论应运而生[17],基于该理论的技术可适用于多种不同的浑浊体系.固体介质中也存在光散射现象,但在原理和应用等方面与溶液中的光散射都有很大差别. 固体中很容易产生严重的多重散射,且固体表界面的强烈散射常会对内部的散射造成严重干扰,这些都使得固体的光散射结果难以解读. 早在1922年,布里渊[18]就用光散射对固体振动进行了研究,但这不是严格意义的弹性光散射. 1960年斯坦因(Stein)[19]优化了垂直偏振光散射方法,极大地简化了散射结果,使得固体光散射在测定聚合物的链取向和晶体结构的研究中得到广泛应用[20,21].2光散射原理2.1气体光散射光的本质是电磁波,含有周期变化的电场E. 原子或分子在电场作用下会发生极化,强度与极化率α相关. 原子在周期性变化的电场中会被周期性地极化,从而转变为一个次级光源,向周围发射同频率的电磁波,即散射光(图1).Fig. 1Scattered light generated by a scatterer as it is induced to be an oscillating dipole in the incident beam. θ is the scattering angle, and the inset shows the angular dependence of the scattered light from small particles, such as atoms or molecules. The polarization of incident beam is not considered.单原子产生的散射光强Is由原子的极化率α和入射光波长λ决定. 另外,在空间某点测定的散射光强还与观测点到散射点的距离r有关. 1871年,瑞利推导出如下的散射公式:其中I0为入射光强度. 单个原子、分子和粒子在空气中的散射光强都可以用公式(1)描述. 对于多粒子体系,可表示为体积V中存在N个散射粒子,如果粒子尺寸小(半径小于入射光波长的1/20),且数目较少,粒子之间的散射光不发生干涉,散射光强可表示为:公式(2)表明,散射光强度与波长的4次方成反比,波长短的蓝色光的散射明显强于波长更长的红色光,因此天空在阳光的照耀下显示为蓝色.2.2溶液光散射光散射技术在溶液体系中具有非常广泛的应用. 在稀溶液中,利用静态光散射技术能够测定散射粒子的绝对分子量M、回转半径Rg、第二维里(Virial)系数A2等信息;利用动态光散射技术能够测定散射粒子的流体力学半径Rh及其分布等信息. 光散射技术在亚浓溶液或浓溶液中也发挥了重要作用,但该类体系中的多重散射使得散射理论变得十分复杂. 本文重点介绍稀溶液中的光散射理论,对非稀溶液体系的散射理论只做简要介绍.2.2.1稀溶液中的静态光散射在稀溶液中,根据Clausius-Mossoti公式,可将难以测量的极化率α转化容易测量的折光指数n:其中n0是纯溶剂的折光指数,M为粒子的绝对分子量,NA为阿伏伽德罗(Avogadro)常数,c (=MN/VNA)为质量浓度. 值得一提的是dn/dc, 即溶液折光指数n对溶液质量浓度c的导数,称为折光指数增量,可以用专有仪器测定,或是从相关手册[22]中查到. 当dn/dc = 0时,预示体系中测不到反映溶质结构信息的光散射信号.对于dn/dc ≠0的单组分体系,将公式(3)代入(2)中,可得到瑞利散射公式:其中H称为光学常数,R为瑞利比.忽略由溶剂自身密度涨落引起的散射. 根据涨落理论,散射光强I仅与光学常数H、质量浓度c和渗透压π相关,并遵循如下的关系式:根据van’t Hoff关系式:其中,M为溶液中粒子的绝对分子质量,A2为第二维里系数,用来定量描述溶剂-溶质之间的相互作用. 将公式(6)代入(5)中,可以得到:式(7)中只有2个未知数M和A2. 理论上只要测量2个不同浓度溶液的散射光强I,就可以计算得到粒子的绝对分子量M和第二维里系数A2. 但是,由于每一台光散射仪的探测器面积和探测器到样品的距离都可能不同,激光束的粗细和样品池的大小也可能存在差异,因此对于同一个样品,每台光散射仪得到的信号都可能是不同的. 仪器测得的光强,必须要转化为绝对散射光强,才可以进行下一步的计算. 在实际操作中,常用瑞利比R代替I,并考虑以下这些影响因素:第一步,偏振校正. 取决于样品的性质,散射光的偏振方向会发生变化,且会影响散射光强的大小. 偏振的校正较复杂[23]. 目前绝大多数光散射仪均使用了VV偏振散射设计,即入射光与观测的散射光都是垂直(vertical)偏振的,相应的散射光强标记为Rvv.第二步,散射体积校正. 常见的散射仪器一般用小孔和狭缝来限制检测器接收的散射光. 激光束中被小孔或狭缝截留的光路在空间中所占的体积称为散射体积(图2). 对于同一个体系,散射体积越大,测得的散射光越强. 在激光光束和小孔或狭缝固定的情况下,散射体积与散射角θ (入射光矢量与散射光矢量的夹角)存在sinθ的定量关系. 因此在静态光散射实验中,在θ角测定的散射光强需要进行sinθ的校正.Fig. 2Geometry of a typical laser light scattering setup (top view).第三步,净剩光强校正. 公式(7)中的光强是散射粒子自身的光强,在溶液中又称净剩光强,即溶液的散射光强Isolution减去溶剂的散射光强Isolvent.在实验中,以瑞利比Rvv已知的标准溶剂为参照,在同一台散射仪器上进行样品的测量是最常用的做法. 例如温度为T时,样品在θ角的瑞利比RTθ 通过以下公式得到:其中ITθ、RTθ、nT为样品在温度T下的净剩光强、瑞利比和折光指数,I25θ,standard、R25θ,standard和n25standard分别为标准溶剂在25 oC的散射光强、瑞利比和折光指数,也可以选用其他温度的配套数值. 当样品溶液和标准试剂的折光指数不同时,也需要进行校正. 狭缝和小孔所对应的指数分别为1和2. 甲苯是目前最常用的标准试剂,25 °C和632.8 nm波长下的瑞利比为8.70×10-6 cm-1. 甲苯与苯在不同波长和温度下的瑞利比可以从参考文献中查阅[24,25].将散射光强用瑞利比表示后,公式(7)可改写为:公式(9)适用于描述小粒子(尺寸小于波长的1/20)在溶液中的散射行为. 通常测量多个浓度下的Rvv值,将Hc/Rvv对c作图,从拟合直线的截距和斜率中分别求得M和A2值.当高分子的尺寸较大时,同一高分子内部不同重复单元的散射光会发生干涉现象,从而导致散射光强出现了散射角度的依赖性(图3). 从光强角度依赖性数据可以反推粒子的尺寸和形状. 具体做法是在公式(9)的基础上,引入与散射角度相关的形状因子(form factor)P,其中包含了粒子的尺寸和结构信息.Fig. 3Interference pattern of light scattered from two segments in a large particle or polymer chain. The inset shows the angular dependence of the scattered light.在光散射中,习惯上使用散射矢量q表示散射角. 散射矢量q定义为散射光波矢量与入射光波矢量的差. q与散射角度θ之间的数值关系为[24]:由式(10)可知,散射矢量q的单位为长度的倒数. 在波长和溶液体系固定的前提下,q是由散射角θ决定的变量,此时形状因子可相应地记为P(q). 经P(q)修正后的散射光强公式为[23]:对于小粒子而言,P(q) = 1,与散射角度无关.用回转半径Rg来描述高分子的尺寸,当qRg 1时,不同形状粒子的P(q)存在较大差别[23,26].回转半径为Rg的无规高分子线团:半径为R的均匀实心球:半径为R的空心薄球壳:半径为R的薄圆盘:其中J1为一阶贝塞尔函数.长度为L的细圆柱:其中Si(x)为sinus积分函数:通过测定待研究体系的形状因子P(q),并与标准体系进行对比,就能够判断粒子的构象并确定其特征尺寸参数. 当体系浓度足够小,2A2c一项相对于1/MP(q)可以忽略时,公式(11)可转化为:即:在公式(22)中,M/Hc是与散射角θ或散射矢量q无关的量. 因此,测定各个散射角度下的Rvv,用零角度的数值归一化,再对q作图就得到了P(q)曲线. 为了提高用P(q)确定体系构象的准确性,尽量选用窄分布的样品,并在测定时覆盖尽可能宽的散射角度.利用静态光散射来测定共聚物比均聚物要复杂很多. 由公式(4)可知,决定体系散射性能及强度的内在因素是dn/dc. 共聚物等体系包含有2种或2种以上的组分. 当这些组分的(dn/dc)不同时,散射方程将急剧地复杂化. 以AB两嵌段共聚物为例,体系总的(dn/dc)AB = wA(dn/d
  • 麦克默瑞提克(上海)仪器有限公司总经理许人良博士受聘为国际颗粒光散射会议专家委员
    麦克默瑞提克(上海)仪器有限公司总经理,国际光散射知名学者许人良博士近日被有着悠久历史的,2014年在法国马赛举行的国际颗粒光散射专业会议聘请为专家委员,并将作为四个大会发言者之一作光散射在当代颗粒研究中的最新进展的专题报告。 国际颗粒光散射专业会议首次召开在1987年,迄今为止,已经成功举办了九届,该会议推动先进的理论和模型的发展,提供粒子光散射理论的最新进展,为颗粒光散射行业提供交流的平台,是迄今为止颗粒光散射行业最著名的会议。鉴于许人良博士在光散射领域的突出贡献,该会务组力邀许人良博士担任此次会议的专家委员,并陈恳地要求许人良博士在大会发言,与大家共享最新研究成果。 许人良博士简介: 许人良博士现任麦克默瑞提克(上海)仪器有限公司总经理。从事颗粒特性研究和检测技术30多年,是该领域国际资深著名专家。他于1987年和1988年在美国the State University of New York at Stony Brook获得硕士和博士学位。2002年获得美国Nova Southeastern University的MBA学位。 他发表了基础理论研究和应用领域的科技文章100余篇;获得2项美国专利;研究成果在科学检索引用超过2000多次;在美国各大学和世界各地进行过学术讲座100多次;并著有颗粒表征中的权威著作《Particle Characterization: Light Scattering Methods》。现在担任5个专业期刊(Macromolecules, Langmuir, J. Coll. Inter. Sci.,等期刊)的评委;ISO, ASTM, IAB of PERC的委员会成员;多项国际标准的起草者;被列为美国和世界名人榜。许人良博士经常活跃在中国国内学术领域,在多所大学进行科技讲座。现任上海华东理工大学兼职教授,上海师范大学兼职教授,沈阳科学技术学会特邀外国专家。他是美国化学学会(ACS)会员、美国物理学会(APS)会员、美国化学工程师学会(AIChE)会员、美国检测和材料学会(ASTM)会员,中国颗粒学会会员,国际粉体检测与控制联合会会员。 他曾获得的荣誉和奖励有:美国荣誉协会Sigma Beta Delta奖;A Certificate of Appreciation by Mayor of Metropolitan Dade County, FL;The Postdoctoral Fellowship awarded by National Science Engineering Research Council of Canada;A Certificate for the Sherwin-Williams Award by American Chemical Society;The World Bank Fellowship by the United Nation等。
