当前位置: 仪器信息网 > 行业主题 > >

清洁工具神器

仪器信息网清洁工具神器专题为您提供2024年最新清洁工具神器价格报价、厂家品牌的相关信息, 包括清洁工具神器参数、型号等,不管是国产,还是进口品牌的清洁工具神器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合清洁工具神器相关的耗材配件、试剂标物,还有清洁工具神器相关的最新资讯、资料,以及清洁工具神器相关的解决方案。

清洁工具神器相关的资讯

  • 全自动洗瓶机:为实验室的清洁工作带来便利
    随着科技的不断发展,实验室的设备和工具也在不断地更新换代。其中,全自动洗瓶机的出现,为实验室的清洁工作带来了便利。作为一名实验室工作人员,我深刻体验到了全自动洗瓶机带来的日常便利。在过去,实验室的瓶子清洗是一项繁琐而耗时的任务。我们需要手动清洗每一个瓶子,不仅效率低下,而且容易因为操作不当而导致瓶子破损或清洗不彻底。然而,自从我们实验室引进了全自动洗瓶机后,这一切都发生了改变。全自动洗瓶机的出现,改变了我们实验室的清洁工作。它能够自动完成瓶子的清洗、冲洗和烘干等一系列过程,提高了工作效率。现在,我们只需要将需要清洗的瓶子放入机器中,按下启动按钮,就可以轻松完成清洗工作。这不仅节省了我们大量的时间和精力,而且避免了因为手动清洗而产生的瓶子破损和清洗不干净的问题。除了提高工作效率外,全自动洗瓶机还带来了更好的清洗效果。它采用了高压喷淋技术,能够将清洗剂和水混合后以高压水流的形式喷向瓶子内部和外部,从而清洗掉污渍和残留物。与此同时,全自动洗瓶机还具有多种清洗模式和清洗剂选择,可以适应不同类型的瓶子和清洗需求。这使得我们的瓶子清洗工作更加标准。在日常使用中,全自动洗瓶机的操作也非常简便。它采用了智能化的控制系统,具有简单易懂的操作界面和操作流程。即使是没有使用过洗瓶机的工作人员也可以很快上手,并独立完成清洗工作。此外,全自动洗瓶机还具有自动检测和报警系统,当设备出现故障或异常情况时,会自动报警并显示故障信息,以便我们及时进行维修和处理。总的来说,全自动洗瓶机的出现为实验室的清洁工作带来了便利。它不仅提高了我们的工作效率和清洗效果,而且使得我们的工作环境更加整洁和舒适。转载自:www.hzxpz.com
  • 超声波清洗机:清洁领域的科技利器
    超声波清洗机利用超声波振动产生的高频声波,通过液体介质将能量传递到被清洗物表面,以达到清洁的目的。其工作原理主要包括以下几个方面:1、超声波振动: 超声波发生器产生高频的电信号,驱动换能器将电能转换为机械振动。这种高频振动通过液体传播,在液体中形成稳定的波动。2、液体介质: 清洗过程中,被清洗物被完全浸没在液体介质中,通常是水或清洁剂。液体介质起到传递超声波振动的作用,同时可以将清洗物表面的污垢、油脂等物质分散、溶解。3、空化效应: 超声波振动在液体中产生的高压区域和低压区域交替形成,导致液体中发生空化现象,即液体中形成微小气泡。这些气泡在高压区域内瞬间形成,随后在低压区域内迅速坍塌,释放出大量的能量,形成微小的水击波,从而击打清洗物表面,达到清洁的目的。4、机械作用: 超声波振动和空化效应共同作用下,清洗物表面的污垢、油脂等物质会被有效地剥离、击打、分散和溶解,从而达到彻底清洁的效果。 在各个领域都有广泛的应用,主要包括以下几个方面:1、工业清洗: 用于清洗各种工业零件、机械设备、模具、工具等,包括金属件、塑料件、玻璃件等。特别适用于复杂结构、细小孔隙和难以清洁的部件。2、医疗保健: 用于清洗医疗器械、手术器械、医疗器具、牙科设备等。超声波清洗可以彻底清洁器械表面的细菌、病毒和污垢,提高器械的卫生水平。3、汽车维修: 用于清洗汽车零部件、发动机零件、喷油嘴、汽车缸体等。可以有效去除油污、积炭、金属屑等,延长汽车零件的使用寿命。4、电子制造: 用于清洗印刷电路板(PCB)、电子元件、光纤等。可以去除焊接残留物、氧化层和表面污染,提高电子产品的质量和可靠性。5、实验室科研: 用于清洗实验室玻璃器皿、实验仪器、试剂瓶等。可以彻底清洁实验室器皿表面的残留物和污垢,避免交叉污染。 总而言之,超声波清洗机以其高效、环保、节能的特点,被广泛应用于各个领域的清洁工作中,成为现代清洁技术的重要组成部分。
  • 成功进行清洁验证的5大秘诀
    制药企业不断面临进行清洁验证的挑战以下是确保实施成功、合规清洁验证的五种方法Part 01为您的清洁程序确定合适的技术和最有效的部署方案(实验室、在线、旁线)了解您的清洁过程。为清洁过程选择正确的技术是成功实施清洁验证的关键。对于清洁验证,有许多常用的分析方法。专属性方法 如在清洁过程中对特定分析物进行UV/VIS或HPLC试验。尽管可以对目标分析物进行检测并使人们确信目标分析物已经清洗干净,但这些测试无法检测到可能影响产品质量、产量、效能或安全的其它化合物,如降解物或洗涤剂。这种类型的分析仅限于在实验室使用。非专属性方法 如总有机碳TOC分析法,与专属性方法相比,可对清洁度有更全面的了解。TOC法不只是检测一种分析物,而是通过采用一种方法来检测清洁剂、降解物、API和赋形剂。TOC还可根据您的工艺提供多种最佳部署方案(实验室、在线、旁线)。了解有关最佳部署方案长按识别二维码,获取更多信息Part 02简化方法验证和仪器确认需要进行方法验证和仪器确认,以表明方法参数适当,并且仪器适用于该方法。尽管这些对于清洁程序的成功与否至关重要,但方法验证和仪器确认并不一定非得很复杂。开发一种合适的方法来提供充分的化合物回收率、线性、稳固性和专属性数据,并设定合适的接受标准。重要的是要证明这些分析数据满足要求,并确保所选择的技术能够满足可靠的方法开发需求。方法开发和验证应本着实用性、可实现、可验证并具有说服性原则。对仪器进行全面确认,以验证仪器的安装、操作和性能满足其预定的用途要求。一些仪器制造商会提供相关文件和服务来协助您全面完成仪器确认工作。Part 03选择最佳消耗品,以实现最佳回收率和样品可靠性样品瓶和标准品等消耗品会对分析方法的成败产生极大影响。请确保您为清洁工艺选择可追溯、合规和和合适的消耗品。应该定期对系统进行挑战,以确保方法的适用性。选择浓度合适的一种或多种化合物,以反映您的清洁工艺,并且对清洁验证使用的仪器进行适当的挑战。一些供应商会提供特殊消耗品,以提高验证方法成功实施的概率。例如,如果您的工艺涉及到蛋白质检测,则对TOC样品瓶进行预先酸化可大大提高经常被漏报的粘性蛋白质的回收率。在开发检测方法时,请考虑此类解决方案。在线分析相较于实验室分析,可以降低使用样品瓶的成本并提高样品的可靠性。自动化分析在一定程度上消除了取样误差,同时节省了金钱和时间。Part 04利用数据来控制、深入了解和优化清洁工艺选择能够生成可信、可验证并用于故障排除和重要CGMP决策数据的技术。如果数据没有经过验证且不准确,就很难深入了解和控制清洁工艺。拥有准确的数据可以使人们对结果充满信心,并以此做出重大质量决策。如果采用TOC,在选择具体TOC技术进行清洁验证时应格外小心,因为某些技术不适合用于精确分离和检测。TOC分析仪提供了可以洞悉清洁工艺的三个单独的数据,以最终实现对清洁工艺的控制、深入了解和优化。一个样品分析可以给出无机碳、总有机碳和电导率数据。通过这些数据可用于确定清洁工艺失败的根本原因,采取纠正和预防措施或优化清洁周期。Part 05数据可靠性在CGMP设置中,数据可靠性比以往任何时候都重要,在清洁验证中实施分析技术时必须考虑数据可靠性。FDA已经对采用相关分析方法时不遵守数据可靠性标准多次发出了警告函。具体来说,当采用HPLC时,常见的问题是没有对峰值进行积分或没有对鬼峰产生的原因进行调查。在清洁验证中出现未知峰不可避免,但必须对其进行彻底调查并记录。使用TOC进行清洁验证不仅可以全面了解清洁度,并且一些分析仪还完全符合21 CFR PART 11规定的要求和数据可靠性准则。数据应保存在安全的数据库中,能够随时访问,所有工作均应保存在安全审核记录中。在利用数据做出重要质量决策时,需要制定和实施强有力的程序来保证数据的可靠性和安全性。当采用在线TOC分析进行清洁验证时,由于不存在数据转录、打印和未验证数据传输的环节,因此具有更高的数据安全性和可靠性。◆ ◆ ◆联系我们,了解更多!
  • 清洁验证:微生物总有机碳回收率和线性
    简介在生产消费品时,有效地清洁生产设备对质量控制来说至关重要。清洁工艺的目标是降低产品污染的风险,有效的清洁工艺可以将风险降低到可接受的水平,以确保产品质量。如果无法衡量和验证清洁工艺的有效性,就无法了解产品质量和消费者安全的风险。根据美国食品和药品管理局(FDA)提供的数据,2017年食品和饮料行业产品召回的主要原因是微生物对产品的污染。对于减少和消除微生物污染来说,强有力的清洁工艺至关重要,因此监控清洁工艺有效性的方法同样至关重要。总有机碳(TOC)分析是消费品生产商广泛采用的非专属方法,用于检测产品、清洁剂、以及微生物等污染物的残留量。为了证明TOC分析法适用于预期用途,我们对设备清洁之后可能尚存的残留物进行了回收和线性研究。工厂通常会测试化学污染物和化合物,但很少用TOC分析法来测试微生物的回收率。本文旨在探讨对于清洁验证和确认,TOC分析法能否证明可接受的微生物污染回收率和线性。实验设计和设置我们同科罗拉多大学博尔德分校合作,用一整夜时间在胰酶大豆肉汤中培养100毫升枯草芽孢杆菌(Bacillus subtilis)。以4500转/分钟的速度将最终培养物的十毫升等分试样离心分离10分钟,形成细胞沉淀。在每次离心之间,倒出上面的液体,用涡旋混合方法用10毫升超纯水使沉淀细胞重新悬浮。重复此过程7次。设计淋洗循环以除去细胞培养基带来的TOC污染。在第7次淋洗循环后,根据已有的4,6-二氨基-2-苯基吲哚(4,6-diaminidino-2-phenylindole,DAPI)染色任务来对细胞进行重新悬浮、稀释、计数(见图1)。图 1:枯草芽孢杆菌在细胞计数的荧光显微镜成像确定细胞密度之后,用Sievers® M9 TOC分析仪测量1 ppm确认标样组,然后进行三次细胞浓度稀释。在测量TOC之后,用0.45 μm灭菌过滤器过滤剩余样品,彻底除去细菌(见图2)。然后再次测量TOC以确定每个样品的非细胞背景TOC(见图2)。 图2:枯草芽孢杆菌的过滤过程结果表 1:微生物细胞密度与TOC的相关性结果图 3:微生物细胞密度与TOC的线性关系表1和图3是微生物TOC相关性研究的结果。线性趋势线的R2值为0.9981,表明实测细胞密度有良好的线性趋势。根据图3所示的线性拟合趋势线方程,定义为3倍噪声的检测水平(LOD,Level of Detection)为2.74E+06细胞/mL。此外,根据线性拟合趋势线和M9仪器规格,50 ppm的最大仪器定量限为2.49E+08细胞/mL。在进行微生物TOC定量之后,分别将1毫升的每种细胞密度溶液放在不锈钢试样板上进行试样污染,然后使试样干燥。此试样污染的目的是确定微生TOC相关结果的目视检测限。图4是微生物试样污染图。图 4:微生物试样板污染(A) 5.8E+07细胞/mL(B) 5.8E+06细胞/mL(C) 5.8E+05细胞/mL讨论与结论微生物TOC相关结果和试样污染图都说明了连续监测已有的清洁工艺有效性的重要性。在理想光线下,很容易在试样板上看到最高细胞密度(5.8E+07细胞/mL)的污染斑。而对于较低细胞密度,即使光线很好,也很难在试样板上看到污染斑。这表明除了强有力的清洁工艺之外,还需要用非目测的方法来测试清洁工艺的有效性。根据收集的数据,可以想象用于生产消费品的设备上仍有显着微生物污染,却仅凭目视检查就被投放到生产中,导致严重后果。因此必须连续监测已有的清洁工艺的有效性,才能降低产品质量风险和消费者安全风险。最后,由于微生物分子组成的不确定性,很难确定微生物溶液的回收率。本研究根据先前在确定活性微生物细胞中的碳含量时的发现,旨在确定微生物溶液的理论回收率。图5是理论微生物TOC产出量的计算过程。基于每个细胞的碳原子参考数,5.8E+07细胞/mL的理论TOC浓度为11.6 ppm。图 5:理论微生物 TOC 产出量的维度分析在本文的实验中,测量到5.8E+07细胞/mL的TO实际回收值为9.13 ppm,对挑战性的化合物的回收率为78.7%,从而证明实验方法是成功的。总之,本研究用Sievers M9 TOC分析仪演示了在清洁验证和确认时的细胞密度同目视检测限的关系,成功地证实了微生物TOC回收率。实验数据支持使用Sievers TOC分析仪来确认设备清洁度,同时表明除了目视检查之外还须考虑使用监测微生物污染的定量方法。TOC分析法是测量残留物、监测清洁工艺、降低总体风险的有效方法。Sievers分析仪为您提供能解决您一切清洁验证和确认需求的TOC解决方案、服务、支持。参考文献1. Recall Index and Spotlight. Expert Solutions https://www.stericycleexpertsolutions.com/recall-index/2. DAPI Protocol For Fluorescence Imaging Thermo-Fisher Scientific – US https://www.thermofisher.com/us/en/home/references/protocols/cell-and-tissue-analysis/protocols/dapi-imaging-protocol.html3. Phillips, Rob, and Ron Milo. “A Feeling for the Numbers in Biology.” Proceedings of the National Academy of Sciences 106, no. 51 (December 22, 2009): 21465. https://doi.org/10.1073/pnas.0907732106.◆ ◆ ◆联系我们,了解更多!
  • 用TOC和电导率进行实时、低流量的制药污物可清洁性分析
    简介制药清洁验证和确认成功与否,关键在于能否设计出强有力的清洁工艺。从前,制药清洁工艺的设计主要着眼于将药力或毒性最强的活性药物成分(API,Active Pharmaceutical Ingredients)的残留量降到允许限值(MAC,Maximum Allowable Carryover)以下。美国食品药物管理局(FDA)和医药界的专家们强调风险和工艺管控,以及对验证清洁工艺的充分了解。企业在设计验证清洁工艺时,越来越重视完全可清洁性和主污物识别等概念。1在传统的完全可清洁性(Cleanability)分析中,人们将各种潜在污物分开,在最差清洁条件(如浓度、温度等条件)下按照清洁所需时间对所有污物进行排序。然后用清洁所需时间来确定主污物,优化清洁工艺以减少主污物残留量。传统方法假定,在清除主污物的同时,所有其它污物都能被更彻底地清除掉。在传统的可清洁性分析中,人们把视觉清洁度当做定性度量,用目视来排序2。传统分析受限于时间和资源,无法提供足够的取样频率,排序依赖于视觉等主观因素。为了克服上述缺点,我们设计出了全新的可清洁性研究,用Sievers® M9总有机碳(TOC)分析仪来模拟清洁周期中的设备冲洗,对污物进行可清洁性定量排序。此方法能够更好地识别主污物,帮助企业进行定量分析,设计出行之有效的清洁工艺。对污物进行实时可清洁性分析在分析中,我们采用Sievers® M9 TOC分析仪的Turbo在线运行模式,用低流量取样模块来分析一系列具有代表性的制药污物。Sievers M9的Turbo模式可以进行近乎实时的数据采集,每4秒钟进行一次TOC测量。有了这一独创功能,Sievers M9分析仪能够在清洁设备的同时分析冲洗结果。当此功能同低流量取样模块一起使用时,分析仪能够在最终冲洗量或流量受限的情况下分析冲洗结果。Sievers M9分析仪的标准“集成在线取样系统(iOS,Integrated On-Line Sampling)”的最小流量为30 mL/分钟,低流量取样模块的最小流量为3 mL/分钟。在可清洁性分析中,我们采取以下全新的操作:1用Turbo模式实时测量TOC和电导率,以表征各种污物的冲洗情况。2根据拖尾因子(TF,Tailing Factor)而非简单的冲洗时间来对污物排序。在传统上,拖尾因子属于色谱参数,用于量化分析物同柱子固定相之间造成峰形干扰的相互作用。在可清洁性分析中,我们将拖尾因子用于TOC测量,来识别主污物、优化清洁工艺(见图1)。图1:样品色谱图中显示拖尾因子的排序点方法为了模拟对沾有污物的制药设备的冲洗,Sievers M9便携式TOC分析仪配置了一个6端口和2位阀,和预先沾有污物的2毫升不锈钢样品线圈(见图2a和2b)。将高效液相(HPLC,High Performance Liquid Chromatography)泵连接到阀,将超纯水(UPW,Ultra Pure Water)通过沾有污物的样品线圈泵入M9分析仪进行测量。先将阀旋转到旁路位置(见图2a),使超纯水不流经样品线圈,直接进入M9分析仪的取样模块,以获得超纯水的基线测量值。当超纯水的基线读数稳定后,将阀旋转到运行位置(见图2b),使超纯水流经样品线圈进入分析仪。然后用Turbo模式下的Sievers M9分析仪测量TOC和电导率,得出每种污物的可清洁性结果。图2a:阀的旁路位置 | 图2b:阀的运行位置用此方法分析以下化合物:淀粉乳糖布洛芬牛血清白蛋白(BSA)血红蛋白乙醇(EtOH)结果图3和图4分别显示了测试的6种化合物的实时低流量可清洁性TOC和电导率值。图4中右上角的放大部分是低浓度电导率曲线。根据TOC拖尾因子,从最差到最好可清洁性的污物排序如表1所示。图3:Sievers M9分析仪在Turbo模式下测得的TOC图4:Sievers M9分析仪在Turbo模式下测得的电导率表1:根据拖尾因子排列污物分析结果显示,在测试的6种污物中,清洁性最差的主污物是血红蛋白(见表1)。如果采用传统的清洁工艺设计,会将布洛芬设别为毒性或药力最强的污物,会围绕着减少或清除布洛芬来设计清洁工艺,而忽略其它种污物的存在。分析表明,在测试的所有污物中,布洛芬最容易清除。如果采用传统的清洁工艺设计,就无法将其它污物降至最低水平,因而很难通过工艺验证。结论随着美国食品药品管理局和制药界专家越来越重视对工艺的充分控制和了解,将污物的可清洁性纳入清洁工艺设计的考虑之中就变成重中之重。通过可清洁性分析来识别主污物,决定了到能否设计出强有力的、行之有效的清洁工艺。在可清洁性分析中采用TOC测量等非专属方法,能够有效地定量识别清洁性最差的主污物。在用非专属方法进行清洁验证和确认时,还可以通过监测活性药物成分、清洁剂、降解物、赋形剂、以及其它污染物来控制和了解工艺。高效液相(HPLC)等特定方法只能提供单一活性药物成分或特定分析物的信息,无法提供清洁工艺的全面信息。此项分析展示了成功地使用Turbo模式下的Sievers M9 TOC分析仪以低流量和在线运行模式来实时测量TOC和电导率,实时分析污物的可清洁性。此项分析还将拖尾因子应用到污物排序,成功地设别出清洁性最差的主污物。Sievers分析仪系列产品为您的清洁应用需求,提供完整的TOC分析解决方案。参考文献“Guidance for Industry. Process Validation: General Principles and Practices.” U.S. FDA Pharmaceutical Quality/Manufacturing Standards (CGMP), fda.gov, www.fda.gov/downloads/drugs/guidances/ucm070336.pdf. Accessed 15 May 2018.Jordan, Kelly, et al. “Cleanability of Pharmaceutical Soils from Different Materials of Construction.” Pharmaceutical Technology, vol. 38, no. 7, 2 July 2014, www.pharmtech.com/cleanability-pharmaceutical-soils-different-materials-construction. Accessed 15 May 2018.◆ ◆ ◆联系我们,了解更多!
