当前位置: 仪器信息网 > 行业主题 > >

光学元件检测

仪器信息网光学元件检测专题为您提供2024年最新光学元件检测价格报价、厂家品牌的相关信息, 包括光学元件检测参数、型号等,不管是国产,还是进口品牌的光学元件检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光学元件检测相关的耗材配件、试剂标物,还有光学元件检测相关的最新资讯、资料,以及光学元件检测相关的解决方案。

光学元件检测相关的资讯

  • 奥林巴斯多种光学元件检测设备参展ILOPE 2012
    奥林巴斯参加了2012北京国际光电产业博览会暨第十七届北京国际激光、光电子及光显示产品展览会(ILOPE 2012),并在此次展会上着重展出了用于光学元件检测的设备。 奥林巴斯的近红外显微分光测定仪USPM-RU-W可以高速高精细地进行可视光区域至近红外区域的大范围波长的分光测定。由于其可以很容易地测定通常的分光光度计所不能测定的细微区域、曲面的反射率,适用于光学元件与微小的电子部件等产品。 USPM-RU III反射仪可精确测量当前分光仪无法测量的微小、超薄样本的光谱反射率,不会与样本背面的反射光产生干涉。是非常适合测量曲面反射率、镀膜评价、微小部品的反射率测定系统。 KIF-20-UW激光干涉仪有着良好的环境适应性,适用于快速质量检查和批量生产透镜现场管控。
  • 工程师约稿:手机镜头等光学元件如何测?紫外分光光度法应用详解
    近年来,随着5g时代的到来,整个光学产业链步入发展快车道,相关各种新产品新技术在各个应用场景中不断跟新迭代。如手机市场领域,接连上演“镜头大战”,大底面、高像素、多镜头手机层出不穷。而在光学产品技术极大丰富的背后,如何保证好光学元件的光学性能至关重要。在诸多测试方法中,紫外分光光度计能够测定相关光学元件的透过率和反射率并确定实际效果,这对评价其光学传输特性和进行质量控制有着重要意义。以下,仪器信息网邀请日立高新(上海)国际贸易有限公司北京分公司技术工程师曹亚南,为大家分享紫外分光光度法在光学元件测试中的应用案例、检测器选择、以及测试配件的选择。1. 概要在我们日常生活中,眼镜、建筑物和车辆的窗玻璃、手机显示面板、液晶面板表面、涂膜、遥控接收器类似的玻璃、薄膜等光学元件随处可见(如图1),而紫外分光光度计能够测定这些光学元件的透过率和反射率并确定实际效果,这对评价其光学传输特性和进行质量控制至关重要。图1 常见光学元件在光学元件的评价中,为了确保获得精确的测定结果,一方面要考虑分光光度计本身的性能参数,另一方面还要选用合适的配件,根据样品尺寸大小和测量目的,使用正确的附件。下文以日立紫外可见近红外分光光度计UH4150为例(如图2),介绍如何选择合适的配件来测量不同的光学元件。图2 多种测量配件2. 配件的选择2.1 检测器的选择紫外可见分光光度计通常有两类检测器,直射光检测器(如图3)和积分球检测器(如图4)。直射光检测器一般用于液体样品或非扩散性平板样品的测量,而对长棒形样品、透镜和扩散性样品,其透射光束的形状受折射和散射的影响。若使用直射光检测器,样品测定时的光束形状会与基线测定的不同,从而无法获得准确结果。这种情况下,我们需要选用积分球检测器,让入射光在积分球内部进行漫反射,然后将其导入到检测器中消除检测器的局域性。图3 直射光检测系统示意图图4 积分球检测器积分球检测器通常分为两类,直径60 mm和直径150 mm的积分球。Φ60 mm积分球因其多功能性和卓越的基线平坦度和噪音水平而应用广泛。对于不同的测量目的,Φ60 mm积分球的开口数和开口倾角的选择也不同。对于常规透过率的测量,几乎可使用所有类型的积分球。但是若测试透镜和厚样品时,透射光会发散,如果使用四口积分球(如图5),入射光将从副白板溢出,积分球内表面材料和副白板材料之间反射特性的差异可能引起测量误差,此时应选用没有此类测量误差的两口全积分球(如图6)。图5 四口积分球的基线校正和透镜测定图6 两口积分球的基线校正和透镜测定若测定全反射率,需要将样品放在积分球后。使用后端开口倾角是8°或10°的积分球,可测定包括镜面反射在内的全反射率,如图7。而测定漫反射率要使用后端开口倾角是0°的积分球,样品的镜面反射光通过入射口射出,积分球只测定样品的漫反射率,如图8。图7 全反射率测定图8 漫反射率测定2.2测量附件的选择紫外可见分光光度计附件选择很多(如表1、表2),应根据具体样品特征和测量目的,选取相应的附件,部分附件如下表所示。表1 部分常用附件表2 自动附件以上是列举的在紫外分光光度计检测中的部分测量附件,若测定样品为玻璃、薄膜等,需要先判定入射角是否是0度测定,再判定样品是否对光有扩散性,一般有扩散性的样品透射,需要选择紧密附着的透射支架和积分球。3. 光学元件测量案例3.1智能手机相关测定成像质量是人们选购手机时的关注点之一,而镜片是手机镜头中的光学元件,尺寸微小,一般直径为3 mm,为确保其透过率的准确测定,需要选用微小样品测定附件。图9为使用微小样品测定附件测量两种手机镜头的透过率。微小样品透过率附件中设置有聚光镜和掩膜,能够缩小仪器光斑,使入射光束完全照射在微小样品内。图9 两种手机镜头的透过率图10为使用微小棱镜测定附件测量潜望镜式手机镜头中的直角棱镜的反射率。图10 微小棱镜的反射率图11为使用角度可变透射附件测量防窥膜的透过率。图11 手机防窥膜不同角度的透过率图12为使用微小5˚镜面反射附件测量手机中红外截止滤光片的反射率。图12 红外截止滤光片的反射光谱3.2 汽车相关测定随着汽车传感器、显示器分辨率的不断提升,内外装饰材料也在追求高附加值化,因此光学特性的评价需求也越来越多。只有正确选择合适的附件评价汽车零部件的光学特性,才能最有效地保障每一次安全出行。图13为使用直射光检测器和滤光片支架测定紫外-可见-近红外区域的双带通滤光片。图13 LIDAR中双带通滤光片的透过光谱图14为使用微小自动角度可变附件测定微小平面镜不同角度下的反射率。图14 LIDAR中微小平面镜不同入射角的反射率图15为使用标准Φ60 mm积分球和选配程序包测量车身涂料的太阳光反射率。图15 隔热涂料的全反射光谱从以上智能手机和汽车的相关测量案例中可以看出,无论是不同入射光角度的样品测量还是微小样品测定,通过正确使用变角度、自动化附件等,都可以高效率获取低噪声的光谱数据。4. 总结光学元件性能的准确评价离不开附件的正确选择,日立紫外可见近红外分光光度计UH4150是光学元件测量的领先者,具有优质平行光束性能技术和大型样品仓,可以安装多种附件。日立凭借优异的光栅技术和丰富经验,具有多种紫外可见分光光度计产品,不仅如此,日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,未来,日立将丰富完善产品线,不断实现技术创新。图片来源:日立高新(上海)国际贸易有限公司北京分公司*部分图片来源于网络https://pixabay.com/zh/images/search/ 如您想和工程师进一步交流,欢迎致电日立:400 630 5821
  • BCEIA 2017 Newport 光学元件及模块产品 闪耀国家会议中心
    p strong 仪器信息网讯 /strong 2017年10月10日,第十七届北京分析测试学术报告会及展览会(BCEIA 2017)在北京国家会议中心开幕。美国理波公司(Newport)光学元件部门携新品亮相BCEIA2017。仪器信息网编辑借此机会对Newport进行了采访。 /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong Newport及其光学元件部门简介 /strong /span /p p   Newport成立于1969年,创业伊始即推出了著名的光学隔震平台享誉业界,至今仍是世界高级光学、物理实验室的标准配置,其后又逐步开发及融合光学、光电技术很多产品。至2000年Newport上市,已经成为世界上最大的光学元件、器件和实验室装备的最大目录产品供应商。Newport的发展脚步从未停顿,至今Newport集团的年销售额达到7亿美元,其中Newport大中国区的年销售额超过一亿美元。2015年Newport集团同世界顶级真空行业解决方案供应商MKS万机仪器合并。MKS-Newport从此成为半导体行业最关键的前道微光刻(Micro-Lithography)技术元器件及解决方案的领导者。 /p p   Newport的光学元件部门和国内的仪器仪表厂商合作比较紧密,比如:北分瑞利、普析通用、迈瑞、华为、上海微电子等150多家公司,横跨半导体制造、光通讯、仪器仪表、环境保护及医疗检验等多个领域主要产品为光栅、滤光片及复制镜面产品。 /p p   其中比较陌生复制镜面技术,Newport运用该技术的优良特点,成为是世界最大的中空角锥反射器的供应商;同FTIR光谱前驱—布鲁克(Bruker)从上世纪八十年代开始合作,一起发展。 /p p   同时Newport也是世界上最大的医疗检验类仪器的滤光片及光学方案供应商,这方面的客户遍布全球。帮助大家保持健康,对抗疾病。每个人都曾经得到过Newport滤光片的帮助。Newport滤光片及复制镜面产品也广泛的用于环境监测、食品安全领域,为大家带来更美好的生活。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/9dca83ff-9080-4872-91cc-30661902ecdf.jpg" title=" 1.jpg" style=" width: 600px height: 400px " width=" 600" vspace=" 0" hspace=" 0" height=" 400" border=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong Newport复制镜面与滤光片的技术特点 /strong /span /p p   Newport滤光片的优势比较明显,特点是采用独特的微等离子镀膜技术,在镀大面积滤光片的时候均匀性很好,因此滤光片的价格和国内的一些公司可以保持一致。专利的Stabilife等离子技术所镀的每一层膜都由金属氧化物组成,所以Newport的膜叫做全硬膜,不存在金属单质和空气反应,所以不会被氧化,此类滤光片使用寿命大大优于五年。 /p p   Stabilife全硬膜膜系的堆积密度比较接近于真密度,这一点使得Newport截止的陡度及透过率的指标相对传统工艺有较大的优势。且得益于Newport先进的光学测量技术(也是同世界知名光谱仪器公司合作的结果),光学背景噪声的测量可以达到OD7以下, 从技术和质量控制上完全契合各类荧光滤光片的需求。 /p p   另外Newport在滤光片膜层的消应力工艺方面有独特的研究,因此滤光片可以任意加工成特种形状,而不会出现膜层剥离。特别是红外滤光片的膜层不会开裂。 /p p   复制镜面是Newport非常有特色产品,这种制造工艺跟制作光栅是一样的,前期制作一个高精度的母模,在上面镀上金属膜后,然后把金属膜转移到低精度的子模上,这样做可以降低成本,比钻石加工的产品各方面成本都能降低一些。这样也具有其他的好处,及同一母模生产的出来的镜面,重复性极好,任何批次的镜面可以互换。此类产品目前同国内研究所合作较多,同企业的合作才起步,目前仅有瑞利、聚光等企业开始合作。但是在国外同美国热电(Thermo Fisher)、布鲁克(Bruker)、安捷伦等等都是长期合作伙伴。 /p p   Newport复制镜面与客户合作,一般是定制设计方案,赛默飞和安捷伦有很多产品采用Newport消应力的设计。比如:固定镜面的时候要拧螺丝,太过就会导致镜面应力集中而变形。Newport的复制镜面材质和周围环境的材质一致,因为不是玻璃,所以膨胀收缩都是一致的。这使得产品性能和稳定性有了进一步的提升。 /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong Newport光栅产品 /strong /span /p p   Richardson光栅工厂是世界最大的衍射光栅供应商之一,其诞生于博士伦公司,拥有超过七十年的光栅制造历史,被Newport并购之前是著名仪器厂商美国Thermo公司的光栅部门。Newport Richardson同Horiba的法国JB Yvon工厂及日本岛津公司一起为全世界精密光谱分析仪器提供各类光栅。Newport Richardson光栅工厂拥有世界上最出色的刻划机,在刻划光栅方面独占鳌头,近年来,全息制版设备及工艺也不断得到加强,产品线不断丰富。Richardson光栅工厂的特点是光栅品种全、种类多、品质稳定;而且由于其自身不再生产光谱类仪器,因此不会同客户的产品冲突,能够更好的满足客户的需求;在同行业中,其性价比也最优。 /p p   Newport Richardson光栅工厂凭借其独有的精密刻划机,是世界上唯一可以稳定提供中阶梯光栅的商业厂家。中阶梯光栅的闪耀角较大,其通过高级次衍射带来高分辨率,在半导体光刻、高分辨率天文等领域具有不可替代的作用。 /p p   Newport Richardson光栅工厂坐落于美国的光谷—Rochester市,在该地,其有两个厂区,各自拥有从模板制备到复制到检测全套产线,以最大程度上的确保其客户可以稳定的得到光栅供应。 /p p   Newport的光栅工厂的产品目前广泛的同国内半导体、光通讯、光谱、色谱等领域的领先企业合作,为中国的科技发展不断的提供支持。 /p p   令人痛心的是,尽管国内分析仪器行业已经得到了很大的发展,但在基础部件领域仍存在重视不足,知识产权观念,品质观念淡薄的情况。国内目前存在着少数小规模的光学企业,违法盗版复制原厂的光栅产品,以极低的价格和不稳定的质量供给国内的分析仪器产业。这严重的影响了国内分析仪器产业的质量提升和整体形象,也影响了光栅产业的良好生态和健康发展。在此Newport呼吁我们的企业和客户,维护知识产权、维护企业利益、维护中国的形象。 /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong Newport光电模块产品 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/de9ad959-8f5a-4061-9cb9-3b73a0f1ee78.jpg" title=" 2.jpg" style=" width: 600px height: 400px " width=" 600" vspace=" 0" hspace=" 0" height=" 400" border=" 0" / /p p style=" text-align: center " strong Newport多用途光谱组件 /strong /p p   Newport推出了应用于生化分析的多用途高速分析光机,其采用波分复用的方式分光,并以阵列型探测器作为探测接收元件,便于产品开发的应用整合。 /p p   近期,Newport光学元件部门与其在国内的合作伙伴---上海高施光电又合作推出了多款适合中国市场的光电类模组,其核心光学元件均出自Newport,附带电路及通讯开发和结构客制化开发,更加方便客户的应用整合,缩短产品开发时间,也因此可以更高效的将Newport优质的光学元件推广和应用。 /p p   本次展会中,Newport携高施光电带来了标准的8通道多波长检测光电模组、带光纤耦合的高性价比卤素灯光源、多通道酶标检测模组等产品,比较适合各种多波长的吸收、比浊、散射、荧光等分析测试应用,得到了诸多国内仪器企业的关注和青睐。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/57f90e0f-dcd6-421a-b54a-425ac0688bde.jpg" title=" 3.jpg" style=" width: 600px height: 400px " width=" 600" vspace=" 0" hspace=" 0" height=" 400" border=" 0" / /p p style=" text-align: center " strong 采用Newport光学元件的部分光电模组 /strong /p p   这次Newport参展目的之一是想寻找同水质、环境检测及食品安全的企业的合作机会。其合作伙伴高施光电开发的多通道检测系统和方法,快速、准确,而且成本较低,非常适合上述领域中各种定波长检测的项目。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/2dafe7e4-097f-46d9-b879-66037528c759.jpg" title=" 高施.jpg" / /p p style=" text-align: center " strong Newport与中国企业携手合作 /strong /p p   Newport将继续为中国经济和社会发展服务,努力提供优质的光电产品,携手中国企业共铸辉煌。 /p