  • 推出光散射检测器 生物大分子市场“如虎添翼”——访东曹(上海)生物科技有限公司董事、副总经理潘明祥
    p   strong  仪器信息网讯 /strong 2019年10月23日-26日, 第十八届北京分析测试学术报告会暨展览会(BCEIA2019)在北京国家会议中心召开。东曹(上海)生物科技有限公司(简称:东曹)携四款新品盛装亮相本次展会,中国分析测试协会联合仪器信息网特别采访了公司董事、副总经理潘明祥。 /p script src=" https://p.bokecc.com/player?vid=798E9F707E8F56D19C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script p   本次展会,东曹带来高性能亲和色谱柱TSKgel FcR-IIIA-NPR、超高效液相色谱分析柱TSKgel UP-SW2000、第八代高速凝胶渗透色谱仪8420GPC,以及即将于全球上市的多角度光散射检测器LenS3四款新品。其中,FcR-IIIA-NPR色谱柱专为抗体药物糖链结构的分析和活性测定而开发,而8420GPC凝胶渗透色谱仪可以进一步减少易受温度变化影响的溶剂的基线波动,从而获得更稳定的基线信号。 /p p   在今年的JASIS2019上,东曹也首次展出公司研制的多角度光散射检测器LenS3。LenS3采用独有的光学专利光路设计与计算方法,解决了其他同类产品无法检测低分子物质的绝对分子量和回转半径这一难点,可用于测量合成聚合物、蛋白质、多糖等生物大分子的绝对分子量和分子尺寸。 /p p   对于东曹为何选择进入光散射检测器这一细分市场,潘明祥解释说:“仪器方面东曹拥有GPC、离子色谱,我们的客户更集中于企业的品质管理部门,检测器相对而言比较单一。许多来自高校、科研院所的科研工作者向我们提出需求,能否提供更多的检测器产品。几年间经过与合作伙伴的联合攻关,东曹多角度光散射检测器终于正式推出,除了传统的熔融性高分子分析业务外,我们更关注生物大分子市场,相信LenS3在上述市场将大有可为。” /p p   东曹上海生物科技在中国的业务可分为体外诊断与色谱层析两大块。即便在全年经济形势不景气、行业增速趋缓的环境下,公司还能保持30%~35%的增速,层析填料业务的增速甚至能达到50%~70%。 /p p    strong 原因为何?更多详情,敬请点击视频查看。 /strong /p p br/ /p
  • 楚雄师范学院司民真教授:随光散射一起成长
    今年恰逢第一届全国光散射大会召开和物理学会光散射专业委员会成立四十周年。作为在光散射这个大家庭中成长起来的我,不免思绪万千,成长之路一遍遍在眼前浮现。一、初入光散射研究1998年6月,我从陕西师范大学光学专业硕士毕业回到楚雄师范专科学校,当时我们学校科研基础条件很差,我的导师介绍我认识了刚从德国马普研究所回国的张鹏翔老师。张老师是由当时的云南工业大学(现昆明理工大学)引进的高端人才,学校为他购买了雷尼绍的显微拉曼光谱仪。张老师热情的邀请我到他的实验室去做实验,经过简单的仪器操作培训后,我便正式上岗了。我事先设计好实验方案,利用节假日,爱人陪着我从楚雄坐长途车,带着在楚雄准备好的去离子水、器皿、试剂等到昆明做试验。张老师很放心的把实验室的钥匙交给了我!因为时间很紧,经常一天在实验室工作十几个小时,爱人在实验室的外间配制待测样品,我在里间进行测试,碰到异常的情况,我们会停下来,讨论一下。为节约开支,每次到昆明都入住在10元一个床位的小旅社(至今还记得,叫做小龙旅社)。正是在这样艰苦的条件下,我和爱人一起研制了能长期保存且具有高拉曼活性的纳米银胶体,为表面增强拉曼的实用奠定了良好的基础,该纳米银溶胶获得了专利授权。发表了论文12篇,其中SCI收录4篇。其中论文《纳米银的形貌对VB2和YDDS表面增强拉曼散射的影响》是我第一次在光散射学报上发表的论文,激动的心情不可言状。从此与光散射学报结下了不解之缘。这一系列工作,我也因此于2002年破格晋升为教授。2002年破格晋升教授后,在张鹏翔老师的鼓励下,我积极申报国家留学基金并获得资助,于2003年11月前往加拿大温莎大学访学一年,师从北美有名的光谱专家Aroca教授,经过留学自己的科研能力得到了很大的提高。1999年8月2号-8月7日,第十届全国光散射学术会议在吉林大学召开,我自费参加了这次大会。在大会上聆听了一些大家的报告,也深深的感受到了来自于光散射这个大家庭的温暖,我心里暗下决心克服一切困难每次都要参会。二、团队建设2005年,我入选了云南省中青年学术技术后备人才,有了经费继续拉曼光谱及表面增强拉曼光谱的研究。2007年12月22日-23日,为促进云南光散射事业的发展,张鹏翔老师在昆明理工大学开办了第四届昆明拉曼讲习班,我组织所有自愿报名参加第四届昆明拉曼讲习班的我系15名教师,前往昆明参加培训,有幸聆听了张鹏翔、徐红星、谭平恒等老师的报告。培训回来后要求教师写出科研计划,对有思路、肯吃苦的教师进行重点培养,帮助他们修改论文,完善方案,初步形成了一个光谱研究的团队。2009年6月27-29日在李灿老师及刘玉龙老师的支持下,第15届光散射年会审稿会暨全国光谱研讨会在楚雄师范学院召开,全国各地的专家学者都来到了楚雄师范学院,云南省有好多高校的老师也前来参会,该会议进一步促进了云南省光散射事业的发展。2015年,徐蔚青老师、任斌老师分别接收了楚雄师院的两位进修老师,他们进修回来后,我们的研究力量得到了进一步加强。三、平台建设2005年,我入选上了云南省中青年学术技术带头人后备人才,在云南省科技厅及学校的支持下,我们购买了一台20万便携式拉曼光谱仪,科研实验室的仪器设备等固定资产到了80万元。2007年实验室入选了省高校重点实验室培育基地。2011年在云南教育厅的支持下、在学校党委和行政领导的大力支持下、在学科组的共同努力下,重点实验室培育基地通过了云南省教育厅的验收,正式批准为云南省高校分子光谱重点实验室,对实验室又有了投入,购置了显微拉曼光谱仪、红外光谱仪、紫外-可见分光光度计等光谱设备。这个实验室也成为了楚雄师范学院广大教师开展科研的一个良好平台。经过多年努力,一个知识结构、年龄层次合理,具备独立开展光谱学研究的团队已经形成,团队的老师都有了至少主持一项省部级课题的经历,共主持了省部级课题十五项。得益于光散射这个大家庭里很多老师的支持,团队还主持完成了三项国家自然科学基金(地区基金)。与此同时,团队的科研工作也获得了丰硕的成果:获国家发明专利3项,近五年发表论文60多篇,有21篇被SCI、EI收录;获得云南省2005年度、2014年度科学技术(自然科学类)三等奖;本人也先后获得学校“师德标兵”、“云南省三八红旗手”、“云南省有突出贡献的专业技术人才”、“楚雄州十大创新人才”、“全国模范教师”、“ 云南省优秀共产党员”等荣誉。一路走来,我们所做出的点点成绩都离不开光散射这个大家庭的关心支持,对所有关心支持过我们成长的老师们表示由衷的感谢!(作者:楚雄师范学院云南省高校分子光谱实验室 司民真教授)
  • 1583万!南昌大学绿色食品江西省实验室超高效液相色谱-三重四极杆线性离子阱复合质谱仪、体积排除色谱-多角激光散射仪等采购项目
    一、项目基本情况:1.项目编号:JXGZ2024-01-1506项目名称:南昌大学绿色食品江西省实验室超高效液相色谱-三重四极杆线性离子阱复合质谱仪采购项目采购方式:竞争性磋商预算金额:4600000.00 元最高限价:4370000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2024F001114406超高效液相色谱-三重四极杆线性离子阱复合质谱仪(绿色)1台4600000.00元详见公告附件合同履行期限:合同签订后90天内。本项目不接受联合体投标。2.项目编号:JXGZ2024-01-1507项目名称:南昌大学绿色食品江西省实验室体积排除色谱-多角激光散射仪等进口设备采购项目采购方式:竞争性磋商预算金额:6130000.00 元最高限价:5823500.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2024F001114313油脂氧化稳定测试仪(绿色)1台370000.00元详见公告附件赣购2024F001114404中央供水(绿色)1台800000.00元详见公告附件赣购2024F001114311脂溶性维生素提取仪(绿色)1台1060000.00元详见公告附件赣购2024F001114312水分活度测试仪(绿色)1台270000.00元详见公告附件赣购2024F001114314氨基酸分析仪(绿色)1台950000.00元详见公告附件赣购2024F001114310体积排除色谱-多角激光散射仪(绿色)1台2200000.00元详见公告附件赣购2024F001114405超纯水机(绿色)4台480000.00元详见公告附件合同履行期限:合同签订后90天内。本项目不接受联合体投标。3.项目编号:JXGZ2024-01-1511项目名称:南昌大学绿色食品江西省实验室小动物活体成像系统等进口设备采购项目采购方式:竞争性磋商预算金额:5185000.00 元最高限价:4925700.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2024F001114390离心浓缩仪(绿色)2台480000.00元详见公告附件赣购2024F001114393小动物活体成像系统(绿色)1台2640000.00元详见公告附件赣购2024F001114316超微量分光光度计(绿色)1台160000.00元详见公告附件赣购2024F001114387高速冷冻离心机(绿色)1台130000.00元详见公告附件赣购2024F001114391旋转蒸发仪(绿色)4台440000.00元详见公告附件赣购2024F001114315厌氧手套箱(绿色)1台330000.00元详见公告附件赣购2024F001114317快速组织破碎仪(绿色)2台440000.00元详见公告附件赣购2024F001114392真空冷冻干燥机(绿色)1台380000.00元详见公告附件赣购2024F001114388高速冷冻离心机(绿色)1台150000.00元详见公告附件赣购2024F001114389离心机(绿色)1台35000.00元详见公告附件合同履行期限:项目交付时间:合同签订后90天内。本项目不接受联合体投标。二、获取采购文件:时间:2024年01月22日 至 2024年01月26日,每天上午0:00至12:00,下午13:00至23:30(北京时间,法定节假日除外 )(磋商文件的发售期限自开始之日起不得少于5个工作日)地点:江西省公共资源交易网方式:网上报名获取采购文件,未在规定时间内下载采购文件而导致无法上传响应文件的后果由供应商自行承担。售价:0.00元三、凡对本次采购提出询问,请按以下方式联系:1.采购人信息名称:南昌大学地址:江西省南昌市红谷滩学府大道999号联系方式:0791-839692852.采购代理机构信息名称:江西国政招标咨询有限公司地址:江西省南昌市庐山南大道348号南昌市农业科学院大楼十楼联系方式:0791-881948973.项目联系方式项目联系人:刘雨雯、朱珍珍、管晓波、江福群、柳洋华、王东虎电话:0791-88194897
