当前位置: 仪器信息网 > 行业主题 > >

翅片管散热器

仪器信息网翅片管散热器专题为您提供2024年最新翅片管散热器价格报价、厂家品牌的相关信息, 包括翅片管散热器参数、型号等,不管是国产,还是进口品牌的翅片管散热器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合翅片管散热器相关的耗材配件、试剂标物,还有翅片管散热器相关的最新资讯、资料,以及翅片管散热器相关的解决方案。

翅片管散热器相关的资讯

  • 封装行业正在采用新技术应对芯片散热问题
    为了解决散热问题,封装厂商在探索各种方法一些过热的晶体管可能不会对可靠性产生很大影响,但数十亿个晶体管产生的热量会影响可靠性。对于 AI/ML/DL 设计尤其如此,高利用率会增加散热,但热密度会影响每个先进的节点芯片和封装,这些芯片和封装用于智能手机、服务器芯片、AR/VR 和许多其他高性能设备。对于所有这些,DRAM布局和性能现在是首要的设计考虑因素。无论架构多么新颖,大多数基于 DRAM 的内存仍面临因过热而导致性能下降的风险。易失性内存的刷新要求(作为标准指标,大约每 64 毫秒一次)加剧了风险。“当温度提高到 85°C 以上时,就需要更频繁地刷新电容器上的电荷,设备就将转向更频繁的刷新周期,这就是为什么当设备变得越来越热,电荷从这些电容器中泄漏得更快的原因。不幸的是,刷新该电荷的操作也是电流密集型操作,它会在 DRAM 内部产生热量。天气越热,你就越需要更新它,但你会继续让它变得更热,整个事情就会分崩离析。”除了DRAM,热量管理对于越来越多的芯片变得至关重要,它是越来越多的相互关联的因素之一,必须在整个开发流程中加以考虑,封装行业也在寻找方法解决散热问题。选择最佳封装并在其中集成芯片对性能至关重要。组件、硅、TSV、铜柱等都具有不同的热膨胀系数 (TCE),这会影响组装良率和长期可靠性。带有 CPU 和 HBM 的流行倒装芯片 BGA 封装目前约为 2500 mm2。一个大芯片可能变成四五个小芯片,总的来说,这一趋势会持续发展下去,因为必须拥有所有 I/O,这样这些芯片才能相互通信。所以可以分散热量。对于应用程序,这可能会对您有所一些帮助。但其中一些补偿是因为你现在有 I/O 在芯片之间驱动,而过去你在硅片中需要一个内部总线来进行通信。最终,这变成了一个系统挑战,一系列复杂的权衡只能在系统级别处理。可以通过先进的封装实现很多新事物,但现在设计要复杂得多,当一切都如此紧密地结合在一起时,交互会变多。必须检查流量。必须检查配电。这使得设计这样的系统变得非常困难。事实上,有些设备非常复杂,很难轻易更换组件以便为特定领域的应用程序定制这些设备。这就是为什么许多高级封装产品适用于大批量或价格弹性的组件,例如服务器芯片。对具有增强散热性能的制造工艺的材料需求一直在强劲增长。Chiplet模块仿真与测试进展工程师们正在寻找新的方法来在封装模块构建之前对封装可靠性进行热分析。例如,西门子提供了一个基于双 ASIC 的模块的示例,该模块包含一个扇出再分布层 (RDL),该扇出再分配层 (RDL) 安装在 BGA 封装中的多层有机基板顶部。它使用了两种模型,一种用于基于 RDL 的 WLP,另一种用于多层有机基板 BGA。这些封装模型是参数化的,包括在引入 EDA 信息之前的衬底层堆叠和 BGA,并支持早期材料评估和芯片放置选择。接下来,导入 EDA 数据,对于每个模型,材料图可以对所有层中的铜分布进行详细的热描述。量化热阻如何通过硅芯片、电路板、胶水、TIM 或封装盖传递是众所周知的。存在标准方法来跟踪每个界面处的温度和电阻值,它们是温差和功率的函数。“热路径由三个关键值来量化——从器件结到环境的热阻、从结到外壳(封装顶部)的热阻以及从结到电路板的热阻,”详细的热模拟是探索材料和配置选项的最便宜的方法。“运行芯片的模拟通常会识别一个或多个热点,因此我们可以在热点下方的基板中添加铜以帮助散热或更换盖子材料并添加散热器等。对于多个芯片封装,我们可以更改配置或考虑采用新方法来防止热串扰。有几种方法可以优化高可靠性和热性能,”在模拟之后,包装公司执行实验设计 (DOE) 以达到最终的包装配置。但由于使用专门设计的测试车辆的 DOE 步骤耗时且成本更高,因此首先利用仿真。选择 TIM在封装中,超过 90% 的热量通过封装从芯片顶部散发到散热器,通常是带有垂直鳍片的阳极氧化铝基。具有高导热性的热界面材料 (TIM) 放置在芯片和封装之间,以帮助传递热量。用于 CPU 的下一代 TIM 包括金属薄板合金(如铟和锡)和银烧结锡,其传导功率分别为 60 W/mK 和 50 W/mK。随着公司从大型 SoC 过渡到小芯片模块,需要更多种类的具有不同特性和厚度的 TIM。Amkor 研发高级总监 YoungDo Kweon 在最近的一次演讲中表示,对于高密度系统,芯片和封装之间的 TIM 的热阻对封装模块的整体热阻具有更大的影响。“功率趋势正在急剧增加,尤其是在逻辑方面,因此我们关心保持低结温以确保可靠的半导体运行,”Kweon 说。他补充说,虽然 TIM 供应商为其材料提供热阻值,但从芯片到封装的热阻,在实践中,受组装过程本身的影响,包括芯片和 TIM 之间的键合质量以及接触区域。他指出,在受控环境中使用实际装配工具和粘合材料进行测试对于了解实际热性能和为客户资格选择最佳 TIM 至关重要。孔洞是一个特殊的问题。“材料在封装中的表现方式是一个相当大的挑战。你已经掌握了粘合剂或胶水的材料特性,材料实际润湿表面的方式会影响材料呈现的整体热阻,即接触电阻,”西门子的 Parry 说。“而且这在很大程度上取决于材料如何流入表面上非常小的缺陷。如果缺陷没有被胶水填充,它代表了对热流的额外阻力。”以不同的方式处理热量芯片制造商正在扩大解决热量限制的范围。“如果你减小芯片的尺寸,它可能是四分之一的面积,但封装可能是一样的。是德科技内存解决方案项目经理 Randy White 表示,由于外部封装的键合线进入芯片,因此可能存在一些信号完整性差异。“电线更长,电感更大,所以有电气部分。如果将芯片的面积减半,它会更快。如何在足够小的空间内消散这么多的能量?这是另一个必须研究的关键参数。”这导致了对前沿键合研究的大量投资,至少目前,重点似乎是混合键合。“如果我有这两个芯片,并且它们之间几乎没有凸起,那么这些芯片之间就会有气隙,”Rambus 的 Woo 说。“这不是将热量上下移动的最佳导热方式。可能会用一些东西来填充气隙,但即便如此,它还是不如直接硅接触好。因此,混合直接键合是人们正在做的一件事。”但混合键合成本高昂,并且可能仍仅限于高性能处理器类型的应用,台积电是目前仅有的提供该技术的公司之一。尽管如此,将光子学结合到 CMOS 芯片或硅上 GaN 的前景仍然巨大。结论先进封装背后的最初想法是它可以像乐高积木一样工作——在不同工艺节点开发的小芯片可以组装在一起,并且可以减少热问题。但也有取舍。从性能和功率的角度来看,信号需要传输的距离很重要,而始终开启或需要保持部分关断的电路会影响热性能。仅仅为了提高产量和灵活性而将模具分成多个部分并不像看起来那么简单。封装中的每个互连都必须进行优化,热点不再局限于单个芯片。可用于排除或排除小芯片不同组合的早期建模工具为复杂模块的设计人员提供了巨大的推动力。在这个功率密度不断提高的时代,热仿真和引入新的 TIM 仍然必不可少。
  • 88%的空调散热片细菌总数超标
    新京报讯 炎热的夏天,最舒服的事情,莫过于躲在家中,开启空调纳凉。然而,有多少人在享受空调时,想到要定期对它进行清洗消毒?否则,空调将吹出看不见的细菌、真菌,甚至可以在72小时内,吹霉一碗白米饭。   日前,中国疾控中心、上海市疾控中心、复旦大学公共卫生学院等机构对上海、北京、深圳进行实地家用空调入户调研发现:88%的空调散热片细菌总数超标,84%的空调散热片霉菌总数超标 空调散热片中检出细菌超标最高可达1000倍以上。   中华预防医学会消毒分会主任委员张流波介绍,空调除了吸附大量的灰尘外,还有螨虫、细菌、真菌等致病菌。运转时,空调内部,特别是散热片的细菌、真菌随出风口喷出,随呼吸道进入人体,容易导致人体出现头晕乏力,甚至患上感冒、鼻炎、哮喘等呼吸道疾病。因此,很多空调病不只是冷热交替造成的,空调里的污染也是祸源。   家用空调里究竟暗藏多少污染源?日前,记者随中华预防医学会消毒分会专家和家安实验室工作人员,一起走进普通住户家,现场观测、取样,并送入实验室培养,实验结果令人瞠目。   【实验1】   空调72小时吹霉一碗米饭   实验目的:测试空调是否会产生污染。   实验过程:取两碗等量的白米饭,置于壁挂式空调下的桌子上,其中一碗盖好。关闭门窗,打开空调。72小时后,盖好的米饭只是略有变色,但敞露于空调下的那碗米饭,已经长毛,出现大片霉斑。   市民疑问:6月份开空调前,刚把过滤网用洗洁精和水刷干净了,为什么还会这样?   专家释疑:中华预防医学会消毒分会主任委员张流波介绍,空调使用一段时间后,外罩、过滤网表面就有沉积的灰尘和污垢,很容易清洗。但空调细菌最多聚集的部位——散热片却常常被忽视。   作为空调冷热交换的核心部件,散热片除积聚污垢灰尘外,还会在冷凝水作用下滋生大量病菌。加上开空调时,通常会紧闭门窗,空气不流通,特别是夏天闷热潮湿,病菌更易滋生。   【实验2】   空调散热片藏匿大量细菌   实验目的:通过肉眼,观察空调散热片上藏着多少污垢。   实验过程:选一台使用了3年多,今年尚未清洗过的家用壁挂式空调。打开空调盖,露出的过滤网上,可看到一层厚厚的灰尘,用棉签和纸巾取样。卸下过滤网,可看到青黑色的空调散热片,乍看起来灰尘不多,但用棉签在散热片上清刮,可刮出黑灰色的絮泥状物。用白色纸巾取样,可看到散热片上附着大量污垢。   市民疑问:黑色絮泥状的污垢有没有致病菌?   专家释疑:张流波介绍,专业卫生机构检测发现,家用空调散热片上藏匿着大量细菌和真菌,平均的菌落总数每平方厘米高达4765个。其中致病菌主要包括霉菌、军团菌、金黄色葡萄球菌等大量病菌。空调运转时,散热片上的致病菌随出风口喷出,进入人体,易致头晕乏力,甚至患上感冒、肺炎等呼吸道疾病。   【实验3】   散热片污染远高于过滤网   实验目的:比较空调散热片和过滤网的污染程度。   实验过程:将实验2中收集好的样本放入培养皿,带入实验室,对样本进行细菌培养并计数。72小时后,实验结果出来了。空调过滤网上的霉菌总数为每平方厘米650个,细菌总数为每平方厘米270个 散热片上的霉菌总数每平方厘米为1110个,细菌总数为3100个。   市民疑问:清洗空调,不能只洗过滤网吗?   专家释疑:家安家居环境研究中心高级工程师张世新介绍,空调污染尤其是空调散热片污染——作为夏季室内最重要的污染源的认知仍存在很大的缺口,正成为影响家人健康的隐形杀手。调查显示,绝大多数人误以为只要把空调的过滤网罩清洗一下,就算空调清洁了。实际上,空调散热片上藏匿的污染远高于过滤网。   【实验4】   清洗剂喷洒可有效杀菌   实验目的:对比空调清洗前后的污染程度。   实验过程:关闭电源,卸下过滤网,用清水洗净 对散热片表面污垢取样。从超市购买专用的空调清洗剂,均匀喷洒在散热片上。静置10至15分钟,安装好空调,打开电源。此时,可以看到排污管排出黑色污水。40分钟后,关闭空调,重新对散热片取样。   72小时后,可看到散热片清洗前的样本,霉菌培养皿中已经长出大片霉斑,霉菌含量每平方厘米2163.04个 细菌培养皿中,可看到底部呈浆糊状,其中布满淡黄色细小颗粒,细菌含量每平方厘米2599个。清洗后的霉菌和细菌培养皿基本是透明的,霉菌含量每平方厘米为9个,细菌含量每平方厘米40个。   专家释疑:张流波介绍,因为散热片无法拆下来清洗,而且由于散热片结构的特殊性,简单擦拭也无法真正清洁。建议使用空调消毒清洗剂进行清洁消毒。   ■ 建议   夏季空调应一月一清洗   张流波表示,在关闭电源、通风的环境下,对准散热片均匀喷洒,就可以解决散热片污染问题。清洗后需要静置一段时间,是为了让消毒剂充分发挥作用。   为确保消毒产品的安全性和有效性,建议空调清洗消毒剂使用具备卫生许可批件的“卫消字×××××号”产品。清洗剂的味道经过通风,很快可以散去,正规消毒产品的味道对人体无害。   至于空调散热片清洗的频度,张流波说,春夏换季时,需要开启空调前,应该彻底清洗消毒一次 夏季,空调使用频繁,建议有条件的家庭,每月清洗一次空调,可避免空调污染。   此外,张流波介绍,室外有的污染都会进入室内。家中尘埃,散热片上面都会有污染物,一般的空调不会去除PM2.5,除了定期清洁空调,关键还要靠居室良好的通风。
  • 工信部公示56项行业标准
    根据行业标准制修订计划,相关标准化技术组织等单位已完成《矿热炉低压无功补偿技术规范》等56项冶金、有色、化工、机械、黄金、船舶、民爆行业标准的制修订工作(标准名称及主要内容等见附件)。在以上标准批准发布之前,为进一步听取社会各界意见,特予以公示,截止日期2011年12月14日。   附件:56项行业标准名称及主要内容.doc 序号 标准编号 标准名称 冶金行业 YB/T 4268-2011 矿热炉低压无功补偿技术规范 YB/T 4254-2011 烧结冷却系统余热回收利用技术规范 YB/T 4255-2011 干熄焦节能技术规范 YB/T 4256.1-2011 钢铁行业海水淡化技术规范 第1部分:低温多效蒸馏法 YB/T 4257.1-2011 钢铁污水除盐技术规范 第1部分: 反渗透法 YB/T 4258-2011 彩色涂层钢带生产线用焚烧炉和固化炉节能运行规范 YB/T 4259-2011 连续热镀锌钢带生产线用加热炉节能运行规范 YB/T 4269-2011 高炉鼓风机机前冷冻脱湿工艺规范 YB/T 4270-2011 转炉汽化回收蒸汽发电系统运行规范 YB/T 4271-2011 转底炉法粗锌粉 YB/T 4272-2011 转底炉法含铁尘泥金属化球团 YB/T 030-2011 煤沥青筑路油 YB/T 031-2011 煤沥青筑路油 萘含量的测定 气相色谱法 YB/T 032-2011 煤沥青筑路油 蒸馏试验 YB/T 033-2011 煤沥青筑路油 粘度的测定 有色行业 YS/T 694.4-2011 变形铝及铝合金单位产品能源消耗限额 第4部分:挤压型材、管材 YS 783-2011 红外锗单晶单位产品能源消耗限额 YS/T 767-2011 锑精矿单位产品能源消耗限额 化工行业 HG/T 4287-2011 石油和化工企业能源管理体系要求 黄金行业 YS/T 3007-2011 电加热载金活性炭解吸电解工艺能耗限额 YS/T 3008-2011 燃油(柴油)加热活性炭再生工艺能耗限额 机械行业 JB/T 11250-2011 印制板含铜废液再生及铜回收成套设备 技术规范 JB/T 11249-2011 翅片管式换热设备技术规范 JB/T 11248-2011 金属复合翅片管对流散热器技术规范 JB/T 11247-2011 链条式翻堆机 JB/T 11246-2011 仓式滚筒翻堆机 JB/T 11245-2011 污泥堆肥翻堆曝气发酵仓 JB/T 11244-2011 超重力装置 JB/T 11261-2011 燃煤电厂锅炉尾气治理 袋式除尘器用滤料 JB/T 11262-2011 燃煤烟气干法/半干法脱硫设备 机械安装技术条件 JB/T 11263-2011 燃煤烟气干法/半干法脱硫设备 运行维护规范 JB/T 11264-2011 湿法烟气脱硫装置专用设备 氧化风管 JB/T 8704-2011 蜂窝式电除焦油器 JB/T 11265-2011 燃气余热锅炉烟气脱硝技术装备 JB/T 11266-2011 火电厂湿法烟气脱硫装置可靠性评价规程 JB/T 11267-2011 顶部电磁锤振打电除尘器 JB/T 11268-2011 电除尘器节电导则 船舶行业 CB 3381-2011 船舶涂装作业安全规程 CB 3660-2011 船厂起重作业安全要求 CB 3786-2011 船厂电气作业安全要求 CB 4203-2011 船厂安全标志使用要求 CB 4204-2011 船用脚手架安全要求 CB 4205-2011 重大件吊装作业安全要求 民爆行业 WJ 9072-2011 现场混装炸药生产安全管理规程 WJ/T 9071-2011 无雷管感度工业炸药最小起爆药量测定方法 WJ/T 9070-2011 工业电雷管运输车使用卫星定位导航终端的安全要求 WJ/T 9069-2011 工业炸药药卷自动包装机技术条件 WJ 9073-2011 民用爆炸物品运输车安全技术条件 WJ/T 9074-2011 工业雷管撞击感度试验方法 WJ 9075.1-2011 民用爆破器材企业安全检查方法 检查表法 第1部分:总则 WJ 9075.2-2011 民用爆破器材企业安全检查方法 检查表法 第2部分:生产企业综合安全管理及总体安全条件 WJ 9075.3-2011 民用爆破器材企业安全检查方法 检查表法 第3部分:工业炸药及其制品生产线 WJ 9075.4-2011 民用爆破器材企业安全检查方法 检查表法 第4部分:工业雷管生产线 WJ 9075.5-2011 民用爆破器材企业安全检查方法 检查表法 第5部分:工业索类火工品生产线 WJ 9075.6-2011 民用爆破器材企业安全检查方法 检查表法 第6部分:油气井用及其他爆破器材生产线 WJ 9075.7-2011 民用爆破器材企业安全检查方法 检查表法 第7部分:销售企业   联 系 人:盛喜军   电 话:010-68205253   电子邮件:KJBZ@miit.gov.cn 工业和信息化部科技司 二O一一年十一月二十九日
  • 苏州纳米所散热与封装技术研发中心成立
    6月16日上午,散热与封装技术研讨会暨苏州纳米所散热与封装技术研发中心成立仪式在中国科学院苏州纳米技术与纳米仿生研究所召开。此次活动以&ldquo 散热与封装技术&rdquo 为主题,探讨了当前高功率、高度集成化电子器件快速发展背景下,如何解决电子工业界的散热与封装技术等关键共性问题。   活动由苏州纳米所技术转移中心与先进材料部联合主办,苏州纳米所副所长李清文主持。美国工程院院士、乔治亚理工学院教授汪正平,国防科技大学教授常胜利和张学骜、深圳先进技术研究院研究员孙蓉等出席了此次活动。   会前,李清文致欢迎词,并代表苏州纳米所向汪正平颁发了客座研究员聘书,苏州纳米所加工平台主任张宝顺与汪正平共同为散热与封装技术研发中心揭牌。   会上,被誉为&ldquo 现代半导体封装之父&rdquo 的汪正平介绍了自己40多年来在电子封装材料研发与应用方面的成果,特别是近年来在碳纳米管可控制备、石墨烯制备与应用、电子封装散热等方面的研究进展,最后他还与大家分享了在学术研究方面的经验。   随后,张宝顺、孙蓉等分别以&ldquo 散热与封装技术&rdquo 、&ldquo 聚合物基高密度电子封装材料的制备与应用研究&rdquo 为主题作了精彩的报告。   当天下午,与会代表参观了苏州纳米所加工平台和先进材料部。 会议现场
  • 大庆实验中学附属学校项目建设指挥部1.00亿元采购废气/废水处理机
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 大庆实验中学附属学校项目 黑龙江省-大庆市-龙凤区 状态:公告 更新时间: 2023-02-11 大庆实验中学附属学校项目 日期:2023-02-11 招标公告 1. 招标条件 本招标项目已由大庆市发展和改革委员会以庆发改发〔2023〕23号文件批复,项目业主为大庆实验中学附属学校项目建设指挥部,资金来源为地方政府债券资金和市财政资金,项目出资比例为财政资金 100 %,招标人为 大庆实验中学附属学校项目建设指挥部,招标代理机构为大庆市城安工程管理服务有限公司,招标投标行政监督及招标投标投诉受理单位为大庆市住房和城乡建设局。项目已具备招标条件,现进行施工公开招标。 2. 项目概况与招标范围 2.1 项目名称:大庆实验中学附属学校项目 2.2 建设地点: 大庆市龙凤区,凤德街东侧、龙津路北侧。 2.3 工程性质: 新建 2.4 建设规模及主要建设内容:该工程占地面积46111.79m2,总建筑面积25565.61m2,其中,地上建筑面积24997.63m2,地下(包含变电所、给水泵房、消防水泵房)建筑面积567.98m2,建设内容包括综合楼、体育场看台、门卫1、门卫2及附属设施,道路场地、绿化等。具体建设内容如下: 新建综合楼建筑面积为24736.47m2,其中地上建筑面积24168.49m2,地下设备用房567.98m2,地上5层,建筑高度20.70m,包括办公区、风雨操场、中学部、小学部等;体育场看台,地上1层,建筑面积760.14m2,建筑总高度5.50m;门卫1和门卫2建筑面积34.50m2,地上1层,建筑高度3.60m。 1、设计标准 使用年限:50年 结构形式:框架结构 建筑结构安全等级:二级 建筑设防烈度:6度 2、建筑 主体外墙采用400厚复合砌块保温节能墙体,内墙采用100/200厚陶粒混凝土砌块,外立面墙体采用外墙涂料;外窗采用单框三玻铝塑铝节能塑钢窗,外门采用氟碳漆保温玻璃门、保温防盗门,内门采用成品钢质门、防盗门;楼地面采用防滑地砖地面,墙面为白色环保乳胶漆,顶棚为白色环保乳胶漆,墙裙为1.20m高瓷砖墙裙,内门采用成品钢质门、防盗门。 3、给水和消防系统 水源分别引自西侧DN300及南侧DN30现状供水管线,供水压力为0.22~0.25MPa,用地红线内设总水表;校区室外消防水量由市政供水管线供给,室外消防管线与生活供水管线合用,管道布置成环状;室内消防水量由新建消防泵房供给,校区内建筑单体一、二层由市政管网直接供水,三层以上采用加压供水方式,采用叠压给水设备供水的方式;综合楼入户设总水表,按使用功能单独设水表计量。 室外给水管线采用钢骨架聚乙烯塑料复合管,热熔套筒连接;室内给水干管和立管采用内衬塑钢管,法兰或沟槽连接,支管采用S3.2级PP-R冷水塑料管,热熔连接;连接开水器采用金属软管,热水水管采用304薄壁不锈钢管,连接方式为双卡压连接;室内消防管线采用内外壁热浸镀锌无缝钢管,管径小于等于50mm者螺纹连接,管径大于50mm者采用沟槽柔性连接。 室外消火栓系统水量、水压由市政环状管线供给保证,采用抗浮式保温型地下消火栓井。室内消火栓系统采用临时高压制给水系统,室内消火栓箱均采用不锈钢箱。 4、雨排系统 生活污水重力流排至室外,经化粪池处理后进排入西侧龙湖小镇污水干线。地下一层消防水泵房、生活水泵房设排水沟、集水坑收集地面排水,由潜污泵提升后排放,每一集水坑设2台潜水泵,一用一备,交替工作,潜水泵由集水坑水位自动控制;室外污水管线采用给水球墨铸铁管,连接方式采用胶圈承插连接;室内排水管线采用柔性接口法兰承插式排水铸铁管,法兰连接;污水检查井采用钢筋混凝土圆形排水检查井。 学校区内雨水经管线收集后排放至西侧凤德街d800和南侧龙津路d800现状市政雨水管线。雨水管线采用Ⅱ级钢筋混凝土圆管,胶圈承插连接;雨水检查井采用圆形混凝土雨水检查井。 5、供暖通风与空调 采暖热源为市政供热管网,新建室外换热机组,换热机组设计总供热能力2.60万m2,总热负荷1430kW,供热二级网采用预制直埋保温管直埋敷设。散热器选用铸铁柱翼780型散热器,弱电间、消防控制室采用民用翅片管散热器采暖;散热器系统室内采暖管道采用无缝钢管,地热盘管采用耐热聚乙烯PE-RT管,散热器支管设两通、三通恒温阀,主入户设热水热空气幕;通风管道采用镀锌钢板制作、防排烟管道采用镀锌钢板外包工业一体化硅酸钙防火板制作。 6、电气系统 强电部分包含室内外照明系统、供配电系统、防雷接地及等电位联结系统;弱电部分包含综合布线系统、安防系统、校园广播系统、消防系统;综合楼、风雨操场、办公区主要通道照明、计算机系统用电、排水泵、生活水泵等用电负荷为二级负荷、消防用电负荷为二级负荷,其余均为三级负荷。 电源引自新建变电所。变电所总容量为2000KVA,由两台1000KVA干式变压器提供双路低压电源,用电计量方式采用高供高计计量方式。低压配电系统所有电线及电缆均采用WDZ-YJFE低烟无卤铜芯导体电缆,室内照明分支干线,分支线采用WDZ-BYJF-0.45/0.75kV铜芯电线,穿钢管暗敷设;消防线路竖井外采用WDZN-YJFE型,电缆井内敷设的线路采用WDZA-RTTYZ矿物质电缆,电气配电箱采用铁质壳体,嵌墙安装;低压配电系统接地形式采用TN-C-S方式,用电设备导电金属外壳均与PE线可靠连接。 所有照明灯具、光源、电气附件等均选用高效、节能型LED光源。教室及阅览室,实验室的照明灯具均采用LED护眼灯具,办公室及其他人员活动场所采用普通LED灯具,通道、走廊、楼梯间采用人体感应控制的节能LED灯,卫生间、阀组间等潮湿场所采用密闭型LED灯;在疏散走道及楼梯间、排烟机房、值班室、消控室等房间及部位设置应急照明及疏散系统;除楼梯间及走道照明外,采用就地控制方式,走道照明采用分区控制,人体感应控制。 利用建筑物基础钢筋做联合接地装置,接地电阻不大于1欧姆,进出建筑物的金属管道均做总等电位联结。利用屋面避雷带做接闪器,避雷带网格为10mX10m,或12mX8m。 综合楼设火灾自动报警系统,系统包括火灾探测器、手动报警按钮及声光报警器、消火栓按钮、消防广播、消防电话、消防电源监控系统、电气火灾监控系统、应急照明控制系统、消防设备联动系统以及应使用单位要求设置的防火门监控系统。 弱电系统预留网络、电话、监控、广播系统网线和预埋管。 7、道路场地和绿化 新建校园内沥青混凝土车行路、荷兰砖铺装、人工草坪足球场、塑胶跑道、硅PU塑胶球场及健身器材区等。 新建行车道沥青混凝土路面结构采用5cm AC-16C型中粒式改性沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+7cm AC-25F型粗粒式沥青混凝土+乳化沥青PC-2透层油1.2L/m2+20cm C30水泥混凝土,抗折强度≥4.0MPa+20cm 5.0%水泥稳定级配碎石+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建人行铺装路面结构采用6cm荷兰砖面层砖(20*10*6cm)+3cm M10水泥砂浆+12cm C20水泥混凝土(抗折强度≥3.5MPa)+18cm 5.0%水泥稳定级配碎石+18cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建塑胶跑道及运动场地路面结构采用1.3cm聚氨酯环保透气型塑胶面层(红色/蓝色)+3cm AC-10C型细粒式沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+6cm AC-20F型中粒式沥青混凝土+乳化沥青PC-2透层油 1.2L/m2+18cm 5.0%水泥稳定级配碎石+18cm 5.0%水泥稳定砂砾+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建运动球场路面结构采用8mm水性硅PU塑胶面层(彩色)+3cm AC-10C型细粒式沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+6cm AC-20F型中粒式沥青混凝土+乳化沥青PC-2透层油1.2L/m2+18cm 5.0%水泥稳定级配碎石+18cm 5.0%水泥稳定砂砾+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建人工草坪足球场路面结构采用5cm双色PE人工草坪+3cm AC-10C型细粒式沥青混凝土+改性乳化沥青PCR粘层油 0.6L/m2+6cm AC-20F型中粒式沥青混凝土+乳化沥青PC-2透层油 1.2L/m2+18cm 5.0%水泥稳定级配碎石+18cm 5.0%水泥稳定砂砾+20cm 二灰土(水泥:粉煤灰:土=6:19:75)。 综合楼周边采用宿根花、地被植物种植。花灌木、亚乔进行点缀;体育场周边以大乔木为空间骨架,不同花色的亚乔、花灌木、地被进行搭配;配备不同的功能设施,包括座椅、果皮箱、宣传栏、升旗台、领操台等。 主要工程量:土建部分:挖土方20414.92m3,钢筋1642.634t,混凝土13952.45m3,地下室防水1299.93m2,砌体6310.17m3,窗860.9m2,门1435.18m2,屋面14349.03m2,球形网架1102.92m2,保温7138.78m2,50厚玻化微珠保温砂浆2795.59m2,20厚外墙保温抹灰砂浆14355.79m2,地面22013.06m2,内墙面28960.92m2,墙裙6431.48m2,天棚21811.51m2,室外台阶109.42m2,室外散水713.28m2,外墙面15063.78m2。电气部分:变电所内高压配电柜10台,低压配电柜10台,外网路灯20m高杆灯4根,4.5m庭院灯8根,6m路灯37根,LED大屏幕综合楼内16.74m2,户外两处共12.49m2,看台24m2,落地式电热水器2台。水暖部分:无负压供水设备1套,调压箱1台,消火栓系统增压稳压设备1套,室内消火栓给水泵2台,消火栓箱90套,换热机组1套,潜水排污泵4台,废水处理设备1套,无动力太阳能集热器8套,消防高温排烟风机3台,防腐轴流风机2台,电热风幕12台,洗手盆118个,洗脸盆8个,洗涤盆8个,洗眼器4个,蹲便器286个,坐便器10个,感应小便器46个,挂式小便器3个,污水盆2个,拖布池46个,墙壁水泵集合器2套,地下消火栓井4套,780型散热器14941片,翅片散热器4组,钢筋混凝土圆管646m,给水球墨铸铁管161m,预制直埋保温管147m,钢骨架管955m,超声波热量表10个。场地部分:沥青混凝土路面6201m2,路缘石及平缘石3435m,荷兰砖人行铺装6651m2,运动球场路面2797m2,彩色塑胶跑道及运动场地路面5282m2,人工草坪10201m2,标线277m,停车位彩色喷涂303m2,场平土方清除表土14348m3,回填土方89425.28m3,清除淤泥后回填砂砾765m3。绿化部分:乔木200株,花卉6207m2,草坪816m2,灌木413株,小叶丁香球13个。 