  • 评估智能手机镜头中光学元件的透过率
    评估智能手机镜头中光学元件的光学性能-透过率1.前言刚刚发布的华为P30手机因后置拍照评分高登上DXO榜首,随后三星发微博表示不服,并称其S10+手机拍照总分高。可见,手机/数码相机以及摄像机中光学元件的微型化和先进性已取得重大进展。但是要获得还原度高的图像,就需要精确评估镜头中微透镜和滤光片的光学特性。日立UH4150不仅拥有独特的光学系统,大型的样品室,还可以进行专属定制,是测量相机中光学元件的理想工具。2.测量附件2.1微小样品测量附件由于手机照相机镜片太小,将照射到样品的光通量调节到小于样品尺寸比较困难。使用微小样品测量附件可以解决这个问题,该附件包括聚光镜/参照光束膜/样品支架。样品支架可以根据透镜的尺寸和形状灵活配置。附件如图1所示。图1 微小样品测量附件图片及结构(左)微小样品支架 (右)微小样品测量附件2.2 全积分球附件透射光束的形状受散射和折射影响大的样品,如透镜,需要使用积分球消除检测器的局域性。60mm标准全积分球附件和高灵敏度积分球在透镜测量中都可使用。图2 ф60mm的全积分球附件(仪器顶部视图)3.测量实例智能手机相机中CMOS和CCD传感器在近红外区域具有高度的敏感性。而人眼只能看到380nm-700nm的可见光,因此,为了重现肉眼看到的图像,需要切断对成像质量形成干扰的700nm以上波长的光。很多相机和摄像机,通过加入红外截止滤光片,达到上述效果。具体详细测量数据请参考:https://www.instrument.com.cn/netshow/sh102446/s910399.htm4.总结现在智能手机更新换代频率加快,各大品牌都在系统,拍照,内存等多种参数方面竞相提升。手机镜头从单摄到如今的双摄,甚至华为新出的三摄,手机成像原件的进步,手机摄影的方便与快捷,都让我们对手机摄影爱不释手。日立高新技术通过独特的技术,开发的固体样品分析专家紫外/可见/近红外分光光度计,能够对相机镜头的光学元件进性准确评估,促进科技产品更加飞速的发展。 日立高新技术公司是日立集团旗下的一家仪器设备子公司。全球雇员超过10000人,在世界上26个国家及地区共有百余处经营网点。企业发展目标是"成为独步全球的高新技术和解决方案提供商",即兼有掌握先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。其产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料。其中,生命科学领域产品包括电子显微镜、原子力显微镜和分析仪器(色谱、光谱、热分析)等。 参考文献:张帆. 手机摄影艺术的发展与表现[D]. 2016.驱动之家.屠榜DxO Mark之后 华为P30 Pro再获TIPA 2019拍照手机大奖[N].2019
  • 我国学者研制出可拓展成像质量的新型光学元件
    记者从中国科学技术大学获悉,近期该校张斗国教授研究组研制出一种基于光学薄膜的平面型显微成像元件,用于被测样本的载玻片,可在常规的明场光学显微镜上实现暗场显微成像和全内反射成像,获取高对比度的光学显微图像。  利用光学原理,光学显微镜可把人眼不能分辨的微小物体放大成像。常规的光学显微镜是明场显微镜,它利用光线照明和样本中各点依其光吸收的不同,在明亮的背景中成像。但对于一些未经染色处理的生物标本或其他透明样本,由于其对光线的吸收很少,因而对比度差,难以观测。暗场显微镜、全内反射显微镜的问世,可解决这一难题,但它们需要复杂的光学元件,这些元件体积较大,不易集成且操作难度高。  近期,张斗国教授研究组通过巧妙设计,研制出一种基于光学薄膜的平面型显微成像元件,该元件在常规明场显微镜上,可同时实现暗场显微成像和全内反射成像。相对于明场光学显微镜像,其成像对比度有大幅度提升。  同时,这一元件结构简单,易于集成,成本较低,操作便利,不仅适用于空气中的样本成像,也适用于液体环境中生物活细胞的成像。  实验结果表明,无需改变现有显微镜的主体光路架构,通过设计、制作合适的显微镜载玻片,就可以有效提升其成像对比度,拓展其成像功能。  日前,国际权威学术期刊《自然通讯》发表了这一研究成果。
  • 上海光机所将时域散斑技术成功运用于大尺寸光学元件测量
    p   上海光机所信息光学与光电技术实验室周常河课题组近期将双目测量和时域散斑技术相结合,应用于300mm口径大尺寸透镜毛坯测量,成功重建出透镜毛坯表面的三维形貌。该方法实现了大尺寸透镜的快速、低成本测量,相关成果发表在[Optics Express 27,10898(2019)]上。 /p p   大尺寸光学元件,尤其是非球面元件,被广泛运用在大型激光装置,例如“神光”II综合实验激光装置中。在元件的生产过程中,表面检测至关重要。在透镜毛坯的粗研磨阶段,主要检测设备是三坐标测量机。三坐标测量机的测量精度很高,但是这种逐点测量方式的效率低,尤其是在测量大尺寸(例如米级)透镜毛坯时,大型三坐标测量机价格昂贵,且不易移动,不便于使用。 /p p   该课题组提出,用双目光学三维测量方法重建透镜粗毛坯的表面。双目视觉原理类似于人眼的三维感知,如图1所示。左右两个不同位置不同角度放置的摄像机,同步拍摄毛坯表面图像,经过同源点匹配和视差计算,可以用三角法对毛坯表面进行三维重构。但是,由于透镜毛坯强散射特性,基于空域的结构光编码方法会出现解码误差。课题组提出用时域散斑技术进行时域方向的编码,实验中顺序投影20幅带通随机数字散斑图像,对于每个像素点,都有一个20维度的编码。通过比较左右待匹配点码值之间的汉明距,可以在极线方向寻找到同源点对。另一方面,偏振技术被运用于消除透镜毛坯的多次反射问题。最终,全场的三维点云数据在短时间内被成功重建出,如图2所示。 /p p   相对于三坐标测量机,该方法实现了透镜毛坯表面的快速、全场、低成本的三维测量,是一个很有前景的测量方法,尤其是对米级尺寸的透镜毛坯测量具有重要的应用价值。 /p p   该项研究成果得到了中科院前沿科学重点研究项目、上海市科委专业技术服务平台项目、上海市自然科学基金项目的支持。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 266px " src=" https://img1.17img.cn/17img/images/201906/uepic/482c68fb-7372-43b1-b732-3fc94bc4fd4c.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 600" height=" 266" border=" 0" vspace=" 0" / /p p style=" text-align: center " 图1 双目三维测量系统结构图 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 235px " src=" https://img1.17img.cn/17img/images/201906/uepic/fe72b6f5-fdf9-4e68-99b9-cb2ee607b7ed.jpg" title=" 2-2.jpg" alt=" 2-2.jpg" width=" 600" height=" 235" border=" 0" vspace=" 0" / /p p style=" text-align: center " 图2 透镜毛坯的三维点云 /p
  • 卡尔蔡司扩建光刻设备光学元件工厂并扩建光掩模研发设施
    卡尔蔡司半导体制造技术公司(ZEISS SMT)是卡尔蔡司的子公司,生产半导体光刻设备的光学元件,宣布在德国黑森州韦茨拉尔(Wetzlar)开始建设一座用于DUV光刻设备光学元件的新工厂。 计划于2025年完工。新工厂计划竣工示意图(资料:卡尔蔡司)Wetzlar的生产基地生产DUV光刻设备的光学元件已有20多年的历史,但该公司表示,随着工业4.0、自动驾驶和5G等大趋势推动对半导体制造设备的需求,现有工厂的制造能力已达到极限,它将随着新工厂的建设而提高产量。 新工厂的生产面积将超过1,2000m2,将创造150个新工作岗位。Wetzler的现有工厂(380名员工)也在测试各种自动化新概念,并将结果纳入新工厂,并特别注意用于敏感测量的无振动结构,因为DUV光刻设备的光学产品需要纳米级精度。蔡司SMT最大的客户ASML将公司的大量积压归因于曝光设备光学镜头供应不足,这也提高了对蔡司SMT新工厂运营的期望。扩大德国研发基地卡尔蔡司还宣布,到2026年底,将投资超过2000万欧元扩建其位于德国黑森州罗斯多夫的光掩模研发设施。 该设施将增加一个300平方米的洁净室,并开发一个以纳米精度修复光掩模缺陷的系统。基于卡尔蔡司电子束技术的MeRiT系统甚至可以以纳米精度修复光掩模中的最小缺陷,许多半导体制造商使用该系统来修复光掩模。 由于半导体不断小型化、精密化和节能化,因此不断开发掩模修复系统也至关重要。
  • 2013年光学元件市场将达到63亿美元
    3月20日上午市场研究公司OVUM表示,在经过2012年3%的市场下滑后,2013年光学元件市场将迎来温和反弹。OVUM预计2013年将会增长4%,达63亿美元。   由于2011年泰国水灾造成的产能抑制以及宏观经济的不确定性导致了去年光学元件市场的糟糕表现,这些因素将持续到今年第一季度,但是市场已经开始反弹。(泰国是光元件产业重要的代工国,2011年的严重水灾使部分光元件工厂被淹或受损,不少领先厂商的产能受到严重影响。)   未来100G将是亮点,2013年100G需求将进入主流,多个组件厂商已经推出了相关产品,例如100G DWDM转发器。另外,应用于存储的16G光纤通道器件和40G以太网等高速数据通信应用也将刺激QSFP光收发器的需求。   在排名前十的供应商中,WTD、富士通光器件、Cyoptics和NeoPhotonics等供应商在2012年受益于40G/100G光学元件和收发器的销售表现出色,在2013年拥有一个良好的开端。
  • 中科大张斗国教授团队研制出基于光学薄膜的平面型显微成像元件
    近日,中国科学技术大学物理学院光电子科学与技术安徽省重点实验室/合肥微尺度物质科学国家研究中心教授张斗国研究组提出并实现了一种基于光学薄膜的平面型显微成像元件,用作被测样本的载波片,可在常规的明场光学显微镜上实现暗场显微成像和全内反射成像,从而获取高对比度的光学显微图像。研究成果以Planar photonic chips with tailored angular transmission for high-contrast-imaging devices为题,发表在Nature Communications上。光学显微镜利用光学原理,把人眼不能分辨的微小物体放大成像,进而拓宽人类观察物质结构的空间尺度范围。通用的光学显微镜是明视场显微镜(Brightfield Microscopy),它利用光线照明,样本中各点依其光吸收的不同在明亮的背景中成像。但对于一些未经染色处理的生物标本或其他透明样本,由于对光线的吸收少,其明视场显微镜像的对比度差,难以观测。为解决以上问题,科学家们发展出暗视场显微镜(Darkfield Microscopy):其照明光线不直接进入成像物镜,只允许被样品反射和衍射的光线进入物镜。无样品时,视场暗黑,不可能观察到任何物体;有样品时,样品的衍射光与散射光等在暗的背景中明亮可见,因此其成像对比度远高于明场光学显微镜,如图1a所示。另外一个解决方案是,利用光线全反射后在介质另一面产生衰失波(又称表面波)来照明样品,无样本时,衰失波光强在纵向呈指数衰减的特性使得其不会辐射到远场,视场暗黑;有样品时候,衰失波会被散射或衍射到远场,从而在暗背景下形成物体的明亮像,该显微镜被称为全内反射显微镜(Total internal reflection microscopy, TIRM),同样可以提高成像对比度。衰失波光强在纵向呈指数衰减的特性,只有极靠近全反射面的样本区域会被照明,大大降低了背景光噪声干扰观测标本,故此项技术广泛应用于物质表面或界面的动态观察,如图1b所示。然而,上述两种显微镜均需要复杂的光学元件,如暗场显微镜需要特殊的聚光镜来实现照明光以大角度入射到样品;全内反射显微镜需要高折射率棱镜或高数值孔径显微物镜来产生光学表面波;这些元件体积大,不易集成,成像效果严格依赖于光路的精确调节,增加了其操作复杂度。研究提出的基于光学薄膜的平面型显微成像元件可有效弥补上述不足。图1c为该元件结构示意图,主要包含三部分:中间部分是掺杂有高折射率散射纳米颗粒的聚合物薄膜,利用纳米颗粒的无序散射来拓展入射光束的传播角度范围;上部和下部是由高低折射率介质周期性排布形成的光学薄膜,利用其来调控出射光束的角度范围。通过光子带隙设计,下部光学薄膜只允许垂直入射的光束透过,其他角度光束的均被抑制;上部光学薄膜在750 nm波长入射下,只有大角度的光束才能透射;在640 nm波长下任何角度的光均不能透射,只能产生全内反射。图1. 传统暗场照明(a)与全内反射照明(b)光学显微镜,基于光学薄膜结构的显微成像照明元件(c)因此,在正入射下,经过该光学薄膜器件的光束出射角度或大于一定角度(对应750 nm波长),或在薄膜表面产生光学表面波(对应640 nm 波长)。利用一块光学薄膜器件,在常规的明场显微镜上(图2a),可同时实现暗场显微成像与全内反射成像。成像效果如图2b,2c所示,相对于明场光学显微镜像,其成像对比度有大幅提升。该方法不仅适用于空气中的样品,也适用于液体环境中生物活细胞的成像,如图2d所示。进一步实验结果表明,该方法可以实现介质薄膜上的表面波,并可用于金属薄膜表面等离激元,如图3所示,研究利用其作为照明光源,实现了新的表面等离激元共振显微镜架构,相较于目前广泛使用的基于油浸物镜的表面等离激元共振显微镜,基于光学薄膜器件的表面等离激元显微镜结构简单,成本低、操作便利,易于集成。图2. 基于光学薄膜结构的全内反射照明与暗场照明显微成像图3. 利用光学薄膜结构激发表面等离激元实现新型表面波光学显微镜上述实验结果表明,无需改变现有显微镜的主体光路架构,通过设计、制作合适的显微镜载玻片可以有效提升其成像对比度,拓展其成像功能。研究工作得到国家自然科学基金委员会、安徽省科技厅、合肥市科技局等的支持。相关样品制作工艺得到中国科大微纳研究与制造中心的仪器支持与技术支撑。论文链接