  • 天津市医药行业协会发布《中药注射剂(真溶液型)中高分子杂质的测定高效分子排阻色谱-蒸发光散射检测法》等四项团体标准
    各有关单位:《基于血小板活化生物标志物CD62p检测的中药注射剂活血化瘀活性评价方法操作规程》等4项团体标准于2023年8月1日立项,由天津市药品检验研究院、天津天士力之骄药业有限公司、现代中药创制全国重点实验室、天津药物研究院有限公司、天津红日药业股份有限公司、津药达仁堂集团有限公司中药研究院、天津宏仁堂药业有限公司、津药达仁堂集团股份有限公司乐仁堂制药厂等多家单位联合起草,根据《天津市医药行业协会团体标准管理办法(试行)》有关规定,在专家的指导下,高质量完成了4项团体标准的编制和必要流程,并通过审查。该4项团体标准于2024年5月31日发布并实施,现予以公告。本次发布的4项团体标准如下:T/TPPA 0007–2024《基于血小板活化生物标志物CD62p检测的中药注射剂活血化瘀活性评价方法操作规程》T/TPPA 0008–2024《麦冬(供注射用)质量标准》T/TPPA 0009–2024《五味子(供注射用)质量标准》T/TPPA 0010–2024《中药注射剂(真溶液型)中高分子杂质的测定高效分子排阻色谱-蒸发光散射检测法》团体标准发布公告20240531.pdf团体标准-TPPA0007-2024-基于血小板活化生物标志物CD62p检测的中药注射剂活血化瘀活性评价方法操作规程.pdf团体标准-TPPA0008-2024-麦冬(供注射用)质量标准.pdf团体标准-TPPA0009-2024-五味子(供注射用)质量标准.pdf团体标准-TPPA0010-2024-中药注射剂(真溶液型)中高分子杂质的测定高效分子排阻色谱-蒸发光散射检测法.pdf
  • 第二十届国际光散射年会即将举行!
    第二十届国际光散射年会将于2009年10月19~20日在美国加州Santa Barbara 市Four Seasons Biltmore Resort举行。 本次大会由美国wyatt技术公司主办,旨在促进光散射在各领域中的发展与应用,增进用户相互交流,共同探讨光散射给我们实验室带来的巨大变革。其主题涵盖了wyatt技术公司动态光散射仪(DynaPro)、静态光散射仪(DAWN系统)、在线粘度计(ViscoStar)以及场流仪(Eclipse AFFF)等仪器在高分子、生物医药、化工等领域的应用情况。 其中部分报告主题如下: · Dr. James Burns, Senior Vice President and Head of Drug and Biomaterial R&D, Genzyme Corporation "Light Scattering and Product R&D at Genzyme" · Professor Angela Gronenborn, Dept. Head Structural Biology and Rosalind Franklin Chair, University of Pittsburgh "Shining Light on Protein-Protein Interactions: Synergy Between Scattering and NMR" · Professor Robert Grubbs, Victor and Elizabeth Atkins Professor of Chemistry, California Institute of Technology "Synthesis of Polymers of Precise Structures Using the Olefin Metathesis Reaction" · Professor Bruce Hamaker, Director Whistler Center for Carbohydrate Research, Purdue University "Application of Light Scattering Analysis to Changes in Food Carbohydrate Structures" · Professor Anton Middelberg, Director Centre for Biomolecular Engineering, University of Queensland " High-Resolution Quantitative Analysis of Compositionally Homogeneous Biomolecular Assemblies That Encode Quaternary Complexity" · Dr. Anil Patri, Deputy Director Nanotechnology Characterization Laboratory, National Cancer Institute at Frederick "Light Scattering Application in Cancer Nanotechnology" · Professor Andreas Plü ckthun, Biochemisches Institut, University of Zü rich "Light Scattering as an Essential Tool in Protein Engineering" · Dr. Reb Russell, Associate Director Protein Therapuetics Development , Bristol-Myers Squibb Co. "The Use of Light Scattering for Protein Therapeutics' Characterization and Process Development" 欲了解详情请登录: www.wyatt.com www.wyatt.com.cn
  • 清华大学吴国祯教授:追忆四十年的“光散射”
    我应是1987年参加光散射会议的,记得那一次是在昆明举行。当时,我在科学院化学所,我并没有实际到会,是我的研究生去参加的。学生回来后和我说,科学院物理所的张鹏翔老师在会上介绍了我,说我是从美国回国的,并提名我做专业委员会的副主任(1987-2001)。光散射专业委员会(包括会议)早期的运作,会议的组织,张鹏翔老师的付出最多,贡献也大。这些年来,很可惜,张老师生病了,有多年没能参加光散射会议。北大的张树霖老师也对光散射专业委员会付出过很多精力,记得《光散射学报》的封面刊名,就是张老师去请在台湾的吴大猷先生题写的。为着《光散射学报》能入核心期刊,张树霖老师付出了很大的努力,终于成功。此外,2000年时,国际拉曼光谱会议(ICORS)能在北京举行,张老师的努力是最主要的因素。张老师待人细致,当时科研的经费很少,他便费心去争取经费以让资深的老师,包括退休的,也尽可能来参加两年一次的光散射会议。在那期间的90年代, 我也曾任了几届《光散射学报》的主编(1995-2001)。同时,搭档的是四川大学的杨经国老师。非常令人吃惊的是在2007年,就听说他突然去世了。1993年,我离开台湾多年后,第一次返台。在台期间,见到一位在台湾亚洲化学公司做顾问的同学,这位同学热心引荐我去见该公司的董事长衣复恩。衣复恩先生曾服役台湾的空军,还是多年给蒋开座机的。那时,台湾退下来的高层军方人士都会去大公司任职,衣先生也不例外。衣先生人很豪爽,见我从北京来的,就说他有什么可以帮助的。大家知道90年代,大陆的经济情况比台湾还差很多。我就随口说,请衣先生的基金会能给《光散射学报》赞助经费。衣先生当场答应每年给2万元人民币。我回北京后,他的秘书也确实汇了2万元给《光散射学报》。这个事情,虽然以后因两岸关系的变动,而没有持续,但回忆起来,还是很感谢台湾的同学和衣先生。 我应是国内早期关注拉曼旋光的。80-90年代,国外也开始了这个领域的工作有几年了,如英国的Barron, Buckingham和美国的Nafie 教授。那时,我也曾想到傅里叶拉曼的工作。国内,那时的支持条件很拮据,探索性的工作,包括实验和仪器的开发,需要持久的坚持,这在当时是很难做到的,这是客观条件的限制。现在回想起来,我也把问题想的简单了,对困难的估计不足。固然,这些实验的工作没能坚持下去是有些可惜(也就在这段时期,我开始接触用非线性/混沌的角度来研究分子高激发振动态的领域),但凡事,付出了,总不会白流,会有收获的。这段时间的积累,也为我在2010年后的拉曼旋光工作奠定了基础。80年代,国外兴表面增强拉曼的工作。那时,国门开放不久,大家也开始做此领域的工作。表面增强拉曼的工作启发了我对系统研究拉曼峰强问题的关注。以后我为此提出了一个普适性的研究方法。这个方法在2006年让我们了解了隐藏在拉曼峰强中的拉曼虚态的电子激发的信息,并且在2011年以后的这几年,经过从90年代以来,近10多年的延宕后,在和王培杰、沈红霞老师的合作下,让我又重新开启了拉曼旋光的工作。我很高兴,这些研究的成果,均已总结成书,由科学出版社和World Scientific 出版。 “光散射”顾名思义,重在实验的手段,而工作的对象则可以是原子,分子,固体,等等。 目前的“光散射”手段主要集中在拉曼,还有Brillouin散射 。国外的光谱研究,包括会议的名称,经常把“光谱”和“分子结构”摆在一起,这样就更明确了研究的对象。强调这样的内容,是有助于谱学界的兼容物理和化学的领域,以及二者的相互促进和提升。而在我国,这似乎成了两张“皮”,搞物理的“光散射”和搞化学/分析的“分子光谱”。做物理的“光散射”多了解化学,有助于扩大视野,而做“分子光谱”的多些物理的概念,则有助于提高研究的层次,这是显然的。这样的扩大当有助于丰富“光散射”领域的内涵。 我在美国念研究生学业时,系的门口有张大牌子,牌子的最底下一行罗列着系里的老师们,往上的第二层罗列着这些老师们的博士指导老师,再上的一层罗列着这些博士指导老师们的老师。这样层层而上,最后就上溯到英国的牛顿或者德国的莱布尼兹等人。这张牌子予人印象深刻,一是表示不忘传统,一代一代人的接力;二是表示科学的发展,强调学生的发展总要不同于老师的。现在的环境,要求人们多出文章,多引用因子。这背后隐藏着“众人围火,相互取暖”,而缺少创新,持续发展的倾向。我们更应该鼓励年轻的学者,背离老师,开创新方向的作为。最后,引人担心的是,SCI,引用因子的标准,几乎摧毁了如“光散射学报”这类的国内期刊。科学无国界,但现实的世界告诉我们,科学必须在中国生根,因此也需要深耕于中国土壤中的期刊。我们寄望,即便再困难,从长远的角度看,也要维护这个学报的生存和发展。值此光散射专业委员会和会议成立40周年之际,写上这几句,有回忆过去的事情,有顾往过去的经历,也有算是对未来的建言,谨供同行们参考,指正。 (作者:清华大学物理系 吴国祯教授,2021年11月5日)