上述内容以施工图及工程量清单为准。 2.5 本标段招标控制价: 10044.82万元 2.6 计划工期:487 日历天。 计划开工日期 2023 年 04 月 01 日;计划竣工日期 2024 年 07月 31 日。 2.7 质量标准: 符合现行工程质量验收标准以及相关专业验收规范的合格标准。目标要求:争创省优、龙江杯奖。 2.8 标段划分:本项目不划分标段 2.9 招标范围:施工图纸及工程量清单所示全部内容。 3. 投标人资格要求 3.1 本次招标要求投标人必须是在中华人民共和国境内注册的具有独立法人资格的法人或其他组织,具有有效的营业执照、安全生产许可证并满足以下要求。 3.2 资质条件:投标人须具备建设行政主管部门核发有效的建筑工程施工总承包三级及以上资质及安全生产许可证。 3.3 项目负责人资格: 拟派项目负责人 1 人:拟派项目负责人须具备建筑工程专业二级注册建造师执业资格,具备有效的 B 类安全生产考核合格证书。 3.4 投标人拟投入项目管理人员要求: 按照《黑龙江省房屋建筑和市政基础设施工程项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号) 文件及招标文件(项目管理机构人员配置表) 规定, 不得低于招标文件规定的标准数量配备项目管理机构人员,并填报项目管理人员配置表, 否则其投标将被否决。投标人也可以根据项目管理需要增加岗位及人员。 (技术负责人: 1 名, 按黑建规范[2020]8 号文件规定,本项目属于中型工程, 技术负责人如使用职称证的,需配备中级职称人员。施工员:1 名;安全员: 2 名,质量 员:2 名, ※标准员 1 名; ※材料员 1 名; ※机械员 1名; ※劳务员1名; ※资料员 1 名) (※为项目管理机构人员可在同一项目兼职, 但兼职不得超过 2 个岗位。同一岗位人员配 备超过 2 人及以上的,施工单位应明确该岗位的负责人,除项目经理外,其他人员无需提供证件。) 3.5 信誉要求 (1)至投标截止时间,企业状态为严重违法失信企业或经营异常企业,招标人不接受其参与本项目投标。企业状态以国家企业信用信息公示系统最新公示信息为准。 提供“国家企业信用信息公示系统”(http://www.gsxt.gov.cn/)中未被列入严重 违法失信企业及经营异常企业的网站查询截图(截图中需体现网站名、投标单位名称、统 一社会信用代码、查询结果、查询日期等信息) ,结果查询时间为本招标公告发出之日起 方为有效。(查询方式: 国家企业信用信息公示系统首页→在搜索框内输入投标人名称→ 点击查询→点击查询到的投标人名称→在投标人企业基础信息页面分别点击“列入经营异 常名录信息”“列入严重违法失信企业名单(黑名单)信息”后分别完整截图保存) (2)信用中国平台中列入失信被执行人名单的企业作为不合格的投标企业,不得参与投标。 提供“信用中国”(https://www.creditchina.gov.cn/?navPage=0) 中未被列入失信 被执行人的网站查询截图(截图中需体现网站名、投标单位名称、查询结果、查询日期等 信息) ,结果查询时间为本招标公告发出之日起方为有效。(查询方式: 信用中国网站首页→在搜索框内输入投标人名称→点击搜索→点击“失信被执行人”后完整截图保存) (3)本项目不接受投标人因受到行政处罚、失信惩戒措施仍在限制投标惩戒期内的 投标人投标。 3.6 本次招标不接受联合体投标, 本项目决不允许违法分包、转包及挂靠等违法行为。 3.7 与招标人存在利害关系可能影响招标公正性的法人、其他组织或者个人,不得参加投标; 单位负责人为同一人或者存在控股、管理关系的不同单位,不得同时参加同一标段投标,或者未划分标段的同一招标项目投标。 3.8 资格审查方式 本工程采用资格后审方式,主要资格审查标准、内容等详见招标文件,只有资格审查 合格的投标申请人才有可能被授予合同。 4. 招标文件的获取 4.1 凡 有 意 参 加 投 标 人 , 应 先 在 “ 黑 龙 江 公 共 资 源 交 易 网 ” (http://www.hljggzyjyw.org.cn)进行用户注册、办理数字证书,使用数字证书登录“黑龙江公共资源交易网”上的“交易平台”(http://www.hljggzyjyw.org.cn) 下载招标文 件。下载时间为于 2023 年 02 月 12日 09 时 00 分至 2023 年 02月 19 日 09 时 00 分(北京时间,下同) 。有关手续请查看“黑龙江公共资源交易网”中的《服务指南》黑龙江省公共资源交易平台投标文件制作操作手册、黑龙江省公共资源交易平台工程建设投标人操 作视频、黑龙江省公共资源交易平台会员注册入库操作视频。 4.2 潜 在 投 标 人 使 用 数 字 证 书 通 过 “ 黑 龙 江 公 共 资 源 交 易 网 ” (http://www.hljggzyjyw.org.cn)在线下载。 5. 投标文件的递交 5.1 电子投标文件递交方式为网上递交,投标截止时间 2023 年 03 月 07 日 09 时 00 分,投标人应在截止时间前通过'黑龙江公共资源交易网'上的'交易平台'递交电子投标文件; 5.2 在投标截止时间后递交的电子投标文件,系统不予接收。 6. 开标方式 6.1 该项目为线上开标,开标时间同投标截止时间。 6.2 评审地点: 大庆市公共资源交易中心。 7. 定标方式 依据《黑龙江省房屋建筑和市政基础设施工程招投标评定分离工作指引》黑建建 (2021) 5 号、参照《哈尔滨市房屋建筑和市政基础设施工程项目评定分离招标投标管理办法(试行) 通知》哈住建发(2021) 298 号文件》 ,本项目采用评定分离方式招标, 定性评审法评标,票决定标法定标,具体定标规则详见招标文件。 8.踏勘现场和答疑安排 8.1 招标人不组织踏勘现场。 8.2 投标人提问、质疑以及招标人对招标文件的澄清均通过黑龙江公共资源交易网上 (http://www.hljggzyjyw.org.cn) 进行。 9. 发布公告的媒介 本次招标公告在黑龙江公共资源交易网上 (http://www.hljggzyjyw.org.cn) 发布。 10. 联系方式 监督部门:大庆市住房和城乡建设局 联系电话: 0459-6298779 招 标 人: 大庆实验中学附属学校项目建设指挥部 地 址:大庆市萨尔图区城投项目指挥部 联 系 人: 高先生 联系电话:13339399709 代理机构: 大庆市城安工程管理服务有限公司 地 址: 大庆市萨尔图区格林小镇二期 联 系 人: 王女士 电 话: 0459-8971033*投标保证金 电子保函方式: 投标人登录后在招标公告中选择要投标的项目,点击投标准备,填写相关信息进行确认投标。然后在我的项目中选择相应的项目选择项目流程,选择办理电子保函按钮根据提示进行电子保函办理,并以系统查询到的电子保函作为保证金鉴收的依据。 现金方式: 投标人在交易平台中选择以现金方式提交交易保证金。在线自行选择提交保证金的银行,获取参与本次投标的随机子账户,在招标文件规定的保证金提交截止时间之前,以电汇方式将保证金足额汇入黑龙江省公共资源交易平台对接的银行中(须从投标人基本账户转出)。 投标保证金的退还: 中标公示结束后,如未收到投标人或行政主管部门关于项目存在投诉的书面通知,由招标人/招标代理机构在交易平台点击保证金退回申请。如收到书面通知,应当暂停投标保证金退还。招标人与中标人签订合同后,应于5日内将合同的主要内容在“黑龙江公共资源交易网”登记,并及时退还中标人的投标保证金。保证金缴纳及退还时发生的跨行手续费,由投标人承担。具体操作详见“黑龙江公共资源交易网''中的《服务指南》黑龙江省公共资源交易平台电子保函-操作手册、黑龙江省公共资源交易平台工程建设-工作台-投标人操作手册及设投标人操作视频。 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:废气/废水处理机 开标时间:2023-03-07 00:00 预算金额:1.00亿元采购单位:大庆实验中学附属学校项目建设指挥部 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:大庆市城安工程管理服务有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 大庆实验中学附属学校项目 黑龙江省-大庆市-龙凤区 状态:公告 更新时间: 2023-02-11
  • 新型电子产品快速散热材料问世
    电子产品在长时间使用后会出现过热或被烧坏的现象,研究人员最新研制出一种能够让电子产品快速散热的新材料。   据当地媒体7日报道,德国弗劳恩霍夫制造工程和应用材料研究所、德国西门子和奥地利攀时集团共同研发了一种新材料,这种材料是在铜中加入掺兑金属铬的钻石粉末,其导热能力是纯铜的1.5倍。   研究人员介绍说,通常情况下钻石和铜是不容易混合到一起的,而在钻石粉末中添加金属铬就能使钻石粉末表面产生一层碳化物膜,这种膜能有效地将二者混合起来。新材料满足了小型多功能电子产品快速散热的需要。
  • 大庆铁人中学附属学校项目建设指挥部1.02亿元采购废气/废水处理机
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 大庆铁人中学附属学校项目 黑龙江省-大庆市-萨尔图区 状态:公告 更新时间: 2023-02-11 大庆铁人中学附属学校项目 日期:2023-02-11 招标公告 1. 招标条件 本招标项目已由大庆市发展和改革委员会以庆发改发〔2023〕22号文件批复,项目业主为大庆铁人中学附属学校项目建设指挥部,资金来源为地方政府债券资金和市财政资金,项目出资比例为财政资金 100 %,招标人为大庆铁人中学附属学校项目建设指挥部,招标代理机构为大庆市城安工程管理服务有限公司,招标投标行政监督及招标投标投诉受理单位为大庆市住房和城乡建设局。项目已具备招标条件,现进行施工公开招标。 2. 项目概况与招标范围 2.1 项目名称:大庆铁人中学附属学校项目 2.2 建设地点:工程位于黑龙江省大庆市铁路客运西站地区,宁安西街东侧,宁安街西侧,西杨南路南侧,科苑东路北侧。 2.3 工程性质: 新建 2.4 建设规模及主要建设内容:工程总用地面积4.49公顷,总建筑面积25491.43m2,其中,地上建筑面积24832.15m2,地下建筑面积659.28m2,包括综合楼、体育场看台、门卫及其附属设施,道路场地、绿化等。具体建设内容如下: 新建综合楼总建筑面积24688.53m2,其中地上建筑面积24029.25m2,地下设备用房659.28m2,地上5层,局部6层,建筑高度21.75m。体育场看台,地上1层,建筑面积760.14m2,建筑高度5.50m。门卫1,地上1层,建筑面积32.26m2,建筑高度3.00m。门卫2,地上1层,建筑面积10.50m2,建筑高度2.70m。 1、设计标准 设计使用年限:50年 结构形式:框架结构 建筑结构安全等级:二级 抗震设防烈度:6度 2、建筑 主体外墙采用400厚复合砌块保温节能墙体,内墙采用100/200厚陶粒混凝土砌块;外立面采用外墙涂料,外窗采用单框三玻铝塑铝节能塑钢窗,外门采用氟碳漆保温玻璃门、保温防盗门;楼地面采用防滑地砖地面,墙面为白色环保乳胶漆,顶棚为白色环保乳胶漆,墙裙为1.50m高瓷砖墙裙,内门采用成品钢质门、防盗门。 3、给水和消防系统 水源分别本工程生活给水两路进水均引自宁安街新建红线外配套DN300供水管道,引入管管径为DN200,直埋敷设。用地红线内设总水表。校区室外消防水量由市政供水管线供给,室外消防管线与生活供水管线合用,管道布置成环状。室内消防水量由新建消防泵房供给,校区内建筑单体一、二层由市政管网直接供水,三层以上采用加压供水方式,采用叠压(无负压)给水设备供水的方式。综合楼入户设总水表。单独设水表计量。 室外给水管线采用钢骨架聚乙烯塑料复合管,热熔套筒连接,室内生活给水管道干管和立管采用涂塑钢管,给水支管采用PP-R管,热水管道和热水回水管道干管和立管采用涂塑钢管,支管采用热水PP-R管,热媒管道均采用无缝钢管;室内外消火栓管道和自动喷淋等消防管道采用热浸镀锌钢管。 4、雨排系统 生活污水重力流排至室外,生活污水经化粪池处理后排至西侧中央花园小区现状污水提升站,经提升后排放至市政压力排污干线。地下一层消防水泵房、生活水泵房设排水沟、集水坑收集地面排水,由潜污泵提升后排放,潜水泵由集水坑水位自动控制。室外污水管线采用给水球墨铸铁管,连接方式采用胶圈承插连接,室内排水管线采用柔性接口法兰承插式排水铸铁管,法兰连接。 区域内雨水经雨水管线收集后,排至DN800西杨南路和科苑东路现状雨水管线。区域雨水采用下沉式绿地和下沉式运动场,用于雨水控制。雨水管线采用Ⅱ级钢筋混凝土圆管,胶圈承插连接。 5、供暖通风与空调 采暖热源为华能热电厂,供回水温度130/70℃,供回水压力为1.0/0.6MPa。供热二级网采用预制直埋保温管直埋敷设。选用铸铁柱翼780型散热器,弱电间、消防控制室采用民用翅片管散热器采暖,室内采暖管道采用无缝钢管,地热盘管采用耐热聚乙烯PE-RT管。散热器支管设两通、三通恒温阀。主入户设热水热空气幕。通风管道采用镀锌钢板,防排烟管道采用镀锌钢板外包工业一体化硅酸钙防火板。 6、电气系统 强电包含室内外照明系统、供配电系统、防雷接地及等电位联结系统,弱电包含综合布线系统、安防系统、校园广播系统、消防系统。综合楼、风雨操场、办公区主要通道照明,计算机系统用电,排水泵,生活水泵等用电负荷为二级负荷、消防用电负荷为二级负荷,其余均为三级负荷。 电源引自新建变电所。变电所总容量为2000KVA,由两台1000KVA干式变压器提供双路低压电源。用电计量方式采用高供高计计量方式。低压配电系统采用放射式与树干式相结合的配电方式。所有电线及电缆均采用低烟无卤铜芯导体电缆。采用TN-C-S方式,用电设备导电金属外壳均与PE线可靠连接。电气配电箱采用铁质壳体,嵌墙安装。 所有照明灯具、光源、电气附件等均选用高效、节能型LED光源产品。在疏散走道及楼梯间,排烟机房,值班室,消控室等房间及部位设置了应急照明及疏散系统,采用A型集中电源,集中控制型设计,控制器设置在消防控制室,各层按防火分区设置集中电源。 利用建筑物基础钢筋做联合接地装置,接地电阻不大于1欧姆,进出建筑物的金属管道均做总等电位联结。综合楼设火灾自动报警系统,系统包括火灾探测器,手动报警按钮及声光报警器,消火栓按钮,消防广播,消防电话,消防电源监控系统,电气火灾监控系统,应急照明控制系统,消防设备联动系统以及应使用单位要求设置的防火门监控系统。 弱电系统预留网络、电话、监控、广播系统网线和预埋管。 7、道路场地及绿化 新建校园内沥青混凝土车行路、荷兰砖铺装、人工草坪足球场、塑胶跑道、硅PU塑胶球场及健身器材区等。 新建行车道沥青混凝土路面结构为5cm AC-16C型中粒式改性沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+7cm AC-25F型粗粒式沥青混凝土+乳化沥青PC-2透层油1.2L/m2+20cm C30水泥混凝土(抗折强度≥4.0MPa)+20cm5.0%水泥稳定级配碎石+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建人行铺装路面结构6cm荷兰砖面层砖(20*10*6cm)+3cm M10水泥砂浆+12cm C20水泥混凝土(抗折强度≥3.5MPa)+18cm 5.0%水泥稳定级配碎石+18cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建塑胶跑道及运动场地路面结构为1.3cm聚氨酯环保透气型塑胶面层(红色/蓝色)+3cm AC-10C型细粒式沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+6cm AC-20F型中粒式沥青混凝土+乳化沥青PC-2透层油1.2L/m2+18cm 5.0%水泥稳定级配碎石+18cm 5.0%水泥稳定砂砾+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建运动球场路面结构为8mm水性硅PU塑胶面层(彩色)+3cm AC-10C型细粒式沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+6cm AC-20F型中粒式沥青混凝土+乳化沥青PC-2透层油1.2L/m2+18cm 5.0%水泥稳定级配碎石+18cm 5.0%水泥稳定砂砾+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 新建人工草坪足球场路面结构为5cm双色PE人工草坪(内填石英砂、环保橡胶颗粒等填充物)+3cm AC-10C型细粒式沥青混凝土+改性乳化沥青PCR粘层油0.6L/m2+6cm AC-20F型中粒式沥青混凝土+乳化沥青PC-2透层油1.2L/m2+18cm 5.0%水泥稳定级配碎石+18cm 5.0%水泥稳定砂砾+20cm二灰土(水泥:粉煤灰:土=6:19:75)。 综合楼周边采用宿根花,地被植物种植。花灌木,亚乔进行点缀,精细化栽植。体育场周边,以大乔木为空间骨架,不同花色的亚乔、花灌木、地被进行搭配,广场周边的绿化采用常绿树。配备不同的功能设施,包括座椅、果皮箱、宣传栏、升旗台、领操台等。 主要工程量:挖土方18627.03m3,钢筋16394.28t,混凝土14902.6m3,地下室防水938.18m2,砌体6166.13m3,窗3585.84m2,门1970.65m2,屋面6907.72m2,球形网架1161.06m2,保温15461.5m2,50厚玻化微珠保温砂浆2876.83m2,20厚外墙保温抹灰砂浆14496.35m2,地面13799.85m2,内墙面37453.807m2,天棚23224.54m2,室外台阶409.42m2,室外散水646.01m2,外墙面14328.22m2。外购土方63845.25m3,沥青混凝土4925m2,铺装7571m2,运动场地7940m2,人工草坪10201m2,乔木423株,灌木477株,花卉草坪7236株,围栏790m2。电气部分,变电所内高压配电柜10台,低压配电柜14台,热力站电气、自控、综合楼亮化、电外网、大屏幕、临时电外网:5台配电柜,8套智能一体化温度变送器(带数显表头),19套压力变送器,plc柜一台,304台投光灯,plc柜一台,304台投光灯,大屏幕P2.5全彩LED显示屏,36.75平,电力电缆1221m,一台630KVA落地变压器,4套20m高杆灯,6m路灯36套,12路灯7套,板式换热器2台,电热风幕10台,高温排烟机4台,废水处理设备1套,洗手盆162个,洗脸盆15个,洗涤盆18个,洗眼器2个,蹲式大便器209个,室内消火栓106套,感应小便器81个,挂式小便器3个,污水盆2个,拖布池19个,地下消火栓井17套,780型散热器13360片,304不锈钢管806m,钢筋混凝土管734m,给水球墨铸铁管3234m,无缝钢管3730m,PP-R管1735m,预制直埋保温管1325m,钢骨架聚乙烯复合管950m,内衬塑钢管1921m。 上述内容以施工图及工程量清单为准。 2.5 本标段招标控制价:10168.56万元 2.6 计划工期: 487日历天。 计划开工日期 2023年 04 月 01 日;计划竣工日期 2024 年 07 月 31日。 2.7 质量标准: 符合现行工程质量验收标准以及相关专业验收规范的合格标准。目标要求:争创省优、龙江杯奖。 2.8 标段划分:本项目不划分标段 2.9 招标范围:施工图纸及工程量清单所示全部内容。 3. 投标人资格要求 3.1 本次招标要求投标人必须是在中华人民共和国境内注册的具有独立法人资格的 法人或其他组织,具有有效的营业执照、安全生产许可证并满足以下要求。 3.2 资质条件:投标人须具备建设行政主管部门核发有效的建筑工程施工总承包三级及以上资质及安全生产许可证。 3.3 项目负责人资格: 拟派项目负责人 1 人:拟派项目负责人须具备建筑工程专业二级注册建造师执业资 格,具备有效的 B 类安全生产考核合格证书。 3.4 投标人拟投入项目管理人员要求: 按照《黑龙江省房屋建筑和市政基础设施工程 项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号) 文件及招标文件(项目管 理机构人员配置表) 规定, 不得低于招标文件规定的标准数量配备项目管理机构人员, 并填报项目管理人员配置表, 否则其投标将被否决。投标人也可以根据项目管理需要增加岗 位及人员。 (技术负责人: 1 名, 按黑建规范[2020]8 号文件规定,本项目属于中型工程, 技术负责人如使用职称证的,需配备中级职称人员。施工员: 1 名;安全员: 2 名,质量 员: 2名, ※标准员 1 名; ※材料员 1 名; ※机械员 1名; ※劳务员 1 名; ※资料员 1 名) (※为项目管理机构人员可在同一项目兼职, 但兼职不得超过 2 个岗位。同一岗位人员配 备超过 2 人及以上的,施工单位应明确该岗位的负责人,除项目经理外,其他人员无需提供证件。) 3.5 信誉要求 (1)至投标截止时间,企业状态为严重违法失信企业或经营异常企业,招标人不接 受其参与本项目投标。企业状态以国家企业信用信息公示系统最新公示信息为准。 提供“国家企业信用信息公示系统”(http://www.gsxt.gov.cn/)中未被列入严重 违法失信企业及经营异常企业的网站查询截图(截图中需体现网站名、投标单位名称、统 一社会信用代码、查询结果、查询日期等信息) ,结果查询时间为本招标公告发出之日起 方为有效。(查询方式: 国家企业信用信息公示系统首页→在搜索框内输入投标人名称→ 点击查询→点击查询到的投标人名称→在投标人企业基础信息页面分别点击“列入经营异 常名录信息”“列入严重违法失信企业名单(黑名单)信息”后分别完整截图保存) (2)信用中国平台中列入失信被执行人名单的企业作为不合格的投标企业,不得参 与投标。 提供“信用中国”(https://www.creditchina.gov.cn/?navPage=0) 中未被列入失信 被执行人的网站查询截图(截图中需体现网站名、投标单位名称、查询结果、查询日期等 信息) ,结果查询时间为本招标公告发出之日起方为有效。(查询方式: 信用中国网站首 页→在搜索框内输入投标人名称→点击搜索→点击“失信被执行人”后完整截图保存) (3)本项目不接受投标人因受到行政处罚、失信惩戒措施仍在限制投标惩戒期内的 投标人投标。 3.6 本次招标不接受联合体投标, 本项目决不允许违法分包、转包及挂靠等违法行为。 3.7 与招标人存在利害关系可能影响招标公正性的法人、其他组织或者个人,不得参加投标;单位负责人为同一人或者存在控股、管理关系的不同单位,不得同时参加同一标段投标,或者未划分标段的同一招标项目投标。 3.8 资格审查方式 本工程采用资格后审方式,主要资格审查标准、内容等详见招标文件,只有资格审查合格的投标申请人才有可能被授予合同。 4. 招标文件的获取 4.1 凡 有 意 参 加 投 标 人 , 应 先 在 “ 黑 龙 江 公 共 资 源 交 易 网 ” (http://www.hljggzyjyw.org.cn)进行用户注册、办理数字证书,使用数字证书登录“黑 龙江公共资源交易网”上的“交易平台”(http://www.hljggzyjyw.org.cn) 下载招标文 件。下载时间为于 2023年 02 月 12日 09 时 00 分至 2023 年 02 月 19日 09 时 00 分(北京时间, 下同) 。有关手续请查看“黑龙江公共资源交易网”中的《服务指南》黑龙江省公共资源交易平台投标文件制作操作手册、黑龙江省公共资源交易平台工程建设投标人操 作视频、黑龙江省公共资源交易平台会员注册入库操作视频。 4.2 潜 在 投 标 人 使 用 数 字 证 书 通 过 “ 黑 龙 江 公 共 资 源 交 易 网 ” (http://www.hljggzyjyw.org.cn)在线下载。 5. 投标文件的递交 5.1 电子投标文件递交方式为网上递交,投标截止时间 2023 年 03 月 06 日 09 时 00 分,投标人应在截止时间前通过'黑龙江公共资源交易网'上的'交易平台'递交电子投标文 件; 5.2 在投标截止时间后递交的电子投标文件,系统不予接收。 6. 开标方式 6.1该项目为线上开标,开标时间同投标截止时间。 6.2 评审地点: 大庆市公共资源交易中心。 7. 定标方式 依据《黑龙江省房屋建筑和市政基础设施工程招投标评定分离工作指引》黑建建 (2021) 5 号、参照《哈尔滨市房屋建筑和市政基础设施工程项目评定分离招标投标管理 办法(试行) 通知》哈住建发(2021) 298 号文件》 ,本项目采用评定分离方式招标,定 性评审法评标, 票决定标法定标,具体定标规则详见招标文件。 8.踏勘现场和答疑安排 8.1 招标人不组织踏勘现场。 8.2 投标人提问、质疑以及招标人对招标文件的澄清均通过黑龙江公共资源交易网上 (http://www.hljggzyjyw.org.cn) 进行。 9. 发布公告的媒介 本次招标公告在黑龙江公共资源交易网上 (http://www.hljggzyjyw.org.cn) 发布。 10. 联系方式 监督部门:大庆市住房和城乡建设局 联系电话: 0459-6298799 招 标 人:大庆铁人中学附属学校项目建设指挥部 地 址: 大庆市萨尔图 联 系 人: 高先生 联系电话:13339399709 代理机构:大庆市城安工程管理服务有限公司 地 址: 联 系 人:王女士 电 话: 0459-8971033 电子邮件: *投标保证金 电子保函方式: 投标人登录后在招标公告中选择要投标的项目,点击投标准备,填写相关信息进行确认投标。然后在我的项目中选择相应的项目选择项目流程,选择办理电子保函按钮根据提示进行电子保函办理,并以系统查询到的电子保函作为保证金鉴收的依据。 现金方式: 投标人在交易平台中选择以现金方式提交交易保证金。在线自行选择提交保证金的银行,获取参与本次投标的随机子账户,在招标文件规定的保证金提交截止时间之前,以电汇方式将保证金足额汇入黑龙江省公共资源交易平台对接的银行中(须从投标人基本账户转出)。 投标保证金的退还: 中标公示结束后,如未收到投标人或行政主管部门关于项目存在投诉的书面通知,由招标人/招标代理机构在交易平台点击保证金退回申请。如收到书面通知,应当暂停投标保证金退还。招标人与中标人签订合同后,应于5日内将合同的主要内容在“黑龙江公共资源交易网”登记,并及时退还中标人的投标保证金。保证金缴纳及退还时发生的跨行手续费,由投标人承担。具体操作详见“黑龙江公共资源交易网''中的《服务指南》黑龙江省公共资源交易平台电子保函-操作手册、黑龙江省公共资源交易平台工程建设-工作台-投标人操作手册及设投标人操作视频。 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:废气/废水处理机 开标时间:2023-03-06 00:00 预算金额:1.02亿元 采购单位:大庆铁人中学附属学校项目建设指挥部 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:大庆市城安工程管理服务有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 大庆铁人中学附属学校项目 黑龙江省-大庆市-萨尔图区 状态:公告 更新时间: 2023-02-11 大庆铁人中学附属学校项目 日期:2023-02-11 招标公告 1. 招标条件 本招标项目已由大庆市发展和改革委员会以庆发改发〔2023〕22号文件批复,项目业主为大庆铁人中学附属学校项目建设指挥部,资金来源为地方政府债券资金和市财政资金,项目出资比例为财政资金 100 %,招标人为大庆铁人中学附属学校项目建设指挥部,招标代理机构为大庆投标保证金的退还: 中标公示结束后,如未收到投标人或行政主管部门关于项目存在投诉的书面通知,由招标人/招标代理机构在交易平台点击保证金退回申请。如收到书面通知,应当暂停投标保证金退还。招标人与中标人签订合同后,应于5日内将合同的主要内容在“黑龙江公共资源交易网”登记,并及时退还中标人的投标保证金。保证金缴纳及退还时发生的跨行手续费,由投标人承担。具体操作详见“黑龙江公共资源交易网''中的《服务指南》黑龙江省公共资源交易平台电子保函-操作手册、黑龙江省公共资源交易平台工程建设-工作台-投标人操作手册及设投标人操作视频。
  • 三星开发新的芯片封装技术FOWLP-HPB,以防止AP过热
    三星正在开发一种新的芯片封装技术,以防止应用处理器(AP)过热。消息人士称,该封装在SoC顶部附加一个热路径块(HPB),预计将用于未来的Exynos芯片。该技术的全名是FOWLP(扇出晶圆级封装)-HPB,由三星芯片部门下的高级封装(AVP)业务部门开发,计划第四季度完成开发,然后开始批量生产。作为后续产品,三星团队还在开发一种可以安装多个芯片的FOWLP系统级封装(SIP)技术,将于2025年第四季度推出。两种封装类型都将HPB安装在SoC顶部,而存储器则放在HPB旁边。HPB是一种散热器,已用于服务器和PC的SoC。由于智能手机的体积较小,该技术目前才被引入智能手机芯片应用中。如今的智能手机大多使用蒸汽室来容纳制冷剂,以冷却AP和其他核心组件。HPB仅用于SoC。三星正在考虑采用2.5D或3D封装来采用该技术。端侧人工智能(AI)的日益普及也增加了人们对AP过热的担忧。两年前,三星因Galaxy S22系列智能手机的过热问题而受到严厉批评。三星试图通过其游戏优化服务(GOS)应用程序来防止这种情况发生,该应用迫使AP降低其性能以防止其过热,但三星却没有告知用户。三星通过改变AP设计并在后续型号上采用蒸汽室来改善这个问题。
  • 变电站变压器套管红外检测,99%的人都不知道!超全!