  • 光的反射和折射定律改变将衍生新型光学元件
    中国学生在哈佛大学做博士后研究发现   人工界面改写光的反射和折射定律   光的折射和反射定律是几何光学的基础。但是美国哈佛大学物理学家用一系列实验演示了光线的传播可以不遵从这些经典定律。这意味着,或许有一天当你用一块平面镜端详自己容貌时,看到的却是哈哈镜的变形效果。   光在不同介质中的传播速度不一样。当一束光从空气中斜射向水中,光束的传播方向会发生改变,这就是所谓的折射现象。它的准确表述即折射定律是很多年前由物理学家斯涅尔、数学家笛卡尔以及费马确立的。这一定律表明,光线在界面的折射角仅由光在两种物质中的传播速度决定。而早在古希腊时期由欧几里德发现的反射定律更简单:光的反射角等于入射角。   经典的反射和折射定律都很自然地认为一个界面仅仅是区分两种物质的理想边界,换句话说,是两种介质而不是它们的截面影响了光的传播。哈佛大学研究人员的创新在于意识到界面可以成为决定光的传播的因素。他们的实验表明,精巧设计的界面能够干预光的传播。   研究人员利用硅片和空气界面处一层薄薄的金属阵列来演示一系列违背经典反射和折射定律的现象。这个阵列中的每个组成单元都类似微小的英文字母“V”,其大小和间距都远小于光的波长以及入射光束横截面的尺寸。这些“V”字形的单元的大小、夹角和朝向都不同,这样设计是为了控制光波和不同单元的相互作用时间:每个金属“V”都类似一个光的陷阱,能够将光波“囚禁”一段时间再释放出来。   阵列的设计使得这个“囚禁”时间沿界面从右向左线性增加,这样即使垂直入射,光束不同部分经历不同的时间延迟,透射以及反射光束就不再沿着垂直于界面的方向传播了。而当光以倾斜的角度入射,按不同的“界面”设计,反射和折射光可以被操纵朝向任何方向。反射角不一定等于入射角,反射光甚至可以被“反弹”回光源方向,而不是像一般情况那样折向远离光源方向。这就是平面镜可以有哈哈镜的效果的原因。   这项成果2日发表在美国新一期《科学》杂志上,第一作者虞南方目前在哈佛大学工程和应用科学学院做博士后研究,虞南方2004年本科毕业于北京大学电子学系,2009年在哈佛大学获博士学位。   利用界面来控制光束不同部分的时延是一个具有革新意义的概念。虞南方告诉新华社记者,他们已用这种人工界面产生了“光涡旋”,这种奇异的光束在空间里螺旋前进,因而可以用来操纵旋转微小的悬浮颗粒。他预计,这一概念将衍生出一系列有用的光学元件,比如可以纠正相差的超薄平面聚焦镜片、可以采集大范围入射阳光的太阳能汇聚装置。哈佛大学目前已就这一成果提出专利申请。
  • 将光学检测技术和仪器的产业化推到新的高度
    p   strong  仪器 /strong strong 信息网讯 /strong span style=" font-family: times new roman " 2016年5月10日,由中国光学工程学会、中国高科技产业化研究会、国际光学工程学会(SPIE)、美国光学学会(OSA)主办的2016年国际光电技术与应用系列创新研讨会(OTA 2016)在京开幕。此次研讨会除了大会报告之外,还设有13个分会场,分别为1.国际高功率激光技术与高能激光应用研讨会2.国际激光制造与激光检测技术研讨会、3.国际3D打印技术及其应用研讨会(2.3.合并)、4.国际先进光学系统设计与制造及应用研讨会、5.国际光学检测技术及仪器研讨会、6.国际机器人先进感知与智能控制技术研讨会、7.国际天文望远镜与仪器研讨会、8.国际大数据光存储技术研讨会、9.国际高光谱遥感应用研讨会、10.国际硅基光电子与集成研讨会、11.国际红外技术与应用研讨会、12.国际环境监测与安全检测技术及应用研讨会、13. 纪念光纤发明50周年大会等。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_20160511_080631_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/0242fdc0-4ff5-4fd0-a565-8a281012ced0.jpg" / /span /p p span style=" font-family: times new roman "   5月10日下午至5月11日是大会的分会场研讨时间。分会之一国际光学检测技术及仪器研讨会作为国际光电技术与应用系列创新研讨会的重要组成,每年都吸引来国内外光学检测技术研发专家们到会参加讨论。据主办方中国光学工程学会介绍,往届的光学检测技术及仪器研讨会更注重技术的研发探讨,今年的会议是首次明确将光学检测技术和仪器的产业化作为研讨的主题,这也是响应国家支持科研成果转化的号召。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_0179_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/9abb0d7b-0511-43d3-8897-864a65628744.jpg" / /span /p p style=" text-align: center " span style=" font-family: times new roman "    strong 会议现场 /strong /span /p p span style=" font-family: times new roman "   本届国际光学检测技术及仪器研讨会共包括来自国内外工程化院校、研究所以及商业化仪器企业的25个报告,吸引了百余位相关研究实验室和企业的参会者。以下是部分报告介绍: /span /p p span style=" font-family: times new roman "   哈工业大学精密仪器工程研究院谭久彬教授报告的题目是《高端超精密仪器产业化探索》。据介绍,我国工业化进入中后期,高端装备发展走到了必须发展的道路。超精密仪器技术已经是大国必争的战略高地,而目前我国面临发达国家和新兴国家的双重挑战。我国超精密仪器产业化发展存在很多问题,如理念陈旧、企业自主创新能力较低等。充分发挥大学研究所自主创新能力强的优势,让工科大学研发平台与企业的产业化平台一体化对高端精密仪器产业化将产生巨大的推动作用。谭久彬教授还介绍了团队根据产业化需求研制的用于微纳结构表征的共聚焦扫描测量仪、面向生物医学的立体层析共聚焦显微镜、快速超精密双频激光干涉仪等精密仪器测量设备。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_0155_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/ec2a365f-9cf0-4d63-9b60-9abcb0547974.jpg" / /span /p p style=" text-align: center " span style=" font-family: times new roman "    /span span style=" font-family: times new roman " strong 谭久彬 /strong /span /p p span style=" font-family: times new roman "   中国工程物理研究院激光核聚变研究中心袁晓东报告的题目是《Research on the Precision Assembly System for SG-III Laser Facility 》。据介绍激光诱导惯性约束核聚变是实验室最常用的实现核聚变的方法。大型高能激光装置对于方法的实现非常重要,目前在美国、法国和中国(SG-III)共有三个大型高能激光装置。袁晓东在报告中介绍了SG-III的设计和一体化装配过程,LRU模型的离线精密装配与在线准确重置能够满足大型激光装置的安装与调试。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_0190_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/e4fb6b6d-5a3c-43f7-b245-395995ff5fba.jpg" / /span /p p style=" text-align: center " span style=" font-family: times new roman "    /span span style=" font-family: times new roman " strong 袁晓东 /strong /span /p p span style=" font-family: times new roman "   北京交通大学冯其波教授报告的题目是《System for simultaneously measuring 6DOF geometric motion errors using fiber-coupled laser》。据介绍,提高受控机床的精度,可以从改善硬件设施或是误差补偿的方法入手。冯其波教授表示:做精密仪器“方向决定成败、细节决定高低。”还介绍了团队研制的单轴6自由度误差测量系统。光纤的使用使系统热稳定性得到了提高,可稳定的通过补偿降低误差。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_0217_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/9a23d7ae-7e5f-4052-b201-ff4466fde9c6.jpg" / /span /p p style=" text-align: center " span style=" font-family: times new roman "    strong 冯其波 /strong /span /p p span style=" font-family: times new roman "    /span span style=" font-family: times new roman " 中国科学院光电研究院周维虎教授报告的题目是《飞秒激光频率梳精密测量技术研究》。飞秒光梳是频率和相位完全受控的飞秒锁模脉冲激光。主要用于绝对距离测量、频率测量等测量和低噪声微波源和任意光脉冲合成。周继虎教授介绍了飞秒光梳的实用化研制,基于该原理该团队还研发了飞秒激光跟踪仪可用于台阶测量、自由曲面测量、时频测量等方面。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_0259_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/ab834326-5079-4588-a625-7c6693835b4b.jpg" / /span /p p style=" text-align: center " span style=" font-family: times new roman "    strong 周维虎 /strong /span /p p span style=" font-family: times new roman "   中国科学院上海光学精密机械研究所邵建达报告的题目是《Large optics metrology for SG-series laser facility》。组成大型SG激光系统的大口径光学元件种类多、数量大,他们的特性参数与激光装置的性能相关,对大口径光学元件检测的装置要求很高。该团队建立的检测技术满足高精度光学元件的检测需求,部分光学元件已经优于之前NIF光学元件水平。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_0303_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/1f3cb9e7-c856-4776-a2ce-cc18d4e969ff.jpg" / /span /p p style=" text-align: center " span style=" font-family: times new roman "    strong 邵建达 /strong /span /p p span style=" font-family: times new roman "   来自华中科技大学的刘世元教授报告的题目为《Mueller Matrix Ellipsometry for Nanostructured Surface Metrology》。 /span span style=" font-family: times new roman " 据介绍,Mueller矩阵椭偏计(MME)非常适合无损纳米结构测量,对光的偏振、散射和其它特性的深入研究对于表面测量非常重要。为了将MME商品化,团队还创建了武汉颐光科技有限公司,目前已经具备椭偏仪批量生产能力实现了MME的产品销售。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_0338_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/8409671a-de3d-4d73-8387-a6e2b2ca791a.jpg" / /span /p p style=" text-align: center " span style=" font-family: times new roman "    strong 刘世元 /strong /span /p p span style=" font-family: times new roman "   哈尔滨工业大学 Yi Zhou报告的题目是《Experiments on Terahertz 3D Scanning Microscopic & nbsp Imaging》。Yi & nbsp Zhou介绍了团队研制的2.52太赫兹双轴反射共聚焦显微镜,其纵向和横线分辨率分别超过了0.314mm和0.353mm。该仪器在2D和3D成像方面非常稳定,可被用于生物学、制药等领域。 /span /p p style=" text-align: center " img title=" IMG_0241_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/dcd0cda8-7b59-43b2-b263-3b2335882257.jpg" / /p p style=" text-align: center " span style=" font-family: times new roman "    strong Yi Zhou /strong /span /p p span style=" font-family: times new roman "   哈尔滨工业大学ChangKun Fan报告的题目是《Controlling Software Development of CW Terahertz Target Scattering Properties Measurements Based on LabVIEW(IPTA05-066)》。据介绍,该团队开发了太赫兹目标散射特性测量的控制软件。该软件可手动或自动移动坐标平台,可设置间断频率、测量时间等参数实现自动测量。目前该软件已经申请得到国家专利。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" IMG_0383_副本.jpg" src=" http://img1.17img.cn/17img/images/201605/insimg/a2dd8a4f-6640-4796-a821-95f65295dbbc.jpg" / /span /p p style=" text-align: center " span style=" font-family: times new roman "    strong ChangKun Fan /strong /span /p