  • 根据工艺能力判断合适的清洁验证总有机碳TOC限值
    观察根据擦拭和淋洗样品总有机碳(TOC)的历史或当前数据而采用工艺能力方法,能够证明清洁工艺及用于此工艺的限度是否可行、可实现、可检验。在下图所示的工艺中,上下游过程都使用1ppmC的“默认”限值,此限值将用于确定工艺能力。但是,TOC样品通常接近TOC方法的检测限(LOD)或定量限(LOQ),因此最可行的方法是使用单侧接受标准来显示工艺能力。对于单侧接受标准来说,工艺能力比率是Cnpk,而不是传统的CpK方法。评估限值对于任何清洁工艺来说,要评估两个清洁验证关键性质量属性(TOC擦拭和淋洗样品)的某个接受标准是否切实可行和可以实现,通常对于特定的生产工艺,使用工艺能力指数。如果从工艺中采集的历史或当前TOC数据满足特定的工艺能力比率,则TOC与对特定工艺的当前接受标准,适用于清洁验证。为表明这种判断,请看以下例子,表现了使用这个特定的设备,对特定的生产工艺进行的清洁工艺的合适程度。将评估以下TOC接受标准:&bull 上下游TOC擦拭样品:统计原理要评估已建立的接受标准是否切实可行和可以实现,需使用工艺能力指数。工艺能力指数旨在确定,考虑到已经观察到的当前与历史上的TOC擦拭与淋洗数据的变化率,该清洁工艺是否能够满足此接受标准。为了判断此方法是否合适,合适的工艺意味着,已建立的接受标准从统计学的角度来看,是合理的。合适的工艺是指能够确保工艺能力指数大于或等于1.25的工艺。此特定比率与传统的大1.33同,因为清洁验证接受标准是单侧规格1。为了选择工艺能力指数的正确计算方法,需同TOC擦拭和淋洗数据分布一起来考虑接受标准的类型(单侧或双侧)。如果TOC擦拭和淋洗接受标准确定TOC擦拭百分比分布目前用于特定产品清洁过程的清洁验证,使用对设备性能确认(PQ)或持续确认(定期监测)和产品转换所进行的整个清洁过程的TOC擦拭和淋洗数据。以上示例数据用直方图形式来确定正态分布。如上表所示,数据显示了同正态分布的明显偏离。大部分数据非常接近方法的检测限,因此将数据转换为近似正态分布是不合理的。所以,TOC擦拭数据要求用百分比分布来计算工艺能力比率,百分比分布应由统计程序来确定。 // 在此示例中,TOC擦拭数据的百分比分布确定了TOC擦拭数据的99.5%为0.8 ppm或800 ppb,TOC淋洗数据的百分比分布确定了TOC淋洗数据的99.5%为0.6 ppm或600 ppb。这些数值在用百分比分布来计算单侧规格工艺能力指数时很重要。对于新的清洁工艺,可升级或更换现行方法,用TOC来验证关键性的清洁工艺参数(TACT)。确定擦拭和淋洗样品的TOC工艺能力确定百分比分布之后,应使用以下公式来确定TOC擦拭和淋洗样品的工艺能力指数。对于单侧规格(如清洁验证应用中的规格),指数计算公式为:CnpK =(USL - 中位数)/(p(0.995) - 中数)其中:&bull Cnpk=非参数工艺能力指数&bull USL=Upper Specification Limit, TOC清洁验证擦拭和淋洗样品的规格上限值&bull 中位数=样品的50%百分比分布。由于TOC数据的50%非常接近检测限,因而TOC样品的中位数通常为0.1 ppm,或者0与检测限的中点值。&bull p (0.995)=数据的 99.5 %可以用此计算方法和相应的百分比分布(擦拭:0.8 ppm;淋洗:0.6 ppm)来计算工艺能力(Cnpk)如下:TOC擦拭:Cnpk=1.4;TOC淋洗:Cnpk=1.8单侧接受标准的合格工艺是指能力指数大于或等1.25的工艺,这表明清洁验证工艺及其关键性参数(时间、搅拌/速度、浓度、温度)能够满足TOC擦拭和淋洗所收集样品的参考文献1. Montgomery, D.C., (1991). Introduction to Statistical Quality Control, 统计质量控制入门, John Wiley and Sons New York, New York, 第373页2. NIST/SEMATECH e-Handbook of Statistical Methods, 统计方法手册, 第6.1.6节, What is Process Capability? 什 么 是 工 艺 能 力 ?http://www.itl.nist.gove/div898/handbook/index.htm◆ ◆ ◆联系我们,了解更多!
  • 从HPLC方法转变为TOC方法进行清洁验证的最佳实践
    传统上,HPLC一直是药品生产设备残留活性药物成分(API)清洁验证(Cleaning Validation)最常用的定量分析方法。近年来,制药生产商、监管机构和行业偏爱的清洁验证分析方法已经从HPLC改为总有机碳TOC分析方法。这种改变的原因包括但不限于更好地表达了设备生命周期的清洁工艺、降低成本、提高生产力,从而提高利润。对那些采用HPLC方法进行清洁验证的制药生产商而言,接下来的问题是:从HPLC方法改为TOC方法进行清洁验证的最佳实践做法是什么?考虑采用TOC方法开展清洁验证的第一步是研究TOC代替HPLC的可行性。下面是研究采用TOC分析进行清洁验证的可行性时需要考虑的三个主要因素:➤清洁工艺/样品相容性➤清洁限值可接受标准➤产品回收率/溶解性清洁工艺/样品相容性在清洁工艺/样品相容性方面,TOC分析要求采用样品水溶液对TOC进行定量。有机溶剂,如甲醇、乙醇和异丙醇不适合测定TOC。如果现有清洁周期最后清洗时采用水溶液,不含任何有机溶剂,则TOC分析可能是可行的方法。如果现有清洁工艺确实使用有机溶剂,则该工艺在最后是否可以改用水进行清洗?清洁限值可接受标准当制订清洁验证TOC限值可接受标准时,假设的是最糟糕的情况。这意味着假设毒性最大的物质/API,它从前批次产品的最大允许残留(MAC)限值最低,假设清洁样品测定的全部TOC都来自于它。本质上,要适合TOC分析,这种物质的化学式中必须包含一些碳。根据API的MAC限值,可以根据化学式的碳含量,将产品限值转化为TOC限值。TOC方法要成为一种可行的清洁验证方法,这种新确定的TOC MAC限值必须在TOC分析仪的线性动态范围之内。产品回收率/溶解性采用TOC分析开展清洁验证时,关于溶解性的一个常见错误概念是溶解性是限制因素。传统上,不溶或难溶的化合物可以氧化,在低浓度时溶解,或者,必要时,利用温度、搅拌、化学和时间(TACT,temperature, agitation, chemistry, and time)方法对溶液进行预处理。例如,研究已经证明,传统上不溶或难溶的化合物,如布洛芬、阿奇霉素、淀粉和利多卡因几乎不需要对样品进行预处理或不需要进行预处理,就可以采用TOC分析回收,且具有非常出色的线性。一旦确定了可行性,必须开展回收率研究,从而证明HPLC和TOC分析的回收率和线性相当。该工作需要配制最低MAC限值API储备溶液,浓度在前面测定的API TOC限值附近。例如,如果最低MAC限值的API是苯醌(C6H4O2 – 108.09 g/mol),产品限值是10 ppm,考虑根据分子量计算的苯醌碳含量是66.7%,则TOC限值计算值是6.67 ppm。知道这个限值后,回收率研究将挑战6.67 ppm限值以上和以下时HPLC和TOC的回收率和线性。在此实例中,挑战了TOC MAC限值以上和以下HPLC和TOC分析仪的回收率和线性。HPLC和TOC样品的结果如图1所示。从图中可以看出,同一样品TOC分析仪不仅线性优于HPLC分析,而且其回收率更符合要求。根据分析的回收率和线性数据,可以明确判断该API两种分析方法的等效性。如果回收率或线性未通过验收标准,可能必须采用TACT方法对样品进行预处理。图1继回收率研究之后,下一步骤是在HPLC和TOC上同时开展实际清洁样品的桥接研究。无论是淋洗样品还是擦拭样品,都需要在HPLC和TOC仪器上平行运行。由于清洁剂、赋形剂、填料等对TOC的贡献,预期TOC值等于或大于HPLC值。如果清洁样品HPLC和TOC方法都通过验证,则不需要开展其它工作。如果清洁样品HPLC和TOC方法都未通过验证,则必须对清洁工艺进行评估。但是,如果清洁样品通过了HPLC验证但未通过TOC验证怎么办呢?这种情况下最好的做法指南是什么?在HPLC结果通过而TOC结果未通过验收标准的情况下,使用TOC方法对工艺的理解更具有价值。采用HPLC对API定量,将设备放行用于生产,可能遗漏其它来源的残留污染。作为一种产品专属性方法,HPLC可能并不测定这些残留污染。这些残留污染对产品带来不良影响,影响产量、疗效或甚至消费者安全。TOC分析的数据可以表明该设备仍然不干净,从而触发对清洁过程的修改,再次使用TACT方法作为指南来降低残留污染。启动制定现有HPLC仪器和方法的MAC验收标准限值步骤1开展取样、限值和溶解性的可行性研究开展TOC仪器的IQ/OQ/PQ步骤2制定储备水溶液的API TOC MAC限值开展表明HPLC和TOC回收率的桥接研究步骤3准确度、精确度和线性对比确认结果满足验收标准完成实施TOC,更改SOP从HPLC改为TOC方法进行清洁验证时的步骤和最佳做法一旦可行性、回收率和桥接研究都表明使用TOC分析进行清洁验证的效果良好,则可以更改内部标准操作程序,从而反映新的工作流程,将设备放行用于生产。上图总结了从HPLC改为TOC方法进行清洁验证时的步骤和最佳做法。这种新的分析方法的优点包括缩短样品分析时间、降低易耗品成本和提高生产力。原文英文版刊登于《美国实验室》杂志2018年1/2月刊◆ ◆ ◆
  • 在线清洁验证:根据总有机碳、无机碳和电导率数据实时放行设备
    概述清洁验证是现行药品生产质量管理规范(cGMP,Current Good Manufacturing Practices)的重要组成部分,旨在保证药品的纯度、质量、疗效。患者的安全始终是最重要的。多年来,法规始终要求对清洁过程进行验证。然而许多厂商至今仍然沿用传统方法,即提取淋洗水和擦拭棉签样品,然后在实验室分析总有机碳(TOC)和电导率,以达到法规要求。传统的清洁验证方法虽然合规,却十分耗时,错误机率大,资本设备利用率低。目前行业将在线清洁验证视为更有效、更可持续的清洁验证和确认方法。本文简要介绍Sievers分析仪提供的解决方案,即使用Sievers® M9分析仪来分析TOC和电导率,进行精准、清晰、严谨的清洁验证和确认。目前的挑战传统上,清洁验证和确认是通过手动取样和实验室分析来完成的,其工作流程在质量和效率方面有下列明显缺点:取样耗时,需要分析人员准备样品容器、打印样品标签、提取样品、将样品送到实验室进行分析、然后还需输入和复查数据。棉签擦拭技术还要求进行繁琐的验证和培训工作,才能获得理想的回收率。在进行取样和实验室分析时,可能会损害样品的安全性。在取样的程序中,必须评估样品污染的风险和样品存储的稳定性。实验室流程常常延误数据发布,增加设备停机时间。现场提取的一个样品只代表一个时间点的清洁状况,无法代表整个清洁周期的状况。过程分析技术FDA于2004年发布了“过程分析技术(PAT,Process Analytical Technology)”指导文件1。该文件包括非约束性建议,鼓励cGMP厂家按照过程分析技术来理解工艺、控制工艺、持续证明设备的清洁验证状态。过程分析技术允许实时测量所需的质量特性。有了这些实时数据,就能掌握和证明清洁验证的状态,而无需进行人工取样或实验室分析。过程分析技术根据质量特性的测量结果来评估清洁度,而非仅仅对预定的时间点进行测量。公司采用过程分析技术,能够优化清洁验证工艺,节省清洁的时间、用料和用水,减少设备停机时间和人为错误。过程分析技术同样受FDA的严格监管,因此用来评估清洁度和放行设备的清洁工艺系统必须经过充分验证并符合规则标准,这一点至关重要。比较分析仪和传感器在选择合适的在线技术时,必须清楚了解相关的应用和法规。为了充分发挥过程分析技术的实时放行设备的作用,必须使用经过验证的仪器,仪器必须满足合规性、方法验证、数据安全等方面的要求。大多数在线TOC分析仪都用电导率来测量碳含量。Sievers TOC分析仪(例如Sievers M9分析仪)就是碳分析仪,用透气膜将干扰性化合物与CO2分离,从而准确测量碳含量。此技术能够确保测量的准确性和精确性。传感器测量氧化前后的电导率。虽然许多TOC仪器都以某种方式测量氧化前后的电导率,但在传感器测量的结果电导率中,没有将干扰性离子分离出去。TOC引起电导率变化,但碳以外的其它物质也能引起电导率变化。如果样品中含有干扰性物质(比如在清洁过程中常见的干扰物),就会产生报数偏高或偏低的情况。(见图1)图1:淋洗样品中也可能含有原料药、降解物、清洁剂、赋形剂,与有机碳分子键合的分子也容易被氧化。传感器不仅有错报的风险,而且在校准、验证、维护时,可能有不合规和效率低的问题。例如,在验证线性和特异性时,就无法用ICH Q2(R1)规则来验证传感器方法,而在使用数据来释放cGMP设备时,验证分析方法是关键环节。对于传感器来说,校准、验证系统适用性、维护等过程很繁琐,需要将文件资料甚至仪器送到厂家进行处理。而Sievers M9分析仪的维护、校准、系统适用性就可以自行完成,Sievers分析仪提供当场验证、维护、故障排除等现场支持。Sievers M9分析仪除了报告验证的、准确的TOC数据之外,还同时测量无机碳和电导率。有了这三种质量特性数据,就能全面而清晰地了解清洁工艺。Sievers的解决方案有了总有机碳、无机碳、电导率这三种数据,就能全面掌握清洁工艺。可以同时评估这三种质量特性,从而优化工艺、排除故障、或调查不合格结果(OOS,Out-of-Specification)。一旦在验证数据中确定了各个质量特性的控制范围,就能快速识别和纠正偏离工艺控制范围或规格的错误。也可以同时使用这些数据来调查故障根源,如图2所示。图2:同时使用TOC、无机碳、电导率,能够改善对不符合趋势结果的监测,并有助于调查故障根源为了演示M9分析仪与原位清洗(CIP,Clean-In-Place)工作站的整合与通信,以实时进行在线分析和报告数据,位于科罗拉多州博尔德市的Sievers分析仪开发实验室将Sievers M9便携式TOC分析仪与原位清洗站整合在一起(图3)。实验室模仿厂家普遍采用的清洁工艺,调整了流量、压力、时间、清洁方法。最终方案依照厂家所面临的复杂取样过程,无论对于时间、体积、或压力等限制,Sievers M9分析仪都能与组件成功整合,自动进行加压取样或非加压取样。还需注意,M9便携式分析仪与M9实验室型分析仪采用相同的技术。当从实验室分析转向在线分析时,相同的M9技术能够简化方法转移过程,无需再进行整套的方法验证。图3:整合了原位清洗工作站的Sievers M9便携式TOC分析仪进行实时淋洗分析。减少污染在分析样品时,必须考虑样品流路中的微生物污染风险,并采取措施降低这种风险。Sievers M9分析仪能够在不使用额外部件或工艺的情况下降低样品流路中微生物污染的风险。在清洁循环之间,分析仪用气动阀和干净的压缩空气来彻底干燥样品流路。取样组件和M9的“集成在线取样系统(iOS,Integrated Online Sampler)”都能耐受cGMP工艺常用的灭菌蒸汽、热水、腐蚀性清洁剂等。当采用Sievers M9在线清洁验证配置时,分析仪可以用干净的压缩空气吹干样品流路,使样品流路保持清洁、干燥,为下一次分析做好准备。这种在线清洁验证的系统整合为管控和降低污染风险提供了自动化的解决方案。验证和数据可靠性Sievers M9与原位清洗系统相整合的在线清洁验证技术,为合规性达标提供了精准而有力的方法。Sievers验证支持包第一和第二册满足仪器合规所需的全部要求,能够确保测量数据的准确性,可以用来释放关键性cGMP设备。数据可靠性始终是cGMP厂家所关注的重要议题。配置了DataGuard软件的Sievers M9 TOC分析仪满足联邦法规21 CFR PART 11以及数据可靠性准则的全部要求。具有可修改权限的各种用户级别确保所有用户都有正确的访问级别。审计追踪能够捕获任何人在仪器上执行的任何操作活动,其中包括执行的时间和用户信息。数据、方法、审计追踪都是不能更改或删除的。DataGuard允许以符合数据可靠性规则的方式来分析、存储、传输实时数据。总结随着生产需求不断增加,越来越多的厂家采用过程分析技术来改善运营效率和精益生产流程。在线清洁验证帮助厂家掌握工艺、控制流程、管理风险、提升效率、优化生产,而这些都是实验室监测所无法做到的。Sievers M9提供精确的、准确的、定量的、耐用的分析技术,能够充分利用清洁验证数据。这些经过验证的精准分析数据,可以用来以符合数据可靠性规则的方式进行重要决策、实时放行设备、排查故障、优化清洁工艺。Sievers分析仪为厂家的在线清洁验证提供全方位的解决方案,其中包括提供仪器、验证、合规支持、技术服务、不合格结果(OOS,Out ofSpecification)支持、提供标样、安装组件、应用支持等。如欲查询详细信息,或请Sievers分析仪为您评估工艺可行性,请与我们联系。参考文献Guidance for Industry PAT—A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance. FDA, 2004, https://www.fda.gov/media/71012/download◆ ◆ ◆联系我们,了解更多!