    变压器,是变电站的心脏、中枢,在运行过程中要求工作必须可靠。一旦出现故障轻则造成设备损坏,重则引发火情,危及正常的站内安全,因此,必须及时且有效地对变压器进行热缺陷检测,以防止安全事故发生。在变压器出现故障的前夕,都伴随着自身温度的升高,而红外热成像是发现变压器热缺陷的最佳检测技术,为变压器的热缺陷、设备状态、安全运行监测提供红外安全检测。变压器热缺陷分类(1)套管:套管缺油、接触不良、内部缺陷等(2)箱体:变压器漏磁产生的涡流损耗引起箱体或部分连接螺栓发热(3)散热器:散热器堵塞或阀门未开造成变压器油温升高(4)重要部位接触不良:导电回路连接部位接触不良(5)储油柜:储油柜缺油或假油位(6)其它:线圈故障、铁芯多点接地引起的局部发热等等根据DL/T 664—2016《带电设备红外诊断应用规范》标准内容,带电设备的发热类型包括电流致热型、电压致热型、其他致热型,变压器的主要故障有如上六种。▲高德智感全新C系列检测某变电站变压器本文以(1)变压器套管红外检测为主要故障类型进行分享。后续高德智感公众号将针对以上故障类型分篇进行详细分析。▲变压器套管异常发热一、红外热像仪检测变压器套管发热01.接触不良导致异常发热(最常见)接触不良导致的变压器套管异常发热是最常见的故障类型。将军帽与外部接线板或内部导电杆易产生接触不良,发生故障缺陷,而利用红外热像仪可清晰呈现,如图,三相中一相套管顶端的将军帽与其它两相相比,表面温度更高。(在负载不平衡的情况下也会出现,需具体分析。)▲三相中一相的将军帽温度异常●措施:在停电检修时,对套管进行直流电阻测量。一般来说,异常发热的一相的直流电阻高于其它两相,若高压套管存在接触不良的现象,应当更换导致故障的零件。02.充油套管内部缺油通过红外热像图像可清晰观测到变压器充油套管内部缺油,以及油位线。由于变压器内油与空气的比热容不同,导致其在吸热及散热速度上不同,而通过热像仪可观察到充油套管外壁,温度差异将清晰呈现一条温度分界线,图中箭头所指就是该异常套管中的油位线。▲套管油位线明显●措施:建议首先确定漏油的部位,当停电检修时,需对漏油部位进行修理或更换,并对套管补充变压器油。03.套管内部缺陷由于腐蚀、受潮、机械损伤等,套管内部会存在缺陷,该种情况也可能导致套管异常发热。使用红外热像仪,可观测到发生故障套管的整体温度一般较其它套管正常相高。▲左边相整体发热●措施:建议对套管内的变压器油进行化验,以分析缺陷的原因。04.套管接触点异常如果套管内部或外部接头存在接触不良,或接点被氧化腐蚀,也可能导致套管接触点温度异常。在这种情况下,通过红外热像仪即可发现套管接触点处温度异常,温度会明显高于其它正常的点或线路。▲接触点温度明显高于其它点(红色为高温)▲使用高德智感新C检测接触点三相温度●措施:如确实存在该现象,应当更换导致故障的零件。二、变压器套管红外热成像检测手段凭借非接触、更安全、更精准、更高效等优势,变压器套管设备检测的各大产品往往以红外热成像技术为核心,与多方科技手段结合,搭配使用,保障安全。1、套管重点部位移动式巡检:高德智感新C系列便携式热像仪电力巡检人员往往手持红外热成像仪,对变压器套管易发故障的重点部位进行日常性检测,便携易用,随时随地查看套管状态。▲高德智感便携式热像仪应用于各大电网公司电力巡检▲高德智感新C新增台账功能,赋能智慧巡检 2、套管24H监测:高德智感IPT在线式红外热像仪 在线式24H温度监测,自动巡检、自动预警、远程控制,第一时间发现套管热缺陷,故障早发现、早预警、早消除。▲集成IPT的云台产品,应用于某变电站变压器在线监测3、集成高德智感IPT的其它科技设备 电网数字化转型,多种新产品集成高德智感IPT,参与变压器套管等部位热缺陷检测,赋能设备多一度视觉与温度感知。 近年来,高德智感红外热成像产品已被广泛应用于电力行业发电、输电、变电、配电的各个环节中,为其提供高效、精准、安全的红外测温服务,持续助力电网安全稳定运行。变压器其它五大故障类型,如何使用红外热像仪检测?后续将逐步分享,敬请期待。*部分图片来源于网络更多产产品信息请访问:https://www.instrument.com.cn/netshow/SH104811/
  • 2010年1月1日起施行的环保法规、标准
    行政法规 放射性物品运输安全管理条例(国务院令第562号)   为了加强对放射性物品运输的安全管理,保障人体健康,保护环境,促进核能、核技术的开发与和平利用,根据《中华人民共和国放射性污染防治法》,制定本条例。   放射性物品的运输和放射性物品运输容器的设计、制造等活动,适用本条例。   本条例所称放射性物品,是指含有放射性核素,并且其活度和比活度均高于国家规定的豁免值的物品。   国务院核安全监管部门对放射性物品运输的核与辐射安全实施监督管理。   国务院公安、交通运输、铁路、民航等有关主管部门依照本条例规定和各自的职责,负责放射性物品运输安全的有关监督管理工作。   县级以上地方人民政府环境保护主管部门和公安、交通运输等有关主管部门,依照本条例规定和各自的职责,负责本行政区域放射性物品运输安全的有关监督管理工作。   运输放射性物品,应当使用专用的放射性物品运输包装容器(以下简称运输容器)。   放射性物品运输容器的设计、制造单位应当建立健全责任制度,加强质量管理,并对所从事的放射性物品运输容器的设计、制造活动负责。   任何单位和个人对违反本条例规定的行为,有权向国务院核安全监管部门或者其他依法履行放射性物品运输安全监督管理职责的部门举报。   ?法制办就《放射性物品运输安全管理条例》等答记者问 国家环境保护标准 环境标志产品技术要求 皮革和合成革(HJ 507-2009)   为贯彻《中华人民共和国环境保护法》,减少皮革和合成革产品在生产和使用过程中对环境和人体健康的影响,制定本标准。   本标准对皮革和合成革产品中的pH值及其稀释差、游离甲醛、可萃取的重金属、含氯苯酚、邻苯基苯酚、可分解出致癌芳香胺的染料、气味等指标提出了限制要求,还对合成革产品中的挥发性有机化合物、有机锡化合物、氯化苯和氯化甲苯提出了限制要求,对生产用化学品中的有毒有害物质提出了禁用要求。   本标准适用于中国环境标志产品认证。   本标准规定了皮革和合成革环境标志产品的术语和定义、产品分类、基本要求、技术内容和检验方法。   本标准适用于皮革和聚氨酯合成革。 环境标志产品技术要求 采暖散热器(HJ 508-2009)   为贯彻《中华人民共和国环境保护法》,有效利用和节约资源,减少采暖散热器在生产、使用过程中对环境和人体健康的影响,制定本标准。   本标准对采暖散热器表面释放到空气中的污染物、金属热强度和密封垫材料等方面提出了要求。   本标准适用于中国环境标志产品认证。   本标准规定了采暖散热器环境标志产品的术语和定义、基本要求、技术内容及其检验方法。   本标准适用于工业、民用建筑中,以热水或蒸汽为热媒的采暖散热器,不适用于钢制闭式串片散热器。 车用陶瓷催化转化器中铂、钯、铑的测定 电感耦合等离子体发射光谱法和电感耦合等离子体质谱法(HJ 509-2009)   为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护环境,保障人体健康,防治机动车排放污染,规范车用陶瓷催化转化器中铂(Pt)、钯(Pd)、铑(Rh)含量的测定方法,制定本标准。   本标准规定了机动车用陶瓷催化转化器中贵金属铂(Pt)、钯(Pd)、铑(Rh)含量的电感耦合等离子体发射光谱(ICP-OES)和电感耦合等离子体质谱(ICP-MS)的测定方法。   本标准适用于新制的和使用过的以堇青石蜂窝陶瓷为载体,并附载贵金属作活性组分的催化转化器中Pt、Pd、Rh含量的测定。   本标准为首次发布。 清洁生产标准 废铅酸蓄电池铅回收业(HJ 510-2009)   为贯彻《中华人民共和国环境保护法》、《中华人民共和国固体废物污染环境防治法》和《中华人民共和国清洁生产促进法》,保护环境,为废铅酸蓄电池铅回收业开展清洁生产提供技术支持和导向,制定本标准。   本标准规定了在达到国家和地方污染物排放标准的基础上,根据当前行业技术、装备水平和管理水平,废铅酸蓄电池铅回收业清洁生产的一般要求。   本标准分为三级,一级代表国际清洁生产先进水平,二级代表国内清洁生产先进水平,三级代表国内清洁生产基本水平。随着技术的不断发展和进步,本标准将不断修订。   本标准规定了废铅酸蓄电池铅回收业清洁生产的一般要求。本标准将废铅酸蓄电池铅回收业清洁生产指标分为六类,即生产工艺与装备指标、资源能源利用指标、产品指标、污染物产生指标(末端处理前)、废物回收利用指标和环境管理要求。   本标准适用于废铅酸蓄电池铅回收业企业的清洁生产审核和清洁生产潜力与机会的判断、清洁生产绩效评估和清洁生产绩效公告制度,也适用于环境影响评价和排污许可证等环境管理制度。   本标准为首次发布。 环境信息化标准指南(HJ 511-2009)   为贯彻《中华人民共和国环境保护法》,落实国务院《关于落实科学发展观加强环境保护工作的决定》,建立环境信息化的标准体系,促进环境信息化工作,制定本标准。   本标准规定了环境信息化标准体系的层次结构和环境信息化标准制修订原则。   本标准适用于指导环境信息化规划、建设、实施以及环境信息化标准的制修订工作。
  • NO拆卸!只需两步,FLIR ONE Pro高效排查汽车发动机冷却液故障
    FLIR红外热像仪可协助汽车故障的诊断上次小菲为大家分享了汽修专家叶工诊断鼓风机供电线路虚接问题详情戳这里:实地案例|汽修工程师,如何化解难以察觉的“小问题”?今天小菲再来跟大家分享一下叶工使用FLIR ONE Pro手机红外热像仪查找发动机冷却液温度过高的过程吧~故障初诊:冷却大循环不良一辆2005款现代伊兰特车,搭载G4GA发动机,累计行驶里程约为24.3万km。车主反映,该车行驶中组合仪表上的发动机冷却液温度表会指示到红色刻度线,怀疑发动机冷却液温度过高,于是进厂检修。接车后试车,发现组合仪表上的发动机冷却液温度表确实会指示到红色刻度线。用故障检测仪检测,无相关故障代码存储:读取发动机数据流,发现发动机冷却液温度为99℃,偏高。故障伊兰特车发动机数据流(截屏)打开发动机室盖,发现散热风扇高速运转;检查冷却液液位,处于正常范围;用手感觉散热风扇的出风情况,出风量正常,但出风温度较低,推断冷却系统大循环不良。查看维修资料得知,该车冷却系统结构与下图所示基本一致,由此推断导致该车冷却系统大循环不良的原因有:节温器损坏(无法打开)、散热器堵塞、冷却液泵损坏(轴承松旷、叶片破损等)。冷却系统结构对比温度差,发现故障点用FLIR红外热成像仪测量散热器进液管、散热器出液管和小循环回液管的温度,发现散热器进液管温度为67℃,散热器出液管温度为23.8℃,小循环回液管温度为46.8℃。对比散热器出液管和进液管的温度可知,冷却系统无法大循环,猜测原因可能为节温器没有打开,但小循环回液管中的冷却液是不受节温器控制的,为什么温度也过低呢?分析可知,冷却系统小循环也不正常,导致节温器处的冷却液温度过低,使节温器无法打开。故障伊兰特车散热器进液管、散热器出液管和小循环回液管的温度为验证冷却系统小循环的情况,用FLIR红外热成像仪测量暖风热交换器进液管和出液管的温度,发现暖风热交换器进液管的温度为32.4℃,出液管的温度为30.7℃,由此说明冷却系统确实也无小循环。诊断至此,推断导致冷却系统没有大循环和小循环的原因为冷却液泵损坏。故障伊兰特车暖风热交换器进液管和出液管的温度拆检冷却液泵,发现冷却液泵的叶片已完全腐蚀,确认故障是由此引起的。更换上新的冷却液泵后试车,组合仪表上的发动机冷却液温度表指示正常:再次测量散热器进液管、散热器出液管和小循环回液管的温度(此时节温器没有打开),小循环回液管的温度为77.7℃,说明冷却系统小循环恢复正常。正常伊兰特车散热器进液管、散热器出液管和小循环回液管的温度再次测量暖风热交换器进液管和出液管的温度,进液管的温度为72.9℃,出液管的温度为65.3℃,恢复正常,故障排除。正常伊兰特车暖风热交换器进液管和出液管的温度FLIR热像仪:让故障定位更简单回顾整个诊断过程,在懂得该车冷却系统循环原理的情况下,只需要用FLIR红外热成像仪测量2个区域内冷却液管的温度,便锁定了故障点,避免了拆检甚至误换节温器,省时省力非常简单,大大提高了维修效率。在本次汽修诊断过程中使用的是FLIR ONE Pro手机红外热像仪,这款热像仪小巧轻便,配合智能手机即插即用,非常方便!它能够测量介于-20°至400°C之间的温度,热灵敏度可检测到70mk的温差,支持最多3个点温仪和最多6个温度感兴趣区域,可应用在我们的日常工作生活中,比如检查电气面板、查找暖通空调故障、检测房屋水损问题等。
  • 研究|具有各向异性和高垂直热导率的高效热界面材料
    01背景介绍随着集成电路和电子器件技术的快速发展,高功率密度电子设备的有效散热已成为确保其可靠性和使用寿命的主要因素之一。热界面材料通常被用来填补散热器和发热元件之间的间隙,以消除由非流动空气产生的高界面热阻。聚合物基材料因其轻质、电绝缘和高机械强度而被广泛用作导热材料。遗憾的是,由于分子构型无序,其固有热导率不能满足应用需求。一种可行的策略是将高导热填料与柔性和绝缘聚合物相结合,从而制备综合性能优良的复合材料。研究人员已经创造性地将各向异性的导热填料有序排列以获得具有优良各向异性导热性的TIM。由于导热路径最短,各向异性填料在基体厚度方向上的有效垂直排列以构建连续的传热路径,并进一步提高垂直透面导热系数,引起了研究人员的高度重视。人们已提出了电场或磁场、流动剪切力、定向冻结法和化学气相沉积等几种有效的策略来构建垂直取向结构以提高TIM的透面导热性。然而,垂直结构排列的二维填料并没有显示出明显的各向异性热导率增强。一维材料在其一个自由度的定向方向上可以达到最大的性能。近年来,碳纤维、碳纳米管、石墨烯等碳材料因其高导热性和优异的力学性能被广泛应用于TIMs的导热填料,其中一维中间相沥青基碳纤维的各向异性导热系数较高,轴向导热系数和径向导热系数分别约600 W/m K和小于10 W/m K,一维材料可以在特定方向上发挥最大的性能。02成果掠影四川大学陈枫教授团队采用中间相沥青基碳纤维,通过熔融挤压法制备了高取向度的短碳纤维(CF)/烯烃嵌段共聚物(OBC)复合材料,可提供高导热性、适度的电绝缘和良好的柔韧性。由于CF/OBC复合材料中CF的高取向度(f0.9,f是CF/OBC复合材料中CF的取向度),在 30 vol%的CF负载下表现出 15.06 W/m K的贯通面热导率,同时实现了良好的电绝缘(~10-9 S/m)和低压缩强度(2.62 MPa)。TIM测量的结果表明,垂直排列的CF/OBC显示出高效的散热能力,相比于随机结构温差可达 35.2°C,可用于冷却高功率LED器件。研究成果以“An efficient thermal interface material with anisotropy orientation and high through-plane thermal conductivity”为题发表于《Composites Science and Technology》期刊。03图文导读(a)具有垂直排列结构的CF/OBC复合材料的制备流程图;(b)CF的SEM图;(c)CF的拉曼光谱图;(d)挤出的长丝;(e)垂直排列的CF/OBC复合材料。(a)丝状物的横截面和(b)垂直排列的CF/OBC复合材料的SEM图;(c)垂直排列和(d)平行排列的2D-WAXS图案,CF含量分别是1,5,10,15,20,30 vol%时,平行排列样品的2D-WAXS图,虚线标记了CF的(002)平面的环;(e)相应的方位角整合的强度曲线。(f)不同CF含量样品中(002)平面的取向度;(g)纯OBC、CF和10 vol% CF/OBC的一维XRD图;(h)从表面和横截面的X射线方向的说明;(i)表面和(j)横断面的三维XRD图。CF/OBC复合材料的导热性能。(a)垂直、平行和随机样品的热导率;(b)随机、平行和垂直排列时30 vol% CF/OBC的比较;(c)各向异性随着CF含量的增加而增加;(d)反复加热和冷却循环后30 vol% 垂直的CF/OBC的典型热导率值;(e)各向异性热导率 30 vol% CF/OBC在不同温度下的各向异性热导率;(f)CF/OBC的电绝缘性能;100℃的条件下(g)示意图、(h)红外图和(i)样品顶部的温度。CF/OBC的机械性能。(a)打结的长丝;(b)弯曲和(c)扭曲的柔韧性;(d)平行排列和(e)垂直排列的CF/OBC块体的抗压应力-应变曲线;(f)比较平行结构和垂直结构之间的抗压强度随CF含量增加的变化。30 vol%的CF/OBC切片用于界面热管理。用于LED芯片散热测试系统的红外图像(a)加热和(b)冷却;(c)原理图和(d)中心区域的平均温度与运行时间的关系。
  • 打破“科技壁垒”,森沙仪器助推产业发展新质生产力
    近年来,随着金属加工、航空航天、地质勘探、矿山测绘、金属冶炼、电子产品等众多前沿领域不断发展与兴起,金属材料检测行业的市场需求驱动因素也在不断增长。据智研咨询《2024-2030年中国金属材料检测行业市场竞争力分析及投资前景预测报告》中统计,我国金属材料检测市场规模从2016年的293.5亿元增长至2023年的406.99亿元,其中:钢铁材料检测市场规模增长至140.23亿元,有色金属检测市场规模增长至266.76亿元。这表明在我国近年各项政策支持下,金属材料检测行业有望迎来稳定发展期。其中,手持式光谱仪作为金属材料检测赛道的强势分支,凭借携带方便,现场检测,快速无损,分析速度快等综合优势,大大提高了检测效率,受到各大产业广泛应用。与西方发达国家相比,我国金属材料检测行业发展历史较短,从初期至今大约仅经历了半个世纪。但随着我国正式加入世界贸易组织后,在受到外资检测机构冲击以及我国社会经济飞速发展所带来强大检测金属材料需求的双重因素作用下,我国金属材料检测行业进入了光速发展阶段。在此情形下,国产手持式光谱仪品牌森沙仪器根据市场现实与潜在需求,创新研发出HX-5手持式光谱仪,该产品在检测结果的准确性和稳定性方向获得了进一步提升,成功抢占国内手持式光谱仪市场先机。攻克难点,实现“反比式”加强凭借多年在XRF光谱分析领域的技术经验,森沙仪器在产品不断研发迭代过程中,发现了影响手持式光谱仪准确度和稳定性的三大要素,即分辨率、信号强度,与散热效率。在手持式光谱仪检测中,业内通常会以铁元素峰的宽度来定义仪器的分辨率。如果峰的宽度过大,分辨率便会过高,这导致以Mn元素为代表的一些元素极为容易受到分辨率影响,使得检测结果忽高忽低。因此分辨率是手持式光谱仪研发设计第一个关键点:分辨率越低越好,这与我们对于一般仪器分辨率高低的认知正好相反。而影响手持式光谱仪准确度和稳定性的第二个关键点,在于探测器接收到样品X射线的荧光强度。手持式光谱仪会将探测器每秒钟接收到的X射线粒子的数量当做信号强度。每秒信号强度越高,则检测数据的精度越高,元素波动范围越小,检测结果也就越稳定。因此,在手持式光谱仪的理想研发设计中,分辨率和信号强度呈“反比”的关系才能实现产品更好的准确度和稳定性,即仪器分辨率越低,信号强度越高,检测结果就越准确。但在现实情况下,手持式光谱仪设计中分辨率和信号强度则会呈“正比”关系。通常手持式光谱仪产品在设计研发过程中,如果降低分辨率,信号强度也会变低,只有提高分辨率,信号强度才能变强,这使得市面上普通手持式光谱仪的检测结果往往准确度和稳定性难以兼得,这也是目前业内手持式光谱仪普遍难以攻克的设计难点。森沙仪器深知此类产品的研发状况,由此在这一研发板块投入多年时间,通过大量研究测试,终于形成可实现的解决思路,并由此打造出HX-5手持式光谱仪产品。HX-5手持式光谱仪会在检测样品前的300ms,通过X射线光管中源级X射线照射到样品表面产生的次级X射线荧光,来探测被检样品属性。不同于其他手持式光谱仪采用的固定光管电压电流设计,HX-5手持式光谱仪会通过内置智能化程序自动调整X射线光管的电压和电流,这一调试会根据提前设定好的固定信号强度来判定。如果信号强度过高就降低光管电流,从而获得更低的分辨率;如果信号过低,则提高光管电流,优先保证信号的强度。同时,由于森沙仪器具有完全的知识产权,HX-5手持式光谱仪在检测过程中还可根据客户样品的不同自行选择信号强度优先还是分辨率优先,完全做到根据检测材料不同、元素不同来提供不同的基数方案,实现更具针对性、更精准的检测结果。同时,森沙仪器还会根据整体架构设计,降低整台仪器的噪声信号,从而加仪器强信号强度,实现了手持式光谱仪设计中分辨率达到最低的同时信号强度达到最高的理想状态,从而获得相较于同类产品中更准确的测样结果和更稳定的测样数据波动。独家设计,打破散热桎梏在实际应用中,手持式光谱仪通常会在检测过程进入大功率运行模式,内部也由此会产生极大的热量。如同其他科学仪器一样,积累的热量必然会影响到仪器的准确度和稳定性,因此如何实现绝佳的散热效果,也是手持式光谱仪设计中的一大课题。森沙仪器通过检测,发现手持式光谱仪内部的热量主要源自于两部分,一部分是X射线光管,另一部分则是探测器。从散热的理论上来研究,手持式光谱仪要想实现更大散热量,需要从传热系数和散热器表面积两方面下功夫。站在传热系数的角度考虑后,森沙仪器在常用加工金属材料中,依据不同材质金属材质的导热系数,再结合易加工性、重量、成本等几个方面考虑后,选择了传导系数高达201W/mK的6063铝合金,而像大众常见的304不锈钢材料,传导系数仅有16.2W/mK。在增大散热表面积上,森沙仪器选择将探测器的散热片结构设计分为前端和后端,其中前端和后端的散热片又分为上、下两部分,这两部分被设计成充分贴合探测器和X射线光管表面的金属层,以此将仪器温度更好地传导至散热片上。同时为了进一步提升散热效率,森沙仪器设计出仪器头部导热系统,将探测器的散热片与HX-5手持式光谱仪的铝合金头部进行结合,覆盖至整个仪器的前端与顶部,将热量分散传导以此增大散热表面积。通常的手持式光谱仪在散热层面的考虑基本都到此为止,但森沙仪器没有在科技创新的道路上止步,不仅最大化增加了表层散热面积,更是通过创新式研发,以增加热量导出循环的思路,挖掘仪器内部散热面积的潜力。不难发现,市面常见的手持式光谱仪内部往往会由外壳包裹,并未起到散热作用。而森沙仪器HX-5手持式光谱仪则最新采用风冷循环系统,通过增加风扇与散热鳍片,将热量通过风冷方式从内部传导至外部空间,从而大大均衡室温和仪器内部温度温差实现散热目的。科技创新,推动高质量发展高质量发展是推进经济结构转型的持久动力,科学仪器则是实现高质量发展的的核心驱动力。从18世纪工业革命的机械化,到19世纪工业革命的电气化,再到20世纪工业革命的信息化,科学仪器都在其中扮演着重要角色,一次次颠覆性的科技创新,给社会生产力带来了极大的解放,实现了经济文明跨越式的发展。而作为科技创新的必要基础和重要载体,科学仪器在我国已呈现国产化趋势,并逐步构建自主可控的产业生态,这也是国家科技创新能力及综合国力的体现。今年十四届全国人大二次会议,传递出以新质生产力更好推动高质量发展的强烈信号,如何发展新质生产力已成各大产业的首要课题。身为新材料产业链中游,森沙仪器响应发展新质生产力号召,致力于科技创新,不断打破传统仪器技术壁垒,大力研发质优科学仪器,以此提升产业全要素生产率,服务实体产业,释放“新质”潜能,助力我国发展向“新”而行、向“新”而进,以科技创新推动产业创新,汇聚起发展新质生产力的时代洪流。
  • 高低温湿热试验箱故障和解决方法,你了解多少?
    高低温湿热试验箱有三大主要功能:创造高温、低温和湿度的环境,被检测产品在这三种环境下发生性能变化,是实验室常见的高低温试验设备。 高低温湿热试验箱的常见故障及维修: 1.升温慢或者不升温:检查加热系统是否有故障:如加热管是否已坏,加热管接线是否松动,控制仪表是否烧坏,电路是否断路等。 2.没有湿度:先看是否缺水,再看加湿器是否正常,最后检查电控部分。 3.只有高温,没有低温:压缩机工作正常,可能是压缩机内缺少制冷剂,也可能是散热器堵塞,导致散热效果不好,还有可能是管路堵塞或泄漏,只要有针对一一排查处理就可以了。 4.箱内温度、湿度不均匀:可能是搅拌风扇的问题,要先检查风扇的工作情况。如是否有噪音,电机是否被烧毁,轴承是否缺油等。 高低温湿热试验箱的故障与之对应的故障排除如上,若有客户遇到难题可一一排除。
  • 金刚石薄膜热导率测量的难点和TDTR解决方案
    金刚石薄膜热导率测量的难点和TDTR解决方案金刚石从4000年前,印度首次开采以来,金刚石在人类历史上一直扮演着比其他材料引人注意的角色,几个世纪以来,诚勿论加之其因稀缺而作为财富和声望象征属性。单就一系列非凡的物理特性,例如:已知最硬的材料,在室温下具有最高的热导率,宽的透光范围,最坚硬的材料,可压缩性最小,并且对大多数物质是化学惰性,就足以使得其备受推崇,所以金刚石常常被有时被称为“终极工程材料”也不那么为人惊讶了。一些金刚石的物理特性解决金刚石的稀缺性的工业方案:金刚石的化学气相沉积(CVD)高温高压但是因为大型天然钻石的成本和稀缺性,金刚石的工业化应用一致非常困难。200 年前,人们就知道钻石是仅由碳组成(Tennant 1797),并且进行了许多尝试以人工合成金刚石,作为金刚石在自然界中最常见的同素异构体之一的石墨,被尝试用于人造金刚石合成。虽然结果确被证明其过程是非常困难因为石墨和金刚石虽然标准焓仅相差 2.9 kJ mol-1 (Bundy 1980),但因为一个大的活化势垒将两相隔开,阻止了石墨和金刚石在室温和大气下相互转化。有趣的是,这种使金刚石如此稀有的巨大能量屏障也是金刚石之所以成为金刚石的原因。但是终究在1992年,一项称之为HPHT(high-pressure high-temperature)生长技术的出现,并随着通用电气发布为几十年来一直用于生产工业金刚石的标准技术。在这个过程中,石墨在液压机中被压缩到数万个大气压,在合适的金属催化剂存在下加热到 2000 K 以上,直到金刚石结晶。由此产生的金刚石晶体用于广泛的工业过程,利用金刚石的硬度和耐磨性能,例如切割和加工机械部件,以及用于光学的抛光和研磨。高温高压法的缺点是它只能生产出纳米级到毫米级的单晶金刚石,这限制了它的应用范围。直到金刚石的化学气相沉积(CVD)生产方法以及金刚石薄膜的出现,该金刚石的形式可以允许其更多的最高级特性被利用。金刚石的化学气相沉积(CVD)生产方法相比起HPHT 复制自然界金刚石产生的环境和方法,化学气相沉积选择将碳原子一次一个地添加到初始模板中,从而产生四面体键合碳网络结果。化学气相沉法,顾名思义,其主要涉及在固体表面上方发生的气相化学反应,从而导致沉积到该表面上。下图展示了一些比较常见的制备方法金刚石薄膜一旦单个金刚石微晶在表面成核,就会在三个维度上进行生长,直到晶体聚结。而形成了连续的薄膜后,生长方向就会会限定会向上生长。因此得到的薄膜是具有许多晶界和缺陷的多晶产品,并呈现出从衬底向上延伸的柱状结构。不过,随着薄膜变厚,晶体尺寸增加,而缺陷和晶界的数量减少。这意味着较厚薄膜的外层通常比初始形核层的质量要好得多。下文中会提到的在金刚石薄膜用作热管理散热器件时,通常将薄膜与其基材分离,最底部的 50-100 um 是通过机械抛光去除。尽管如此,在 CVD 过程中获得的金刚石薄膜的表面形态主要取决于各种工艺条件,导致其性能表现个不一致,相差很大。这也为作为散热应用中的一些参数测量,例如热导率等带来了很大挑战。金刚石薄膜的热管理应用金刚石薄膜在作为散热热管理材料应用时,有着出色的前景,与此同时也伴随着巨大挑战。一方面,而在热学方面,金刚石具有目前所知的天然物质中最高的热导率(1000~2000W/(mK )),比碳化硅(SiC)大4倍,比硅(Si)大13倍,比砷化稼(GaAs)大43倍,是铜和银的4~5倍,目前金刚石热沉片大有可为。下图展示了常见材料和金刚石材料的热导率参数:另一方面,但人造金刚石薄膜的性能表现,往往远远低于这一高水平。并且就日常表现而言,现代大功率电子和光电器件(5G应用,半导体芯片散热等)由于在小面积内产生大量热量而面临严重的冷却问题。为了快速制冷,往往需要一些高导热性材料制成的散热片/散热涂层发热端和冷却端(散热器,风扇,热沉等等)CVD 金刚石在很宽的温度范围内具有远优于铜的导热率,而且它还具电绝缘的优势。早在1996年沃纳等人就在可以使用导热率约为2 W mm-1 K-1 的大面积 CVD 金刚石板用于各种热管理应用。 包括用于集成电路的基板(Boudreaux 1995),用于高功率激光二极管的散热器(Troy 1992),甚至作为多芯片模块的基板材料(Lu 1993)。从而使得器件更高的速度运行,因为设备可以更紧密地安置而不会过热。 并且设备可靠性也有望提高,因为对于给定的器件,安装在金刚石上时合流合度会更低。比起现在流行的石墨烯,金刚石也有着其独特优势。飞秒高速热反射测量(FSTR)在CVD金刚石薄膜热学测量中的应用挑战金刚石薄膜的热导率表征不是一个简单的问题,特别是在膜层厚度很薄的情况下美国国防部高级研究计划局(DARPA)的电子热管理金刚石薄膜热传输项目曾经将将来自五所大学的研究人员聚集在一起,全面描述CVD金刚石薄膜的热传输和材料特性,以便更好地进一步改善热传输特性,可见其在应用端处理优化之挑战。而这其中,用于特殊需求材料热导率测量的飞秒高速热反射测量(FSTR)(又叫飞秒时域热反射(TDTR)测试系统)发挥了极其重要的作用,它在精确测量通常具有高表面粗糙度的微米厚各向异性薄膜的热导率的研究,以及在某些情况下,CVD金刚石薄膜的热导率和热边界改善研究,使其对大功率电子器件的热管理应用根据吸引力的研究上发挥了决定性指导作用。常见的材料热学测试方法,包括闪光法(Laser Flash),3-Ω法,稳态四探针法,悬浮电加热法,拉曼热成像法,时域热反射法(TDTR)等。而对于CVD金刚石薄膜的热学测量,受限于在过程中可能需要多层解析、精细的空间分辨率、高精度分析,以及解析薄膜特性和界面的能力,飞秒高速热反射测量(FSTR)(又叫飞秒时域热反射(TDTR)测试系统)已成为为过去十年来最普遍采用的的热导率测量方法之一。飞秒高速热反射测量(FSTR)飞秒高速热反射测量(FSTR),也被称为飞秒时域热反射(TDTR)测量,被用于测量0.1 W/m-K至1000 W/m-K,甚至更到以上范围内的热导率系统适用于各种样品测量,如聚合物薄膜、超晶格、石墨烯界面、液体等。总的来说,飞秒高速热反射测量(FSTR)是一种泵-探针光热技术,使用超快激光加热样品,然后测量其在数ns内的温度响应。泵浦(加热)脉冲在一定频率的范围内进行调制,这不仅可以控制热量进入样品的深度,还可以使用锁定放大器提取具有更高信噪比的表面温度响应。探测光(温度感应)脉冲通过一个机械级,该机械级可以在0.1到数ns的范围内延迟探头相对于泵脉冲的到达,从而获取温度衰减曲线。如上文提到,因为生长特性,导致典型的金刚石样品是粗糙的、不均匀的和不同厚度特性的这就为飞秒高速热反射测量(FSTR)的CVD 金刚石薄膜热学测量带来了一些挑战。具体而言,粗糙表面会影响通过反射而来的探测光采集,且过于粗糙导致实际面型为非平面,这对理论热学传递建模分析也会引入额外误差,在某些情况下,可以对样品进行抛光以降低表面粗糙度,但仍必须处理薄膜的不均匀和各向性质差异。对于各向异性材料,存在 2D 和 3D 各向异性的精确解析解,但这使得热导率和热边界电阻的确定更加困难,并且具有额外的未知属性。即使样品中和传导层铝模之间总是存在未知的边界热阻,但是通常使用单个调制频率可以从样本中提取两个未知属性,这意味着在大多数情况下测量可以提取层热导率。然而,对于金刚石样品,样品内纵向和横向热导率是不同的,这意味着需要额外的测量来提取这两种特性;这可以通过改变一些系统参数来实现校正,参见系统参数描述(详情联系请上海昊量光电)。另一个困难是确定金刚石 CVD 的热容量,根据生长质量和样品中存在的非金刚石碳(NDC)的数量,生长出来的金刚石的热容量值相差极大。在这种情况下对于(上图不同情况下的金刚石薄膜TDTR测量分析手段将会有很大不同)这使得测量对金刚石-基底边界电阻也很敏感。这意味着测量可能总共有五个未知参数:1)铝膜-金刚石间边界热阻,2)金刚石内横向热导率,3)金刚石内纵向热导率,4)金刚石热容量,5)金刚石-基底材料间边界热阻即使结合一定分析处理手段,见设备说明(详情联系请上海昊量光电),准确提取所有未知参数也很困难。一些常见影响样品尺寸确认 测量相对于样本尺寸的采样量很重要;飞秒高速热反射测量(FSTR)通常是基于标准体材料传热建模,而现在一些测量的块体材料样品越来越小,对于高质量的单晶半导体,基于块体材料的传热模型分析假设是有效的,但是对于更多缺陷和异质材料,例如 CVD 金刚石,这个假设就只是一个近似值。纵向均匀性通常而言,金刚石生长过程中,颗粒梯度会非常大,这也可能会导致热导率梯度非常大。此外,非金刚石碳(NDC,non-diamond carbon)含量、晶粒尺寸或表面粗糙度的局部变化也可能影响热导率的局部测量。TDTR测量中,可以 通过控制调制频率,从而实现加热深度控制,从而实现采样深度控制(详细技术讨论联系请上海昊量光电)对于不同热导率样品和不同加热频率,测量薄膜中采样 可能从1-2 um 到 20 um 不等 (相对应的,薄膜厚度超过300微米)其他更多 挑战和技术细节,受限于篇幅,将在后续更新继续讨论,如您有兴趣就相关设备和技术问题进行交流,可联系上海昊量光电获取更多信息。关于昊量光电:上海昊量光电设备有限公司是目前国内知名光电产品专业代理商,也是近年来发展迅速的光电产品代理企业。除了拥有一批专业技术销售工程师之外,还有拥有一支强大技术支持队伍。我们的技术支持团队可以为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等工作。秉承诚信、高效、创新、共赢的核心价值观,昊量光电坚持以诚信为基石,凭借高效的运营机制和勇于创新的探索精神为我们的客户与与合作伙伴不断创造价值,实现各方共赢!
  • 山东安丘企业参与制定32项国家和行业标准
    今年4月份,山东省安丘市外贸食品公司的水产品和熟肉制品取得了欧盟官方出口注册,敲开了欧盟市场的大门,并有10多种蔬菜、禽肉产品定向供应上海世博会。早在今年1月份,由该公司参与制订的《食品安全区域化管理体系》通过了审定,该国家标准正式颁布后将为我国实现区域内的食品安全提供标准依据,是对现有食品安全管理体系标准的自主创新,达到了国际先进水平。由于掌握了行业最高标准的制定话语权,企业在高端竞争中更加得心应手,公司今年前5个月农产品出口创汇1513万美元,同比增长26.1%。   “三流企业卖产品,二流企业卖品牌,一流企业卖标准”。截至到目前,山东省安丘市已有景芝酒业、恒安散热器、长安铁塔、海龙博莱特、外贸食品、柠檬生化、奥宝、汶瑞、科灵空调、金鸿、亚东冶金等11家企业,承担或参与了32项国家标准或行业标准的制定,抢占了行业竞争制高点,竞争力大大提升。今年前5个月,该市规模以上工业主营业务收入、利税同比分别增长29.3%、40.2%。   在加快经济发展方式转变的过程中,山东省安丘市积极引导企业提高科技研发和自主创新能力,并把制定国家、行业标准作为提高市场竞争力的重要手段。该市专门设立了制定标准奖、创名优产品奖、高新技术奖等奖项,市财政每年拿出企业新增利润的15%作为中小企业创新基金,鼓励企业通过参与制定标准拓展市场空间。该市的潍坊恒安散热器公司先后参与制定了《铜质铝质散热器总成技术条件》等两项国家行业标准,始终坚持自主创新不停步,成为中国汽车工业协会车用散热器委员会理事长单位,在国内首家将水油两种散热器复合为一体,首家将铝质散热器投放市场,原料由铜变铝降低了成本,引领了全国内燃机散热器更新换代的革命。有65种产品技术获国家专利,在工程机械、重卡、高端农业装备散热器市场占到了60%以上的国内市场份额。   “国标”制定权的背后,体现出企业持续不断的科技创新能力。该市目前有省级以上(工程)技术研究中心的企业8家,高新技术企业9家,去年以来该市企业共申请专利332件。山东科灵空调设备有限公司三年内就参与制定了《水源热泵机组能源效率限定值及能源效率等级》、《水源高温热泵机组》、《低环境温度空气源热泵机组》等5项国家行业标准,公司的主打产品水源热泵机组,冬天在地下水、地表水,甚至城市污水中提取能量取暖,夏天取冷降温,保持了国内同行业的领先地位。今年前5个月该公司主营业务收入翻番增长.