  • 中国检科院张峰研究员团队在食品安全检测关键材料和核心元件研究方向取得突破
    食品种类多、供应链条长、安全监管难度大。检测技术是保障食品安全的重要手段。但现有检测技术存在检测关键材料特异性差导致样品前处理时间长、富集效率低,质谱离子源等检测核心元件选择性低导致食品样品无法实时分析等食品安全检测难题。面对挑战,我院张峰首席专家团队在食品安全检测关键材料、核心元件和创新方法研究方向取得系列技术突破。   在关键材料研发方面,团队探明了前处理材料对食品中有害物的特异性吸附作用机制,研制了系列高特异性吸附的微纳结构前处理材料。痕量/超痕量水平的目标物检测需要先进行富集净化前处理,但现有材料富集能力有限、特异性不足,导致检测灵敏度达不到检测要求。团队从分子结构入手,解析了前处理材料对食品中有害物的特异吸附作用机制,引入脲类等官能团,制备了系列化学键调控共价有机框架材料(Fe3O4@ETTA-PPDI、Fe3O4@TAPB-BTT和Fe3O4@TAPM-PPDI等),并包覆在磁性纳米粒子表面。用于食品中黄曲霉毒素、氟喹诺酮类兽药和苯脲类除草剂等有害物的富集净化,前处理时间由几小时缩短至几分钟,与国家标准方法相比,检测灵敏度提高超百倍,突破了材料特异性差导致前处理过程繁琐、检测灵敏度低等难以满足检测要求的技术难题。   在核心元件研发方向,团队将分离新材料与质谱离子源相融合,研制了高选择性质谱离子源元件和实时质谱快检方法。目前现场快检常用的胶体金试纸条等小巧便携,但定性定量准确度较低。质谱具有准确度高的优势,但设备笨重且需要冗长的样品前处理和色谱分离过程,难以用于现场快检。团队突破现有实时质谱离子源只具有电离功能的瓶颈,将系列分离材料修饰技术引入质谱离子源,使离子源具备了分离功能,可以对食品等复杂样品基质净化的同时进行目标物电离,摈弃了食品质谱分析前的繁冗色谱分离,研发了系列分离-电离一体化实时质谱离子源。如将研发的分子印迹材料与导电基板相偶联,研制出新型质谱离子源(如图2所示),建立的实时质谱快检方法用于食品中氨基甲酸酯类的检测,检测速度≤40秒,方法定量限可达0.5 μg/kg,与国标方法相比,检测速度由几十分钟缩短至几十秒,灵敏度提高近20倍,破解了食品安全现场检测技术准确度不足的技术难题。   2023年团队在食品安全创新检测技术方向取得系列突破,研制新型净化富集材料8种、新型质谱离子源元件3件;申请发明专利15件;授权发明专利14件;获得软件著作权2项;研制食品安全标准9项,在国内外期刊发表文章21篇,其中SCI一区TOP文章8篇。
  • 海洋光学新一代ACCUMAN为制药原辅料检测保驾护航
    全球安全、健康和环境科技的领军企业——海洋光学新一代便携式拉曼光谱仪ACCUMAN PR-500 荣耀上市,可以帮助制药企业以较低成本从容应对原辅料“证实”和“证伪”的鉴定。 ACCUMAN PR 500 中国国家食品药品监督管理局于2011年发布关于贯彻实施《药品生产质量管理规范(2010年修订)》(2010新GMP)的文件,要求各新建药品生产企业、药品生产企业新建(改、扩建)车间均应符合2010新GMP的要求,制定相应的操作规程,采取核对或检验等适当措施确认每一包装内的原辅料正确无误。传统的红外和湿法化学方法,需要对样品取样,前处理等,过程繁琐,耗时耗力,难以满足药典快检和全检的新要求。 ACCUMAN PR-500采用拉曼光谱快检技术,这一基于激光和光谱学的分析技术,被称为“分子指纹”,可以透过透明包装,直接在仓库,投料间等区域对原辅料进行无损检测。对于困扰红外的水溶液检测,也可以轻松应对。 ACCUMAN PR-500 操作界面截屏 要保证快速获得真实可靠的物质“指纹”信息,PR500采用了业内最优的光谱核心,信噪比最高,并具备极高的灵敏度。面对品类多样的原辅料,特别是有些结构相近的物质,例如相似的水合物或同分异构体,PR500提供更大的拉曼光谱范围(最高可达390cm-1)和更优的光谱分辨率 (最优可达4cm-1),能够轻松应对复杂样品。较之传统的手持快检设备,PR500操作端仅重330g,符合人体工学设计,可单手操作。高清多点触控屏,图谱清晰。可选中文系统,用户界面友好方便。 ACCUMAN PR-500手持端检验原料 此外,随着药品监管制度的进一步完善,对药厂的质量管理提出了更高的要求。GAMP 5 (良好自动化生产实践指南)是ISPE对于制药企业计算机系统验证重要的合规指南。新一代的ACCUMAN PR-500依照GAMP 5指导原则设计,遵从GxP计算机化系统监管的风险管理方法中关于计算机化系统用户需求规范附录D1和CFR Part 11,以符合GxP计算机系统要求。点击获得更多产品信息:http://www.oceanoptics.cn/product/accuman 关于海洋光学亚洲(Ocean Optics Asia)和豪迈(HALMA): 海洋光学(www.OceanOptics.cn)是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过20万套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤和光学元件等等。海洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛。 海洋光学是英国豪迈(HALMA plc– www.halma.cn)的子公司。创立于1894年的豪迈是世界领先的安全、健康及环境技术集团,伦敦证券交易所的上市公司,在全球拥有 5000 多名员工,40 多家子公司。豪迈是伦敦证券交易所上市公司中唯一一家在过去30多年股息增长保持5%以上年增长的企业。豪迈目前在上海、北京、广州、成都和沈阳设有区域代表处,并且已在上海、北京、保定、深圳等地开设多家工厂和生产基地。
  • 海洋光学发布RaySphere系统用于太阳光模拟器的质量检测
    美国海洋光学(www.oceanopticschina.cn)近日推出一款 RaySphere 光学测量系统,用以测量太阳光模拟器和其他辐射源的绝对辐照度。RaySphere系统可测量从紫外线到近红外光谱(380-1700nm)的不同光谱范围的绝对辐照度(mW/cm2/nm)。 下载高清晰图像:http://halmapr.com/oo/RaySphereRelease.jpg (图片说明:海洋光学 RaySphere 系统评估并判定太阳能闪光灯和太阳光模拟器的光谱分布是否合格) 作为一种用于验证已安装的太阳能闪光灯输出的工具,RaySphere 特别适用于太阳光模拟器制造商以及研发实验室。太阳光模拟器的闪光可用于目的为根据光谱反应组合细胞像素的光电制造流程、以及目的为测量最终光电效能的光电制造流程。RaySphere 的系统具有必要的精确度和分辨率,以测量和分析闪光器的性能和稳定性,并通过高级的低频抖动方式触发电子设备为闪光测量计时。RaySphere 的刻度经过公认的认证实验室的确认,以确保精确的探测,并使太阳能闪光灯和太阳光模拟器的评估和资格认证符合由 ASTM 和 IEC(IEC60904-9 2007)等标准制定机构制定的标准。 两台热电冷却探测器使太阳能闪光灯的光谱分析(380-1700nm)可复验性高且准确。第二种型号的 RayShere 含有一个冷却探测器,以测量最多 1100nm 的光谱。 该系统同时包含高级、高速的电子设备,以及直观、强大的软件界面。极少的测量次数可实现在闪光期间,甚至于闪光间隔期间的完整光谱检测。此外,测量还可以由一个快速反应的发光二极管促发。该二极管可在百万分之一秒内通过增加闪光强度而做出反应。 关于海洋光学(Ocean Optics)和豪迈(HALMA): 总部位于美国佛罗里达州达尼丁市的海洋光学(www.OceanOpticsChina.cn)是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过150,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈(HALMA www.halma.cn)是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有3700多名员工,约40家子公司。豪迈目前在上海、北京、广州、成都和沈阳设有代表处,并且已在中国开设多个工厂和生产基地。
  • 滨松“指尖”MEMS-FTIR驱动元件成就“掌上”FTIR光谱仪
    “台式”变“掌上”FTIR光谱仪(傅里叶转换红外光谱)是利用红外光谱经傅里叶转换来分析杂质浓度的光谱分析仪器,可用于气体、液体的分析等。传统的FTIR光谱仪虽然具有无需利用昂贵的图像传感器的优点,但因其需要高度精准的光学分光仪,所以设备往往是比较大而且昂贵的台式仪器,这便很大程度上限制了设备的应用。“更小尺寸”也就成为FTIR光谱仪发展的一个重要技术话题。而说到“微小”则让人想到了MEMS(微机电系统)技术,它将微电子技术与机械工程相融合,可实现操作范围的在微米范围内。如果把这项技术融合在FTIR光谱仪之中,“台式”变“掌上”应该就不只是个梦了。经过重重技术难题的攻克,滨松公司终于实现了这一构想,成功开发出滨松MEMS-FTIR产品。其利用专有的MEMS技术(半导体材料的三维精密加工的尖端技术),在硅晶片上来制造所有的光学分光元件,最终在只有指尖那么大MEMS-FTIR驱动元件上,实现所有所需的光学功能,在这个超小型MEMS-FTIR核心驱动原件基础之上,滨松最终研制出了“掌上”MEMS-FTIR光谱仪。 滨松MEMS-FTIR驱动元件与“掌上”MEMS-FTIR光谱仪C12606 (75x100x27mm)MEMS技术的选择MEMS是通过一个硅晶片和半导体技术实现的具有最小尺寸的轻便的机械组件。硅晶片级的一致流程可实现MEMS的批量生产。基于硅技术,其在高弹性和高抗逆性上具明显的机械优势。而集成电路则使其可以轻易获得多种功能。此外,曝光引起的物理负荷亦可被忽略,所以是MEMS驱动器的最佳选择。滨松MEMS-FTIR把一个迈克逊干涉仪以及一个控制移动镜面的触动器高度紧密地集成在了一个硅晶片级别的封装中,一条接受入射光的光纤直接通过被动对准连接到MEMS芯片上,这样大幅的降低了组装成本。而通过DRIE(深反应离子刻蚀),MEMS-FTIR驱动元件的每个光学组件的相对位置十分精确,公差不大于1μm,组装后无需进行任何的光学调整。滨松MEMS-FTIR 光谱仪C12606以及驱动原件内部构造迈克逊干涉仪的所有光学组件都在硅制造的壁面上形成。分束器通过利用硅与空气之间折射率的巨大差异,将入射光束按照菲涅尔反射(反射30%;透射70%)分割。移动镜面放置在静电驱动器和固定镜面上,其每个表面都通过蒸镀形成金属层,这形成了具有高反射率(高于98%)的全反射镜面。迈克逊干涉仪SEM图像更好、更便捷、更广阔的应用为了使该产品拥有更多新的应用可能,所有原件都被精细地封装在一个手掌大小、低成本的FTIR光谱仪模块之中,使用时只用通过USB连接到电脑,就能够进行光谱测量以及吸光度测量。该模块也可安装在相关的探测仪器之内进行工作。滨松MEMS-FTIR光谱仪测量示例滨松通过简化生产过程,使低成本、小型化与高灵敏度、高准确光谱相结合成为了可能。与大规模工厂或实验室中进行的传统测量不同,滨松MEMS-FTIR光谱仪可更加灵活的,在现场就地实施光谱分析。这种技术预期将来能够找到新领域中的应用。滨松公司的筑波中央研究院在MEMS-FTIR光谱仪应用实验中表明,该产品可精确测算葡萄糖含量。而近畿大学分子工学研究所的河濟博文教授研究得出,该产品亦可根据获得的光谱数据对透明塑料板(大概1mm)的类型进行判断。除此之外,该产品在探测汽车尾气排放中的酒精,以及实时监测农业场所的土壤等方面都有广阔的应用空间。葡萄糖溶液测量(滨松公司中央研究院提供数据) 塑料分类(近畿大学分子工学研究所河濟博文教授提供数据) 目前,滨松公司依然在进一步的积极促进基于MEMS的紧凑型红外光谱仪于“现场使用的分析工具”的应用,并将通过在ASIC(Application Specific Integrated circuit,特殊应用集成电路)芯片以及MEMS-FTIR驱动元件上集成更多功能,从而进一步缩小产品的尺寸,实现与移动设备,如电话、平板电脑、可穿戴设备等的连接使用,正真意义上赋予FTIR光谱仪全新的概念。
  • 2022难加工材料元件的超精密金刚石加工技术短课程培训