  • 分析STERIS清洁剂中的非导电性有机化合物的TOC与电导率
    研究目的本研究旨在证明Sievers® M9 TOC分析仪能够通过分析TOC浓度来有效检测和量化STERIS生命科学公司(STERIS Life Sciences)生产的清洁剂中的非导电性化合物的含量。背景信息很多行业在转换产品之前都会用STERIS清洁剂来清洗生产设备。在清洁验证时,必须确定生产设备的最后冲洗液中没有残留的清洁剂或药物。残留的清洁剂、污染物、或其它化合物既可能是有机物,也可能是无机物,而在检测有机物和无机物时,需要采用不同的分析方法。人们用电导率来检测普通清洁剂,但残留的清洁剂中常有痕量的有机物,而人们无法用电导率来检测有机物。如果不能将生产设备清洗干净,就会影响产品质量。因此,检测清洁剂中残留的碳污垢,就成为综合评估清洁工艺的重要环节。本研究中的M9 分析仪数据表明,TOC分析能用来有效地检测导电性和非导电性有机化合物,对评估清洁工艺起到了补充作用。样品制备选择STERIS生命科学公司生产的以下4种清洁剂,进行初步比对和分析:CIP 100(基本清洁剂)CIP 220(酸性清洁剂)ProKlenz NpH(中性清洁剂)Spor-Klenz RTU(酸性清洁剂)将以上各种清洁剂稀释到0.01%,然后确定其碳含量(质量比)。基于稀释到0.01%的清洁剂溶液所提供的碳含量,分别将各清洁剂制备成5 ppm TOC溶液。向5 ppm TOC清洁剂溶液中分别加入1 ppm、10 ppm、25 ppm 、 50 ppm的非导电性有机化合物,再用Sievers M9分析仪分析其TOC和电导率。所有清洁剂溶液均在干净的低TOC玻璃器皿中制备,然后立即移到Sievers认证的电导率和TOC双用途(DUCT)样品瓶中。M9分析仪的自动加试剂功能(Autoreagent)能够确定分析所需的最佳试剂流量。对所有样品重复测量5次,不舍弃任何一次测量结果。CIP 100分析CIP 220分析ProKlenz NpH分析Spor-Klenz RTU分析总结对于以上4种情况,在0.5 - 20 ppm范围内,残留清洁剂和有机混合物的TOC响应都是线性的。在相同的TOC范围内,关于来自非导电性有机化合物对电导率的影响,正如预期,电导率响应是水平的。在1.5 -150 μS/cm范围内,电导率能有效检测清洁剂,却无法检测非导电性有机污垢。清洁剂基体不会妨碍痕量TOC的检测。结论在清洁验证时,电导率用来检测残留的清洁剂,但本研究中的数据表明,如果仅用电导率来评估对有机碳的清洁程度,则远远不够。尤其是当生产设备上沾有非导电性有机化合物时,如果仅靠电导率来评估清洁程度,就会使人们误以为生产设备很干净。TOC分析能有效地检测导电性和非导电性有机化合物,对评估清洁工艺起到补充作用,因此用TOC和电导率双管齐下就能克服上述局限性。Sievers M9分析仪能够同时测量TOC和电导率,提供准确和精确的有机和无机污染物信息,作为全面评估清洁工艺的依据。◆ ◆ ◆联系我们,了解更多!
  • GE 清洁验证专场巡回研讨会火热进行中
    《药品生产质量管理规范(2010年修订)》(2010版GMP)已于2011年1月17日以卫生部79号令的形式公开发布,并于2011年3月1日起施行。在2010版GMP第七章&ldquo 确认与验证&rdquo 的第143条规定了清洁验证,这是新增的条例,说明药品监督管理部门更加重视清洁工作的过程、环节和结果。 从生产线上,对设备清洁后如何取样? 目测的方式已经过时了吗? 淋洗水取样,还是棉签擦拭取样? 在实验室,采用什么分析方法检测? 是专属性的液相色谱法、离子色谱法?还是非专属性的总有机碳TOC、电导率、pH、热重法? GE的专家将在清洁验证专场会议中一一解答,同时讲座中还将包括以下内容: 1.解读中国《药品生产质量管理规范(2010年修订)》对清洁验证的要求 2.中国及美国FDA对清洁验证规程建立的相关规定 3.清洁验证的取样方式与分析方法的选择 4.如何设立清洁验证的合格限值,符合GMP的同时节约设备清洁成本? 具体场次如下,报名请发邮件至geai.china@ge.com 日期 城市 5月22日 长沙 5月24日 桂林 5月24日 哈尔滨 5月29日 内蒙古 6月6日 福州 6月7日 南京 6月7日 厦门 6月14日 西安 6月15日 贵阳
  • 普洛帝颗粒计数器助力3D金属打印零部件清洁管控
    普洛帝颗粒计数器在3D金属打印零部件清洁管控中发挥着至关重要的作用。随着3D金属打印技术的飞速发展,对打印出的零部件的清洁度要求也日益提高。普洛帝颗粒计数器凭借其卓越的性能和精准度,为这一领域作出了重要贡献。 在3D金属打印过程中,由于粉末材料的不完全融合、打印平台残留以及环境中的微小颗粒物等因素,零部件表面常常附着各种微粒。这些微粒不仅影响打印品的外观质量,还可能对其性能和使用寿命产生负面影响。因此,对3D金属打印零部件的清洁管控至关重要。 普洛帝颗粒计数器采用先进的激光散射原理,能够快速、准确地检测并计数液体中的微小颗粒。其高精度传感器和智能分析软件,使得计数过程既快速又准确。在3D金属打印领域,普洛帝颗粒计数器能够有效地检测出零部件表面的微小颗粒,为清洁管控提供有力支持。 普洛帝颗粒计数器在零部件清洁管控中展现出了显著的优势。这款先进的仪器不仅在颗粒物计数领域具有卓越的性能,更在零部件清洁管控方面表现出色。 在零部件清洁管控中,普洛帝颗粒计数器能够实时监测零部件表面的颗粒物污染情况,为清洁工作提供及时、准确的数据支持。通过与清洁设备的配合使用,它能够实现自动化的清洁过程监控和反馈,确保清洁效果达到最佳状态。这不仅提高了清洁效率,还降低了人工操作的错误率,为企业的生产效率和产品质量提供了有力保障。 此外,普洛帝颗粒计数器还具有强大的数据存储和分析功能。它能够将检测数据实时保存,并生成详细的报告和趋势分析,帮助企业对零部件的清洁情况进行全面的了解和分析。这为企业的质量控制和工艺改进提供了重要的参考依据,有助于企业实现持续的质量提升和成本优化。 综上所述,普洛帝颗粒计数器在零部件清洁管控中展现出了高精度检测、数据存储与分析等多方面的优势。这些优势共同构成了普洛帝颗粒计数器在零部件清洁管控领域的核心竞争力,为企业提供了全面、高效的解决方案。 通过普洛帝颗粒计数器的应用,3D金属打印企业可以实时监控零部件的清洁度,及时发现并处理清洁问题。这不仅可以提高打印品的外观质量,还能确保零部件的性能和使用寿命。同时,普洛帝颗粒计数器的使用还能降低企业的生产成本,提高生产效率,为企业的可持续发展注入新的活力。 总之,普洛帝颗粒计数器在3D金属打印零部件清洁管控中发挥着不可或缺的作用。其卓越的性能和精准度,为3D金属打印技术的广泛应用和持续发展提供了有力保障。
  • 使用Sievers M9分析仪检测清洁验证样品0.2M NaOH中的TOC
    目的 本研究证明Sievers® M9 TOC分析仪能够通过测量总有机碳(TOC)和电导率来检测和定量分析残留的微量0.2M NaOH(一种常用清洗剂)。背景信息稀NaOH溶液是制药业中常用的基本清洁剂,用于在转换产品前清洗生产设备。在进行清洁验证时,必须确定设备的最后冲洗液中是否有残留的清洁剂。NaOH分子本身不含碳,因而不产生TOC信号,但我们可以通过测量电导率来有效地检测NaOH。NaOH常伴随有痕量的有机碳,我们无法通过测量电导率来检测这些有机碳。如果不能清除这些有机碳,就会影响产品质量。因此检测NaOH中的碳污染,能够提高清洁工艺的验证效率。本研究中的数据表明,可以用Sievers M9分析仪来有效地测量NaOH的TOC和电导率。实验测试计划对酸化的0.2M NaOH溶液(pH值为1.68)的初步分析结果显示,0.2M NaOH含有约2.8%(质量百分比)的碳。对未酸化的0.2M NaOH的分析结果显示,其电导率为3.4 μS/cm。使用上述碳含量和电导率的分析数据,来完成以下测试步骤。用M9分析仪测量TOC向0.5 ppm 0.2M NaOH储备溶液中分别加入4种浓度的KHP溶液(KHP浓度分别为0.5 ppm、1 ppm、5 ppm、20 ppm),得到不同TOC浓度的溶液,用于Sievers M9分析仪的测试。KHP溶液由20,000 ppm储备溶液制成。0.5 ppm 0.2M NaOH溶液的含碳量为2.8%(质量百分比),来自酸化的0.2M NaOH。M9分析仪的自动加试剂功能(Auto Reagent)能够自动确定分析所需的最佳试剂流量。当运行未知TOC浓度的样品时(例如进行清洁验证时),自动加试剂功能能够节省操作时间。表1列出了在本研究中进行TOC分析时所采用的最佳试剂流量。表1:TOC分析的最佳试剂流量用M9分析仪测量电导率用20 μS/cm储备溶液制成4种电导率浓度的0.2M NaOH溶液。使用20 μS/cm电导率储备溶液,基于非酸化的0.2M NaOH电导率3.4 μS/cm基础之上,使用0.2M NaOH溶液稀释至0.1%(质量比)配制而成。所有的0.2M NaOH溶液均在干净的低TOC玻璃器皿中制备,然后立即移到Sievers认证的TOC样品瓶(认证TOC小于10 ppb)中进行分析。对所有样品重复测量4次,不舍弃任何测量结果。测试设备Sievers M9实验室型TOC分析仪,序列号:1401-0043Sievers自动进样器,序列号:09040005DataPro2软件校准和确认TOC校准用标准的多点系统任务来校准Sievers M9分析仪。表2列出了校准数据。校准包括TC和IC通道。校准参数在设定值内。R2为1.0,表示校准在预期范围内是线性的。表2:0-50 ppm校准的结果TOC确认用蔗糖来确认2 ppm处的校准。表3列出了确认结果。表3:校准后对2 ppm TOC KHP标样测量的结果结果和讨论表4列出了将不同浓度的KHP加入0.5 ppm 0.2M NaOH溶液中的TOC测量值,图1是线性回归结果。表4:0.5 ppm 0.2M NaOH和0.5、1、5、20 ppm KHP的TOC测量结果图1:TOC与0.2M NaOH/KHP浓度的线性回归结果加入KHP的0.2M NaOH的TOC回收率在0.5–20 ppm浓度范围内是高度线性的(R2=0.996)。0.5 ppm 0.2M NaOH的TOC为582±13ppb,是Sievers M9分析仪的0.03 ppb检测限的16,000倍以上。这些数据表明,痕量的0.2M NaOH不会影响Sievers M9分析仪准确和精确地检测有机碳。表5列出了0.5-20 μS/cm范围内NaOH的电导率测量结果,图2是线性回归结果。表5:0.5–20 μS/cm 0.2M NaOH的电导率测量结果图2:电导率与0.2M NaOH浓度的线性回归结果0.2M NaOH的电导率在0.5-20 μS/cm范围内是高度线性的(R2=0.999)。0.5 μS/cm 0.2M NaOH的电导率为0.1±0.02 μS/cm,是Sievers M9分析仪的0.01 μS/cm检测限的10倍以上。因此可以用Sievers M9分析仪通过测量电导率来准确、精确地检测0.2M NaOH。结论同时测量电导率和TOC的能力使得Sievers M9分析仪能够在清洁验证时有效地检测出残留的清洁剂。Sievers M9的电导率功能可以检测到大于0.5 μS/cm的NaOH(是一种市售的碱性清洁剂)。当痕量的0.2M NaOH中的KHP浓度范围是0.5-20 ppm时,TOC响应为线性(R2=0.9996),表明NaOH基质效应对TOC测量的影响微乎其微。由于NaOH分子本身不含有机碳,无法通过测量TOC来检测痕量的0.2M NaOH,但同时测量TOC和电导率就能够准确了解冲洗液中是否含有污染物和化合物。因此在验证清洁工艺时,具有电导率功能的Sievers M9分析仪是测量无机离子和有机化合物的最佳仪器。◆ ◆ ◆联系我们,了解更多!
  • 监控半导体芯片生产中离子污染的神器——ICS 6000离子色谱
    监控半导体芯片生产中离子污染的神器——ICS 6000离子色谱 关注我们,更多干货和惊喜好礼 2020 半导体产业2020年注定是不平凡的一年,不仅仅是新冠的肆虐,也因为国内外贸易争端加剧,对某些中国企业是一大挑战,同时也是一大机遇,将刺激我国对于芯片等半导体产业的重视,同时赛默飞也将致力于帮助客户解决当中遇到的问题。 集成电路(Intergrated Circuit)又称芯片,是一种微型电子器件,是把电路(包括半导体装置、元件)小型化、并制造在半导体晶圆表面上形成的具有所需电路功能的微型结构。 在半导体行业中对离子的污染非常敏感感超过80%的制作工序都需要用到纯水,对于不同级别的生产线而言,对纯水的质量要求也不尽相同,限度跨度从ppt—ppb。 ASTM D5127-13 Standard Guide for Ultra-Pure Water Used in the Electronics and Semiconductor Industries 同时芯片的生产过程中会使用到很多试剂,如硫酸、氨水等,而这些试剂挥发到空气中会对芯片造成晶体缺陷、雾状缺陷等,因此: 监控环境空气和超纯水中离子的含量是非常必要的 你知道吗那么大家知道,空气中与超纯水中的杂质离子含量这么低,通过什么手段实现检测呢?赛默飞离子色谱ICS-6000选配AM模块通过大体积浓缩进样,可轻松实现如上要求,完全可以达到芯片生产过程中对环境与水的控制。 ICS 6000双系统,直接进样分析,可同时在线检测超纯水中痕量(50ppt)阴阳离子。 ICS 6000双系统 直接进样流路图1配置AS-HV以后的ICS 6000可实现大体积浓缩进样,从而进一步提高灵敏度降低检出限( 大小环进样流路图 2可选配IC Pure在线纯水机在线制备离子色谱分析过程中所需超纯水,从而给淋洗液提供更纯的水源。 IC Pure在线纯水机 3配备空气采样器由真空泵以恒定流速抽取环境空气,超纯水吸收空气中阴阳离子后上离子色谱检测。根据抽取时间与流速从而计算抽取空气体积,得出空气中离子含量。 空气采样器 那么实际效果如何呢?请看如下两张谱图: 常规阴离子谱图(1-10ppt) 常规阳离子谱图(20ppt)赛默飞离子色谱全流程解决方案ICS 6000高压离子色谱ICS-6000高压离子色谱是一款可实现阴阳离子同时分析的高压离子色谱系统,高压梯度提供了高分离度与高重复性。同时配有赛默飞独有耐高压Viper管线,独特的力矩设计,无需辅助工具,手动自如实现装卸,简单方便。 耗材监控识别功能自动识别并追踪 IC 耗材的安装时间、使用情况和性能指标。其可防止耗材安装错误,安排预防性维护时间,管理耗材使用情况,可同时监测多达 25 种不同耗材的 16 余项关键性能指标。从而可以根据产品性能指标和生产质量保证数据验证耗材的性能。 淋洗液自动发生器ICS-6000 配备RFIC-EG(淋洗液自动发生器),淋洗液发生灌以指定的浓度电解生成高纯度氢氧化钾(KOH)或甲磺酸(MSA)淋洗液。该设备的淋洗液与再生液仅要求使用高纯度去离子水即可,从而实现零系统空白。同时RFIC-EG 模块可控制等度或梯度条件,提供无与伦比的方法重现性和准确度。 DC温控ICS-6000温控系统分为上下两部分且可单独控温,上部分控制检测单元,下部分控制进样阀与色谱柱,温度全部覆盖,稳定性更佳。 ICS 6000 DC模块自 1975 年以来,我们一直致力于离子色谱(IC)技术的开发与创新,包括仪器、化学分离、抑制器和软件。作为业界领导者,我们通过分享已知信息努力为您的实验室提供支持,充当值得信赖的顾问,并提供您所需要的服务和支持。我们所做的一切支持并认可您和您的使命,确保世界更健康、更清洁、更安全。 Thermo Scientific™ Dionex™ ICS-6000 离子色谱仪 “码”上下载填写表单即刻获取【赛默飞ICS-6000 HPIC 高压离子色谱系统】 如需合作转载本文,请文末留言。 扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 制药行业清洁验证中的分析方法介绍及专属性与非专属性方法的比较