  • 第三代半导体材料GaN的挑战和未来
    氮化镓 (GaN) 是一种宽带隙半导体,其在多种电力电子中的应用正在不断增长。这是由于这种材料的特殊性能,在功率密度、耐高温和在高开关频率下工作方面优于硅 (Si)。长期以来,在电力电子领域占主导地位的硅几乎已达到其物理极限,从而将电子研究转向能够提供更大功率密度和更好能源效率的材料。GaN 的带隙 (3.4 eV) 大约是硅 (1.1 eV) 的 3 倍,提供更高的临界电场,同时降低介电常数,从而降低 R DS( on)在给定的阻断电压下。与硅相比(在更大程度上,与碳化硅 [SiC])相比,GaN 的热导率更低(约为 1.3 W/cmK,而在 300K 时为 1.5 W/cmK),需要仔细设计布局和适当的开发出能够有效散热的封装技术。通过用 GaN 晶体管代替硅基器件,工程师可以设计出更小、更轻、能量损失更少且成本更低的电子系统。 受汽车、电信、云系统、电压转换器、电动汽车等应用领域对日益高效的解决方案的需求的推动,基于 GaN 的功率器件的市场占有率正在急剧增长。在本文中,我们将介绍 GaN 的一些应用,这些应用不仅代表了技术挑战,而且最重要的是,代表了扩大市场的新兴机遇。01 电机驱动由于其出色的特性,GaN 已被提议作为电机控制领域中传统硅基 MOSFET 和 IGBT 的有效替代品。GaN 技术的开关频率高达硅的 1,000 倍,加上较低的导通和开关损耗,可提供高效、轻巧且占用空间小的解决方案。高开关频率(GaN 功率晶体管的开关速度可以达到 100 V/ns)允许工程师使用较低值(因此尺寸更小)的电感器和电容器。低 R DS( on)减少产生的热量,提高能源效率并实现更紧凑的尺寸。与 Si 基器件相比,GaN 基器件需要具有更高工作电压、能够处理高 dV/dt 瞬态和低等效串联电阻的电容器。 GaN 提供的另一个优势是其高击穿电压(50-100 V,与其他半导体可获得的典型 5 至 15-V 值相比),它允许功率器件在更高的输入功率和电压下运行而无需损坏的。更高的开关频率允许 GaN 器件实现更大的带宽,因此可以实现更严格的电机控制算法。此外,通过使用变频驱动 (VFD) 电机控制,可以实现传统 Si MOSFET 和 IGBT 无法获得的效率水平。此外,VFD 实现了极其精确的速度控制,因为电机速度可以上升和下降,从而将负载保持在所需的速度。图1 显示了 TI TIDA-00909 参考设计,该设计基于具有三个半桥 GaN 电源模块的三相逆变器。GaN 晶体管的开关速度比 Si 晶体管快得多,从而降低了寄生电感和损耗,提高了开关性能(小于 2ns 的上升和下降时间),并允许设计人员缩小或消除散热器的尺寸。GaN 功率级具有非常低的开关损耗,允许更高的 PWM 开关频率,在 100kHz PWM 时峰值效率高达 98.5%。 02 5GGaN 还在 RF 领域提供了具体且非常有趣的前景,能够非常有效地放大高频信号(甚至几千兆赫的数量级)。因此,可以创建能够覆盖相当远距离的高频放大器和发射器,用于雷达、预警系统、卫星通信和基站等应用。作为下一代移动技术,5G 在更大容量和效率、更低延迟和无处不在的连接方面具有显着优势。使用不同的频段,包括 sub-6-GHz 频段和毫米波 (mmWave)(24-GHz 以上)频段,需要 GaN 等能够提供高带宽、高功率密度和卓越效率的材料价值观。由于其物理特性和晶体结构,GaN 可以在相同的施加电压下支持比可比较的横向扩散 MOSFET 器件更高的开关频率,从而实现更小的占位面积。新兴的 5G 技术,例如大规模多输入多输出 (MIMO) 和毫米波,需要专用的射频前端芯片组。GaN-on-SiC,它将 GaN 的高功率密度与 SiC 的高导热性和降低的射频损耗相结合,被证明是高功率 5G 和射频应用的最合适的解决方案。目前市场上有几种适用于 5G 应用的 GaN 器件,例如用于 5G 大规模 MIMO 应用的低噪声放大器和多通道开关。03 无线电力传输GaN 最具创新性的应用之一是无线充电技术,其中 GaN 的高效率通过将更多的能量传输到接收设备来降低功率损耗。这些系统通常包括一个射频接收器和一个功率放大器,工作频率为 6.78 或 13.56 MHz,并基于 GaN 器件。与传统的硅基器件相比,GaN 晶体管获得了尺寸非常紧凑的解决方案,这是无线充电应用的关键因素。一个示例应用是在无人机中,其中可用空间有限,并且可以在无人机从短距离悬停在充电器上的情况下进行充电。最有效的集成无线功率传输解决方案使用 GaN 晶体管将系统尺寸减小多达 2 到 3 倍,从而降低充电系统成本。650-V GaNe-HEMT 晶体管为高效无线充电提供了理想的解决方案,功率范围从大约 10 W 到超过 2 kW。图 2 显示了一种基于 GaN 器件的小型工具或移动设备无线充电解决方案。 04 数据中心GaN 与硅的结合也为数据中心领域提供了重要机会,其中高性能和降低成本至关重要。在云服务器 24/7 全天候运行的数据中心中,电压转换器被广泛使用,典型值为 48 V、12 V 甚至更低的电压,用于为多处理器系统内核供电。随着全球发电量的快速增长,电力转换效率已成为寻求实现净零排放的公司的关键因素,包括运营数据中心和云计算服务的公司。数据中心在更小的空间内需要越来越多的功率,这是 GaN 技术可以广泛满足的要求,实现转换器和电源的更高效率、尺寸减小和更好的热管理,从而降低供应商的成本。在数据中心中非常常见的是 AC/DC 转换器,其中 PFC 前端级将总线电压调节为 DC 值,然后是 DC/DC 级,用于降低总线电压并提供电流隔离和调节的 DC 输出(48 V、12 V 等)。PFC 级使电源的输入电流与电源电压保持同步,从而最大限度地提高有功功率。基于 GaN 的图腾柱 PFC(见从而最大化实际功率。基于 GaN 的图腾柱 PFC(见 从而最大化实际功率。基于 GaN 的图腾柱 PFC(见 图 3 ) 在效率和功率密度方面被证明是一个成功的拓扑。 05 氮化镓挑战从历史上看,实现 GaN 技术不断增长的扩散需要克服的主要挑战是可靠性和价格。与可靠性有关的第一个问题已基本解决,商业设备能够通过在高于 200°C 的结温下运行来保证超过 100 万小时的平均故障时间。尽管早期的 GaN 器件比硅等竞争技术要贵得多,但价格差距已从最初的 2 到 4 英寸晶圆到 6 英寸晶圆以及最近的 8 英寸(200 毫米)晶圆上的 GaN 生产显着缩小晶圆。最近的发展和持续的工艺改进将继续降低 GaN 器件的制造成本,使其价格更具竞争力。
  • 第三方检测室温 多数未达18℃
    近期开始的寒流不仅催热了北京市供暖热线的供热投诉,而且北京市2010年首次引进的第三方室温检测机构咨询电话也被打爆。据了解,拥有室温是否达标裁判权的第三方室温检测机构最近也陆续接受委托,入室首测,受测房间多数室温未达18℃。   2010年北京市提出了在室外日平均气温-7℃以上时,居民室温应达到18℃ -9℃以上时,符合现行国家住宅设计规范的居民建筑用户室温应达到18℃ 未经建筑围护结构改造或供热系统改造的老旧小区,室温应不低于16℃。   北京市规定,如经检修,居民室温超过24小时仍未达标,供热单位需按比例退还供暖费。发生室温争议,居民可委托经北京市质量监督部门认定的5家第三方室温检测机构测温“判决”。   北京市煤炭节约办公室节能监测站有关负责人表示,该检测机构目前已对一户居民进行了室温检测。这户居民住房面积近180平方米,属风机盘管供热,“类似中央空调出热风的那种。”检测人员解释。该居民家南侧房间室温达标,而北面一间房间未达18℃。目前,该检测机构还有两户委托居民在排队预约测温。北京市建设工程质量第四检测所目前也完成了位于新街口、三元桥、石佛营的三户居民测温,室温也均未达到标准。   北京市供热办表示,造成居民室温不达标的原因包括室外温度过冷 居民拆除、移动、封装、改变散热器 供暖单位供暖能力不足 居民周边邻居未用热等。按照北京市规定,确因供热单位责任,居民室温不达标,可在采暖季结束后一个月内持供热单位室温检测不合格证明或第三方机构的测温报告原件以及采暖费发票原件,到供热单位办理退费或抵扣下个采暖期采暖费。   为应对寒流,北京市供热办已要求各供热单位提高供暖温度,及时解决用户投诉 对投诉供热质量的地区抓紧检修、调节。
  • 业纳参加2013年度慕尼黑上海光博会
    业纳激光与材料加工事业部介绍了其在半导体材料领域所取得的成就,并进一步展示了其在激光材料加工方面推出的明星产品。3 月 19 日至21 日,中国上海,上海新国际展览中心 W2 展厅 #2420 展位,慕尼黑上海光博会即将开幕。   “很高兴能在 2013 年度慕尼黑上海光博会上,向亚洲准顾客们介绍我们在半导体材料和激光材料加工领域取得的最新成就。”业纳激光与材料加工分公司中国区总经理Martin Wachholz 说道。“拥有业纳技术,您能实现应用创新,如使用二极管激光器直接、快速、高效地加工各种几何形状各异的材料。”   采用业纳新型单发射器和迷你激光棒实现创新性激光应用   全新的单发射器和迷你激光棒现已上市,可选波长有 915nm 和 940/955nm,是光纤激光器的完美泵浦源,同时完美适用于二极管直接应用和塑料件焊接或韧化处理等其他应用。9xx nm 单发射器的输出功率为 12W,从 90μm 的孔洞中向外发射。12W 时,被动安装式散热器的插座电热转换效率为 64%,最大电热转换效率为 74%。在远场分布为 26° x 6.5°(达到一半最大值(12W) 时,宽度最大)的情况下,是耦合成 105μm 的光纤的理想选择。9xx nm 的迷你激光棒是非常杰出的解决方案,能够集单发射器的耦合效率和全幅激光棒的安装成本为一体。迷你激光棒内含五个发射器,每个发射孔洞的规格为 90μm ,孔洞间距为 1000μm 。建议输出功率为 55W。被动冷却式散热器的插座电热转换效率为 69%。远场分布情况与单发射器相同。除新型的迷你激光棒外,业纳还展示了适用于大功率应用的其他单发射器和激光棒用,并且效率较高、拥有卓越的使用寿命。这些产品现已上市,可选波长在 792nm 和 976nm 之间。所有的半导体产品均经严格的工艺控制制造而成,因此其品质、可靠性和较长使用寿命均能满足最高要求。   采用业纳 1kW 光纤激光器切割和焊接金属材料   在2013 年度慕尼黑上海光博会上,业纳还展示了自身研制的JenLas® fiber cw 1000 光纤激光器。这种 OEM 光纤激光器的输出功率为 1kW,完美适用于工业环境中的材料加工。JenLas® fiber cw 1000 可确保较高的生产效率和卓越的加工品质,尤其是切割和焊接厚度和几何形状各异的金属件时,这些优势更为明显。业纳对各层次的激光技术有着深入的了解,并具有丰富的多种应用经验,确保业纳能够轻松、灵活地将其激光器集成到全球客户系统和设备中。与常规机械或化学工艺(如胶合、钎焊或热板焊接)相比,采用光纤激光器进行激光焊接在灵活性、加工质量和加工速度上均有优势。焊缝强度极高,即使是尺寸罕见的部件,也可实现快速、可靠加工。采用 JenLas® fiber cw 1000 进行切割和焊接可为用户提供更多潜能,便于用于创造新前景。   进一步研发成就:激光棒CN安装底架   业纳激光与材料加工事业部推出了进一步研发出的 CN 散热器。由于二极管激光棒采用双侧冷却方式,与二极管激光棒常规安装技术相比,该散热器的冷却效率更高,最高幅度可达30%。此外,通过进一步研发CN 散热器制造技术,未来还可能将半导体激光器安装在散热器上,同样以硬脉冲形式运行。因此,这些高效被动式散热器可拓展至激光泵浦和材料加工等更多其他应用领域。   适用于多种微观应用的 IRxx 系列激光器   业纳奉献给亚洲准客户产品——已在光伏产业名闻遐迩的产品 —— 便是红外盘形激光器系列的JenLas® disk IRxx。这些激光器脉冲长度较短,重复率较高,脉冲能量亦恒定较高。其带给用户的另一大优势便是可灵活调整激光器参数,以便找到适用于单个工艺的最佳参数组合。这就意味着,可单独调整每一个参数,如脉冲持续时间、重复率和激光功率。激光器与智能激光器控制系统一起交付,其具有标准化的界面,可以简化集成。这样一来,不论是模拟式控制还是数字式控制,客户均可通过软件实现高度灵活的控制。JenLas® disk IRxx激光器的完美的微型材料加工解决方案,其适宜应用包括太阳能电池和金属件钻孔、微型架构、金属箔切割和碳纤维增强塑料 (CFRP) 加工。   如需了解 2013 年度慕尼黑上海光博会上展出的更多业纳产品信息,请访问:   www.jenoptik.com/laser-china。   下载高清图片,请点击:www.jenoptik.com/pdb-lasersystems   关于业纳激光与材料加工事业部   业纳旗下设有激光与材料加工事业部,是业界领先的激光技术供应商之一 从部件到完整的激光系统,业纳能够提供贯穿激光材料加工整个增值链的产品和解决方案。在激光器业务领域内,公司专门致力于研制优质半导体激光器、可靠的二极管激光器(可用作模块或系统),以及创新性固态激光器(如盘形激光器)。凭借丰富的产品组合,业纳成为从 cw 到 fs整个脉冲宽度范围的理想合作伙伴。在大功率二极管激光器领域,业纳是全球公认的品质领导者。在激光加工系统业务领域内,业纳开发、制造的激光设备能够集成到客户生产线中,参与客户的工艺优化和自动化。   这些激光设备可用于加工塑料件、金属件、玻璃件,以及薄膜。业纳激光系统能够确保最高加工效率、加工精度和加工安全性。此外,客户还可在应用中心试用多种激光源和激光设备,从而找到适于自身应用的最佳解决方案。最后,业纳产品组合还涵盖了能效较高、环境友好的排气清除系统,能在激光加工和其他工业加工过程中清除所有污染物,无任何残留。
  • 综述 | 石墨烯导热研究进展
    摘要:石墨烯具有目前已知材料中最高的热导率,在电子器件、信息技术、国防军工等领域具有良好的应用前景。石墨烯导热的理论和实验研究具有重要意义,在最近十年间取得了长足的发展。本文综述了石墨烯本征热导率的研究进展及应用现状。首先介绍应用于石墨烯热导率测量的微纳尺度传热技术,包括拉曼光谱法、悬空热桥法和时域热反射法。然后展示了石墨烯热导率的理论研究成果,并总结了石墨烯本征热导率的影响因素。随后介绍石墨烯在导热材料中的应用,包括高导热石墨烯膜、石墨烯纤维及石墨烯在热界面材料中的应用。最后对石墨烯导热研究的成果进行总结,提出目前石墨烯热传导研究中存在的机遇与挑战,并展望未来可能的发展方向。关键词:石墨烯;热导率;声子;热界面材料;悬空热桥法;尺寸效应1 引言石墨烯是具有单原子层厚度的二维材料,因为其独特的电学、光学、力学、热学性能而备受关注。相对于电学性质的研究,石墨烯的热学性质研究起步较晚。2008年,Balandin课题组用拉曼光谱法第一次测量了单层石墨烯的热导率,观察发现石墨烯热导率最高可达5300 W∙m−1∙K−1,高于石墨块体和金刚石,是已知材料中热导率的最高值,吸引了研究者的广泛关注。随着理论研究的深入和测量技术的进步,研究发现单层石墨烯具有高于石墨块体的热导率与其特殊的声子散射机制有关,成为验证和发展声子导热理论的重要研究对象。对石墨烯热导率的研究很快对石墨烯在导热领域的应用有所启发。随着石墨烯大规模制备技术的发展,基于氧化石墨烯方法制备的高导热石墨烯膜热导率可达~2000 W∙m−1∙K−1。高导热石墨烯膜的热导率与工业应用的高质量石墨化聚酰亚胺膜相当,且具有更低成本和更好的厚度可控性。另一方面,石墨烯作为二维导热填料,易于在高分子基体中构建三维导热网络,在热界面材料中具有良好应用前景。通过提高石墨烯在高分子基体中的分散性、构建三维石墨烯导热网络等方法,石墨烯填充的热界面复合材料热导率比聚合物产生数倍提高,并且填料比低于传统导热填料。石墨烯无论作为自支撑导热膜,还是作为热界面材料的导热填料,都将在下一代电子元件散热应用中发挥重要价值。本文综述了石墨烯热导率的测量方法、石墨烯热导率的研究结果以及石墨烯导热的应用。首先介绍石墨烯的三种测量方法:拉曼光谱法、悬空热桥法和时域热反射法。然后介绍石墨烯热导率的测量结果,包括其热导率的尺寸依赖、厚度依赖以及通过缺陷、晶粒大小等热导率调控方法。随后介绍石墨烯导热的应用,主要包括高导热石墨烯膜、石墨烯纤维及石墨烯导热填料在热界面材料中的应用。最后对石墨烯导热研究的发展进行展望。2 石墨烯热导率的测量方法由于石墨烯的厚度为纳米尺度,商用的测量设备(激光闪光法、平板热源法等)无法准确测量其热导率,需要采用微纳尺度热测量方法。常见的微纳尺度传热测量技术包括拉曼光谱法、悬空热桥法、3𝜔法、时域热反射法等几种。下面将重点介绍适用于石墨烯的热导率测量方法。2.1 拉曼光谱法单层石墨烯热导率是研究者最感兴趣的话题。2008年,Balandin课题组最早用拉曼光谱法测量了单层石墨烯的热导率。单层石墨烯由高定向热解石墨(HOPG)经过机械剥离法得到,悬空于刻有沟槽的SiNx/SiO2基底上,悬空长度为3 μm。测量时,选用拉曼光谱仪中波长为488 nm的激光同时作为热源和探测器,光斑大小为0.5–1 μm。激光对石墨烯产生加热作用导致石墨烯温度升高,而石墨烯拉曼光谱的G峰和2D峰随温度产生线性偏移,从而可以得到石墨烯的升温。利用热量在平面内径向扩散的傅里叶传热方程,可以得到石墨烯的平面方向内热导率。通过这一方法,测得石墨烯热导率测量结果为(5300 ± 480) W∙m−1∙K−1,是已知材料中热导率的最高值。拉曼光谱法第一次实现了单层石墨烯热导率的测量,但是其测量过程中存在较大的误差,导致不同测量结果存在差异:材料热导率由傅里叶传热方程计算得到,其中材料的吸收热量Q和升温ΔT两个参数都难以准确测量。首先,测量过程中采用了石墨块体的光吸收6%作为吸热计算的依据,与单层石墨烯在550 nm的光吸收率2.3%存在较大差异,导致测量结果可能被高估一倍左右。其次,升温ΔT通过石墨烯拉曼光谱G峰和2D峰的红移或反斯托克斯/斯托克斯峰强比计算得到,两者随温度变化率较小,需要较高的升温(ΔT ~ 50 K),导致难以准确测量特定温度下的热导率。基于拉曼光谱法,研究者不断改进测量技术,降低实验误差。在早期测量中由于石墨烯下方的SiNx基底热导率较低,约为5 W∙m−1∙K−1,在传热模型中将SiNx视为热沉存在一定误差。后来,Cai等通过在带孔的SiNx/SiO2薄膜表面蒸镀Au的方式,提高了石墨烯的接触热导,满足了热沉的边界条件,同时用功率计实时测量了石墨烯的吸收功率。同时,由于石墨烯覆盖在SiNx/SiO2薄膜上有孔和无孔的区域,可以分别测量悬空石墨烯和支撑石墨烯的热导率。张兴课题组使用双波长闪光拉曼方法,引入两束脉冲激光,周期性地加热样品并改变加热光与探测光的时间差,这样做可以将加热光和探测光的拉曼信号分开,为准确测量样品温度提供了新思路。在后续的研究中,拉曼光谱法也被应用于h-BN、MoS2、WS2等二维材料热导率的测量。2.2 悬空热桥法悬空热桥法是利用微纳加工方法制备微器件并测量纳米材料一维热输运的常用方法,多用于纳米线、纳米带、纳米管热导率的测量。微器件由两个SiNx薄膜组成,每个SiNx薄膜连接在6个SiNx悬臂上,并且沉积有Pt电极用作温度计,两个薄膜分别作为加热器(Heater)和传感器(Sensor),样品悬空加载薄膜上,电极通电后加热样品,通过电极电阻的变化测量样品的升温,从而计算热导率。Seol等最早将这一方法应用在石墨烯热导率的测量中,石墨烯被制备成宽度为1.5–3.2 μm,长度为9.5–12.5 μm的条带,覆盖在厚度为300 nm的SiO2悬臂上,两端连接在四个Au/Cr电极上作为温度计,测量得到SiO2衬底上的单层石墨烯热导率为600W∙m−1∙K−1。SiO2衬底上石墨烯热导率低于悬空石墨烯热导率及石墨热导率,是因为ZA声子和衬底间存在较强的声子散射。悬空热桥法的挑战在于如何将石墨烯悬空于微器件上,避免转移过程中出现石墨烯脱落、破碎的问题 。Li 课题组通过聚甲基丙烯酸甲酯(PMMA)保护转移法首先实现了少层石墨烯热导率的测量:首先将机械剥离法得到的少层石墨烯转移到SiO2/Si衬底上,然后旋涂PMMA作为保护层,用KOH溶液刻蚀SiO2并将PMMA/石墨烯转移至悬空热桥微器件上,再利用PMMA作为电子束光刻的掩膜版,通过O2等离子体将石墨烯刻蚀成指定大小的矩形进行测量。Shi课题组利用异丙醇提高了石墨烯的转移效率,测量了悬空双层石墨烯的热导率。Xu等进一步改良了实验工艺,通过“先转移,后制备悬空器件”的方法实现了单层石墨烯热导率的测量:首先将化学气相沉积(CVD)生长的单层石墨烯转移到SiNx衬底上,再利用电子束光刻和O2等离子体将石墨烯刻蚀成长度和宽度已知的条带,然后沉积Cr/Au在石墨烯两端作为电极,最后用KOH溶液刻蚀使其悬空。这一方法的优势在于避免了PMMA造成污染,但是对操作和工艺都提出了很高的要求。悬空热桥法也被应用于h-BN、MoS2、黑磷等二维材料热导率的测量。基于悬空热桥法,李保文课题组进一步发展了电子束自加热法,利用电子束照射样品产生加热,消除通电加热体系中界面热阻造成的误差。2.3 时域热反射法时域热反射法(Time-domain thermoreflectance,TDTR)是一种以飞秒激光为基础的泵浦-探测(pump-probe)技术,由Cahill课题组于2004年基于瞬态热反射方法提出,常用来测量材料的热导率和界面热导。在时域热反射法测量中,一束脉冲飞秒激光被偏振分束镜分为泵浦光和探测光,泵浦光对待测材料进行加热,探测光测量材料表面温度的变化。泵浦光和探测光之间的光程差通过位移台精确控制,并在每一个不同光程差的位置进行采样,得到材料表面温度随时间变化的曲线,这一曲线与材料的热性质有关。通过Feldman多层传热模型进行拟合,得到材料的热导率。实际测量中 通 常 在 材 料 表 面 沉 积 一 层 金 属 作 为 传 热 层(transducer),利用金属反射率(R)随温度(T)的变化关系(dR/dT),通过探测金属反射率的变化检测材料表面温度变化。时域热反射方法的优点在于能够同时测量材料沿c轴和平面方向的热导率,并且能够得到不同平均自由程声子对于热导率的贡献。Zhang等利用这一方法同时测量了石墨烯沿ab平面和c轴方向的热导率,发现石墨烯沿c轴方向的声子平均自由程在常温下可达100–200 nm,远高于分子动力学预测的结果。测量不同厚度的石墨烯(d = 24–410nm)表现出c轴方向热导率随厚度增加而增加的现象,常温下的热导率为0.5–6 W∙m−1∙K−1,并且随着厚度增加而趋近于石墨块体的c轴热导率(8 W∙m−1∙K−1) 。这一现象反映出,在常温下石墨烯c轴方向热导率是由声子-声子散射主导,为探讨石墨烯的传热机理提供了实验支撑。时域热反射方法的局限在于难以测量厚度较小的样品,这是因为当热流在穿透样品后到达基底,需要将基底与样品之间的界面热阻、基底的热导率作为未知数在传热模型中进行拟合,造成误差较大。对于块体石墨,时域热反射方法测量平面方向热导率为1900 ± 100 W∙m−1∙K−1,与Klemens的预测结果一致。对于厚度为194 nm的薄层石墨,测量热导率为1930 ± 1400 W∙m−1∙K−1,误差明显增大。Feser等通过调控光斑尺寸改变传热模型对石墨平面方向传热的敏感度,利用beam offset方法测量了HOPG热导率。Rodin等将频域热反射(FDTR)与beamoffset的方法结合起来,同时准确测量了HOPG的纵向和横向热导率。Chen课题组发展了无传热层(transducer less)的二维材料热导率测量方法,这种方法既可以采取FDTR频域扫描的测量方式,也可以与beam-offset方法结合,提高对平面方向热导率测量的准确度。这些测量方法为薄层材料热导率测量提供了可能的技术路径,即通过对待测样品的物理结构设计(transducerless)和传热模型设计(调控光斑尺寸与测量频率),选择性地增加对平面方向热导率的敏感度,使得即便在样品很薄、热流穿透的情况下,多引入的未知数在传热模型内具有较小的敏感度,从而实现少层/单层石墨烯平面方向热导率的测量。时域热反射法也被应用于黑磷、MoS2、WSe2等二维材料热导率的测量。基于时域热反射方法发展出频域热反射(FDTR)、two-tint、时间分辨磁光克尔效应(TR-MOKE)等测量方法以提高测量准确度。以上主要总结了石墨烯热导率的常用微纳尺度测量技术,包括拉曼光谱法、悬空热桥法和时域热反射法,不同方法的主要测量结果汇总于表1。表 1 石墨烯热导率测量主要研究结果值得注意的是,部分悬空热桥法测量的热导率显著偏低,是由于PMMA污染抑制了石墨烯声子散射。当样品厚度在微米尺度时,可通过激光闪光法进行测量,这种方法常用于块体石墨和湿化学方法制备的石墨烯薄膜,对于经过热处理还原和石墨化的石墨烯薄膜,激光闪光法测量热导率在1100–1940 W∙m−1∙K−1,热导率的差别主要来自石墨烯薄膜的制备工艺。受限于篇幅,我们将四种测量方法的示意图及主要原理汇总于图1,关于微纳尺度热测量的详细总结可参考相应综述文章。图 1 常见热测量方法示意图3 石墨烯热导率的研究进展石墨烯的热传导主要由声子贡献。和金刚石类似,石墨烯在平面方向由强化学键C―C键构成,并且由于碳原子较轻,具有极高的声速,从而在平面方向具有和金刚石相当的热导率(~2000W∙m−1∙K−1) 。关于石墨烯热传导的主要声子贡献来源,学界的认知随着研究的更新而发生变化。最早,人们预期石墨烯传热主要由纵向声学支(LA)和横向声学支(TA)贡献,这两支声子的振动平面都是沿石墨的ab平面方向。这样的预期是合理的,因为另一支横向声学支(ZA)声子的振动平面垂直于ab平面,而石墨烯作为单原子层材料,垂直平面的振动困难。而且ZA声子的色散关系是~ω2,在q →0时声速迅速减小为0,因而对石墨烯热导率几乎不产生贡献。后来,Lindsay等7通过对玻尔兹曼方程进行数值求解发现,由于单层石墨烯的二维材料特性,三声子散射中与ZA声子关联的过程受到抑制,这一规则被称为“选择定则(Selection rule)”。基于这一原因,ZA声子散射的相空间减小了60%;同时,考虑到ZA声子的数量较多,ZA声子实际成为了单层石墨烯中热导贡献最大的一支,占比约为70%。随着计算方法的进步,研究者对石墨烯中声子传导的理解逐步加深。Ruan课题组在考虑四声子散射的条件下计算了单层石墨烯的热导率,由于ZA声子数量多,导致由ZA声子参与的四声子散射过程多,通过求解玻尔兹曼输运方程(BTE)发现,ZA声子对于单层石墨烯热导率的贡献实际约为30%。Cao等通过分子动力学计算发现,考虑高阶声子散射时ZA声子对石墨烯热导率的贡献将降低。另外,第一性原理计算表明石墨烯中存在水动力学热输运和第二声现象,以及实验测量和分子动力学计算中发现石墨烯存在的热整流现象,都使得石墨烯的声子输运研究不断更新。下面针对理想的单层石墨烯单晶材料讨论其热导率的依赖关系。3.1 石墨烯热导率的厚度依赖石墨烯作为单原子层材料,表现出不同于石墨块体的声子学特征。很自然地产生一个问题,随着石墨烯的原子层数增加,石墨烯会以何种形式、在何种厚度表现出接近石墨块体的热学性质。前文Lindsay等的工作从计算角度给出了解释,在多层石墨烯和石墨中,三声子散射与原子间力常数的关系不同于单层石墨烯,导致选择定则不再适用,ZA声子的散射变大,热导率下降。这一趋势可以从图2a中明显观察到,当石墨烯的厚度从单原子变为双原子层时,ZA声子贡献的热导率大幅下降,石墨烯整体热导率降低。随着原子层数目增加,热导率持续下降。对于原子层数在5层及以上的石墨烯,其热导率已十分接近石墨块体。这一趋势也与Ghosh等对悬空石墨烯热导率的测量结果一致,在原子层数超过4层之后,石墨烯热导率接近块体石墨(图2c)。而对于放置在基底上的支撑石墨烯和上下均有基底的夹层石墨烯(Encased),热导率随层数变化没有明显规律,这主要是因为ZA声子与基底相互作用,对热导率的贡献低于悬空石墨烯,而ZA声子与基底相互作用的强度随原子层数增加而变化,导致热导率随层数变化表现出不同规律(不变或增大) 。研究石墨烯本征热导率仍需对少层及单层石墨烯热导率进行测量,对样品制备和实验测量都具有很大挑战。图 2 石墨烯热导率的尺寸效应3.2 石墨烯热导率的横向尺寸依赖由傅里叶传热定律,材料热导率,其中Cv为材料体积比热容,v为声子群速度,l为声子平均自由程。对于给定的温度,热容与声速均为定值,因而材料热导率主要由声子平均自由程决定。通常情况下,块体材料在三个维度上的尺寸都远大于声子平均自由程,声子为扩散输运,声子平均自由程主要由声子-声子散射确定,是材料固有的性质,表现出热导率与横向尺寸无关。但是对于石墨烯而言,由于制备待测样品的长度在微米级,与平面内声子平均自由程相当,存在弹道输运现象,表现出石墨烯的热导率与横向尺寸存在依赖关系。石墨烯平面方向声子平均自由程可通过计算得到。Nika等通过第一性原理计算分别对LA和TA声子求得Gruneisen参数,得到石墨烯平面方向声子平均自由程在10 μm左右,即石墨烯尺寸小于10 μm时会表现出明显的热导率随尺寸增加而增加现象(图2b)。后续计算表明,在考虑三声子过程和声子-边界散射角度的情况下,石墨烯热导率在横向尺寸L小于30 μm时遵循log(L)增加的规律,在横向尺寸为30 μm左右时达到最大值,并随横向尺寸增加而下降。检验计算结果需要对不同尺寸的单层石墨烯进行热导率测量,这对实验操作的精细度提出了极高要求。Xu等利用悬空热桥法测量了不同长度(300–9 μm)的单层石墨烯热导率,观察到其热导率随长度增加而单调增加。测量结果与分子动力学预测的热导率随长度以log(L)趋势增加的结果相符,证明了石墨烯作为二维材料的热性质(图2d)。但是作者也没有排除另外两种可能:(1)低频声子随尺寸增加而被激发,对传热贡献较大;(2)石墨烯尺寸增加改变三声子散射的相空间,影响选择定则7。由于石墨烯作为二维材料的特性,以及声子平均自由程较大、热导率较高,仍然需要进一步的理论和实验探究以深入挖掘石墨烯热导率随横向尺寸变化的物理原因。在实际应用的单晶及多晶石墨烯材料中,热导率的影响因素还包括晶粒尺寸、缺陷、同位素、化学修饰等,相关研究及综述已有报道。4 石墨烯导热的应用上一节中介绍了石墨烯具有本征的高热导率,从理论计算和实验测量中均得到了验证。上述实验测量中,研究者往往采用机械剥离法和CVD法制备石墨烯,这两种方法制备的样品具有质量高、可控性强的特点,适用于研究石墨烯的本征性质。但是,由于机械剥离法和CVD法制备石墨烯具有产量低、制备周期长、难以规模化等特点,不适用于石墨烯的宏量制备。相对应地,通过还原氧化石墨烯、电化学剥离等湿化学方法可以大批量制备石墨烯片,石墨烯片通过片层间的化学键作用可形成石墨烯膜、石墨烯纤维、石墨烯宏观体等三维结构,从而可实际应用于导热场景。4.1 高导热石墨烯膜的应用石墨烯薄膜可用作电子元件中的散热器,散热器通常贴合在易发热的电子元件表面,将热源产生的热量均匀分散。散热器通常由高热导率的材料制成,常见散热器有铜片、铝片、石墨片等。其中热导率最高、散热效果最好的是由聚酰亚胺薄膜经石墨化工艺得到的人工石墨导热膜,平面方向热导率可达700~1950 W∙m−1∙K−1, 厚度为10~100 μm,具有良好的导热效果,在过去很长一段时间内都是导热膜的最理想选择。在此背景之下,研究高导热石墨烯膜有两个重要意义,其一,是由于人工石墨膜成本较高,且高质量聚酰亚胺薄膜制备困难,业界希望高导热石墨烯膜能够作为替代方案。其二,是由于电子产品散热需求不断增加,新的散热方案不仅要求导热膜具有较高的热导率,也要求导热膜具有一定厚度,以提高平面方向的导热通量。在人工石墨膜中,由于聚酰亚胺分子取向度的原因,石墨化聚酰亚胺导热膜只有在厚度较小时才具有较高的热导率。而石墨烯导热膜则易于做成厚度较大的导热膜(~100 μm),在新型电子器件热管理系统中具有良好的应用前景。因此,石墨烯导热膜的研究也主要沿着两个方向,其一,是提高石墨烯导热膜的面内方向热导率,以接近或超过人工石墨膜的水平。其二,是提高石墨烯导热膜的厚度,扩大导热通量,同时保持良好的热传导性能。以下将从这两方面分别讨论。4.1.1 提高石墨烯膜热导率的关键技术高导热石墨烯薄膜的常见制备方法是还原氧化石墨烯。首先通过Hummers法得到氧化石墨烯(GO,graphene oxide)分散液,然后通过自然干燥、真空抽滤、电喷雾等方法得到自支撑的氧化石墨烯薄膜,并通过化学还原、热处理等方法得到还原氧化石墨烯(rGO)薄膜,最后通过高温石墨化提高结晶度,得到高导热石墨烯薄膜。影响高导热石墨烯膜热导率最重要的因素是组装成膜的石墨烯片的热导率,主要由氧化石墨烯的还原工艺决定。由于氧化石墨烯分散液的制备通常在强酸条件下进行,破坏石墨烯的平面结构,同时引入了环氧官能团,造成声子散射增加。氧化石墨烯的还原工艺对还原产物的结构、性能影响较大,因而需要选择合适的还原工艺制备石墨烯导热膜。氧化石墨烯膜在1000 ℃热处理后可以除去环氧、羟基、羰基等环氧官能团,但是石墨烯晶格缺陷的修复仍需更高温度。Shen等通过自然蒸干的方式制备了氧化石墨烯薄膜,并通过2000 ℃热处理的方式对氧化石墨烯薄膜进行石墨化,C/O原子比由石墨烯薄膜的2.9提高到石墨化后的73.1,X射线衍射(XRD)图谱上石墨烯薄膜11.1°峰完全消失,26.5°的峰宽缩窄,对应石墨(002)方向上原子层间距为0.33 nm,测量热导率为1100 W∙m−1∙K−1,热导率优于由膨胀石墨制备的石墨导热片。Xin等用电喷雾方法制备大尺寸氧化石墨烯薄膜并在2200 ℃下高温还原,得到热导率为1283 W∙m−1∙K−1的石墨烯导热膜,通过SEM截面图观察发现具有紧密的片层排列结构,且具有较好的柔性。通过拉曼光谱、XPS和XRD表征可以看出,2200 ℃为氧化石墨烯还原的最适宜温度,当还原温度更高时,石墨烯的电导率和热导率提升不再显著(图3)。4.1.2 提高石墨烯膜厚度的关键技术制备较厚的石墨烯导热膜也是研究者关心的课题。理论上讲,增加石墨烯膜的厚度只需刮涂较厚的氧化石墨烯薄膜即可。但实际操作中存在如下问题:(1)刮涂厚膜的成膜质量不高。由于氧化石墨烯分散液的浓度较低(低于10% (w)),除氧化石墨烯外其余部分均为水,需要长时间蒸发。氧化石墨烯片层与水分子以氢键相互作用,蒸发时水分子逸出,使得氧化石墨烯片层之间通过氢键形成交联,在表面形成一层“奶皮”状的薄膜。这层薄膜使氧化石墨烯分散液内部的水分蒸发减慢,且导致氧化石墨烯片层取向不一致,降低成膜质量。(2)难以通过一步法得到厚膜。由于氧化石墨烯分散液浓度较低,无论刮涂、旋涂还是喷雾等方法都无法一次制备厚度为~100 μm的氧化石墨烯薄膜。Luo等研究发现,氧化石墨烯薄膜在蒸干成形后仍然可以在去离子水浸润的情况下相互粘接,出现这种现象是因为氧化石墨烯片层在水的作用下通过氢键彼此连接,使得氧化石墨烯薄膜可以像纸一样进行粘贴起来。Zhang等利用类似的方法将制备好的氧化石墨烯薄膜在水中溶胀并逐层粘贴,经过干燥、热压、石墨化、冷压之后,得到厚度为200 μm的超厚石墨烯薄膜,热导率为1224 W∙m−1∙K−1,通过红外摄像机实测散热效果优于铜、铝及薄层石墨烯导热膜(图4)。目前制备百微米厚度高导热石墨烯薄膜的研究相对较少,除了溶胀粘接的方法之外,还可以通过电加热、金属离子键合等方法实现氧化石墨烯薄膜的搭接,有望为制备百微米厚度高导热石墨烯膜提供新思路。石墨烯导热膜的部分研究成果总结于表2中。图 4 百微米厚度石墨烯导热膜的制备、表征与热性能测试