    2022难加工材料元件的超精密金刚石加工技术短课程培训https://b2b.csoe.org.cn/meeting/YSAOM2022SC.html制造业是国民经济的主体,是立国之本、兴国之器、强国之基。单点金刚石车削技术(SPDT)作为一种高效率、高精度的光学表面加工方法,可直接生产具有纳米级表面粗糙度和亚微米级形状精度的光学元件,已成为实现多种光学应用最佳的解决方案。本短课程主要针对难加工材料元件的加工技术进行介绍,以单点金刚石超精密机床为载体,结合物理光学、应用光学、材料力学、精密机械、光学设计、光学加工技术以及相关的应用知识等,介绍难加工材料光学元件的超精密可加工材料和面型金刚石加工技术在当下的发展与挑战、机遇和市场需求。以实践应用角度出发,结合加工材料、加工面型、金刚石刀具等方面介绍难加工材料光学元件的超精密金刚石加工技术,超精密切削的特点和加工表面质量影响规律,以及难加工材料元件能场复合超精密加工技术等方面知识,培养国家急需的高端制造行业的工程人才,为我国成为世界制造强国奠定技术应用基础。一、培训时间:2022年7月29日9:00-12:00(8:00-9:00签到)二、培训地点:长春国际会展中心大饭店三、主办单位:中国光学工程学会四、承办单位:中国光学工程学会先进光学制造青年专家委员会五、课程形式:授课式,实例解析六、课程说明:学员自带电脑,自带Zemax软件,完成培训发放培训证书七、讲师介绍: 薛常喜,长春理工大学光学工程学科教授,博士生导师,2011年香港理工大学从事博士后研究工作。主要从事光学设计与衍射光学、光学超精密制造技术及其应用方面的研究工作。现中国光学工程学会先进光学制造青年专家委员会副主任委员,全国光学和光子学标准化技术委员会光学材料和元件分技术委员会委员,中国光学学会光学制造技术专业委员会委员,红外与激光工程和应用光学期刊青年编委。现主持国家自然科学基金等国家级、省部级高层次科研项目。在国内外学术刊物发表论文50余篇,多篇论文被Spotlight on Optics和Edtior pick。获吉林省自然科技奖三等奖一项,吉林省自然科学学术成果奖二等奖一项,国防科学技术进步奖三等奖一项,兵器集团科技进步二等奖一项,博士学位论文获吉林省优秀博士学位论文。宗文俊,哈尔滨工业大学机电工程学院教授、博士生导师,目前为中国生产工程分会精密工程与微纳技术专业委员会委员、中国机械工程学会高级会员、国际纳米制造学会会员、亚洲精密工程与纳米技术协会会员。近20年来,一直从事天然金刚石刀具与微工具制造技术、可见光-红外宽频谱光学超精密车削技术研究,发表学术论文70余篇,编写专著1部。主持并参与了国家自然科学基金、国防基础科研核科学挑战计划与重点、国家重大科技专项、授权国家发明专利近30项。指导博士生获2020年中国机械工程学会上银优秀博士论文铜奖1人次,荣获机械工业联合会技术发明二等奖、国防科技进步三等奖、兵器工业集团科技进步二等奖等科研奖励。许金凯,长春理工大学机电工程学院教授,博士生导师。现为长春理工大学跨尺度微纳制造教育部重点实验室主任,精密制造及检测技术国家地方联合工程实验室主任。国家科技奖励评审专家,十三五“增材与激光制造”国家重点研发计划青年专家,机械工程学会极端制造分会第一届委员会委员,《International Journal of Extreme Manufacturing》期刊青年编委。长期从事精密超精密加工技术、跨尺度微纳制造技术领域的研究工作。近5年,主持国家重大专项课题、国家重点研发计划、国家自然科学基金重点项目等10余项国家、省部级科研任务,发表SCI学术论文30余篇,获授权发明专利25件,获省部级一等奖2项,二等奖1项,研究成果成功用于国家多个领域,促进了科技水平的进步。张建国,博士,华中科技大学机械科学与工程学院副教授,机械工程学科博士生导师,2014年日本名古屋大学获机械工程博士学位。主要从事椭圆振动金刚石微细雕刻技术研究,进行难加工材料(碳化钨、模具钢、单晶硅等)的微纳切削工艺开发,以推动具有先进功能微结构表面的新型光学元件在光电子产业的应用。在制造领域国际知名期刊发表SCI检索论文45篇,参编Springer英文专著1部,授权超精密制造领域专利5项。研究成果获得2020年《极端制造》优秀论文、2019年中日超精密加工国际会议优秀论文、2015年日本精密工学会研究奖励、2014年日本机械学会优秀论文、2011年日本砥粒加工学会优秀论文。2019年入选湖北省海外高层次人才青年项目,2021年入选华中科技大学第四批学术前沿青年团队,担任中国光学工程学会第一届先进光学制造青年专家委员会委员。八、难加工材料元件的超精密金刚石加工技术提纲第一部分 光学超精密车削技术概论1.1 超精密加工技术发展概述1.2 超精密加工技术分类1.3 超精密车削技术的加工材料和面型第二部分 超精密切削的特点和加工表面质量影响规律2.1 超精密切削的特点2.2 切削参数对加工表面粗糙度的影响2.3 金刚石刀具晶向和刀刃质量对加工表面粗糙度的影响2.4 工件材料特性对加工表面粗糙度的影响第三部分难加工材料光学元件的超精密金刚石切削技术介绍3.1 典型难加工光学材料及其应用3.2 超声振动金刚石切削技术简介3.3 超声振动金刚石切削装置的设计3.4 难加工材料超声振动切削材料去除机理3.5 光学功能表面超精密制造及其应用第四部分 难加工材料元件能场复合超精密加工技术4.1 高强难加工材料激光辅助微加工技术4.2 高精度深/薄零件超声复合加工技术4.3 高强难加工材料零件电化学加工技术2022光学自由曲面设计与检测短课程培训https://b2b.csoe.org.cn/meeting/YSAOM2022SC.html随着现代光学技术的快速发展,光学工程的成像光学技术和非成像光学技术发展迅猛,尤其是光学自由曲面的应用研究,成为光学工程领域的应用研究热点。光学自由曲面是光学照明、光学显示、光生物医学、光通讯与光传感等重要领域的关键核心器件,含有自由曲面元件的光学系统已在军事、商业等髙端成像系统得以应用,能够满足现代工业、生物医学、国防等众多领域对成像的要求,在现代光学工程领域中扮演着重要角色。本课程拟结合光学设计和光学制造的优势,主要介绍成像自由曲面和非成像自由曲面的设计、自由曲面制造以及自由曲面的检测技术及其相关案例,为光学自由曲面在VR、AR和HUD等光学工程领域快速发展和应用提供技术支撑,促进相关领域的更新换代技术的发展。一、培训时间:2022年7月29日13:30-16:30(12:30-13:30签到)二、培训地点:长春国际会展中心大饭店三、主办单位:中国光学工程学会四、承办单位:中国光学工程学会先进光学制造青年专家委员会五、课程形式:授课式,实例解析六、课程说明:学员自带电脑,自带Zemax软件,完成培训发放培训证书七、讲师介绍: 薛常喜,长春理工大学光学工程学科教授,博士生导师,2011年香港理工大学从事博士后研究工作。主要从事光学设计与衍射光学、光学超精密制造技术及其应用方面的研究工作。现中国光学工程学会先进光学制造青年专家委员会副主任委员,全国光学和光子学标准化技术委员会光学材料和元件分技术委员会委员,中国光学学会光学制造技术专业委员会委员,红外与激光工程和应用光学期刊青年编委。现主持国家自然科学基金等国家级、省部级高层次科研项目。在国内外学术刊物发表论文50余篇,多篇论文被Spotlight on Optics和Edtior pick。获吉林省自然科技奖三等奖一项,吉林省自然科学学术成果奖二等奖一项,国防科学技术进步奖三等奖一项,兵器集团科技进步二等奖一项,博士学位论文获吉林省优秀博士学位论文。于清华,中国科学院上海技术物理研究所研究员,博士生导师,上海市三八红旗手,长期专注于空间红外探测成像领域,开展自由曲面光学系统设计、研制和标定方法的研究,主持国家自然学科基金、国防预研、中科院青年创新促进会“优秀会员”基金等多项科研项目,作为科技部重点领域创新团队核心骨干参与国家重大型号任务,获得国家技术发明一等奖、中国科学院杰出科技成就奖、上海市巾帼创新新秀奖等多项科技奖励。近5年,发表代表性科技论文5篇,获授权发明专利6项,翻译学术专著1部。吴仍茂,博士,浙江大学特聘研究员,国家优青。2013年毕业于浙江大学获博士学位,后于2013-2016年期间分别在西班牙马德里理工大学和美国University of Arizona从事博士后研究工作,并于2017年4月入职浙江大学。主要从事自由曲面光束调控和新型成像技术的研究工作,在包括Optica、Laser & Photonics Reviews、Optics Letters等国际知名光学期刊上发表SCI论文50余篇。2017年获中国仪器仪表学会金国藩青年学子奖,2019年获阿里达摩院青橙奖,2020年获国家优秀青年科学基金项目资助,2021年获OSA Kevin P. Thompson Optical Design Innovator Award。沈华,博士,南京理工大学教授、博士生导师。美国加州大学洛杉矶分校(UCLA)访问学者。中国光学学会光学测试专业委员会秘书长,中国光学工程学会首届先进光学制造青年专家委员会常务委员。江苏省“青蓝工程”中青年学术带头人、江苏省“333高层次人才工程”。长期致力于高端激光精密制造与检测成像技术的创新研究工作,主持国家重点研发计划课题、国家自然科学基金、军委装发预研重点项目、江苏省重点研发计划等高层次项目20余项。获得国防科学技术发明二等奖1项、教育部科学技术发明二等奖1项、2019年度中国光学领域“十大社会影响力事件”、中国国际“互联网+”大学生创新创业大赛金奖项目指导教师、江苏省优秀本科毕业设计指导教师。现任国家卓越期刊《Chinese Optics Letters》期刊编委、中国激光杂志社首届青年编委会委员。八、光学自由曲面设计与检测培训提纲第一部分 光学自由曲面简介1.1 光学自由曲面的研究进展及历史1.2 光学自由曲面元件的设计与检测技术1.3 光学自由曲面元件的制造技术第二部分 非成像自由曲面的设计技术及案例2.1 非成像光学基本概念及原理2.2 太阳能光伏中的自由曲面设计简介2.3 自由曲面照明光束调控技术2.4 自由曲面LED照明及激光束整形设计案例第三部分 成像自由曲面的设计技术及案例3.1 光学自由曲面成像系统的结构选型3.2 光学自由曲面成像系统的设计方法3.3光学自由曲面成像系统的性能评价方法3.4光学自由曲面成像系统的装调与标定 第四部分 自由曲面的检测技术及案例4.1 自由曲面检测的特点与难点4.2 接触式自由曲面检测技术及典型案例4.3 基于计算全息的自由曲面检测技术及典型案例4.4 基于倾斜波面干涉术的自由曲面检测及典型案例九、报名人员要求:基础知识要求:参与培训人员需要经过基本的物理学和光学基础知识训练。名额有限,报名从速。1000元/人同时报名两门课程或者同一单位2人以上报名,可以享受9折优惠1.在线支付:线上报名完成后,可跳转到在线支付页面,选择“支付宝”在线完成支付。2.汇款转账:开户银行:工行北京科技园支行户名:中国光学工程学会账号:0200296409200177730费用包含培训、教材、发票、证书和餐费,其他费用自理,开具“培训费”发票报名网址:https://b2b.csoe.org.cn/registration/YSAOM2022SC.html十、同期活动:2022年先进光学制造技术及应用国际会议暨第二届国际先进光学制造青年科学家论坛https://b2b.csoe.org.cn/meeting/YSAOM2022.html十一、协议酒店:会议酒店:长春国际会展中心大饭店(吉林省长春市经济技术开发区会展大街100号)酒店预订方式:陈经理(18166846117)可享受会议价标间(双早):318元/天和298元/天十二、联系人:王海明 中国光学工程学会电话:022-59013420邮箱:wanghaiming@csoe.org.cn刘兴旺 中国光学工程学会电话:022- 58168885邮箱:liuxingwang@csoe.org.cn
  • 如何为您的电子元件镀层测量选择合适的XRF配置
    XRF分析仪有多种配置可供选择:探测器类型、光学系统类型、自动化配置,甚至是台式或手持式分析仪。在本文中,我们将探讨使用XRF测量电子元件镀层所存在的挑战,并讨论在生产环境中实现可靠和快速测量的最*佳配置。外形因素:手持式还是台式XRF分析仪?今天,手持式和台式分析仪均可在几乎所有类型的基材上测量0.001-50μm(0.05-2000 微英寸)的金属镀层厚度。两种配置该选择哪一个更取决于实用性,而不是性能。如果您测量的是非常大的部件,有相对大的镀层面积,肉眼很容易看到(并且可以用手轻松地将分析仪抵近到位),那么手持式分析仪是最合适的。然而,许多电子元件完全不是这样。这些电子元件非常微小,需要通过显微镜和照相机装置定位,并使用精密载物台和专用光学器件,来确保准确地分析正确的特定测点。对于电子元件来说,台式分析仪几乎总是人们选择的类型。决定因素:元件的尺寸和被测特定测点的尺寸。您能把您的元件带到实验室吗?如果不能的话,那么您需要一台手持式分析仪。您需要测量小于1mm的面积吗?如果是的话,那么您需要一台台式分析仪。光圈类型:准直器还是毛细管光学机构?分析仪的光圈将产生的x射线引导并聚焦到样品表面。产生的光斑必须小于您需要测量的零件,您选择的光学器件将由您的零件尺寸决定。XRF分析仪通常配有两种类型光圈中的一种:准直器或毛细管光学机构。准直器是一个有孔的金属块,一部分X射线信号通过孔到达样品。对于测量100µm和更大的零件,这是一个不错的选择。毛细管光学机构使用特殊的玻璃毛细管收集几乎所有的X射线信号,并将其聚焦到一个非常小的点。这使您能够测量小于50 µm的零件。与准直器配置相比,由于使用了更高比例的X射线,因此这项技术对较薄的镀层也有更好的精度。决定因素:光斑大小。对于小于50µm的零件,您需要毛细管光学机构,若大于此尺寸,准直器配置可能会更合适。探测器类型:比例计数器还是硅漂移探测器?XRF分析仪中主要有两种类型的探测器:比例计数器和基于半导体的探测器,硅漂移探测器(SDD)是最常见的半导体探测器。决定哪种技术最适合您的应用可能很棘手,因为这两种技术在不同的情况下均有各自的优势。比例计数器由惰性气体封装于金属圆柱体中构成,当惰性气体受到X射线轰击时会发生电离。它们对像锡或银这样的高能量元素有很好的灵敏度,对于元素较少的简单分析非常有效。SDD是半导体器件,当受到X射线轰击时会产生特定数量的电荷。当您对样品中的几种元素感兴趣时,或者在检测低能量元素,如磷时,它们能提供更好的分辨率。下图说明了同一样品中比例计数器和SDD的输出差异。红色峰表示SDD输出,灰色光谱表示比例计数器。决定因素:这很复杂,但如果您需要测量多种不同的元素或非常薄或复杂的镀层,那么SDD是最*佳选择。想了解更多?如果您对此感兴趣,并且想了解更多实用的方法来提高您对微小电子部件的XRF分析的可靠性和准确性,那么您可以关注日立分析仪器的微信公众号点击“阅读原文”下载我们的免费指南《了解您的XRF:电子元件电镀指南》。除了讨论最适合您应用的XRF技术,这份综合指南还包括:• 您的XRF是如何工作的• 如何提高分析量• 如何确保您的分析仪正常工作• 错误的源头
  • 新华光:积极抢占红外元件市场,新年加班冲刺“开门红”
