当前位置: 仪器信息网 > 行业主题 > >

硅胶材料分析

仪器信息网硅胶材料分析专题为您提供2024年最新硅胶材料分析价格报价、厂家品牌的相关信息, 包括硅胶材料分析参数、型号等,不管是国产,还是进口品牌的硅胶材料分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硅胶材料分析相关的耗材配件、试剂标物,还有硅胶材料分析相关的最新资讯、资料,以及硅胶材料分析相关的解决方案。

硅胶材料分析相关的资讯

  • 蠕动泵硅胶管——高效精准输送的首选材料
    蠕动泵是一种常用于工业领域的流体输送设备,而硅胶管作为蠕动泵的核心部件,具有高效精准输送的优势。本文将全面介绍蠕动泵硅胶管的特点、应用以及选购指南,帮助您更好地了解并选择合适的蠕动泵硅胶管。  一、硅胶管的特点:  蠕动泵硅胶管采用高级硅胶材料制造,其特点如下:  1. 高耐压性:硅胶管能承受较高的压力,保证流体输送的稳定性和连续性。  2. 优异耐腐蚀性:硅胶管具有良好的耐酸碱、耐腐蚀性能,可适应各种介质的输送。  3. 蠕动泵硅胶管具有优异的耐磨性,能够在高速流体输送过程中保持长时间的使用寿命。  4. 高精度输送:硅胶管内壁光滑,能够确保精确的流体输送,避免液体泄漏或堵塞。  5. 易清洗维护:硅胶管材料不易沾污,便于清洗和维护,节省了维护成本。  二、硅胶管的应用领域:  蠕动泵硅胶管在多个领域得到了广泛的应用,主要包括以下几个方面:  1. 化工行业:蠕动泵硅胶管可用于腐蚀性介质的输送,如酸、碱、溶剂等。  2. 食品行业:硅胶管材料符合食品安全标准,可用于食品、饮料等行业的液体输送。  3. 制药行业:蠕动泵硅胶管对药品无污染,适用于医药行业的液体输送。  4. 环保行业:硅胶管材料可耐受高浓度废液和污水,可用于环保设备的液体输送。  5. 实验室研究:蠕动泵硅胶管对微量药品输送需求较高,可用于实验室的液体输送。  三、蠕动泵硅胶管的选购指南:  在选购蠕动泵硅胶管时,需考虑以下几个因素:  1. 耐压性:根据实际需求选择硅胶管的耐压等级,确保满足流体输送的压力要求。  2. 适用介质:根据被输送介质的性质选择硅胶管的耐腐蚀性能,并确保不会对硅胶管产生腐蚀。  3. 尺寸规格:根据蠕动泵的型号和要求,选购合适尺寸的硅胶管,确保安装和使用的兼容性。  4. 成本因素:在保证质量的前提下,考虑硅胶管的价格因素,选择性价比较高的产品。  总结:  蠕动泵硅胶管作为蠕动泵的重要组成部分,具有高效精准输送的优势。通过选购适合的硅胶管材料,能够保证蠕动泵的稳定运行和长时间使用。无论是在化工、食品、制药还是环保等行业,蠕动泵硅胶管都能发挥重要作用,满足液体输送的需求。
  • 博纳艾杰尔高性能硅胶基质色谱分离材料及色谱柱进入欧洲药典
    记者在天津市滨海新区开发区了解到,天津开发区高新技术企业天津市博纳艾杰尔科技有限公司承担的“十一五”国家科技支撑计划重大项目--高性能硅胶基质色谱分离材料及色谱柱,近日通过专家鉴定,进入欧洲药典。这意味着我国已经掌握了高性能色谱行业的核心技术,从而为制药、化工以及环保、食品检测提供有力支持。这也是我国首个进入欧洲药典的色谱柱。   天津博纳艾杰尔科技成立于2007年,是天津泰达国际创业中心孵化的开发区高新技术企业,主要生产和开发分离材料及其派生产品,主打产品为色谱耗材。博纳艾杰尔已经为此项目成立了一支40多人的研发团队,建立了完整的生产产业链,可生产近百种规格的高性能色谱填料,每年的色谱填料产量在300公斤、色谱柱7000支,其中三分之一用于出口。
  • SunFire色谱柱:沃特世最优硅胶基质通用色谱柱,为食品安全检测提供更佳工具
    沃特世公司推出的SunFire C 18和C8 色谱柱为行业内的硅胶基质反相C 18 和C8 柱建立了性能新标杆,沃特世公司多年来在填料颗粒合成和键合封尾技术的研究及在柱产品开发方面的努力,造就了SunFire色谱柱的卓越性能。而这些性能,完美符合今天食品安全检测技术的特点与需求。 普遍优异的峰形 中 -低pH条件下对各种化合物普遍具有极佳峰形,适用于多组分残留检测 高容量设计 特别适用于痕量组分分析,耐受高进样量而不容易出现过载问题 优异柱效与分辨率 特别有利于样品基质相对复杂的食品安全检测,包括多组分残留检测 多种粒径与柱规格 粒径2.5,3.5,5µ m,柱内径范围1.0-4.6mm,柱长度20-250mm,适用于各种分析需要。窄内径可直接适配MS 检测器而无需分流。小粒径与短柱长,可帮助色谱工作者获得更高的灵敏度与更高的分析通量。不同柱规格之间,方法转移轻松自如。 优异的质谱兼容性 因其出色的颗粒合成技术与键合/封端技术,即使使用低离子强度条件(如0.1%甲酸条件),仍能获得对碱性分析物的良好峰形,而不容易出现鲨鱼鳍似的过载峰,确保了分离度与灵敏度,这尤其适用于以LCMS检测平台为主的食品安全检测。 其出色的低pH条件下的稳定性,确保了使用LCMS技术时不受键合相流失的背景噪音困扰,以及更稳定耐用的色谱柱使用寿命。 对杀真菌剂多组分残留的检测 苯并咪唑类(Benzimidazoles),如涕必灵(Thiabendazole),是常规用于保护水果以及蔬菜的杀真菌剂。但是对这些物质进行液相分析通常比较麻烦。例如,涕必灵,在大多数反相硅胶色谱柱上,会显示出明显的拖尾,特别是当分析在酸性pH条件下进行时。涕必灵和多菌灵(Carbendazim)用pH 10条件在沃特世杂化颗粒技术色谱柱如XTerra ® MS C 18柱上会得到很好的保留和峰形;但是高pH条件不适合于其他种类的杀真菌剂组分的同时检测,例如,硫菌灵(Thiophanate)和甲基硫菌灵(Thiophanate Methylate),它们是氨基甲酸酯类杀真菌剂,在高pH流动相中不稳定,如使用高pH条件进行检测时将被漏检或检测浓度不准确。 使用SunFire TM C 18色谱柱,在低pH条件如pH 3.7,可以对所有这些杀真菌剂分析物都得到极好的保留与峰形。可以看到,使用pH3.7条件对涕必灵和多菌灵进行等梯度分时,10%峰高处的拖尾因子仅为1.2,可以与XTerra ® 色谱柱在高pH条件下所得到的峰形相媲美。而这一结果,是其他硅胶C 18柱在相似条件(低pH)下很难匹及的。 测试条件 SunFire™ C18: 2.1x100mm,3.5um,PN 186002534 流动相A: 水 流动相B: 乙腈 流动相C: 500mM甲酸铵缓冲液(pH 3.7)梯度或等度条件如谱图说明所示 柱温:30℃ 仪器:Alliance 2695,Waters ZQ MS 质谱条件: 锥孔电压25V,ESI+模式(源温度120℃,去溶剂化温度350℃) 分析物 母离子[M+1]+ 多菌灵(Carbendazim) 192 涕必灵(Thiabendazole) 202 甲基硫菌灵(Thiophanate Methylate) 343 硫菌灵(Thiophanate) 371 腈菌唑(Myclobutanil) 289 丙环唑(Propiconazole) 342 SPE条件 3cc Oasis MCX小柱 活化与平衡: 1mL甲醇润洗,1mL水平衡 上样: 样品溶液用甲酸调节至PH3,以5mL/min速度上样 清洗:1mL 20:89:1 甲醇/水/浓氨水 洗脱:2mL 2%氨水甲醇 因氨基酸酯类在碱溶液中不稳定,将洗脱液挥干,用流动相溶解
  • Supelco推出Titan UHPLC色谱柱——最新专利硅胶工艺
    Sigma-Aldrich 推出液相色谱柱新品 Titan&trade UHPLC 色谱柱(1.9&mu m) &mdash &mdash 最新专利硅胶制造工艺,性能卓越! Sigma-Aldrich旗下分析品牌Supelco近日推出Titan&trade C18 UHPLC 1.9&mu m液相色谱柱, 该色谱柱采用了Supelco公司最新专利硅胶制造工艺Ecoporous&trade 所得的1.9&mu m多孔硅胶。该单分散多孔硅胶颗粒,与其他亚2&mu m多孔硅胶颗粒相比,具有更窄的颗粒分布范围,柱效高达250,000 N/m,坚固耐用,性能卓越! 更多Titan 1.9&mu m UHPLC 色谱柱信息请参考如下链接:sigmaaldrich.com/titan 关于Supelco 美国 Supelco公司成立于1966年,一直致力于色谱耗材的研究和生产,是色谱耗材的专业生产公司。超过40年在色谱和分析领域的技术经验, 拥有多项专利技术,提供范围广泛的产品:气相色谱柱(包括手性柱)和配件、液相色谱柱(包括手性柱)和配件、固相萃取小柱和装置、固相微萃取手柄和萃取 头、空气检测产品、分析标准品和样品瓶等。1993年,Supelco正式加入美国Sigma-Aldrich公司,成为Sigma- Aldrich公司旗下分析业务的专业品牌。联系方式:上海021-61415566-8209,北京010-65688088-6841,广州020-38840730-5009。
  • 月旭推出球状蛋白亲水改性硅胶色谱柱-Ultimate SEC
    Ultimate® SEC色谱柱是硅胶基质的体积排阻色谱柱,也可以称之为&ldquo 球状蛋白亲水改性硅胶柱&rdquo (中国药典门冬酰胺酶指定色谱柱)。其色谱填料为高纯度、具有良好稳定性的硅胶微球表面键合亲水性聚合物。月旭公司采用特殊的表面修饰技术,确保了该填料具有良好的稳定性和批与批之间的重现性。 Ultimate® SEC填料采用独特的化学键合技术,在硅球表面键合了亲水性聚合物以及亲水性二醇基官能团。双重键合机制使水溶性高分子聚合物、蛋白、生物酶、多肽等生物样品的非特异性吸附极小,因而可广泛应用于水溶性聚合物及生物大分子的分离和测定。 Ultimate® SEC色谱填料的特点 1) Ultimate® SEC色谱填料由含二醇基官能团的刚性球形硅胶微球表面覆盖亲水性高分子聚合物所组成; 2) Ultimate® SEC色谱填料内径为5 &mu m或3 &mu m的硅胶微球,能够获得最高的分离效率。 3)Ultimate® SEC 120 Å 小孔径色谱柱适合分离头孢类等极性目标物;300 Å 适合分离蛋白、多肽等生物大分子; 4) Ultimate® SEC产品目前有120 Å 、300 Å 、500 Å 和1000 Å 四种孔径规格的色谱柱。 Ultimate® SEC色谱填料的技术参数 Ultimate® SEC色谱柱使用注意事项 1)使用前,请把色谱柱用纯水冲洗40-60个柱体积,以确保柱填料能够充分被润湿,防止色谱柱在使用过程中造成固定相塌陷; 2)色谱柱在用纯水流动相分析时,需要充分地用纯水流动相平衡色谱柱,待基线充分平稳后进样分析; 3)由于该类型色谱柱一般用的流动性是纯水相的缓冲盐,因而色谱柱在使用完以后需要用纯水流动相充分冲洗色谱柱,以保证缓冲盐被充分的清除,防止缓冲盐对色谱柱固定相造成的伤害; 4)长时间不使用色谱柱时, 该类型色谱柱保存方式类似于常规的色谱柱,即高比例的有机溶剂-水溶液中,一般有机溶剂的比例为90%。 Ultimate® SEC色谱柱可替代市场上同类型产品 1) Ultimate® SEC 120 Å 可替代的其他厂家色谱柱有:日本东曹Tosoh公司的TSK gel G2000SWxl、日本昭和电工Shodex公司的 PROTEIN KW-802.5、Sepax SRT SEC-150等; 2) Ultimate® SEC 300Å 可替代的类型有: 日本东曹Tosoh公司的TSK gel G3000SWxl、日本昭和电工Shodex公司的 PROTEIN KW-803、Sepax SRT SEC-300等; 3) Ultimate® SEC 500Å 可替代的类型有:日本东曹Tosoh公司的TSK gel G4000SWxl、Sepax SRT SEC-300、日本昭和电工Shodex公司的PROTEIN KW-804; Ultimate® SEC型色谱柱性能评价 色谱柱:Ultimate SEC(7.8× 300 mm,5 &mu m,300 Å ); 流动相:150 mM磷酸盐缓冲溶液,pH 7.0(具体配置方法为:称取17.997 g磷酸二氢钠,用超纯水定容至1000 mL,然后用1 M氢氧化钠调节至所需pH值); 检测波长:214 nm; 流速:0.8 mL/min; 柱温:室温(25 oC); 进样量:10 &mu L。 样品处理方法:四种标准物质的浓度均为1.0mg/mL,解冻至室温后直接进样; 四种标准物质色谱图(1.甲状腺球蛋白;2.牛血清蛋白;3.核糖核苷酸酶A;4.尿嘧啶)
  • 博纳艾杰尔推出丙基酰胺键合硅胶色谱柱
    Venusil HILIC亲水作用色谱柱   亲水作用色谱(Hydrophilic Interaction Chromatography,HILIC)是近年来色谱领域研究的热点,博纳艾杰尔科技推出丙基酰胺键合硅胶为基质的HILIC色谱柱, 对极性化合物,如极性代谢物,碳水化合物或肽具有极佳的分离效果。   丙基酰胺键合硅胶克服了传统正相色谱柱在水相条件下不稳定的缺点,其常使用流动相是和反相色谱相同的水相缓冲液( 40%)及有机溶剂,但是其梯度条件通常是初始为高比例有机相,逐步加大水相含量 极性丙基酰胺键合硅胶的HILIC色谱柱在反相条件下,可以有效的保留极性化合物,是一种崭新的极性化合物HPLC分离解决方式.      图1. Venusil HILIC 比传统正相色谱柱更稳定   样 品:VB1, VB6, VC, VB2   老化条件:甲醇:20 mM NaH2PO4 (pH=7.0) = 40 : 60 1.0mL/min 温度:40℃   分析条件:0.1%TFA:ACN = 90:10 流速: 1.0mL/min 温度:30℃ ,UV280nm      色谱柱: Atlantis C18 4.6×250mm,5μm   流动相:98%的0.005M的磷酸 钠 (pH=7):2% 甲醇   流 速: 1ml/min   柱 温: 25℃   检 测: UV 210nm      色谱柱:Venusil HILIC 4.6×250mm,5μm   流动相: A: 0.1%TFA水溶液,   B: 乙腈,   A:B=75:25   流 速: 1 mL/min   温 度: 25℃   检 测: UV 210 nm   图2. Venusil HILIC与C18分离井冈霉素对比色谱图   图2. 结果显示,反相C18在98%的水相条件下,几乎没有保留的强极性化合物井冈霉素,在25%的乙腈条件下,使用丙基酰胺键合硅胶的Venusil HILIC得到了很好的分离。所以,Venusil HILIC色谱柱是强极性化合物分离的有力工具。   丙基酰胺键合硅胶的HILIC色谱柱用于低聚糖的分析,显示出比氨基柱更好的稳定性,更好的分离效果,尤其在使用ELSD检测器的时候,丙基酰胺键合硅胶比氨基键合硅胶具有更低的背景噪音,图3。      图3. 丙基酰胺键合硅胶HILIC色谱柱与氨基键合硅胶柱分离葡萄糖对比   样品:葡萄糖标准品(购至Sigma)   检测:ELSD   色谱柱:4.6×250mm,5μm   色谱条件:乙腈/水(80:20),1mL/min,30℃   图3显示,丙基酰胺键合硅胶填充的HILIC色谱柱可以将葡萄糖在水溶液中存在的两个端基异构体(即α-D-葡萄糖和β-D-葡萄糖)区分开,而用氨基柱则只能得到一个相对较宽的色谱峰,结果表明了丙基酰胺键合硅胶HILIC柱在分析糖类成分方面的独特优势。   腺苷类强极性抗肿瘤药物地西他滨(Decitabine)在普通的反相C18色谱柱上检测有关物质存在杂质分离度不够或检测不出的问题,使用丙基酰胺键合硅胶的Venusil HILIC色谱柱获得了极佳的分离效果,图4。      图4. 地西他滨有关物质分析色谱图   Venusil HILIC(丙基酰胺键合硅胶),4.6×150mm,5μm,乙腈:水=96∶4,1ml/min,   UV@244nm,室温 Venusil HILIC 丙基酰胺键合硅胶.pdf
  • 岛津实验推出新款高纯硅胶色谱柱
    p style=" line-height: 1.75em text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 仪器信息网讯 /span /strong span style=" font-family: 宋体, SimSun " 今年,岛津实验器材SHIMSEN(新生)系列推出多种新品,涵盖液相柱、前处理柱、试剂标准品、样品瓶等通用耗材。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 其中的SHIMSEN Ankylo C18液相柱是一款高纯硅胶液相色谱柱,该款柱子不仅在较宽pH范围、较高比例水相流动条件下稳定使用,还能广泛应用于食品、药品、环境等多个领域的分析检测项目。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/b098314b-8368-4050-9811-4a48925444ac.jpg" title=" 3.png" alt=" 3.png" / /p p style=" line-height: 1.75em text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 亮点一 适中的疏水保留能力 /span /strong /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " SHIMSEN Ankylo C18系列通过优化的表面键合密度,在保证良好分离效果的前提下,可提供适中的疏水作用力,化合物洗脱更快,分析效率更高。在与岛津高分离度系列VP-ODS和GIS C18的对比实验中可以看到,使用SHIMSEN Ankylo C18色谱柱可获得相当的分离效果,同时出峰更迅速。柱效更高,峰形也更尖锐。 /span /p p style=" margin: 0px 0px 10px background: white line-height: 1.75em text-indent: 2em " strong span style=" font-family: 宋体, SimSun " 亮点二 出色的抗污染能力和强大的分离能力 /span /strong /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 食品中添加剂的检测是对色谱柱要求较高的一类项目,受食品基质的影响,色谱柱耐受性是最大的问题。而添加剂常检测项目中的脱氢乙酸检测,又易遇到拖尾、与糖精钠分离不开的问题。采用SHIMSEN Ankylo C18色谱柱,即可轻松解决上述难题,峰形、分离度皆可满足要求。配合WondaGuard保护柱使用,更可在进样100针以后维持良好峰形。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 此外,岛津实验还推出了同系列新品——SHIMSEN Ankylo益母草专用柱。 /span /p p br/ /p