  • 专家约稿|碳化硅功率器件封装与可靠性测试
    1. 研究背景及意义碳化硅(SiC)是一种宽带隙(WBG)的半导体材料,目前已经显示出有能力满足前述领域中不断发展的电力电子的更高性能要求。在过去,硅(Si)一直是最广泛使用的功率开关器件的半导体材料。然而,随着硅基功率器件已经接近其物理极限,进一步提高其性能正成为一个巨大的挑战。我们很难将它的阻断电压和工作温度分别限制在6.5kV和175℃,而且相对于碳化硅器件它的开关速度相对较慢。另一方面,由SiC制成的器件在过去几十年中已经从不成熟的实验室原型发展成为可行的商业产品,并且由于其高击穿电压、高工作电场、高工作温度、高开关频率和低损耗等优势被认为是Si基功率器件的替代品。除了这些性能上的改进,基于SiC器件的电力电子器件有望通过最大限度地减少冷却要求和无源元件要求来实现系统的体积缩小,有助于降低整个系统成本。SiC的这些优点与未来能源转换应用中的电力电子器件的要求和方向非常一致。尽管与硅基器件相比SiC器件的成本较高,但SiC器件能够带来的潜在系统优势足以抵消增加的器件成本。目前SiC器件和模块制造商的市场调查显示SiC器件的优势在最近的商业产品中很明显,例如SiC MOSFETs的导通电阻比Si IGBT的导通电阻小四倍,并且在每三年内呈现出-30%的下降趋势。与硅同类产品相比,SiC器件的开关能量小10-20倍,最大开关频率估计高20倍。由于这些优点,预计到2022年,SiC功率器件的总市场将增长到10亿美元,复合年增长率(CAGR)为28%,预计最大的创收应用是在混合动力和电动汽车、光伏逆变器和工业电机驱动中。然而,从器件的角度来看,挑战和问题仍然存在。随着SiC芯片有效面积的减少,短路耐久时间也趋于减少。这表明在稳定性、可靠性和芯片尺寸之间存在着冲突。而且SiC器件的现场可靠性并没有在各种应用领域得到证明,这些问题直接导致SiC器件在电力电子市场中的应用大打折扣。另一方面,生产高质量、低缺陷和较大的SiC晶圆是SiC器件制造的技术障碍。这种制造上的困难使得SiC MOSFET的每年平均销售价格比Si同类产品高4-5倍。尽管SiC材料的缺陷已经在很大程度上被克服,但制造工艺还需要改进,以使SiC器件的成本更加合理。最近几年大多数SiC器件制造大厂已经开始使用6英寸晶圆进行生产。硅代工公司X-fab已经升级了其制造资源去适应6英寸SiC晶圆,从而为诸如Monolith这类无晶圆厂的公司提供服务。这些积极的操作将导致SiC器件的整体成本降低。图1.1 SiC器件及其封装的发展图1.1展示了SiC功率器件及其封装的发展里程碑。第一个推向市场的SiC器件是英飞凌公司在2001年生产的肖特基二极管。此后,其他公司如Cree和Rohm继续发布各种额定值的SiC二极管。2008年,SemiSouth公司生产了第一个SiC结点栅场效应晶体管(JFET),在那个时间段左右,各公司开始将SiC肖特基二极管裸模集成到基于Si IGBT的功率模块中,生产混合SiC功率模块。从2010年到2011年,Rohm和Cree推出了第一个具有1200V额定值的分立封装的SiC MOSFET。随着SiC功率晶体管的商业化,Vincotech和Microsemi等公司在2011年开始使用SiC JFET和SiC二极管生产全SiC模块。2013年,Cree推出了使用SiC MOSFET和SiC二极管的全SiC模块。此后,其他器件供应商,包括三菱、赛米控、富士和英飞凌,自己也发布了全SiC模块。在大多数情况下,SiC器件最初是作为分立元件推出的,而将这些器件实现为模块封装是在最初发布的几年后开发的。这是因为到目前为止分立封装的制造过程比功率模块封装要简单得多。另一个原因也有可能是因为发布的模块已经通过了广泛的标准JEDEC可靠性测试资格认证,这代表器件可以通过2000万次循环而不发生故障,因此具有严格的功率循环功能。而且分离元件在设计系统时具有灵活性,成本较低,而模块的优势在于性能较高,一旦有了产品就容易集成。虽然SiC半导体技术一直在快速向前发展,但功率模块的封装技术似乎是在依赖过去的惯例,这是一个成熟的标准。然而,它并没有达到充分挖掘新器件的潜力的速度。SiC器件的封装大多是基于陶瓷基底上的线接合方法,这是形成多芯片模块(MCM)互连的标准方法,因为它易于使用且成本相对较低。然而,这种标准的封装方法由于其封装本身的局限性,已经被指出是向更高性能系统发展的技术障碍。首先,封装的电寄生效应太高,以至于在SiC器件的快速开关过程中会产生不必要的损失和噪音。第二,封装的热阻太高,而热容量太低,这限制了封装在稳态和瞬态的散热性能。第三,构成封装的材料和元件通常与高温操作(200℃)不兼容,在升高的操作温度下,热机械可靠性恶化。最后,对于即将到来的高压SiC器件,承受高电场的能力是不够的。这些挑战的细节将在第二节进一步阐述。总之,不是器件本身,而是功率模块的封装是主要的限制因素之一,它阻碍了封装充分发挥SiC元件的优势。因此,应尽最大努力了解未来SiC封装所需的特征,并相应地开发新型封装技术去解决其局限性。随着社会的发展,环保问题与能源问题愈发严重,为了提高电能的转化效率,人们对于用于电力变换和电力控制的功率器件需求强烈[1, 2]。碳化硅(SiC)材料作为第三代半导体材料,具有禁带宽度大,击穿场强高、电子饱和速度大、热导率高等优点[3]。与传统的Si器件相比,SiC器件的开关能耗要低十多倍[4],开关频率最高提高20倍[5, 6]。SiC功率器件可以有效实现电力电子系统的高效率、小型化和轻量化。但是由于SiC器件工作频率高,而且结电容较小,栅极电荷低,这就导致器件开关时,电压和电流变化很大,寄生电感就极易产生电压过冲和振荡现象,造成器件电压应力、损耗的增加和电磁干扰问题[7, 8]。还要考虑极端条件下的可靠性问题。为了解决这些问题,除了器件本身加以改进,在封装工艺上也需要满足不同工况的特性要求。起先,电力电子中的SiC器件是作为分立器件生产的,这意味着封装也是分立的。然而SiC器件中电压或电流的限制,通常工作在低功耗水平。当需求功率达到100 kW或更高时,设备往往无法满足功率容量要求[9]。因此,需要在设备中连接和封装多个SiC芯片以解决这些问题,并称为功率模块封装[10, 11]。到目前为止,功率半导体的封装工艺中,铝(Al)引线键合封装方案一直是最优的封装结构[12]。传统封装方案的功率模块采用陶瓷覆铜板,陶瓷覆铜板(Direct Bonding Copper,DBC)是一种具有两层铜的陶瓷基板,其中一层图案化以形成电路[13]。功率半导体器件底部一般直接使用焊料连接到DBC上,顶部则使用铝引线键合。底板(Baseplate)的主要功能是为DBC提供支撑以及提供传导散热的功能,并与外部散热器连接。传统封装提供电气互连(通过Al引线与DBC上部的Cu电路键合)、电绝缘(使用DBC陶瓷基板)、器件保护(通过封装材料)和热管理(通过底部)。这种典型的封装结构用于目前制造的绝大多数电源模块[14]。传统的封装方法已经通过了严格的功率循环测试(2000万次无故障循环),并通过了JEDEC标准认证[15]。传统的封装工艺可以使用现有的设备进行,不需要额外开发投资设备。传统的功率模块封装由七个基本元素组成,即功率半导体芯片、绝缘基板、底板、粘合材料、功率互连、封装剂和塑料外壳,如图1.2所示。模块中的这些元素由不同的材料组成,从绝缘体、导体、半导体到有机物和无机物。由于这些不同的材料牢固地结合在一起,为每个元素选择适当的材料以形成一个坚固的封装是至关重要的。在本节中,将讨论七个基本元素中每个元素的作用和流行的选择以及它们的组装过程。图1.2标准功率模块结构的横截面功率半导体是功率模块中的重要元素,通过执行电气开/关开关将功率从源头转换到负载。标准功率模块中最常用的器件类型是MOSFETs、IGBTs、二极管和晶闸管。绝缘衬底在半导体元件和终端之间提供电气传导,与其他金属部件(如底板和散热器)进行电气隔离,并对元件产生的热量进行散热。直接键合铜(DBC)基材在传统的电源模块中被用作绝缘基材,因为它们具有优良的性能,不仅能满足电气和热的要求,而且还具有机械可靠性。在各种候选材料中,夹在两层铜之间的陶瓷层的流行材料是Al2O3,AlN,Si2N4和BeO。接合材料的主要功能是通过连接每个部件,在半导体、导体导线、端子、基材和电源模块的底板之间提供机械、热和电的联系。由于其与电子组装环境的兼容性,SnPb和SnAgCu作为焊料合金是最常用的芯片和基片连接材料。在选择用于功率模块的焊料合金时,需要注意的重要特征是:与使用温度有关的熔化温度,与功率芯片的金属化、绝缘衬底和底板的兼容性,高机械强度,低弹性模量,高抗蠕变性和高抗疲劳性,高导热性,匹配的热膨胀系数(CTE),成本和环境影响。底板的主要作用是为绝缘基板提供机械支持。它还从绝缘基板上吸收热量并将其传递给冷却系统。高导热性和低CTE(与绝缘基板相匹配)是对底板的重要特性要求。广泛使用的底板材料是Cu,AlSiC,CuMoCu和CuW。导线键合的主要作用是在模块的功率半导体、导体线路和输入/输出终端之间进行电气连接。器件的顶面连接最常用的材料是铝线。对于额定功率较高的功率模块,重铝线键合或带状键合用于连接功率器件的顶面和陶瓷基板的金属化,这样可以降低电阻和增强热能力。封装剂的主要目的是保护半导体设备和电线组装的组件免受恶劣环境条件的影响,如潮湿、化学品和气体。此外,封装剂不仅在电线和元件之间提供电绝缘,以抵御电压水平的提高,而且还可以作为一种热传播媒介。在电源模块中作为封装剂使用的材料有硅凝胶、硅胶、聚腊烯、丙烯酸、聚氨酯和环氧树脂。塑料外壳(包括盖子)可以保护模块免受机械冲击和环境影响。因为即使电源芯片和电线被嵌入到封装材料中,它们仍然可能因处理不当而被打破或损坏。同时外壳还能机械地支撑端子,并在端子之间提供隔离距离。热固性烯烃(DAP)、热固性环氧树脂和含有玻璃填料的热塑性聚酯(PBT)是塑料外壳的最佳选择。传统电源模块的制造过程开始于使用回流炉在准备好的DBC基片上焊接电源芯片。然后,许多这些附有模具的DBC基板也使用回流焊工艺焊接到一个底板上。在同一块底板上,用胶水或螺丝钉把装有端子的塑料外壳连接起来。然后,正如前面所讨论的那样,通过使用铝线进行电线连接,实现电源芯片的顶部、DBC的金属化和端子之间的连接。最后,用分配器将封装材料沉积在元件的顶部,并在高温下固化。前面所描述的结构、材料和一系列工艺被认为是功率模块封装技术的标准,在目前的实践中仍被广泛使用。尽管对新型封装方法的需求一直在持续,但技术变革或采用是渐进的。这种对新技术的缓慢接受可以用以下原因来解释。首先,人们对与新技术的制造有关的可靠性和可重复性与新制造工艺的结合表示担忧,这需要时间来解决。因此,考虑到及时的市场供应,模块制造商选择继续使用成熟的、广为人知的传统功率模块封装技术。第二个原因是传统电源模块的成本效益。由于传统电源模块的制造基础设施与其他电子器件封装环境兼容,因此不需要与开发新材料和设备有关的额外成本,这就大大降低了工艺成本。尽管有这些理由坚持使用标准的封装方法,但随着半导体趋势从硅基器件向碳化硅基器件的转变,它正显示出局限性并面临着根本性的挑战。使用SiC器件的最重要的优势之一是能够在高开关频率下工作。在功率转换器中推动更高的频率背后的主要机制是最大限度地减少整个系统的尺寸,并通过更高的开关频率带来的显著的无源尺寸减少来提高功率密度。然而,由于与高开关频率相关的损耗,大功率电子设备中基于硅的器件的开关频率通常被限制在几千赫兹。图1.3中给出的一个例子显示,随着频率的增加,使用Si-IGBT的功率转换器的效率下降,在20kHz时已经下降到73%。另一方面,在相同的频率下,SiC MOSFET的效率保持高达92%。从这个例子中可以看出,硅基器件在高频运行中显示出局限性,而SiC元件能够在更高频率下运行时处理高能量水平。尽管SiC器件在开关性能上优于Si器件对应产品,但如果要充分利用其快速开关的优势,还需要考虑到一些特殊的因素。快速开关的瞬态效应会导致器件和封装内部的电磁寄生效应,这正成为SiC功率模块作为高性能开关应用的最大障碍。图1.3 Si和SiC转换器在全额定功率和不同开关频率下的效率图1.4给出了一个半桥功率模块的电路原理图,该模块由高低两侧的开关和二极管对组成,如图1.4所示,其中有一组最关键的寄生电感,即主开关回路杂散电感(Lswitch)、栅极回路电感(Lgate)和公共源电感(Lsource)。主开关回路杂散电感同时存在于外部电源电路和内部封装互连中,而外部杂散电感对开关性能的影响可以通过去耦电容来消除。主开关回路杂散电感(Lswitch)是由直流+总线、续流二极管、MOSFET(或IGBT)和直流总线终端之间的等效串联电感构成的。它负责电压过冲,在关断期间由于电流下降而对器件造成严重的压力,负反馈干扰充电和向栅极源放电的电流而造成较慢的di/dt的开关损失,杂散电感和半导体器件的输出电容的共振而造成开关波形的振荡增加,从而导致EMI发射增加。栅极环路电感(Lgate)由栅极电流路径形成,即从驱动板到器件的栅极接触垫,以及器件的源极到驱动板的连接。它通过造成栅极-源极电压积累的延迟而降低了可实现的最大开关频率。它还与器件的栅极-源极电容发生共振,导致栅极信号的震荡。结果就是当我们并联多个功率芯片模块时,如果每个栅极环路的寄生电感不相同或者对称,那么在开关瞬间将产生电流失衡。共源电感(Lsource)来自主开关回路和栅极回路电感之间的耦合。当打开和关闭功率器件时,di/dt和这个电感上的电压在栅极电路中作为额外的(通常是相反的)电压源,导致di/dt的斜率下降,扭曲了栅极信号,并限制了开关速度。此外,共源电感可能会导致错误的触发事件,这可能会通过在错误的时间打开器件而损坏器件。这些寄生电感的影响在快速开关SiC器件中变得更加严重。在SiC器件的开关瞬态过程中会产生非常高的漏极电流斜率di/dt,而前面讨论的寄生电感的电压尖峰和下降也明显大于Si器件的。寄生电感的这些不良影响导致了开关能量损失的增加和可达到的最大开关频率的降低。开关瞬态的问题不仅来自于电流斜率di/dt,也来自于电压斜率dv/dt。这个dv/dt导致位移电流通过封装的寄生电容,也就是芯片和冷却系统之间的电容。图1.5显示了半桥模块和散热器之间存在的寄生电容的简化图。这种不需要的电流会导致对变频器供电的电机的可靠性产生不利影响。例如,汽车应用中由放电加工(EDM)引起的电机轴承缺陷会产生很大的噪声电流。在传统的硅基器件中,由于dv/dt较低,约为3 kV/µs,因此流经寄生电容的电流通常忽略不记。然而,SiC器件的dv/dt比Si器件的dv/dt高一个数量级,最高可达50 kV/µs,使通过封装电容的电流不再可以忽略。对Si和SiC器件产生的电磁干扰(EMI)的比较研究表明,由于SiC器件的快速开关速度,传导和辐射的EMI随着SiC器件的使用而增加。除了通过封装进入冷却系统的电流外,电容寄也会减缓电压瞬变,在开关期间产生过电流尖峰,并通过与寄生电感形成谐振电路而增加EMI发射,这是我们不希望看到的。未来的功率模块封装应考虑到SiC封装中的寄生和高频瞬变所带来的所有复杂问题和挑战。解决这些问题的主要封装级需要做到以下几点。第一,主开关回路的电感需要通过新的互连技术来最小化,以取代冗长的线束,并通过优化布局设计,使功率器件接近。第二,由于制造上的不兼容性和安全问题,栅极驱动电路通常被组装在与功率模块分开的基板上。应通过将栅极驱动电路与功率模块尽可能地接近使栅极环路电感最小化。另外,在平行芯片的情况下,布局应该是对称的,以避免电流不平衡。第三,需要通过将栅极环路电流与主开关环路电流分开来避免共源电感带来的问题。这可以通过提供一个额外的引脚来实现,例如开尔文源连接。第四,应通过减少输出端和接地散热器的电容耦合来减轻寄生电容中流动的电流,比如避免交流电位的金属痕迹的几何重叠。图1.4半桥模块的电路原理图。三个主要的寄生电感表示为Lswitch、Lgate和Lsource。图1.5半桥模块的电路原理图。封装和散热器之间有寄生电容。尽管目前的功率器件具有优良的功率转换效率,但在运行的功率模块中,这些器件产生的热量是不可避免的。功率器件的开关和传导损失在器件周围以及从芯片到冷却剂的整个热路径上产生高度集中的热通量密度。这种热通量导致功率器件的性能下降,以及器件和封装的热诱导可靠性问题。在这个从Si基器件向SiC基器件过渡的时期,功率模块封装面临着前所未有的散热挑战。图1.6根据额定电压和热阻计算出所需的总芯片面积在相同的电压和电流等级下,SiC器件的尺寸可以比Si器件小得多,这为更紧凑的功率模块设计提供了机会。根据芯片的热阻表达式,芯片尺寸的缩小,例如芯片边缘的长度,会导致热阻的二次方增加。这意味着SiC功率器件的模块化封装需要特别注意散热和冷却。图1.6展示了计算出所需的总芯片面积减少,这与芯片到冷却剂的热阻减少有关。换句话说,随着芯片面积的减少,SiC器件所需的热阻需要提高。然而,即使结合最先进的冷却策略,如直接冷却的冷板与针状翅片结构,假设应用一个70kVA的逆变器,基于DBC和线束的标准功率模块封装的单位面积热阻值通常在0.3至0.4 Kcm2/W之间。为了满足研究中预测的未来功率模块的性能和成本目标,该值需要低于0.2 Kcm2/W,这只能通过创新方法实现,比如双面冷却法。同时,小的芯片面积也使其难以放置足够数量的线束,这不仅限制了电流处理能力,也限制了热电容。以前对标准功率模块封装的热改进大多集中在稳态热阻上,这可能不能很好地代表开关功率模块的瞬态热行为。由于预计SiC器件具有快速功率脉冲的极其集中的热通量密度,因此不仅需要降低热阻,还需要改善热容量,以尽量减少这些快速脉冲导致的峰值温度上升。在未来的功率模块封装中,应解决因采用SiC器件而产生的热挑战。以下是未来SiC封装在散热方面应考虑的一些要求。第一,为了降低热阻,需要减少或消除热路中的一些封装层;第二,散热也需要从芯片的顶部完成以使模块的热阻达到极低水平,这可能需要改变互连方法,比如采用更大面积的接头;第三,封装层接口处的先进材料将有助于降低封装的热阻。例如,用于芯片连接和热扩散器的材料可以分别用更高的导热性接头和碳基复合材料代替。第四,喷射撞击、喷雾和微通道等先进的冷却方法可以用来提高散热能力。SiC器件有可能被用于预期温度范围极广的航空航天应用中。例如用于月球或火星任务的电子器件需要分别在-180℃至125℃和-120℃至85℃的广泛环境温度循环中生存。由于这些空间探索中的大多数电子器件都是基于类似地球的环境进行封装的,因此它们被保存在暖箱中,以保持它们在极低温度下的运行。由于SiC器件正在评估这些条件,因此需要开发与这些恶劣环境兼容的封装技术,而无需使用暖箱。与低温有关的最大挑战之一是热循环引起的大的CTE失配对芯片连接界面造成的巨大压力。另外,在室温下具有柔性和顺应性的材料,如硅凝胶,在-180℃时可能变得僵硬,在封装内产生巨大的应力水平。因此,SiC封装在航空应用中的未来方向首先是开发和评估与芯片的CTE密切匹配的基材,以尽量减少应力。其次,另一个方向应该是开发在极低温度下保持可塑性的芯片连接材料。在最近的研究活动中,在-180℃-125℃的极端温度范围内,对分别作为基材和芯片附件的SiN和Indium焊料的性能进行了评估和表征。为进一步推动我国能源战略的实施,提高我国在新能源领域技术、装备的国际竞争力,实现高可靠性碳化硅 MOSFET 器件中试生产技术研究,研制出满足移动储能变流器应用的多芯片并联大功率MOSFET 器件。本研究将通过寄生参数提取、建模、仿真及测试方式研究 DBC 布局、多栅极电阻等方式对芯片寄生电感与均流特性的影响,进一步提高我国碳化硅器件封装及测试能力。2. SiC MOSFET功率模块设计技术2.1 模块设计技术介绍在MOSFET模块设计中引入软件仿真环节,利用三维电磁仿真软件、三维温度场仿真软件、三维应力场仿真软件、寄生参数提取软件和变流系统仿真软件,对MOSFET模块设计中关注的电磁场分布、热分布、应力分布、均流特性、开关特性、引线寄生参数对模块电特性影响等问题进行仿真,减小研发周期、降低设计研发成本,保证设计的产品具备优良性能。在仿真基础上,结合项目团队多年从事电力电子器件设计所积累的经验,解决高压大功率MOSFET模块设计中存在的多片MOSFET芯片和FRD芯片的匹配与均流、DBC版图的设计与芯片排布设计、电极结构设计、MOSFET模块结构设计等一系列难题,最终完成模块产品的设计。高压大功率MOSFET模块设计流程如下:图2.1高压大功率MOSFET模块设计流程在MOSFET模块设计中,需要综合考虑很多问题,例如:散热问题、均流问题、场耦合问题、MOSFET模块结构优化设计问题等等。MOSFET芯片体积小,热流密度可以达到100W/cm2~250W/cm2。同时,基于硅基的MOSFET芯片最高工作温度为175℃左右。据统计,由于高温导致的失效占电力电子芯片所有失效类型的50%以上。随电力电子器件设备集成度和环境集成度的逐渐增加,MOSFET模块的最高温升限值急剧下降。因此,MOSFET模块的三维温度场仿真技术是高效率高功率密度MOSFET模块设计开发的首要问题。模块散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。另外,芯片的排布对热分布影响也很大。下图4.2是采用有限元软件对模块内部的温度场进行分析的结果:图2.2 MOSFET模块散热分布分析在完成结构设计和材料选取后,采用ANSYS软件的热分析模块ICEPAK,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布,根据温度场分布再对MOSFET内部结构和材料进行调整,直至达到设计要求范围内的最优。2.2 材料数据库对一个完整的焊接式MOSFET模块而言,从上往下为一个 8层结构:绝缘盖板、密封胶、键合、半导体芯片层、焊接层 1、DBC、焊接层 2、金属底板。MOSFET模块所涉及的主要材料可分为以下几种类型:导体、绝缘体、半导体、有机物和无机物。MOSFET模块的电、热、机械等性能与材料本身的电导率、热导率、热膨胀系数、介电常数、机械强度等密切相关。材料的选型非常重要,为此有必要建立起常用的材料库。2.3 芯片的仿真模型库所涉及的MOSFET芯片有多种规格,包括:1700V 75A/100A/125A;2500V/50A;3300V/50A/62.5A;600V/100A;1200V/100A;4500V/42A;6500V/32A。为便于合理地进行芯片选型(确定芯片规格及其数量),精确分析多芯片并联时的均流性能,首先为上述芯片建立等效电路模型。在此基础上,针对实际电力电子系统中的滤波器、电缆和电机负载模型,搭建一个系统及的仿真平台,从而对整个系统的电气性能进行分析预估。2.4 MOSFET模块的热管理MOSFET模块是一个含不同材料的密集封装的多层结构,其热流密度达到100W/cm2--250W/cm2,模块能长期安全可靠运行的首要因素是良好的散热能力。散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。芯片可靠散热的另一重要因素是键合的长度和位置。假设散热底板的温度分布均匀,而每个MOSFET芯片对底板的热阻有差异,导致在相同工况时,每个MOSFET芯片的结温不同。下图是采用有限元软件对模块内部的温度场进行分析的结果。图2.3MOSFET模块热分布在模块完成封装后,采用FLOTHERM软件的热分析模块,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布的数值解,为MOSFET温度场分布的测试提供一定的依据。2.5. 芯片布局与杂散参数提取根据MOSFET模块不同的电压和电流等级,MOSFET模块所使用芯片的规格不同,芯片之间的连接方式也不同。因此,详细的布局设计放在项目实施阶段去完成。对中低压MOSFET模块和高压MOSFET模块,布局阶段考虑的因素会有所不同,具体体现在DBC与散热底板之间的绝缘、DBC上铜线迹之间的绝缘以及键合之间的绝缘等。2.6 芯片互联的杂散参数提取MOSFET芯片并联应用时的电流分配不均衡主要有两种:静态电流不均衡和动态电流不均衡。静态电流不均衡主要由器件的饱和压降VCE(sat)不一致所引起;而动态电流不均衡则是由于器件的开关时间不同步引起的。此外,栅极驱动、电路的布局以及并联模块的温度等因素也会影响开关时刻的动态均流。回路寄生电感特别是射极引线电感的不同将会使器件开关时刻不同步;驱动电路输出阻抗的不一致将引起充放电时间不同;驱动电路的回路引线电感可能引起寄生振荡;以及温度不平衡会影响到并联器件动态均流。2.7 模块设计专家知识库通过不同规格MOSFET模块的设计-生产-测试-改进设计等一系列过程,可以获得丰富的设计经验,并对其进行归纳总结,提出任意一种电压电流等级的MOSFET模块的设计思路,形成具有自主知识产权的高压大功率MOSFET模块的系统化设计知识库。3. SiCMOSFET封装工艺3.1 封装常见工艺MOSFET模块封装工艺主要包括焊接工艺、键合工艺、外壳安装工艺、灌封工艺及测试等。3.1.1 焊接工艺焊接工艺在特定的环境下,使用焊料,通过加热和加压,使芯片与DBC基板、DBC基板与底板、DBC基板与电极达到结合的方法。目前国际上采用的是真空焊接技术,保证了芯片焊接的低空洞率。焊接要求焊接面沾润好,空洞率小,焊层均匀,焊接牢固。通常情况下.影响焊接质量的最主要因素是焊接“空洞”,产生焊接空洞的原因,一是焊接过程中,铅锡焊膏中助焊剂因升温蒸发或铅锡焊片熔化过程中包裹的气泡所造成的焊接空洞,真空环境可使空洞内部和焊接面外部形成高压差,压差能够克服焊料粘度,释放空洞。二是焊接面的不良加湿所造成的焊接空洞,一般情况下是由于被焊接面有轻微的氧化造成的,这包括了由于材料保管的不当造成的部件氧化和焊接过程中高温造成的氧化,即使真空技术也不能完全消除其影响。在焊接过程中适量的加人氨气或富含氢气的助焊气体可有效地去除氧化层,使被焊接面有良好的浸润性.加湿良好。“真空+气体保护”焊接工艺就是基于上述原理研究出来的,经过多年的研究改进,已成为高功率,大电流,多芯片的功率模块封装的最佳焊接工艺。虽然干式焊接工艺的焊接质量较高,但其对工艺条件的要求也较高,例如工艺设备条件,工艺环境的洁净程度,工艺气体的纯度.芯片,DBC基片等焊接表面的应无沾污和氧化情况.焊接过程中的压力大小及均匀性等。要根据实际需要和现场条件来选择合适的焊接工艺。3.1.2 键合工艺引线键合是当前最重要的微电子封装技术之一,目前90%以上的芯片均采用这种技术进行封装。