    “今年春节和往年一样,我们公司不停工、不停产,员工24小时轮值在岗。”1月17日,在湖北新华光信息材料有限公司(以下简称:新华光)制造二部的厂房里,厂房里5台熔炉正在同时运作,工人们正有条不紊的在生产线上完成玻璃成型和检验包装工作,还有2台大修熔炉正在紧锣密鼓砌筑中,准备春节期间投产上线。新华光生产车间新华光制造二部副部长杨爱清介绍说:“公司熔炉经过技术革新,产能和品质均得到大幅提升,最新一代大熔炉的产能比过去小型熔炉平均提升46%,部门将实现‘三大三小+一条K9线’满负荷生产,月度光学玻璃产能可达270多吨,同比去年增长超过百分之四十。”在该公司镜头事业部的超净工房,员工展示了自动组装机的组装成果——10秒便可完成一次镜头的组装,一次性合格率达97%以上。“我们目前的产品主要运用在智能驾驶、安防、监控、投影机、数码相机,还有观望类的望远镜枪瞄上,以前做材料,现在我们要做产业链的延伸,更好地服务于终端客户。今年我们还计划投入建立更多的自动化线体去代替人工,进一步提高效率和产能。”新华光市场总监、镜头事业部部长吴克忠向记者这样介绍。据悉,新华光作为全球第四、国内第二大的光学材料科研生产基地,目前已成为日系索尼、松下、爱普生等国际品牌,国内海康、大华、艾睿、高德等知名大型企业的合作伙伴,产品广泛用于车载、3C消费电子产品制造、安防与医疗等领域,出口比例不断提高。近年来,新华光积极抢占红外元件市场,以高性能光学材料及先进元件技术改造为契机,于2022年5月成立镜头事业部,建立七条人工产线,一条自动产线,每月平均出厂1万多只红外镜头订单,主要应用智能驾驶、工业测温、红外观瞄、安防、智能家居、AR、VR镜头等领域,通过下游产业流向终端,对应到具体客户。经过一年多的发展,部门目前已完成100多款镜头的开发,规模也从成立之初的5人发展到现在50人的团队。新华光生产车间“光学玻璃市场旺盛,产品供不应求,例如用于智能手机外屏盖板高强度纳米微晶玻璃和智能驾驶汽车的摄像头和激光雷达的订单,近年的增量非常大。”吴克忠说。在模压产品的品控把关上,新华光确保产品高品质高成交量出厂。厂内37台模压机,产能可达到每月两百万片。“我们自主供应原材料,通过改变工艺方式,节省工序来减少预制件的成本。在模具设计方面,我们产品的面间偏芯控制在1.5微米,目前是国内领先的水平。”新华光营销管理部副部长覃胡超向记者详细介绍。从光学玻璃材料到终端产品成品,新华光着力推动产业链向下延伸,提高产品附加值。值得一提的是,新华光作为主研单位编制完成了六项红外光学材料领域的检测以及产品的国家标准。其中,红外硫系玻璃条纹度、杂质和均匀性等3项国际标准获得ISO立项并最终定稿发布,在该领域处于国内国外相对领先的状态。覃胡超介绍说,目前公司生产经营稳健,订单不断增长也带动了盈利能力的稳步提升。2024年新华光将继续在光学科研领域精准发力,并不断向下延伸产业链,通过技术引领实现市场突破。关于湖北新华光信息材料有限公司湖北新华光信息材料有限公司是北方光电股份有限公司(股票代码:600184)的全资子公司,是全球第四大光学玻璃生产企业。公司通过ISO9001:2015、ISO/TS 16949:2016质量管理体系认证和ISO14001-2015环境管理体系认证、GB/T28001-2011职业健康安全管理体系认证、GB/T29490-2013知识产权管理体系认证,具有自营进出口权。公司年产无色光学玻璃材料5000吨,光学元件1.5亿件,红外光学玻璃5吨。产品全部实现环保化,出口20多个国家和地区,广泛应用于投影机、视频监控、车载等消费电子、工业应用、光学器材、红外成像等领域,国际市场占有率达13%,国内市场占有率达25%。
  • 爱特蒙特ILOPE 2012展示多种光学元件及光电机械
    爱特蒙特光学(Edmund Optics)参加了2012年10月16-18日期间在北京举行的国际光电产业博览会暨第十七届北京国际激光、光电子及光显示产品展览会(ILOPE 2012),展出多种光学元器件及光电机械、光电零部件。
  • 集美大学陈全胜教授团队食品顶刊综述: 基于纳米材料的光学传感器检测食品中苯并咪唑类杀菌剂的研究进展
    Introduction苯并咪唑类杀菌剂(BZD)是一类含有苯并咪唑环的内吸性杀菌剂。最常用的BZDs有苯菌灵、多菌灵(CBZ)、甲基硫菌灵(TPM)、噻菌灵(TBZ)、麦穗宁(FBZ)等。在现代农学中,BZDs广泛用于预防水果、蔬菜和其他作物的真菌病害,用于采前和采后处理;此外,它们还被用作广谱的驱虫药物,用于预防和治疗食源性动物体内寄生虫。因此,许多国家和国际权威机构都实施了严格的监管。 最近,基于纳米材料的光学技术,如比色、荧光和SERS技术,通过开发分析纳米技术在农药检测中的潜力,已经成为基于色谱技术一种替代方法。本文综述了近六年来基于纳米技术的光学传感器在水、食品和农产品中BDZ残留检测方面的研究进展。本研究特别强调了比色、荧光、SERS及其集成系统,为当前BZDs的检测现状提供了广泛的覆盖面。基于纳米材料的光学方法用于检测BDZ杀菌剂的示意图如图1所示。 图1 用各种光学方法检测BDZ的不同纳米材料及其综合方法的示意图 基于纳米材料的信号增强策略纳米材料在研究领域被广泛用于促进传感器的修饰。纳米材料由于其独特的性质,如表面修饰,生物相容性,表面等离子体共振,消光系数,催化活性等,可以提高不同传感器的检测效率。一般来说,信号增强的效果主要是因为来自大表面积的强吸附显示出优异的特异性,以及纳米材料的高电子转移速率,从而提高了不同传感器的传感效率。 基于纳米材料的光学传感器迄今为止,已经利用基于纳米材料的光学传感器构建了不同的BDZ传感技术。光学传感器在BDZ的现场检测方面具有很大的潜力和广泛的用途。图2是BDZ在基于纳米材料的光学传感器,特别是比色荧光和SERS及其集成系统的所有已发表论文的总结。图2 柱状图为基于纳米材料的比色(A)、荧光(B)和SERS(C)传感器检测BDZ杀菌剂的发展和发表论文情况比色传感器基于纳米材料的比色传感器因其对包括重金属、农药、真菌毒素、有毒细菌、生物标志物等在内的许多分析物的灵敏和选择性响应而受到了极大的关注。表面等离子体共振(SPR)是纳米材料的一个重要特征,由于纳米材料的聚集或分散,与分析物相互作用后,在可见光区域显示出明亮的颜色变化,并与分析物产生明显的线性或非线性关系。通常,有两种策略可用于制备基于比色的传感器:I)催化或结构变化引起的颜色变化;II)纳米粒子的形态转变或聚集。比色传感器中比色响应的方案如图3所示。表1是基于纳米材料的比色传感器检测食品中BDZ的研究结果。图3 比色传感器的比色响应表1 基于纳米材料的BDZ比色传感器荧光传感器荧光传感器的基本原理是荧光团或纳米粒子产生的光的发射,从激发态返回到基态。表2是基于纳米材料的荧光传感器检测食品中BDZ的研究结果。表2 基于纳米材料的BDZ荧光传感器基于非辐射能量转移的荧光传感器在检测食品和农产品中的有毒化学物质和致病菌方面引起了人们极大的研究兴趣。FRET是一种非辐射距离依赖的能量转移现象,作为一种独特、可靠、灵敏的分析技术被广泛应用于检测各种分析物。碳量子点或碳点是一种新型的发光碳纳米材料,可用于荧光分析法中的定量分析。如图4A所示,Wang课题组基于氮掺杂碳量子点和金纳米簇之间的FRET,通过两个线性响应开发了CBZ的"turnon"比率型荧光传感器,LOD分别为0.83和37.25 μmol/L。相反,考虑到上转换纳米颗粒的优势,有研究开发了一种上转换-二氧化锰发光共振能量转移生物传感器用于UCNPs对CBZ的灵敏检测,如图4B所示。图4 N-GQDs/AuNCs作为CBZ比率荧光开启传感器的示意图(A) CBZ荧光纳米传感器示意图(B) SERS传感器近年来,随着纳米技术的发展,获得了不同形态的纳米结构,它们被用作SERS活性基底,用于无标记和/或靶敏感检测各种分析物,包括农药残留水平。为了提高基于SERS的农药检测的准确度和精密度,研究人员不断致力于开发新型SERS基底、新型检测策略、原位检测系统等。表3总结了SERS技术在BDZ类杀菌剂检测和定量方面的研究进展。表3 BDZ用纳米材料SERS传感器 SERS活性基底的选择SERS活性基底的选择对SERS检测至关重要。为了制备用于BDZ的最佳SERS传感器,需要考虑三个关键点:i)SERS活性底物的拉曼信号增强能力,ii)SERS有源底物的均匀性和稳定性,iii)BDZ对SERS活性基质的亲和力。 SERS光谱的密度泛函理论(DFT)模拟在SERS信号中可以得到分子固有的拉曼信号,这可以通过DFT得到潜在的证实。理论拉曼信号借助高斯程序进行DFT分析,并给出合理的解释。然而,实验测得的拉曼和SERS信号与理论信号存在一定的差异,这可能与农药或基底的分子结构及其相互作用有关。因此,需要更多的研究来了解它们在实验上存在差异的确切原因。化学计量学对SERS传感器的影响化学计量学的关键优势在于能够从低质量的仪器数据中获得合理的检测结果,所得数据具有信号重叠性强、噪声水平高、分辨率低等特点。这种方法常应用于从光学(即比色、荧光、SERS等)、色谱、电化学和其他各种技术中获得的信号的定性和定量处理。有研究将竞争性自适应重加权采样-极限学习机(CARS-ELM)作为非线性化学计量学方法与SERS相结合,实现了苹果中TBZ浓度的快速测定;该方法在TBZ浓度为1、5、10 mg/L的蓄意污染苹果样品中的回收率为83.02%~93.54%;此外,通过PCA在P=0.05水平上的判别图确定了LOD(0.001 mg/L),如图5A所示。图5 利用SERS耦合CARS-ELM确定TBZ的方法示意图(A);SERS传感双杀菌剂界面自组装核壳二维Au@Ag纳米点阵列的制备示意图(B);便携式拉曼分析仪微滴捕获带(C);Ag-Au-IP6-Mil-101 (Fe)的制备示意图及TBZ的SERS测定(D)磁性纳米粒子(MNPs)对SERS传感器的影响磁性纳米粒子与贵金属纳米材料的结合在农药的SERS检测中开辟了新的途径,这归因于以下几个优点:MNPs的有序排列和良好调节的热点提供了完美的增强因子;磁性纳米粒子的磁性允许目标化合物从复杂基质中有效分离和富集;磁性纳米粒子的磁性赋予了SERS纳米复合基底可重复使用性;最后,磁性纳米粒子的生物相容性允许生物识别分子固定在其表面,提高了其对目标分子的特异性生物识别能力和与基质的分离能力。利用贵金属单、双金属SERS基底对BDZ进行无标记检测近年来,利用SERS技术实现痕量分子的无标记检测已成为原位应用的研究热点。如图5B所示,利用金核银壳纳米颗粒设计了一种二维纳米点阵列SERS基底,用于梨、苹果和橙汁中TBZ的可靠和可重复性测定,LOD为0.051 × 10-6。 基于氧化石墨烯(GO)的SERS传感器GO是一种单层碳材料,通过π-π堆积作用或静电作用对芳香分子具有突出的吸附能力;此外,由于电荷转移效应,它提高了拉曼信号,从而支持SERS检测。 硅基SERS传感器根据已发表的多篇文献,金属化硅由于具有大的表面积体积比可用于表面修饰、减少纳米材料之间的相互作用、独特的光学性质和易于制备等优点,已成为制备SERS基底的重要元素。基于聚二甲基硅氧烷(PDMS)的SERS传感器PDMS是柔性基底中备受研究者关注的一种聚合物凝胶,因其具有透明性、良好的拉伸强度、黏结性、无毒性和化学稳定性等优点。此外,它具有较低的拉曼截面,对拉曼信号的影响较小。 基于纸张和胶带的SERS传感器纤维素基纸模板具有三维结构、便携性、柔韧性、多孔性、非均相形貌、极小的SERS信号干扰等优点,是硅或玻璃晶片和多孔氧化铝模板的实际替代品。特别是,它可以通过毛细管作用吸收液体,使目标分析物在传感器纳米材料表面黏附和富集基于金属有机框架的SERS传感器。如图5C所示,通过在导电碳带上沉积Au纳米枝晶,生成了用于TBZSERS检测的创新型POCT装置"微液滴捕获带";作为一个自主的"微容器"用于吸附分析物。基于金属有机框架(MOFs)的SERS传感器MOFs的多孔结构是通过π-π相互作用、氢键或静电作用形成的,它们提供了一个大的比表面积来支持和稳定金属纳米结构,从而获得一种新型的SERS基底。将Au/Ag纳米结构固定到MOFs中作为一种高效的SERS基底近年来受到了广泛的关注。如图5D所示,开发了一种基于MOFs的SERS传感器(Ag-Au-IP6-Mil-101(Fe))检测果汁样品中的TBZ。 基于分子印迹聚合物(MIPs)的SERS传感器考虑到生物识别元件的局限性,MIP作为一种人工识别元件,具有与目标分子亲和力高、化学和机械稳定性好、价格低廉等优点,在检测、催化和固相萃取等领域具有广阔的应用前景;它通过具有酸性或碱性基团的单体聚合,在目标分子存在的情况下形成三维空腔,可以通过互补的形状、大小和官能团选择性地与目标分子结合。基于其他材料的SERS传感器受仿生材料的启发,将植物叶片组装到AuNPs上,产生电磁辐射热点,用于水中CBZ和TBZ的检测。有研究报道了一种用于检测水果样品中TBZ的模板生长磷烯基Au/Ag纳米复合材料SERS基底。另有研究报道了合成的聚氨酯胶束/纳米银簇用于不同果蔬表面TBZ的原位检测。集成传感器近年来,集成不同的技术来提高检测的选择性、准确性和精密度受到了广泛的关注。利用碳化钛MXene/Au-Ag纳米壳开发了一种双功能智能CBZ检测方法,如图6所示。通过电化学和SERS方法,该传感器在茶叶和大米中分别可以检测到低至0.002和0.01 μmol/L的CBZ(表4)。图6 Ti2C MXene/Au-Ag纳米杂化物用于CBZ的电化学和SERS检测表4 基于纳米材料的BDZ集成传感器Conclusion and Perspectives本文综述了基于纳米材料的检测策略,以实现对实际样品中BDZ的高效溯源。尽管这些基于纳米材料的光学及其集成传感器与传统方法相比具有一定的便利性,但在实际样品的检测中仍然存在一些挑战。在本研究中提到的BDZ中,苯菌灵和FBZ还没有被检测到。由于纳米材料与目标分析物结合的活性位点是有限的,因此关注简便和低成本的样品前处理过程是很重要的。也可以集中在芯片、纸张或带状传感器上,用于BDZ的现场检测,这将更有效地用于工业应用。——————————————————————————————————————— 陈全胜:集美大学海洋食品与生物工程学院教授,博士生导师,主要从事食品质量安全快速无损检测与智能化加工装备研发。近年来先后主持国家部省级项目20余项,出版学术英文学术著作1部,中文学术著作3部,以第一/通讯作者发表SCI论文150余篇(其中,IF10论文10余篇,ESI高被引论文15篇,ESI热点论文4篇),论文累计SCI他引6000余次,个人H指数43;累计授权发明专利50余件(含国际专利4件),成果先后获国家技术发明奖二等奖、江苏省科学技术奖一等奖和教育部自然科学奖二等奖等;先后获国家高层次人才、科技部中青年科技创新领军人才、中国高被引学者、ProSPER.Net-Scopus Young Scientist Award、中国青年科学之星和江苏省333中青年科技创新领军人才等国内外奖励和荣誉。为进一步促进动物源食品质量安全的发展,更好的保障人类身体健康和提高生活品质,仪器信息网于2023年11月15-17日举办“动物源性食品质量安全检测技术”主题网络研讨会。陈全胜老师也将在此次网络会中带来精彩报告!点击图片,免费参会
  • 上海光机所在基于监督学习的超精密光学曲面自适应工艺决策方面取得进展
