当前位置: 仪器信息网 > 行业主题 > >

烟气流量软仪

仪器信息网烟气流量软仪专题为您提供2024年最新烟气流量软仪价格报价、厂家品牌的相关信息, 包括烟气流量软仪参数、型号等,不管是国产,还是进口品牌的烟气流量软仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合烟气流量软仪相关的耗材配件、试剂标物,还有烟气流量软仪相关的最新资讯、资料,以及烟气流量软仪相关的解决方案。

烟气流量软仪相关的论坛

  • 电厂烟气流量测量

    电厂烟气流量测量

    [img]http://ng1.17img.cn/bbsfiles/images/2011/12/201112161837_338845_1631901_3.jpg[/img][table][tr][td][/td][/tr][/table]  不需要进行压力和温度修正,直接测量气体的质量流量。宽量程比。原理是流体吸收热的速度直接与质量流量相关。移动的气体分子撞击热电阻时吸收带走热量,流量越大,接触热电阻的分子越多,吸收的热量越多,热吸收与某种气体的分子数,热学特性和流动特性有关系。      一、产品简介   ■气体质量测量领航者   ■原装德国进口传感器   ■恒功率方法测量      二、产品特点:   铂 RTD 传感器、高稳定性   实现高线性、高稳定性、高精度   量程比宽 100:1(可达1000:1),可据用户要求可拓展   最小流量可测低至零,分辨率 0.001m/s   实现了大管径小流量高精度测量(管道尺寸可至15m)   振动影响可忽略   直管段要求不高   压力损失小,可忽略   与介质的温度、压力无关、介质温度自补偿   专有高温软件,介质温度可达 500℃,   采用高湿软件,实现高湿气体高精度测量   对流量信号键入在线动态修正   液晶显示,瞬时流量、累积流量同时显示   对粉尘等小颗粒不敏感   在线不断流维护      三、产品原理:   wt-98电厂烟气流量计是基于热扩散原理的流量仪表。即是利用流体流过发热物体时,发热物体的热量散失多少与流体的流量呈一定的比例关系。即该流量计的传感器有两只标准级的RTD,一只用来做热源,一只用来测量流体温度,流体流过时,两者之间的温度差与流量的大小成非线性关系,该仪表就可以把这种关系转换为测量流量信号的线性输出。      利用热扩散原理制造的流量计有两种设计方法:一是:基于恒温差原理;二是基于恒功率原理。基于共同的数据模型:P/△T=A+B(Q)N− − -1.这里:P− − -耗散功率,△T− − -两个传感器之间的温差,A、B是与气体的热性能有关的系数。      恒温差原理:△T保持不变,耗散功率P与流体的流量Q成指数函数递增的关系。   恒功率原理:耗散功率不变,温度差△T与流体的流量Q成指数函数递减的关系。      四、性能指标:   测量范围:0− − 120m/s(20℃,101.33KPa)   准确度:±1%的读数±0.5%满量程   重复性:±0.15%FS   环境温度范围:-40℃− 80℃湿度小于90%RH   介质温度范围:-40-500℃   输出:流量:4-20mADC;温度:4-20mADC   非线性修正   通讯:RS232/RS485   供电电源:;24VDC 220V   可输出上下限继电器   瞬时流量/累积流量显示   清零功能   LCD显示   过程压力:<1.6Mpa(根据要求拓展)   防护等级:IP65   防爆等级:ExdIICT4      烟气流量的测量的工况复杂,有泥水,腐蚀,管径大,传统的测量方法,易堵塞,而且基于差压原理,在压力较低的情况下,出现测量盲区。wt-98烟气流量计,采用恒功率方法测量,有效解决了高温/高湿的关键问题,而气体质量流量计测量大管径和低流速是固有的特性,实现了大管道的高精度测量。特殊材质加防腐涂层有效解决防腐的问题,可保证长周期高精度测量。而传感器只有两个光滑的探针,所以不存在堵的问题,如有泥水粘连探针,可加自动清扫装置即可。

  • 烟气静压、标准状态干气流量

    HJ75中:[font=宋体][color=#000000]标准状态下干烟气流量计算公式中会用到(大气压+烟气静压)/101325,烟气静压是温压流测出来的压力吗,即从数采仪上显示的那个数值吗?大气压是当地的大气压吗?[/color][/font]

  • 【求助】请问烟气流量要求控制在95~100m3/h,该如何实现?

    我在设计一套燃煤烟气处理实验系统烟气发生装置的烟气量波动较大,在100~400m3/h之间我主要是使用三通将烟气流量部分导入系统,多余的烟气随烟囱排出但导入处理系统的烟气流量很不稳定,波动范围在50m3/h~200m3/h之间使用手动调节阀和普通转子流量计结合的方法手工调节,完全无法控制流量这非常不利于数据的采集和监测结果的分析因而需要将导入的烟气流量稳定在95~105m3/h的范围内请问针对这种流量控制,需要使用什么装置或者是仪表?或者用什么方法可以实现?谢谢!