    介绍清洁验证对于cGMP生产至关重要,用以确保产品质量和患者安全。总有机碳(TOC)检测是一种证明设备清洁度的合规方法。与专属性方法不同,TOC可以在提高工艺效率的同时提供对清洁度的全面了解。无论您是清洁验证的新手还是经验丰富的TOC分析仪用户,本文将为所有级别的人员介绍什么是清洁验证、如何以及为何要使用TOC方法进行清洁验证。清洁验证中的分析方法挑战典型的清洁验证(CV)计划包括三个阶段:01设计02验证03持续确认一个关键的行业挑战是如何选择最合适的分析方法来评估清洁验证(CV)不同阶段的已知和潜在残留物。例如,在早期设计阶段的工作中,关于最恶劣情况下化合物或其降解物清洁性的充分信息可能是未知的。这可能会给开发产品专属性的分析方法带来挑战,因为这些测试假定所有潜在干扰物都是已知的。同样,在验证阶段,产品专属性的分析方法可能不太有用,因为常见的残留物可能包括未表征的降解物或更难清洁的化合物,而不是目标活性药物成分(API,Active Pharmaceutical Ingredient)。最后,在持续确认阶段,包括产品切换、设备停机检修、成本在内的生产问题以及对持续或自动监测的需求可能会影响所使用的方法。清洁过程方法选择在许多情况下,清洁过程专属性方法,如总有机碳(TOC)分析(与产品专属性方法相比),可以在清洁验证程序的每个阶段非常准确地描述清洁工艺的总体有效性。关键的一点是,选择一种或多种方法取决于清洁过程后残留物的性质。如果在经过验证的清洁过程中,活性成分没有降解或溶解,并且充分了解所有干扰物,那么产品专属性方法(包括HPLC、UV/Vis或ELISA)可能是合适的。1,2常见的产品专属性分析方法以下产品专属性分析方法传统上一直用于清洁应用。所有这些都旨在确定特定化合物是否以其原始形式存在。高效液相色谱(HPLC)HPLC通过色谱法从基质中分离出独特的化合物,然后使用紫外线或其他检测器测量该化合物。优点:能够确定所含的特定残留化合物、可以提供有关清洁失败性质的数据挑战:假设化合物在清洁过程中没有降解、所有潜在的干扰物或残留化合物已充分了解、可能需要进行更多的方法开发酶联免疫吸附测定(ELISA)ELISA是使用特定化学品和标准品进行的抗原或抗体类反应。如果特定蛋白质是完整的并且存在于测试溶液中,它将与酶结合。然后这种结合会被检测到。然而,如果蛋白质已变性但仍存在于溶液中,则ELISA测试无法检测到变性的蛋白质含量。ELISA具有许多与HPLC相同的优势和挑战,但多用于生物制药生产。紫外/可见分光光度法(UV/Vis)UV/Vis是残留物溶剂溶液对特定波长光的检测或吸光度。优点:简单、不需要从基质中分离残留物挑战:不适用于所有化合物、来自其他吸光化合物的潜在干扰常见的过程专属性分析方法以下过程专属性(或非产品专属性)方法也普遍用于清洁应用。总有机碳(TOC)TOC方法氧化所有有机残留物并检测氧化产生的二氧化碳。优点:对包括降解物或非预期的化合物在内的所有水性有机化合物敏感、方法开发简单(单一方法)、适用于清洁验证的所有阶段挑战:非常适合于识别清洁验证过程的失败,但调查可能需要补充方法、化合物必须是水性的电导率电导率用于检测清洁淋洗水样品中的离子物质,最常用于检测最终冲洗过程中的微量酸性或碱性清洁剂。优点:易于自动化(在线)、对离子残留物极其敏感、方法开发简单(单一方法)挑战:仅适用于一部分化合物(清洁剂或离子 API)、仅适用于淋洗水样品其他分析方法除了清洁验证中常用的产品和过程专属性方法外,其他可供考虑的分析方法可能包括:目视检查用于检测生物残留物的生物负荷或内毒素用于快速分析特定目标化合物的离子迁移光谱检测酸性或碱性清洁剂的pH值使用红外方法(NIR/FTIR)原位识别表面残留物讨论对于清洁验证程序来说,选择合适的分析方法非常重要。分析方法应该能够充分确定一个经过验证的清洁过程是按照设计完成的,从而最大限度地降低产品污染的风险。在理想情况下,可以选择给定阶段(设计、验证、确认)的最佳分析方法。然而,在清洁验证的现实世界中,分析方法的选择可能会受到基于清洁过程和方法预期用途的实际考虑的限制。因此,更重要的是分析方法是否足够或合适,而不是为了达到预期目的而“认为”的最佳方法。2专属性和非专属性分析方法的比较清洁验证的专属性方法旨在检测相关的单一化合物,例如原料药(API)。这使得对设备清洁度的理解非常有限。可能存在降解产物、清洁剂、赋形剂或其他污染源,无法通过专属方法检测到。通过总有机碳(TOC)和电导率检测,可以对清洁度进行综合评估,从而自信地放行设备。从HPLC转变为TOC的清洁验证需要考虑的三个因素◆ ◆ ◆
  • 艾威科技关于总有机碳TOC方法应用于清洁验证专题讲座(4.19珠海)邀请函
    总有机碳TOC方法应用于清洁验证专题讲座 全新应对《药品生产质量管理规范(2010年修订)》(GMP 2010) 尊敬的先生/女士,您好! 《药品生产质量管理规范(2010年修订)》(2010版GMP)已于2011年1月17日以卫生部79号令的形式公开发布,并于2011年3月1日起施行。2010版GMP在全国范围内,促进了制药企业的整改。 新版GMP共分14章,313条。相对于1998版GMP的14章88条而言,内容大幅增加。新版GMP的最后一条,即第313条规定,新版GMP的具体实施办法与实施步骤由国家食品药品监督管理局(SFDA)规定。SFDA于2011年2月25日,对各省、自治区、直辖市食品药品监督管理局,发出通知&ldquo 关于贯彻实施《药品生产质量管理规范(2010年修订)》的通知&rdquo (国食药监[2011]101号),要求将2010版GMP纳入各级食品药品监督管理部门&ldquo 十二五&rdquo 期间药品监管工作的重点。凡新建药品生产企业,均应符合2010版GMP。现有药品生产企业血液制品、疫苗、注射剂等无菌药品的生产,应该在2013年12月31日前达到2010版GMP的要求。其他类别药品均应在2015年12月31日前达到2010版GMP要求。未达到2010版GMP的企业(车间),在上述规定期限后不得继续生产药品。 在2010版GMP第七章&ldquo 确认与验证&rdquo 的第143条规定了清洁验证:&ldquo 清洁方法应该经过验证,证实其清洁的效果,以有效防止污染和交叉污染。清洁验证应当综合考虑设备使用情况、所使用的清洁剂和消毒剂、取样方法和位置以及相应的取样回收率、残留物的性质和限度、残留物检验方法的灵敏度等因素。&rdquo 本条为新增。新版GMP明确规定清洁方法应当经过验证,并明确了清洁方法验证的目的、内容。将清洁方法纳入验证范围,说明药品监督管理部门更加重视清洁工作的过程、环节和结果。  欧盟GMP对清洁验证的解释是,有文件和记录证明所批准的清洁规程肯定能使设备符合药品生产要求的试验及相关活动。为确认清洁规程的效力,应进行清洁验证。应根据所涉及的物料,合理地确定产品残留、清洁剂和微生物污染的限度标准。 美国FDA最早于1993年发布《清洁验证的检查指南( USA FDA Guide For Inspections: Cleaning Validation)》。美国FDA表明,清洁验证的目的是,证明一个特定的清洁程序能一贯地在某个预先确定的限度内清洁设备;取样和分析测试方法必须具有科学性和提供足够的科学基本原理来支持此验证。 从生产线上,对设备清洁后如何取样?目测的方式已经过时了吗?淋洗水取样,还是棉签擦拭取样? 在实验室,采用什么分析方法检测?是专属性的液相色谱法、离子色谱法?还是非专属性的总有机碳TOC、电导率、pH、热重法? 我们愿意倾听大家在实际应用中的困惑,并很荣幸与大家分享我们目前已有的技术和经验。 与此同时,我们还将给大家带来贝克曼库尔特毛细管电泳在生物制药领域的关键分析技术以及手持式拉曼光谱仪应用于原辅料入厂检测的技术。 艾威仪器科技有限公司诚挚邀请您参加&ldquo 总有机碳TOC方法应用于清洁验证专题讲座&rdquo ! 本次讲座的内容安排: 一、 解读中国《药品生产质量管理规范(2010年修订)》对清洁验证的要求 二、 中国及美国FDA对清洁验证规程建立的相关规定 三、 清洁验证的取样方式与分析方法的选择 四、 如何设立清洁验证的合格限值?─ 符合GMP的同时节约设备清洁成本 五、 GE即开即用的TOC标准品、预清洁样瓶与棉签套装 ─ 助您的清洁验证工作省时省力 六、 总有机碳分析仪的现场演示 七、 毛细管电泳&mdash &mdash 生物制药领域的关键分析技术 八、 NanoRam手持拉曼光谱仪快速准确的用于原辅料入厂检测 九、 提问与答疑 十、 现场抽奖(到会者均可参加) 会议时间:2012年4月19日 08:30&mdash 17:00 会议地点:珠海2000年大酒店 3楼玻璃厅(珠海香洲区人民东路121号) 免收听课费用;中午提供免费工作午餐;交通住宿自理。 报名方式: 1、登陆 www.evertechcn.com 点击右上角的&ldquo 在线报名&rdquo ,在线填写报名信息。 2、电话、传真、邮件确认,先确认先确保座位,额满为止。 报名电话:020-87688215-808 报名传真:020-87688280-808 报名信箱: qimin_ye@evertechcn.com 联系人:叶小姐 参加人员报名回执 公司 地址 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱
  • 工件表面油脂污染度控制检测方案|析塔金属油污清洁度检测仪
    工件表面油脂污染度控制检测方案|析塔金属油污清洁度检测仪-翁开尔"安全控制油脂污染情况"清洁度参考指南是针对零部件清洗工艺或设备系统的研发人员、操作人员、生产链负责人以及测量人员。该指南制定目的是促进通过高效监控来保证工艺质量。德国FiT工业协会 (Fachverband industrielle Teilereinigung e.V.)已经认识到,相关行业需要针对油脂污染问题提出切实可行的质量保证及监控建议。基于现有技术,FiT整理了2015年到2018年历年来多个工艺实例、专家及用户经验,并制定了 "安全控制油脂污染情况"的相关参考指南。当今许多工业领域中,尽管厂家使用了最先进的生产技术,采用多道清洗工艺对零部件进行前处理,都不能完全解决零部件表面残留污染物对后续工艺造成影响,如喷涂、粘接、焊接等后续工艺的附着力不够、起泡、虚焊等问题。因此,零部件表面清洁度是产品及工艺质量的关键指标。生产厂家应借助高效精准的清洁度检测技术来测量零部件的清洗工艺和清洗后的污染物残留情况,从而进行有针对性的清洗过程,使零部件具有足够的清洁度来进行后续生产工艺(如焊接、连接、喷涂、粘接等)和检验成品质量。过去,厂家主要只检测颗粒物清洁度,而现在,他们越来越重视油污、油脂、成品油等有机污染物对产品质量的影响作用。膜状污染物往往是无法避免膜状污染物通常是指油污、油脂、防腐剂、涂料、冷却润滑油、切削油、粘接剂和其他生产助剂残留物、手汗和手指纹等。简单来说,膜状污染物可以理解为在零部件表面上呈现为一层薄薄的、非颗粒状的污染物质。油脂、成品油类和类似有机物的合格值制定众所周知,油脂、成品油类和类似有机物的污染物残留会影响后续工艺质量,如造成涂层附着力不良、起泡、虚焊、粘接不牢固等问题。故此,目前大部分相关行业规定了零部件需要达到合格的表面清洁度。当然,零部件表面没有污染物是最好的,但这只是一个理想状态。这种想法使所有生产厂家都认为,零部件表面油脂等污染残留物会影响后续工艺。虽然在生产过程中可以使用不含硅油的生产助剂,但多数工艺还是需要使用含有油脂的生产助剂。在原材料加工工艺中,冷却润滑剂、切削油等必要生产助剂必然含有天然或合成的油脂。因此,在实际生产中必须确定零部件表面清洁度合格值,使零部件拥有足够的清洁度来保证后续工艺质量。如今越来越多的制造工艺和终端应用重视零部件表面油脂、成品油、指纹等污染物质的残留情况,因此零部件制造商和清洗设备老板需要找到合适而高效的表面清洁度检测设备。为了满足不断增长的清洁度检测需求,FiT的《零部件清洗质量保证工艺控制指南》和《清洗工艺规划检查表》可以提供初步操作指导。而参考指南 "安全控制油脂污染情况"全面论述了这个问题。参考指南相关介绍该指南的前言部分给出了相关定义和术语,用于规范语言;随后解释了膜状污染物的出现、来源及其特性和影响。基于某些具体工艺、终端应用和行业,对检测膜状污染物在生产过程中的重要性日益重要进行了说明;在最后部分指出了本指南的适用范围。该指南能协助生产厂家内部研发、建立标准和优化生产和清洗工艺,保证整体工艺质量和最终产品质量重现性。同时也重点总结了零部件的清洗工艺、清洗前的初始状态以及目前适用的清洗化学和清洗工艺的解决方案。只有通过合适的清洁度检测、分析控制技术,才能从根本上获取到经过清洗工艺零部件的表面清洁度或污染程度。为此,它提出了一些最常见的适用检测方法,并特别强调了与应用有关的适用性和局限性。在最后,该文件概述了目前工艺监测的解决方案。实例部分本指南的实例部分将基础知识与零件清洗的典型应用关联起来,并提供解决方案,也给出了实际操作建议,便于厂家系统性设计出符合产品质量标准的清洗工艺,并能正确快速调整工艺参数。此外,该指南还指出了监测清洗工艺活性物质、污染物质以及检测整个生产链的零部件真实情况。除了需要确定油污、成品油等污染物来源和检测零部件表面清洁度,该指南还提出了零部件表面清洁度合格值的确定方法。根据某个典型应用,它介绍了实际使用过程中使用到的测量和分析控制技术,并说明了各种方法的优点和局限性。此外,它还提出了保证零部件表面清洁度合格的最佳处理工艺,便于厂家以合适的清洗工艺来设计和分析零部件。结合上述建议,生产厂家能借助高效表面清洁度检测仪器来快速监控并改善零部件的上下游清洗工艺。金属零部件表面清洁度最佳检测方案德国析塔表面清洁度仪能可靠精准量化零部件表面清洁度,是目前领先的污染物量化检测技术。该仪器采用共焦法原理,通过光源发射出最佳波长的紫外光探测金属表面的污染物,内置的传感器探测荧光强度,荧光强度的大小取决于零部件表面有机物残留情况。借助完整紫外光源与传感器的共同作用,析塔表面清洁度仪能快速准确量化基材表面的污染物含量。该仪器为客户提供便携式和在线式机型,全面满足工厂车间或实验室的快速监测清洁度的工艺要求,以评价清洁工艺质量,最大程度上避免人为主观判断带来的测量误差,显著增加工艺可靠性。可见,德国析塔表面清洁度仪能协助生产厂家直接判断零部件表面清洁度是否达到合格要求,稳定零部件加工过程中的清洗质量、实现量化控制! 翁开尔是德国析塔SITA清洁度仪中国独家代理商,欢迎致电咨询。
  • 艾威科技关于总有机碳TOC方法应用于清洁验证专题讲座(6.15贵州)邀请函
    总有机碳TOC方法应用于清洁验证专题讲座 &mdash 全新应对《药品生产质量管理规范(2010年修订)》(GMP 2010) 尊敬的先生/女士,您好! 《药品生产质量管理规范(2010年修订)》(2010版GMP)已于2011年1月17日以卫生部79号令的形式公开发布,并于2011年3月1日起施行。2010版GMP在全国范围内,促进了制药企业的整改。 新版GMP共分14章,313条。相对于1998版GMP的14章88条而言,内容大幅增加。新版GMP的最后一条,即第313条规定,新版GMP的具体实施办法与实施步骤由国家食品药品监督管理局(SFDA)规定。SFDA于2011年2月25日,对各省、自治区、直辖市食品药品监督管理局,发出通知&ldquo 关于贯彻实施《药品生产质量管理规范(2010年修订)》的通知&rdquo (国食药监[2011]101号),要求将2010版GMP纳入各级食品药品监督管理部门&ldquo 十二五&rdquo 期间药品监管工作的重点。凡新建药品生产企业,均应符合2010版GMP。现有药品生产企业血液制品、疫苗、注射剂等无菌药品的生产,应该在2013年12月31日前达到2010版GMP的要求。其他类别药品均应在2015年12月31日前达到2010版GMP要求。未达到2010版GMP的企业(车间),在上述规定期限后不得继续生产药品。 在2010版GMP第七章&ldquo 确认与验证&rdquo 的第143条规定了清洁验证:&ldquo 清洁方法应该经过验证,证实其清洁的效果,以有效防止污染和交叉污染。清洁验证应当综合考虑设备使用情况、所使用的清洁剂和消毒剂、取样方法和位置以及相应的取样回收率、残留物的性质和限度、残留物检验方法的灵敏度等因素。&rdquo 本条为新增。新版GMP明确规定清洁方法应当经过验证,并明确了清洁方法验证的目的、内容。将清洁方法纳入验证范围,说明药品监督管理部门更加重视清洁工作的过程、环节和结果。  欧盟GMP对清洁验证的解释是,有文件和记录证明所批准的清洁规程肯定能使设备符合药品生产要求的试验及相关活动。为确认清洁规程的效力,应进行清洁验证。应根据所涉及的物料,合理地确定产品残留、清洁剂和微生物污染的限度标准。 美国FDA最早于1993年发布《清洁验证的检查指南( USA FDA Guide For Inspections: Cleaning Validation)》。美国FDA表明,清洁验证的目的是,证明一个特定的清洁程序能一贯地在某个预先确定的限度内清洁设备;取样和分析测试方法必须具有科学性和提供足够的科学基本原理来支持此验证。 从生产线上,对设备清洁后如何取样?目测的方式已经过时了吗?淋洗水取样,还是棉签擦拭取样? 在实验室,采用什么分析方法检测?是专属性的液相色谱法、离子色谱法?还是非专属性的总有机碳TOC、电导率、pH、热重法? 我们愿意倾听大家在实际应用中的困惑,并很荣幸与大家分享我们目前已有的技术和经验。 与此同时,我们还将给大家带来手持式拉曼光谱仪应用于原辅料入厂检测的技术,欢迎各位带样品检测。 艾威仪器科技有限公司诚挚邀请您参加&ldquo 总有机碳TOC方法应用于清洁验证专题讲座&rdquo ! 本次讲座的内容安排: 一、 解读中国《药品生产质量管理规范(2010年修订)》对清洁验证的要求 二、 中国及美国FDA对清洁验证规程建立的相关规定 三、 清洁验证的取样方式与分析方法的选择 四、 如何设立清洁验证的合格限值?─ 符合GMP的同时节约设备清洁成本 五、 GE即开即用的TOC标准品、预清洁样瓶与棉签套装 ─ 助您的清洁验证工作省时省力 六、 总有机碳分析仪的现场演示 七、 NanoRam手持拉曼光谱仪快速准确的用于原辅料入厂检测 八、 提问与答疑 九、 现场抽奖(到会者均可参加) 会议时间:2012年6月15日 08:30&mdash 16:00 会议地点: 贵州栢顿酒店 六楼 多功能厅(贵州省贵阳市延安东路18号) 免收听课费用;中午提供免费工作午餐;交通住宿自理。 报名方式: 1、登陆 www.evertechcn.com 点击右上角的&ldquo 在线报名&rdquo ,在线填写报名信息。 2、电话、传真、邮件确认,先确认先确保座位,额满为止。 报名电话:020-87688215-808 报名传真:020-87688280-808 报名信箱: qimin_ye@evertechcn.com 联系人:叶小姐 参加人员报名回执 公司地址 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱
  • 艾威科技关于总有机碳TOC方法应用于清洁验证专题讲座(4.17广州)邀请函