  • 博纳艾杰尔Cleanert S球形硅胶大受欢迎,领取记录不断刷新
    球形硅胶发布免费领取试用信息后受到广大客户的热烈欢迎,到目前为止已经发放近80多套试用装,这些客户包括中山医学院附属肿瘤医院、军事医学科学院、兰州大学药学院、南昌大学医学院、山东大学、天津市国际生物医药联合研究院、湖北武汉华中科技大学附属同济医院、南京卡博生物科技有限公司、第二军医大学肿瘤研究所、奔达纺织集团有限公司等等一些客户,他们对Cleanert S均表现了浓厚的兴趣,纷纷询问这款新产品的详细参数及适用范围,并希望将应用中出现的问题进一步和工程师交流。 博纳艾杰尔非常感谢以上客户对本活动的支持,也希望与更多的希望了解样品前处理,了解Cleanert S球形硅胶的客户联系并提供技术支持,用我们真挚的服务和优质的产品, 获得您的认可。 如您对Cleanert S感兴趣,请咨询我们的客服热线400-606-8099或发邮件到service@agela.com.cn 关注球形硅胶的详细参数,您可以点击http://www.agela.com.cn/web/news/detail.asp?id=927
  • 傅若农谈用于固相微萃取样品制备中的吸着材料
    往期讲座内容见:傅若农老师讲气相色谱技术发展   对复杂基体(例如食品中微量残留物和污染物)的非常低浓度的化合物的分析,通常需要一个复杂的分析方法,包括采样,样品制备,分析物分离,定性和定量测定。多数分析家认为样品准备是关键、瓶颈,因为它通常是耗时最长的步骤,回收率低,容易产生污染,比其他步骤更难以自动化。最近,受绿色分析方法的刺激,把微量固相萃取技术推向前台,而各种吸着(吸附和吸收)材料是这些微萃取技术的基础,所以这一领域的研究最为活跃。  在上世纪70年代,固相萃取(SPE)——经典液相色谱的小型化,很快成为多年使用的液-液萃取处理样品的替代方法之一,虽然SPE比以前使用的样品制备方法大大降低了有机溶剂的量,但是由于要使用相对大量的有机溶剂。因此,出现了各种固相微萃取的小型化方法,进入了所谓的微萃取技术的时代,如下图1所示。 图 1 固相萃取半个多世纪的演变  固相萃取的小型化使这一技术进一步扩大了它的应用,并促进了固相萃取吸着剂的研究和发展,吸着剂(sorbent materials)(或萃取剂,捕获剂)包括吸收和吸附。从微观的角度看,这两类的 SPE 涂层有明显的区别。吸附是分析物分子直接以分子力吸着到涂层表面。吸收则是分子溶入涂层的主体内。基于吸附机理的萃取因其可进行吸附的表面位置有限,因此吸附是竞争过程 而基于吸收机理的萃取,由于两种性质相似的液体可以以任何比例互溶,因此吸收是非竞争过程。如下图2所示。我把两种过程总称为吸着。 图 2 吸收和吸附的概念左面: a 吸附 b. 大孔吸附 c. 小孔吸附右面 a 吸收 b. 大孔吸收 c. 小孔吸收( 色谱,2001,19(4):314)1. 微固相萃取使用的吸着剂  在SPE 半个多世纪的第一阶段,是使用活性碳作吸附剂的时期,这是沿袭了历史的经验,用活性碳吸附水中的有机物,是一种很有效的方法,但是活性炭吸附性不均一,重复性不好,有过高的吸附性,有不可逆活化点,回收率低。所以从上世纪 60 年代末到80 年代初,一直在寻找更为合适的适应性更强的 SPE 填料。有许多溶于水中的有机化合物不能被活性碳所吸附,而一些被吸附的化合物又不能被溶剂洗脱出来。当时就着重于使用聚合物和各种键合在硅胶上的有机基团,前者如交联聚苯乙烯树脂 Amberlite XAD-1,后者如十八烷基硅胶(ODS)和辛基、乙基硅胶。上世纪 60 年代中期 Rohm 和 Haas 公司推出 Amberlite XAD-1 (交联聚苯乙烯)作萃取用吸着剂,上世纪 70 年初代又引入苯乙烯-二乙烯基苯 Amberlite ( XAD-2 和XAD-4)和乙烯二甲基丙烯酸酯树脂(XAD-7和XAD-8)。用于ppb级有机物的萃取。还研究了多种共聚物,如 porapaks 和 Chromosorbs 其中以 Tenax (2,6-diphenyl-p-phenylene oxide) 使用者最多。由于聚合物吸着剂中残留制造时的一些化合物如单体、溶剂,给SPE 的标准化带来困难,同时受到上世纪 70 年代 HPLC 填料研究的刺激,兴起了在 SPE 中使用 HPLC 填料作SPE 的吸着剂。  硅胶是很古老的吸附剂,广泛用于萃取介质,硅胶又可以键合各种有机基团,所以在固相萃取中有较多的使用。硅胶的活性中心是其结构上的羟基(硅烷醇),在结晶的硅胶中,它们是孤立的,不与相邻的羟基相作用。用于SPE 的硅胶是无定形的,其相邻的羟基间可发生氢键相互作用,发生氢键相互作用的羟基数目取决于吸附剂的孔径。小孔硅胶表面主要被氢键相互作用的羟基所占有,大孔硅胶表面主要被孤立的羟基所占有。如果将无定形硅胶进行加热处理,则表面羟基失水转变为硅氧烷,这时,表面活性中心基本消失,吸附作用很弱,大孔硅胶的这种失水反应是可逆的,如果将失水硅胶与水一起加热,硅氧烷与水反应成为硅烷醇。如果失水发生在小孔硅胶或加热温度过高,则反应是不可逆的。未经加热处理的无定形硅胶,其表面羟基被水所覆盖,没有吸附活性,故需将它置于150一200℃下长时间加热进行活化。除去水后的相邻羟基形成氢键。若加热温度超过200℃,氢键相互作用的羟基将失水成为硅氧烷。加热温度超过 600℃,全部羟基(包括氢键相互作用的羟基和孤立的羟基)失水成为憎水的硅氧烷。在更高的温度(900℃)下,硅胶表面将烧结。硅胶表面上成氢键存在的羟基是吸附剂的活性中心,它对单官能团化合物有很强的吸附作用。它对一些化合物会产生永久性的吸附。因此作为SPE吸附剂,应当适当地进行减活处理,使其表面的活性中心比较均匀一致。硅胶吸附少水对其性能有很大的影响。由于极性化台物的k’值随着吸附剂含水量的增加而减少,为了保持吸附的稳定,含水量必须保持恒定。硅胶在含水量为4—20%时,分离效率差别很小,通常,水的加入量只要满足吸附剂表面形成50-75%的水单分子层就行了,此时,每100 m2吸附剂表而含水 0.02-0.038 g 。例如每l00 g 硅胶加水8-12 g 水。加入水后,与干吸附剂相比,容量可提高5-l00倍。  由于 硅胶键合有机物的稳定性和规范化,1978 年形成了SPE 小柱的商品,从而得到了广泛的应用,逐渐成为SPE的主流。如表1 中100例MEPS中使用最多的是这类吸着剂。其中C18—25.1%,C8—24.5%,C2—13.3%,MI——14.4%,硅胶——7.6%,其他——15.4%。C18+ C8+ C2=62.9%。  2006年我从500多篇使用SPE研究报告中发现使用最多的是C18 SPE柱 和OasisHLB 柱(二乙烯基苯-N-乙烯基吡络烷酮共聚物(分析试验室,2006,25(2):100-122)。  表 1 填充吸着剂微萃取(MEPS)使用过的吸着剂吸着剂分析物文献1C18利多卡因,甲哌卡因、布比卡因,罗哌卡因J Chromatogr B,2004, 801:317–3212MIP肌氨酸J Sep Sci,2014, doi:10.1002/jssc.201401116.3硅基苯磺酸阳离子交换剂局部麻醉药J Chromatogr,2004, B 813:129–135.4聚苯乙烯聚合物ISOLUTE ENV +6-(苄基氨基)-2(R)-[[1-(羟甲基)丙基]氨基]-9-异丙基嘌呤(Roscovitine)J Chromatogr B,2005, 817:303–3075聚苯乙烯聚合物奥罗莫星(Olomoucine)Anal Chim Acta,2005, 539: 35–396硅胶基(C8),聚合物( ENV+),和甲基丙烯酸甲酯的有机整体柱罗哌卡因,利多卡因,代谢物(甘氨酰二甲苯胺,甘氨酸二甲代苯胺,3-OH-利多卡因)J Liq Chromatogr Relat Technol,2006,29:829–840.7聚苯乙烯聚合物醋丁洛尔,美托洛尔J Liq Chromatogr Relat Technol, 2007,30:575–5868Csilica-C8美沙酮J Sep Sci,2007,30:2501–25059C2-吸附剂环磷酰胺J Liq Chromatogr Relat Technol, 2008,31: 683–694.10C2, C8, 聚苯乙烯聚合物AZD3409( N-[2-[2-(4-氟苯基)乙基]-5-[[[(2S,4S)-4-[(3-吡啶羰基)硫代]-2-吡咯啉]甲基]氨基]苄基]-L-蛋氨酸 1-甲基乙酯)J Chromatogr Sci,2008,46:518–523.11C18羟基化聚苯乙烯二乙烯基本共聚物(ENV+)布比卡因和 [d3]-甲哌卡因Anal Chim Acta,2008, 630 : 116–12312C18氟喹诺酮类Anal Chem,2009,81:3188–319313C8 , ENV+ ,Oasis MCX,Clean Screen DAU可卡因及其代谢物J Am Soc Mass Spectrom,2009,20:891–89914C18麻醉药品Electrophoresis, 2009,30 :1684–169115C18甲基安非他明和安非他明J Chromatogr A,2009, 1216 :4063–407016C18溶解性有机物和天然有机物Anal Bioanal Chem, 2009, 395:797–80717C18单萜类代谢产物Microchim Acta,2009,166:109–11418C18硅胶有机优先污染物和暴露的化合物J Chromatogr A,2010, 1217 :6002–601119C8抗抑郁药J Chromatogr B,2010, 878:2123–212920C8利培酮及其代谢产物Talanta,2010,81:1547–155321C8,C18紫外滤光片和多环麝香化合物J Chromatogr A,2010,1217:2925–293222C18奥卡西平及其代谢物Anal Chim Acta,2010, 661:222–22823C2, C8, C18,硅胶,C8/SCX可替宁Anal Bioanal Chem,2010,396:937–94124C18甾体代谢物J Chromatogr A,2010,1217:6652–666025C8利培酮和9-羟利培酮J Chromatogr B,2011,879:167–17326MIP氟喹诺酮类化合物Anal Chim Acta,2011,685:146–15227C18非极性杂环胺Talanta,2011,83:1562–156728C8瑞芬太尼J Chromatogr B,2011,879:815–81829--氯氮平及其代谢产物J Chromatogr A,2011,1218:2153–2159.30C8阿托伐他汀及其代谢产物J Pharm Biomed Anal,2011,55:301–308.31C18氯贝酸,布洛芬,萘普生,双氯芬酸和布洛芬J Chromatogr A,2011,1218:9390–939632MIP,C18-硅胶(改性)雌激素类化合物的17β -雌二醇Anal Chim Acta,2011,703 41–5133C8阿片类药物Anal Chim Acta,2011,702:280–28734C2, C8, C18, SIL(未改性硅胶), M1(80% C8 和 20% SCX)(E)-白藜芦醇J Sep Sci,2011,34 :2376–2384. 35C18美沙酮Anal Bioanal Chem,2012,404:503–51136C18黑索金,TNTChromatographia,2012,75:739–74537C18多环芳烃Talanta,2012, 94:152–15738C8免疫抑制药物J Chromatogr B,2012,897:42–49.39C2, C8, C18, SIL, and M1生物相关的酚类成分J Chromatogr A,2012,1229:13–2340C18哌嗪类兴奋剂J Pharm Biomed Anal,2012,61:93–9941C18, C8,和 C8-SCX精神治疗药Anal Bioanal Chem,2012,402:2249–225742C2, C8, C18, 1M(阳离子交换剂)和Sil普萘洛尔、美托洛尔、维拉帕米Rapid Commun Mass Spectrom,2012,26:297–30343C8普伐他汀普伐他汀内酯Talanta,2012,90:22–2944C18酚酸J Chromatogr A,2012 1226:71–76.45C18抗癫痫剂J Sep Sci,2012,35:359–36646硅胶离子液体Talanta,2012, 89:124–12847聚吡咯/尼龙有机磷农药J Sep Sci,2012,35:114–12048C2, C8, C18, 硅胶和 M1 (混合 C8-SCX)挥发性和半挥发性成分Talanta,2012,88:79–9449C8, C18哌嗪类兴奋剂J Chromatogr A,2012,1222:116–12050C2, C8和ENV+感觉神经元特异性受体激动剂BAM8-22和拮抗剂BAM22-8Biomed Chromatogr, 27,2013:396–40351C18大环麝香香水J Chromatogr A,2012,1264:87–9452C8多环芳烃J Chromatogr A,2012,1262:19–26.53C18抗癫痫药物J Sep Sci,2012,35:2970–297754C18卤代苯甲醚J Chromatogr A,2012,1260:200–20555C18芳香胺Anal Bioanal Chem,2012,404:2007–201556聚苯胺纳米线农药 Anal Chim Acta,2012,739:89–9857C2、C8、C18和C8 / SCX,SIL黄酮醇Anal Chim Acta,2012, 739:89–9858C8褪黑素与其他抗氧化剂J Pineal Res,2012,53:21–2859C2, C8, C18和含C8的硅胶类似M1L-抗坏血酸的测定Food Chem,2012,135:1613–161860C18卤代乙酸J Chromaogr A,2013,1318:35–4261MIP局部麻醉剂:利多卡因,甲哌卡因和布比卡因Biomed Chromatogr,2013,27:1481–148862C8心脏药物J Chromatogr B,2013,938:86–9563C8和强阳离子交换剂5-羟色胺再摄取抑制剂,抗抑郁药J Braz Chem Soc,2013,24:1635–164164C18麝香酮Anal Bioanal Chem,2013,405:7251–725765C8利多卡因Biomed Chromatogr,2013,27:1188–119166C18非甾体类抗炎药J Chromatogr A,2013,1304:1–967C2、C8、C18,SIL,M1苯基黄酮J Chromatogr A,2013,1304:42–5168C18大麻类J Chromatogr A,2013,1301:139–14669C18氯苯Anal Bioanal Chem,2013,405:6739–6748.70CMK-3纳米碳迷迭香酸Chromatographia,2013, 76:857–86071C2,C8,C18,SIL,M1氧化应激生物标记物Talanta,2013, 116:164–17272CMK-3纳米碳橄榄生物酚73 Anal Sci,2013,29:527–5327380% C8 20% SCX抗精神病药物Anal Bioanal Chem,2013,405:3953–396374C18多环芳烃和硝基麝香75C8氧化损伤DNA尿中的生物标记物PLoS ONE 8 (2013)e5836676C18抗精神病药物Anal Chim Acta,2013, 773:68–7577C2、C8、C18和C8,SIL / SCX羟基苯甲酸和羟基酸Microchem J,2013,106:129–138.78C2抗精神病药齐拉西酮J Pharm Biomed Anal,2014,88:467–47179C8可的松,皮质酮,acortisolJ Pharm Biomed Anal,2014,88:643–64880多孔石墨化碳颗粒恩替卡韦J Pharm Biomed Anal,2014,88:337–34481C18和 C8/SCX,莱克多巴胺Food Chem,2014,145:789–79582DVB芳香胺Talanta,2014, 119:375–38483SIL, C2, C8, C18, and M1氨基甲酸乙酯Anal Chim Acta, 2014,818:29–3584聚苯乙烯β -受体阻滞剂美托洛尔和醋丁洛尔M.M. Moein (Ph.D. thesis), Stockholm University, 201485C8多环芳香族碳氢化合物J Chromatogr A,2006, 1114:234–238.86C18布比卡因,利多卡因,罗哌卡因Bioanalysis,2010, 2:197–20587C18卤乙酸J Chromatogr A,2013, 1318:35–4288C8/SCX三环类抗抑郁药 Chromatogr A,2014, 1337:9–1689C18氯酚J Chromatogr A,2014, 1359:52–5990C18溴联苯醚J Chromatogr A,2014, 1364:28–3591C18非甾体类抗炎药物J Chromatogr A 1367 (2014) 1–892MIP瘦肉精,J Pharm.Biomed Anal. 91 (2014) 160–16893C18卡马西平、拉莫三嗪,奥卡西平,苯巴比妥,苯妥英和活性代谢物环氧化卡马西平和利卡西平J Chromatogr B 971 (2014) 20–2994C8千金藤素J Anal Methods Chem,2014,2014:1–695C8磺胺类药物J Liq Chromatogr Relat Technol,2014,37:2377–238896氨丙基杂化硅胶整体柱五种抗精神病药(奥氮平、奎硫平、氯氮平、氟哌啶醇、氯丙嗪)和七中抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰,氯丙咪嗪,丙咪嗪、氟西汀)Talanta1,2015,40:166–17597C2,C8,C18,M1肉碱和酰基肉碱J Pharmaceu Biomed Anal,2015,109:171–17698C18儿茶酚胺类(如去甲肾上腺素、肾上腺素和多巴胺)J Pharmaceu Biomed Anal,2015,104:122–12999M1氯胺酮及其代谢物J Chromatogr B, 2015,1004:67–78100Carbon-XCOSβ -受体阻滞剂美托洛尔,醋丁洛尔J Chromatogr B, 2015,992:86–902. 