  • 高分子表征技术专题——同步辐射硬X射线散射表征高分子材料:原位装置的研制和应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!同步辐射硬X射线散射表征高分子材料:原位装置的研制和应用Characterization of Polymer Materials by Synchrotron Radiation Hard X-ray Scattering Technology: The Development and Application ofin situInstruments作者:赵景云,昱万程,陈威,陈鑫,盛俊芳,李良彬作者机构:中国科学技术大学国家同步辐射实验室 安徽省先进功能高分子薄膜工程实验室 中国科学院软物质化学 重点实验室,合肥,230026 西南科技大学核废料处理与环境安全国家协同创新中心,绵阳,621010作者简介:昱万程,男,1990年生. 2010年本科毕业于天津工业大学轻化工程专业,2015年博士毕业于中国科学技术大学高分子科学与工程系. 2015~2017年和2017~2020年分别在中国科学技术大学高分子科学与工程系,北京航空航天大学物理系从事博士后研究. 2020年9月至今,任中国科学技术大学国家同步辐射实验室特任副研究员. 主要从事利用同步辐射X射线散射技术结合原位装置在线研究高分子材料加工过程中的多尺度结构演变,同步辐射X射线散射数据高通量处理方法的开发和应用.李良彬,男,1972年生. 1994年本科毕业于四川师范大学近代物理专业,2000年博士毕业于四川大学高分子材料科学与工程系. 2000~2004年在荷兰国家原子分子物理研究所和Delft科技大学从事博士后研究,2004~2006年在荷兰联合利华食品与健康研究所担任研究员. 2006年至今,任中国科学技术大学国家同步辐射实验室研究员,兼任化学与材料科学学院高分子科学与工程系教授、博士生导师. 2013年获国家杰出青年基金资助. 担任《Macromolecules》副主编,《Polymer Crystallization》《Chinese Journal of Polymer Science》《Journal of Polymer Science》和《高分子材料科学与工程》编委. 主要从事同步辐射时间空间能量分辨技术、原位研究方法和高分子材料加工-结构-性能关系方面的研究.摘要同步辐射硬X射线散射技术是表征高分子材料晶体结构和其他有序结构的有力手段. 高时空分辨的现代同步辐射光源具备强大的实时、原位、动态和无损表征能力,在高分子材料加工和服役过程中远离平衡态的多尺度结构演变研究方面有着巨大优势. 为了充分发挥这一优势,合理设计同步辐射原位研究装置,实现原位实验过程中的样品环境控制十分关键. 本文通过结合具体的研究案例,首先介绍同步辐射原位实验的设计、原位研究装置的研制、操作技巧和数据处理等整个在线实验流程,帮助读者建立对同步辐射原位实验的基本认识. 最后,选择了若干具有代表性的高分子材料体系和样品环境,简要概述同步辐射硬X射线散射技术在表征复杂加工外场作用下高分子材料多尺度结构演变方面的应用,帮助读者加深对同步辐射原位研究装置及相关实验过程的理解,以期引发读者的思考,积极拓展同步辐射硬X射线散射技术在高分子材料表征中的应用.AbstractThe synchrotron radiation hard X-ray scattering technology is a powerful tool to characterize the crystalline and other ordered structures of polymer materials. For the high temporal and spatial resolutions, modern synchrotron radiation light sources own the powerful capability of real-time,in situ, dynamic and non-destructive characterization. Thus, it gives the synchrotron radiation hard X-ray scattering technology a huge advantage for the study of structural evolutions far away from the equilibrium during the processing and service of polymer materials. To give full play to this advantage, the reasonable design ofin situ instruments and the control of sample environments during the in situ synchrotron radiation experiments are critical. In this review, we first introduce the whole procedures of in situ experiments through a specific research case, including the design of in situ synchrotron radiation experiments, the development of in situ instruments, operation skills and data processing. We hope that the detailed introduction can help the audiences establish a fundamental cognition of the in situ synchrotron radiation experiments.Finally, we select several representative polymer material systems and the corresponding sample environments, and briefly overview the applications of the synchrotron radiation hard X-ray scattering technology in studying the multi-scale structural evolutions of these polymers under complex processing fields. We believe that these applications would inspire the audiences to think and deepen their understanding on the synchrotron radiation in situ experiments by using in situ instruments. Undoubtedly, it is beneficial to further expand the applications of the synchrotron radiation hard X-ray scattering technology on the characterization of polymer materials. 关键词同步辐射硬X射线散射技术  同步辐射原位研究装置  高分子材料加工  多尺度结构演变KeywordsSynchrotron radiation hard X-ray scattering technology  In situ instruments  Processing of polymer materials  Multi-scale structural evolutions 同步辐射是带电粒子以接近光速的速度在沿弧形轨道的磁场中运动时释放的电磁辐射. 对比普通X射线光源,同步辐射X射线光源亮度更高、光谱连续、具有更好的偏振性和准直性,并且可精确计算. 至今,我国经历了三代同步辐射大科学装置的建设、研究和发展,从第一代北京同步辐射装置、第二代合肥同步辐射装置到较为先进的第三代上海同步辐射光源[1]. 目前,我国正在积极建设和规划第四代先进光源,如北京高能同步辐射光源和合肥先进光源[2]. 同步辐射光源是前沿基础科学、工程技术和材料等领域所需的重要研究手段,是国际科学研究竞争的关键资源.同步辐射硬X射线散射技术在高分子结构表征中的应用非常广泛,例如广角X射线散射(WAXS)和小角X射线散射(SAXS)可表征高分子材料在亚纳米至百纳米尺度上的结构信息[3]. 目前,上海光源即将建成我国第一条超小角X射线散射(USAXS)线站,可进一步实现微米尺度的结构探测. 在此基础上与毫秒级分辨的超快探测器联用可以实现高时间分辨. 依托时间分辨的同步辐射WAXS/SAXS/USAXS研究平台,我们将能够同时获取高分子材料在0.1~1000 nm尺度内的结构信息,可以满足半晶高分子材料加工成型过程中多尺度结构快速演化、嵌段共聚物微相分离以及高分子复合材料研究等方面的表征需求.高分子材料制品的服役性能强烈依赖于加工工艺. 即使是相同的高分子原材料,通过不同的加工工艺,所获得的产品性能可能是完全迥异的. 例如:聚乙烯通过吹塑成型可加工成柔韧的包装膜,通过挤出成型则可制成刚韧适中的排水管道,还可通过纺丝加工成超强纤维. 高分子材料的加工参数主要包括加工温度、升降温速率、剪切和拉伸等加工外场的应变速率、应变和压强等. 因此,温度场、流动场等复杂外场、多加工步骤和参数相互耦合是高分子材料加工过程的主要特点[4,5]. 研制与多尺度表征技术联用的在线研究装备是表征高分子材料在加工过程中发生多尺度结构快速演化的重要实验手段. 高分子材料加工与服役在线研究装备类型多样,有小型的剪切和拉伸流变仪,也有模拟实际工业生产的大型原位装备,如原位双向拉伸装置和原位挤出吹塑成膜装置等. 此外,通过发展和集成与同步辐射联用的高分子材料性能表征技术,如用于光学膜的光学双折射检测系统,可建立高分子材料加工-结构-服役性能的高通量表征平台,大幅提高在多维加工参数空间中搜索最优参数的能力,以期为实际的生产加工提供理论指导.为帮助读者建立对同步辐射在线实验的基本认识,本文将以聚二甲基硅氧烷(PDMS)原位低温拉伸为具体研究实例,详细介绍同步辐射在线装置研制、实验设计和数据处理等相关知识;在此基础上,我们将简要概述本课题组多年来利用自主研制的同步辐射原位在线装置及高分子材料加工过程多尺度结构演变研究中的代表性成果. 以此引发读者的思考和共鸣,进一步扩展同步辐射硬X射线散射技术在高分子材料表征中的应用,取得更多更好的创新研究成果.1同步辐射在线实验研究方法同步辐射在线实验是指利用可与同步辐射光源联用的原位装置,研究复杂外场下的高分子合成或者加工过程中的化学或者物理问题. 