    近期,中国科学院上海光学精密机械研究所精密光学制造与检测中心在基于监督学习的超精密光学曲面自适应工艺决策方面取得重要进展。研究团队首次提出了一种傅里叶卷积-并联神经网络框架,攻克了光学加工领域小样本训练条件下高维度输出的瓶颈难题,综合训练正确率优于90%,实现了数字化子孔径制造多维度参数组合加工智能化决策,对光学制造的智能化发展具有重要指导意义。相关研究成果以“Fourier convolution-parallel neural network framework with library matching for multi-tool processing decision-making in optical fabrication”为题发表在Optics Letters上。现代光学系统如光刻系统、大型望远镜和高功率激光等对各类超精密光学元件数量和表面质量提出了更高的需求,而现有工艺决策很大程度上仍然依赖经验丰富的技术专家,受专业人员的稀缺性以及人工决策的不稳定性影响,决策过程智能化是光学制造精度和效率进一步提升面临的关键问题。近年来,数据驱动的机器学习网络发展为解决这一瓶颈问题提供了可能;但在光学加工领域,训练样本获取难而决策维度高,如何实现小样本条件下的有效训练来满足高特征维度输出要求,是数据驱动智能化光学加工发展面临的首要难题。图1 结合去除函数库匹配的傅里叶卷积-并联神经网络框架针对以上问题,研究团队首次提出了一种结合去除函数库匹配的傅里叶卷积-并联神经网络框架,实现了数据驱动下工具种类、尺寸、磨料类型和体去除率等关键参数的联合自主决策,决策范围涵盖了自研磨/粗抛到修形/光顺等大部分工艺流程,也是首次证明了光学制造通过数据驱动神经网络解决的可行性。实验结果表明,仅在网络模型的指导下,260mm260mm的离轴非球面镜的面形精度(PV)可由初始的15.153λ收敛至0.42λ(λ=632.8nm),RMS由初始的2.944λ收敛至0.064λ,总加工时间仅为25.34个小时,收敛率优于97%,已达到专业技术人员决策水平。该研究成果对超精密光学元件的高效制造具有重要价值,并有可能将光学制造的智能化水平推向新的高度。图2 网络模型指导下离轴非球面镜的加工结果
  • 投资7500万元 国家管道元件产品质检中心开建
    11月28日,国家管道元件产品质量监督检验中心项目在沧州经济开发区开工建设。这是落户沧州市的第一个国家级质检中心,由国家质检总局批复筹建。项目占地30亩,总投资7500万元,建筑面积1.8万平方米,包含理化分析、无损检测、型式试验、人员培训考核、科研实验等项目。   据介绍,经过多年发展,管道制造已成为沧州经济开发区的支柱产业,形成了独具特色的管道创新园。国家管道元件产品质量监督检验中心将立足开发区实际,借助沧州市“中国管道装备制造基地”优势,充分发挥政府实验室的作用,对企业、产业发展起到不可替代的技术支撑作用。这一中心将通过就近就地满足企业的产品质检要求、科技创新需求和标准技术研发需求,直接节省企业产品研发及型式试验设备的投资成本、获证验证检测成本 通过直接有效地促进企业的技术进步,加速产业升级和发展壮大,确立我市在国内外同行竞争中的优势地位,为打造知名的“管道装备之都”提供技术支撑。
  • 光学检测领域取得新进展
    p style=" text-indent: 2em text-align: justify " 近期,中国科学院合肥物质科学研究院智能机械研究所先进感知与智能系统研究室在表面等离子共振光学检测领域取得新进展,相关成果发表在光学期刊Optics Express上(Vol.27 Issue.2)。 /p p style=" text-indent: 2em text-align: justify " 表面等离子共振技术(Surface Plasmon Resonance, SPR)由于其实时、无标记的优越检测特性而广泛应用于医学、生物学等微观检测领域。棱镜耦合式SPR具有结构简单、灵敏度高等优势,被广泛使用,但在现场检测时,该系统检测信号存在温度漂移,通常的解决方案是增加参考通道,但是该方法无法测量不同温度水平的生物学动力常数。 /p p style=" text-indent: 2em text-align: justify " 针对以上问题,研究人员提出了一般性解决方案:分别建模分析了角度调试和波长调制模式下的温度对其共振偏移的影响。由于色散效应,两种调制模式下的影响既具有相同的趋势,也有不同之处。基于交叉灵敏度矩阵思想,分别提出了双波长检测(Angular-interrogation)和双角度检测(wavelength-interrogation)方法,实现了折射率和温度变化的同时测量。研究人员首次提出分区间线性修正提高精度的检测思想,且进行了概念性验证实验。相比于构建新型微纳检测结构,该方法在工程领域具有较强的可行性,具有广泛的应用前景,得到审稿专家的充分肯定。 /p p style=" text-indent: 2em text-align: justify " 相关研究工作得到国家自然科学基金面上项目、国家科技重大专项、安徽省重点实验室资金等的资助。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201901/uepic/82de36d8-bda4-4152-b313-14ee1b497e21.jpg" title=" W020190116563312993884.jpg" alt=" W020190116563312993884.jpg" / /p p style=" text-indent: 2em text-align: center " 波长调制模式SPR传感器的温度效应 /p
  • 投资3.6亿 国家管道元件产品质检中心落户河北
    近日,国家管道元件产品质量监督检验中心项目在沧州经济开发区开工奠基。   国家管道元件产品质量监督检验中心项目占地70余亩,总投资3.6亿元,一期工程预计年底竣工并投入使用。项目建成后,将覆盖管道元件及装备产品全项检测,为管道装备产品标准制定、修订提供全项检测和数据验证,并依据国际标准和美、英、日等国外先进标准进行检验。中心一方面为政府、企业和社会各界提供科学、公正、权威、合法的检测服务,开展制造资格取换证评审 另一方面为企业提供原材料检测、产品生产控制验证检测和各类作业人员培训,满足企业的产品质量检验需求、科技创新需求和标准技术研发需求。   国家管道元件产品质量监督检验中心建成后,不仅可以提高沧州市管道装备产品检验水平,还将极大提高产业研发和制定标准的水平,促进科技成果转化。
  • 赛默飞世尔科技再度拓展流变仪UV固化元件的功能
    德国卡尔斯鲁厄(2008年8月19日)-服务科学世界领先的赛默飞世尔科技公司再度拓展了流变仪用UV固化元件的产品种类,以借此重点开发此类附件的功能。此举与行业中用支持UV的热固化工艺取代热固化的趋势不谋而合,可有效地改善产品特性,提高生产力。 现在,客户在选购UV测量装置时有以下三种选择: - 标准版UV测量元件:可安装在温控单元(液体温控、电子温控或Peltier板)上,适用于在室温情况下对油墨等材料进行UV固化。 - 高温热固化工艺用UV元件:适用于Thermo Scientific HAAKE MARS。它可集成到流变仪的控制试验炉(CTC)中,温度范围在-150° C到600° C。 - 可定制的UV元件:可自由配置光导、聚光镜、玻璃片等光学部件的距离,以模拟生产工艺(如隐形眼镜)中光学部件的布局。 市面上有售的光源均可通过Thermo Scientific HAAKE RheoWin测量和评估软件来连接并触发。上述测量元件支持粉末涂料、胶粘剂、密封剂、焊接材料、油墨或隐形眼镜等多种应用。 赛默飞世尔科技通过全面的材料表征解决方案,可成功地向多个行业提供支持。上述解决方案可对塑料、食品、化妆品、药品及包覆以及各种流体、固体的粘度、弹性、加工性能及温度相关的机械变化等进行分析和测量。欲了解更多详情,请登录www.thermo.com/mc. Thermo Scientific作为赛默飞世尔科技旗下子公司,是服务科学领域的世界领导者。 ----------------------------------------------------------------------------------- 关于赛默飞世尔科技 赛默飞世尔科技(Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年度营收达到100亿美元,拥有员工33,000多人,服务客户超过350,000家。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构以及环境与工业过程控制装备制造商等。公司借助 Thermo Scientific 和 Fisher Scientific 这两大品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific像客户提供了一整套完整的高端分析仪器、实验室设备、软件、服务、耗材和试剂,以实现实验室工作流程综合解决方案。Fisher Scientific 为卫生保健、科学研究,安全和教育领域的客户提供完整的实验室装备、化学药品、供应品和服务的组合。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,还为员工创造良好的发展空间。 欲获取更多信息,请访问公司网站: www.thermo.com (英文) 或 www.thermo.com.cn (中文)
  • 用于纳米级表面形貌测量的光学显微测头
    用于纳米级表面形貌测量的光学显微测头李强,任冬梅,兰一兵,李华丰,万宇(航空工业北京长城计量测试技术研究所 计量与校准技术重点实验室,北京 100095)  摘 要:为了满足纳米级表面形貌样板的高精度非接触测量需求,研制了一种高分辨力光学显微测头。以激光全息单元为光源和信号拾取器件,利用差动光斑尺寸变化探测原理,建立了微位移测量系统,结合光学显微成像系统,形成了高分辨力光学显微测头。将该测头应用于纳米三维测量机,对台阶高度样板和一维线间隔样板进行了测量实验。结果表明:该光学显微测头结合纳米三维测量机可实现纳米级表面形貌样板的可溯源测量,具有扫描速度快、测量分辨力高、结构紧凑和非接触测量等优点,对解决纳米级表面形貌测量难题具有重要实用价值。  关键词:纳米测量;激光全息单元;位移;光学显微测头;纳米级表面形貌0 引言  随着超精密加工技术的发展和各种微纳结构的广泛应用,纳米三坐标测量机等精密测量仪器受到了重点关注。国内外一些研究机构研究开发了纳米测量机,并开展微纳结构测量[1-4]。作为一个高精度开放型测量平台,纳米测量机可以兼容各种不同原理的接触式测头和非接触式测头[5-6]。测头作为纳米测量机的核心部件之一,在实现微纳结构几何参数的高精度测量中发挥着重要作用。原子力显微镜等高分辨力测头的出现,使得纳米测量机能够实现复杂微纳结构的高精度测量[7-8],但由于其测量速度较慢,对测量环境要求很高,不适用于大范围快速测量。而光学测头从原理上可以提高扫描测量速度,同时作为一种非接触式测头,还可以避免损伤样品表面,因此,在微纳米表面形貌测量中有其独特优势。在光学测头研制中,激光聚焦法受到国内外研究者的青睐,德国SIOS公司生产的纳米测量机就包含一种基于光学像散原理的激光聚焦式光学测头,国内也有一些大学和研究机构开展了此方面的研究[9-11]。这些测头主要基于像散和差动光斑尺寸变化检测原理进行离焦检测[12-13]。在CD和DVD播放器系统中常用的激光全息单元已应用于微位移测量[14-15],其在纳米测量机光学测头的研制中也具有较好的实用价值。针对纳米级表面形貌的测量需求,本文研制了一种基于激光全息单元的高分辨力光学显微测头,应用于自主研制的纳米三维测量机,可实现被测样品的快速瞄准和测量。1 激光全息单元的工作原理  激光全息单元是由半导体激光器(LD)、全息光学元件(HOE)、光电探测器(PD)和信号处理电路集成的一个元件,最早应用于CD和DVD播放器系统中,用来读取光盘信息并实时检测光盘的焦点误差,其工作原理如图1所示。LD发出激光束,在出射光窗口处有一个透明塑料部件,其内表面为直线条纹光栅,外表面为曲线条纹全息光栅,两组光栅相互交叉,外表面光栅用于产生焦点误差信号。LD发出的激光束在光盘表面反射回来后,经全息光栅产生的±1级衍射光,分别回到两组光电探测器P1~P5和P2~P10上。当光盘上下移动时,左右两组光电探测器上光斑面积变化相反,根据这种现象产生焦点误差信号。这种测量方式称为差动光斑尺寸变化探测,焦点误差信号可以表示为  根据焦点误差信号,即可判断光盘离焦量。图1 激光全息单元  根据上述原理,本文设计了高分辨力光学显微测头的激光全息测量系统。2 光学显微测头设计与实现  光学显微测头由激光全息测量系统和光学显微成像系统两部分组成,前者用于实现被测样品微小位移的测量,后者用于对测量过程进行监测,以实现被测样品表面结构的非接触瞄准与测量。  2.1 激光全息测量系统设计  光学显微测头的光学系统如图2所示,其中,激光全息测量系统由激光全息单元、透镜1、分光镜1和显微物镜组成。测量时,由激光全息单元中的半导体激光器发出的光束经过透镜1变为平行光束,该光束被分光镜1反射后,通过显微物镜汇聚在被测件表面。从被测件表面反射回来的光束反向通过显微物镜,一小部分光透过分光镜1用于观察,大部分光被分光镜1反射,通过透镜1,汇聚到激光全息单元上,被全息单元内部集成的光电探测器接收。这样,就将被测样品表面瞄准点的位置信息转换为电信号。在光学显微测头设计中选用的激光全息单元为松下HUL7001,激光波长为790 nm。图2 光学显微测头光学系统示意图  当被测样品表面位于光学显微测头的聚焦面时,反射光沿原路返回激光全息单元,全息单元内两组光电探测器接收到的光斑尺寸相等,焦点误差信号为零。当样品表面偏离显微物镜聚焦面时,由样品表面反射回来的光束传播路径会发生变化,进入激光全息单元的反射光在两组光电探测器上的分布随之发生变化,引起激光全息单元焦点误差信号的变化。当被测样品在显微物镜焦点以内时,焦点误差信号小于零,而当被测样品在显微物镜焦点以外时,焦点误差信号大于零。因此,利用在聚焦面附近激光全息单元输出电压与样品位移量的单调对应关系,通过测量激光全息单元的输出电压,即可求得样品的位移量。  2.2 显微物镜参数的选择  在激光全息测量系统中,显微物镜是一个重要的光学元件,其光学参数直接关系着光学显微测头的分辨力。首先,显微物镜的焦距直接影响测头纵向分辨力,在激光全息单元、透镜1和显微物镜之间的位置关系保持不变的情况下,对于同样的样品位移量,显微物镜的焦距越小,样品上被测点经过显微物镜和透镜1所成像的位移越大,所引起激光全息单元中光电探测器的输出信号变化量也越大,即测量系统纵向分辨力越高。另外,显微物镜的数值孔径对测头的分辨力也有影响,在光波长一定的情况下,显微物镜的数值孔径越大,其景深越小,测头纵向分辨力越高。同时,显微物镜数值孔径越大,激光束会聚的光斑越小,系统横向分辨力也越高。综合考虑测头分辨力和工作距离等因素,在光学显微测头设计中选用大恒光电GCO-2133长工作距物镜,其放大倍数为40,数值孔径为0.6,工作距离为3.33 mm。  2.3 定焦显微测头的实现  除激光全息测量系统外,光学显微测头还包括一个光学显微成像系统,该系统由光源、显微物镜、透镜2、透镜3、分光镜1、分光镜2和CCD相机组成。光源将被测样品表面均匀照明,被测样品通过显微物镜、分光镜1、透镜2和分光镜2,成像在CCD相机接收面上。为了避免光源发热对测量系统的影响,采用光纤传输光束将照明光引入显微成像系统。通过CCD相机不仅可以观察到被测样品表面的形貌,而且也可以观察到来自激光全息单元的光束在样品表面的聚焦情况。  根据图2所示原理,通过光学元件选购、机械加工和信号放大电路设计,制作了光学显微测头,如图3所示。从结构上看,该测头具有体积小、集成度高的优点。将该测头安装在纳米测量机上,编制相应的测量软件,可用于被测样品的快速瞄准和高分辨力非接触测量。