新型、选择性固相微萃取吸着剂  目前被分析物基体十分复杂,如生物样品、食品,含有多种化合物及多种异构体,使用传统萃取吸着剂对其缺乏选择性。由于很难消除基体中杂质的影响,导致后续的色谱、质谱分析受到严重干扰。因此出现了许多新的、选择性吸着剂,如分子印迹聚合物、免疫亲和吸着剂、核酸适配体功能化吸着剂、磁性固相萃取吸着剂、分子印迹介孔材料吸着剂、金属有机骨架材料吸着剂、树枝状大分子材料吸着剂、各种纳米材料吸着剂(富勒烯、石墨烯、碳纳米管等)。下表2列出近年新型选择性微固相萃取吸着剂的应用实例。  表 2 新型选择性微固相萃取吸着剂吸着剂被分析物样品基质检测回收率/%LOD文献1石墨烯, Pb环境水和蔬菜火焰原子吸收光谱(FAAS)95.3–100.40.61 ug/LAnal Chim Acta,2012,716:112–1182石墨烯谷胱甘肽人血浆荧光分光光度计92-1080.01 nMSpectrochim Acta,2011,79:860–1863氧化石墨烯氯苯氧酸除草剂河水与海水CE93.3- 102.40.3–1.5ng/LJ Chromatogr A,2013,1300:227–2354RGO-silica(氧化石墨烯衍生物-硅胶)氟喹诺酮自来水和河水LC-FLR72–118未报道J Chromatogr A,2015,1379:9–155磺化石墨烯多环芳烃河水GC-MS81.6 -113.50.8–3.9 ng/LJ Chromatogr A,2012,1233:16–216富勒烯-二硫代氨基甲酸钠(C60-NaDDC)Pb雨水GC-MS92 -100 415 ng/LAnal Chem,2002, 74:1519–15247富勒烯C60Cd水,牡蛎组织,猪肾牛肝AAS未报道0.3-0.3 ng/mLJ Anal At Spectrom,1997,12 :453–4578富勒烯C60汞(II)、甲基汞(I) 与乙基汞(I)海水,废水和河水GC-MS80–1051.5 ng/LJ Chromatogr A,2004,1055:185–1909富勒烯C60有机金属化合物水溶液GC-MS未报道5–15 ng/mLJ Chromatogr A,2000, 869:101–11010富勒烯C60金属二硫代氨基甲酸盐粮FAAS92–981–5 ng/mLAnalyst,2000,125:1495–149911富勒烯C60BTEX海水,废水,地表水,雨水,湖水,饮用水和河水GC-MS94–1040.04–0.05 ug/LJ Sep Sci,2006,29:33–4012富勒烯C60,C70芳烃和非芳烃,亚硝化单胞菌游泳池水,废水,饮用水和河水GC-MS95–1024–15 ng/LJ Chromatogr A,2009,1216 :1200–120513富勒烯C60-键合硅胶阿马多瑞多肽人血清MALDI-TOF MS未报道未报道Anal Biochem,2009,393: 8–2214氧化单层碳纳米管,氧化多层碳纳米管有机磷农药海水GC-FID79–1020.07–0.12 ug/LJ Environ Monit,2009, 11 : 439–444.15多层碳纳米管磺酰脲类除草剂土壤HPLC-DAD76–930.5–1.2 ng/g J Chromatogr A ,2009,1216:5504–551016多层碳纳米管莠去津和西玛津水GC-MS未报道2.5–5.0 pg/mL17 Microchem J, 2010,96 : 348–351.17氧化和改性碳纳米管,Ni (II), Pb (II)湖泊沉积物 污泥ETAAS(电热原子吸收光谱)92.1–102.010–30 ng/L Talanta,2011,85:245–25118改性多层碳纳米管Fe (III), Cu (II) Mn (II), Pb (II)矿泉水FAAS96–1003.5–8.0 ug/LFood Chem Toxicol,2010 ,48:2401–240619碳纳米锥,纳米盘,纳米纤维和纳米角 碳纳米锥/磁盘氯酚水GC-MS98.8–100.90.3–8 ng/mL J Chromatogr A, 2009,1216 : 5626–5633.20碳纳米锥/纳米盘甲苯、乙苯、二甲苯同分异构体和苯乙烯水GC-MS920.15 ng/mLJ Chromatogr A,2010, 1217 :3341–334721单壁碳纳米管PAHs水GC-TOF-MS21–9630–60 ng/LAnal Chim Acta,2012,714 :76–81.22碳纳米纤维氯三嗪,和去烷基化代谢产物粗土、水(自来水、井水、河水)LC-DAD83.5–1050.004–0.03 ng/mLAnal Chem,2011,83:5237–5244.23尼龙6纳米纤维垫多西他赛兔血浆HPLC-UV852 ng/mLJ Chromatogr B,2010,878:2403–2408.24PFSPE(PS)填充纤维固相萃取(聚苯乙烯)曲唑酮人血浆HPLC-UV94.6–105.58 ng/mL74顾忠泽,Anal Chim Acta,2007,587:75–81.25PS/G NF(聚苯乙烯/石墨烯纳米纤维)醛人呼出气冷凝液HPLC-VWD79.8–105.64.2–19.4 nmol/L Anal Chim Acta,2015,878:102–108(徐辉)26NFS(从烟灰得到的碳纳米纤维)芳香胺烟灰HPLC-UV70–1080.009–0.081 ug/LJ Chromatogr A,2011,1218:3581–3587.27树枝状大分子的功能化KIT-6(介孔材料)酸性药物尿HPLC-UV85.7–113.90.4–4.6 ng/mLJ Chromatogr A,2015,1392 :28–36.28改性硅胶(DPS)碱基核苷标准溶液LC-DAD未报道未报道J Chromatogr A,2014, 1337: 133–139.29聚丙烯亚胺树枝状大分子改性硅胶(PID-SG)铂,镍合金FAAS未报道0.014 ug/mL Ann Chim, 2005,95:695–701.30磁纳米颗粒Fe3O4@SiO2-C18葛根素大鼠血浆HPLC-UV85.2–92.30.05 ug/mLJ Chromatogr B,2013,912 :33–3731CTAB 涂渍 Fe3O4甲芬那酸血浆、尿液HPLC-UV92–990.087– 0.097 ng/mLJ Chromatogr B,2014,945–946:46–52.32磁性多层碳纳米管聚乙烯醇(PVA)复合凝胶邻苯二甲酸酯包装食品GC-FID70–11826.3–36.4 ng/mL Food Chem,2015,166:275–28233Fe3O4@SiO2-C18利多卡因大鼠血浆HPLC-UV-VIS-DAD89.4–92.30.01 ug/mLJ Chromatogr A, 2011, 1218:7248–725334免疫吸附剂单克隆抗体的琼脂糖凝胶活化单克隆抗体:吡唑醚菌酯苹果汁和红葡萄汁HPLC-UV98.5–101.6250 ug/LJ Chromatogr A,2011, 1218 : 4902–490935从内吗啡肽1和2 (End1 和 End2)的多克隆IgG抗体得到Fab片段,通过2-琥珀酰亚胺把它键合到硅胶上得到的吸着剂阿片肽人血浆CE-MS未报道End1: 0.5 ng/mL End2: 5 ng/mLAnal Chim Acta,2013, 789 : 91–99.36把苯基乙胺A 的多克隆抗体接枝到CNBr活化的交联琼脂糖(Sepharose )4B 上苯乙醇胺饲料,肉及肝HPLC-UV89.48–104.8948.7 ng/mL J Chromatogr B ,2014,945–946: 178–18437核酸适配体功能化吸附剂——链霉亲和素活化的琼脂糖,溴化氰活化的琼脂糖可卡因死后血液HPLC-DAD90未报道Talanta ,2011, 85:616–62438核酸适配体功能化吸附剂——单链DNA四环素抗体四环素尿液和血浆ESI-IMS82.8–86.5%0.019–0.037 ug/mL J ChromatogrB: Anal Technol Biomed. Life Sci,2013,925:26–32.39核酸适配体功能化吸附剂——链霉亲和素聚(TRIM-co-GMA)凝血酶人血清HPLC-UV-VIS未报道4 nm [Anal Chem,80,2008 (8) :7586–759340离子印迹聚合物---铁(Ⅲ)-印迹氨基功能化硅胶吸附剂铁(Ⅲ)标准溶液ICP-AES950.34 ug/LTalanta,2007 ,71 : 38–4341离子印迹聚合物--铑(Ⅲ)离子印迹聚合物铑(Ⅲ)地球化学参照样品RLS900.024 ng/mLTalanta,2013 ,105:124–130.42离子印迹聚合物--Pb(II)印迹聚合物颗粒Pb(II)食品FAAS97.6–100.70.42 ng/mL Food Chem. 138 (2013) 2050–2056.43分子印迹聚合物---功能单体MAA---交联剂:乙二醇二甲基丙烯酸酯,致孔剂:丁酮和正庚烷,聚合类型:沉淀聚合烯酰吗啉人参GC-u-ECD89.2–91.60.002 mg/kg J Chromatogr B,2015, 988 :182–18644分子印迹聚合物---功能单体:DEAEMA,交联剂: EDMA,聚合化类型:本体极化生物活性的萘醌植物提取物HPLC-UV-VIS未报道未报道J Chromatogr A,2013, 1315 : 15–2045分子印迹聚合物---功能单体:接枝PMAA/ SiO2,交联剂:EGGE,模板:肌酐,肌酐肌酐标准溶液UV/vis未报道未报道Anal Bioanal Chem,2015, 407 :2685–271046金属有机框架化合物-- MOF MIL-101(Cr)PAHs环境水HPLC-PDA81.3–105.02.8–27.2 ng/LAnalyst, 137,2012:3445–345147金属有机框架化合物-- MOF MIL-53, MIL-100, 和 MIL-101肽,蛋白生物样品MALDI-TODF-MS未报道未报道Chem Commun,2011 ,47: 4787–478948金属有机框架化合物-- MOF MIL-53(Al)Fe水溶液XRD98.2–106.20.9 uMAnal Chem,2013, 85: 7441–744649金属有机框架化合物-- MOF MIL-101有机氯农药水样GC-MS87.6–98.60.0025/0.016 ng/mL J Chromatogr A, 2015,1401: 9–1650限进性材料—RAMs-MIPs, 模板分子:马拉硫磷有机磷农药蜂蜜GC-FPD90.9–97.60.0005–0.0019 ug/mLFood Chem,2015,187: 331–337.51亲水性共聚单体:GMA XDS-RAM碱性药物人血浆LC-UV-VIS94.2–98.2未报道J Chromatogr A ,2002,975:145–15552亲水性共聚单体:GMA C-WCX-RAM碱性药物人血浆LC-UV96.7–104.9未报道J Chromatogr A, 2008,1190 : 8–13.  AAS--原子吸收光谱 CE--毛细管电泳 CTAB--十六烷基三甲基溴化铵 DEAEMA--二乙基氨基乙基-2-甲基丙烯酸酯 DPS--聚合物改性二氧化硅 EDMA--乙二醇二甲基丙烯酸酯 EGGE--乙二醇缩水甘油醚 ESI-IMS-- 电喷雾电离离子迁移谱 ETAAS--电热原子吸收光谱法 FAAS--火焰原子吸收光谱法 FLR--荧光,荧光检测器 G--石墨烯 GMA--甲基丙烯酸缩水甘油酯 GO--氧化石墨烯 GSH--谷胱甘肽 ICP-AES-- 电感耦合等离子体原子发射光谱法 MAA--甲基丙烯酸 mAbs--单克隆抗体 MC-WCXRAM, 甲基纤维素固定化弱阳离子交换硅基限进性材料 OMWCNT--氧化多壁碳纳米管 OSWCNT--氧化碳纳米管 PAHs--多环芳烃 PFSPE, 填充纤维固相萃取 PPID-SG--G4.0聚(亚胺)树枝状大分子的固定化硅胶 PS--聚苯乙烯 PS/G--聚苯乙烯/石墨烯 PVA--聚乙烯醇 RGO--还原氧化石墨烯 RLS--共振光散射法, VWD--可变波长检测器, XDS--阳离子交换限进性吸着剂材料(文献:Tr Anal Chem, 2016, 77: 23–43)3. 小结  由于篇幅限制,这一篇主要介绍了常规和新型、选择性固相微萃取剂的应用实例,从这些应用中可以看出:常规吸着剂使用的以烷基键合硅胶居多。在新型、选择性微固相萃取吸着剂中各种碳类纳米材料为多。下一篇将详细讨论这些新型、选择性微固相萃取吸着剂。
  • 汇集分析方案,聚焦材料科学:(二)材料表面分析
    材料是人类赖以生存和发展的物质基础,各种材料的运用很大程度上反映了人类社会的发展水平,而材料科学也日益成为人类现代科学技术体系的重要支柱之一。 材料表面分析是对固体表面或界面上只有几个原子层厚的薄层进行组分、结构和能态等分析的材料物理试验。也是一种利用分析手段,揭示材料及其制品的表面形貌、成分、结构或状态的技术。为此,岛津针对性地提供了全面的表征解决方案,助力材料科学研究。 材料表面分析扫描探针显微镜SPM / X射线光电子能谱仪 / 电子探针显微分析仪EPMA 原子力显微镜 SPM-9700HT SPM-9700HT在基本观察功能的基础上融入了更强的测量功能,具备卓越的信号处理能力,可得到更高分辨率、更高质量的观察图像。SPM-9700HT 应用:金属蒸镀膜的表面粗糙度分析以1 Hz和5 Hz的扫描速度对金属蒸镀膜的表面形貌进行观察,画质及表面粗糙度的分析结果相同。 应用:光栅沟槽形状检测以1Hz和5Hz的扫描速度对光栅的表面形貌进行观察,经过断面形状分析,沟槽形状检测结果均相同。可控环境舱原子力显微镜 WET-SPM WET-SPM为原子力显微镜实验提供各种环境,如真空、各种气体(氮、氧等)、可控湿度、温度、超高温,超低温、气体吹扫等。实现了原位扫描,可追踪在温度、湿度、压力、光照、气氛浓度等发生变化时的样品变化。 WET-SPM 应用:树脂冷却观察室温下树脂的粘弹性图像中,可以观察到两相分离。冷却至-30℃,粘弹性的差异基本消失。 应用:聚合物膜的加热观察聚合物膜在不同加热温度下的形貌变化,在相位图上可清晰观察到样品表面因加热而产生的物理特性变化。调频型高分辨原子力显微镜 SPM-8100FM 岛津高分辨率原子力显微镜SPM-8100FM使用调频模式,极大提高了信号的灵敏度,即使在大气环境甚至液体环境中也能获得与真空环境中同样超高分辨率表面观察图像。无论是表面光洁的晶体样品还是柔软的生物样品,都实现了分子/原子级的表征。SPM-8100FM首次观察到固体和液体临界面(固液界面)的水化、溶剂化现象的图像,因此实现了对固液界面结构的测量分析。 SPM-8100FM 应用:液体中原子级分辨率观察图为在饱和溶液中观察NaCl表面的原子排列。以往的AFM(调幅模式)图像湮没在噪声中。通过调频模式则可以清晰地观察到原子的排列,实现真正的原子级分辨率。 应用:大气中Pt催化粒子的KPFM观察通过KPFM进行表面电势的测定,TiO2基板上的Pt催化粒子可被清晰识别。同时可以观察到数纳米大小的Pt粒子和基板间的电荷交换。右图中,红圈区域是正电势,蓝框区域是负电势。对于KPFM观察,调频模式也大幅提高了分辨率。 X射线光电子能谱仪AXIS SUPRA+ X射线光电子能谱仪(XPS)是一种被广泛使用的表面分析技术,主要用于样品的组成和化学状态分析,可以准确地确定元素的化学状态,应用于各种低维新材料、纳米材料和表面科学的研究中。AXIS SUPRA+是岛津/Kratos最新研发出的一款高端X射线光电子能谱仪,具备高能量分辨、高灵敏度、高空间分辨的特点。 AXIS SUPRA+ 化学状态和含量分析 深度剖析 化学状态成像分析电子探针显微分析仪 EPMA 电子探针显微分析仪(Electron Probe Micro-Analyzer,EPMA)使用单一能量的高能电子束照射固体材料,入射电子与材料中的原子发生碰撞,将内壳层的电子激发脱离原子,在相应的壳层上留下空穴,在外壳层电子向内壳层空穴跃迁的过程中,发出具有特征波长的X射线。EPMA使用由分光晶体和检测器组成的波谱仪检测这些特征X射线,用于材料成分的定性、定量分析。 EPMA的波谱仪的检测极限一般为0.005%左右,检测深度为微米量级,其成分像的二维空间分辨亦为微米量级,定量分析的精度可以达到传统的化学分析方法水平。 配备了多道波谱仪的EPMA是材料学研究中微区元素定性、定量分析的不二之选,属于科研工作必不可少的分析仪器。 EPMA-1720 EPMA-8050G 应用:超轻元素EPMA分析-渗碳均匀性的图象分析