在开展同步辐射在线实验前,需根据所要研究的具体科学问题,明确样品控制环境. 在充分考虑同步辐射光束线站的空间限制后,购买或研制原位装置. 样品制备完成后,利用原位装置进行样品的离线预实验. 完成以上准备工作后,在预先申请的机时时间段内,携带样品、原位装置和其他配套设备至同步辐射光束线站进行在线实验. 实验过程中需严格按照线站的规定步骤操作,最后保存好实验数据. 我们课题组长期致力于高分子薄膜加工物理的研究和相关原位研究装置的研制,并取得了系列研究成果. 下面我们以典型的硅橡胶——聚二甲基硅氧烷(polydimethyl-siloxane, PDMS)的同步辐射原位低温拉伸实验为例,详细介绍同步辐射在线实验的具体流程和操作.硅橡胶作为一种可以在低温保持高强度和韧性的弹性体,是高新技术、航天航空和武器装备等领域不可或缺的关键材料. 与天然橡胶等常规橡胶相比,PDMS具有极低的玻璃化转变温度(Tg≈-110 ℃)和结晶温度(Tc≈-65 ℃)[6]. 在拉伸和压缩等服役工况条件下,PDMS发生应变诱导结晶(stain-induced crystallization, SIC),因此其服役温度区间及性能主要受SIC而非玻璃化转变控制. 显然,结晶温度Tc的降低将缩小橡胶态的温度窗口. 已有研究表明,PDMS的应变诱导结晶行为非常复杂,在Tc以上至近Tg的范围内,存在多晶型结构并发生不同晶型间的固-固相转变行为. 在拉伸过程中,PDMS出现了α' ,α,β' 和β 4种晶型 [7],对应的WAXS二维图和方位角一维曲线积分分别如图1(a)和1(b)所示. PDMS复杂多晶型晶体结构直接影响材料的物理性质和宏观力学行为. 只有充分了解PDMS的晶体结构,掌握晶型间的转变规律,才能深入认识和理解材料的性能,实现根据服役条件和需求对材料进行改进和设计的目标. 然而,由于在线低温拉伸等研究条件的限制,PDMS应变诱导结晶行为和晶型间的相互转变的相关研究仍较少,并缺乏基础数据和定量模型. 其中,尚未完全解决的问题主要有以下2个方面:(1) PDMS可形成多种晶型,但所有晶型的晶体结构尚未完全确定;(2) 拉伸可诱导不同晶型发生固-固相转变,但目前对转变路径和机理还缺乏认识. 高时空分辨的同步辐射硬X射线散射技术为解决上述科学问题提供了可能. 我们选择以较低应变速率在低温下拉伸PDMS,实时跟踪拉伸过程中的晶体结构演化和固-固相转变. 在计算实验所需的时间分辨率后,我们选择上海光源(SSRF)BL16B1(小角X射线散射光束线站)进行同步辐射在线实验. BL16B1的技术参数和指标符合软物质材料表征需求,其能量范围为5~20 keV,光子通量达到1011 phs/s @10 keV,时间分辨率达到100 ms,X射线波长 λ=0.124 nm,可探测的空间尺度范围为1~240 nm.Fig. 1(a) The 2D WAXS patterns of polymorphous PDMS (b) The 1D azimuthal intensity curves with the azimuthal angle (ψ) ranging from 0° to 180° of diffraction peaks at 2θ=10.42° (Reprinted with permission from Ref.‍[7] Copyright (2020) American Chemical Society).在明确所要解决的科学问题后,需要解决样品环境的控制问题,即能与同步辐射硬X射线联用的低温原位拉伸装置. 通过调研,我们发现市面上早已有了商业化的低温拉伸设备,如Linkam公司配置液氮制冷系统的拉伸热台TST350以及Instron 3366型万能拉伸机. 然而,这些商业化设备都存在明显的不足,并不能满足我们的实验需求. 例如:TST350虽可实现与同步辐射联用,然而为了使得温度控制均匀并提高升降温速率,其样品空间很小,所能达到的应变空间十分有限,因此很难将具有较高断裂伸长率的橡胶类样品拉伸至大应变乃至断裂;此外,TST350采用按压式夹具,在拉伸过程中存在严重的打滑现象,即样品从夹具处滑脱. Instron 3366型万能拉伸机仅仅可以实现低温拉伸,并不能与同步辐射联用. 因此,我们转而自行研制与同步辐射硬X射线联用的低温原位拉伸装置. 在研制过程中,需要解决的主要难点问题有:(1) 单轴拉伸至断裂,即大应变的实现;(2) 低温环境的实现(室温至-110 ℃);(3) 样品的打滑现象;(4) 考虑上海光源光束线站的空间限制,在尺寸上实现与同步辐射硬X射线的联用. 我们受商业化流变仪(sentmanat extensional rheometer, SER)的启发,在研制时通过伺服电机驱动2个对向旋转的辊夹具对样品施加拉伸(如图2(a)). 如此,样品能以卷绕的方式无限拉长,可以在不增大腔体体积的前提下实现大应变,同时保证样品腔内部温度均一可控. 通过使用安川伺服电机,并配置减速机、运动控制器和MPE720控制系统,装置能够实现较宽的应变速率范围(0.0025~30 s-1). 低温环境的实现参考低温热台和示差扫描量热仪等仪器常用的降温模块,采用液氮降温的方法,使用自增压液氮罐将液氮注入低温腔体. 考虑到PDMS样品不能直接与液氮接触,需要在样品腔外部设计液氮流道. 样品腔采用导热性较好的不锈钢304,流道和样品腔采用一体式加工设计,避免焊接可能带来的缝隙. 我们利用有限元方法模拟了样品腔内温度,结果表明当环境温度为室温时,样品腔内部温度最低能够达到-150 ℃(图2(c)),可以较好地满足实验环境温度要求. 通过将样品腔内抽真空,外部采用吹氮气的方式,可以有效解决窗口结霜的问题,从而避免窗口结霜对X射线散射实验产生不利影响[8,9]. 根据锥形散射计算X射线窗口尺寸,并采用聚酰亚胺薄膜(杜邦公司Kapton系列薄膜)作为窗口材料. 为解决上海光源BL16B1线站的空间限制问题,低温原位拉伸装置的整体设计秉持小型化原则,设计效果图如图2(b)所示. 最终研制的装置实物如图2(d)所示[10].Fig. 2Schematic diagram of uniaxial stretching (a), the design of low-temperature stretching device (b), finite element simulation of temperature distribution in cryogenic chamber (c), physical image of low-temperature uniaxial stretching device combined with synchrotron radiation (d).结合本课题组多年的研究和实践经验,我们想要强调的是,在真正开展同步辐射在线实验前,离线预实验非常重要. 一方面,可以对力学曲线、装置升降温速率、保温时间等进行重复性验证,将在线实验的每个步骤都离线模拟重复,确保在有限的机时内高效执行实验计划;另一方面,在同步辐射光束线站的装置安装和校准需要丰富的操作经验,通过离线预实验,可以充分掌握装置的操作细节和常见问题的解决方法,如此方能在突发情况出现时从容应对. 此外,在进行在线实验时,需严格遵守同步辐射光束线站的管理规定,保障人身安全.同步辐射硬X射线原位实验通常在空气、氮气、溶液等环境中进行,获得的原始WAXS/SAXS数据包含空气等背底的散射. 因此,在原位实验的过程中,除了获得不同实验条件下的样品散射信号外,还需单独获得相应实验条件下的空气等背底散射信号,然后在后续的数据处理过程中扣除这些背底散射. 扣除背底散射通常是在WAXS/SAXS一维积分曲线上进行的,扣除操作恰当与否的判读标准是扣除背底后一维积分曲线的两端基线应保持水平. 同时,也要考虑原位研究装置对散射信号的影响. 为了进行数据的对比分析,通常需要对所获得的数据进行归一化处理.图1(b)为归一化处理后PDMS不同晶型的方位角一维积分曲线. 从图中可以明显看出PDMS 4种不同晶型所对应特征峰的区别:ψα=90°,ψα' =80/100°,ψβ=60°/120°,ψβ' =42°/72°和109°/138°.heng Lirong(郑黎荣).Chinese J Phys(高压物理学报),2020,34(5):3-15.doi:10.11858/gywlxb.202005543Xu Lu(许璐),Bai Liangui(柏莲桂),Yan Tingzi(颜廷姿),Wang Yuzhu(王玉柱),Wang Jie(王劼),Li Liangbin(李良彬).Polymer Bulletin(高分子通报),2010, (10):1-26.doi:10.1021/la904337z4Cui K,Ma Z,Tian N,Su F,Liu D,Li L.Chem Rev,2018,118(4):1840-1886.doi:10.1021/acs.chemrev.7b005005Chen W,Liu D,Li L.Polymer Crystallization,2019,2(2):10043.doi:
  • 2013光散射大学培训课程通知
    2013年光散射大学培训课程(LSU) 培训内容及安排 时间2014年 6 月 24~ 27 日 期培 训 内 容 新产品: Zeta 电位仪 06月24日报 到,13:00 ~ 17:00 06月25日1. 静态光散射技术; 2. 光散射基本理论与Zimm Plot;3. dn/dc与Optilab T-rEX/RI/UV 06月26日1. 光散射色谱联用技术(SEC-MALS);2. SEC-MALS实践;3. 数据处理与分析 06月27日1. 光散射色谱联用技术 -- 高级应用;2. 动态光散射技术与应用;3. 数据处理与分析 最新应用信息 ● Calypso Succeeds in ABRF-MIRG Study● Automated Electrophoretic Mobility Measurements of High Salt Solutions 地点:天津 培训费用3000.00元/人;(含培训费及资料;工作餐(中晚餐),3晚住宿费);其他费用自理。 新技术:场流分离技术 Eclipse® AF4 & DUALTEC 报名截止日期2013年06月14日下午17:00(注:报名截止日期后将不再受理培训报名) 联系人及联系方式联系人:兰先生; Email:info@wyatt.com.cn电 话:010-82292806; 传 真:010-82290337 下载 :课程回执单 如您有意参加培训,敬请您于2013年06月14日17:00之前将传真至010-82290337或者发送至info@wyatt.com.cn,我们会根据回执单回复顺序安排培训,并电话与您取得联系。
  • 超越光散射技术界限,东曹在JASIS2019上发布多角度光散射检测器新品