    总有机碳TOC方法应用于清洁验证专题讲座 全新应对《药品生产质量管理规范(2010年修订)》(GMP 2010) 尊敬的先生/女士,您好! 《药品生产质量管理规范(2010年修订)》(2010版GMP)已于2011年1月17日以卫生部79号令的形式公开发布,并于2011年3月1日起施行。2010版GMP在全国范围内,促进了制药企业的整改。 新版GMP共分14章,313条。相对于1998版GMP的14章88条而言,内容大幅增加。新版GMP的最后一条,即第313条规定,新版GMP的具体实施办法与实施步骤由国家食品药品监督管理局(SFDA)规定。SFDA于2011年2月25日,对各省、自治区、直辖市食品药品监督管理局,发出通知&ldquo 关于贯彻实施《药品生产质量管理规范(2010年修订)》的通知&rdquo (国食药监[2011]101号),要求将2010版GMP纳入各级食品药品监督管理部门&ldquo 十二五&rdquo 期间药品监管工作的重点。凡新建药品生产企业,均应符合2010版GMP。现有药品生产企业血液制品、疫苗、注射剂等无菌药品的生产,应该在2013年12月31日前达到2010版GMP的要求。其他类别药品均应在2015年12月31日前达到2010版GMP要求。未达到2010版GMP的企业(车间),在上述规定期限后不得继续生产药品。 在2010版GMP第七章&ldquo 确认与验证&rdquo 的第143条规定了清洁验证:&ldquo 清洁方法应该经过验证,证实其清洁的效果,以有效防止污染和交叉污染。清洁验证应当综合考虑设备使用情况、所使用的清洁剂和消毒剂、取样方法和位置以及相应的取样回收率、残留物的性质和限度、残留物检验方法的灵敏度等因素。&rdquo 本条为新增。新版GMP明确规定清洁方法应当经过验证,并明确了清洁方法验证的目的、内容。将清洁方法纳入验证范围,说明药品监督管理部门更加重视清洁工作的过程、环节和结果。 欧盟GMP对清洁验证的解释是,有文件和记录证明所批准的清洁规程肯定能使设备符合药品生产要求的试验及相关活动。为确认清洁规程的效力,应进行清洁验证。应根据所涉及的物料,合理地确定产品残留、清洁剂和微生物污染的限度标准。 美国FDA最早于1993年发布《清洁验证的检查指南( USA FDA Guide For Inspections: Cleaning Validation)》。美国FDA表明,清洁验证的目的是,证明一个特定的清洁程序能一贯地在某个预先确定的限度内清洁设备;取样和分析测试方法必须具有科学性和提供足够的科学基本原理来支持此验证。 从生产线上,对设备清洁后如何取样?目测的方式已经过时了吗?淋洗水取样,还是棉签擦拭样? 在实验室,采用什么分析方法检测?是专属性的液相色谱法、离子色谱法?还是非专属性的总有机碳TOC、电导率、pH、热重法? 我们愿意倾听大家在实际应用中的困惑,并很荣幸与大家分享我们目前已有的技术和经验。 与此同时,我们还将给大家带来贝克曼库尔特毛细管电泳在生物制药领域的关键分析技术以及手持式拉曼光谱仪应用于原辅料入厂检测的技术。 艾威仪器科技有限公司诚挚邀请您参加&ldquo 总有机碳TOC方法应用于清洁验证专题讲座&rdquo ! 本次讲座的内容安排: 一、 解读中国《药品生产质量管理规范(2010年修订)》对清洁验证的要求 二、 中国及美国FDA对清洁验证规程建立的相关规定 三、 清洁验证的取样方式与分析方法的选择 四、 如何设立清洁验证的合格限值?─ 符合GMP的同时节约设备清洁成本 五、 GE即开即用的TOC标准品、预清洁样瓶与棉签套装 ─ 助您的清洁验证工作省时省力 六、 总有机碳分析仪的现场演示 七、 毛细管电泳&mdash &mdash 生物制药领域的关键分析技术 八、 NanoRam手持拉曼光谱仪快速准确的用于原辅料入厂检测 九、 提问与答疑 十、 现场抽奖(到会者均可参加) 会议时间:2012年4月17日 08:30&mdash 17:00 会议地点:广州文化假日酒店 四楼 筵庆厅(广州市环市东路华侨新村光明路28号) 交通指引:地铁5号线 淘金站 免收听课费用;中午提供免费工作午餐;交通住宿自理。 报名方式: 1、登陆 www.evertechcn.com 点击右上角的&ldquo 在线报名&rdquo ,在线填写报名信息。 2、电话、传真、邮件确认,先确认先确保座位,额满为止。 报名电话:020-87688215-808报名传真:020-87688280-808 报名信箱: qimin_ye@evertechcn.com 联系人:叶小姐 参加人员报名回执 公司 地址 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱
  • 艾威科技关于总有机碳TOC方法应用于清洁验证专题讲座(4.18深圳)邀请函
    总有机碳TOC方法应用于清洁验证专题讲座 全新应对《药品生产质量管理规范(2010年修订)》(GMP 2010) 尊敬的先生/女士,您好! 《药品生产质量管理规范(2010年修订)》(2010版GMP)已于2011年1月17日以卫生部79号令的形式公开发布,并于2011年3月1日起施行。2010版GMP在全国范围内,促进了制药企业的整改。 新版GMP共分14章,313条。相对于1998版GMP的14章88条而言,内容大幅增加。新版GMP的最后一条,即第313条规定,新版GMP的具体实施办法与实施步骤由国家食品药品监督管理局(SFDA)规定。SFDA于2011年2月25日,对各省、自治区、直辖市食品药品监督管理局,发出通知&ldquo 关于贯彻实施《药品生产质量管理规范(2010年修订)》的通知&rdquo (国食药监[2011]101号),要求将2010版GMP纳入各级食品药品监督管理部门&ldquo 十二五&rdquo 期间药品监管工作的重点。凡新建药品生产企业,均应符合2010版GMP。现有药品生产企业血液制品、疫苗、注射剂等无菌药品的生产,应该在2013年12月31日前达到2010版GMP的要求。其他类别药品均应在2015年12月31日前达到2010版GMP要求。未达到2010版GMP的企业(车间),在上述规定期限后不得继续生产药品。 在2010版GMP第七章&ldquo 确认与验证&rdquo 的第143条规定了清洁验证:&ldquo 清洁方法应该经过验证,证实其清洁的效果,以有效防止污染和交叉污染。清洁验证应当综合考虑设备使用情况、所使用的清洁剂和消毒剂、取样方法和位置以及相应的取样回收率、残留物的性质和限度、残留物检验方法的灵敏度等因素。&rdquo 本条为新增。新版GMP明确规定清洁方法应当经过验证,并明确了清洁方法验证的目的、内容。将清洁方法纳入验证范围,说明药品监督管理部门更加重视清洁工作的过程、环节和结果。  欧盟GMP对清洁验证的解释是,有文件和记录证明所批准的清洁规程肯定能使设备符合药品生产要求的试验及相关活动。为确认清洁规程的效力,应进行清洁验证。应根据所涉及的物料,合理地确定产品残留、清洁剂和微生物污染的限度标准。 美国FDA最早于1993年发布《清洁验证的检查指南( USA FDA Guide For Inspections: Cleaning Validation)》。美国FDA表明,清洁验证的目的是,证明一个特定的清洁程序能一贯地在某个预先确定的限度内清洁设备;取样和分析测试方法必须具有科学性和提供足够的科学基本原理来支持此验证。 从生产线上,对设备清洁后如何取样?目测的方式已经过时了吗?淋洗水取样,还是棉签擦拭取样? 在实验室,采用什么分析方法检测?是专属性的液相色谱法、离子色谱法?还是非专属性的总有机碳TOC、电导率、pH、热重法? 我们愿意倾听大家在实际应用中的困惑,并很荣幸与大家分享我们目前已有的技术和经验。 与此同时,我们还将给大家带来手持式拉曼光谱仪应用于原辅料入厂检测的技术以及2010新药典对实验室纯水的新要求与制药行业实验室纯水的应用。 艾威仪器科技有限公司诚挚邀请您参加&ldquo 总有机碳TOC方法应用于清洁验证专题讲座&rdquo ! 本次讲座的内容安排: 一、 解读中国《药品生产质量管理规范(2010年修订)》对清洁验证的要求 二、 中国及美国FDA对清洁验证规程建立的相关规定 三、 清洁验证的取样方式与分析方法的选择 四、 如何设立清洁验证的合格限值?─ 符合GMP的同时节约设备清洁成本 五、 GE即开即用的TOC标准品、预清洁样瓶与棉签套装 ─ 助您的清洁验证工作省时省力 六、 总有机碳分析仪的现场演示 七、 NanoRam手持拉曼光谱仪快速准确的用于原辅料入厂检测 八、 2010新药典对实验室纯水的新要求与制药行业实验室纯水的应用 九、 提问与答疑 十、 现场抽奖(到会者均可参加) 会议时间:2012年4月18日 08:30&mdash 17:00 会议地点:深圳东华假日酒店 三楼 春华厅(深圳南山区南海大道东华园2307号) 免收听课费用;中午提供免费工作午餐;交通住宿自理。 报名方式: 1、登陆 www.evertechcn.com 点击右上角的&ldquo 在线报名&rdquo ,在线填写报名信息。 2、电话、传真、邮件确认,先确认先确保座位,额满为止。 报名电话:020-87688215-808 报名传真:020-87688280-808 报名信箱: qimin_ye@evertechcn.com 联系人:叶小姐 参加人员报名回执 公司 地址 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱
  • 艾威科技关于总有机碳TOC方法应用于清洁验证专题讲座(4.24海口)邀请函
    总有机碳TOC方法应用于清洁验证专题讲座 &mdash 全新应对《药品生产质量管理规范(2010年修订)》(GMP 2010) 尊敬的先生/女士,您好! 《药品生产质量管理规范(2010年修订)》(2010版GMP)已于2011年1月17日以卫生部79号令的形式公开发布,并于2011年3月1日起施行。2010版GMP在全国范围内,促进了制药企业的整改。 新版GMP共分14章,313条。相对于1998版GMP的14章88条而言,内容大幅增加。新版GMP的最后一条,即第313条规定,新版GMP的具体实施办法与实施步骤由国家食品药品监督管理局(SFDA)规定。SFDA于2011年2月25日,对各省、自治区、直辖市食品药品监督管理局,发出通知&ldquo 关于贯彻实施《药品生产质量管理规范(2010年修订)》的通知&rdquo (国食药监[2011]101号),要求将2010版GMP纳入各级食品药品监督管理部门&ldquo 十二五&rdquo 期间药品监管工作的重点。凡新建药品生产企业,均应符合2010版GMP。现有药品生产企业血液制品、疫苗、注射剂等无菌药品的生产,应该在2013年12月31日前达到2010版GMP的要求。其他类别药品均应在2015年12月31日前达到2010版GMP要求。未达到2010版GMP的企业(车间),在上述规定期限后不得继续生产药品。 在2010版GMP第七章&ldquo 确认与验证&rdquo 的第143条规定了清洁验证:&ldquo 清洁方法应该经过验证,证实其清洁的效果,以有效防止污染和交叉污染。清洁验证应当综合考虑设备使用情况、所使用的清洁剂和消毒剂、取样方法和位置以及相应的取样回收率、残留物的性质和限度、残留物检验方法的灵敏度等因素。&rdquo 本条为新增。新版GMP明确规定清洁方法应当经过验证,并明确了清洁方法验证的目的、内容。将清洁方法纳入验证范围,说明药品监督管理部门更加重视清洁工作的过程、环节和结果。  欧盟GMP对清洁验证的解释是,有文件和记录证明所批准的清洁规程肯定能使设备符合药品生产要求的试验及相关活动。为确认清洁规程的效力,应进行清洁验证。应根据所涉及的物料,合理地确定产品残留、清洁剂和微生物污染的限度标准。 美国FDA最早于1993年发布《清洁验证的检查指南( USA FDA Guide For Inspections: Cleaning Validation)》。美国FDA表明,清洁验证的目的是,证明一个特定的清洁程序能一贯地在某个预先确定的限度内清洁设备;取样和分析测试方法必须具有科学性和提供足够的科学基本原理来支持此验证。 从生产线上,对设备清洁后如何取样?目测的方式已经过时了吗?淋洗水取样,还是棉签擦拭取样? 在实验室,采用什么分析方法检测?是专属性的液相色谱法、离子色谱法?还是非专属性的总有机碳TOC、电导率、pH、热重法? 我们愿意倾听大家在实际应用中的困惑,并很荣幸与大家分享我们目前已有的技术和经验。 与此同时,我们还将给大家带来手持式拉曼光谱仪应用于原辅料入厂检测的技术以及2010新药典对实验室纯水的新要求与制药行业实验室纯水的应用。 艾威仪器科技有限公司诚挚邀请您参加&ldquo 总有机碳TOC方法应用于清洁验证专题讲座&rdquo ! 本次讲座的内容安排: 一、 解读中国《药品生产质量管理规范(2010年修订)》对清洁验证的要求 二、 中国及美国FDA对清洁验证规程建立的相关规定 三、 清洁验证的取样方式与分析方法的选择 四、 如何设立清洁验证的合格限值?─ 符合GMP的同时节约设备清洁成本 五、 GE即开即用的TOC标准品、预清洁样瓶与棉签套装 ─ 助您的清洁验证工作省时省力 六、 总有机碳分析仪的现场演示 七、 NanoRam手持拉曼光谱仪快速准确的用于原辅料入厂检测 八、 2010新药典对实验室纯水的新要求与制药行业实验室纯水的应用 九、 提问与答疑 十、 现场抽奖(到会者均可参加) 会议时间:2012年4月24日 08:30&mdash 17:00 会议地点:海口宝驹大酒店 三楼 多功能厅 (海口龙华区南海大道55号,近龙昆南路,海南省食品药品监督管理局旁) 免收听课费用;中午提供免费工作午餐;交通住宿自理。 报名方式: 1、登陆 www.evertechcn.com 点击右上角的&ldquo 在线报名&rdquo ,在线填写报名信息。 2、电话、传真、邮件确认,先确认先确保座位,额满为止。 报名电话:020-87688215-808报名传真:020-87688280-808 报名信箱: qimin_ye@evertechcn.com 联系人:叶小姐 参加人员报名回执 公司 地址 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱 姓名 职务 手机 电子邮箱
  • 使用Sievers M9分析仪检测清洁验证样品0.2M KOH中的TOC
    目的 本研究证明Sievers® M9 TOC分析仪能够通过测量总有机碳(TOC)和电导率来检测和定量分析残留的微量0.2M KOH(一种常用清洗剂)。背景信息稀KOH溶液是制药业中常用的基本清洁剂,用于在转换产品前清洗生产设备。在进行清洁验证时,必须确定设备的最后冲洗液中是否有残留的清洁剂。KOH分子本身不含碳,因而不产生TOC信号,但我们可以通过测量电导率来有效地检测KOH。KOH常伴随有痕量的有机碳,我们无法通过测量电导率来检测这些有机碳。如果不能清除这些有机碳,就会影响产品质量。因此检测KOH中的碳污垢,能够提高清洁工艺的验证效率。本研究中的数据表明,可以用Sievers M9分析仪来有效地测量KOH的TOC和电导率。实验测试计划对酸化的0.2M KOH溶液(pH 值为 1.78)的初步分析结果显示,0.2M KOH含有约3.7%(质量百分比)的碳。对未酸化的0.2M KOH的分析结果显示,其电导率为4.4 μS/cm。使用上述碳含量和电导率的分析数据,来完成以下测试步骤。用M9分析仪测量TOC向1 ppm 0.2M KOH储备溶液中分别加入4种浓度的KHP溶液(KHP 浓度分别为0.5 ppm、1 ppm、5 ppm、20 ppm),得到不同TOC浓度的溶液,用于Sievers M9分析仪的测试。KHP溶液由1,000 ppm储备溶液制成。1 ppm 0.2M KOH溶液的含碳量为3.7%(质量百分比),来自酸化的0.2M KOH。M9分析仪的自动加试剂功能(AutoReagent)能够自动确定分析所需的最佳试剂流量。当运行未知TOC浓度的样品时(例如进行清洁验证时),自动加试剂功能能够节省操作时间。表1列出了在本研究中进行TOC分析时所采用的最佳试剂流量。用M9分析仪测量电导率用20 μS/cm储备溶液制成4种电导率浓度的0.2M KOH溶液。使用20 μS/cm电导率储备溶液,基于非酸化的0.2M KOH电导率4.4 µ S/cm基础之上,使用0.2M KOH溶液稀释至0.1%(质量比)配制而成。所有的0.2M KOH溶液均在干净的低TOC玻璃器皿中制备,然后立即移到Sievers认证的TOC样品瓶(认证TOC小于10 ppb)中进行分析。对所有样品重复测量4次,不舍弃任何测量结果。测试设备Sievers M9实验室型TOC分析仪,序列号:1611-2048Sievers自动进样器,序列号:14030016DataPro2软件校准和确认TOC校准用标准的多点系统任务来校准Sievers M9分析仪。表2列出了校准数据。校准包括TC和IC通道。校准参数在设定值内。R2为1.0,表示校准在预期范围内是线性的。TOC确认用蔗糖来确认2 ppm处的校准。表3列出了确认结果。结果和讨论表4列出了将不同浓度的KHP加入1 ppm 0.2M KOH溶液中的TOC测量值,图1是线性回归结果。加入KHP的0.2M KOH的TOC回收率在0.5-20 ppm浓度范围内是高度线性的(R2=1)。1 ppm 0.2M KOH的TOC为1020±12.6 ppb,是Sievers M9分析仪的0.03 ppb检测限的30,000倍以上。这些数据表明,痕量的0.2M KOH不会影响Sievers M9分析仪准确和精确地检测有机碳。表5列出了0.5-20 μS/cm范围内KOH的电导率测量结果,图2是线性回归结果。0.2M KOH的电导率在0.5-20 μS/cm范围内是高度线性的(R2=0.996)。0.5 μS/cm 0.2M KOH的电导率为0.1±0.03 μS/cm,是Sievers M9分析仪的0.01 μS/cm检测限的10倍以上。因此可以用Sievers M9分析仪通过测量电导率来准确、精确地检测0.2M KOH。结论同时测量电导率和TOC的能力使得Sievers M9分析仪能够在清洁验证时有效地检测出残留的清洁剂。Sievers M9的电导率功能可以检测到大于0.5 μS/cm的KOH(是一种市售的碱性清洁剂)。当痕量的0.2M KOH中的KHP浓度范围是0.5-20 ppm时,TOC响应为线性(R2=1),表明KOH基质效应对TOC测量的影响微乎其微。由于KOH分子本身不含有机碳,无法通过测量TOC来检测痕量的0.2M KOH,但同时测量TOC和电导率就能够准确了解冲洗液中是否含有污染物和化合物 。因 此 在 验 证 清 洁 工 艺 时 , 具 有 电 导 率 功 能 的Sievers M9 分析仪是测量无机离子和有机化合物的最佳仪器。◆ ◆ ◆联系我们,了解更多!