  • 罗姆发布罗姆胶粘及复合材料分析仪LUMiFrac新品
    关于德国LUM德国LUM公司是一家生产分散体系分析及表征仪器的行业领先者。基于常年在流体力学,流变学及胶体化学领域的知识与经验,Lerche 教授于1994年创立了LUM公司并研发了STEP-Technology® 工艺,为不同产品的分析表征提供了技术平台。我们的测试仪器用于高速,可靠和全面表征分散体系的分离行为以及用于测试复合材料内聚强度和粘结强度。这些新型仪器已成为化工,食品,化妆品,涂料及制药等工业领域国际领先公司实验室里的标准配置。最近我们扩大了应用领域,给您一个创新的方法来衡量材料的粘着性和粘结性能。在对研发费用的不断投资下,LUM提供了新方法来提升您的知识和目标的。我们的总部设在德国柏林。我们的美国分公司负责加拿大的北美市场、美国和墨西哥,地址就位于Boulder,科罗拉多。中国分公司[罗姆(常州)仪器有限公司]负责中国市场以及整个亚太地区,位于中国常州市。此外,还有在法国巴黎、法国的分支机构和应用实验室,支持我们的地区客户。请联系我们,看看我们如何能帮助你达到你的宗旨和目标。谢谢您的考虑,我们期待与您的合作。关于LUMiFracLUMiFrac是测定胶粘剂拉伸强度的新基准(获得柏林勃兰登堡2012创新奖)。它利用离心力在同一时间对样品施加多倍重力,从而获得粘结强度、拉伸强度,同时还有剪切强度的绝对物理值(N/mm2).LUMiFrac通过一个递增的离心力直接施加到被测试的试样。它在高转速下测试样品断裂瞬间的力,所有的数据被发送到知名的SEPView® 操作软件,该软件可自动计算并显示实时临界力/断裂失效力。此外,它可以同时分析多达8个样品,比较和计算统计,并得出结论。而作为断裂测试的相关数据,也会考虑在内。测试样品定位,像标记1-2-3一样简单,但是对样品进行特殊的预防措施是必要的。只需将8个样本放到标记的转子位置,然后就可以开始了。采用多重采样法同时分析这8个样品而得到的测试结果的准确性是独特、无可比拟的,并且还减少了85%的测量时间。整个发展从一个简单省时的粘合性能的测定想法开始,到取得了多项测试技术专利,到现在附着力测试、复合材料分析的新技术(甚至可以使用多层膜来测试),一系列过程使它在很多领域具有很好的发展前景。LUMiFrac是研究和质量控制工具,专为胶粘剂配方和表面处理行业而准备;漆涂料,联合木制品,汽车和飞机工业,胶带复合材料、多层铝箔包装或金属薄膜塑料光学基板,如眼镜、镜子等。不同的测试基座可覆盖足够多的材料组合,应用范围广泛。为方便样品制备而专门设计的工具已经完善,结合您所了解的东西,把它放在一个功能中,它能得出准确而重复性好的数据。LUMiFrac – 粘接力[和]内构强度的测试标准。应用领域为质量控制而设置的标准化的快速测量粘结接头拉伸剪切强度测试:- 氰基丙烯酸酯、环氧胶粘剂、聚氨酯、胶带、密封… 涂料粘合强度的测定:- 防腐蚀涂料、装饰涂料、金属化聚合物、光学涂层… 复合材料:- 多种物质化合物,相互关联,轻质结构… 表面处理长期疲劳试验:- 交变载荷,不同温度产品优势. 待测样品准备简单. 可同时测8个样品 . 无需固定样品 - 放入仪器即可开始. 测试速度可调节. 可变实验负荷力. 宽负荷力范围(0.1N 到 6500N). 测定试验样品的拉伸强度和剪切强度. 各种温度下的测试. 可多次使用的实验基座,节约成本. 符合ISO 4624和DIN EN 15870产品规格转子转速/负载范围100–13,000 rpm 0.1 N – 6.5 kN抗拉强度高达80 MPa测量时间1分钟到99小时;或根据任务和目标符合标准ISO 4624 JIS K 5600-5-7 DIN EN 15870 DIN EN 14869-2样品数最多同时8个样品最大样品尺寸30 x 30 x 1 mm3 粘接面积直径7毫米,10毫米或定制测试粘结面材料金属和非金属测试粘结面重量4.1克- 38.7克(瓦特/铜约58克)重量56 kg温度控制-11°C 到 + 40°C数据接口USB尺寸 (WxHxD)380 x 296 x 640 mm3电源100 V / 120 V / 230 V, 50/60 Hz功率max. 1050 W详细信息请电话咨询或到我公司网站了解创新点:UMiFrac通过一个递增的离心力直接施加到被测试的试样。它在高转速下测试样品断裂瞬间的力,所有的数据被发送到知名的SEPView® 操作软件,该软件可自动计算并显示实时临界力/断裂失效力。 罗姆胶粘及复合材料分析仪LUMiFrac
  • 聚焦表面分析与新能源新材料——“2017年全国表面分析方法及新能源与生物功能材料学术研讨会”在重庆召开
    p    strong 仪器信息网讯 /strong 2017年5月20日,“2017年全国表面分析方法及新能源与生物功能材料学术研讨会”在重庆召开。此次会议由西南大学、重庆大学、赛默飞主办,170多位来自科研院校、以及企业的专家用户参加了此次会议。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/12b30bf7-a060-4205-9d34-a5d5caceaec8.jpg" style=" " title=" 现场1.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/0390c36c-c9b0-41e3-b0cb-ee7138a40ade.jpg" style=" " title=" 现场2.jpg" / /p p style=" text-align: center " 会议现场 /p p   随着我国材料科学、化学化工、半导体及薄膜、能源、微电子、信息产业、生物医药及环境领域等高新技术的迅猛发展,表面分析技术在过去的几十年中有了长足进步,在科学研究领域作用日益增长。“2017年全国表面分析方法及新能源与生物功能材料学术研讨会”正是在这一背景下召开的一个多学科交叉的学术交流会议。 /p p   李长明院士首先代表主办方热情欢迎与会者的到来。在致辞中,李长明院士指出,当今社会的发展离不开新能源的出现和先进能源技术的使用,发展新能源、改善环境污染状况,也是全世界全人类共同关心的问题。此次大会的主题“新能源”即利用新技术新材料进而开发利用的替代性能源,我们期待先进洁净能源技术的持续发展。 /p p   根据国务院印发的《“十三五”国家战略性新兴产业发展规划》纲要,“十三五”期间国家将大力推动新能源汽车、新能源和节能环保产业快速壮大,加快生物产业创新发展步伐,超前布局战略性产业,促进战略性新兴产业集聚发展。而新能源、新材料的发展离不开对其相互作用反应机理的研究,这就使得表面分析技术变得非常关键。此次会议的召开促进了新能源、功能材料利用表面分析技术进行表征以及表面分析技术的最新研究进展及应用的交流与探讨。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/2eac8953-362b-4a2a-8b73-975e8fc3bca3.jpg" title=" Kevin Fairfax.jpg" / /p p style=" text-align: center " 赛默飞表面分析业务总监Kevin Fairfax先生致辞 /p p   Kevin Fairfax先生致辞中介绍了赛默飞以及其材料科学部门的发展情况。2016年赛默飞共收入182.7亿美元,研发支出为7.548亿美元,在全球用于55000多名员工,旗下有thermo scientific、applied biosystem、Invitrogen、Fisher scientific、unity labservices五大品牌。 /p p   而2016年赛默飞收购FEI,为公司带来了业界领先的电子显微技术,让赛默飞在材料科学和结构生物学领域“如虎添翼”,使得赛默飞的材料科学部门能够提供多模式、多尺度的工作流。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/3df60b65-7978-4426-b75c-1f8839e42b0c.jpg" title=" 李长明.jpg" / /p p style=" text-align: center " 西南大学李长明院士致辞后做大会报告 /p p style=" text-align: center " 报告题目:材料功能化及在高效能源转换中的应用 /p p   能源是人类下个100年面临的十大问题之首,李长明院士指出:能源是人类社会存在与发展的基石、是经济发展与人类文明进步的基本约束条件,而如何提高能源转换效率是绿色新能源研究的一个重要课题。在报告中李长明院士介绍了其团队在微纳尺度功能化材料、锂/纳高功率电池、生物燃料电池、锂/纳离子电池、新型太阳能电池、细菌燃料电池等多个研究方向的研究成果。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/51c36be8-1dac-4659-a592-53ab972c9daa.jpg" title=" 杨秀荣.jpg" / /p p style=" text-align: center " 中国科学院长春应用化学研究所杨秀荣院士做大会报告 /p p style=" text-align: center " 报告题目:基于生物质与非贵金属的新能源材料研究 /p p   全球能源消耗面临着巨大危机,据2013年全球能源消费统计,石油只能再用45年、煤还能用200年,同时石油、煤等传统能源造成的环境污染也日趋严重。因此开发具有应用潜能的清洁能源具有重要意义。杨秀荣院士及其团队一直在进行基于生物质与非贵金属的新能源材料研究。在此次报告中,杨秀荣院士介绍了其团队将木耳等不同菌类植物衍生碳用做超级电容器材料、微生物衍生杂原子掺杂碳用于电催化氧还原和超级电容器等研究方面的工作进展。 /p p    span style=" color: rgb(31, 73, 125) " 更多精彩报告内容见后续报道。 /span /p p   据赛默飞表面分析及常量元素分析中国区商务经理汪霆先生介绍,赛默飞一直坚持每年举行表面分析技术交流会,而此次的会议更加用心,为仪器分析方法研究人员与科研人员搭建了交流平台。科研人员在此更加了解了表征方法的最新进展,为未来在科研工作中获得更好的研究成果打下基础 而仪器分析方法研究人员在此开拓了眼界,为未来可能的科研工作埋下伏笔。今年的会议聚焦的是新能源与生物功能材料领域,明年将会聚焦其他热门领域。此次会议的举办也是赛默飞承担作为一家大型企业的社会责任、促进了相关技术的交流。   /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/ea917f84-96f6-47e5-9964-3150260b6eac.jpg" title=" 赛默飞展示.jpg" / /p p   在会场一角,赛默飞展出了台式X射线衍射仪、手持XRF分析仪等仪器以及相关解决方案,引起了与会者的关注。 br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/dd6796c2-4319-46f5-bdf3-23d734110336.jpg" title=" 合影.jpg" / /p p style=" text-align: center " 与会者合影 /p p br/ /p
  • 【聚焦】:食品接触材料新国标变化及对分析仪器行业影响
    食品接触材料新国标的变化  食品接触材料作为食品安全的重要组成部分,与食品安全有着非常密切的关系。目前,世界许多国家和地区都制定了相应的食品接触材料法律法规和标准。与欧盟、日本、美国等发达国家相比,我国的食品接触材料标准体系相对还不够完善:部分产品标准发布多年没有更新,部分产品标准和检测标准之间也存在不协调、矛盾等问题,部分新材料和制品存在标准缺失、无标准可依的问题。自2012年以来,国家食品安全风险评估中心就我国食品接触材料标准体系存在的标准老旧、缺失、矛盾、分散及不合理的现状 ,展开了一系列的清理整合工作。  2016年,国家卫计委发布《食品安全国家标准食品接触材料及制品通用安全要求》(GB 4806.1-2016)等53项食品安全国家标准。新标准相比较现有的标准对食品接触材料范围做了更为清晰的界定。新标准对食品接触材料定义如下:在正常使用条件下,各种已经或预期可能与食品或食品添加剂(以下简称食品)接触、或其成分可能转移到食品中的材料和制品,包括食品生产、加工、包装、运输、贮存、销售和使用过程中用于食品的包装材料、容器、工具和设备,及可能直接或间接接触食品的油墨、粘合剂、润滑油等。不包括洗涤剂、消毒剂和公共输水设施。新国标《食品接触材料及制品通用安全要求》对企业责任做了进一步明确,包括对产品的非有意添加物质进行控制,确保原材料、半成品和成品符合相应的食品安全要求等。  此外,新标准中明确要求产品应注明“食品接触用”“食品包装用”或类似用语,或加印、加贴调羹筷子标志有特殊使用要求的产品应注明使用方法、使用注意事项、用途、使用环境、使用温度等。对于相关标准明确规定的使用条件或超出使用条件将产生较高食品安全风险的产品,应以特殊或醒目的方式说明其使用条件,以便使用者能够安全、正确地对产品进行处理、展示、贮存和使用。同时,新标准中对卫生要求也提出了更加严格的要求,例如:针对常见的复合材料,新标准要求复合材料及制品、组合材料及制品和涂层产品中的各类材质材料均应符合相应食品安全国家标准的规定。各类材料有相同项目的限量时,食品接触材料及制品整体应符合相应限量的权重加和值。  新国标变化对食品领域分析仪器影响  新发布的《食品安全国家标准食品接触材料及制品通用安全要求》变化主要表现在以下几点:一是迁移试验条件的变化,对产品的耐温性能和存储提出了更高的要求,尤其是针对塑料制品、橡胶制品、纸制品等原测试温度低、测试时间短的产品。二是新增加了许多原标准没有涉及到的特定迁移量或残留量的要求。三是部分理化检测项目如橡胶材料及制品中酸性和油性模拟物的总迁移量下降了较多。针对于金属材料及制品中的金属元素的限值也下降较多,这些限值的下降给相关的分析仪器带来了新的机遇和挑战。  据了解,新发布的《食品安全国家标准食品接触材料及制品通用安全要求》中涉及到的分析仪器主要包括三类:一、样品制备仪器中包括微萃取、超临界流体萃取、微波辅助萃取、超声萃取、制备用薄层色谱 二、分离分析仪器中包括高效液相、气相色谱、薄层色谱、离子色谱、毛细管电泳、凝胶色谱及凝胶电泳等 测定技术中包括红外、高分辨近红外及核磁共振、原子吸收和发射、荧光、免疫测定、电分析、扫描电镜及发射电镜等。
  • TA仪器张江高分子与药物讲座聚焦材料分析领域的最新技术
    由于每次举办都受到业界和学术界客户的追捧, TA仪器每年都会在张江地区举办高分子和药物的技术交流会。与大家分享最新的技术理念。今年2013年6月18日和6月19日。TA仪器在张江博雅酒店举办的技术讲座再次获得了巨大的成功。 此次技术讲座聚焦了多个材料界的前沿话题,例如 如何应用热分析技术进行目前流行的高分子体系受限的研究?热分析和微量热技术如何在生物制药中发挥作用?来自TA仪器的技术专家们以其前瞻性的技术理念和丰富的应用经验开拓了客户在材料表征中的技术思路, 使得大家可以近距离的接触世界上最新的材料分析技术! 获得了所有参会者的一致好评! 讲座现场济济一堂 TA仪器国际运营总监 Mike Uptmore先生给大家带来了TA总部的最新信息 TA仪器的热分析技术专家马倩博士正在回答客户提问
  • 安捷伦科技公司发布最新的生物治疗药物分析产品