超声键合原理是在超声能控制下,将芯片金属镀层和焊线表面的原子激活,同时产生塑性变形,芯片的金属镀层与焊线表面达到原子间的引力范围而形成焊接点,使得焊线与芯片金属镀层表面紧密接触。按照原理的不同,引线键合可以分为热压键合、超声键合和热压超声键合3种方式。根据键合点形状,又可分为球形键合和楔形键合。在功率器件及模块中,最常见的功率互连方法是引线键合法,大功率MOSFET模块采用了超声引线键合法对MOSFET芯片及FRD芯片进行互连。由于需要承载大电流,故采用楔形劈刀将粗铝线键合到芯片表面或DBC铜层表面,这种方法也称超声楔键合。外壳安装工艺:功率模块的封装外壳是根据其所用的不同材料和品种结构形式来研发的,常用散热性好的金属封装外壳、塑料封装外壳,按最终产品的电性能、热性能、应用场合、成本,设计选定其总体布局、封装形式、结构尺寸、材料及生产工艺。功率模块内部结构设计、布局与布线、热设计、分布电感量的控制、装配模具、可靠性试验工程、质量保证体系等的彼此和谐发展,促进封装技术更好地满足功率半导体器件的模块化和系统集成化的需求。外壳安装是通过特定的工艺过程完成外壳、顶盖与底板结构的固定连接,形成密闭空间。作用是提供模块机械支撑,保护模块内部组件,防止灌封材料外溢,保证绝缘能力。外壳、顶盖要求机械强度和绝缘强度高,耐高温,不易变形,防潮湿、防腐蚀等。3.1.3 灌封工艺灌封工艺用特定的灌封材料填充模块,将模块内组件与外部环境进行隔离保护。其作用是避免模块内部组件直接暴露于环境中,提高组件间的绝缘,提升抗冲击、振动能力。灌封材料要求化学特性稳定,无腐蚀,具有绝缘和散热能力,膨胀系数和收缩率小,粘度低,流动性好,灌封时容易达到模块内的各个缝隙,可将模块内部元件严密地封装起来,固化后能吸收震动和抗冲击。3.1.4 模块测试MOSFET模块测试包括过程测试及产品测试。其中过程测试通过平面度测试仪、推拉力测试仪、硬度测试仪、X射线测试仪、超声波扫描测试仪等,对产品的入厂和过程质量进行控制。产品测试通过平面度测试仪、动静态测试仪、绝缘/局部放电测试仪、高温阻断试验、栅极偏置试验、高低温循环试验、湿热试验,栅极电荷试验等进行例行和型式试验,确保模块的高可靠性。3.2 封装要求本项目的SiC MOSFET功率模块封装材料要求如下:(1)焊料选用需要可靠性要求和热阻要求。(2)外壳采用PBT材料,端子裸露部分表面镀镍或镀金。(3)内引线采用超声压接或铝丝键合(具体视装配图设计而定),功率芯片采用铝线键合。(4)灌封料满足可靠性要求,Tg150℃,能满足高低温存贮和温度循环等试验要求。(5)底板采用铜材料。(6)陶瓷覆铜板采用Si3N4材质。(7)镀层要求:需保证温度循环、盐雾、高压蒸煮等试验后满足外观要求。3.3 封装流程本模块采用既有模块进行封装,不对DBC结构进行调整。模块封装工艺流程如下图3.1所示。图3.1模块封装工艺流程(1)芯片CP测试:对芯片进行ICES、BVCES、IGES、VGETH等静态参数进行测试,将失效的芯片筛选出来,避免因芯片原因造成的封装浪费。(2)划片&划片清洗:将整片晶圆按芯片大小分割成单一的芯片,划片后可从晶圆上将芯片取下进行封装;划片后对金属颗粒进行清洗,保证芯片表面无污染,便于后续工艺操作。(3)丝网印刷:将焊接用的焊锡膏按照设计的图形涂敷在DBC基板上,使用丝网印刷机完成,通过工装钢网控制锡膏涂敷的图形。锡膏图形设计要充分考虑焊层厚度、焊接面积、焊接效果,经过验证后最终确定合适的图形。(4)芯片焊接:该步骤主要是完成芯片与 DBC 基板的焊接,采用相应的焊接工装,实现芯片、焊料和 DBC 基板的装配。使用真空焊接炉,采用真空焊接工艺,严格控制焊接炉的炉温、焊接气体环境、焊接时间、升降温速度等工艺技术参数,专用焊接工装完成焊接工艺,实现芯片、DBC 基板的无空洞焊接,要求芯片的焊接空洞率和焊接倾角在工艺标准内,芯片周围无焊球或堆焊,焊接质量稳定,一致性好。(5)助焊剂清洗:通过超声波清洗去除掉助焊剂。焊锡膏中一般加入助焊剂成分,在焊接过程中挥发并残留在焊层周围,因助焊剂表现为酸性,长期使用对焊层具有腐蚀性,影响焊接可靠性,因此需要将其清洗干净,保证产品焊接汉城自动气相清洗机采用全自动浸入式喷淋和汽相清洗相结合的方式进行子单元键合前清洗,去除芯片、DBC 表面的尘埃粒子、金属粒子、油渍、氧化物等有害杂质和污染物,保证子单元表面清洁。(6) X-RAY检测:芯片的焊接质量作为产品工艺控制的主要环节,直接影响着芯片的散热能力、功率损耗的大小以及键合的合格率。因此,使用 X-RAY 检测机对芯片焊接质量进行检查,通过调整产生 X 射线的电压值和电流值,对不同的焊接产品进行检查。要求 X 光检查后的芯片焊接空洞率工艺要求范围内。(7)芯片键合:通过键合铝线工艺,完成 DBC 和芯片的电气连接。使用铝线键合机完成芯片与 DBC 基板对应敷铜层之间的连接,从而实现芯片之间的并联和反并联。要求该工序结合芯片的厚度参数和表面金属层参数,通过调整键合压力,键合功率,键合时间等参数,并根据产品的绝缘要求和通流大小,设置合适的键合线弧高和间距,打线数量满足通流要求,保证子单元的键合质量。要求键合工艺参数设定合理、铝线键合质量牢固,键合弧度满足绝缘要求、键合点无脱落,满足键合铝线推拉力测试标准。(8)模块焊接:该工序实现子单元与电极、底板的二次焊接。首先进行子单元与电极、底板的焊接装配,使用真空焊接炉实现焊接,焊接过程中要求要求精确控制焊接设备的温度、真空度、气体浓度。焊接完成后要求子单元 DBC 基板和芯片无损伤、无焊料堆焊、电极焊脚之间无连焊虚焊、键合线无脱落或断裂等现象。(9)超声波检测:该工序通过超声波设备对模块 DBC 基板与底板之间的焊接质量进行检查,模块扫描后要求芯片、DBC 无损伤,焊接空洞率低于 5%。(10)外壳安装:使用涂胶设备进行模块外壳的涂胶,保证模块安装后的密封性,完成模块外壳的安装和紧固。安装后要求外壳安装方向正确,外壳与底板粘连处在灌封时不会出现硅凝胶渗漏现象。(11)端子键合&端子超声焊接:该工序通过键合铝线工艺,实现子单元与电极端子的电气连接,形成模块整体的电气拓扑结构;可以通过超声波焊接实现子单元与电极端子的连接,超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。超声波焊接具有高机械强度,较低的热应力、焊接质量高等优点,使得焊接具有更好的可靠性,在功率模块产品中应用越来越广泛。(12)硅凝胶灌封&固化:使用自动注胶机进行硅凝胶的灌封,实现模块的绝缘耐压能力。胶体填充到指定位置,完成硅凝胶的固化。要求胶体固化充分,胶体配比准确,胶体内不含气泡、无分层或断裂纹。4. 极端条件下的可靠性测试4.1 单脉冲雪崩能量试验目的:考察的是器件在使用过程中被关断时承受负载电感能量的能力。试验原理:器件在使用时经常连接的负载是感性的,或者电路中不可避免的也会存在寄生电感。当器件关断时,电路中电流会突然下降,变化的电流会在感性负载上产生一个应变电压,这部分电压会叠加电源电压一起加载在器件上,使器件在瞬间承受一个陡增的电压,这个过程伴随着电流的下降。图4.1 a)的雪崩能量测试电路就是测试这种工况的,被测器件上的电流电压变化情况如图4.1 b)。图4.1 a)雪崩能量测试电路图;b)雪崩能量被测器件的电流电压特性示意图这个过程中,电感上储存的能量瞬时全部转移到器件上,可知电流刚开始下降时,电感储存的能量为1/2*ID2*L,所以器件承受的雪崩能量也就是电感包含的所有能量,为1/2*ID2*L。试验目标:在正向电流ID = 20A下,器件单脉冲雪崩能量EAS1J试验步骤:将器件放入测试台,给器件施加导通电流为20A。设置测试台电感参数使其不断增加,直至器件的单脉冲雪崩能量超过1J。通过/失效标准:可靠性试验完成后,按照下表所列的顺序测试(有些测试会对后续测试有影响),符合下表要求的可认为通过。测试项目通过条件IGSS USLIDSS or IDSX USLVGS(off) or VGS(th)LSL USLVDS(on) USLrDS(on) USL (仅针对MOSFET)USL: upper specification limit, 最高上限值LSL: lower specification limit, 最低下限值4.2 抗短路能力试验目的:把样品暴露在空气干燥的恒温环境中,突然使器件通过大电流,观测元器件在大电流大电压下于给定时间长度内承受大电流的能力。试验原理:当器件工作于实际高压电路中时,电路会出现误导通现象,导致在短时间内有高于额定电流数倍的电流通过器件,器件承受这种大电流的能力称为器件的抗短路能力。为了保护整个系统不受误导通情况的损坏,系统中会设置保护电路,在出现短路情况时迅速切断电路。但是保护电路的反应需要一定的时长,需要器件能够在该段时间内不发生损坏,因此器件的抗短路能力对整个系统的可靠性尤为重要。器件的抗短路能力测试有三种方式,分别对应的是器件在不同的初始条件下因为电路突发短路(比如负载失效)而接受大电流大电压时的反应。抗短路测试方式一,也称为“硬短路”,是指IGBT从关断状态(栅压为负)直接开启进入到抗短路测试中;抗短路测试方式二,是指器件在已经导通有正常电流通过的状态下(此时栅压为正,漏源电压为正但较低),进入到抗短路测试中;抗短路测试方式三是指器件处于栅电压已经开启但漏源电压为负(与器件反并联的二极管处于续流状态,所以此时器件的漏源电压由于续流二极管的钳位在-0.7eV左右,,栅压为正),进入到抗短路测试中。可知,器件的抗短路测试都是对应于器件因为电路的突发短路而要承受电路中的大电流和大电压,只是因为器件的初始状态不同而会有不同的反应。抗短路测试方法一电路如图4.2,将器件直接加载在电源两端,器件初始状态为关断,此时器件承受耐压。当给器件栅电极施加一个脉冲,器件开启,从耐压状态直接开始承受一个大电流及大电压,考量器件的“硬”耐短路能力。图4.2 抗短路测试方法一的测试电路图抗短路测试方法二及三的测试电路图如图4.2,图中L_load为实际电路中的负载电感,L_par为电路寄生电感,L_sc为开关S1配套的寄生电感。当进行第二种抗短路方法测试时,将L_load下端连接到上母线(Vdc正极),这样就使L_sc支路与L_load支路并联。初态时,S1断开,DUT开通,电流从L_load和DUT器件上通过,开始测试时,S1闭合,L_load瞬时被短路,电流沿着L_sc和DUT路线中流动,此时电流通路中仅包含L_sc和L_par杂散电感,因此会有大电流会通过DUT,考察DUT在导通状态时承受大电流的能力。当进行第三种抗短路方法测试时,维持图4.2结构不变,先开通IGBT2并保持DUT关断,此时电流从Vdc+沿着IGBT2、L_load、Vdc-回路流通,接着关断IGBT2,那么D1会自动给L_load续流,在此状态下开启DUT栅压,DUT器件处于栅压开启,但漏源电压被截止状态,然后再闭合S1,大电流会通过L_sc支路涌向DUT。在此电路中IGBT2支路的存在主要是给D1提供续流的电流。图4.3 抗短路测试方法二和方法三的测试电路图1) 抗短路测试方法一:图4.2中Vdc及C1大电容提供持续稳定的大电压,给测试器件DUT栅极施加一定时间长度的脉冲,在被试器件被开启的时间内,器件开通期间处于短路状态,且承受了较高的耐压。器件在不损坏的情况下能够承受的最长开启时间定义为器件的短路时长(Tsc),Tsc越大,抗短路能力越强。在整个短路时长器件,器件所承受的能量,为器件的短路能量(Esc)。器件的抗短路测试考察了器件瞬时同时承受高压、高电流的能力,也是一种器件的复合应力测试方式。图4.2测试电路中的Vdc=600V,C1、C2、C3根据器件的抗短路性能能力决定,C1的要求是维持Vdc的稳定,C1的要求是测试过程中释放给被测器件的电能不能使C1两端的电压下降过大(5%之内可接受)。C2,C3主要用于给器件提供高频、中频电流,不要求储存能量过大。对C2、C3的要求是能够降低被测器件开通关断时造成的漏源电压振幅即可。图4.4 抗短路能力测试方法一的测试结果波形图4.4给出了某款SiC平面MOSFET在290K下,逐渐增大栅极脉冲宽度(PW)的抗短路能力测试结果。首先需要注意的是在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。从图中可以看出,Id峰值出现在1 μs和2 μs之间,随着开通时间的增加,Id呈现出先增加后减小的时间变化趋势。Id的上升阶段,是因为器件开启时有大电流经过器件,在高压的共同作用下,器件温度迅速上升,因为此时MOSFET的沟道电阻是一个负温度系数,所以MOSFET沟道电阻减小,Id则上升,在该过程中电流上升的速度由漏极电压、寄生电感以及栅漏电容的充电速度所决定;随着大电流的持续作用,器件整体温度进一步上升,器件此时的导通电阻变成正温度系数,器件的整体电阻将随温度增加逐渐增大,这时器件Id将逐渐减小。所以,整个抗短路能力测试期间,Id先增加后下降。此外,测试发现,当脉冲宽度增加到一定程度,Id在关断下降沿出现拖尾,即器件关断后漏极电流仍需要一定的时间才能恢复到0A。在研究中发现当Id拖尾到达约12A左右之后,进一步增大脉冲宽度,器件将损坏,并伴随器件封装爆裂。所以针对这款器件的抗短路测试,定义Tsc为器件关断时漏极电流下降沿拖尾到达10A时的脉冲时间长度。Tsc越长,代表器件的抗短路能力越强。测试发现,低温有助于器件抗短路能力的提升,原因是因为,低的初始温度意味着需要更多的时间才能使器件达到Id峰值。仿真发现,器件抗短路测试失效模式主要有两种:1、器件承受高压大电流的过程中,局部高温引起漏电流增加,触发了器件内部寄生BJT闩锁效应,栅极失去对沟道电流的控制能力,器件内部电流局部集中发生热失效,此时的表现主要是器件的Id电流突然上升,器件失效;2、器件温度缓慢上升时,导致器件内部材料性能恶化,比如栅极电极或者SiO2/Si界面处性能失效,主要表现为器件测试过程中Vgs陡降,此时,器件的Vds若未发生进一步损坏仍能承受耐压,只是器件Vgs耐压能力丧失。上述两种失效模式都是由于温度上升引起,所以要提升器件的抗短路能力就是要控制器件内部温度上升。仿真发现导通时最高温区域主要集中于高电流密度区域(沟道部分)及高电场区域(栅氧底部漂移区)。因此,要提升器件的抗短路能力,要着重从器件的沟道及栅氧下方漂移区的优化入手,降低电场峰值及电流密度,此外改善栅氧的质量将起到决定性的作用。2) 抗短路测试方法二:图4.5 抗短路能力测试方法二的测试结果波形如图4.5,抗短路测试方法二的测试过程中DUT器件会经历三个阶段:(1)漏源电压Vds低,Id电流上升:当负载被短路时,大电流涌向DUT器件,此时电路中仅包含L_sc和L_par杂散电感,DUT漏源电压较低,Vdc电压主要分布在杂散电感上,所以Id电流以di/dt=Vdc/(L_sc+L_par)的斜率开始上升。随着Id增加,因为DUT器件的漏源之间的寄生电容Cgd,会带动栅压上升,此时更加促进Id电流的增加,形成一个正循环,Id急剧上升。(2)Id上升变缓然后开始降低,漏源电压Vds上升:Id上升过程中,Vds漏源电压开始增加,导致Vdc分压到杂散电感上的电压降低,导致电流上升率di/dt减小,Id上升变缓,当越过Id峰值后,Id开始下降,-di/dt使杂散电感产生一个感应电压叠加在Vds上导致Vds出现一个峰值。Vds峰值在Id峰值之后。(3)Id、Vds下降并恢复:Id,Vds均下降恢复到抗短路测试一的高压高电流应力状态。综上所述,抗短路测试方法一的条件比方法一的更为严厉和苛刻。3) 抗短路测试方法三:图4.6 抗短路能力测试方法二的测试结果波形如图4.6,抗短路测试方法三的波形与方法二的波形几乎一致,仅仅是在Vds电压上升初期有一个小的电压峰(如图4.6中红圈),这是与器件发生抗短路时的初始状态相关的。因为方法三中器件初始状态出于栅压开启,Vds为反偏的状态,所以器件内部载流子是耗尽的。此时若器件Vds转为正向开通则必然发生一个载流子充入的过程,引发一个小小的电压峰,这个电压峰值是远小于后面的短路电压峰值的。除此以外,器件的后续状态与抗短路测试方法二的一致。一般来说,在电机驱动应用中,开关管的占空比一般比续流二极管高,所以是二极管续流结束后才会开启开关管的栅压,这种情况下,只需要考虑仅开关管开通时的抗短路模式,则第二种抗短路模式的可能性更大。然而,当一辆机车从山上开车下来,电动机被用作发电机,能量从车送到电网。续流二极管的占空比比开关管会更高一点,这种操作模式下,如果负载在二极管续流且开关管栅压开启时发生短路,则会进行抗短路测试模式三的情况。改进抗短路失效模式二及三的方法,是通过给开关器件增加一个栅极前钳位电路,在Id上升通过Cgd带动栅极电位上升时,钳位电路钳住栅极电压,就不会使器件的Id上升陷入正反馈而避免电流的进一步上升。试验目标:常温下,令Vdc=600V,通过控制Vgs控制SiC MOSFET的开通时间,从2μs开通时间开始以1μs为间隔不断增加器件的开通时间,直至器件损坏,测试过程中保留测试曲线。需要注意的是,在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。试验步骤:搭建抗短路能力测试电路。将器件安装与测试电路中,保持栅压为0。通过驱动电路设置器件的开通时间,给器件一个t0=2μs时间的栅源脉冲电压,使器件开通t0时间,观察器件上的电流电压曲线,判断器件是否能够承受2μs的短路开通并不损坏;如未损坏,等待足够长时间以确保器件降温至常温状态,设置驱动电路使器件栅源电压单脉冲时间增加1us,再次开通,观察器件是否能够承受3μs的短路开通并不损坏。循环反复直至器件发生损坏。试验标准:器件被打坏前最后一次脉冲时间长度即为器件的短路时长Tsc。整个短路时长期间,器件所承受的能量为器件的短路能量Esc。4.3 浪涌试验目的:把样品暴露在空气干燥的恒温环境中,对器件施加半正弦正向高电流脉冲,使器件在瞬间发生损坏,观测元器件在高电流密度下的耐受能力。试验原理:下面以SiC二极管为例,给出了器件承受浪涌电流测试时的器件内部机理。器件在浪涌应力下的瞬态功率由流过器件的电流和器件两端的电压降的乘积所决定,电流和压降越高,器件功率耗散就越高。已知浪涌应力对器件施加的电流信号是固定的,因此导通压降越小的器件瞬态功率越低,器件承受浪涌的能力越强。当器件处于浪涌电流应力下,电压降主要由器件内部寄生的串联电阻承担,因此我们可以通过降低器件在施加浪涌电流瞬间的导通电阻,减小器件功率、提升抗浪涌能力。a)给出了4H-SiC二极管实际浪涌电流测试的曲线,图4.7 a)曲线中显示器件的导通电压随着浪涌电流的上升和下降呈现出“回滞”的现象。图4.7 a)二极管浪涌电流的实测曲线; b)浪涌时温度仿真曲线浪涌过程中,器件的瞬态 I-V 曲线在回扫过程中出现了电压回滞,且浪涌电流越高,器件在电流下降和上升过程中的压降差越大,该电压回滞越明显。当浪涌电流增加到某一临界值时,I-V 曲线在最高压降处出现了一个尖峰,曲线斜率突变,器件发生了失效和损坏。器件失效后,瞬态 I-V 曲线在最高电流处出现突然增加的毛刺现象,电压回滞也减小。引起SiC JBS二极管瞬态 I-V 曲线回滞的原因是,在施加浪涌电流的过程中,SiC JBS 二极管的瞬态功率增加,但散热能力有限,所以浪涌过程中器件结温增加,SiC JBS 二极管压降也发生了变化,产生了回滞现象。在每次对器件施加浪涌电流过程中,随着电流的增加,器件的肖特基界面的结温会增加,当电流降低接近于0时结温才逐渐回落。在浪涌电流导通的过程中,结温是在积累的。由于电流上升和下降过程中的结温的差异,导致了器件在电流下降过程的导通电阻高于电流在上升过程中导通电阻。这使得电流下降过程 I-V 曲线压降更大,从而产生了在瞬态 I-V 特性曲线电压回滞现象。浪涌电流越高,器件的肖特基界面处的结温越高,因此导通电阻就越大,而回滞现象也就越明显。为了分析器件在 40 A 以上浪涌电流下的瞬态 I-V 特性变化剧烈的原因,使用仿真软件模拟了肖特基界面处温度随电流大小的变化曲线,如图4.7 b)所示,在 40 A 以上浪涌电流下,结温随浪涌电流变化非常剧烈。器件在 40 A 浪涌电流下,最高结温只有 358 K。但是当浪涌电流增加到60 A 时,最高结温已达1119 K,这个温度足以对器件破坏表面的肖特基金属,引起器件失效。图4.7 b)中还可以得出,浪涌电流越高,结温升高的变化程度就越大,56 A 和 60 A 浪涌电流仅相差 4 A,最高结温就相差 543 K,最高结温的升高速度远比浪涌电流的增加速度快。结温的快速升高导致了器件的导通电阻迅速增大,正向压降快速增加。因此,电流上升和下降过程中,器件的导通压降会更快速地升高和下降,使曲线斜率发生了突变。器件结温随着浪涌电流的增大而急剧增大,是因为它们之间围绕着器件导通电阻形成了正反馈。在浪涌过程中,随着浪涌电流的升高,二极管的功率增加,产生的焦耳热增加,导致了结温上升;另一方面,结温上升,导致器件的导通电阻增大,压降进一步升高。导通电压升高,导致功率进一步增加,使得结温进一步升高。因此器件的结温和电压形成了正反馈,致使结温和压降的增加速度远比浪涌电流的增加速度快。当浪涌电流增加到某一临界值时,触发这个正反馈,器件就会发生失效和损坏。长时间的重复浪涌电流会在外延层中引起堆垛层错生长,浪涌电流导致的自热效应会引起顶层金属熔融,使得电极和芯片之间短路,还会导致导通压降退化和峰值电流退化,并破坏器件的反向阻断能力。金属Al失效是大多数情况下浪涌失效的主要原因,应该使用鲁棒性更高的材料替代金属Al,以改善SiC器件的高温特性。目前MOS器件中,都没有给出浪涌电流的指标。而二极管、晶闸管器件中有这项指标。如果需要了解本项目研发的MOSFET器件的浪涌能力,也可以搭建电路实现。但是存在的问题是,MOS器件的导通压降跟它被施加的栅压是相关的,栅压越大,导通电阻越低,耐浪涌能力越强。如何确定浪涌测试时应该给MOSFET施加的栅压,是一个需要仔细探讨的问题。试验目标:我们已知浪涌耐受能力与器件的导通压降有关,但目前无法得到明确的定量关系。考虑到目标器件也没有这类指标的参考,建议测试时,在给定栅压下(必须确保器件能导通),对器件从低到高依次施加脉冲宽度为10ms或8.3ms半正弦电流波,直到器件发生损坏。试验步骤:器件安装在测试台上后,器件栅极在给定栅压下保持开启状态。通过测试台将导通电流设置成10ms或8.3ms半正弦电流波,施加在器件漏源极间。逐次增加正弦波的上限值,直至器件被打坏。试验标准:器件被打坏前的最后一次通过的浪涌值即为本器件在特定栅压下的浪涌指标值。以上内容给出了本项目研发器件在复合应力及极端条件下的可靠性测试方法,通过这些方法都是来自于以往国际工程经验和鉴定意见,可以对被测器件的可靠性有一个恰当的评估。但是,上述方法都是对测试条件和测试原理的阐述,如何通过测试结果来评估器件的使用寿命,并搭建可靠性测试条件与可靠性寿命之间的桥梁,就得通过可靠性寿命评估模型来实现。
  • 德国ETAS氢燃料电池控制器HIL测试方案
    德国ETAS氢燃料电池HIL方案- FCU HIL测试方案(面向2020年最新版)ETAS GmbH 成立于 1994 年,是罗伯特博世联合企业的一部分,是车用电子控制系统以 及相关嵌入式控制系统软件开发工具和测试设备的领先供应商。ETAS 致力于为车用嵌 入式系统的整个生命周期提供支持性的创新产品。ETAS 可向全球的汽车 OEM 以及电控 单元的一级供应商提供产品与服务。本公司在全球拥有约 700 名员工,年营业额达到约 1.4 亿欧元。以下是有关本公司的概要介绍。ETAS 全球化网络是在全球范围内构建起的一个由办事机构和研发中心组成的网络,通 过该网络进行产品的开发、配置并提供技术支持。本公司相信,对于建立长期、成功 的客户关系来说,在地理位置上与客户接近将具有至关重要的意义。ETAS 集团总部位 于德国斯图加特,在美国、日本、韩国、中国、印度、法国、英国、意大利、巴西及 俄罗斯联邦均设有地区分公司或办事机构。每一处办事机构都提供客户账户管理、客 户技术支持、区域内项目管理以及工程技术服务资源等。与纯电动汽车相比,氢燃料电池汽车具有加注时间短,续航里程长等优势,是未来汽车工业可持续化发展的重要方向。目前,氢燃料电池汽车产业正在兴起。氢能是一种清洁能源,氢燃料电池只会产生水和热,并不会产生二氧化碳,对环境无任何污染。 燃料电池电动汽车技术是目前世界环保汽车技术的热点,我国应更加积极开展燃料电池电动汽车技术研究,较快缩小与西方汽车工业发达国家的汽车环保技术的差距,从能源和环保角度来讲,进行燃料电池电動汽车技术开发对能源多样化,发展燃料电池汽车,将促进一系列技术和产业的发展,形成国民经济发展的新增长点。 燃料电池是一种很有前途的清洁能源,在未来很可能代替传统能源成为主要能源。所以,很多国家和跨国集团都极其重视燃料电池技术的开发和研究。美国将燃料电池技术列为国家安全技术 欧盟在2008年制定了2020年氢能与燃料电池发展计划,投资近10亿欧元用于燃料电池与氢能研究、技术开发及验证等方面 加拿大计划将燃料电池发展成国家的之助产业 日本认为燃料电池技术是21世纪能源环境领域的核心 《时代》周刊将燃料电池电动汽车列为21世纪10大高技术之首 我国中长期科学和技术发展规划纲要明确提出,大力发展氢燃料的制取、存储及专用燃料电池技术的开发与研究,提高产业化技术。 近20年来,我国科技人员经过不懈努力,尽管燃料电池及材料的开发和应用得到了极大的进展,但由于研究投入和产业化资金数量很少,燃料技术的总体水平与发达国家相比还有较大差距,燃料电池技术的阻力主要在于基础设施匮乏,技术人才不足,成本高、耐久性差,研究力量分散,产业化体系尚未形成,尤其是缺少企业的参与,很难将研究成果进行示范应用。所以,我国应寻找最佳切入点,根据当前和中长期经济和社会发展需要,集中研究力量,大力推动燃料电池发电技术的发展,加大研发和产业化投入,为我过的国家能源安全和国民经济可持续发展服务。用于HiL测试的燃料电池系统模拟模型 燃料电池系统的典型架构-使用ETAS的LABCAR-MODEL-FC模型进行模拟的依据LABCAR-MODEL-FC(用于HiL测试的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FC模型能记录完整的燃料电池系统,包括堆栈、外围设备和柔性ECU。其包含一个可以对水流、温度影响和反应动力学详细模拟的一维PEM-FC堆栈。柔性ECU也能保证在工作站进行直接的闭环试运转。 LABCAR-MODEL-FC模型能确保用户逼真地模拟出燃料电池系统,从而对HiL系统中的ECU进行测试。其模块化的模型架构可以让特定的客户对氢气、氧气和冷却系统进行模拟。 模型扩展装置LABCAR-MODEL-FCCAL模型(用于基于HiL校准的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FCCAL模型(燃料电池校准)是一种二维的PEM-FC堆栈模型,用于详细地模拟电、水、和压力分布。鉴于此模型具有模块化的设计特点,并且还配有参数化的工具,因此其可以跟现有的LABCAR-MODEL-FC模型进行无缝整合。 两种变体均可整合到LABCAR-MODEL-VVTB模型整车模拟中(虚拟车辆测试台的模拟模型,用来进行HiL测试)。 LABCAR-MODEL-FC在汽车应用中,通常优先使用PEM-FC燃料电池,因为其具备启动快、能量密度高和动力学稳定的优良特点。为了给客户在此大有前途的创新领域提供支持,ETAS提供了燃料电池系统的LABCAR-MODEL-FC模拟模型,用来进行HiL测试。测试用于燃料电池系统的ECU LABCAR-MODEL组合包括集成电路发动机、用于汽车推进的锂离子电池、电动机、燃料电池、车辆动力学、车辆、驾驶员和环境的仿真模型。在汽车应用中,通常优先使用PEM-FC燃料电池,因为其具备启动快、能量密度高和动力学稳定的优良特点。为了给客户在此大有前途的创新领域提供支持,ETAS提供了燃料电池系统的LABCAR-MODEL-FC模拟模型,用来进行HiL测试。 ETAS的LABCAR-MODEL-FC模拟燃料系统性能。模拟整个系统-从PEM-FC(高分子电解膜燃料电池)堆栈到反应物和冷却剂的供应-以确保对燃料电池系统ECU的可靠性测试和校准。LABCAR-MODEL-FC可以模拟堆栈、氢气供应、氧气供应和冷却剂供应的详细过程。此技术基于对物理过程的精确模拟,而这些模拟都是基于对电解反应的复杂计算以及基于对堆栈和外围设备之间相互作用的复杂计算得出。鉴于现代燃料电池堆栈的复杂性,要对堆栈进行一维(1D)空间分布模拟。为了满足当前和未来的要求,可以实现对二维(2D)堆栈模拟进行特殊扩展,其燃料电池系统的模拟模型可用于完成基于HiL的校准(LABCAR-MODEL-FCCAL)。基于PC的模拟目标LABCAR-RTPC能为实时模拟提供所需的电源。 LABCAR-MODEL-FC模拟模型可以让用户在硬件在环测试台上对燃料电池的ECU进行早期的测试和优化。 将高成本的测试和安全相关的应用转移到硬件在环测试台上,从而在开发过程中让顾客直接受益。应用实例包括模拟PEM-FC燃料电池堆栈的冷启动调节或模拟氢气供应的临界处理。 ETAS模拟模型的优势ETAS燃料电池模型包括用于模拟堆栈和外围设备的Simulink® 元件库和各种电解槽模型。模型的实时性有利于测试燃料电池ECU时与ETASHiL系统的整合,还可以同时进行安全相关的故障模拟和ECU软件的初始预标定。由于这些模型考虑到了所有相关的物理现象,可以用来测试所有项目,包括基础软件、高级控制、操作和诊断性功能。ETAS的模拟模型组合提供HiL模拟,包括独家提供的硬件 、软件和模拟模型。 应用用户可针对具体的汽车要求,进行大量的典型性闭环ECU测试: l 测试用于氢气供应的典型ECU功能:l 惰性气体测定、清洗方法、气体引射器控制l 测试用于氧气供应的典型ECU功能:l 空气压缩机控制、水再循环l 测试用于冷却系统的典型ECU功能:l 冷却方法、泵控制、散热器激活l 测试用于诊断和管理的典型ECU功能:l 渗漏检测、冷启动、压力协调、紧急关闭l 针对优化运行的设计和校准:l 水管理、电厂辅助设备 优势LABCAR-MODEL-FC有助于对所有项目进行测试,包括基础软件精密控制、运行、和燃料电池ECU的诊断功能。LABCAR-MODEL-FCCAL扩展模型提供了2D堆栈模型,可以实时精准地模拟出电池电压、电解膜状态或水再循环过程,从而满足当前和未来的要求。该模型可以同LABCAR-MODEL-VVTB进行整合(用于HiL测试的虚拟车辆测试台模拟模型)ETAS独家提供硬件、软件和模型,以及客制化技术服务和专家咨询。 用于HiL测试的燃料电池系统模拟模型(LABCAR-MODEL-FC)包括对PEM-FC堆栈的一维模拟,以及对反应物和冷却剂供应系统进行详细和模块化记录。还能提供操作燃料电池ECU所需的所有相应接口。 