图3 光学显微测头结构3 测量实验与结果分析  为了检验光学显微测头的功能,将该测头安装在纳米三维测量机上,使显微物镜的光轴沿测量机的Z轴方向,对其输出信号的电压与被测样品的离焦量之间的关系进行了标定,并用其对台阶高度样板和一维线间隔样板进行了测量[16]。所用纳米三维测量机在25 mm×25 mm×5 mm的测量范围内,空间分辨力可达0.1 nm。实验在(20±0.5)℃的控温实验室环境下进行。  3.1 测头输出电压与位移关系的建立  为了获得光学显微测头的输出电压与被测表面位移(离焦量)的关系,将被测样板放置在纳米三维测量机的工作台上,用精密位移台带动被测样板沿测量光轴方向移动,通过纳米测量机采集位移数据,同时记录测头输出电压信号。图4所示为被测样板在测头聚焦面附近由远及近朝测头方向移动时测头输出电压与样品位移的关系。图4 测头电压与位移的关系  由图4可以看出,光学显微测头的输出电压与被测样品位移的关系呈S形曲线,与第1节中所述的通过差动光斑尺寸变化测量离焦量的原理相吻合。当被测样板远离光学显微测头的聚焦面时,电压信号近似常数。当被测样板接近测头的聚焦面时,电压开始增大,到达最大值后逐渐减小;当样板经过测头聚焦面时,电压经过初始电压值,可认为是测量的零点;当样品继续移动离开聚焦面时,电压继续减小,到达最小值时,电压又逐渐增大,回到稳定值。在电压的峰谷值之间,曲线上有一段线性较好的区域,在测量中选择这段区域作为测头的工作区,对这段曲线进行拟合,可以得到测头电压与样板位移的关系。在图4中所示的3 μm工作区内,电压与位移的关系为  式中:U为激光全息单元输出电压;∆d为偏离聚焦面的距离。  3.2 台阶高度测量试验  在对光学显微测头的电压-位移关系进行标定后,用安装光学显微测头的纳米三维测量机对台阶高度样板进行了测量。  在测量过程中,将一块硅基SHS-1 μm台阶高度样板放置在纳米三维测量机的工作台上,首先调整样板位置,通过CCD图像观察样板,使被测台阶的边缘垂直于工作台的X轴移动方向,样板表面位于光学显微测头的聚焦面,此时测量光束汇聚在被测样板表面,如图5所示。然后,用工作台带动样板沿X方向移动,使测量光束扫过样板上的台阶,同时记录光学显微测头的输出信号。最后,对测量数据进行处理,计算台阶高度。图5 被测样板表面图像  台阶高度样板的测量结果如图6所示,根据检定规程[17]对测量结果进行处理,得到被测样板的台阶高度为1.005 μm。与此样板的校准结果1.012 μm相比,测量结果符合性较好,其微小偏差反映了由测量时温度变化、干涉仪非线性和样板不均匀等因素引入的测量误差。图6 台阶样板测量结果  3.3 一维线间隔测量试验  在测量一维线间隔样板的过程中,将一块硅基LPS-2 μm一维线间隔样板放置在纳米测量机的工作台上,使测量线沿X轴方向,样板表面位于光学显微测头的聚焦面。然后,用工作台带动样板沿X方向移动,使测量光束扫过线间隔样板上的刻线,同时记录纳米测量机的位移测量结果和光学显微测头的输出信号。最后,对测量数据进行处理,测量结果如图7所示。  根据检定规程[17]对一维线间隔测量结果进行处理,得到被测样板的刻线间距为2.004 μm,与此样板的校准结果2.002 μm相比,一致性较好。  3.4 分析与讨论  由光学显微测头输出电压与被测表面位移关系标定实验的结果可以看出:利用在测头聚焦面附近测头输出电压与样品位移量的单调对应关系,通过测量测头的输出电压变化,即可求得样品的位移量。在图4所示曲线中,取电压-位移曲线上测头聚焦面附近的3 μm位移范围作为工作区,对应的电压变化范围约为0.628 V。根据对电压测量分辨力和噪声影响的分析,在有效量程内测头的分辨力可以达到纳米量级。  台阶高度样板和一维线间隔样板测量实验的结果表明:光学显微测头可以应用于纳米三维测量机,实现微纳米表面形貌样板的快速定位和微小位移测量。通过用纳米测量机的激光干涉仪对光学显微测头的位移进行校准,可将测头的位移测量结果溯源到稳频激光的波长。实验过程也证明:光学显微测头具有扫描速度快、测量分辨力高和抗干扰能力强等优点,适用于纳米表面形貌的非接触测量。4 结论  本文介绍了一种用于纳米级表面形貌测量的高分辨力光学显微测头。在测头设计中,采用激光全息单元作为位移测量系统的主要元件,根据差动光斑尺寸变化原理实现微位移测量,结合光学显微系统,形成了结构紧凑、集测量和观察功能于一体的高分辨力光学显微测头。将该测头安装在纳米三维测量机上,对台阶高度样板和一维线间隔样板进行了测量实验,结果表明:该光学显微测头可实现预期的测量功能,位移测量分辨力可达到纳米量级。下一步将通过多种微纳米样板测量实验,进一步考察和完善测头的结构和性能,使其更好地适合纳米三维测量机,应用于微纳结构几何参数的非接触测量。作者简介李强,(1976-),男,高级工程 师,主要从事纳米测量技术研究,在微纳米表面形貌参数测量与校准、微纳尺度材料力学特征参数测量与校准、复杂微结构测量与评价等领域具有丰富经验。
  • 国内首台自动光学检测设备研制成功
    日前,由中国电子科技集团第45所承担的国际科技合作项目“自动光学检测(AOI)设备技术合作”,通过了国家级验收,技术指标达到了国外同类设备水平,标志着自动光学检测(AOI)设备实现了国产化,填补了国内空白。   据了解,当今电子装备在结构上强调实现小型化、微型化、模块化,以满足高性能、高可靠、大容量、小薄轻的要求。线路板上元器件组装密度提高,其线宽、间距、焊盘越来越细小,已到微米级,复合层数越来越多。传统的人工目测(MVI)和针床在线测试(ICT)检测因“接触受限”(电气接触受限和视觉接触受限)所制,已不能完全适应当今制造技术的发展,自动光学检测系统(AOI)已经成为IC制造业的必然需求,正越来越多地用来代替传统MVI和ICT技术,进行检测,用于监视和保证生产过程的品质。目前,我国自动光学检测系统(AOI)设备主要依赖进口,一直被以色列、美国、日本等国家所垄断。中国电子科技集团第45所,与加拿大开展了卓有成效的国际科技合作,共同研发自动光学检测(AOI)设备,通过引进、消化吸收、再创新,终于研制出了具有国际水平的自动光学检测(AOI)设备,打破了国外的垄断与技术封锁,使进口产品降价30%。   中国电子科技集团第45所通过技术引进和消化吸收,攻克了高速图像采集和硬件处理技术,缺陷识别和处理技术,细微图形采像技术等三项关键技术,并成功应用于AOI设备的研制,目前已获得专利4项,申报并受理发明专利6项,发表学术论文6篇,获省部级科学技术二等奖1项。该项目的完成,标志着我国在自动光学检测设备领域具备与国外主流设备展开竞争的实力,提高了我国电子专用检测设备的制造水平。
  • 中国首台自动光学检测设备研制成功
    河北省廊坊市科技局26日称,中国电子科技集团第45所(燕郊)与加拿大共同合作的“自动光学检测(AOI)设备技术”研制成功,各项技术指标均达到国外同类设备水平。这标志着我国打破了国外在自动光学检测设备领域的垄断与技术封锁,使自动光学检测设备进口产品降价30%。 中国电子科技集团第45所   据廊坊市科技局工作人员介绍,全球电子装备在结构上强调实现小型化、微型化、模块化,以满足高性能、高可靠、大容量、小薄轻的要求。而我国传统的人工目测(MVI)和针床在线测试(ICT)检测因“接触受限”(电气接触受限和视觉接触受限)所制,已不能完全适应当今制造技术的发展。目前,我国自动光学检测系统(AOI)设备还主要依赖进口,一直被以色列、美国、日本等国家所垄断。因此,自动光学检测系统(AOI)已经成为IC制造业的必然需求。   据了解,2007年,中国电子科技集团45所顺利通过科技部、国家外专局的批准,被列为我国“微电子装备国际合作基地”之一,并与加拿大开展国际科技合作。   廊坊市科技局局长杨中秋表示,该项目的完成,不仅提高了我国电子专用检测设备的制造水平,也标志着我国在自动光学检测设备领域具备了与国外主流设备竞争的实力。
  • 三项激光器/激光相关设备国标征求意见 涉及紫外、可见、红外光谱范围元件
    p   日前,全国光学和光子学标准技术委员会电子光学系统分技术委员会(SAC/TC103/SC6)秘书处发布关于征求《激光器和激光相关设备 光腔衰荡高反射率测量方法》等3项国家标准(征求意见稿)意见的通知。 /p p   根据通知内容,由全国光学和光子学标准技术委员会、电子光学系统分技术委员会(SAC/TC103/SC6)负责归口的《激光器和激光相关设备光腔衰荡高反射率测量方法》、《激光器和激光相关设备-标准光学元件-第1部分:紫外、可见和近红外光谱范围内的元件》、《激光器和激光相关设备-标准光学元件-第2部分:红外光谱范围内的元件》等3项国家标准已完成,现公开征求意见,截止日期11月17日。 /p p    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 近年来随着薄膜沉积技术的发展,光学薄膜,尤其是广泛应用于大型高功率激光装置、干涉引力波探测、激光陀螺、腔增强和腔衰荡光谱测量中的高反射薄膜的性能获得了极大的提高。激光光学系统中需要用到一些反射率很高(高于99.9%甚至99.99%)的反射元件,必须精确测量其反射率(测量重复性精度达到0.001%甚至更低)。 /span /p p span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai"   strong   /strong a title=" " href=" http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319778323438.rar" target=" _blank" strong 1.《激光器和激光相关设备 光腔衰荡高反射率测量方法》(征求意见稿)及编制说明 /strong /a /span /p p   本标准规定了激光光学元件反射率的测量方法,适用于激光光学元件高于99%的反射率的精确测量。 /p p   基于光腔衰荡技术,本标准的测试方法和流程可实现激光光学元件的高反射率(大于99%,理论上可达100%)测量,且精度高、重复性和再现性好、可靠性高。特别是大于99.9%的反射率的准确测量对发展高性能反射激光元件具有重要意义。 /p p    span style=" FONT-FAMILY: 楷体,楷体_GB2312, SimKai" 目前,激光应用领域越来越多,包括医疗、材料处理、信息技术和计量等等。激光器及激光系统一般要用到光学窗口、反射镜、分光镜和透镜等光学元件,为防止激光损伤,这些光学元件要禁得起激光系统高峰值功率/能量密度的技术要求,这对光学元件提出了更高的制造要求。另外,随着我国光学与光电子产业的迅猛发展,光学元件加工制造形成了相当的产业规模,在满足国内要求的同时,产品正在走向国际化。因此对此类光学元件标准化的要求越来越高。 /span /p p    a title=" " href=" http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319792051186.rar" target=" _blank" strong 2.《激光器和激光相关设备-标准光学元件-第1部分:紫外、可见和近红外光谱范围内的元件》(征求意见稿)及编制说明 /strong /a /p p   本部分规定了紫外、可见和近红外波段,波长从170nm至2100nm光谱范围内的激光光学元件的要求。适用于激光器和激光相关设备使用的标准光学元件,包括平面、平面球面和球面基片不包括镀膜后的光学元件,透镜和按规定设计由供应商提供的其它标准光学元件。 /p p   本部分的发布可以填补我国用于紫外、可见和近红外光谱范围标准激光光学元件要求的空白 同时,通过规定优先的尺寸和公差,来减少元件的种类,通过标准化的规定,去除贸易壁垒,并通过建立一致的订单标识使备件的供应更加便利。 /p p    a title=" " href=" http://www.sac.gov.cn/gzfw/zqyj/201710/P020171023319805778591.rar" target=" _blank" strong 3.《激光器和激光相关设备-标准光学元件-第2部分:红外光谱范围内的元件》(征求意见稿)及编制说明 /strong /a /p p   本部分规定了近红外到中红外波段,波长从2.1mm至15mm光谱范围内的激光光学元件的要求。适用于激光器和激光相关设备使用的标准光学元件,包括平面、平面球面和球面基片不包括镀膜后的光学元件,透镜和按规定设计由供应商提供的其它标准光学元件。 /p p   本部分的发布可以填补我国用于红外光谱范围标准激光光学元件要求的空白 同时,通过规定优先的尺寸和公差,来减少元件的种类,通过标准化的规定,去除贸易壁垒,并通过建立一致的订单标识使备件的供应更加便利。 /p p   联系地址:北京市海淀区车道沟十号院科技一号楼 兵器标准化所 电光系统分标委秘书处 010-68962373 /p p   邮编:100089 /p p   联系电话:010-6896 2373 /p p   传 真:010-6896 3156 /p p   邮件地址: a href=" mailto:bzsbjw@126.com" bzsbjw@126.com /a /p
  • 西安光机所自由曲面冷光学红外探测终端获得应用
    近日,由西安光机所飞行器光学成像监视与测量技术研究室设计研制的制冷中继长波红外探测终端,配合总体单位完成在云南天文台丽江观测站2.4米口径天文望远镜外场的装机、调试和标定工作,成功实现了接近极限灵敏度的天文目标探测,顺利获得天文“首光”,助力总体填补国内天体目标特性测量领域的空白。这也是西安光机所进入我国天体目标特性测量领域的首次尝试。作为研究所主责主业作用发挥的全新应用领域,项目组充分讨论用户应用需求,针对关键核心问题多次请教相关领域的技术专家,紧密与总体单位的沟通迭代,在系统小型化、大视场和超灵敏的要求下,最终确定采用冷光学自由曲面探测系统实施方案。   飞行器室项目团队在前期设计阶段攻坚克难、集智攻关,先后攻克了大视场离轴四反自由曲面中继系统设计、低温光学组件柔性支撑和装调、全系统红外背景辐射仿真和抑制、真空恒温器微振动主被动隔离等关键技术。整个项目仅历时10个月便完成了光学系统设计以及设备集成工作,在4个多月的连续观测中获得了大量高质量数据,充分验证产品性能指标的同时,也为总体后续的天体目标特性测量奠定了坚实的数据基础。   近年来,西安光机所在创新领域布局以及先进制造能力提升方面不断下大力气改革,激光通信终端、全铝自由曲面相机、红外衍射相机的成功发射,科研生产体系重组显效,大口径光学载荷装配能力顺利建成,基础研究与工程应用更加紧密融合等都充分说明改革“组合拳”获得预期。   该项目的成功,也是改革的受益者,飞行器室、空间光子信息室、热控技术研究室、装校技术研究中心和检测技术研究中心等多个部门集中力量、通力协作,在加工和装配方面,解决了大陡度全铝自由曲面光学元件的加工难题;克服了低温光学组件制冷效率低以及全系统温度均匀性差的困难;实现了离轴多反冷光学系统的高精度快速装调和预置。   除此之外,项目组还开展多项冷光学组件的指标检测方法研究和验证的工作,为日后在领域将路走宽走好做好筹划和准备。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制