    2019年9月4日-6日,日本最大规模的分析仪器展JASIS 2019在东京幕张国际展览中心盛大开幕。展会为期三天,吸引来自全球各地的万余名观众参观出席。东曹公司近年来瞄准全球生物制药行业,针对性地上市了多款新品,均在本次展会上展出。 东曹海外市场部的今泉惠子女士接受了仪器信息网的采访,向观众介绍了本次参展的新品及公司未来发展的重点领域等内容。 JASIS上的东曹展台 东曹海外市场部今泉惠子女士接受仪器信息网采访 仪器信息网:此次展会,东曹展出了哪些新品或重要产品?它们有哪些创新之处? 今泉惠子:这次展出了我司首台多角度光散射检测器LenS3。多角度光散射检测器与凝胶渗透色谱仪联用,可以用来测量合成聚合物、蛋白质、多糖等生物大分子的绝对分子量和分子尺寸。东曹公司开发的多角度光散射检测器LenS3,采用了独有的光学专利光路设计与计算方法,解决了其他同类产品无法检测低分子物质的绝对分子量和回转半径这一难点。举例来说,LenS3可以精确测量分子量500的聚苯乙烯的绝对分子量、10nm以下聚苯乙烯的回转半径。并且,该款仪器具有超高的灵敏度,不仅可以检测纳克级别的物质,也非常适用于生物样品这样的微量检测。 我司在去年上市了第八代高速凝胶渗透色谱仪8420GPC,将8420GPC与LenS3联用,将给用户带来一种超越现有检测技术界限的革新的解决方案。并且,LenS3也可以用来检测像抗体药物、疫苗这类的生物制品。我司深信,我们能为客户提供高品质的分子量测试解决方案,助力客户在产品开发和品质管理方面的工作。 这款多角度光散射检测器现已在美国上市,受到了行业专业用户的广泛关注。预计明年在日本、中国上市,敬请期待。 仪器信息网:请介绍2019年截至目前,东曹公司较为重大的举措及取得的代表性成绩。 今泉惠子:截至2019年3月的财年结束,东曹集团全年净销售额达到8,615亿日元(合82亿美元)。虽然生命科学事业部的业绩没有单独公式,但全年的销售也保持了稳健增长。尤其是去年上市的8420GPC、与生物制药相关的层析填料、液相色谱柱产品,业绩表现都非常好。今年,我司面向生物制药领域上市了两款新产品。其中之一是可以基于抗体药物的ADCC活性来分离抗体的新型亲和色谱柱TSKgel FcR-ⅢA-NPR。此款色谱柱上市后在全球范围内大获好评。接下来我司将会继续通过举办技术研讨会等多种形式来向广大用户介绍这款产品。 仪器信息网:以东曹的观察,哪些地区、细分应用领域会出现新的市场机会?针对这些领域的用户,东曹相比于竞争对手的核心优势是什么? 今泉惠子:正如我去年接受仪器信息网采访时说的那样,亚洲,特别是中国地区是东曹最重要的市场,十多年前东曹就在上海设立了负责产品销售和技术服务的子公司,拥有专业的销售和技术团队。除了对应仪器的安装调试、维修维护以外,还可以向客户提供委托分析、仪器培训等技术服务,受到中国用户的好评。 另外,中国生物科技正在快速发展,已经涌现出众多具有先进技术的生物制药相关企业。我们不仅向中国客户销售性能优良的产品,也非常重视对客户的售前和售后技术支持,推动并帮助客户开发和生产新产品。同时,我们在中国地区举办过多场技术研讨会、日本总部的技术专家也会出席这样的学习会,来更多地与中国客户进行交流,听取他们对产品以及应用开发方面的意见和建议。今后东曹仍将以满足中国客户的需求为目标,进一步完善我们的销售和技术服务工作。详细内容,请点击以下现场采访视频进行观看:https://www.instrument.com.cn/news/20190911/493127.shtml新型AFC色谱柱TSKgel FcR-ⅢA-NPR TOYOPEARL® 层析填料和Ca++Pure-HA羟基磷灰石填料
  • 低温蒸发光散射检测器的技术规格包括以下几个方面
    低温蒸发光散射检测器的技术规格包括以下几个方面低温蒸发光散射检测器(LowTemperatureEvaporativeLightScatteringDetector,LT-ELSD)是一种常用于液相色谱(LiquidChromatography,LC)分析中的检测器。其技术规格包括以下几个方面: 待测物范围:低温蒸发光散射检测器适用于各种化合物的检测,包括有机化合物、无机化合物和生物大分子等。 灵敏度:该检测器具有较高的灵敏度,在微量样品中也能够实现可靠的检测。通常以信噪比或最小可检出量来评估灵敏度。 动态范围:动态范围指在同一样品中可以线性地量化不同含量的待测物。宽动态范围使得该技术能够适应不同样品的分析需要。 检出限:指在给定条件下对目标化合物所能达到的低检测限制。这通常取决于仪器本身和分析方法设置。 准确性和重复性:准确性表示待测结果与真实值之间的接近程度;重复性则是指重复进行多次测试时结果之间的一致性。这些指标对于仪器的可靠性和分析结果的可信度至关重要。 温度控制范围:低温蒸发光散射检测器通过控制样品在某一特定温度下蒸发,从而实现检测。因此,该设备应具备能够精确控制和调节温度的功能,并且适用于不同类型待测物的分析需求。 数据采集速率:数据采集速率表示该检测器能够以多快的频率获取并记录结果。较高的数据采集速率有助于更好地观察和解释峰形及其变化。
  • 关于联合开展 KLCS-2201“动态光散射法颗粒粒度检测”比对实验的通知
    全国纳米技术标准化技术委员会纳标委字〔2022〕15 号关于联合开展 KLCS-2201“动态光散射法颗粒粒度检测”比对实验的通知各有关单位:经国家标准化管理委员会批准,国家标准制定项目《纳米技术 动态光散射法粒度分析仪技术要求》于 2021 年正式立项,项目批准号 20212956-T-491。为了对标准制定过程中的相关技术参数进行验证,全国纳米技术标准化技术委员会秘书处与中国颗粒学会颗粒测试专业委员会、北京粉体技术协会联合组织开展 “动态光散射法颗粒粒度检测”比对实验,计划编号为“KLCS-2201”,现将具体要求通知如下:一、检测项目本次比对要求使用动态光散射法粒度分析仪测定颗粒的粒度。二、参加单位以能提供颗粒的粒度分析检测项目的单位为主,欢迎各实验室积极参加。三、组织实施本次比对由全国纳米技术标准化技术委员会、中国颗粒学会颗粒测试专委会和北京粉体技术协会联合组织,国家标准项目起草组负责比对实验的具体运作,包括编制作业指导书,制备、分发样品,回收和分析结果,起草结果报告等。四、时间安排2022 年 4 月正式启动;2022 年 5 月分发样品及作业指导书;2022 年 6 月结果回收分析;2022 年 8 月前完成实验结果报告。各参加单位应正确认识比对的目的和意义,客观真实反映检验能力和水平,确保计划取得实效。五、联系信息秘书处联系人:高洁,010-82545672,通信地址:北京市海淀区中关村北一条 11 号国家纳米科学中心;项目组联系人:朱晓阳,电话:13601393948,通信地址:北京市海淀区中关村北一条 11 号国家纳米科学中心;刘俊杰,电话:13661221655,通信地址:北京市朝阳区北三环东路 18 号中国计量科学研究院;高原,电话:13910812410,通信地址:海淀区西三环北路 27 号北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)。全国纳米技术标准化技术委员会中国颗粒学会颗粒测试专业委员会北京粉体技术协会二O二二年四月十八日
  • 2012年光散射大学培训课程通知
    尊敬的用户: 您好!非常感谢您一直以来对美国怀雅特技术公司的支持,为了协助您更好的使用仪器开展工作,诚邀您参加2012年07月23日 -- 26日举办的光散射大学培训课程(LSU),现将具体安排通知如下: 一、培训时间 2012年7月23日 ~ 2012年07月26日,共计4天。 二、培训日程安排 日 期 培 训 内 容 07月23日 报 到 07月24日 1. 静态光散射技术; 2. 光散射基本理论与Zimm Plot; 3. dn/dc与Optilab T-rEX/RI/UV 7月25日 1. 光散射色谱联用技术(SEC-MALS); 2. SEC-MALS实践; 3. 数据处理与分析 7月26日 1. 光散射色谱联用技术 -- 高级应用; 2. 动态光散射技术与应用; 3. 数据处理与分析 三、培训地点 北京 四、培训费用 3000.00元/人;(含培训费及资料;工作餐(中晚餐),3晚住宿费);其他费用自理。 五、报名截止日期 2012年06月06日下午17:00(注:报名截止日期后将不再受理培训报名); 六、联系人及联系方式 联系人:兰先生; Email:lanjing@wyatt.com.cn ; 电 话:010-82292806; 传 真:010-8229033 如您有意参加培训,敬请您于2012年06月06日17:00之前将回执单(LSU 下载)传真至010-82290337或者发送至lanjing@wyatt.com.cn,我们会根据回执单回复顺序安排培训,并电话与您取得联系。 其它培训:2012 羟乙基淀粉(HES)专题培训课程(最高60%折扣优惠)
  • 光散射的盛宴——第十九届全国光散射学术会议圆满落幕
    p    strong 仪器信息网讯 /strong 2017年12月2-4日,第十九届全国光散射学术会议(CNCLS19)在广州中山大学召开。CNCLS19是由中国物理学会光散射专业委员会主办、中山大学承办、吉林大学协办。 /p p   2017年12月4日,CNCLS19进入了最后一天;4日下午,CNCLS19首先进行的大会报告环节。 /p p style=" text-align: center " img title=" Dongho Kim.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/4ac013ad-5ded-4dab-a86a-da3a9761176f.jpg" / /p p style=" text-align: center " Prof. Dongho Kim,Yonsei University, Korea /p p style=" text-align: center " 报告题目:Characterization of Exciton Dynamics in Functional π-Electronic Systems /p p style=" text-align: center " img title=" 王雪华2.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/912d8741-9938-42a7-bbb0-2df0d5183064.jpg" / /p p style=" text-align: center " 王雪华教授,中山大学 /p p style=" text-align: center " 报告题目:量子光学极限下表面等离激元与物质强相互作用的调控 /p p style=" text-align: center " img title=" Wei Huang.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/9b7110af-0249-4c26-8f86-df61eb6d0b59.jpg" / /p p style=" text-align: center " Prof. Wei Huang,University of Oxford, UK /p p style=" text-align: center " 报告题目:Application of Raman Micro-spectroscopy to Single Cell Biology /p p   三个精彩的大会报告之后,CNCLS19也进入了闭幕时刻。 /p p style=" text-align: center " img title=" 闭幕式.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/450dee16-4ac1-4629-99ca-0cfb93148266.jpg" / /p p style=" text-align: center " CNCLS19闭幕式 /p p style=" text-align: center " img title=" 青年优秀论文奖.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/68f02530-e7cd-4c02-9f07-0ab010d5ae5b.jpg" / /p p style=" text-align: center " 青年优秀论文奖 /p p style=" text-align: center " img title=" 优秀墙报奖.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/80e0417e-10b9-4e48-85b6-af92172ec189.jpg" / /p p style=" text-align: center " img title=" 优秀墙报奖2.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/0495b876-5fc4-4870-a372-cecf5e5e409e.jpg" / /p p style=" text-align: center " 优秀墙报奖 /p p   本次会议是一届成功的会议!李灿院士在致闭幕词的时候如此总结到。首先是因为此次会议展现出了我国光散射研究所呈现的一派繁荣景象。过去有段时间我国拉曼光谱研究90%左右的工作都集中于某种增强领域,而从此次会议的各种报告、论文可以看出,这一现象已经得到了很大改善,各方面的研究工作都有了展现,说明我国光散射领域走上了健康发展的道路之上。其次,除了基础研究之外,光散射各项“落地”的研究工作也渐渐丰富起来,此次会议上,将光散射技术用于生物医药、食品安全、环境等领域的研究工作所占比例非常之大。再者,在此次会议上出现了一些我国自主研发的拉曼光谱仪器以及关键部件,这方面的研究工作是我国拉曼光谱技术长期发展的基石。而李灿院士还高兴地说到,我国光散射研究非常之“敏感”,其研究工作紧跟科学技术大发展前沿,如二维、光电、新能源等材料的拉曼表征。而本次大会是一届开放的、国际化的学术会议,国外学者的报告数量多、质量也较高。 /p p   对于CNCLS19的主办方陈建教授及其同事和学生们的工作,李灿院士也给与高度评价,从会前的专家讲座、以及开幕式的惊艳,乃至到会议LOGO等细节,无不体现了主办方的“用心”。 /p p style=" text-align: center " img title=" Wolfgang Kiefer.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/299db003-bfd8-4d85-a135-09f936270039.jpg" / /p p style=" text-align: center " 国际著名拉曼光谱学专家德国的Wolfgang Kiefer教授致辞   /p p style=" text-align: center " img title=" 李灿2.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/6da27ff9-c35c-4c5c-8b30-f1793f92c036.jpg" / /p p style=" text-align: center " 李灿院士致辞 /p p style=" text-align: center " img title=" 张树霖.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/b245bf86-f83c-4805-b0d2-b03e8d22d6e8.jpg" / /p p style=" text-align: center " 张树霖教授致辞 /p p style=" text-align: center " img title=" 陈建.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/224b5154-7584-4417-85fc-cd16132f2326.jpg" / /p p style=" text-align: center " 中山大学陈建教授致辞 /p p style=" text-align: center " img title=" 组委会.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/dac57960-5098-4b55-8a5a-d13663048b94.jpg" / /p p style=" text-align: center " 组委会部分成员 /p p   陈建教授致辞对参会代表表示感谢,对会务组的辛勤付出表示感谢! /p p style=" text-align: center " img title=" 姚建林.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/0166d45a-862f-4634-9e3d-6a88794f81b9.jpg" / /p p style=" text-align: center " 苏州大学姚建林教授介绍下届大会的具体情况 /p p style=" text-align: center " img title=" 姚建林与陈建.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/310f18d1-d22f-48f6-8ff8-34ba0fb1fcf6.jpg" / /p p style=" text-align: center " 姚建林教授与陈建教授交接 /p p style=" text-align: center " img title=" 姚建林与任斌.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/754d9454-7f86-40a2-97f7-b8db796e1aa0.jpg" / /p p style=" text-align: center " 姚建林教授与厦门大学任斌教授 /p p   第二十届全国光散射学术会议(CNCLS20)将于2019年由苏州大学和厦门大学联合举办。 /p p style=" text-align: center " img title=" 谭平恒2.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/d087f057-5321-4db1-8993-4d943164a9b4.jpg" / /p p style=" text-align: center " 中国科学院半导体研究所谭平恒教授做会议总结 /p p   至此,第十九届全国光散射学术会议(CNCLS19)成功结束。2019年让我们相约苏州再聚! /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   CNCLS19为期三天,注册参会人数450余人;共收到来自英国、德国、韩国、新加坡、港澳地区、国内90余家高校和科研院所的论文投稿300余篇,大会特邀报告6篇、分会邀请报告43篇、分会口头报告63篇、墙报160多篇;为了更好地交流,在大会报告环节之外,CNCLS19分为物理材料、表面增强拉曼、食品安全/生物医学/刑侦及其它等3个分会场进行邀请报告和口头报告,同时还专门设置了厂商技术交流报告分会场。 /span /p p & nbsp /p
  • 高稳定、高分辨、抗散射分光瞳激光差动共焦拉曼-布里渊图谱成像新方法
    研究背景癌变细胞和正常细胞在形态、化学性质和力学性质等方面有明显差异,肿瘤组织细胞化学和力学性能的检测可为细胞及人体组织病变过程提供多维信息。现有组织细胞形态、力学性能、化学性能的检测方法中,共焦拉曼光谱显微技术可对样品微区化学性能进行非接触、无标记探测,共焦布里渊光谱显微技术可对样品微区力学性能进行非接触、无损探测,将共焦拉曼光谱与布里渊光谱检测技术结合,来同时、同位检测组织甚至亚细胞结构的微区三维形貌、化学性能和机械力学性能,有望为组织细胞多维病变信息的检测提供新手段。创新研究现有共焦拉曼/布里渊光谱显微成像技术由于缺少高精度实时定焦能力,致使扫描过程中聚焦在样品上的光斑大小随着样品的高低起伏而变化,从而制约了共焦光谱显微系统理论空间分辨力的实现;其次,由于拉曼和布里渊散射光谱强度较弱,成像积分时间较长,共焦光谱显微系统极易受系统漂移的影响而导致离焦,进而影响空间分辨力和成像质量等;此外,在对生物组织切片样品进行成像时,垂直入射产生的荧光信号会降低样品拉曼光谱的信噪比,从而影响拉曼光谱和布里渊光谱探测的准确性,降低检测精度。鉴于此,在国家自然基金重点项目“机械形态性能激光分光瞳差动共焦布里渊—拉曼光谱测量原理与传感系统(51535002)”等项目支持下,北京理工大学赵维谦教授团队发明了图1所示的高稳定、高分辨、抗散射分光瞳激光差动共焦拉曼-布里渊(Divided-aperture Laser Differential Confocal Raman-Brillouin,DLDCRB)图谱成像新方法(授权中国发明专利ZL 201410086366.5和欧洲发明专利EP 3118608 B1),该方法将分光瞳激光差动共焦显微技术与拉曼光谱和布里渊光谱探测技术相结合,通过差动共焦测量技术进行纳米精度的样品定焦,来提高系统空间分辨力和稳定性;通过分光瞳斜向激发与探测技术进行反射光和层间散射光等干扰光的抑制,来提高系统的光谱探测信噪比;通过拉曼光谱与布里渊光谱的同源激光激发与高分辨分离探测,来实现微区几何形貌、拉曼光谱和布里渊光谱的高稳定、高分辨原位图谱成像。图1. DLDCRB光谱显微成像原理基于该方法研制了图2所示的具有高空间分辨力和三维成像聚焦跟踪能力的DLDCRB光谱显微镜,其轴向定焦分辨力达1nm、光谱成像横向分辨力达400nm、拉曼光谱分辨力达0.7cm-1、布里渊光谱探测分辨力达0.5GHz等。图2. DLDCRB光谱显微镜利用研制的DLDCRB光谱显微镜,对条形样品进行了清晰成像,结果如图3所示,验证了所提方法的抗漂移能力;对PMMA/SiO2双层样品进行了检测,结果如图4所示,验证了所提方法抑制离焦层散射光干扰的能力。图3. 传统共焦光谱系统与DLDCRB光谱显微镜结果对比(a)经典共焦光谱系统成像(模糊) (b) DLDCRB光谱系统成像(清晰)图4. 系统抗离焦噪声干扰机制 (a) 斜向激发与收集光路 (b) 压缩了散射体轴向尺寸利用研制的DLDCRB光谱显微镜,对胃癌组织和癌旁正常组织进行了拉曼-布里渊光谱成图实验分析,证实了之前有关癌组织中蛋白质物质发生变化以及组织之粘弹性变化导致浸润性增加的假设。图5给出了DLDCRB光谱显微镜对胃癌组织与癌旁正常组织的化学成像结果,浓度由拉曼光谱特征峰的强度来表征。胃癌组织与癌旁正常组织化学成像结果相比:胶原蛋白浓度低且分布离散;胃癌细胞的DNA物质浓度高且分布范围大;胃癌组织细胞基质内的蛋白质浓度低;胃癌组织的脂质在基质内浓度高,而正常组织的脂质分布相对均匀。图5.胃癌组织与癌旁正常组织化学成像结果图6给出了DLDCRB光谱显微镜对胃癌组织与癌旁正常组织的力学性能成像结果,布里渊光谱的频移表征物质的储能模量(弹性性能),布里渊光谱的半高宽表征物质的损耗模量(粘性性能)。胃癌组织与癌旁正常组织力学成像结果相比,胃癌细胞和细胞间质的弹性低于正常细胞和细胞间质,癌细胞细胞核的弹性高于正常细胞;胃癌细胞和细胞间质的粘性低于正常细胞和细胞间质,癌细胞细胞核的粘性高于正常细胞。图6. 胃癌组织与癌旁正常组织的力学性能对比图本研究提出了具有高稳定、高分辨、抗散射的分光瞳激光差动共焦拉曼-布里渊图谱成像方法,研制成功了相应的仪器,实现了样品三维形貌、力学性能和化学组分的多维信息检测,并在肿瘤组织表征分析中进行了应用验证,本检测方法可为癌变过程和癌症治疗等领域的研究提供一种新的手段。