    安捷伦科技公司发布最新的生物治疗药物分析产品 不断扩充的 AdvanceBio 系列产品使科学家加快研究进度并降低成本 2015 年 6 月 23 日,北京 — 安捷伦科技公司(纽约证交所:A)今日宣布为 AdvanceBio 产品系列增加两款专为使生物制药行业的科学家快速获得重现性结果而设计的新产品。 安捷伦在瑞士日内瓦举办的国际研讨会 HPLC 2015 上隆重推出了 AdvanceBio 糖谱分析工作流程以及 AdvanceBio 寡核苷酸色谱柱这两款产品。 安捷伦副总裁兼化学品和备件部总经理 Helen Stimson 谈道:“这两款新产品将有助于研究人员更快速地实现更可靠的分离,同时还能降低每次分析的成本。与所有 AdvanceBio 解决方案一样,它们旨在提供易于重现的结果,从而使研究人员对准确度和完整性等生物制药开发的重要方面更具信心。” 公司推出的全新 AdvanceBio 糖谱分析工作流程是一套完整的消耗品工作流程,适用于去糖基化、2-AB 标记与通过质谱和荧光检测进行的 HILIC 糖基化分析。这套独特的工作流程采用 AdvanceBio 糖谱分析色谱柱、糖链标准品和 N-糖链样品前处理试剂盒,并附带研究人员所需的全部消耗品组件。 产品综合指南和标准方法为研究人员提供了实现易于重现的糖链快速鉴定与定量所需的一切。 全新 AdvanceBio 寡核苷酸色谱柱是首款耐高 pH 并采用表面多孔填料的稳定液相色谱柱,适用于寡核苷酸分析。这款产品基于用于生物分子分离的安捷伦创新型表面多孔硅胶型填充色谱柱系列,该系列于 2001 年首次推出 Poroshell 300,其中包括 AdvanceBio 肽图分析、糖谱分析和 RP-mAb 色谱柱。 合适的填料设计使研究人员能够灵活运用高效或超高效液相色谱系统。灵活性的提升还能够让研究人员更高效地利用现有实验室资源,从而降低成本。 AdvanceBio 寡核苷酸色谱柱与寡核苷酸标准品能够针对治疗性寡核苷酸分析改善结果的可靠性并降低成本。 关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,是致力打造美好世界的顶级实验室合作伙伴。安捷伦与全球 100 多个国家的客户进行合作,提供仪器、软件、服务和消耗品,产品可覆盖到整个实验室工作流程。在 2014 财年,安捷伦的净收入为 40 亿美元,全球员工数约为 12000 人。今年是安捷伦进军分析仪器领域的 50 周年纪念。如需了解安捷伦科技公司的详细信息,请访问 www.agilent.com。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 直播预告!半导体材料分析技术进展:分析仪器如何助力材料检测
    2023年10月18-20日,仪器信息网(www.instrument.com.cn) 与电子工业出版社将联合主办第四届“半导体材料与器件分析检测技术与应用”主题网络研讨会。iCSMD 2023会议围绕光电材料与器件、第三代半导体材料与器件、传感器与MEMS、半导体产业配套原材料等热点材料、器件的材料分析、失效分析、可靠性测试、缺陷检测和量测等热点分析检测技术,为国内广大半导体材料与器件研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。本次大会分设:半导体材料分析技术新进展、可靠性测试技术新进展、半导体失效分析技术、缺陷检测和量测技术4个主题专场,诚邀业界人士报名参会。主办单位:仪器信息网,电子工业出版社参会方式:本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/icsmd2023/或扫描二维码报名“半导体材料分析技术新进展”专场预告(注:最终日程以会议官网为准)时间报告题目演讲嘉宾专场1:半导体材料分析技术新进展(10月18日)专场主持暨召集人:汪正 中国科学院上海硅酸盐研究所 研究员9:30等离子体质谱在半导体用高纯材料的分析研究汪正(中国科学院上海硅酸盐研究所 研究员)10:00有机半导体材料的质谱分析技术王昊阳(中国科学院上海有机化学研究所 高级工程师)10:30牛津仪器显微分析技术在半导体中的应用进展马岚(牛津仪器科技(上海)有限公司 应用工程师)11:00氮化物半导体的原子尺度晶格极性研究(拟)王涛(北京大学 高级工程师)11:30集成电路材料国产化面临的性能检测需求王轶滢(上海集成电路材料研究院 性能实验室总监)午休14:00离子色谱在高纯材料分析中的应用李青(中国科学院上海硅酸盐研究所 助理研究员)14:30拉曼光谱在半导体晶圆质量检测中的应用刘争晖(中国科学院苏州纳米技术与纳米仿生研究所 教授级高级工程师)15:00半导体—离子色谱检测解决方案王一臣(青岛盛瀚色谱技术有限公司 产品经理)15:30共宽禁带半导体色心的能量束直写制备及光谱表征徐宗伟(天津大学精密测试技术及仪器国家重点实验室 教授)嘉宾简介及报告摘要(按分享顺序)汪正 中国科学院上海硅酸盐研究所 研究员【个人简介】汪正,博士,中国科学院上海硅酸盐研究所研究员、博士生导师、材料谱学组分表征与应用课题组组长。研究方向为原子光谱/质谱/色谱基础和应用研究、光谱质谱新型仪器的研发和先进材料制备表征及在分析化学和环境化学的应用研究。曾先后负责科技部国家仪器研制重大专项、国家自然科学青年和面上基金、中科院仪器研制项目、中科院仪器设备功能开发技术创新项目和上海科委基金等。是国际期刊《Atomic Spectroscopy》、《Chinese Chemical Letters》和《光谱学与光谱分析》期刊编委。以第一和通讯作者在国内外同行认可的高水平期刊Anal. Chem., J. Anal. At. Spectrom.,Spectrochim. Acta Part B,Anal. Chim. Acta 等发表论文100 余篇,出版学术专著2 部,建立国家标准3 项,获授权专利17项。2010 和2018 年两次获得中国分析测试协会科学技术奖励(排名均为第一)。报告题目:等离子体质谱在半导体用高纯材料的分析研究【摘要】材料是制造业的基础,高纯材料是半导体制造业的最重要环节之一,高纯材料的纯度分析与表征是纯化工艺中的一个重要环节,对材料性质研究和工艺改进至关重要。本报告主要介绍电感耦合等离子体质谱法在高纯有机/无机半导体用材料方向的工作。王昊阳 中国科学院上海有机化学研究所 高级工程师【个人简介】2000年本科毕业于中国药科大学药学院药物分析专业;2003年获得中国药科大学与上海有机化学研究所联合培养硕士学位;2006年获得中国科学院上海有机化学研究所的博士学位;后前往德国奥尔登堡大学化学系博士后;2008年开始任中国科学院上海有机化学研究所,副研究员;2017年–至今担任中国科学院上海有机化学研究所公共技术服务中心质谱组课题组长。报告题目:有机半导体材料的质谱分析技术【摘要】根据有机半导体材料领域具体的测试需求和测试对象的不同,建立体系化的质谱分析方法与手段,结合顶空气相色谱对挥发性有机物进行分析,结合ESI以及(AP-)MALDI对小分子有机半导体材料进行表征与分析,再结合热裂解分析对有机半导体材料中的聚合物及其相关添加剂进行分析。马岚 牛津仪器科技(上海)有限公司 应用工程师【个人简介】2012年获得上海交通大学材料科学与工程学院博士学位,博士研究镁合金的时效强化机制及变形机制,主要利用TEM、SEM、 EBSD等手段进行表征。2012-2015年间在日本物质材料研究所进行博后工作,期间研究的课题为高强韧镁合金的开发及磁性材料微结构表征,利用HAADF-STEM、SEM、EBSD及3DAP进行材料表征,熟悉掌握FIB及纳米操作手。2015年回国加入牛津仪器公司,主要负责EDS、WDS、EBSD、OP的推广及技术支持。报告题目:牛津仪器显微分析技术在半导体中的应用进展【摘要】能谱(EDS)是半导体失效分析中常用的检测手段,但它只能揭示元素的异常,如果要对晶圆进行其他物性(如粗糙度、掺杂浓度、电势电位和内应力等)的分析,则需借助电子背散射衍射(EBSD)、原子力显微镜(AFM)和拉曼光谱(Raman)进行多尺度、多方位的检测和分析。 本报告将从结合三代半导体的痛点,展开介绍牛津仪器材料分析手段的进展及其在三代半导体中的应用,内容包括使用EBSD检测外延片位错,利用Raman分析碳化硅晶芯片晶型和微管类型及其带来的应力变化,以及采用AFM的SCM模式检测电容,并定量载流子浓度的最新应用。王轶滢 上海集成电路材料研究院 性能实验室总监【个人简介】从事半导体与集成电路领域技术研发、战略研究与规划工作多年。现承担负责上海市及国家集成电路材料重大项目测试平台课题,推进集成电路材料测试的科学评价体系建设,加速促进国产化替代。报告题目:集成电路材料国产化面临的性能检测需求李青 中国科学院上海硅酸盐研究所 助理研究员【个人简介】博士,中国科学院上海硅酸盐研究所助理研究员。主要从事高纯材料分析方法开发、光谱质谱仪器研制等工作。先后主持承担了包括国家自然科学基金、上海科委项目、中国科学院仪器功能开发项目等各类研发项目5项。目前在Anal. Chem., Anal. Chim. Acta等国际期刊发表论文10余篇,获授权国内专利14项,美国专利1项。报告题目:离子色谱在高纯材料分析中的应用【摘要】 阴阳离子分析涉及生物医学、集成电路、环境、食品安全等重要研究课题。利用离子色谱技术测定离子态物质的检测方法,分析速度快、灵敏度高、选择性好,已被广泛应用。本报告将主要介绍高纯电子试剂、高纯晶体、OLED材料中痕量卤素离子的分析方法。刘争晖 中国科学院苏州纳米技术与纳米仿生研究所 教授级高级工程师【个人简介】正高级工程师、博士生导师、中科院青年创新促进会会员、中科院关键技术人才。中科院苏州纳米所真空互联实验站工作,研发基于扫描探针的微纳米尺度光、电、力学综合测试分析设备和相关技术;开展基于新装备和新方法的应用基础研究。 主要成果: (1) 主持和参与中科院、基金委和科技部的多项仪器和表征技术研发项目,自主研制基于扫描开尔文探针的深紫外扫描近场光电探针系统,实现深紫外时间分辨光谱与表面光电压谱的同位微区测量,从时间和空间两个维度,以皮秒的时间分辨率和纳米级的空间分辨率对半导体光电材料的表面性质进行表征,从而为微观机制的探索提供有力的武器。 (2) 发展了基于光辅助扫描开尔文探针显微镜的新型扫描扩散显微术方法,定量测量光吸收系数、扩散长度、载流子寿命以及扩散系数的空间分布和变化,揭示了缺陷、相分离等微观结构对纳米光电性质的影响。 (3) 对氮化镓与石墨烯二维材料的界面输运性质进行了系统的研究,从实验和理论上系统阐明了石墨烯浮动费米面的特性对异质结电学输运性质的影响,发展了半导体表面测量二维材料微区迁移率的方法。 (4) 制定了国家标准GB/T 32189-2015 《氮化镓单晶衬底表面粗糙度的原子力显微镜检验法》,并取得相关实验室认证资格,为产业提供了大量支撑服务。报告题目:拉曼光谱在半导体晶圆质量检测中的应用【摘要】 半导体晶圆质量检测目前普遍采用工业视觉检测方法对全晶圆质量和缺陷进行评估,但诸如组分、应力、载流子浓度等关键物理性质的分布不均匀,难以通过视觉检测方法获得,这时光谱学的手段是重要的补充方法。光穿过介质时被原子和分子散射的光发生频率变化,该现象称为拉曼散射。拉曼光谱的强度、频移、线宽、特征峰数目以及退偏度与分子的振动能态、转动能态、对称性等紧密相关,广泛地应用于半导体材料的质量监控、失效分析,可用于检测组分、应力、载流子浓度、温度、晶向和缺陷等信息。通常的共聚焦拉曼测试由于信号较弱、对聚焦稳定性要求较高,常常只局限于单点或少量采样点。而对大到8寸乃至12寸全晶圆范围的覆盖性检测,可能会极大地帮助改进工艺制程和产品质量。我们通过一些的典型的案例,例如结晶硅薄膜晶化率测试,第三代半导体晶圆的应力和载流子浓度检测,以及多层复杂器件结构的综合性质检测,展示了拉曼光谱在半导体晶圆质量检测中的应用前景。王一臣 青岛盛瀚色谱技术有限公司 产品经理【个人简介】硕士研究生,现任青岛盛瀚色谱技术有限公司产品经理。目前主要负责青岛盛瀚公司离子色谱实验室类、在线类仪器以及联机类仪器的应用方法的开发和技术支持工作,拥有仪器分析行业多年的工作经验。对离子色谱行业有深刻见解,对设备选型、市场调研、需求管理等有丰富经验。报告题目:半导体—离子色谱检测解决方案【摘要】 针对半导体行业中,离子色谱技术对于检测其中的杂质阴离子具有的得天独厚的优势,本次盛瀚就针对半导体行业离子色谱方面做出的工作进行分享。徐宗伟 天津大学精密测试技术及仪器全国重点实验室 教授【个人简介】徐宗伟,天津大学,教授,博士/硕士生导师。中国电子显微镜学会聚焦离子束FIB专业委员会委员,中国微米纳米技术学会微纳米制造及装备分会理事。主要从事宽禁带半导体,微纳/原子尺度制造,拉曼/光致发光光谱,以及纳米功能器件设计、制备及应用。作为负责人获批十余项国家级项目,包括五项国际合作交流项目,其中一项被英国皇家学会列入“牛顿基金”项目。与德国弗朗霍夫协会、中电集团等宽禁带半导体企业和研究所开展紧密合作。研究成果受邀作主题报告/特邀报告30余次。报告题目:宽禁带半导体色心的能量束直写制备及光谱表征【摘要】碳化硅SiC、六方氮化硼hBN和金刚石等宽禁带半导体是制造量子及高功率半导体器件的优良材料。基于氦离子束、飞秒激光等超快能量束加工、变温光致发光光谱、分子动力学模拟等研究方法,研究了SiC硅空位/双空位色心、hBN和金刚石色心等加工产率,开展了飞秒激光原位退火、微结构阵列等色心荧光增强方法研究,基于共聚焦光致发光光谱表征了色心三维分布。会议联系会议内容康编辑:15733280108,kangpc@instrument.com.cn会议赞助周经理,19801307421,zhouhh@instrument.com.cn
  • 基于屈曲不稳定性编码的非均质磁化实现软材料结构动态形貌的调控
    拥有主动变形能力的三维可变形结构在自然界中广泛存在,可有效提高生物对复杂环境的适应性。受这一特性启发,研究人员已开发了多种基于水凝胶、液晶高分子、硅胶弹性体等的软材料体系,在外界不同条件的刺激下(如化学溶剂、温度、酸碱度、光等),实现了各式三维结构的可控形貌变换(Nature 2021, 592, 386;Nature 2019, 573, 205;Nature 2017 , 546, 632)。 但是,目前已有的方案主要基于软材料形貌的准静态调制,如何实现多种尺度下多模态各向异性形貌与结构的动态调控,非常具有挑战性。近期,香港中文大学张立教授团队与哈尔滨工业大学(深圳)金东东副教授,联合香港城市大学张甲晨教授、中国科学技术大学王柳教授,提出了一种新型的软材料结构动态形貌调控方法。该团队结合硬磁性颗粒与弹性体制备得到磁性弹性体,并使其在一端受限的条件下溶胀产生可控的屈曲结构,接着加以磁化形成各向异性的三维磁畴分布。得到的磁性弹性体在外界可编程磁场的驱动下,能够实现多模态三维形貌的动态可控变换,在微流体操纵、软体机器人等领域中具有广阔的应用前景。相关研究成果以 “Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization” 为题发表在国际著名期刊《Nature Communications》。 图 1. 条带形与晶格状磁性弹性体的动态形貌调控示意图。如图1所示,该研究首先将未充磁的钕铁硼微颗粒掺入硅胶弹性体前驱体中,在亲水修饰的玻璃基底上固化形成一端固定的条形或晶格结构。接着将其置于与硅胶极性相似的有机溶剂中(如甲苯、正己烷等),由于溶剂分子被弹性体吸收并扩散至高分子网络中,引发磁性弹性体的溶胀行为。但是,由于一端受到基板约束,磁性弹性体溶胀形成的轴向压缩力只能使其非均质变形,最终产生屈曲结构。屈曲结构的具体三维形貌可通过弹性体的三维尺寸、人造缺陷乃至晶格连接方式进行精准调控。此后,将屈曲变形的磁性弹性体置于强脉冲磁场下(约2.5T)磁化,再浸泡于不相溶的溶剂中(如乙醇)收缩至原始的条形或晶格结构,能够得到一定程度上“记忆”屈曲变形形貌的三维磁畴分布。此时,施加不同强度、方向或梯度的外加驱动磁场,磁性弹性体基于内部磁畴与外加磁场的磁偶极相互作用,便可产生如波浪、褶皱等的多模态动态三维变形。这种基于不稳定性屈曲变形设计并排布软材料内部磁畴取向(即“磁编程”)的方法,无需额外的模板设计与辅助,便可快速实现各向异性的非均匀磁化分布的。结合外加可调制磁场的精准驱动,能够产生自由度远超准静态形貌调制的多模态动态形貌变换。此外,如图2所示,为了阐明磁性弹性体的调控机制,该研究团队开发了一套分析模型与有限元计算方法,在条形和晶格结构屈曲变形、充磁乃至磁控变形的过程中,可有效反映并预测各参数对动态形貌的影响行为,可为今后磁性软体材料的设计和开发提供一定参考。 图 2. 屈曲变形编码的磁性弹性体的理论分析模型。(a-b)条带形与晶格状磁性弹性体的屈曲变形模型。(c-d)条带形磁性弹性体的理论与实际屈曲变形行为。(e)条带形磁性弹性体的磁化与磁驱动变形模型。(f-g)条带形磁性弹性体在不同几何尺寸与连接条件下的理论与实际屈曲变形行为。(h-i)条带形磁性弹性体的理论与实际磁畴取向分布。(j)条带形磁性弹性体的理论与实际磁驱动变形行为。最后,通过利用各式屈曲变形产生的不同微流体行为(如定向流体、混合流体、涡流),该研究结合高精度3D打印技术(nanoArch S130,摩方精密)制备的微型模板、微流控芯片和尺寸定制的微颗粒,成功将磁性弹性体用于液滴的可控融合与精准操控(图3),颗粒的尺寸筛选,微液滴的富集检测,微流控的混合增强,以及软体机器人的可控驱动(图4)。总之,香港中文大学张立教授团队与哈尔滨工业大学(深圳)金东东副教授提出了一种利用屈曲不稳定现象编码的新型磁编程方式,用以实现软材料结构形貌的动态调控,为今后磁性软材料跨尺度的多模态变形行为提供了一种研究手段,有助于今后更好地理解自然界中复杂形貌变换的潜在机制,拓展可变形结构在格式工程领域的应用价值。 图 3. 屈曲变形编码的条形磁性弹性体在外加驱动磁场下的动态行为。a-c. 不同磁场参数下产生的不同微流体分布。d-e. 在液滴融合与可控运输中的应用。 图 4. 屈曲变形编码的磁性弹性体在微颗粒尺寸筛选(a),微液滴富集检测(b),微流控辅助混合(c),软体机器人运动控制(d)中的应用示例。
  • 汪群杰再出发,首创磁性萃取材料突破质谱前处理自动化瓶颈