用于基于HiL校准的燃料电池系统模拟模型(LABCAR-MODEL-FCCAL)为LABCAR-MODEL-FC模型增加了2D空间分辨堆栈模拟,并且能详细洞察电池性能。除了有助于对ECU在闭环控制回路中运行时的基础校准外,其还能让用户对最佳堆栈运行的功能进行测试,以及在早期开发阶段将电池降解降至最低。 因LABCAR-MODEL-FC和LABCAR-MODEL-FCCAL基于PC的模拟目标LABCAR-RTPC以及开放性,可对其进行定制并满足不同的要求。Simulink® 的开放性安装启用特点让开发者可以选择对ETAS或其它供应商提供的元件模型进行整合。 除了模拟模型外,ETAS还对所有开发需求提供技术支持服务和咨询。用于HiL测试的燃料电池系统模拟模型 燃料电池系统的典型架构-使用ETAS的LABCAR-MODEL-FC模型进行模拟的依据LABCAR-MODEL-FC(用于HiL测试的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FC模型能记录完整的燃料电池系统,包括堆栈、外围设备和柔性ECU。其包含一个可以对水流、温度影响和反应动力学详细模拟的一维PEM-FC堆栈。柔性ECU也能保证在工作站进行直接的闭环试运转。 LABCAR-MODEL-FC模型能确保用户逼真地模拟出燃料电池系统,从而对HiL系统中的ECU进行测试。其模块化的模型架构可以让特定的客户对氢气、氧气和冷却系统进行模拟。 模型扩展装置LABCAR-MODEL-FCCAL模型(用于基于HiL校准的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FCCAL模型(燃料电池校准)是一种二维的PEM-FC堆栈模型,用于详细地模拟电、水、和压力分布。鉴于此模型具有模块化的设计特点,并且还配有参数化的工具,因此其可以跟现有的LABCAR-MODEL-FC模型进行无缝整合。 两种变体均可整合到LABCAR-MODEL-VVTB模型整车模拟中(虚拟车辆测试台的模拟模型,用来进行HiL测试)。 实时模型运行平台仿真硬件 ES5300 RTPCETAS LABCAR 使用运行实时操作系统 Linux 的标准 PC 进行仿真模型运算。其灵活的结 构可适应 PC 市场的最新发展趋势,用户可将仿真 PC 更换为市场上出现的具有更高性 能的 PC。因此,LABCAR 使用户能在尽可能宽广的测试范围和深度内进行精确仿真, 从而确保了在专用硬件和软件方面投入的高效性。 标准 IPC 进行模型仿真工作 从上图可以看到,采用了四核 CPU 的实时工控机,在 ETAS 软件环境的管理下,可以实 现分核下载,即将不同模型下载到不同的核内并行运行,确保了在复杂任务管理模式 下系统的实时性。标准 PC 还可提供 PCI 和 PCI-Express 总线接口,将需要辅助板卡(例 如使用 CAN 总线进行 ECU 通讯的板卡)集成到整个系统中。 传感器信号仿真传感器信号仿真主要通过 ETAS 自有的 I/O 板卡实现。本方案中普通的信号级传感器信 号采用 ES5350 模拟信号输入输出板卡、ES5321 PWM 及数字信号输出板卡及工程部件 实现;FUEL CELL 相关的温度信号(电阻信号)采用 ES5385.1 模拟 发动机特有信号的模 拟和采集采用 ES5340.2-ICE 板卡实现。ES5300 实时仿真计算机及 ES5350、ES5340、ES5321 和 ES5385.1 电流传感器仿真本方案中推荐采用配置中 30 路 ES5350DAC 输出模拟信号,通过 DB6200 转换为 4- 20mA 电流信号的方式模拟电流传感器。执行器信号采集同上,采用安装在 ES5300 实时仿真机上的 ES5350 模拟输入板卡和 ES5321 PWM 板卡 检测控制器的执行器控制信号。对于特殊的负载,采用真实器件负载箱实现,如高压 接触器和充电电子锁等。 电流采集模块采用 CSM_5PA 板卡来实现。该电流测 模块用于测 动态负载电流。 静态电流测通道数 10最大容许电压 30 V电流测 范围 5,20,30,50 A (手动设置/) 精度 +/- 1% (主要标称电流 IPN )温度测 量 在 PCB 上测 ,进行温度补偿采样频率 高达 1kHz,通过 USB 更新故障注入功能FUEL CELL 信号级 I/O 电气故障注入,采用 ES5398 和 ES4440 故障注入设备实现。故障模拟模块 ES5398用于实时环境下 ECU 自动测试的故障模拟。它可与硬件在环测试系统结合使用。 ES5398.1 采用 PCI/Express 接口安装于 ES5300 系统中。ES5398.1 模块每块板卡提供 40个故障注入通道。 实验环境 EE 提供了测试执行的用户界面。它提供了实验和图形用户界面,集成的 参数和数据管理,代码下载,实验执行,实时信号产生和测量数据记录方法,以及信 号管理。实验环境是整个测试项目中手动测试的环境,所有的测试都在这里进行。有 LABCAR IP 生成的实时代码需要在这里下载到 RTPC 里面并且开始模拟。通过 Experi- ment Explorer 窗口中进行参数集群和文件管理也是 LABCAR 软件的特色。EE 软件用户界面和虚拟仪表EE 里面还有不同的图像组件,包括常用的各种虚拟仪表,可以用来做成不同的用 户界面。EE 里面可以观察和修改标定量,控制模型的运行,选择不同的运行模式,实 时记录运行数据,以及接入编写的信号发生器信号。同时用户可以方便地通过拖拽来 加入或编辑这些组件。 实验环境中 EE 的组件操作 故障仿真软件LABCAR-PINCONTROL V2.0 为故障仿真箱 ESES5398 的配套软件,具有方便用户使用的 接口,可实现 ES5398 的手动操作,是 ES5398 的重要组成部分,操作界面友好,其操 作界面请参见下图。软件可实现的功能如下:• 创建并管理故障模式,产生 ECU 信号的一系列故障。如氧传感器故障• 简化故障仿真信号的选取• 设置故障产生的时间• 通过点击鼠标来触发故障• 设置多台 ES5398 同时使用• 提供自动化测试的 API 接口等。• 通过 Excel 表格进行故障配置和定义 LABCAR_PINCONTROL 的配置界面 模型方案 燃料电池堆动力学模型ETAS LABCAR-MODEL-FCCAL 是一个 1-D+1-D 的燃料电池堆站模型,该模型包含 1-D 的 燃料电池单体膜模型和 1-D 的双电极及气体通道仿真模型。1-D 的燃料电池单体膜模型 能够对燃料电池膜的内阻,电极之间氧和氢反映生成水的情况进行仿真;1-D 的双电极 及气体通道仿真模型能够仿真双电极间气体在通道内非线性分布的特性,包括温度, 电流,沿电芯堆叠方向的气体压力变化,以及对冰点温度影响等。ETAS LABCAR-MODEL-FCCAL 模型可以考虑为将燃料电池堆沿着气路方向分为多个小模 块,如下图所示。Z 坐标所示方向为气体流动方向,X/Y 坐标表示垂直于膜和气流方向。每一个小模块代表所有燃料电池功能层,包括两个电极板,气路通道,气体扩散层 以及膜。燃料电池模型的采用上述基本架构,在子系统中包括有完整功能层,每个小模块均可对外提供数据接口,同时也能适用于用户的模型扩展要求。 坐标系描述通过燃料电池系统模型 LABCAR-MODEL-FCCAL 的无时间限制的、节点版操作许可证, 客户被授权在主机上执行 LABCAR-MODEL-FCCAL 的代码生成。LABCAR-MODEL-FCCAL 是通过 MATLAB/Simulink 执行的,用户可以打开并修改模型。 这些元件以 S-Functions 的形式提供,如:已编译的动态链接库,不包含源代码。 LABCAR-MODEL-FCCAL 作为 LABCAR 产品家族的一部分, 能够天然支持 LABCAR 网络 HIL 系统仿真应用。也就是说,只要 LABCAR-MODEL-VVTB 和其他 LABCAR 模型可以在 网络中的 RTPCs 上运行,那么它也支持 LABCAR VARIANT MAN-AGEMENT (LVM) 。 功能LABCAR-MODEL-FCCAL 是一个先进燃料电池堆栈模型。该模型包含了一个一维膜模型,能够仿真薄膜电阻、含水量以及电极之间产生的水交换等特性。 除此之外,它使用了空间分布的 双极板与气体通道双 1-D 维度模型,考虑上述两个维 度上的电堆温度、电流和压力变化的非线性特性。此外还特别考虑了汽车会遇到在冰 点温度下工作的情况。LABCAR-MODEL-FCCAL 仿真模型包含:• 单电池模型,并考虑到电流、温度、反应物化学计量数以及膜湿度对电池电压损耗的 影响计算。• 基于一维膜模型的含水量和水交换量的详细计算。• 一维多组分气体通道模型允许为每个电极指定单独的气体成分。• 不同的流场设计仿真。支持内部电池加湿的顺/逆流量设置。• 基于膜温度模型、电池含水量的非线性动态特性和受温度影响的流体性质的实际冷启 动行为。• 考虑气体通道内液态水的积聚和运动的两相水模型。• 具有两种膜类型的默认堆栈参数设置。 传输范围绑定到单一 MAC 地址的节点版许可文件 燃料电池系统动力学模型 LABCAR-MODEL-FC 模型具备完整的燃料电池系统模型结构,该堆站模型的主要目的是 详细计算气路通道的压力分布,电池膜上的水生成量和电堆中水的相变情况。模型根据功能层特性被划分为冷却回路,燃料电池正负极回路模型等。 模型架构描述通过燃料电池系统模型 LABCAR-MODEL-FC 的无时间限制的、节点版操作许可证,客户 被授权在主机上执行 LABCAR-MODEL-FC 的代码生成。LABCAR-MODEL-FC 是通过 MATLAB/Simulink 执行的,用户可以打开并修改模型。这些元件以 S-Functions 的形式提供,如:已编译的动态链接库,不包含源代码。LABCAR-MODEL-FC 可以被集成到虚拟汽车测试平台 LABCAR-MODEL-VVTB 中,以仿真 一辆燃料电池整车。LABCAR-MODEL-FC 作为 LABCAR 产品家族的一部分, 能够天然支持 LABCAR 网络 HIL 系 统仿真应用。也就是说,只要 LABCAR-MODEL-VVTB 和其他 LABCAR 模型可以在网络中 的 RTPCs 上运行,那么它也支持 LABCAR VARIANT MAN-AGEMENT (LVM) 。功能LABCAR-MODEL-FC 仿真模型是一个用于燃料电池控制单元(FCCU)闭环控制测试应用 的燃料电池系统模型,它被用于在汽车环境中对 FCCU 进行测试和验证。 它包含的子系统分别代表一个 1-D PEM 的燃料电池堆、供氢回路、供氧回路和冷却回 路。LABCAR-MODEL-FC 所提供的系统架构根据它的组成回路划分。下图是模型组件的 概述。氧供应系统 氧供应系统包含以下组成部分:• 压缩机• 中冷器• 增湿器• 旁路• 节流通风孔• 排气和进气歧管 氧供应系统 氢供应系统 氢供应系统包含以下组成部分:• 带截止阀的氢罐• 减压器• 氢气喷嘴及中阀• 液态水分离器• 氢循环泵• 排气/排空阀• 排气和进气歧管 冷却回路系统 冷却回路包含以下组成部分:• 电磁阀• 加热器• 散热器• 冷却泵• 排气和进气歧管 冷却液供应系统 绑定到单一 MAC 地址的节点版许可文件 软件兼容性LABCAR-MODEL-FC 支持以下软件版本:• LABCAR-OPERATOR5.4.7,MATLAB/Simulink 2014b 64Bit 如果需要更多信息,请查看 LABCAR-MODEL-FC 的版本注释中的软件兼容性表。 请注意• 安装媒介不包含该许可证,它作为一个单独的项目提供。• 强烈建议用户每年单独采购软件升级维护服务。• 该许可证只允许代码生成。若需要实时运行模型,需要一个实时运行许可证。该许可 证需要单独采购。• 该许可证只允许本机使用,禁止远程访问。• 若要将模型加载到一个 LABCAR-OPERATOR 项目中,需要 MATLAB 和 Simulink 代码。 两者必须单独购买。附加项目• 一年的软件服务协议 (LCM_FC_SRV-ME52) 。• 一个运行时间许可证 (LCM_FC_RT_LIC-MP) 。• 安装媒介 (LCM_FC_PROD) 。• 用于实时仿真的先进二维堆栈模型 (LCM_FCCAL_LIC-MP) 。 ECU 线束设计和制作 在 HIL 系统中需要针对要连接的 ECU 准备连接线束,将 ECU 连接到 LABCAR 的连接器 BOB 面板。线束的设计和制作都是较为复杂的工作,至少为首次使用 ETAS LABCAR 系&nb软件开发的每个步骤 (直到售后诊断), 他们分布到不同的应用领域,
  • 直播预告!第四届材料表征与分析检测技术网络会议之热性能分会场
    仪器信息网讯 材料表征与检测技术,是关于材料的成分、结构、微观形貌与缺陷等的分析、测试技术及其有关理论基础的科学。是研究物质的微观状态与宏观性能之间关系的一种手段,是材料科学与工程的重要组成部分,是材料科学研究、相关产品质量控制的重要基础。仪器信息网将于2022年12月14-15日举办“第四届材料表征与分析检测技术网络会议(iCMC 2022)”,两天的会议将分设成分分析、表面与界面分析、结构形貌分析、热性能四个专场,邀请材料科学领域相关检测技术研究与应用专家、知名科学仪器企业技术代表,以线上分享报告、在线与网友交流互动形式,针对材料科学相关表征及分析检测技术进行探讨。为同行搭建公益学习互动平台,增进学术交流。为回馈线上参会网的支持,增进会议线上交流互动,会务组决定在会议期间增设多轮抽奖环节,欢迎大家报名参会。会议报名链接:https://www.instrument.com.cn/webinar/meetings/icmc2022/ 热性能主题专场会议日程:报告时间报告题目报告人专场四:热性能(12月15日下午)14:00--14:30高性能热电材料与近室温制冷器件中国科学院物理研究所研究员 赵怀周14:30--14:50锂离子电池热性能表征和失效分析沃特世科技-TA仪器部门TA仪器高级热分析应用专家 林超颖14:50--15:10高压重量法在储氢材料研究中的应用沃特世科技-TA仪器部门服务工程师 陈刚直播抽奖:Waters-TA定制三合一数据充电线10个15:10--15:40电子封装碳基热管理材料中国科学院宁波材料技术与工程研究所研究员 林正得15:40--16:10反钙钛矿化合物的反常热膨胀性质及其关联物性的研究北京航天航空大学教授 王聪16:10--16:50有机硅在热界面材料应用研究现状中国科学院深圳先进技术研究院研究员 曾小亮直播抽奖:《2021年度科学仪器行业发展报告》5本嘉宾介绍:中国科学院物理研究所研究员 赵怀周中科院物理所研究员,课题组长。长期从事热电材料、热电输运新机制、热电器件与应用系统研究。在新型高性能近室温热电材料、热电器件和热电应用系统研究方面积累了丰富的经验,取得重要创新成果,在基于镁基新材料的下一代热电制冷模块研究方面形成了国际特色。先后在Joule、Nat. Comm、Sci. Adv 、JACS、ACS Nano、Nano Energy、和Adv. Funct. Mater等著名刊物发表第一或者通讯论文70余篇,申请及授权国际国内专利10余项,文章引用次数2000余次。主持及参与国家自然科学联合重点及面上基金、国家重点研发计划等重要课题10余项。在国内外大型学术会议担任分会场主持人和特邀报告人二十余次,担任第12届中国热电材料大会会议主席。第三届中国发明协会发明创业成果奖二等奖(排序第一位)。【摘要】 报告聚焦热电材料和技术在全固态制冷方面的原理、优势和广泛应用,介绍了物理所热电研究团队近年来在热电新材料、新器件与新型应用系统方面的创新性工作。主要包括: (1)制备出全尺度可服役的基于Mg3(Sb,Bi)2新材料的热电制冷器件,基于新材料在性能投入比方面的显著优势,其有望颠覆一直以来行业上基于碲化铋的传统热电半导体制冷材料体系。(2)助力解决热电领域卡脖子材料与设备问题,在碲化铋缩颈热挤压制造相关设备和工艺方面获得进展,对实现我国热电制冷微器件的国产化有帮助作用。申请及授权发明专利和实用新型专利多项。该技术近期已在广西见炬科技有限公司、河北东方电子有限公司等热电企业获得推广。 (3) 提出地热-热电协同空调系统的思路并制造出原理样机。该系统可以替代现有商业空调的功能,同时具备分立式管理、无震动噪音和零碳排放的优势,有望实现规模应用。沃特世科技-TA仪器部门高级热分析应用专家 林超颖浙江大学高分子材料硕士,现任美国TA仪器高级热分析应用专家。长期从事各类材料的热分析、力学性能表征及失效分析等工作。【摘要】 锂离子电池在使用过程中,一旦正极材料、负极材料、电解液等的分解,或隔膜熔断、破裂导致正负极材料直接接触,或由于热管理设计缺陷导致锂离子电池出现安全性能的问题,会严重危害生命和财产安全。TA仪器从锂离子电池的热性能和力学性能出发,全方位剖析锂离子电池的安全性能。沃特世科技-TA仪器部门服务工程师 陈刚2000年毕业于华东理工大学,本科学历。从事德国Rubotherm磁悬浮天平系列设备的中国国内技术支持和售后服务近16年。曾多次前往德国原厂接受培训。熟悉国内磁悬浮天平用户及应用情况,对高压吸附领域有一定了解。曾工作于荷兰安米德公司,北京儒亚公司,于2017年加入美国TA公司,并工作至今。【摘要】 磁悬浮天平的发明是重量法应用领域里具有革命意义的里程碑。大大拓宽了重量法的应用范围,并附带了独特的性能优势。磁悬浮天平也为储氢材料研究带来了积极的帮助。中国科学院宁波材料技术与工程研究所研究员 林正得林正得,博士,研究员,博士生导师。入选2014年中国科学院"百人计划"、2013年浙江省"千人计划"等人才项目。2008年博士毕业于台湾清华大学材料科系。2012–2014年于美国麻省理工学院(MIT)电子学实验室和机械系担任博士后,2014年6月加入中国科学院宁波材料所。自加入材料所以来,已发表了ACS Nano、Advanced Science、Biosensors & Bioelectronics等SCI论文149篇,全部文章的引用数高于10,000次。现担任Biosensors & Bioelectronics期刊副主编。团队目前围绕着石墨烯应用开展研究课题,包含:导热应用、热界面材料、以及生医传感器件。【摘要】 近年来,基于氮化镓等第三代半导体的高频率、大功率芯片得到了国家和产业的重点关注与广泛应用;为了提升内核效能,新一代芯片架构正朝向微缩化和3D互联方向发展,致使芯片的功率密度大幅提高,发热量随之迅猛增加。芯片的“热失效”成为了制约5G、航空航天等精密装备内功率器件发展的主要瓶颈之一。要解决目前电子封装的散热难题,需要对既有热管理材料进行升级迭代,并有效连接与统合这些部件,形成从芯片至散热器的最优传热路径。本团队针对电子封装中“芯片–衬底–均热板–热沉”热输运串联系统的关键零部件进行了攻关开发,克服了复合材料中二维材料填料的“定制调控排列取向”与“强化异质传热界面”两个共性难题,研发出“超低热阻碳基热界面材料”、“轻质高导热碳/铝散热器”、“柔性绝缘氮化硼导热膜”等系列新型热管理材料,从而提出面向新一代芯片架构的综合解决方案,实现拥有自主知识产权的创新技术与产品。北京航天航空大学教授 王聪北京航空航天大学集成电路科学与工程学院教授,博士生导师。在Adv. Mater.,Phys. Rev. 系列, Chem. Mater. Appl. Phys. Lett.,等刊物上发表论文超过240篇, SCI收录200篇以上,SCI他引超过3500次,H=33,2020-2021两年连续被国际机构爱思唯尔(Elsevier)评为“中国被高引学者”;授权国家发明专利14项。2012年获得教育部自然科学二等奖。中国物理学会理事,中国晶体学会理事。长期从事固体反常热膨胀行为、自旋电子学反铁磁材料及器件、光学薄膜领域的研究工作。【摘要】 反钙钛矿化合物Mn3XN系列材料由于“晶格-自旋-电荷”的强关联性,发现诸多具有应用价值的物理特性,如零/负膨胀、压磁、磁热、近零电阻温度系数、反常霍尔效应等。在NMn6八面体中, Mn-Mn直接交换作用和Mn-X-Mn间接磁交换作用共存,形成复杂的磁结构, 且其磁结构对成分、温度、压力、磁场等的变化非常敏感,因此在多场耦合下产生丰富的物理特性。我们利用变温X射线衍射,中子衍射技术,结合热膨胀仪、差热分析(DSC)、磁、电测量等解析了这类化合物随温度、压力变化的晶体结构和磁结构,热膨胀系数及其关联的磁、电输运行为等。本报告将重点探讨Mn3XN(X: Ga, Ni, Ag, Zn)系列化合物在温度和压力场下的磁结构演变规律,以及由其诱导的物性变化,如负(零)热膨胀、反常电输运、压磁、压热效应等。中国科学院深圳先进技术研究院研究员 曾小亮中国科学院深圳先进技术研究院研究员,工学博士,中国科学院青促会会员、深圳市“孔雀计划”海外高层次人才(C类),入选2022年“全球前2%顶尖科学家榜单”,Google学术总引用次数7276,h指数47,荣获国际知名学术期刊Composites Part A,2020年“Top 5优秀审稿人”、国际学术期刊《Nanomaterials》(JCR 一区,影响因子:5.076)和《Frontiers in Materials》(JCR 二区,影响因子:3.515)的客座主编。以第一作者或通讯作者在Advanced Functional Materials, ACS Nano, Chemistry of Materials, Small等国际期刊上发表SCI论文50多篇,申请专利30多项,合著书籍《聚合物基导热复合材料》。2010年以来,主持或参与国家自然科学基金项目、科技部重点研发专项、科技部重大科技计划“02专项”,广东省创新科研团队项目等项目。【摘要】 在现代电子元器件中,有相当一部分功率转化为热的形式,耗散生热严重威胁电子设备的运行可靠性。更令人担忧的是,随着后摩尔时代的到来,电子元器件的封装技术由传统的二维封装向2.5维或更高级的三维封装方向发展。三维封装技术虽然提高了电子元器件运行速度、实现了电子设备的小型化和多功能化,但是也导致器件所产生的热量进一步的集中,采用常规的热传导技术已经无法实现热量有效传导。“热管理”的问题已经成为阻碍现代电子元器件发展的首要问题之一。有机硅是制备热界面材料最为常用的基础树脂,本报告将围绕如下三个方面阐述有机硅在热界面材料应用研究现状: 1. 芯片热量来源及趋势 2. 有机硅热界面材料研究现状 3. 热界面材料用有机硅未来发展趋势会议报名:https://www.instrument.com.cn/webinar/meetings/icmc2022/
  • 遥感卫星大型传感器测试用大孔径积分球均匀光源
    背景图1 卫星遥感在制造用于卫星和望远镜的传感器的过程中,最重要的步骤之一是表征传感器的辐射性能,并建立到达传感器的光与传感器的数值输出之间的关系。 某国家航天局需要一套积分球均匀光源系统,用于在大型传感器的开发中进行校准测试。 开口尺寸需要1.5 米才能使发光面完全覆盖整个设备。另外还要求控制外部温度,确保可靠的长期使用。图2 成像传感器Labsphere(蓝菲光学)解决方案图3 蓝菲光学研发的大孔径积分球均匀光源图4 最大的辐亮度为此开发的系统需要大的积分球,获得超大开口端和总共 37 个灯以实现测试所需的均匀性和光谱辐射。Labsphere(蓝菲光学) 善于定制产品的开发,该系统具有以下独特功能:通过两个侧面安装的电动活塞自动调节高度;稳定性好,具有调平千斤顶工业脚轮;包含软件和硬件的完全集成的计算机系统;可控制灯产生的热量:开口周围的定制散热器,用于吸收大部分热量开口处的手动百叶窗,用于保护用户和设备免受测试后过热的影响后半球隔热罩,防止意外伤害三个温度探头来监测积分球内部的热量三个外部鼓风机连接到积分球周围的通风口具有带宽和 FOV 滤光片的可拆卸硅探测器;具有热电冷却功能的可拆卸 InGaAs 探测器;更新了具有附加功能的 HELIOSense 软件。特点先进的热重定向系统,可防止组件和材料损坏并保护用户免受意外伤害;高度可调和开口端缩孔器,可以灵活地对各种不同的传感器系统进行测试;具有针对客户应用程序优化的软件,最大限度地提高效率和可用性;可控制和获得宽光谱,通过 Labsphere(蓝菲光学) 的 HELIOSense 软件微调光谱辐射、色温和波长分布;满足所有光谱要求, 97% 以上的均匀性提供覆盖可见光和红外带内辐射度;照度 (lux)176,737光谱辐射度(W/m2-sr)1,605面均匀性 (100% Power)97.32%面均匀性(10% Power)95.08%角度均匀性 (±10°)99.5%角度均匀性 (±45°)99.2%短期(5s) 稳定性99.995%长期(30s) 稳定性99.994%硅探测器非线性度0.42%InGaAs 探测器非线性度0.37%最高外部温度39.5°C总灯功率17,680W
  • 聚光盈安光谱仪助力汽车质量控制,根本性解决“奔驰女车主哭诉维权”事件
    2019年4月11日,W女士坐在4S店红色奔驰车引擎盖上哭诉维权的视频流出,让僵持了近15天的维权受到关注,西安市市场监管部当日对涉事利之星奔驰4S店立案调查,并封存涉事车辆,调取了相关证据,目前对引起故障的原因没有明确的官方声明。从漏油表现上分析,引起发动机漏油故障的原因较多,常见的有以下数种情况: 1、油底壳衬垫损坏或螺丝松动漏油 2、油底壳放油螺塞衬垫损坏、漏装或松动漏油 3、正时齿轮盖衬垫装配不当、损坏或螺丝松动漏油 4、发动机支架板变形或衬垫密封不严漏油 5、气门室盖衬垫密封不严漏油 6、曲轴前油封损坏漏油 7、曲轴后油封损坏漏油 8、曲轴后端回油螺纹被污垢堵塞而漏油。回油螺纹加工不当或螺纹轴颈与油封座孔同轴度超差等而漏油 9、凸轮轴承后封盖不严漏油 10、摇臂室盖或扒杆室盖不严漏油 11、机油散热器密封不严漏油 12、机油滤哺器密封不严而漏油 13、分电器壳体承装孔密封不严漏油 14、机油泵衬垫损坏或螺丝松动漏油。千里之堤,毁于蚁穴,也许一个小小的螺丝松动就会造成漏油故障,进而引发品牌公关危机,给汽车公司造成及其负面的影响。因此汽车制造企业的质量管理至关重要,除了上述的漏油事故,因为质量管理问题导致的汽车故障数不胜数,究其原因,可归类为以下几种:1.产品(配件)质量、材质或工艺不佳。2.装配不当,配合表面不清洁,衬垫破损、位移或未按操作规程规范进行安装。3.紧固螺母拧力不均、滑丝断扣或松旷脱落等导致工作失效。4.密封材料长期使用后磨损过限,老化变质、变形失效。5.润滑油添加过多、油面过高或加错油品。6.零部件(边盖类、薄壁件)接合表面挠曲变形、壳体破损,使润滑油渗出。7.通气塞、单向阀堵塞后,由于箱壳内外气压差的作用,往往会引起密封薄弱处漏油。其中因为产品配件质量,材质或工艺不佳而引起的汽车故障尤为常见和严重。构成汽车的零件约有两万多个,在这些零件中,使用了各种各样的材料。其中80%约是金属材料,金属材料在汽车行业中有着不可取代的地位。这些金属材料中主要的组成部分是钢材与铝合金等,这些金属的品质直接关系到汽车的质量。国家针对汽车应用合金制定了很多标准,比如:《GB∕T 34596-2017 汽车零部件再制造产品技术规范 机油泵》《GB/T23301-2009 汽车车轮用铸造铝合金 》、《GBT 32796-2016 汽车排气系统用冷轧铁素体不锈钢钢板和钢带》、《GB 1501-1979汽车车轮挡圈用热轧型钢》《GB/T20564-2007汽车用高强度冷连轧钢板及钢带》等。这些标准对汽车合金材料成分提出了一定的要求。因此,汽车企业如何确保这些合金材料的材质是否符合标准,十分重要。以汽车车身所使用的合金材料为例,现阶段汽车车身所使用的合金材料还是以冷连轧钢板及钢带为主,这种钢板的材质直接关系到汽车车身的安全性能问题。每一块汽车钢板都须通过严格的筛查后才能使用,这对汽车整机及零配件生产的材料质量控制及检测手段提出更高要求。以GB/T 20564《汽车用高强度冷连轧钢板及钢带》为例,规范里列举分析检测手段有以“GB/T 223.58 钢铁及合金化学分析方法 亚砷酸钠-亚硝酸钠滴定法测定锰量”为代表的化学滴定法、以“GB/T 223.60 钢铁及合金化学分析方法 高氯酸脱水重量法测定硅含量”为代表的脱水重量法、以“GB/T 223.64 钢铁及合金化学分析方法 火焰原子吸收光谱法测定锰含量”为代表的原子吸收光谱法、以“GB/T 4336 碳素钢和中低合金钢 火花源原子发射光谱分析方法(常规法)”为代表的火花直读光谱法等等。其中,火花直读光谱法(AES)相较于其他几种检测手段(化学滴定法、脱水重量法、原子吸收光谱法、ICP光谱法)等,具有检测速度快、前处理(制样)简单、结果准确、无人为误差干扰等特点,广泛应用于汽车生产、检测过程中。聚光盈安推出的M5000火花直读光谱仪(AES)可分析铁,铝,铜,锌,镍等十余种金属基体,五十多种元素,以其精度和数据稳定性帮助汽车行业进行严格的质量控制,避免了后期因为材料问题而引发的故障。此次奔驰女车主哭诉维权事件,给奔驰品牌造成了很大大的负面影响,这次品牌危机看似由于4S店和奔驰厂家的售后服务问题而造成,但究其根本原因,还是汽车制造商的质量管理出现了纰漏。汽车质量管理大到车身材料小到一个螺丝配件,复杂而繁琐,需要汽车制造商具备检测手段,完善的管理体系。作为金属材质检测设备的供应商,聚光盈安将和汽车制造企业一起为汽车质量管理保驾护航。
  • 大庆市水务集团有限公司1207.18万元采购气体流量计