  • 实验猿的福音——清洗神器助你一臂之力
    提到实验室的那些瓶瓶罐罐,想必圈内人都不陌生吧,什么广口瓶、细口瓶,什么培养皿、烧杯......用起来,那叫一个得心应手,洗起来,呃......叫一个捶胸顿足。人工手洗,太慢了说到这些玻璃器皿,实验室主任最近头发都愁白了,没啥事儿的时候还好,这业务量一大,那些被使用过的瓶瓶罐罐们,扎堆,使出洪荒之力来洗瓶子,居然还是追不上使用的消耗量,每天实验室都在上演这样的场景:实验猿:“主任,锥形瓶不够用了!”主任:“什么,不是刚洗好的一批吗?怎么又不够了?”实验猿:“刚刚在做滴定实验中用掉一部分,还有一部分作为反应容器在使用。”主任:“......”。毛刷清洗,不干净对于负责清洗玻璃器皿的实验猿有话要说:洗刷刷到手抽筋还不落好,有些试管是怎么也刷不净,有的都动用毛刷沾洗衣粉或去污粉擦洗了,还是洗的不够干净,简直难洗到怀疑人生,尤其是那些细口肚大的容量瓶,角角落落老洗不到;还有一些对清洁度要求高的仪器一般用重铬酸钾洗液浸泡后用水冲洗,但重铬酸钾洗液容易失效变绿,污染环境,真的难办。清洗实验室器皿最重要的方面是最终玻璃器皿完全没有任何残余物,不正确合理的清洗方式会对质量、安全造成很大影响,例如,清洗剂的残余物导致不正确的分析结果;高度敏感的分析方法要求彻底清洁实验室玻璃器皿;来自清洗过程的表面活化剂的残余物影响;产生交叉污染等。福音驾到,看我的睿科仪器AW-180系列全自动实验室玻璃器皿清洗机,可用于各种实验器皿的清洗、消毒和干燥,主要通过水温控制、清洗剂乳化剥离作用、强大水流冲刷力的共同作用,对试管、移液管、培养皿、锥形瓶、容量瓶、烧杯和其他试验器皿等进行标准的清洗和消毒,为实验提供可靠高效的清洗保证,具有清洗均一性好、清洗结果可控、清洗自动化等优点。镜面316L不锈钢的工作内腔,且腔体压模设计(保证不变形),一体成型,保证仪器内腔的洁净度,确保无细菌的产生;隔热、阻燃、降噪的设计,保证了仪器使用的安全性,降低仪器运行时产生的噪声对实验人员的影响,及降低仪器运行的能耗,环保节能;至少带有三层过滤系统,过滤系统包含316L不锈钢集水杯,清洗残渣会自动收集。清洗神器,有你才完美一个月后的实验室:实验猿A:“今天下班后,我们去吃烧烤吧。”实验猿B:“咦,你今天居然不用洗完瓶子再下班嘛?”实验猿A:“有了睿科牌清洗机,以后再也不用洗瓶子啦啦啦啦”。睿科仪器AW-180系列全自动实验室玻璃器皿清洗机,你值得拥有~
  • 基因测序仪成人类“解密神器”
    神器,网络热词之一,形容特别好用的工具。目前,基因测序仪可谓生命科学的神器,帮助人们越来越快速准确地解开生命的奥秘,并影响着人们的生活。   拉登被击毙后,如何确定死者就是其本人?德国暴发大肠杆菌疫情背后的元凶是谁?怎样为不同患者有针对性地治疗?这些看似不相干的问题,基因测序仪都可以帮助人们找到答案。   据透露,生物产业&ldquo 十二五&rdquo 规划中,基因测序产业将是重点领域。然而,在测序仪器方面,我国却乏善可陈,我们或许可以带着上述疑问来看看先进生产商Life Technologies的基因测序仪器应用于某些领域的故事。   广泛应用于确定身份   拉登也许想过自己会死在美国人手里,这一刻终于还是到来了。   就像在电影中一样,美军特种部队幽灵般潜入拉登的藏身之处,并且很快把他堵在了房间内。   抵抗很有限,拉登中枪身亡。这一消息轰动了世界。   但故事并未就此结束,疑问接踵而至,拉登真的死了吗?或者说,被击毙的真是拉登本人吗?   毕竟,拉登多次被传出死讯,却都被证伪。他也一次次被美国特工接近但又屡次成功逃匿。   美国政府对舆论作出的反应很迅速,事发后第二天下午,美国总统国土安全与反恐助理布伦南表示,基因检测结果证明&ldquo 该尸体和拉登本人达到&lsquo 99.9%&rsquo 的匹配率&rdquo 。   做出这一快速反应依靠的正是Life Technologies公司提供的基因测序仪。   据Life Technologies公司有关人员介绍,利用测序技术,美军和美国中央情报局首先提取拉登的DNA,然后再将DNA与来自拉登家人的DNA参照样本对比,随即便得出了上述结果。   其实,这对于基因测序仪来说不算什么,已经作为一种成熟的技术被广泛应用在警方确定犯罪嫌疑人身份,打击犯罪的日常工作中。   找出致命元凶   也许你会觉得,上面的内容和普通大众的生活还是比较远。   那么,疾病控制和食品安全呢?近些年国人简直谈之色变。   即便发达国家也受上述问题困扰。就在去年,德国暴发出血性大肠杆菌疫情。   患者倒下了,黄瓜随后&ldquo 躺着中枪&rdquo ,被认为是带有病菌的&ldquo 毒黄瓜&rdquo ,虽然后被证实冤枉,但瓜农的经济损失已然严重。   一起&ldquo 中枪&rdquo 的,还有中国产的豆芽。造成&ldquo 误伤&rdquo 的部分原因是疾控人员一时难以确定疫情背后的元凶到底是什么病菌。   这时,科学家们再次掏出了基因测序仪这把枪,事实证明,这一枪打中了目标。   据Life Technologies公布的信息显示,该公司使用Ion Personal Genome Machine与德国明斯特大学医院合作进行的基因测序得出的数据有力地表明,一种新混合型致病大肠杆菌菌株是导致德国致命疫情的原因。检测结果表明,典型的基因存在于两种不同类型的大肠杆菌中:肠聚集性大肠杆菌(EAEC)和肠出血性大肠杆菌(EHEC)。这些结果有助于了解这种细菌的侵略性并阻止疫情进一步暴发。   &ldquo 快速全基因组测序结果使我们在几天内发现细菌毒力性状的独特组合&hellip &hellip 使德国经过此次疫情暴发克隆了一种来自不同大肠杆菌致病变型的独特混合类型。&rdquo 德国明斯特大学医院卫生研究所科学家Alexander Mellmann说。   基因测序仪也被用来确诊中国四川省疾病控制中心的第一例甲型 H1N1流感。   目前在我国,众多医院的临床实验室已经使用基因测序产品检验乙型肝炎病毒DNA。   此外,在北京奥运会和上海世博会以及今年伦敦奥运会期间,基于基因测序的食品安全检测技术用于大会的食品安全保障。   把医疗带入个体化时代   在基因测序仪的帮助下,大众的健康有了更多保障,但总有不幸的人被罕见病瞄上。   1996年,一对龙凤胎在Beery一家诞生了。惊喜过后,阴影随即压了过来:两个孩子经常呕吐,并伴有腹部绞痛。   直到2001年,罪魁祸首才被发现&mdash &mdash 一种名为多巴反应性肌张力障碍的疾病,并通过服用了小剂量的左旋多巴而缓解了很多症状。   但乐观的局面并未一直持续下去。女孩Alexis患上了严重的呼吸问题,男孩Noah的情况也令人担忧。他们又重新求医问药。巧合的是,孩子的父亲正是Life Technologies公司时任首席信息官。随后,在其建议下,基因测序仪这一&ldquo 神器&rdquo 再次被&ldquo 祭出&rdquo 。   当对双胞胎都进行了全基因组测序并和他们的父母、哥哥进行对比研究之后,研究人员和医生建议做出了针对这两位小患者&ldquo 个体化&rdquo 的治疗方案:增加补充小剂量五羟色胺药物,并使这对双胞胎回归正常生活。   基因测序所带来的个体化医疗正在扩展到常见和多发疾病领域。例如肿瘤,中国工程院院士詹启敏曾在《肿瘤研究的现状与挑战》的报告中表示,肿瘤实际上是基因组改变的一种疾病,找到分子靶点进行靶向治疗和个体化医疗,癌症的治愈率就会高很多。   &ldquo 如果把肿瘤比作一座冰山,水面上的部分是通过临床诊断等手段可以诊断出来的肿瘤,诊断之后进行治疗。&rdquo 他指出,&ldquo 如果我们通过基因测序技术了解水面下的冰床,就能找到分子靶点进行靶向治疗,从而大大提高疾病的疗效。&rdquo   中科院北京基因组研究所副所长于军表示,基因分析是个体化医疗的前提,基因测序技术的发展在驱动着个体化医疗的进程。   今年,台式基因测序仪 Ion Proton在中国推出,完成个人全基因组测序的时间成本下降到一天之内,经济成本下降到了1000美元。   基因测序服务距离普通人又近了一步。
  • 雅培新冠快检仪器受到质疑:ID NOW是新冠检测神器吗?
    p   随着新冠肺炎疫情在美国持续高位增长,由美国总统特朗普亲自“带货”的ID NOW新冠肺炎快速检测“神器”也受到全世界的广泛关注。 /p p   这款新冠病毒检测神器,便是美国医疗器械制造公司雅培在今年3月底推出的一款能在5分钟就检测出是否感染新冠病毒的新型快速检测工具。而且比起其他检测工具,雅培公司的这个名叫“ID-NOW”的新冠病毒检测工具相当便携,只有一台烤面包机的大小。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/6aefed68-874e-4ca8-8583-16eed4a1269d.jpg" title=" 雅培 id now.jpg" alt=" 雅培 id now.jpg" / /p p style=" text-align: center " strong 雅培 ID NOW 新冠病毒检测工具 /strong /p p   然而近日,纽约大学朗格尼医学院在bioRxiv网站发布了一篇预印本论文,论文对比Cepheid公司的检测设备Xpert Xpress和雅培的“ID NOW”产品,对101位检测者进行鼻拭子取样,Cepheid公司的检测结果发现101人中有31例呈阳性,而这31人的干鼻拭子样本在ID NOW上检测,却显示其中48%的人为阴性。即便研究人员换用更精确的鼻咽拭子进行检测,ID NOW的漏检率也达到1/3。 /p p   研究人员认为,雅培的快速检测装置“漏掉了有临床照片为证的新冠肺炎入院患者的阳性样本,使得这项技术在我们的临床环境中是不可接受的。” /p p br/ /p p   而北京大学教授、北京未来基因诊断高精尖创新中心副主任黄岩谊和清华大学生命学院研究员王建斌近日在接受媒体采访时也表示,这种‘5分钟出结果’神器并不是新发明。早在新冠病毒出现之前就已经是市场上用来检测流感病毒的便携设备。所依赖的是一种比较冷门的扩增技术,属于等温扩增的一种。”但目前这一方法的准确度仍然比不上核酸检测。 /p p   而美国CNBC、《纽约时报》、《华盛顿邮报》以及福克斯新闻网等新闻机构也都报道了ID NOW仪器的糟糕误诊率。 /p p   目前,纽约大学论文目前尚未经过“同行评审”。而美国时间5月13日,雅培在官网对纽约大学的研究做了回应并不认可论文结论。并表示在最近华盛顿州开展的另一项研究中,大约1000名接受测试的人员在实验室测试中检测出新冠肺炎阳性23例,而ID NOW检出新冠肺炎21例,说明仪器灵敏度为91%。 /p p   14日,雅培再次在官网发布关于ID NOW的产品通告,通告再次表示了对纽约大学的研究不认可,认为测试结果取决于许多因素,包括患者的筛选,标本类型,收集,处理,存储,运输环境的不同以及对设计测试方式的一致性等。但也表示公司正在对ID NOW产品进行一些新的研究以了解产品性能。 /p p   此外,雅培公司表示未来会更多向用户阐明ID NOW的产品信息,以便为医疗机构提供更好的指导,如果ID NOW检测结果与患者临床症状不一致或医生认为有必要对患者在进行检测,则建议使用另一种分子检测方法进行检测。我们还将加强适当的样品收集和处理说明。 /p p   对于ID NOW产品,雅培表示会继续优化产品对新冠病毒的测试效果。也会加强对产品用户的样品收集和仪器操作说明指导。 /p
  • 推荐两个来自2022年诺奖得主的实验神器!
    瑞典皇家科学院10月5日宣布,将2022年诺贝尔化学奖授予科学家Carolyn R. Bertozzi、Morten Meldal和K. Barry Sharpless,以表彰他们在“点击化学和生物正交化学”方面所做出的贡献。CR. Bertozzi是第一个提出生物正交反应概念的人。生物正交反应是指在活体细胞或组织中,能够在不干扰生物自身生化反应条件下可以进行的化学反应,是化学生物学中非常重要的工具。生物正交反应必须发生在复杂的生命条件下,与点击反应一样温和且高效,且具有高选择性。那么生物正交反应和近期火热的免疫治疗有什么关系呢?CR. Bertozzi课题组就用这种反应将唾液酸酶和一种抗体药物(曲妥珠单抗)偶联物T-Sia 2形成一种新的免疫检查点抑制剂疗法,并在《Nature》子刊上发表了题为Targeted glycan degradation potentiates the anticancer immune response in vivo [1]的文章(以下用“该文”表示)。唾液酸酶的作用唾液酸残基(基本单糖结构单元之一)在肿瘤细胞中上调,与受体Siglecs结合可形成免疫抑制效果。而唾液酸酶可以除掉这些唾液酸,阻断Siglecs-唾液酸的相互作用。 唾液酸酶-抗体偶联作为免疫检查点抑制剂示意图抗体和唾液酸酶的偶联方式就是著名的生物正交反应——具有张力的环状炔与叠氮的无金属催化的点击反应。生物正交反应示意图在偶联抗体生成后仍需要面临两个问题:酶和抗体之间linker是否稳定?考虑到抗体需要有ADCC等效应来杀死肿瘤,修饰后的抗体是否还有Fc受体的结合活性?该文使用Sartorius的Incucyte® 实时活细胞分析系统 进行linker稳定性分析。用荧光基团标记不同linker(oxime或HIPS)偶联抗体,可通过荧光强弱与荧光持续性判断linker的稳定性。使用Incucyte® 进行活细胞实时成像,发现HIPS比较稳定,同时克服了抗体和酶之间先前使用的肟键的不稳定性。Incucyte®每隔2小时拍摄,动态观察细胞内抗体linker荧光的持续情况(稳定性),10倍镜(图cde)C 图 正常培养基活细胞培养;D 图 加入蛋白酶抑制剂活细胞培养;E 图 固定细胞;HIPS为红色,oxime为蓝色。分析参数:使用Top-Hat减噪算法半径为100-μm;荧光阈值:0.2 RCU;边界灵敏度 −25;中空填充:200 μm2;最大面积 2,600 μm2 ;使用积分荧光面积输出结果。抗体和Fc受体的结合活性作为抗体药物的重要表征方法,该文通过Octet® 非标记分子互作系统进行分析。发现偶联后的抗体药物(T-Sia2)与Fc受体的亲和力与未偶联的药物类似。Octet® RED 96数据用链霉亲和素传感器(SA)固化生物素化的Fc受体,与100 nM的抗体或者抗体偶联物结合20 s,解离40 s。在制备一些对照蛋白的时候,也用到了Octet® 检测其与Fc受体的亲和力(数据未列出)。T-Sia 2在移植了同系HER2+癌细胞的小鼠模型中,作者观察到肿瘤生长延迟,并且证明与肿瘤唾液酸减少有关。在动物试验中也说明了这种方法的可行性。生物正交反应在活细胞成像、药物可控靶向释放、抗体药物偶联,甚至聚合物化学、材料表面化学领域均有应用,而该文就是在抗体药物偶联中的一个案例。CR. Bertozzi课题组在多篇文章中都使用了Incucyte® 实时活细胞分析系统和Octet® 非标记分子互作系统。好马配好鞍,Octet® 和Incucyte® 不愧为2022年诺奖得主都在用的实验神器!那为什么大家都争先恐后的使用这两款神器呢?使用Incucyte® 实时活细胞分析系统的优势培养箱内可长达数周的连续观察,最短几分钟间隔拍摄,减少人力,防止过多操作对细胞的伤害;如该文每隔2个小时拍摄,共拍摄4天。6个板位,分别独立设置检测程序,可以兼容各种孔板和培养皿,通量高;如该文有各种免疫抑制剂、效靶比等实验组,Incucyte® 一次可以完成所有实验组实验。高效简便的模块化软件设置和数据分析,输出图片、视频、生长曲线等多指标多参数;该文提到了使用Incucyte®多个参数的调节,使得结果更加准确。大于100种优化过的活细胞专用荧光试剂、耗材及详尽的Protocol,文章数大于12000篇。使用Octet® 非标记分子互作系统的优势- 非标记Direct Binding是趋势,它的结果更加准确。- 快速测定亲和力,更加定量化对互作进行表征。- 无洗涤步骤,可测弱亲和力(解离快);如该文Fc受体解离快,无法用带洗涤的传统方法建立结合活性检测。- 测试时间短,一般10分钟,更快拿到结果;如该文5分钟就可以完成实验。- 实验形式多样化:定性,两者结合,协同/竞争实验,垂钓。- 写入美国药典,文章10000篇,认可度广。- 万金油技术,可以用与检测DNA、小分子、蛋白等各种生物分子。- 使用方便,成本相对较低。再好的idea与成就,也需要用强有力的手段和工具去实现,Incucyte® 实时活细胞分析系统和Octet® 非标记分子互作系统,来自诺奖得主的制胜法宝!-参考文献-[1]Carolyn R. Bertozzi et al.Targeted glycan degradation potentiates the anticancer immune response in vivo.Nature Chemical Biology volume 16, pages1376–1384 (2020)
  • 玩转生物安全柜:如何让你的实验室变得更加安全和高效
    在现代实验室中,生物安全柜是必不可少的设备之一。它们被设计用于保护实验室工作者和公众免受潜在的危险微生物和生化物质的伤害,同时也可以提高实验的效率和准确性。但是,对于新手来说,生物安全柜的正确使用可能有些棘手,尤其是在充满压力和紧迫感的实验室环境中。本文将向你介绍生物安全柜的基础知识、使用技巧和维护要点,帮助你轻松驾驭生物安全柜,让你的实验室变得更加安全和高效。一、生物安全柜的分类和基础知识生物安全柜根据它们的空气流动方式和过滤系统的类型,可以分为三类:A型、B型和C型。A型生物安全柜通常用于对非致病性微生物和生化试剂进行工作,而B型生物安全柜则更加灵活,可用于处理病原微生物和生物制品,因为它们提供更高的生物防护级别。C型生物安全柜通常用于对有毒气体和化学物质进行工作。无论是哪种类型的生物安全柜,它们都包含以下基本部件:工作区、风机和过滤器。工作区是用于进行实验的区域,通常是一个完全密封的金属箱子,以保护工作者免受危险物质的伤害。风机是用来引导空气流动的装置,而过滤器则用于过滤空气,以去除有害微生物和化学物质。二、使用技巧在使用生物安全柜时,需要遵循一些基本规则,以确保安全和实验的成功。以下是一些有用的技巧:1.正确穿戴个人防护装备在使用生物安全柜前,需要正确穿戴个人防护装备,包括手套、口罩、防护眼镜和实验服等。这些装备不仅可以保护工作者免受危险物质的伤害,还可以防止实验中的交叉污染。2.清洁工作区和工具在进行实验前,需要清洁工作区和实验工具,以确保它们不会影响实验结果。使用70%的酒精或其他适当的清洁剂,彻底清洁工作区和工具表面。另外,应该避免在生物安全柜中存放无关物品或实验工具,以避免交叉污染。3.正确放置实验样品和废弃物在进行实验时,需要将实验样品和废弃物放置在正确的位置。实验样品应该放置在工作区的中心位置,以获得最佳的风速和过滤效果。废弃物应该放置在特定的容器中,以便安全处理。4.注意实验过程中的卫生在实验过程中,需要注意卫生,避免对实验室环境和生物安全柜造成污染。应该定期更换手套,并在必要时更换其他个人防护装备。5.了解生物安全柜的工作原理了解生物安全柜的工作原理可以帮助工作者更好地使用它们。生物安全柜的工作原理基于负压原理,即通过引导空气流动来保护工作者免受危险物质的伤害。空气从周围环境流向生物安全柜内,然后被过滤器过滤,再从顶部或侧面排出。这种空气流动形成了一种虚拟的壁垒,保护工作者免受污染。6.避免开启多个生物安全柜如果需要在同一实验室内使用多个生物安全柜,应该避免同时开启多个生物安全柜。这样可以确保空气流动的均衡和过滤效果,同时也可以避免工作者之间的交叉污染。三、生物安全柜的维护要点除了正确使用生物安全柜外,还需要定期维护它们,以确保其效果和安全性。以下是一些维护要点:1.定期更换过滤器过滤器是生物安全柜的核心部件之一,它们负责过滤空气中的有害物质。因此,需要定期更换过滤器,以确保其效果和安全性。通常情况下,过滤器的更换时间取决于使用频率和类型,应该按照生产商的指示进行更换。2.定期检查风机和管道风机和管道也需要定期检查和清洁,以确保它们的正常运作和空气流动效果。如果风机和管道存在故障或堵塞,将会影响生物安全柜的效果和安全性。可以使用吸尘器和清洁剂对风机和管道进行清洁,同时应该注意不要损坏它们。3.定期清洁生物安全柜生物安全柜的清洁也是非常重要的,它可以避免污染和细菌滋生。定期清洁生物安全柜的内部和外部表面,使用70%的酒精或其他适当的清洁剂,彻底清洁工作区、工具表面和其他可接触部位。定期清洁还可以延长生物安全柜的使用寿命。4.注意生物安全柜的温度和湿度生物安全柜的温度和湿度对其效果和安全性也有重要影响。应该避免生物安全柜暴露在阳光下或高温环境中,同时定期检查生物安全柜的湿度和温度,以确保其在适宜的条件下工作。5.注意生物安全柜的细节在使用和维护生物安全柜时,还需要注意一些细节。例如,不要将化学品直接倒入生物安全柜内,因为这样可能会损坏过滤器或造成危险。此外,应该避免在生物安全柜中存放食物或饮料,以避免交叉污染。结语生物安全柜是实验室中重要的安全设备,兰伯艾克斯生物安全柜LAB-BC系列,采用气幕式隔离设计,防止内外交叉污染,气流30%外排70%内循环,负压垂层流,无需安装管道;上下移动玻璃门,可任意定位,易于操作,并能完全关闭以便杀菌,定位高度限位报警提示;工作环境确保无污染泄漏,采用优质304不锈钢,光滑、无缝,可轻松彻底消毒,可防止腐蚀剂和消毒剂的侵蚀;采用LED液晶面板控制,内置紫外灯防护装置,当前窗和荧光灯关闭时,紫外灯才能运行,并具有紫外线定时功能;它们可以保护工作者免受危险物质的伤害,并避免污染和交叉感染。正确使用和维护生物安全柜对实验的安全性和效果有重要影响。在使用和维护生物安全柜时,需要注意其使用方法和维护要点,以确保其效果和安全性。生物安全柜的使用和维护需要一定的技能和经验,对于新手来说可能会比较困难。因此,实验室应该对工作者进行相关的培训和指导,以确保其正确使用和维护生物安全柜。同时,实验室也应该定期检查生物安全柜的效果和安全性,以保障工作者的安全和实验的质量。最后,希望这篇文章能够帮助新手更好地理解和使用生物安全柜,并提高实验室的安全性和效果。
  • 天宫二号里有哪些科学神器?