    “玩了一辈子沙子”,这是艾捷博雅生物集团董事长汪群杰对自己的描述。从研究生、博士到博士后,汪群杰一直在做有机硅材料,入职安捷伦后开始接触色谱分离材料,在以硅材料为核心的分离材料上有深厚的沉淀。从安捷伦离职回国后,汪群杰自主创业,实现了国内首个硅胶基质填料的国产替代。  2020年,汪群杰再度出发,分别创立了苏州艾捷博雅生物电子科技有限公司、浙江博颐生物科技有限责任公司。  2022年,苏州艾捷博雅生物电子科技有限公司完成了对浙江博颐生物科技有限责任公司的并购,形成了集工业色谱分离纯化一体化解决方案与临床质谱前处理自动化研发生产于一体的艾捷博雅生物集团,更好地服务生物医药及临床质谱领域。  完成并购之后的艾捷博雅以色谱分离纯化为核心,建立了国际上为数不多的规模化高纯球形色谱硅胶生产基地,实现国产硅胶基质色谱材料生产的产业化突破 同时,首创开发出应用于有机小分子提取的多重分离基质——磁性萃取材料,并结合自主开发的全自动磁性萃取仪器,替代传统固相萃取方法,  除此之外,艾捷博雅还拥有众多特种色谱分离和吸附材料新产品,如极性、耐碱、亲水等有机键合硅胶、蛋白限进、核壳等色谱介质 微量金属、内毒素、有机毒素、生物样品磷脂蛋白等特异性吸附材料,在质量和稳定性等方面均达到国际主流产品水平,在价格上也具有显著的优势。  突破硅胶基质分离材料、质谱前处理自动化瓶颈  艾捷博雅集合分离材料、设备自动化、纯化开发工艺三方面的领先技术,提供提取和分离纯化的产品及整体解决方案。公司目前聚焦药物分离纯化和临床质谱前处理板块,意图解决两大板块中的“卡脖子”难题。  其中,在生物医药市场,艾捷博雅重点关注药物分离纯化,包括多肽、核酸药物、合成生物以及发酵等等。其中,多肽是近两年的热门市场,口服肽、GLP靶点备受关注。核酸药物则是随着mRNA疫苗而大火,海外已有10余款核酸药物获得批准,中国核酸药物市场也在快速发展,市场规模在千亿级。  药物分离纯化市场的卡脖子问题是提取、分离材料进口垄断。汪群杰表示:“药物分离纯化领域常用的硅胶基质分离材料都还依赖进口。比如有的产品,形式上是国内生产,实际上硅胶用的原料、培养基用到的氨基酸、一次性反应袋的膜等等,还是国外进口。”也因此有“谁能抢到原料来源,谁就占据先机”的说法。  质谱检测的“卡脖子”之处在于前处理自动化,这一问题在全球都没有理想的解决方案。  临床质谱技术在灵敏度、特异性、多指标联检等方面具备独特优势。汪群杰谈到:“传统方法学可以检测人体的脂肪酸、各种激素,但是一些异构体无法检测出来,只能检测总的胆汁酸水平,无法检测出更多细节物质。临床质谱可以弥补传统方法学的缺陷,意义重大,带来了一场检测革命。”  随着临床质谱广泛应用于心血管疾病早期检测、代谢疾病风险预测等领域,未来的市场规模至少在百亿级。但是,质谱技术在临床普及必须要实现自动化,但质谱仪本身是一个科学仪器,并非为临床检测而生,自动化程度、可靠性、一致性都还不够高,特别是提取分离自动化程度达不到临床使用的要求,无法实现像生化免疫那样的高度自动化。  “不论是药物分离纯化材料,还是临床质谱前处理自动化,只有实现完全的、真正意义上的国产化、原研创新,才能彻底摆脱‘卡脖子’,提升中国生物医药、临床质谱企业在国际市场的地位。艾捷博雅正在加速推动这一进程。”  已合作40家生物医药、20余家临床质谱企业  目前,市面上的供应商要么提供原料,要么提供耗材,要么提供设备,还缺乏能够提供整体解决方案的企业。“提取分离完整解决方案是下游客户的急需,其价值不止于one stop shopping,而是可以为客户提供一个成本更低、更具性价比的选择。”  艾捷博雅不仅着力于解决药物分离纯化、临床质谱前处理自动化的“卡脖子”,同时更进一步,率先在业内提供完整解决方案,包括提取、分离纯化材料、自动化设备、分离纯化工艺开发及服务。  “这就像惠普当年的打印机,想要获得更加理想的回报,就需要既做打印机、又做墨盒,甚至从油墨开始做。”汪群杰总结。  在分离材料方面,艾捷博雅实现了硅胶基质分离材料规模化生产的产业化突破,从硅溶胶原料开始,生产出一系列工业制备色谱填料(包括通用型、多肽/胰岛素专用型、耐碱型等),将行业里主流、需求量大的硅胶基质填料实现了完全国产化。如此前超过95%长期被日本及瑞典的填料厂商占据的多肽及胰岛素分离纯化市场,已有多家用户使用艾捷博雅自产的分离填料,并反馈产品性能完全达到替代进口主流品牌水平,在保证其优异的分离效果的同时,降低了填料成本,具有极高的性价比。  依托艾捷博雅的创新,这些主流填料将不再受国外供应链及价格的任何影响,目前公司已经合作了大约40家生物医药企业,其中成规模采购,订单金额在几十万级别的有10余家。  仪器方面,公司实现了自动化仪器的国产替代,同时在技术方法上实现了多个原创,比如利用在线色谱分析的手段进行自动化流体控制,实现对纯度的自动化判定等等。  在临床质谱市场,艾捷博雅是国内领先,成功自研磁性固相萃取技术并将其推向商业化的企业。  公司的磁性固相萃取技术弥补了传统固相萃取柱可靠性、一致性不高的缺陷。基于磁性固相萃取技术,公司与20多家临床质谱企业达成了合作,提供全自动提取纯化系统,并共同开发试剂盒。其中,公司的mSPE全自动磁珠提取技术及产品,已协助多家机构对儿茶酚胺代谢物、激素、维生素等项目进行开发及申报。  汪群杰表示:“艾捷博雅作为分离纯化全方位解决方案引导者将针对核酸药物、多肽领域重点市场,迅速完成相应材料的国产替代,在行业里形成影响力。在临床质谱市场和下游企业广泛合作,形成完整的临床质谱自动化解决方案。在更远的将来,公司会基于在提取、分离纯化、自动化上的核心技术,向更多应用领域拓展,实现更多原研创新。
  • 直播|长三角先进材料研究院携手牛津仪器!2024显微分析技术系列讲座
    8月1-2日,长三角先进材料研究院邀请牛津仪器技术专家举办系列显微分析技术讲座。本次讲座分为三个专题,内容围绕金属材料,新能源材料,电子半导体材料中的多种显微表征及分析手段的使用及方法,同时针对金属材料结构及形变EBSD分析,AFM和拉曼等技术在新能源和电子半导体材料的应用进行深入讲解,欢迎报名参加。会议日程:(文末扫码报名)扫码报名参会(或 长按二维码识别报名)
  • 高效、无损的成分分析技术为电解液、塑胶、金属等材料检测保驾护航——访仲达仪器副总经理董玉娟
    2023年7月8日,由中国材料研究学会主办的中国材料大会2022-2023在深圳国际会展中心开幕。据悉,本届中国材料大会系首次在深圳举办,大会聚焦前沿新材料科学与技术,设置77个关键战略材料及相关领域分会场,三天会期超1.9万名全国新材料行业产学研企代表齐聚鹏城,出席大会。会议同期,大会组委会还在会展中心17号馆举办了国际新材料科研仪器与设备展览会。展会现场,仪器信息网就参会感受、解决方案等话题采访了深圳市仲达科技有限公司副总经理董玉娟。以下为现场采访视频:
  • 《RISE大招》无机材料之结构分析和结晶度分析
    《RISE大招》前情回顾:这是一个荡气回肠的相遇、相知、相恋、相爱的故事。本系列前两集讲述了RISE从传统扫描电镜“心有余而力不足”的分析困境下一跃而出到它对于无机相鉴定和金属夹杂分析的武功路数,相信大家对RISE电镜-拉曼一体化系统已经有了基本了解。(然而小编还是无比体贴的放上了前两集链接:点击下列文字即可快速阅读)。01 “我的前半生”结束了,后面的科研之路就靠它了!02 无机材料分析,RISE还有这些大招!科研无涯,却无需苦作舟。路即在此,英雄闻声而至。话不多说,今天呢,接着上次的招式,给大家讲讲RISE在无机材料结构分析和结晶度分析上的套路。无机材料之结构分析对于无机材料来说,经常会碰到同分异构的情况。但是仅仅通过扫描电镜和能谱,我们只能得到形貌和成分数据,而没有办法对样品进行准确的结构分析。而结构作为物质的基本特性,极大的影响着热、力、光、电、磁等性能,因此也是微区表征不容忽视的方面。而目前在SEM系统中,能够进行结构表征的也只有EBSD,但是前提依然是要有严格的样品制备,局限性很大。而成分相同结构不同的同分异构材料的拉曼光谱,往往表现出较大的差异,因此拉曼光谱分析手段是很好的表征结构的手段。因此,通过SEM+EDS+Raman (RISE) 的综合分析手段,我们就可以对同分异构材料进行全面准确的形貌、成分和结构分析。 如下图,试样为TiO2粉末,TiO2有锐钛矿和金红石两种结构,并且两者表现出完全不同的拉曼光谱特征。因此在RISE系统中通过拉曼光谱的面扫描分析,可以轻易的区分出蓝色区域为锐钛矿结构,红色区域为金红石结构。再例如下图,通过EDS数据知道电镜分析区域为Sm2O3 ,然后在此基础上进行拉曼面分布分析。虽然试样并不平整,完全不够EBSD的测试要求,但是RISE系统依然可以发现其中红色区域为立方结构的Sm2O3 ,蓝色区域为单斜结构的Sm2O3 。无机材料之结晶度分析对于无机材料来说,结晶度也是重要的参数。目前能够很好的表征结晶情况的主要是XRD,并且是基于宏观分析,能在微区尺度对结晶度进行表征的手段则很少。而无机晶体材料的结晶度却会对特征拉曼峰产生较大的影响。结晶度程度高,特征拉曼峰高而尖锐;反之,若结晶度低,则特征峰会变宽。因此,可以通过特征拉曼峰的宽度来对结晶度进行评判。由此可见,原位一体化的RISE对微区领域的结晶度分析提供了新的途径。如下图,用SEM-FIB双束电镜在硅表面进行图形加工。由于Ga+离子的注入效应、热效应等会使加工区域的硅产生一定程度上的非晶化。仅凭形貌是无法知道非晶化程度的。而在此区域用RISE进行拉曼面扫描,并用每一个测试点的Si的特征拉曼峰的半高宽为依据进行RISE成像,红色区域为半高宽较窄,蓝色区域为半高宽较宽。由此形成的RISE图像,对于研究FIB加工产生的非晶化一目了然。RISE七十二般武艺,招招新奇,但一招一式,每一个路数都为更好的帮助您的科研分析而生。除了切实突破并解决了传统扫描电镜分析能力薄弱的问题,针对传统意义上的电镜-拉曼联用系统的种种分析弊端,RISE系统采用了扫描电镜-拉曼光谱一体化的硬件和软件设计,使得综合分析更加行之有效。 故事刚开始,我们已相遇,还有相知、相恋、相爱̷̷跑远了,下面请收看“下集预告”:《RISE大招》下集看点:无机材料之微量元素分析、取向分析、取向应力分析。关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。关注TESCAN中国官方微信“TESCAN公司”,更多精彩资讯。↓ ↓ ↓ 观看RISE大招全系列,请戳:01 “我的前半生”结束了,后面的科研之路就靠它了!02 无机材料分析,RISE还有这些大招!
  • 赛分科技推出填料新品-MabPurix亲和层析填料
    近日,赛分科技成功开发了首款亲和层析填料——MabPurix™ Protein A,该填料以琼脂糖凝胶为基质,表面键合配体Protein A,主要应用于生物制药领域——抗体的纯化。作为全球色谱产品最为完善的企业之一以及生物分离色谱的领航者,赛分科技十分重视新产品研发,目前的色谱分离填料已涵盖反相、正相、离子交换、手性、体积排阻、亲和、HILIC、离子排斥、配体交换等十几种类型,产品品种齐全,性能优越。其中,色谱填料产品包括硅胶基质和聚合物基质两大类,几十小类,可根据客户实际需要分别应用于不同的领域中。本次所开发的MabPurix™ Protein A填料是赛分科技推出的首款亲和层析填料,也是首次推出的以琼脂糖凝胶为基质的填料,此前,赛分科技的填料基质包括球形硅胶、不定形硅胶、聚甲基丙烯酸酯、PS/DVB等。与其它基质相比,琼脂糖基质填料具有更好的生物相容性。MabPurix™ Protein A的加入使得赛分科技的产品品种更加齐全,尤其对于生物分离色谱产品家族里,MabPurix™ Protein A的成功推出具有里程碑的意义。 赛分科技的聚合物基质填料家族 MabPurix™ 亲和层析填料 MabPurix™ 亲和层析填料专为大规模抗体纯化而设计,是由高纯度Protein A与高交联度琼脂糖偶联后的产物,用于从血清、腹水、细胞培养上清和细胞提取物中分离和纯化多种哺乳动物不同亚型的抗体或包含抗体Fc片段的基因工程重组蛋白。Protein A是金黄色葡萄球菌细胞壁蛋白,单链,它通过与免疫球蛋白的Fc区相互作用,可结合大多数哺乳动物的IgG,尤其对人IgG1、IgG2、IgG4,小鼠IgG 2a和IgG 2b具有高亲和力。MabPurix™ Protein A亲和层析填料具有高稳定性、高选择性、高效率的特点,是抗体纯化的优选。 ● 可根据用户的需要提供各种规格的预装柱;● 强化基质保证了高流速、低背压;● 特殊设计的定向键合技术保证了高的载量;● 可耐受苛刻的在线清洗条件;● 可以很容易的由小规模的实验室制备向大规模的工业化生产进行线性放大。 更多信息请登录:http://www.sepax-tech.com.cn/products/gytl/juhe/infinity/99.html 关于赛分科技 赛分科技有限公司(Sepax Technologies, Inc)总部位于美国特拉华州高新技术开发区,致力于开发和生产药物与生物大分子分离和纯化领域的技术和产品。赛分科技是集研发、生产和全球销售为一体的实业型企业。公司主要产品为液相色谱柱及耗材、固相萃取柱(SPE)及耗材、液相色谱填料以及分离纯化仪器设备。在液相色谱领域里,赛分科技已开发出了100多种不同型号的液相色谱材料,涵盖了反相、正相、超临界(SFC)、手性(Chiral)、离子交换、体积排阻、亲和、HILIC等各种类别,为世界范围内液相色谱产品最为完善的企业之一。 赛分科技的创新技术使之生产出具有最高分辨率及最高效的生物分离产品,包括体积排阻、离子交换、抗体分离、和糖类化合物分离色谱填料和色谱柱,可广泛地应用于单克隆抗体、各种蛋白、DNA、RNA、多肽、多糖和疫苗等生物样品的分析、分离和纯化。赛分科技先进的技术和完善的产品线已使赛分成为全球生物分离的领航者。 公司网站:www.sepax-tech.com.cn www.sepax-tech.com
  • GC-MS分析兵马俑的胶水和填料
    使用GC-MS以及X射线荧光光谱法、X射线衍射法和偏光显微镜,西北大学文化遗产学院和秦始皇陵遗址博物馆(西安)的科学家测定了用作兵马俑结构的一种胶和填充物的多官能的材料的组成。  神秘的多功能材料  1974年,西安市的一群农民挖井时,发现了兵马俑泥塑的片段。继他们的发现,考古学家访问了遗址,并通过多年的渐进而细致的工作,挖掘出7000个兵马俑雕像,这是迄今发现的最大的雕塑葬集合。每个兵马俑雕像都是独一无二的,有不同的发型、脸部、衣服、高度、面孔和姿势。现在,这里是著名的联合国教科文组织世界文化遗产。兵马俑围绕秦始皇——中国的第一个皇帝,保护他死后的陵墓。秦始皇统一许多较小的战国,标志着现在中国开始,并开始了长城的建设。  兵马俑雕像是真正了不起的,包括军事人物,比如战士、武器和马匹,还有杂技、力士和音乐家,据推测,这些是为了迎接来世的皇帝。陵墓和游客中心已经展出挖掘的雕像,他们也已经在世界各地展览。 自从兵马俑被发现以来,遗物获得了广泛的科学和考古学兴趣,期待揭示中国在秦皇时期人民生活的丰富细节。  在雕像中发现了一种多功能材料,为均质的蓝灰色粉末,与颜色灰度陶器相似。在士兵塑像中,在战士和它的搁脚板之间发现了这种蓝灰色粉末。在武器和身体部分,颈部和头部等部份,套筒和手掌之间都有所发现。 在马雕像上,在其头部和颈部,上腹部和四肢和蹄之间,也发现了这种材料。 这些材料似乎是秦雕像建设中的重要组成部分,但迄今为止,它尚未在任何深度上进行调查。西北大学文化遗产学院和秦始皇陵遗址博物馆的专家采用了一系列的分析方法,来研究这种材料的组成,并揭示其功能。 X射线荧光光谱法(XRF)和X射线衍射光谱法(XRD)用于研究无机组分,偏振显微镜(PLM)提供了有关矿物外观和晶粒尺寸的细节,以及用于烧制材料的温度 。 GC-MS用于鉴定有机组分。  GC-MS识别有机粘合剂  通过用碳钢外科手术刀片刮擦,将赤土陶器战士和赤陶马的多用途材料的样品,收集在医疗勺里。 将样品密封在玻璃管中,并冷藏保存,直至需要用于分析。为了比较,还制备了焙烧土、模拟陶器和陶器碎片的样品。  采用GC 7890-MS 5975仪(安捷伦,USA)进行GC-MS分析,仪器配备有EI离子源和四极质量分析器。首先,使用氨提取样品并在C4固相,然后在真空下放置用6mol/L 盐酸水解纯化。然后在5分钟内将样品加热至160°C,并保持30分钟。将得到的水解产物在氮气流下干燥,并使用MTBSTFA用1%TMCS衍生化。十六烷和N-亮氨酸用作内标,并采用定量的标准曲线法。  XRF和XRD测定表明,该材料的无机成分为SiO2、Al2O3和Fe2O3,以及一些K2O、MgO和CaO,石英、钠长石和钾长石为主要的矿物相,如通常的陶器。因此,兵马俑雕像的无机成分与用于制造它们的粘土相同。 PLM和PETROG进一步表明地面陶器在材料中存在。  GC-MS能够识别在粘合材料中起特殊作用的有机组分。 在所有样品中,发现有低水平的0.0023%至0.0212%的蛋白质。对含有蛋和动物胶蛋白的所有样品,使用氨基酸比和PCA来鉴定蛋白质的来源。 需要进一步的工作来确定是否使用了全蛋、蛋黄或蛋白,或者其他有机物质(其他蛋白质,脂质或多糖)可能已经存在。  结果表明,该材料的主要功能是作为一种粘合剂或胶水,当初,分别制造了雕像的各部分,然后连接在一起。 此外,裂缝部件之间的材料的存在,强烈地表明其应用作为胶水。 另一种拟议的用途是用于平滑粗糙的表面,如马雕像的腹部所见。 研究人员认为无机填料和有机粘合剂的组合赋予了多功能性质的材料。  促进未来的复原  该研究采用一系列多种分析技术,揭示了兵马俑建设中使用的多功能材料的组成。 有机粘合剂与无机填料的组合,显示了工匠的创造性和智慧性,毫无疑问,这对复原秦朝兵马俑非常有用。  相关链接  [1] Ge R, Yang L, Shen M, Sun W. Investigating the Composition and Application of an Ancient Multipurpose Material Discovered on the Qin Terracotta Army Statues. Archaeometry. 2021. https://doi.org/10.1111/arcm.12712  [2] Cohen A. Artsy: Why China’s First Emperor Built, Then Buried, a 7,000-Strong Terracotta Army. (https://www.artsy.net/article/artsy-editorial-chinas-first-emperor-built-buried-7-000-strong-terracotta-army accessed 9 August 2021).  Wikipedia: Terracotta Army. (https://en.wikipedia.org/wiki/Terracotta_Army accessed 9 August 2021).  From:Wiley Analytical Science, Spectroscopy, August 24, 2021  (编译:符斌 北京中实国金国际实验室能力验证研究中心研究员)