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 [公开招标][施工]SZ0500G2210280012022年大庆市二次供水泵站和管网改造项目第二部分招标公告[待开标] 黑龙江省-大庆市-龙凤区 状态:公告 更新时间: 2022-10-29 招标文件: 附件1 [公开招标][施工]SZ0500G2210280012022年大庆市二次供水泵站和管网改造项目第二部分招标公告[待开标] 来源: 发布时间:2022-10-28 一、招标条件 2022年大庆市二次供水泵站和管网改造项目第二部分已经由大庆市发展和改革委员会以庆发改发【2022】181号文件批准建设,资金来源为地方政府一般债券资金和大庆市水务集团自筹资金。资金已落实,招标人为大庆市水务集团有限公司,招标代理机构为大庆市城安工程管理服务有限公司,招标投标行政监督及招标投标投诉受理单位为大庆市住房和城乡建设局。项目已具备招标条件,现对该项目的2022年大庆市二次供水泵站和管网改造项目第二部分-施工进行公开招标。 二、项目概况与招标范围 1.本次招标项目的建设地点:大庆市中心城区。 2.工程规模:对市区内20个二次供水泵站土建、电气、工艺、采暖维修改造。具体建设内容如下:1、土建部分 防火门拆除后重新更换,零星抹灰,挡鼠板安装,天棚拆除原有棚面抹灰层重新抹灰后刷涂料,墙面铲除原有至水泥灰皮层后用铝单板饰面,空鼓返砂部分采用水泥砂浆修复,拆除原有混凝土设备基础后重新制作,地面拆除原有地面面层至水泥基层,采用花岗岩石材楼地面及防滑地砖楼地面,铝合金踢脚板,天棚用铝合金方板吊顶等。主要工程量:拆除更换钢质防火门、防盗门86.43m2,天棚墙面喷刷涂料1005.18m2,吊顶1002.14m2,墙体改造安装金属装饰板3021.1m2,安装金属踢脚线111.74m2,铺装石材楼地面1773.06m2,铺设混凝土基础48.92m3,更换排水篦子46m2,楼(地)面砂浆防水141.51m2,砌筑实体墙19.45m3,加装加固钢丝网6.62m2。 2、电气部分 各泵站内新增低压变频配电柜及监控设备控制柜,安装网络高清红外枪式摄像机,照明灯具采用自带蓄电池双管密闭荧光灯,配套电缆电线及配管施工等。 主要工程量:安装配电箱37台,低压配电柜39台,塑壳断路器18个,镀锌钢管6249.83m,铜芯电力电缆2822.56m,电缆头464个,铜芯绝缘导线1872.85m,自带蓄电池双管密闭荧光灯93套,单、双联翘板密闭开关19个,接线盒95个,开关盒27个,等电位端子箱MEB 19台,等电位线1157.38m,刨沟槽1677.78m,送配电系统调试318套,拆除原有控制柜38台,拆除原有配电箱40台,拆除原有灯具92套,拆除原有照明开关19套,安装网络高清红外枪式摄像机45台,监控柜19台,双绞线3096.12m,配线1298.71m,开楼板洞19个,PLC控制柜36台,管内穿线3520m,金属防火桥架239.13m。 3、工艺部分 对泵站内无负压设备和供水管线、阀门进行拆除更换,增设供水系统的总体计量和压力检测,配套电缆电线及配管等。 主要工程量:更换无负压给水设备39套,不锈钢管978.27m,不锈钢球阀187个,消声止回阀57个,电磁流量计19套,篮式过滤器19个,抗震压力表58套,不锈钢电动球阀39个,水锤消除器39个,低阻力倒流防止器33个。 4、采暖部分 对泵站内部分暖管线和暖气片进行拆除更换等。 主要工程量:改造钢管531.04m,管道刷油268.65m2,铸铁散热器600片,阀门69个,暖气片刷油364.6m2,手动跑风3个,管道支架9.43kg,金属结构刷油28.29kg,拆除原有管道87.31m,拆除原有散热器3片,采暖工程系统调试1套。具体内容详见工程量清单及图纸。 3.质量标准:合格 4.标段划分:无 标段(包)编号 标段(包)名称 招标范围 开工日期 竣工日期 工期(天) 招标控制价(万元) SZSG0500G221028001001001 2022年大庆市二次供水泵站和管网改造项目第二部分-施工 施工招标 2022年11月15日 2023年08月31日 289 1207.18 三、投标人资格要求 (一)投标人资质要求: 1、投标人须具备市政公用工程施工总承包三级及以上资质及安全生产许可证。 2、投标人必须具备有效的企业法人营业执照。 (二)项目经理: 具备市政公用工程专业二级及以上注册建造师证及有效的安全生产考核合格证。 注:自 2022年1月1日起,一级建造师统一使用电子证书,纸质注册证书作废。投标人在上传证明材料时需上传电子证书扫描件(黑白或彩色皆可)。另外,一级建造师打印电子证书后,应在个人签名处手写本人签名,未手写签名或与签名图像笔迹不一致的,该电子证书无效。关于一级建造师电子注册证书具体要求按照《住房和城乡建设部办公厅关于全面实行一级建造师电子注册证书的通知》建办市〔2021〕40号文件执行。 (三)项目机构人员配备要求: 1.按照《黑龙江省房屋建筑和市政基础设施工程项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号)文件及招标文件(项目管理机构人员配置表)规定,不低于文件规定的标准数量配备项目管理机构人员,投标时需填报项目管理人员配置表(只填写人员数量,不填写人员姓名),但中标候选人公示期内,中标候选人需提供符合招标文件及《黑龙江省房屋建筑和市政基础设施工程项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号)文件要求的人员姓名及相关证件供招标人核验,不满足要求或未提供的取消其中标资格。投标人也可以根据项目管理需要增加岗位及人员。 2.按黑建规范[2020]8 号文件规定,本项目属于小型工程,技术负责人如使用职称证的,需配备初级及以上职称人员; 3.项目机构成员如有退休人员,年龄不能超过65周岁。 (四)其他要求: 1、本项目开标期间项目管理机构人员证件只核验本项目项目负责人 (项目经理)。 其他项目管理机构人员只需按照《黑龙江省房屋建筑和市政基础设施工程项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号)文件,填报项目管理人员配置表(只填写人员数量,不填写人员姓名)。 中标候选人公示期间,中标候选人将其他项目管理机构人员姓名及相关证件提供给招标人,招标人有权进行核实,如发现弄虚作假,不符合招标文件及《黑龙江省房屋建筑和市政基础设施工程项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号)文件要求的,将取消其中标资格,保证金不予退还。 2、与招标人存在利害关系可能影响招标公正性的法人、其他组织或者个人,不得参加本项目的投标。单位负责人为同一人或者存在控股、管理关系的不同单位,不得参加同一标段投标或者未划分标段的同一招标项目投标 。违反本条款规定的,招标人将否决其投标。 3、信用要求: ①至投标截止时间,企业状态为严重违法失信企业或经营异常企业,招标人不接受其参与本项目投标。企业状态以国家企业信用信息公示系统最新公示信息为准。 提供“国家企业信用信息公示系统”(http://www.gsxt.gov.cn/)中未被列入严重违法失信企业及经营异常企业的网站查询截图(截图中需体现网站名、投标单位名称、统一社会信用代码、查询结果、查询日期等信息),结果查询时间为本招标公告发出之日起方为有效。(查询方式:国家企业信用信息公示系统首页→在搜索框内输入投标人名称→点击查询→点击查询到的投标人名称→在投标人企业基础信息页面分别点击“列入经营异常名录信息”“列入严重违法失信企业名单(黑名单)信息”后分别完整截图保存) ②信用中国平台中列入失信被执行人名单的企业作为不合格的投标企业,不得参与投标。提供“信用中国”(https://www.creditchina.gov.cn/?navPage=0)中未被列入失信被执行人的网站查询截图(截图中需体现网站名、投标单位名称、查询结果、查询日期等信息),结果查询时间为本招标公告发出之日起方为有效。(查询方式:信用中国网站首页→在搜索框内输入投标人名称→点击搜索→点击“失信被执行人”后完整截图保存) 4、投标人承诺:投标人需对以下内容进行承诺,承诺书按招标文件给定的“投标承诺书”格式填写。 (1)项目机构成员为本单位在职员工,提供所投项目班组人员均为本单位在职员工的承诺书,如有退休人员,需在承诺中说明。 (2)投标人提供所投项目机构全部成员要求(自本工程招标公告发布之日(含)起)已无在建项目承诺。 (3)投标人须提供开标前连续3个月投标单位为本项目项目机构所有成员缴纳社保的承诺。 (4)招标人不组织现场踏勘,投标人必须自行踏勘现场。投标人对现场踏勘做出承诺。 (5)本工程严禁挂靠施工,一经发现投标人有挂靠施工等行为,招标人有权勒令中标单位退场且不予结算并追究其相关法律责任;须提供无挂靠施工声明承诺。注:施工过程实施工地现场刷脸考核制度,累计不在工地时间达到总工期二分之一、累计两次不参加工程重要例会等行为将视为挂靠行为。 5、中标候选人公示期内,招标人有权对招标文件中要求投标人提供的承诺书承诺事项进行核实,如发现承诺内容与招标文件要求不符,取消其中标资格,投标保证金不予退还。 6、本项目不接受投标人因受到行政处罚、失信惩戒措施仍在限制投标惩戒期内的投标人投标。 7、本次招标不接受联合体投标。 四、投标 1.投标截止时间:2022年11月08日09时00分 2.现场投标地点:线上开标,投标人无需到达开标现场。 五、招标文件的领取 1.领取时间:2022年10月28日至2022年11月08日。 2.领取地点:请到大庆市公共资源交易平台http://221.209.152.208/TPBidder招标文件领取菜单领取招标文件 3.招标文件价格:每套售价¥0.00元每标段。 六、其他说明 1、投标保证金金额:12万元投标保证金的交纳形式:电汇、转账、电子保函。 投标保证金交纳方式: (一)参与本项目的投标人,通过大庆市建设工程投标保证金系统向大庆市公共资源交易中心账户交纳投标保证金,投标保证金必须由参与本项目的投标人以本单位对公账户名义,且以转账方式交纳(必须由本单位基本账户转出),不接受企业或个人以现金方式交纳投标保证金(包括直接将现金存到大庆市公共资源交易中心账户上的行为),不得以其他单位或以个人名义代交。因银行转账到账时间可能存在延迟,建议投标人在投标截止时间24小时前交纳投标保证金,并确保投标保证金在投标截止时间前到账,以到账时间为准。请到大庆市公共资源交易一体化平台中“查看保证金页面”页面,按照页面展示的该标段的户名、开户行、子账号进行保证金交纳。 (二)投标人以电子保函形式交纳投标保证金的,进入“大庆市公共资源交易一体化平台”——“房建市政工程”中,在“业务查询”页面中进入“保函申请/查询”,通过“大庆市公共资源交易电子保函服务平台”申请并开具电子保函。保函文本按《关于印发工程保函示范文本的通知》(建市【2021】11号)要求执行,未按上述要求提交的保函,招标人将拒绝其投标。 (三)本项目要求,保函有效期自开立之日起至投标有效期届满之日后不少于90日。注:请投标单位掌握好投标保证金交纳时间,未按上述要求提交保证金的,招标人将拒绝其投标。 2、资格审查方式:资格后审 3、评标办法:本次评标采用经评审的合理价法。 七、发布公告的媒介 本次招标公告同时在http://www.hljggzyjyw.org.cn/黑龙江公共资源交易网、http://221.209.152.208//大庆市公共资源交易中心网以及http://www.cebpubservice.com/中国招标投标公共服务平台上发布。 八、联系方式 招标人:大庆市水务集团有限公司 招标人地址:大庆市龙凤区秀水路 3 号 招标人邮编: 招标人联系人: 王丽娜 招标人电子邮箱: 招标人联系电话: 0459-6990031 招标人传真: 招标代理机构: 大庆市城安工程管理服务有限公司 代理地址:大庆市格林小镇二期商服大门 代理邮编: 代理联系人: 丛先生 代理联系电话: 0459-8973933 代理邮箱: 代理传真: 附件: 招标公告.pdf × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:气体流量计 开标时间:2022-11-08 09:00 预算金额:1207.18万元 采购单位:大庆市水务集团有限公司采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:大庆市城安工程管理服务有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 [公开招标][施工]SZ0500G2210280012022年大庆市二次供水泵站和管网改造项目第二部分招标公告[待开标] 黑龙江省-大庆市-龙凤区 状态:公告 更新时间: 2022-10-29 招标文件: 附件1 [公开招标][施工]SZ0500G2210280012022年大庆市二次供水泵站和管网改造项目第二部分招标公告[待开标] 来源: 发布时间:2022-10-28 一、招标条件 2022年大庆市二次供水泵站和管网改造项目第二部分已经由大庆市发展和改革委员会以庆发改发【2022】181号文件批准建设,资金来源为地方政府一般债券资金和大庆市水务集团自筹资金。资金已落实,招标人为大庆市水务集团有限公司,招标代理机构为大庆市城安工程管理服务有限公司,招标投标行政监督及招标投标投诉受理单位为大庆市住房和城乡建设局。项目已具备招标条件,现对该项目的2022年大庆市二次供水泵站和管网改造项目第二部分-施工进行公开招标。 二、项目概况与招标范围 1.本次招标项目的建设地点:大庆市中心城区。 2.工程规模:对市区内20个二次供水泵站土建、电气、工艺、采暖维修改造。具体建设内容如下:1、土建部分 防火门拆除后重新更换,零星抹灰,挡鼠板安装,天棚拆除原有棚面抹灰层重新抹灰后刷涂料,墙面铲除原有至水泥灰皮层后用铝单板饰面,空鼓返砂部分采用水泥砂浆修复,拆除原有混凝土设备基础后重新制作,地面拆除原有地面面层至水泥基层,采用花岗岩石材楼地面及防滑地砖楼地面,铝合金踢脚板,天棚用铝合金方板吊顶等。主要工程量:拆除更换钢质防火门、防盗门86.43m2,天棚墙面喷刷涂料1005.18m2,吊顶1002.14m2,墙体改造安装金属装饰板3021.1m2,安装金属踢脚线111.74m2,铺装石材楼地面1773.06m2,铺设混凝土基础48.92m3,更换排水篦子46m2,楼(地)面砂浆防水141.51m2,砌筑实体墙19.45m3,加装加固钢丝网6.62m2。 2、电气部分 各泵站内新增低压变频配电柜及监控设备控制柜,安装网络高清红外枪式摄像机,照明灯具采用自带蓄电池双管密闭荧光灯,配套电缆电线及配管施工等。 主要工程量:安装配电箱37台,低压配电柜39台,塑壳断路器18个,镀锌钢管6249.83m,铜芯电力电缆2822.56m,电缆头464个,铜芯绝缘导线1872.85m,自带蓄电池双管密闭荧光灯93套,单、双联翘板密闭开关19个,接线盒95个,开关盒27个,等电位端子箱MEB 19台,等电位线1157.38m,刨沟槽1677.78m,送配电系统调试318套,拆除原有控制柜38台,拆除原有配电箱40台,拆除原有灯具92套,拆除原有照明开关19套,安装网络高清红外枪式摄像机45台,监控柜19台,双绞线3096.12m,配线1298.71m,开楼板洞19个,PLC控制柜36台,管内穿线3520m,金属防火桥架239.13m。 3、工艺部分 对泵站内无负压设备和供水管线、阀门进行拆除更换,增设供水系统的总体计量和压力检测,配套电缆电线及配管等。 主要工程量:更换无负压给水设备39套,不锈钢管978.27m,不锈钢球阀187个,消声止回阀57个,电磁流量计19套,篮式过滤器19个,抗震压力表58套,不锈钢电动球阀39个,水锤消除器39个,低阻力倒流防止器33个。 4、采暖部分 对泵站内部分暖管线和暖气片进行拆除更换等。 主要工程量:改造钢管531.04m,管道刷油268.65m2,铸铁散热器600片,阀门69个,暖气片刷油364.6m2,手动跑风3个,管道支架9.43kg,金属结构刷油28.29kg,拆除原有管道87.31m,拆除原有散热器3片,采暖工程系统调试1套。具体内容详见工程量清单及图纸。 3.质量标准:合格 4.标段划分:无 标段(包)编号 标段(包)名称 招标范围 开工日期 竣工日期 工期(天) 招标控制价(万元) SZSG0500G221028001001001 2022年大庆市二次供水泵站和管网改造项目第二部分-施工 施工招标 2022年11月15日 2023年08月31日 289 1207.18 三、投标人资格要求 (一)投标人资质要求: 1、投标人须具备市政公用工程施工总承包三级及以上资质及安全生产许可证。 2、投标人必须具备有效的企业法人营业执照。 (二)项目经理: 具备市政公用工程专业二级及以上注册建造师证及有效的安全生产考核合格证。 注:自 2022年1月1日起,一级建造师统一使用电子证书,纸质注册证书作废。投标人在上传证明材料时需上传电子证书扫描件(黑白或彩色皆可)。另外,一级建造师打印电子证书后,应在个人签名处手写本人签名,未手写签名或与签名图像笔迹不一致的,该电子证书无效。关于一级建造师电子注册证书具体要求按照《住房和城乡建设部办公厅关于全面实行一级建造师电子注册证书的通知》建办市〔2021〕40号文件执行。 (三)项目机构人员配备要求: 1.按照《黑龙江省房屋建筑和市政基础设施工程项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号)文件及招标文件(项目管理机构人员配置表)规定,不低于文件规定的标准数量配备项目管理机构人员,投标时需填报项目管理人员配置表(只填写人员数量,不填写人员姓名),但中标候选人公示期内,中标候选人需提供符合招标文件及《黑龙江省房屋建筑和市政基础设施工程项目管理机构人员配置管理暂行办法》(黑建规范[2020]8 号)文件要求的人员姓名及相关证件供招标人核验,不满足要求或未提供的取消其中标资格。投标人也可以根据项目管理需要增加岗位及人员。 2.按黑建规范[2020]8 号文件规定,本项目属于小型工程,技术负责人如使用职称证的,需配备初级及以上职称人员; 3.项目机构成员如有退休人员,年龄不能超过65周岁。 (四)其他要求: 1、本项目开标期间项目管理机构人员证件只核验本项目项目负责人 (项目经理)。 其他项目管理机构人员只需按照《黑龙江省房屋建筑和市政基础设施工程项目管理机构人员配置管理暂行办法》(黑建规范[
  • 晶圆为什么需要减薄?
    晶圆减薄是半导体制造过程中一个关键的步骤,旨在改善热性能、适应封装需求、增加机械柔韧性、提高器件性能和良率等方面的性能。每一步骤都需要精密的控制和测试,以确保减薄后的晶圆能够满足后续工艺和最终产品的需求。以下是晶圆减薄的主要目的及其详细解释:提高散热性能晶圆减薄能够显著改善芯片的散热性能。较薄的晶圆可以更快地将热量传导出去,从而避免芯片过热,提高设备的可靠性和性能。通过减少热阻,热量可以更迅速地从芯片核心传递到散热器或外部环境。工艺步骤如下:1. 热管理设计:减薄后的晶圆需要重新设计热管理系统。这包括选择合适的热界面材料(TIM),以优化热传导效率。TIM材料的选择应基于其导热系数、厚度和应用环境,以确保最大限度地降低热阻。2. 散热片优化:对于需要散热片的应用,应设计并优化散热片的结构和材料。散热片的形状、翅片间距和表面处理都会影响散热性能。优化这些参数可以提高散热效率,确保芯片在高性能工作时保持低温。3. 热模拟与仿真:使用热模拟软件进行仿真,预测减薄晶圆在实际工作环境中的热性能。这可以帮助工程师在设计阶段发现潜在的散热问题,并进行调整。4. 封装测试:在封装过程中,对减薄后的晶圆进行一系列热性能测试,如热阻测试和热循环测试。确保封装后的芯片能够在各种工作条件下有效散热,并具备长期可靠性。5. 实际应用验证:将减薄后的晶圆封装成样品,进行实际应用测试,包括长时间高负荷运行和极端温度条件下的测试,验证其热管理设计的有效性。适应封装需求现代半导体器件越来越追求轻薄短小的封装形式。较薄的晶圆可以使得封装更紧凑,从而满足移动设备、可穿戴设备等对小尺寸和轻重量的要求。这对于多层封装(如3D封装)尤为重要。减薄后的晶圆不仅能节省空间,还能增强器件的集成度和性能。工艺步骤如下:1. 选择封装工艺:根据应用需求选择适当的封装工艺,如倒装芯片(flip-chip)封装或晶圆级封装(WLP)。这些工艺可以提供良好的电气连接和机械强度,同时使封装更加紧凑。2. 机械强度增强:在减薄晶圆后,可能需要增加机械强度。例如,在晶圆背面涂覆一层保护膜或增强材料,以提高其抗弯曲和抗冲击能力,确保在后续封装过程中不易破裂。3. 电气连接优化:确保减薄后的晶圆在封装过程中能够实现可靠的电气连接。倒装芯片封装中,需要在晶圆上增加凸点(bump),以实现电气连接。对于WLP,需要确保焊点的均匀性和可靠性。4. 应力测试:封装完成后,需要进行一系列的应力测试,包括热循环测试、机械冲击测试和振动测试。通过这些测试,验证封装的可靠性和机械强度,确保其能够在各种工作条件下稳定运行。5. 热管理设计:封装过程中还需要考虑热管理设计,确保在减薄晶圆的同时,不影响其散热性能。可以通过优化封装材料和结构设计,确保封装后的芯片能够有效散热。6. 封装可靠性验证:最后,需要进行长时间的可靠性验证测试,包括高温高湿测试、长期运行测试等,确保减薄后的晶圆在封装后能够长期稳定运行,并具备优良的可靠性。增加机械柔韧性减薄后的晶圆更加柔韧,可以适应一些特定的应用需求,如可穿戴设备或柔性电子产品。柔性电子学要求材料能够承受弯曲和变形而不损坏。较薄的晶圆可以使得器件更轻便、适应多种形态的应用场景,从而拓宽其在新兴领域的应用范围。工艺步骤如下:1. 机械强度测试:在晶圆减薄后,首先需要进行一系列机械强度测试,如弯曲测试和拉伸测试。这些测试可以帮助确定减薄后的晶圆在不同弯曲角度和拉伸条件下的性能,确保其在实际使用中不会断裂或失效。2. 冲击测试:除了弯曲测试,还需要进行冲击测试,评估薄晶圆在受到瞬间冲击力时的韧性和强度。这可以模拟设备在实际使用中可能遇到的跌落或碰撞情况。3. 疲劳测试:进行反复弯曲和拉伸的疲劳测试,以评估薄晶圆在长期使用中的耐久性。确保其在长期反复应力作用下仍能保持完整和功能。4. 环境适应性测试:研究薄晶圆在不同温湿度条件下的性能表现。进行高低温循环测试、湿度测试等,确保薄晶圆在各种环境条件下都能稳定运行。5. 表面处理:在晶圆减薄后,可以进行适当的表面处理,如涂覆保护层,以增加其耐用性和抗划伤性能。这对于增强薄晶圆在实际应用中的机械强度和可靠性非常重要。6. 实际应用测试:将减薄后的晶圆应用到具体的柔性电子产品或可穿戴设备中,进行实际使用测试。评估其在实际操作中的表现,包括耐用性、可靠性和用户体验。提高器件性能减薄晶圆后,可以减少寄生效应,尤其是在高频应用中。较薄的晶圆能够减少晶圆上的寄生电容和电感,从而提高器件的电气性能。这对于射频(RF)和高速数字电路尤为关键。在这些应用中,寄生效应会导致信号衰减和失真,而减薄晶圆可以有效减轻这些问题,提高信号的完整性和传输速度。工艺步骤如下:1. 电气性能测试: - S参数测试:进行S参数(散射参数)测试,评估减薄晶圆在不同频率下的电气性能。S参数测试可以提供有关信号反射、传输和匹配特性的详细信息,有助于优化高频电路设计。 - 高频响应测试:进行高频响应测试,评估晶圆在高频应用中的性能表现。这包括测量频率响应曲线、信号延迟和失真等关键指标,确保其在高频工作时性能优良。2. 寄生效应分析: - 寄生电容和电感测试:通过测量寄生电容和电感,量化减薄晶圆对这些寄生效应的影响。较薄的晶圆应表现出显著降低的寄生电容和电感,从而提高电气性能。 - 电气建模:基于测试结果,建立减薄晶圆的电气模型,用于仿真和优化电路设计,确保在设计阶段就能充分考虑减薄带来的性能提升。3. 稳定性验证: - 热循环测试:进行热循环测试,评估减薄晶圆在不同温度条件下的电气性能稳定性。确保其在高温、低温和温度变化条件下都能保持良好的性能。 - 长期运行测试:进行长期运行测试,评估减薄晶圆在长时间工作下的性能稳定性和可靠性。包括高频连续运行测试、功耗测试等,确保其在实际应用中长期稳定运行。4. 实际工作环境测试: - 环境适应性测试:模拟实际工作环境进行测试,评估减薄晶圆在不同工作环境中的表现,如湿度、振动和电磁干扰等。确保其在各种苛刻环境下依然保持优良的电气性能。 - 综合性能测试:将减薄后的晶圆集成到实际电路和系统中,进行综合性能测试,验证其在实际应用中的整体表现。包括系统级测试和应用场景测试,确保其在实际工作中具备预期的性能提升。提高良率减薄工艺可以去除晶圆表面的部分缺陷,如划痕和微裂纹,提高最终的芯片良率。通过减薄可以去除一些制造过程中引入的表面应力和缺陷,从而减少失效率。这一过程能够提高晶圆的整体质量,减少在后续制造和封装过程中出现的问题,最终提升成品率。工艺步骤如下:1. 精密磨削: - 初步磨削:使用高精度磨削设备进行初步磨削,去除晶圆表面的粗糙层和大部分缺陷。这一步需要控制磨削速度和压力,以避免引入新的应力和缺陷。 - 精细磨削:进行更精细的磨削处理,进一步平整晶圆表面,去除微小划痕和裂纹,确保表面光滑平整,为后续的抛光工艺做好准备。2. 化学机械抛光(CMP): - CMP工艺:使用化学机械抛光(CMP)技术,对晶圆表面进行精细抛光。CMP工艺结合了化学腐蚀和机械抛光的优点,可以高效去除表面缺陷,同时保证晶圆表面平整度。 - 抛光液选择:选择适当的抛光液和磨料,确保在去除缺陷的同时,不会引入新的表面缺陷。抛光液的化学成分和磨料的颗粒大小需要根据晶圆材料和目标表面质量进行优化。3. 表面检查: - 光学检查:使用高精度光学检查设备,对减薄后的晶圆表面进行全面检查。检测表面是否存在残留缺陷,如划痕、裂纹或颗粒等,确保表面质量符合标准。 - 缺陷分析:对发现的缺陷进行详细分析,确定其性质和可能的形成原因。分析结果可以用于优化磨削和抛光工艺,进一步提高晶圆质量。4. 应力测试: - 表面应力测试:进行表面应力测试,评估减薄过程中是否引入了新的应力。使用拉曼光谱、X射线衍射等技术,检测晶圆表面的应力分布和应力大小,确保晶圆在减薄后保持应力平衡。 - 机械强度测试:进行机械强度测试,如弯曲测试和拉伸测试,确保减薄后的晶圆具备足够的机械强度,不易在后续工艺中破裂或损坏。5. 质量标准验证: - 合格率统计:统计减薄后晶圆的合格率,分析工艺对良率的提升效果。合格率的提高直接反映了减薄工艺的优化程度和效果。 - 工艺优化:根据检查和测试结果,持续优化磨削和抛光工艺,调整参数和设备设置,确保每一批次的晶圆都能达到预期的质量标准。
  • 限国产!佛山仙湖实验室预算540万采购燃料电池环境实验舱
    3月12日,佛山仙湖实验室燃料电池环境实验舱采购项目发布招标公告,该项目预算540万,采购本国产品。一、项目基本情况项目编号:XH2021CB-01-006(内部编号:GZGK21D039A0087Z)项目名称:佛山仙湖实验室燃料电池环境实验舱采购项目采购方式:公开招标预算金额:5,400,000.00元采购需求:燃料电池环境实验舱实现的功能:环境舱主要用于150KW功率等级燃料电池发动机及其配套散热器,以及150KW的电堆在-40-+85℃的环境下进行温度存储试验,在-30-+65℃的舱内环境下进行60min额定功率、峰值功率、动态响应、稳态特性等试验时,舱内空气供应充足,各工况下发动机迎风面温度波动不超±3℃。并满足-40℃条件下低温启动试验,温度海拔高度试验(进排气管道气压模拟)。环境仓预留气体、冷却水以及电路接口。环境舱可分别做燃料电池发动机及电堆环境测试,环境舱需与发动机测试台架及电堆测试台架进行软硬件系统集成,可通过测试台架主控系统远程监测控制环境仓的工作状态。环境舱可进行单独编程控制,也可通过测试台架主控程序进联调控制。注:本项目采购本国产品。二、获取招标文件时间:2021年03月12日至2021年03月19日,每天上午09:00:00至12:00:00,下午14:30:00至17:30:00(北京时间,法定节假日除外)地点:广州市先烈中路100号科学院大院9号楼东座2楼(中国广州分析测试中心对面)方式:现场购买或在线购买。售价(元/套): 300三、提交投标文件截止时间、开标时间和地点2021年04月02日 15时00分00秒(北京时间)地点:广州市先烈中路100号科学院大院9号楼东座2楼(中国广州分析测试中心对面)四、联系方式1. 釆购人信息名称:佛山仙湖实验室地址:广东省佛山市南海区丹灶镇仙湖度假区阳明路1号联系方式:0757-812290952. 釆购代理机构信息名称:广州市国科招标代理有限公司地址:广州市先烈中路100号科学院大院9号楼东座2楼(中国广州分析测试中心对面)联系方式:020-876870433. 项目联系方式项目联系人:张小姐、李小姐电话:020-87687142、020-87688847五、附件投标须知.pdf0087Z佛山仙湖实验室燃料电池环境实验舱采购项目——发售稿.pdf
  • 万测集团受邀参加2018年汽车及内燃机热管理技术交流会
    2018年8月27日-8月29日由中国内燃机工业协会换热器分会、中国汽车工业协会车用散热器委员会、中国汽车工业协会汽车空调委员会、中国内燃机工业协会冷却水泵机油泵分会主办的“2018年汽车及内燃机热管理技术交流大会”在天津社会山国际会议中心酒店举办。深圳万测试验设备有限公司作为中国内燃机工业协会换热器分会会员企业受邀参加。 万测集团是一家流体压力检测和力学性能测试解决技术方案提供商,集研发、设计、制造、销售、服务为一体的国家级高新技术企业。致力于汽车零部件、空调、换热器、航空航天、国防军工、工程机械等领域的流体测试和控制技术。拥有国际领先ptm系列油系脉冲试验机、水系脉冲试验机、气体脉冲试验机;btm系列高低压耐压爆破试验机、高低温耐压爆破试验机、高低压水压试验机;ltm系列气密性试验机、水检气密试验机、产线气密性试验机;vtm系列真空试验机;vem系列体积膨胀试验机;拉力试验机、摆锤冲击试验机、落锤冲击试验机、液压试验机、疲劳试验机、冷热循环试验机、内部腐蚀试验机和非标流体试验机等检测设备。 我们的解决方案和产品服务主要应用于客户汽车管、塑料管、尼龙管、合金管、航空管、复合管、换热器、蒸发器、冷凝器、散热器、中冷器、油冷器、暖风芯体、水箱、油箱、滤清器等产品测试。主要客户有比亚迪汽车、江淮汽车、长安汽车、南京汽车、野马汽车、中汽检测、华测检测、谱尼测试集团、瀚海检测、sgs检测、伟世通、翰昂汽车零部件、邦迪集团、清华大学苏州汽研院、南汽研究院、宁波天普、重庆溯联、川环科技、浙江银轮机械、上海银轮热交换器、陕西科隆能源、陕西泰德汽车空调、中科院、中国空空导弹研究院、中煤科工集团、中国船舶工业、中航工业沈阳兴华航空、宝山钢铁股份有限公司等等。 我们将根据客户的实际需求,一如既往的提供具有深度、广度的产品和综合解决方案,成为您可信赖的首选合作伙伴。
  • 多地断崖式降温!你家的暖气是否被“偷”走热量?
    据了解可知,未来几天多地断崖式降温大范围雨雪将覆盖超7成国土幸好北方地区已逐步实现供暖那么各位菲粉你家的暖气“给力”不?01“供暖不久,家里就变得很热啦~通过FLIR红外热像仪检测发现,部分暖气片应该是有些故障,温度分布不均匀呀~”02“虽然供暖了,但是家里却不如邻居家暖和,通过热像仪检测,及时发现问题——原来是管道泄漏了,得赶紧找人修一修。”03“地暖是目前用的最多的取暖方式,它是以整个地面为散热器,以不高于60℃的低温热媒均匀加热地面,通过地面以辐射和对流的传热方式向室内供热,达到舒适采暖目的,看来我的房间供暖效果不错吧~”04“新装修的房子,地暖盘管的铺设该如何验收?强烈推荐FLIR红外热像仪,无需动手,一扫便知地暖铺设的重点与方向,非常方便!”05“寒冬到,没有暖气的南方人,只能靠一身正气来抵抗凛冽的寒风。瞧瞧我家猫主子,一早就跑到床上了,通过FLIR红外热像仪可知,整个屋子,它是温度高的~”06“想知道我家的供暖效果怎么样?一起跟随这个视频来看看吧!红外世界中,温度是可以看得见哒~"各地马上就要降温啦~小伙伴们要做好保暖的准备啊除了要备好秋衣秋裤家里的地暖设施也要提前检查好做好充足的准备对抗寒风吧~
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制