    在浩瀚的太空中,天宫二号正翩然翱翔。作为我国首个真正意义上的空间实验室,天宫二号上要进行各类空间科学实验与探测项目,多家单位负责研发的14项应用载荷,将在这个太空实验室中大显身手。它们有的要探索宇宙最深处的奥秘,有的要观测地球上的海洋和大气,有的要解决未来长途太空旅行时的食物供给问题̷̷  天宫二号里有哪些科学神器?且随《经济日报》记者一探究竟!  综合材料实验装置:  天宫二号中有一只神炉,它叫“综合材料实验装置”,由中国科学院上海硅酸盐研究所牵头,联合国家空间科学中心、兰州技术物理研究所共同研制。  这套多功能的通用型材料科学实验装置,由“材料实验炉”“材料电控箱”和“材料样品工具袋”三个单机构成,总重约27.6公斤,最大功耗不到200瓦,却能实现真空环境下最高950摄氏度的炉膛温度,足以将玻璃或银条熔化。  它要“炼制”18个实验样品,每个样品都很“个性”,对炉子要求都不同。为此,“神炉”引入了多项自主知识产权的创新技术,解决了多温区加热、低功耗下的升温保温、温度的精确控制等难题,让它能炼制复合材料、金属材料、有机高分子材料和晶体材料等很多神奇材料。  它炼制的宝贝有啥神奇之处?太空中生长的晶体,探测能力让地面生长的晶体望尘莫及。比如,普通CT检查一般只能确定直径2毫米以上的肿瘤病灶,对于一些微小早期病灶视而不见,而安装了太空产闪烁晶体的CT探测精度则会大大提升,真正做到上医治未病。  天宫二号伴随卫星:  一个好汉三个帮,天宫二号也有如影随形的小伙伴。  天宫二号伴随卫星是一颗微纳卫星,由中科院微小卫星创新研究院研制,是天宫二号试验任务的一部分。它搭载了多个试验载荷,具备较强的变轨能力,能灵活机动地开展空间任务。  这个天宫二号的小伙伴,将承担哪些任务?  它是特技师。伴随卫星在轨期间将开展伴飞试验,从天宫二号在轨释放,在空间轻松上演自由贴近、远离的华丽动作大戏。同时配合空间站开展多平台间的协同试验,拓展空间应用。  它是护航员。伴随卫星具备高分辨可见光相机和宽视场仿生鱼眼红外相机,能全天时多角度监测空间碎片或温度异常等空间站的潜在危险。它可作为主航天器的安全辅助工具,对主航天器进行工作状态监测、安全防卫。  它是摄影家。伴随卫星搭载了高分辨率全画幅可见光相机,未来将在空间绕飞试验过程中对天宫二号与神舟十一号飞船组合体进行高分辨率成像,成为天宫和神舟这对国民CP的自拍神器。  宽波段成像光谱仪:  天宫二号有个高定款数码相机,能同时拍出可见光、红外、光谱、偏振4种照片,它叫“宽波段成像光谱仪”,由中科院上海技术物理研究所的科学家团队耗8年心血研制而成。  这款太空相机,将原定的2款不同功能太空相机合二为一,省空间、降重量,功能却不弱反强。国际上,在一台仪器上开启可见近红外高光谱成像与短波红外、热红外多光谱成像,同时兼具偏振探测功能的“智慧锐眼”,这是第一次!  它有两大任务。一是看海洋。它可以准确观测海洋的水色和水温。它提取到的海水叶绿素、色素浓度等信息,不仅可以准确监测到发生在任何海域的赤潮现象,还可以判断出这片海域的浮游生物量和初级生产力,指导渔民出海作业。它可以探测水温、海冰和洋流信息,且具备很高的水温变化探测灵敏度,大约是1摄氏度的1/40,比我国现有的海洋遥感器的探测灵敏度高了好几倍。  二是看大气。由于光的偏振特性对大气粒子具有独特敏感性,偏振成像可获得大气气溶胶和云粒子的很多关键性能参数,对气象预报、气候预测有重要价值。简单说,它能看雾霾,并辅助专家们分析雾霾。  液桥热毛细对流实验装置:  “玩水”是人们喜欢的太空游戏。天宫二号里,我国将首次开展液桥热毛细对流的空间实验!  液桥是2个固体表面间连接的一段液体。太空微重力环境下,可以建立起很大尺寸的液桥。本次实验将由科学家们远程操控,用天宫二号上搭载的液桥热毛细对流实验装置完成。  实验中,液桥像一个“变形金刚”。装置中的拉桥电机和注液电机,将密切配合,改变液桥的“高矮胖瘦”,既能变得“高大上”,又可以变得“土肥圆”,科学家称之为“体积比效应”。液桥中的液体在温差诱导的表面张力驱动下,不同的体积比有不同的热毛细振荡现象——液桥会像有了“生命”一样自由舞蹈,时而旋转,时而左右横步。而实验箱内置了172组预定模式实验曲线,只要科学家在地面指间一动,就可以轻易地完成液桥“172变”。  它有什么用?该项目主任设计师、中科院力学研究所研究员康琦说:“为生产出高质量的半导体材料,就要科学控制在晶体生长过程中浮力对流、热毛细对流的影响,而太空特有的微重力环境将使科学家深入剖析热毛细对流的真实过程。”  热毛细对流箱工程,整体和光机结构设计及研制由中科院力学所完成,电控部分由中科院空间应用工程与技术中心完成。  “天极”望远镜:  人眼不能分辨光的偏振状态,蜜蜂对偏振却很敏感。天宫二号中有一只“小蜜蜂”,用它的“复眼”捕捉遥远宇宙中突然发生的伽马射线暴的偏振性质,它就是“天极”伽马暴偏振探测仪,简称“天极”望远镜。  伽马射线是有很强穿透性的电磁波。恒星临终时发生剧烈爆炸,产生极强烈的伽马射线辐射,持续时间长不过几千秒,短不足百分之一秒,其亮度却超过全宇宙其他天体的总和,辐射能量与太阳一生相当,犹如恒星最后的“生命之花”。这种集一生辉煌于一瞬的壮丽告别,就是伽马射线暴。  伽马暴的起源及相应的物理过程,一直是天文学家们研究的前沿课题之一。近十几年来,对伽马暴的研究取得长足进步,但一些基本问题还未解决。科学家推测,对伽马暴伽马射线偏振的研究可为解决这些问题提供新线索,却缺乏有效测量仪器。  “天极”望远镜填补了这个空白,它是全球最灵敏的伽马射线暴偏振探测仪器,将高精度且系统性地测量伽马射线暴的偏振性质,预期运行2年,探测约100个伽马射线暴。  “天极”望远镜由中国科学院高能物理研究所牵头,瑞士日内瓦大学、瑞士保罗谢尔研究所等单位参加研制,是天宫二号搭载的所有实验项目中唯一的国际合作项目。  高等植物培养箱:  兵马未动,粮草先行。到了太空,也要关心粮食和蔬菜。  尽管目前空间植物生长试验已多次进行,但要在太空条件下成功实现粮食与蔬菜的生产,为宇航员长期空间生活提供食物来源,还需解决很多问题。比如,在空间微重力条件下植物生长无一定方向性,不能有效利用光能进行光合作用,产量大大减少。  天宫二号中,就有两种“植物宇航员”——拟南芥和水稻,它们生活在高等植物培养箱里,将开展我国首次为期6个月的太空植物“从种子到种子”全生命周期培养。  高等植物培养箱是身负重任的微缩版太空温室,它通过光照周期、温度、湿度、营养液供给调节等功能为种子的生长发育提供环境保障。本次实验中,科学家们将通过实时成像技术,记录微重力条件下拟南芥和水稻从种子萌发、幼苗生长到开花发育的全过程,并下传图像进行“全程直播”。同时,特别构建了绿色荧光蛋白标记开花基因的拟南芥植株,将通过荧光图像技术,在分子水平检测开花基因在微重力情况下的表达动态。  此项目中,中科院上海生命科学研究院植物生理生态研究所负责科学实验样品和内容的设计、实验方案和实验结果的分析,中科院上海技术物理研究所负责研制高等植物培养箱。  空间环境分系统:  情报机构一直给人以神秘和神通广大之感。天宫二号上也有一个情报机构——空间环境监测及物理探测分系统,简称空间环境分系统。  顾名思义,空间环境分系统就是用来收集空间环境相关情报的。在太空中,高能带电粒子(质子、电子、重离子)组成的辐射环境、航天器轨道高度的大气环境等都属于空间环境的要素。能量很高的带电粒子辐射可能导致航天器材料性能下降或损坏,也可能破坏宇航员的器官组织,严重时甚至有生命危险。  中国科学院国家空间科学中心空间环境探测研究室就研制了空间环境分系统。这个系统由带电粒子辐射探测器、轨道大气环境探测器和空间环境控制单元3台仪器组成。带电粒子辐射探测器身上的16个小探头可以从16个方向全天候捕获天宫轨道上的高能带电粒子,实现舱外16个方向的电子、质子等带电粒子的强度和能谱监测。轨道大气环境探测器可以监测轨道大气密度、成分及其时空变化等,告诉你是谁拖延了天宫的脚步。  空间冷原子钟:钟表需要有多准?  当计时器的误差超过千分之一秒/天,电子通信网络、高速交通管理、金融系统安全、电网并网发电等日常活动就将陷入混乱 当误差超过十亿分之一秒/天,卫星导航定位、导弹精密打击等高精准度行为就会不同程度地偏离目标 而深空探测、引力波探测等科研活动,对时间精度要求就更高了。  科学家们找到了原子钟。原子超精细结构跃迁能级具有非常稳定的跃迁频率,利用这一特点,人们制作出高精度计时装置原子钟。当前地面上投入使用的最准确的原子钟,误差已降到万亿分之一秒/天。  但在地面上,由于重力作用,自由运动的原子团始终处于变速状态,原子钟精度受到限制。而在空间微重力环境下,原子团可以做超慢速匀速直线运动,获得更高精度信号。  中科院上海光机所的科学家们将激光冷却原子技术与空间微重力环境相结合,发展出空间超高精度冷原子钟。他们研制的“空间冷原子钟”已搭载天宫二号发射升空,这将成为国际上首台在轨运行并开展科学实验的“空间冷原子钟”,有望在空间轨道上获得较地面上的线宽窄一个数量级的原子钟谱线,提高目前原子钟精度,是原子钟发展史上又一重大突破。  三维成像微波高度计:  天宫二号上,有个“三维成像微波高度计”,是国际上首个实现宽刈幅海面高度测量并能进行三维成像的微波高度计。  传统海洋微波高度计在海洋观测中只能获得星下点3公里左右观测的范围,即获得沿轨迹方向星下点的一维海平面高度测量,天宫二号微波高度计则可实现35公里至40公里幅宽内的高精度三维海洋表面观测,极大提高了观测效率。  这种能力有何作用?占地球表面积71%的海洋蕴藏着可促进人类社会发展的巨大宝藏,但也是很多重大自然灾害发生的源头。海洋灾害的发生,往往伴随着海洋环境的异常变化,如局部海洋区域的海面高度和海面温度的异常升高。而海面高度的异常升高,例如“厄尔尼诺现象”,幅度仅为厘米级,只有微波高度计能够敏锐捕捉到这种细微变化。  人类只有深刻地、清晰地了解海洋环境的安全性,才能真正地开发和使用海洋资源。微波高度计项目的实施可为研究全球的海洋动力环境(包括海平面高度,海面风浪和洋流)提供直接的科学观测数据,同时也为全球能量交换、气候变化的研究提供不可或缺的科学依据。  天宫二号微波高度计的设计和研制,由中科院国家空间科学中心微波遥感技术院重点实验室领衔完成。  量子密钥分配专项:  自从人类开始说话以来,就有了说“悄悄话”的需要。密钥就是通过对传输的信息进行加密,防止他人获取信息内容,确保你的悄悄话悄悄说。  不过,随着技术发展,传统密钥不断被破解,现在已经很难有一把安全的密钥了。除了量子密钥。  量子密钥的安全性基于量子物理的基本原理。作为光的最小粒子,每个光量子在传输信息的时候具有不可分割和不可被精确复制两大特性,使得存在窃听就一定会被发送者察觉并规避,从而保证了信息的安全。  现在,以“量子密钥分配”为核心的量子保密通信技术,在我国已经逐渐完成了实用化,并形成了一定的产业规模。国际上首个全通型量子通信网络、首个规模化量子通信网络、首颗量子通信卫星,都是中国造。  天宫二号上有一个“量子密钥分配专项”载荷,以实现空地间实用化的量子密钥分配为目标,通过天上发射一个个单光子并在地面接收,生成“天机不可泄露”的量子密钥。此项目由中国科学技术大学和中科院上海技物所联合研制。  天宫二号的轨道飞行高度近400公里,飞行速度约为每秒钟8公里。地面站的接收口径约1米。用来生成量子密钥的光子需要精准地打在地面站的望远镜上,就如同在一列全速行驶的高铁上,把一枚枚硬币准确地投到10公里以外的一个固定的矿泉水瓶里,难度可想而知。
  • 【我与近红外的故事】杨季冬:初识近红外 神奇峰叠嶂
    p   strong  1、初识神奇 /strong /p p   在读博时的主攻方向聚焦在分子光谱分析同时测定多组分的研究工作上,主要手段是荧光(FL)与共振瑞利散射光谱(RRS)分析技术。我曾做了很多同系物、相似物、同分异构体的同时测定的工作,以及后来专攻手性对映体不经分离而同时测定的研究。读博时我师从刘绍璞先生,研习RRS分析方法。这项有意思的工作非常满足我的好奇心,因为在日常生活中我们所看到的灿烂朝阳、绚丽晚霞、蓝天白云、湛蓝大海等等都可以用瑞利散射(RS)去分析解释。可是在荧光分析仪上,共振瑞利散射(RRS)一直是令人讨厌的杂散光,直到上世纪九十年代初,美国人Pasternack才把它用作为定量分析手段,随后刘绍璞先生又发展了二级散射(SOS)和倍频散射(FDS)等共振非线性散射(RNLS)分析技术,把RRS分析方法的研究推向了极致。为此我对分子光谱分析的研究保持了极大的兴趣,并激发集聚起我潜在的巨大能量。而在把RRS用于多组分同时测定的长期研究工作中,我一直很困惑的是RRS的灵敏度虽很高,但并不很快捷,且利用单一的RRS分析技术乏陈特异性和选择性。 /p p   当我在查阅参考文献拓展其他分子光谱分析同时测定的工作之时,偶看到近红外光谱分析的参考文献,其中也有袁洪福、韩东海、梁逸曾、邵学广、吴海龙等老师的大作,更有国内近红外光谱研究的大师、令人钦佩的陆婉珍院士和严衍禄教授的经典著作。神奇的近红外光谱使我眼前一亮,它本身就是一种多种组分同时测定的快检方法。于是我订购了大量的近红外光谱分析的书籍,开始了废寢忘食的恶补近红外光谱基础知识。机缘巧合我就这样结识了近红外工作且深陷不能自拔。 /p p   近红外光谱是神奇的,有人说近红外光谱就好似一锅粥,在我看来,它好似婉约飘逸的彩虹,风姿绰约述陈着它本身的曼妙和神奇。形同诗人观瀑布,疑是银河落九天。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/f833d39d-e4ad-4f79-9b54-585a0719b2a6.jpg" title=" 图谱. 自建中成药多组分体系的近红外光谱图数据库.jpg" / /p p style=" text-align: center " strong 图谱. 自建中成药多组分体系的近红外光谱图数据库 /strong /p p   因为在近红外波段内若干X-H键的倍频与合频的共舞构成近红外光谱尤如远处的崇山峻岭,神奇峰叠嶂,美仑美奂。近红外光谱分析非同于常规的特征分析方法我们虽然找不到一个特征峰来入手作分析,也难怪这是人类最早发现的一段可见光外的光波段(1800年),却一直莫可奈何,无助于分析。现在有了化学计量学帮忙把近红外光谱的美与数学建模的妙,有机关联起来,于是演变成了一个让人无限推测暇想近乎完美的二次分析。 /p p   正因为它是大量样本的多指标统计建模,从大数据中抽取有效信息,所以它不需要再作选择性实验,直接可得出定性定量的结果 正因为它是大量校正集样本的近红外光谱与经典方法测量的标准值相关联建模,所以它的分析精度直接依赖于经典方法,所以它不需要再作针对性的偏差分析 也正因为它是大量样本的多组分的可区分指标的统计建模,可以从相互重叠的信息中提取差异信息,所以它能够按模型进行混合物中多组分定性定量分析,也可以进行区分真伪或优劣的聚类分析鉴定。 /p p   近红外光谱分析有独特的分析过程,由于是大量样本的统计建模后,须经内部校正和外部检测,得到精干的数学模型,能够做出快速、简便、准确、无损、清洁的分析,同时由于它的精干建模可搭载光纤的轻便,最适宜承载互联网加进行远程在线分析。 /p p   正是近红外的这些不含糊的优势吸引了我,或许可以开辟一条多组分同时测定的便捷之路,于是我安排研究生和我一起着手近红外光谱分析的研究工作。后来我就开始招收近红外光谱分析方向的研究生,开始了饶有兴趣的新知识的学习研发和拓展,每一个假期带领我的研究生参加近红外光谱培训,于是我的团队开启了在近红外领域里的长途跋涉。终于在2008年我带领学生参加了全国近红外光谱第二届年会,学生杨琼带着我们的第一篇论文《近红外光谱法同时测定废水中的化学需氧量(COD)和生化需氧量(BOD)》与会交流,获得了梁逸曾等老师的好评,得到优秀墙报奖鼓励,并得到了陆婉珍院士的赞赏。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/c239b545-2968-4877-ab1b-3c5a3e0c938e.jpg" title=" 10.jpg" / /p p   这以后我们每届都参加国内的近红外光谱大会,也出席了在泰国、南非、法国和韩国等国际近红外光谱大会,在学术届广泛交流我们的研究成果。 /p p    strong 2、拓展关联 /strong /p p   记得师从刘绍璞老师读博前,曾有同门师姐报道过两篇近红外光谱的研究论文,经查阅文献那实际是在近红外波段内的分光光度法测定白酒的纯度以及物理参数,尚未涉及近红外建模解决问题的实质进展的方法。而我所关注的是用近红外光谱建模的方法建立多组分体系同时快速检测的方法,在我看来这是近红外光谱分析技术应用的特点,建模分析解决问题也是近红外光谱分析过程的特色和优势,也是我的兴趣所在。当然在短波长的近红外光谱中也是能找到分析特征峰的,这说明在短波近红外波段内是可以发展分光光度法分析,近年来报道近红外成像分析如雨后春笋、朝霞璀璨,也说明近红外光谱分析方法尚有广阔的拓展空间。 /p p   我们也注意到同样是散射分析方法,拉曼光谱(RS)与红外光谱(IR)有内在关联,RS与IR存在互补关系 而共振瑞利散射(RRS)与荧光(FL)确有内在关联,与荧光相互作用,存在能量转移和补偿。而在生物大分子参与作用的体系中,多有本源荧光,则多发生在近红外波段内,尤其是上转换荧光神奇地在红外、近红外、可见与紫外多个波段内的受激与发光的特异转换,这似乎在荧光或散射与近红外之间有一定的内涵关系,值得我们去探索,这样或许会更好地利用近红外光谱的分析作用和功能。 /p p   目前,在我们的工作中,荧光散射与近红外的做法上是迥然不同的,但在我看来,它们彼此是内涵相通的。受神奇峰叠嶂的近红外光谱分析技术的鼓舞,我一直在寻求两者之间融合。为此这使我愿意乐此不疲的探窥其中的奥秘和精华。于是我将每一届研究生都分为两组两个方向,而在多组分体系的同时测定的方法推进演变中,致力寻求高灵敏度与特效选择性的结合,或许在近红外波段内建塑荧光、散射方法的运用是一个不错的选择 同样在生物大分子参与作用的体系中,多有近红外波段内的本源荧光,或许我们在这特定的波段范围内找到特效的区分方式,来仿生解决同时测定中较难的手性识别问题。因而我在申报第三项自然科学基金资助上表述了“探索在近红外波段内利用荧光、散射方法仿生检测生命体中的手性环境”的设想。事实上这几年要感谢国家自然科学基金委连续资助我们在这方面的探索工作。 /p p   strong  3、明确方向 /strong /p p   实际上我们于2004年在长江师范学院建立起近红外光谱分析实验室,在市地两级政府和中央与地方共建项目资助下已逐步培育建设市级重点实验室。一直致力于近红外光谱、荧光、散射和化学发光等分子光谱分析,以及化学计量学方面的研究工作。经过多年的努力攀登,并与太极集团和涪陵乌江榨菜集团合作,形成高校与企业结合的产学研一条龙研究体系,组建一支研究服务地方充满活力的可持续发展的研究团队,这得到重庆市科委、市教委的大力支持,在2010年获批重庆市高校创新团队。团队在近红外光谱检测技术发展及应用的长期探索中,结合三峡库区和乌江流域资源丰富的地方特点,形成以下三个具有地域特色的研究方向: /p p   (1)以近红外光谱分析技术同时测定水环境中的多种监控指标 /p p   利用近红外光谱技术具备多组分多指标同时检测、测定速度快、测试重现性好等优点开发水环境中多种监控指标的同时测定的研究。我们试验以近红外光谱分析技术结合多种分析手段开发了垃圾处理声渗滤液中多种组分如金属离子和有机多苯酚、酸类的快速监测。尤以近红外光谱分析技术建立同时测定垃圾渗滤液中的COD和BOD指标,经《理化检验.化学分册》、《JWARP》报道后得到国内外广泛的转录引用。这项工作在2010年得到重庆市政府科技进步三等奖的表彰。 /p p   (2)以近红外光谱分析技术同时测定中成药中的多种活性成分 /p p   在重庆市科委攻关项目的资助下,利用近红外光谱分析技术对各种天然药用植物进行品质和产地鉴定,以及对中成药的活性成分发展了快速检测。根据近红外光谱分析技术的特点,建立天然药用植物和中成药的多种活性成分与近红外光谱数据之间的数学关联模型,从而建立起其中多种组分的定性鉴别和定量测定的新方法。至今为止,我们已经建立了近红外光谱快速分析检测藿香正气液、黄芪精口服液、通天口服液等九种中成药口服液以及药丸、片剂的活性成分,对本地区盛产的黄莲、虎杖等二十多种地方天然药用植物进行品质和产地鉴定,同时开发集成了天然药用植物的近红外光谱谱图数据库。为进一步实现中药现代化的质量监控研究奠定了基础,并对中药化学动力学和药理学的研究提供科学依据。 /p p   (3)以近红外光谱分析技术同时测定榨菜品质的多种成分 /p p   创新团队协同太极集团、涪陵榨菜集团,利用近红外光谱分析技术对地方农副产品如涪陵榨菜和山地烤烟品质进行分析测定,通过实验采集榨菜和烤烟品质指标的近红外光谱图数据,建立榨菜品质指标与近红外光谱数据之间的关联模型,建立对榨菜中多种指标的定性鉴别和定量测定的新方法,并开发近红外光谱分析测定榨菜品质的简便快速、在线及无损检测的实用技术。对享有中国榨菜之乡涪陵的榨菜做了深入的研究,利用近红外光谱技术评价涪陵榨菜品质、同时测定了涪陵榨菜中果胶和总糖的含量、快速鉴别涪陵榨菜品牌的研究。 /p p    strong 4、工作成就 /strong /p p   自团队被批准为重庆市高校创新团队以来,以《近红外光谱分析检测技术及其应用研究》的平台建设工作取得较大成果。主持完成了重庆市科委攻关项目《快速无损在线检测中成药活性成分的研究》(CSTC, 2010AC5170)和重庆市教委攻关项目《近红外光谱快速在线检测榨菜品质的研究》(KJ101303),以及在研其它省部级项目和地方合作项目十余项。近年来在国内外发表近红外领域专业论文三十余篇,曾在泰国(2009年14届国际近红外学会)和南非(2011年15届国际近红外光谱学会)两次国际学术会上交流论文。 /p p   令人欣慰的是,我们在融合荧光、散射与近红外光谱分析技术推进多组分体系同时测定的研究中取得长足的进展,受近红外光谱“神奇峰叠嶂”的启发,我们自主研发了“同原射线计量分析法”,并申报发明专利《谱峰完全重叠的双组分混合物同时测定的光谱分析方法》,解决了教科书中谱峰完全重叠的双组分混合物不能同时测定的岐见,也使我们在“不经分离而同时测定手性对映体”的研究有重大突破。之后我们又相继申报了《近红外光谱法同时测定废水中的COD和BOD指标》、《近红外光谱法测定农副食品中的无机盐》、《一种增氧缓释肥的制备和应用》、《一种利用污水处理产生的淤泥生产肥料的方法》等十一项发明专利,现已获授权八项 自2009年以来曾三次获重庆市、区两级政府科技进步奖项 培养近红外方向的硕士生6名,博士生2名,这些学生毕业后都继续从事近红外研究工作。与此同时,与国内外同行广泛交流,2009年在泰国参与14届国际近红外光谱学会,2013年赴法国、2015年赴韩国参与两次国际学术会,并交流论文 国内每两年一届的近红外光谱学会都有大会交流文章,所带研究生的报展均获优秀奖。与此同时,创新团队也在发展壮大,近年来晋升高级职称多人。使团队切实形成了充满活力而具备可持续发展的研究队伍。 /p p   strong  5、研究展望 /strong /p p   目前,创新团队将继续发展对三峡库区生态的各种环境指标、区域天然植物的药用成分和地方农副产品质地检测的研究工作,并致力于更深入的与太极集团、涪陵乌江榨菜集团合作,力争尽快把近红外在线检测推广应用到制药和农副产品加工的生产线上。同时拓展近红外光谱的研究工作:①加强基础研究,攻克近红外光谱分析理论上的局限。如近红外光谱与分子结构的关联,近红外光谱与其它光谱的联系,近红外光谱技术与其它分析技术的联用。这些研究工作的突破都有可能推进近红外光谱分析技术更加完美和更为广泛的应用。②加强应用推广,促进近红外光谱分析的实际应用。结合我们已在环境监测分析、中成药活性成分分析和榨菜品质分析上做了大量的前期研究工作。我们期待把近红外光谱分析的实用技术真正推广到实际生产线上,要解决建立一些实际分析模式,利用近红外光谱分析的优势,切实解决实际应用上的难题。③加强自主创新,开发和改进近红外光谱分析的硬软件。要加快推广近红外光谱分析应用,要发展普适的近红外光谱仪器和便携式分析仪器,以及对某些专门特殊的仪器的改进 建立适宜筛选各种算法的建模软件,建立普适的分析模型 研究改进适应各种分析对象的光谱采集手段。④近红外用于生命和生物科学的选择性分析,这是我的第三个自然科学基金的出发点。为探索生命体系中自然的手性匹配、手性降解和手性转化的选择性行为,及其自发的手性拆分和自聚集的手性复制的自然规律,以启迪人们对生命体系天然手性识别的新思维,这将破解手性均一化机制对生命进化的重要作用。为此本项目利用近红外波段内的吸收、荧光和散射光谱分析及其成像技术对生命体中的手性环境进行测量及其相关检测研究,建立近红外光谱检测生物大分子手性及其手性识别的新方法。前期研究已表明,近红外光谱分析技术适宜生物活性分析,结合多种光谱分析拓展技术手段的优势,可作为探究生命体中手性环境的特效工具,检测生命体中的手性环境及其机制效能,或将有利于人类进一步窥见生命的奥秘,揭示手性起源,也有助于开启手性分析应用的广阔前景。 /p p   回顾与展望,结识近红外,人生平添翼。驾驭新技术,学研任翱翔。感谢近红外领域里的前辈和同仁,有你们结伴同行真好! /p p style=" text-align: right "   杨季冬 重庆三峡学院环境与化学工程学院 /p p style=" text-align: right " 二〇一七年三月三日 于重庆三峡学院 芳香居 成稿 /p p br/ /p
  • 空气净化“神器”——清华防雾霾窗纱(图)
    一个笑话激活一项技术 一层薄膜滤掉微小颗粒   神奇窗纱源自一个笑话老百姓问专家:&ldquo 如果雾霾来了,我们该怎么办?&rdquo 专家答:&ldquo 紧闭门窗&rdquo 。   老百姓又问:&ldquo 如果流感来了我们该怎么办?&rdquo 专家再答:&ldquo 开窗通风&rdquo 。   &ldquo 那雾霾跟流感同时来了我们该怎么办?&rdquo 专家无语&hellip &hellip   这本是一个调侃科学的笑话,却给了王玉兰很大的启发。&ldquo 这说明了目前我们生活中存在的一个困境。有的时候,开窗与不开窗是一对矛盾。开窗,室内的病毒可以出去,但是室外的雾霾就进来了 关了窗户,室外的雾霾虽然挡住了,但是室内的病毒却也出不去了。&rdquo 加上2013 年北京曾遭遇长时间的雾霾天气,王玉兰开始琢磨,有没有一项技术可以解决&ldquo 开窗与不开窗&rdquo 这一对矛盾呢?   这时,王玉兰将目光投向了自己从事了二十多年研究的核孔膜技术。核孔膜,是我国从1986 年开始研究的一种新型微孔滤膜。这种膜是利用高能加速器加速的重带电粒子穿透有机高分塑料薄膜,在粒子经过的路径上留下一条狭窄的辐照损伤通道。这条通道经过敏化后,用适当的化学试剂蚀刻,就可以把薄膜上的辐射损伤通道变成直通孔。通过控制加速器的辐照条件和蚀刻条件,就可以得到不同孔密度和孔径、孔型的核孔膜。   其实在很多年前,王玉兰就曾想过,能不能把核孔膜应用在窗户上去解决夜间房间里换气的问题。而当时,核孔膜还没有实现产业化,昂贵的价格让这种想法只能成为一时奢侈的念想儿。   核孔膜民用惊呆德国教授   在外行人看来,有了现成的核孔膜,是不是直接把膜拼接到窗户上,就有了&ldquo 防雾霾窗纱&rdquo ?其实不然,实际情况要远比这复杂得多。王玉兰说,&ldquo 把膜挂窗户上,就这么简单的一句话,我们为之奋斗了很多年。&rdquo   首先要克服的就是核孔膜的高成本。王玉兰介绍说,在国外,核孔膜通常都是应用在尖端科技上,价格非常昂贵,每平方米的价格通常在万元以上。&ldquo 如果不解决大规模的产量化问题,要想把核孔膜用在民用产品上基本上是不太可能的。&rdquo 经过实验人员的技术攻关,王玉兰团队已经实现了核孔膜价格的大大降低,目前价格仅为原来的1/10。曾经有一位德国教授在参观王玉兰的实验室时,发现了大输液过滤上应用的核孔膜之后,教授觉得不可思议,&ldquo 这么贵的东西怎么能用到了民用产品上?普通民众怎么用得起?&rdquo 而在听了王玉兰的报价之后,德国教授更是大吃一惊。   此外,王玉兰说,在整个过程中,对于孔径、孔型的控制精度要求很高,并且需要辅以膜表面及孔壁的改性处理,每个细节的完美处理都是高效防霾效果的重要保障。&ldquo 在实验室里,把一片膜的孔径精度、孔型控制得特别好,那没有什么问题 但是要在几百万平方米的生产中,都保证高质量的孔径、孔型精度,这是不容易的,这就需要攻克很多的技术难题。&rdquo 除了挡霾,如何实现气体的畅通无阻也是个技术活儿。&ldquo 这些问题都研究透了,才有可能保证最终产品的效果。&rdquo   王玉兰一直觉得,科技的进步是需求带动的,创新源于问题,科学家的任务就是发现问题并解决问题。   薄膜布满超细孔挡住PM2.5   普通的薄膜、朴素的印花&mdash &mdash 记者在北京市理化分析测试中心看到了神奇的&ldquo 防雾霾窗纱&rdquo 。其实,所谓的&ldquo 防雾霾窗纱&rdquo 看上去跟家里用的普通纱窗并无明显不同。但是与普通纱窗不同的是,这薄薄的一层膜上布满了肉眼看不到的小孔。北京市理化分析测试中心环境污染分析与控制研究室主任王欣欣指着薄膜告诉记者,&ldquo 每平方厘米大概密布着上百万个分子级的小孔。&rdquo 王欣欣进一步解释,分子级的小孔只允许分子通过,因此PM2.5 等细小颗粒物会被薄膜挡住,同时又不影响二氧化碳等分子成分的通过。   理化分析测试中心花了一个多月的时间对于防雾霾窗纱的相关效果进行了评价。评价结果显示,该薄膜对于PM2.5 的阻隔效率可以达到98%以上。此外,由于这个膜非常薄,因此具有较好的透气性能,从而可以高效地进行室内外气体交换,甲醛、苯系物等有害气体在室内浓度较高的情况,也可以透过小孔穿透到室外,营造室内清新的空气环境。清洁空气请进来,污浊气体排出去,薄薄一道膜,不动声色就解决了大问题。   防雾霾窗纱使用寿命1年以上   王欣欣说,防雾霾窗纱将人们&ldquo 雾霾大作战&rdquo 的战场进行了更为提前的部署,&ldquo 像现在用的空气净化器,雾霾是先进入到房间里,再进行净化 而这种窗纱是直接将雾霾挡在了外边。如果防雾霾的窗纱与空气净化器配合使用,肯定能进一步提高空气净化的水平。&rdquo   与空气净化器相比,窗纱的使用寿命前景也更为可观。空气净化器利用的是滤网的吸附作用,因此损耗较快 而对于防雾霾窗纱来说,颗粒物并不是完全吸附在薄膜上,而是会有部分的颗粒物在被阻挡之后&ldquo 弹跳&rdquo 下来。整个过程中利用的是物理阻隔,并不涉及化学反应失效的问题。   王欣欣介绍说,理化中心会议室里的那扇防雾霾窗纱已经用了一个多月,从外观颜色上来看,并无明显变化。而在过去的一个月间,北京市已经发布了多次空气重污染蓝色预警。   &ldquo 目前,我们对于这款产品使用寿命的保守估计是一年以上。但是至于一年之后用不用清洗或者是更换,我们还需要继续做评价试验,比如说通过水壶喷洒评价一下清洗效果,这样可以帮助消费者节约更换的成本。&rdquo
  • 工具升级 | 奥豪斯产品选型工具更新啦
    大家还记得去年发布的产品选型工具吗?这款神器只需我们回答几道选择题,就可以快速锁定最合适的产品型号,大大降低了电化学产品和离心机产品的选型难度。现在,这款选型工具进一步升级,新增选件多选和心愿单分享功能,更加符合用户选配习惯,实现真“随心配”、“放心配”。升级更新01选型1+1+1变成1+n+n离心机产品一个离心机机型支持选配多个转子和多个管架电化学产品一个仪表型号支持选配多个电极和多个附件(如缓冲液、连接线等)02新增心愿单分享功能生成心愿单后,可以选择多个心愿单分享到微信用户微信用户登录选型小程序后,可以导入分享的心愿单03电化学产品选型新增行业和应用选择奥豪斯集团成立于1907年,拥有遍布各地的营销、研发和生产基地。通过不断为各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制