  • 精彩瞬间∣光散射学术会议看点回顾
    2023年9月25日,第二十二届全国光散射学术会议在河南开封落下帷幕。此次会议由中国物理学会光散射专业委员会主办、河南大学承办、陕西师范大学协办。据介绍,本次会议共收到国内外80余家高校和科研院所的论文投稿近300篇,注册代表近500人。为期3天的会议共安排了6场大会特邀报告,59场分会邀请报告,57场口头报告,135篇墙报,并评选出了4位优秀青年论文奖,13位优秀墙报奖。更多阅读:《相聚八朝古都开封 第二十二届全国光散射学术会议拉开帷幕》大会报告及各分会场虽然会议落下了帷幕,但是光散射的精彩还在持续。回顾过去几天的会议内容、学术分享及沟通交流,不仅展现了当前光散射的研究热点、未来发展潜力,同时也为后续的合作打下了基础。从报告内容来说,此次会议主题涵盖了物理材料、SERS/TERS、生物医药等多方面的内容。值得一提的是,本次会议中很多专家分享了拉曼光谱技术在生物医药领域的最新研究进展,包括生化分析、疾病快检/诊断、药物分析、细胞拉曼光谱分析与成像等多个层面的内容,展示了拉曼光谱在该领域极具诱惑的发展前景。特别是,拉曼无创血糖检测吸引了大家的极大关注,也给了与会代表很多启发和期待;另外,SERS/TERS会场始终“满座”,该研究方向依然保持“火热”的发展态势,各位专家在 SERS、TERS最新技术和方法开发、机理研究、应用进展等多个方面的研究越来越深入。更多阅读:《前景可瞻 拉曼光谱在生物医药领域的应用“极具诱惑”》;《持续创新的SERS/TERS技术》在之前的报道中仪器信息网已经给大家展示了部分专家的精彩报告,其实,精彩远不止这些,各位与会代表也积极参与了报告的提问和讨论环节,就各自关心的学术问题展开探讨,碰撞火花。认真听讲积极提问学科的发展离不开仪器技术的进步,而仪器技术的发展也是在学科的推动下不断前行的。本次会议中,越来越多的老师开始注重仪器开发及产业化转化,不少老师也在本次会议上展示或者介绍了相关的成果。比如,中国科学院半导体研究所谭平恒研究员的课题组成功研制了显微共焦光谱测量模块,可以实现从拉曼光谱仪到布里渊光谱仪耦合,从光栅光谱仪到光纤光谱仪耦合等,在现场我们也看到该模块和HORIBA iHR320谱仪的耦合系统;中国科学院上海微系统与信息技术研究所陈昌研究员也介绍了其课题组开发的芯片级空间外差拉曼光谱仪。据悉,该产品核心部件轻于1克;针对当前缺少教学仪器的问题,嘉庚创新实验室(鹭翔嘉仪科技有限公司)此次也展出了最新的多功能光谱教学系统,可以实现拉曼光谱、吸收光谱、荧光光谱测量等多项教学功能。更多阅读:《从问题出发 拉曼光谱仪器成果凸显》不仅如此,从商业仪器层面而言,本次会议得到了20余家仪器企业的支持,他们在会议中纷纷展示或者介绍了相关的仪器或者部件。其中,HORIBA、雷尼绍、赛默飞、长光辰英、牛津仪器、天美仪拓(爱丁堡仪器)、光谱时代、鉴知技术等企业代表也在现场分享了最新的仪器技术和解决方案。我们发现,基于数十年的积累,老牌仪器企业在拉曼光谱仪器技术和应用层面不断“攀高”。对国产厂商而言,虽然与进口品牌相比还有不少需要追赶的地方,但是同时我们也看到了很多国产仪器厂商也在努力进行科研拉曼,以及相关模块或者部件的开发,从差异化方面寻找进一步的发展空间,给整个市场增加了更多的活力。很多老专家也纷纷感慨,要大力扶植国产拉曼光谱仪的发展,争取赶超世界一流。更多阅读:《20多家厂商齐聚开封 这些拉曼产品引人驻足》仪器演示河南大学莫育俊教授在开幕致辞中特别强调,跨学科合作对产业发展的推动起到至关重要的作用,要注重团队内部和团队之间的合作与交流。本次会议中,各位专家之间、专家与厂商之间,以及厂商与厂商之间都展现了良好的学术交流氛围,大家就仪器的开发、应用等多个层面展开了广泛的讨论。同时,为了传承和发展,各位前辈专家也对年轻从业人员,以及学生等进行了耐心、详细地指导。现场交流墙报环节光散射研究是一个复杂并具有挑战性的领域,光散射原创性的研究成果可以推动光学、物理学、材料学科等的发展,为相关领域的研究提供新的思路和方法,拓宽各学科的边界。光散射专业委员会秘书长陈建研究员在做会议总结的时候也提到,我国古代伟大的四大发明,其中有三项都是出现于宋代,而本次会议在开封——东京汴梁召开,也具有非常美好的寄托和愿景。就如同莫育俊教授在会议开幕致辞的时候呼吁的那样,大家要坚定信心开展原创性的研究,推动光散射领域的发展,带来更多的创新和突破!第二十二届全国光散射学术会议落幕,第五届拉曼光谱网络会议即将开启,报名链接:https://www.instrument.com.cn/webinar/meetings/icrs2023/
  • 小角X射线散射技术:研究纳米尺度微结构的重要手段
    本文由马尔文帕纳科医药行业应用专家陈丽供稿本文摘要本文将简单介绍研究纳米尺度微结构的重要手段:小角X射线衍射(Small Angle X-Ray Scattering, SAXS)技术原理及相关产品。X射线衍射与小角X射线散射 X射线是具备相应波长的电磁波或带有相应能量的光子束。X射线的波长和能量介于γ-射线和紫外线之间。其波长范围为0.01-10nm;对应的能量范围为0.125-125Kev。小角散射(Small Angle X-ray Scattering,SAXS):如果样本具有不同电子密度的周期性结构,X射线被不相干散射,散射 X 射线的角度就与入射 X 射线的角度相差很小(一般2θ≤ 5°),称为小角X射线散射效应。主要用于研究亚微米尺度的固态及液态样品结构。小角散射效益来自物质内部1~100nm量级范围内电子密度的起伏,通过对小角X射线散射图或散射曲线的计算和分析即可推导出微结构的形状、大小、分布及含量等信息。这些微结构可以是孔洞、粒子、缺陷、材料中的晶粒、非晶粒子结构等。广角散射(Wide Angle X-ray Scattering,WAXS):如果样本具有周期性结构(晶区),X射线被相干散射,入射光和散射光之间没有波长的改变,这个过程称为 广角X射线衍射。主要用于研究较晶体结构和非晶体结构。与小角散射相比,广角散射的散射角度较大,可以覆盖从几度到几十度的范围。通过检测广角散射信号,可以获得关于晶体晶格参数、晶胞体积、颗粒尺寸和颗粒形貌等信息。SAXS - WAXS表征Empyrean Nano版锐影Empyrean Nano版锐影多功能 X 射线散射系统基于Empyrean平台和Pre-FIX预校准概 念,为纳米材料研究/小角散射专家特殊定制的 高性能多功能散射研究平台操作简单,无需校准高性能散射研究平台,但不局限于散射(1D/2D SAXS/WAXS;USAXS;GI-SAXS;PDF;CT)多种配置可选多功能 X 射线散射系统Empyrean Nano版+PIXcel3D 基于铜靶应用Empyrean Nano版+GaliPIX3D 兼顾对分布函数(PDF)分析高分辨光管+聚焦透镜+ScatterX78+3D探测器2D WAXS, 最低2theta 0.1°, 最高±22°(PIXcel)或±30°(GaliPIX)变温毛细管样品架,温度范围5-70℃ Scatter X78 样品架能实现液体,固体,纤维等纳米材料分析,仪器自动校准光路,真空启动3分钟即可测试样品。
  • 帕纳科推出X射线小角散射附件及专机专用的XRF
    仪器信息网讯 2013年10月23日-26日,第十五届BCEIA举行。会议期间帕纳科展示了最新推出的ScatterX78 小角/广角附件及Epsilon 1能量色散型X射线荧光光谱仪。仪器信息网编辑特别采访了帕纳科中国区经理薛石雷,请他介绍了这两款新产品的最新特点。 帕纳科中国区经理薛石雷   X射线小角散射是研究纳米粒子的大小、形状及分布的重要工具。与激光粒度仪测试纳米粒度相比,X射线小角散射仪测定结果为一次颗粒的粒度分布,即使纳米颗粒不能很好的分散形成团聚,测试结果也不会受到影响。 ScatterX78小角/广角附件   薛石雷介绍说:&ldquo ScatterX78小角/广角附件虽然是一个附件,但是也可以当做一台仪器来看。它可以配置于Empyrean锐影多功能衍射仪系统上,完成过去一台专用的小角散射仪能够完成的所有工作内容,能够满足专业X射线小角散射研究人员的研究需求。该附件拥有0.08-78° 的连续角度范围,易于安装,不需要校准。&rdquo   &ldquo 从我们的观察来看,随着化工材料、食品科学以及新兴材料的研究,越来越多的材料科学研究人员利用X射线小角散射技术进行材料研究。在过去,如果要深入研究X射线小角散射信息,需要专门X射线小角散射仪来做,帕纳科以前也有这类仪器,做这方面研究的人员同时还得配备X射线衍射仪来研究晶体结构。而现在帕纳科推出ScatterX78 小角/广角附件,用户只要在原来的X射线衍射仪上配置该附件就可以满足研究要求,这样不仅节约经费、节省了仪器的占地面积。同时用户可以很好的借助X射线衍射仪这一平台,实现二维X射线小角散射,在使用的方便性方面将有很大优势。&rdquo Epsilon 1能量色散X射线荧光光谱仪   Epsilon 1是帕纳科最新推出能量色散X射线荧光光谱仪。据介绍,该仪器在全球发布还不到一个星期。   薛石雷介绍说:&ldquo 目前,能量色散X射线荧光光谱仪的发展颇受关注,其中一个比较重要的发展方向就是&ldquo 小型化、专机专用&rdquo 。Epsilon 1就是迎合这种发展趋势推出的仪器,它是一个系列,包括专用于油中硫、润滑油、制药、矿业、科研等不同行业的应用的仪器。它的特点是体积小、拥有内置的触屏计算机。另外,Epsilon 1在出厂前已经进行了预先校准,固化了无标定量软件,可以直接进行分析应用,操作人员只要按一个键就可以得到想要的分析结果,大大降低了对分析操作人员的专业要求。 帕纳科展位现场
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制