  • 【精彩视频回放】聚焦新材料研究 多种表面分析技术各显其能——第三届表面分析技术应用论坛成功召开
    p   表面科学是上世纪60年代后期发展起来的一门学科,目前已经成为国际上最为活跃的学科之一。材料表面的成分、结构、化学状态等与内部有明显的不同,而表面特性对材料的物理、化学等性能影响很大。随着我国新材料领域研究的深入,表面分析技术也日益发挥其重要的作用。当前,全球已经开发了数十种常用的表面分析技术,如X射线光电子能谱(XPS)、二次离子质谱(SIMS)、扫描探针显微镜(SPM)、辉光放电光谱(GDS)、俄歇电子能谱(AES)等。 /p p   为了积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术在新材料研究中的进展,5月20日,仪器信息网联手国家大型科学仪器中心-北京电子能谱中心、中国分析测试协会高校分析测试分会举办“第三届表面分析技术应用论坛——表面分析技术在新材料研究中的应用”网络主题研讨会,七位专家就相关的研究领域分享了高质量的报告。 /p p   此次应用研讨会内容立足表面分析技术在新材料研究中的应用,既有某一课题的科研进展综述,也有某一方向的研究成果分享、最新标准解读,以及相关仪器使用介绍等。组织方希望通过此次表面分析技术应用论坛的平台,让与会者深入交流,共同提升理论与技术水平, 促进表面分析科学研究队伍的壮大。本次会议由国家大型科学仪器中心-北京电子能谱中心副主任、清华大学分析表面分析室主任、高级工程师姚文清主持。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/85014051-a8d5-4da7-874c-4853820e8013.jpg" title=" 姚文清.jpg" alt=" 姚文清.jpg" / /p p style=" text-align: center " strong 国家大型科学仪器中心-北京电子能谱中心副主任、清华大学分析表面分析室主任、高级工程师姚文清 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/80a5fb64-a7ff-4e04-a2d4-f343cc70cb41.jpg" title=" 报告嘉宾.png" alt=" 报告嘉宾.png" / /p p   清华大学张强教授主要从事能源材料研究,尤其是在金属锂、锂硫电池和电催化方面开展了一系列的工作。本次报告中,他从能源存储与转化的新机遇讲起,针对工作金属锂界面上的SEI(界面层),以及如何获得稳定的SEI,如何诱导金属锂均匀沉积等多个话题给大家介绍了其所开展的研究工作。报告题目: strong 《The Working Surface of Li Metal Anode in Safe Batteries》。 /strong /p p   计量、标准、合格评定(检测和认证认可)对人类社会进步和工业发展发挥着不可或缺的基础性作用,2006年联合国与国际标准化组织(ISO)正式明确“计量、标准化、合格评定”为国家质量基础(National Quality Infrastructure,简称 NQI)的三大构成要素。石墨烯由于其独特的性能使其成为代表性的新材料而受到各国政府的产业支持。中国计量科学研究院任玲玲研究员在简要回顾计量、标准的基础上,重点介绍针对急需有序规范发展的石墨烯粉体材料开展的NQI技术研究及成果实施。 strong 报告题目:《石墨烯粉体材料计量、标准及合格评定全链条实施》。 /strong /p p   X射线光电子能谱(XPS)是表面分析领域中的一种崭新的分析技术,通过测量固体表面约10个纳米层左右被激发出光电子的动能,进而对固体样品表面的元素成分进行定性、定量或半定量及价态分析。XPS作为一种分析各种材料表面的重要工具,目前广泛应用于与材料相关的基础科学和应用科学领域,包括各种催化材料、纳米材料、高分子材料、薄膜材料、新型光电材料、金属以及半导体等表面性能研究。岛津宋玉婷博士介绍了XPS的技术特点及应用案例。 a href=" https://www.instrument.com.cn/webinar/Video/play/105159/" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 报告视频精彩回放:《X射线光电子能谱最新应用进展》 /strong /span /a /p p   以氮化镓和砷化镓为代表的III-V族化合物,都是直接带隙半导体材料,通过掺杂或能带设计可以调控光电等物理特性,在光电领域具有独特优势。表面分析技术常被用于研究半导体材料及器件性能,分析表面形貌、组分、化学态、结构及能带等信息。本次报告,中国科学院半导体研究所赵丽霞研究员介绍了几个利用表面分析技术在研究III-V半导体光电材料和器件的典型工作。 strong 报告题目:《表面分析技术在III-V族半导体光电材料器件中的应用》 /strong 。 /p p   扫描隧道显微镜是当前表面物理和化学研究的重要实验设备。扫描隧道显微镜的基本原理是基于量子力学的隧穿效应,隧穿电流与隧穿结的高度灵敏性使扫描隧道显微镜具有原子级的空间分辨能力。扫描隧道显微镜的主要功能包括表面形貌成像、表面电子态密度测量、及原子分子操纵。中科院物理研究所陆兴华研究员的报告通过几个典型应用来展示扫描隧道显微镜的这些基本功能,并对扫描隧道显微镜技术的未来发展方向作了简单的介绍。 a href=" https://www.instrument.com.cn/webinar/Video/play/105162" target=" _blank" strong span style=" color: rgb(255, 0, 0) " 报告视频精彩回放:《扫描隧道显微镜技术》。 /span /strong /a /p p   飞行时间二次离子质谱(TOF-SIMS)能以极高的灵敏度(ppm~ppb)探测到包括H在内的所有元素及其化合物信息,被誉为是一种普适的分析技术。清华大学分析中心李展平博士的报告介绍了TOF-SIMS的基本原理、技术特点,以及它在环境等各种领域的应用。 a href=" https://www.instrument.com.cn/webinar/Video/play/105160" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 报告视频精彩回放:《飞行时间二次离子质谱分析技术及其应用》。 /strong /span /a /p p   三氧化钼是一种用途广泛的材料,在催化、抗菌等领域内有独特的应用。MoO sub 3 /sub @SiO sub 2 /sub 是常见三氧化钼的使用形态,几十年来已经用不少方法进行过很多研究。北京化工大学程斌分享了其实验室对MoO3@SiO2的最近研究方法与结果。 a href=" https://www.instrument.com.cn/webinar/Video/play/105161/" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 报告视频精彩回放:《氧化钼在MoO3@SiO2上分布的研究》 /strong /span /a /p p   虽然会议已经结束,但是精彩仍在继续,仪器信息网已经将部分报告老师的现场讲座视频上传到仪器信息网网络讲堂,想要重复学习或者没机会参与会议直播的网友,可以点击 strong 报告视频精彩回放 /strong 进行学习与分享。 /p
  • BCEIA2009专题报告会:快速分析与在线分析
    保障国家食品药品等产品的质量安全、实现工农业向先进生产模式转换、节能减排、建设集约型社会是我国当前和今后相当长时期内的重大社会发展需求。发展我国覆盖食品、药品等领域全过程实时质量安全监控体系、普遍实现工农业过程质量检测与优化、实现环境排放质量实时监控等已成为我国当代社会发展迫切需要解决的重大课题。为此,特别需要发展适合现场质量检测的快速分析仪器技术和适合生产过程质量检测的过程(在线或实时)分析仪器技术。    快速分析与在线分析专题报告会现场   2009年11月25日下午,BCEIA 2009分析仪器应用技术报告会:快速分析与在线分析专题报告会于北京展览馆召开,近100多位专家学者及分析工作者参加了报告会。    北京化工大学袁洪福教授主持报告会    中国检验检疫科学研究院邹明强研究员   报告题目:液态乳三聚氰胺拉曼光谱现场快速分析技术   2008年爆发的“三聚氰胺”事件,使我国食品安全形势空前严峻。现有检测三聚氰胺的国标或行标只能在试验室进行检测,无法应用于奶站收购现场。所需要的仪器分析方法操作条件苛刻(流动相,泵),操作复杂(未配自动进样器),耗材成本高(色谱柱昂贵),分析速度仍然不够理想。检测技术面临着如何解决从原料、生产、销售、流通等各个环节都能有效检测控制的技术手段问题。检测仪器必须满足:灵敏、现场、快速、无损、低成本等特性。   中国检科院国产便携拉曼检测技术具有自主知识产权并拥有灵敏度高、结果准确、重现性好、性价比高等优点。其应用可进一步拓展到检验检疫证单(商标)防伪鉴别、食品包装材料鉴别技术、免疫检测技术联用、气体检测(检疫处理后危害气体浓度)、生物及医学方面的应用、安检(液体、爆炸物)等领域。    华东理工大学黄明志教授   报告题目:过程质谱仪在生物过程中的应用研究   黄明志教授使用美国Extrel公司生产的MAX300-LG过程质谱仪,结合自主设计的专用的样气前处理系统和专业软件包,将过程质谱仪系统引入到生物过程研究中。具体介绍了过程质谱分析技术应用于VB12发酵过程氧调控研究,可完全替代传统的基于DO的控制策略。设计建成了湖泊生命观测系统,可用于湖泊藻类水华的观察。检测组分包括O2,常规CO2,同位素标记CO2,N2,NH3,甲醇,乙醇,H2等。 赛默飞世尔科技的色谱耗材商业产品经理Kevin Doolan先生   报告题目:碱去活性超纯硅胶填料在快速分析中的应用   Kevin Doolan先生报告中介绍了碱去活性硅胶、超纯硅胶的低金属含量减小了拖尾、改善了色谱峰峰形、提高分离效果、节省时间和溶剂,以及小粒度填料在HPLC和UHPLC分析中的具体应用。    中国药品生物制品检定所尹利辉研究员   报告题目:药品快速检测技术及应用   尹利辉研究员首先介绍了药检所的369辆药品检测车都配备了NIR分析仪,其应用的各种NIR筛查模型可以分为在全国范围使用的通用性模型、省内范围使用的省建模型和适用于特定企业产品的图谱比对模型。按算法分类又可分为判别分析(discriminant analysis)模型和一致性检验(conformity test)模型。   之后还介绍了药检所研究建立的基于一致性检验的应急检验模型、基于相似系数分析的应急检验模型以及以授权方法为基础的实验室及现场快速检测技术。    上海舜宇恒平科学仪器有限公司黄晓晶博士   报告题目:过程气体质谱在线分析   随着科学仪器技术的发展,过程质谱仪越来越多地进入人们的视野。过程质谱仪又称工业质谱仪、气体质谱仪、在线质谱仪等。在过程检测中,由于质谱仪能够进行实时、多点、多组分检测,提供定性定量信息,具有灵敏度高、检测快速等优势,因此越来越受到在线过程监控应用领域的重视。过程质谱仪可广泛地应用于石油化工、半导体、冶金、生物、环境、食品、催化和地质勘探等领域。    清华大学中药现代化研究中心梁琼麟教授   报告题目:近红外在线分析与中药智能化控制体系研究   梁琼麟教授报告中以在线近红外光谱仪为核心设备,以吉林敖东延边药业股份有限公司提取车间为具体实施例,设计并实现了一整套中药提取过程在线质量分析与智能控制系统,它包括相互配合的硬件及软件两个部分。针对安神补脑液与血府逐瘀口服液,考察了药材产地、提取工艺、光纤长度等因素对建模影响,并初步起具有包容性的运行模型,可实现提取过程中药液有效成分或指标成分含量的实时监测,对提取充分程度的趋势分析,从而对提取工艺是否正常做出快速诊断,为生产过程提供实时质量反馈信息。   在线近红外光谱分析技术为中药提取过程提供了一个实时监测工具,应用该项技术有望革新中药传统上无论药材品质高低总按固定时间提取的不合理要求,有望进一步转变为根据提取液的内在质量状况进行提取,实现工艺优化、按需提取,节约资源和能源,有效保证产品质量稳定均一。
  • 日本科学家开发出“水材料”
    日本东京大学的研究人员开发出一种以水为主要原料的凝胶状新材料,专家希望它能代替塑料广泛应用于医疗、环保等领域。   根据日本科学技术振兴机构21日发表的新闻公报,东京大学超分子化学教授相田卓三等研究人员开发的这种新材料含超过95%的水分,因此他们将这种材料命名为“水材料”。   研究人员向水里添加黏土和常用作尿不湿吸水材料的聚丙烯酸钠,在此基础上再添加由医用高分子有机物改良而成的一种黏结剂,几秒钟后就会生成一种凝胶状物质。   “水材料”的手感如同橡皮糖,在外力作用下能伸展或压缩,一旦外力撤去,又能恢复原状。即使被切断,只要迅速把断面贴在一起,仍能复原。   “水材料”能耐100摄氏度的高温,强度大致相当于美容整形中常用的硅胶,如果增加黏土的比例,“水材料”的硬度能进一步增加。   研究人员期待这种新材料能用作医疗填充材料等,以减少对传统塑料制品的依赖。   这项研究成果已于21日发表在英国《自然》杂志网络版上。
  • 一文了解|五大材料热性能分析方法
    | 热分析简介热分析的本质是温度分析。热分析技术是在程序温度(指等速升温、等速降温、恒温或步级升温等)控制下测量物质的物理性质随温度变化,用于研究物质在某一特定温度时所发生的热学、力学、声学、光学、电学、磁学等物理参数的变化,即P = f(T)。按一定规律设计温度变化,即程序控制温度:T = (t),故其性质既是温度的函数也是时间的函数:P =f (T, t)。| 材料热分析意义在表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛的应用,对于材料的研究开发和生产中的质量控制都具有很重要的实际意义。| 常用热分析方法解读根据国际热分析协会(ICTA)的归纳和分类,目前的热分析方法共分为九类十七种,常用的热分析方法包括热重分析法(TG)、差示扫描量热法(DSC)、静态热机械分析法(TMA)、动态热机械分析(DMTA)、动态介电分析(DETA)等,它们分别是测量物质重量、热量、尺寸、模量和柔量、介电常数等参数对温度的函数。(1)热重分析(TG)热重法(TG)是在程序温度控制下测量试样的质量随温度或时间变化的一种技术。应用范围:(1)主要研究材料在惰性气体中、空气中、氧气中的热稳定性、热分解作用和氧化降解等化学变化;(2)研究涉及质量变化的所有物理过程,如测定水分、挥发物和残渣、吸附、吸收和解吸、气化速度和气化热、升华速度和升华热、有填料的聚合物或共混物的组成等。原理详解:样品重量分数w对温度T或时间t作图得热重曲线(TG曲线):w = f (T or t),因多为线性升温,T与t只差一个常数。TG曲线对温度或时间的一阶导数dw/dT 或 dw/dt 称微分热重曲线(DTG曲线)。图2中,B点Ti处的累积重量变化达到热天平检测下限,称为反应起始温度;C点Tf处已检测不出重量的变化,称为反应终了温度;Ti或Tf亦可用外推法确定,分为G点H点;亦可取失重达到某一预定值(5%、10%等)时的温度作为Ti。Tp表示最大失重速率温度,对应DTG曲线的峰顶温度。峰的面积与试样的重量变化成正比。实战应用:热重法因其快速简便,已经成为研究聚合物热变化过程的重要手段。例如图3中聚四氟乙烯与缩醛共聚物的共混物的TG曲线可以被用来分析共混物的组分,从图1中可以发现:在N2中加热,300~350℃缩醛组分分解(约80%),聚四氟乙烯在550℃开始分解(约20%)。影响因素:(a)升温速度:升温速度越快,温度滞后越大,Ti及Tf越高,反应温度区间也越宽。建议高分子试样为10 K/min,无机、金属试样为10~20K/min;(b)样品的粒度和用量:样品的粒度不宜太大、装填的紧密程度适中为好。同批试验样品,每一样品的粒度和装填紧密程度要一致;(c)气氛:常见的气氛有空气、O2、N2、He、H2、CO2 、Cl2和水蒸气等。气氛不同反应机理的不同。气氛与样品发生反应,则TG曲线形状受到影响;(d)试样皿材质以及形状。(2) 静态热机械分析 (TMA)热机械分析,是指在程序温度下和非震动载荷作用下,测量物质的形变与温度时间等函数关系的一种技术,主要测量物质的膨胀系数和相转变温度等参数。应用范围:静态热机械分析仪主要用于对无机材料、金属材料、复合材料及高分子材料(塑料、橡胶等)的热膨胀系数;玻璃化转变温度;熔点;软化点;负荷热变形温度;蠕变等进行测试。实战应用:(a)纤维、薄膜的研究:可测定其伸长、收缩性能和模量及相应的温度,应力-应变分析、冷冻和加热情况下应力的分析;(b)复合材料的表征,除纤维用TMA研究外,复合材料的增强,树脂的玻璃化转变温度Tg、凝胶时间和流动性、热膨胀系数等性质,还有多层复合材料尺寸的稳定性、高温稳定性等都可以用TMA快速测定并研究;(c)涂料的研究:可了解涂料与基体是否匹配及匹配的温度范围等;(d)橡胶的研究:可了解橡胶在苛刻的使用环境中是否仍有弹性及尺寸是否稳定等。影响因素:(a)升温速率:升温速率过快样品温度分布不均匀(b)样品热历史(c)样品缺陷:气孔、填料分布不均、开裂等(d)探头施加的压力大小:一般推荐0.001~0.1N(e)样品发生化学变化(f)外界振动(g)校准:探头、温度、压力、炉子常数等校准(h)气氛(i)样品形状,上下表面是否平行应用(3) 差示扫描量热法(DSC)原理:差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。差示扫描量热法有补偿式和热流式两种。试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。曲线的纵轴为单位时间所加热量,横轴为温度或时间。曲线的面积正比于热焓的变化。图4中展示了典型的DSC曲线。应用范围:(1)材料的固化反应温度和热效应测定,如反应热,反应速率等;(2)物质的热力学和动力学参数的测定,如比热容,转变热等;(3)材料的结晶、熔融温度及其热效应测定;(4)样品的纯度等。影响因素:(a)升温速率,实际测试的结果表明,升温速率太高会引起试样内部温度分布不均匀,炉体和试样也会产生热不平衡状态,所以升温速率的影响很复杂。(b)气氛:不同气体热导性不同,会影响炉壁和试样之间的热阻,而影响出峰的温度和热焓值。(c)试样用量:不可过多,以免使其内部传热慢、温度梯度大而使峰形扩大和分辨率下降。(d)试样粒度:粉末粒度不同时,由于传热和扩散的影响,会出现试验结果的差别。(4) 动态热机械分析(DMA)动态热机械分析测量粘弹性材料的力学性能与时间、温度或频率的关系。样品受周期性(正弦)变化的机械应力的作用和控制,发生形变。应用范围:动态热机械分析仪主要用于对无机材料、金属材料、复合材料及高分子材料(塑料、橡胶等)的玻璃化转变温度、负荷热变形温度、蠕变、储能模量(刚性)、损耗模量(阻尼性能)、应力松弛等进行测试。DMA基本原理:DMA是通过分子运动的状态来表征材料的特性,分子运动和物理状态决定了动态模量(刚度)和阻尼(样品在振动中的损耗的能量),对样品施加一个可变振幅的正弦交变应力时,将产生一个预选振幅的正弦应变,对粘弹性样品的应变会相应滞后一定的相位角δ,如图5所示。DMA技术把材料粘弹性分为两个模量:一个储存模量E´,E´与试样在每周期中贮存的最大弹性成正比,反映材料粘弹性中的弹性成分,表征材料的刚度;而损耗模量E",E"与试样在每周期中以热的形式消耗的能量成正比,反映材料粘弹性中的粘性部分,表示材料的阻尼。材料的阻尼也成为内耗,用tanδ表示,材料在每周期中损耗的能量与最大弹性贮能之比,等于材料的损耗模量E"与贮能模量E´。DMA采用升温扫描,由辅助环境温度升温至熔融温度,tanδ展示出一系列的峰,每个峰都会对应一个特定的松弛过程。由DMA可测出相位角tanδ、损耗模量E"与贮能模量E´随温度、频率或时间变化的曲线,不仅给出宽广的温度、频率范围的力学性能,还可以检测材料的玻璃化转变、低温转变和次级松弛过程。例如损耗峰能够代表某种单元运动的转变,图6为聚苯乙烯tg随温度变化的曲线,从图中可以推断峰可能为苯基绕主链的运动;峰可能是存在头头结构所致;峰是苯环绕与主链连接键的运动。影响因素:升温速率、样品厚度、有无覆金属层,夹具类型等(5) 动态介电分析(DETA)动态介电分析是物质在一定频率的交变电场下并受一定受控温度程序加热时,测试物质的介电性能随温度变化的一种技术。介电分析原理:具有偶极子的电介质,在外电场的作用下,将会随外电场定向排列。偶极子的极化和温度有关并伴随着能量的消耗。一般以介电常数(ε)表示电介质在外电场下的极化程度,而介电损耗(D)则表示在外电场作用下,因极化发热引起的能量损失。偶极子在外电场作用下的定向排列也会随外电场的去除而恢复杂乱状态。偶极子由有规排列回复到无规排列所需的时间称“介电松弛时间T”,按德拜理论:(其中:η介质粘度,a分子半径,K玻尔兹曼常数,T温度K)。松弛时间和分子的大小、形状以及介质的粘度有关。而式中tgδ损耗角正切,ε0静电场下介电常数;ε∞光频率下的介电常数。由此见,ε、tgδ都是和松弛时间τ有关的物理量,因此也和分子的结构、大小、介质粘度有关,这就是利用介电性能研究物质分子结构的依据。由(a)(b)两式可以证明,当时,ε´有极大值,f0称“极化频率”。即当外电场频率为极化频率时,介电损耗极大。应用范围:这一技术已被广泛地应用于研究材料电介质的分子结构、聚合程度和聚合物机理等。从应用对象讲,有聚丙烯酸甲酯、聚氯乙烯、聚酰胺、聚酰亚胺、聚苯乙烯、酚醛、环氧、聚蜡等热塑性和热固性树脂。此外还有耐高温树脂中的聚苯枫、聚苯并咪唑,生物化合物中的蛋白质等。其具体应用也包括增强塑料、模压材料、涂料、粘合剂、橡胶甚至玻璃、陶瓷等金属氧化物。在实验室中,DETA可作为粘弹性研究的有力工具,如动态机械性能和热机械性能测试。在工业生产中,它可应用于树脂制造、质量控制、预固化和固化程度控制等。| 结语该文针对热分析技术的概念入手分析,从五个方面:热重分析法、差示扫描量热法、静态热机械法、动态热机械分析、动态介电分析,简要论述了材料测试中几种典型的热分析方法。热分析已有百年的发展历程,随着科学技术的发展,热分析技术展现出新的生机和活力,不断发展进步。
  • 半导体封装材料的性能评估和热失效分析
    前言芯片封装的主要目的是为了保护芯片,使芯片免受苛刻环境和机械的影响,并让芯片电极和外界电路实现连通,如此才能实现其预先设计的功能。常用的一种封装技术是包封或密封,通常采用低温的聚合物来实现。例如,导电环氧银胶用于芯片和基板的粘接,环氧塑封料用于芯片的模塑封,以及底部填充胶用于倒装焊芯片与基板间的填充等。主要的封装材料、工艺方法及特性如图1所示。包封必须满足一定的机械、热以及化学特性要求,不然直接影响封装效果以及整个器件的可靠性。流动和粘附性是任何包封材料都必须优化实现的两个主要物理特性。在特定温度范围内的热膨胀系数(CTE)、超出可靠性测试范围(-65℃至150℃)的玻璃化转变温度(Tg)对封装的牢固性至关重要。对于包封,以下要求都是必须的:包封材料的CTE和焊料的CTE比较接近以确保两者之间的低应力;在可靠性测试中,玻璃转化温度(Tg)能保证尺寸的稳定性;在热循环中,弹性模量不会导致大的应力;断裂伸长率大于1%;封装材料必须有低的吸湿性。但是,这些特性在某种类型的环氧树脂里并不同时具备。因此,包封用的环氧树脂是多种环氧的混合物。表1列出了倒装焊底部填充胶的一些重要的特性。随着对半导体器件的性能要求越来越高,对封装材料的要求同步提高,尤其是在湿气的环境下,性能评估和热失效分析更是至关重要,而这些都可以通过热分析技术给予准确测量,并可进一步用于工艺的CAE模拟仿真,帮助准确评估封装质量的优劣与否。表1 倒装焊中底部填充胶的性能要求[1]图1. 主要封装材料、工艺方法及特性[2]热性能检测梅特勒托利多全套热分析技术为半导体封装材料的性能评估和热失效分析提供全面、创新的解决方案。差示扫描量热仪DSC可以精准评估封装材料的Tg、固化度、熔点和Cp,并且结合行业内具有优势的动力学模块(非模型动力学MFK)可以高精准评估环氧胶的固化反应速率,从而为Moldex 3D模拟环氧塑封料、底部填充胶的流动特性提供可靠的数据。如图2所示,在非模型动力学的应用下,环氧胶在180℃下所预测的固化速率与实际测试曲线所表现出的固化行为具有非常高的一致性。热重TGA或同步热分析仪TGA/DSC可以准确测量封装材料的热分解温度,如失重1%时的温度,以及应用热分解动力学可以评估焊料在一定温度下的焊接时间。热机械分析仪TMA可以精准测量封装材料的热膨胀、固化时的热收缩、以及CTE和Tg,动态机械分析仪DMA提供封装材料准确的弹性模量、剪切模量、泊松比、断裂伸长率等力学数据,进一步可为Moldex 3D模拟芯片封装材料的翘曲和收缩提供可靠数据来源。图2. DSC结合非模型动力学评估环氧胶的固化反应速率检测难点1、 凝胶时间凝胶时间是Moldex 3D模拟环氧塑封料、底部填充胶流动特性的非常重要的数据来源之一。目前,行业内有多种测试凝胶时间的方法和设备。比如利用拉丝原理的凝胶时间测试仪,另有国家标准GB 12007.7-89环氧树脂凝胶时间测定方法[3],即利用标准柱塞在环氧树脂固化体系中往复运动受阻达到一个值而指示凝胶时间。但是,其对柱塞的形状和浮力要求较高,测试样品量也很大,仅适用于在试验温度下凝胶时间不小于5 min的环氧树脂固化体系,并且不适用于低于室温的树脂、高粘度树脂和有填料的体系。由此可见,现有测试方法都存在测试误差、硬件缺陷和测试范围有限等问题。梅特勒托利多创新性TMA/SDTA2+的DLTMA(动态载荷TMA)模式结合独家的负力技术可以准确测定凝胶时间。在常规TMA测试中,探针上施加的是恒定力,而在DLTMA模式中,探针上施加的是周期性力。如图3右上角插图所示,探针上施加的力随时间的变化关系,力在0.05N与-0.05N之间周期性变化,这里尤为关键的一点是,测试凝胶时间必须要使用负力,即不仅需要探针往下压,还需要探针能够自动向上抬起。图3所示案例为测试导电环氧银胶的凝胶时间,样品置于40μl铝坩埚内并事先固定在TMA石英支架平台上,采用直径为1.1 mm的平探针在恒定160℃条件下施加正负力交替变换测试。在未发生凝胶固化之前,探针不会被样品粘住,负力技术可使探针自由下压和抬起,测试的位移曲线表现出较大的位移变化。当发生交联固化,所施加的负力不足以将探针从样品中抬起,位移振幅突然减小为0,曲线成为一条直线。通过分析位移突变过程中的外推起始点即可得到凝胶时间。此外,固化后的环氧银胶片,可通过常规的TMA测试获得Tg以及玻璃化转变前后的CTE,如图3下方曲线所示。图3. 上图:TMA/SDTA2+的DLTMA模式结合负力技术准确测定凝胶时间. 下图:固化导电环氧银胶片的CTE和Tg测试.2、 弯曲弹性模量在热循环过程中,弹性模量不会导致过大的应力。封装材料在不同温度下的弹性模量可通过DMA直接测得。日本工业标准JIS C6481 5.17.2里要求使用弯曲模式对厚度小于0.5mm、跨距小于4mm、宽度为10mm的封装基板进行弯曲弹性模量测试。从DMA测试技巧角度来讲,如此小尺寸的样品应首选拉伸模式测试。弯曲模式在DMA中一共有三种,即三点弯曲、单悬臂和双悬臂,从样品的刚度及夹具的刚度和尺寸考虑,三点弯曲和双悬臂并不适合此类样品的测试。因此,单悬臂成为唯一的可能性,但考虑到单悬臂夹具尺寸和跨距小于4mm的要求,市面上大部分DMA难以满足此类测试。梅特勒托利多创新性DMA1另标配了单悬臂扩展夹具,可方便夹持小尺寸样品并能实现最小跨距为1mm的测试。图4为对厚度为40μm的基板分别进行x轴和y轴方向上的单悬臂测试,在跨距3.5mm、20Hz的频率下以10K/min的升温速率从25℃加热至350℃。从tan delta的出峰情况可以判断基板的Tg在241℃左右,以及在室温下的弯曲弹性模量高达12-13GPa。图4. DMA1单悬臂扩展夹具测试封装基板的弯曲弹性模量.3、 湿气对封装材料的影响湿气腐蚀是IC封装失效的主要原因,其降低了器件的性能和可靠性。保存在干燥环境下的封装环氧胶,完全固化后在高温和高湿气环境下也会吸湿发生水解,降低封装体的机械性能,无法有效保护内部的芯片。此外,焊球和底部填充环氧胶之间的粘附强度在湿气环境中放置一段时间后也会遭受破坏。水汽的吸收导致环氧胶的膨胀,并引起湿应力,这是引线连接失效的主要因素。通过湿热试验可以对封装材料的抗湿热老化性能进行系统的评估,进而对其进行改善,提升整体性能。通常是采用湿热老化箱进行处理,然后实施各项性能的评估。因此,亟需提供一种能够提高封装材料湿热老化测试效率的方法。梅特勒托利多TMA/SDTA2+和湿度发生器的联用方案,以及DMA1和湿度发生器的联用方案可以实现双85(85℃、85%RH)和60℃、90%RH的技术参数,这也是行业内此类湿度联用很难达到的技术指标。因此,可以原位在线环测封装材料在湿热条件下的尺寸稳定性和力学性能。图5. TMA/SDTA2+-湿度联用方案测试高填充环氧的尺寸变化.图5显示了TMA-湿度联用方案在不同湿热程序下高填充环氧的尺寸变化。湿热程序分别为20℃、60%RH、约350min,23℃、50%RH、约350min,30℃、30%RH、约350min,40℃、20%RH、约350min,60℃、10%RH、约350min,80℃、5%RH、约350min。可以看出,在60%的高湿环境下高填充环氧在350min内膨胀约0.016%,后续再降低湿度并升高温度,样品主要在温度的作用下发生较大的热膨胀。图6为DMA-湿度联用方案在双85的条件下评估PCB的机械性能的稳定性,测试时间为7天。可以看出,PCB在高湿热的环境下弹性模量有近似6%的变化,这与PCB的树脂材料发生吸湿后膨胀并引起湿应力是密不可分的,并且存在导致器件失效的风险。图6. DMA1-湿度联用方案测试PCB的弹性模量.4、 化学品质量对于封装结果的影响封装过程中会使用到各类的湿电子化学品,尤其是晶圆级封装等先进封装的工艺流程,对于清洗液、蚀刻液等材料的质量管控可以类比晶圆制造过程中的要求,同时针对不同工艺段的化学品浓度等配比都有所不同,因此如何控制使用的电子化学品质量对于封装工艺的效能有着重要的意义。下表展示了部分涉及到的化学品浓度检测的滴定检测方案,常规的酸碱滴定、氧化还原滴定可以基本满足对于单一品类化学品浓度的检测需求。指标电极滴定剂样品量85%H3PO4酸碱玻璃电极1mol/L NaOH0.5~1g96%H2SO4酸碱玻璃电极1mol/L NaOH0.5~1g70%HNO3酸碱玻璃电极1mol/L NaOH0.5~1g36%HCl酸碱玻璃电极1mol/L NaOH0.5~1g49%HF特殊耐HF酸碱电极1mol/L NaOH0.3~0.4gDHF(100:1)特殊耐HF酸碱电极1mol/L NaOH20-30g29%氨水酸碱玻璃电极1mol/L NaOH0.9~1.2gECP(acidity)酸碱玻璃电极1mol/L NaOH≈8g29%NH4OH酸碱玻璃电极1mol/L HCl0.5~1gCTS-100清洗液酸碱玻璃电极1mol/L NaOH≈1g表1. 部分化学品检测方法列表另一方面,对于刻蚀液等品类,常常会用到混酸等多种物质混配而成的化学品,以起到综合的反应效果,如何对于此类复杂的体系浓度进行检测,成为实际生产过程中比较大的挑战。梅特勒托利多自动电位滴定仪,针对不同的混合液制订不同的检测方案,如铝刻蚀液的硝酸/磷酸/醋酸混合液,在乙醇和丙二醇混合溶剂的作用下,采用非水酸碱电极针对不同酸液pKa的不同进行检测,得到以下图谱,一次滴定即可测定三种组分的含量。图7. 一种铝刻蚀液滴定曲线结论梅特勒托利多一直致力于帮助用户提高研发效率和质量控制,我们为半导体封装整个产业链提供完整专业的产品、应用解决方案和可靠服务。梅特勒托利多在半导体封装行业积累了大量经验和数据,希望我们的解决方案给半导体封装材料性能评估的工作者带来帮助。参考文献[1] Rao R. Tummala. 微系统封装基础. 15. 密封与包封基础 page 544-545.[2] Rao R. Tummala. 微系统封装基础. 18. 封装材料与工艺基础 page 641.[3] GB12007.7-89:环氧树脂凝胶时间测定方法.(梅特勒-托利多 供稿)
  • “高性能色谱分离材料和色谱柱的研制”成果鉴定会圆满结束
    2010年8月25日,天津市科学技术评价中心对天津博纳艾杰尔科技有限公司完成的“十一五”国家科技支撑计划重大项目——“高性能色谱分离材料和色谱柱的研制”召开成果鉴定会。由中国科学院大连化学物理研究所张玉奎院士、中国科学院化学研究所刘国诠研究员、中国计量科学研究所张庆合研究员、南开大学吕宪禹教授、天津大学李祥高教授、天津工业大学魏俊富教授、天津市合成材料工业研究所陈晓康高工组成,张玉奎院士担任本次鉴定会主任。 鉴定会现场 博纳艾杰尔总经理汪群杰博士向专家组成员介绍了此次项目所取得的主要成果,包括: (1)建立了球形高纯硅胶基质的完整、稳定的生产工艺; (2)建立了三十余种键合相、近百种规格的高性能色谱填料的制备工艺; (3)建立了数百个品种、规格色谱柱的装填工艺; (4)研制出了包括酰胺基固定相、高温耐酸固定相、混合填料固定相等一系列国际首创的新型色谱固定相; (5)形成4项发明专利; (6)建立了一支40余人的综合技术团队; (7)开发了近百个色谱分离应用。 经鉴定委员会专家充分讨论,一致认为课题组提交的技术资料齐全、翔实可靠;该项目自主研发了高性能硅胶基质色谱分离材料及色谱柱,并建立了完整的产品检测技术与标准化质量控制体系,有多项创新点,项目成果已在食品安全、环保和医药等领域中得到应用,并已为欧洲药典和欧美著名制药企业多采用。目前,已实现高性能硅胶基质色谱分离材料和色谱柱的量产,销售收入达3200万元。 综上所述,该成果拥有自主知识产权,总体技术达到了国际先进水平,经济和社会效益显著。 本次鉴定会吸引了广大媒体的关注,天津日报,新华通讯社天津分社,中国天津人民广播电台等媒体对本次鉴定会均有报道。
  • 金属材料元素分析仪器的基本使用
    金属材料元素分析仪器的基本使用 金属材料元素分析仪器可检测普碳钢、低合金钢、高合金钢、生铸铁、钢、铁、有色金属、金属材料、球铁、合金铸铁等多种材料中的Si、Mn、P、Cr、Ni、Mo、Cu、Ti等多种元素。每个元素可储存99条工作曲线,品牌电脑微机控制,全中文菜单式操作。可以满足冶金、机械、化工等行业在炉前、成品、来料化验等方面对材料多元素分析的需要。 金属材料元素分析仪器产品专利号:ZL2008 2 0041074.X 一、仪器的联接与通电 用电源线将主机电源插座与市电连接,并将仪器可靠接地,(否则易受干扰,引起数据波动);检查排液胶管安装是否牢固(不要将放液胶管的出口端没入废液中,以免放液不畅),并向比色杯中注入蒸馏水(参比液),打开仪器电源开关,打开电脑电源,运行QL-1000A应用程序,波长初始化调整。 二、零点输入和满度调整 仪器在日常使用中,需进行调整零点及满度的工作,一般零点不需经常调整,每次开机后调整一次即可。 零点输入:将灵敏度档位切换到档位0,稍等片刻,零点的值将等于满度值,然后将档位切换到档位1。 满度调整:按调满按扭,自动调满。 金属材料元素分析仪器的详细请参考http://www.jqilin.com 南京麒麟分析仪器有限公司技术部
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制