  • LS300-A可以用于检测烟气流速吗?

    LS300-A[font=微软雅黑, Arial, Helvetica, sans-serif][size=12px][color=#333333]便携式流速流量仪[/color][/size][/font]可以用于检测烟气流速吗?是不是固定污染源检测都需要记录标干风量?

  • 烟气测量流量问题

    测量低浓度颗粒物时,仪器可以同时测量3次烟气,但是标杆流量都是一样的,现在要求3次烟气流量不一样,只能测完颗粒物之后再测3次烟气吗,这不是又浪费时间了…… 各位有这样的要求吗

  • 关于烟气流速监测时显示0的问题

    我之前对一个烟囱的烟气做了监测,监测过程发现靠近中心位置的时候,烟气流速是为零的,靠近里面壁的位置反而流速很大,这是什么原因?靠近出口的位置有流速但是不大。同时烟气静压显示为负数,气流却是往外喷的。烟囱总高21米,监测平台15米,内径约0.8米。各位专家帮分析一下!

  • 烟气类仪器常见故障及解决方案

    烟气类仪器常见故障及解决方案

    [b][color=#ff0000]烟气类仪器常见故障及解决方案[/color][/b][hr/][b]一、仪器测量的烟气数据异常。[/b]故障判断:化学传感器的时效期、气路漏气、采样流量、气泵负载、参数标定、标定方法、化学传感器进水损坏或传感器路板损坏、气体交叉干扰、气路堵塞、管路吸附、未清洗和强制校零、震动和预热时间不足;可能的原因:1、时效期:如果是化学传感器的仪器,有效期的期望值是两年,但随着随着使用的频次和待测气体浓度的大小,使用寿命会越来越低,一般来说正常的实际使用寿命大约在一年半左右,如果是氧气,因为安装位置和空气损耗等原因,使用寿命可能更短;2、漏气:最直观的现象是采样时氧气的数值没有变化或变化很小。主要分为外置气路漏气和内部气路漏气,其中外部气路需检查:取样器、预处理器、25连接管、聚四氟乙烯管,工况入口密封;内部气路需检查:安装滤芯处透明罩底的O型圈、内部所有管路连接、流压传感器、孔板流量计、传感器气室包括连接气嘴和O型圈。可以通过分别堵住烟气进气嘴和出气嘴,观察烟气采样流量变化的简易方法判断泵前和泵后是否有漏气情况;3、采样流量:气路的不完全堵塞(如有泡沫颗粒或者灰尘残留颗粒);气流压传感器损坏;气泵自身故障(如,泵负载达不到、泵头内腔有污染等);气泵流量参数被改动;气流压传感器管路脱落;4、负载:工况烟道的负压较大,有可能会出现烟气泵功率已经满负荷,但仍达不到设定的烟气流量。此时可以通过将烟气进气端和出气端同时甩到工况中,依靠工况自身的静压来平衡气泵前后端的负载,达到正常采样流量;5、参数:烟气参数的改动会引起烟气数据的差异,可以通过恢复出厂设置的方式进行修正。烟气标定是需要注意的两点:1、主副倍率;2、变更量程范围;6、调试方法:气袋法和旁通法,严禁将标气瓶减压阀的出气口直接与烟气分析仪的进气口相连接,即便是流量调节至相同状态也不能直接相连。7、传感器损坏:因为操作或保养不当造成气路进水或者传感器路板腐蚀等情况,要求采样时前端处理必须达到脱水效果,并且在日常存放时也不应放置在湿度较大的地方,需定期启动运行;8、交叉干扰:化学传感器难免会出现气体交叉干扰的情况,可以通过过滤干扰气或者数据补偿的方式对目标气体进行修正,另外超量程使用或者使用环境中有改变传感器性质的气体存在时会造成化学传感器中毒且永久损伤;9、气路堵塞:烟气采样流量在空载时就达不到设定流量,或者空载时采样流量始终波动无法稳定。①烟气过滤芯。进水、变黑、堵塞;②进气嘴或管路中的泡沫颗粒造成不完全封堵;③预处理器中的聚四氟乙烯管的融化变形;10、管路吸附:水(汽)、硅橡胶管、橡胶管、304不锈钢,都对烟气(尤其是SO[sub]2[/sub])有较大的吸附,因此要求提高前处理效率,避免使用烟尘管或者动静压管进行烟气采样;11、未清洗和强制校零:当仪器显示还有较高的烟气数值时,点击强制校零,会将当前状态当做零点状态强制校正,导致实测数值远远偏离真实值;当烟气采样完毕,仪器气室与管路中还有较多的残留气体时,未进行清洗过程便停止采样、关机装箱。残留的气体会长时间侵蚀化学传感器,致其精度降低、使用寿命缩短;12、震动和预热:如果是光学设备,在使用现场是不允许有较剧烈的震动的,震动会导致光学设备测量烟气产生误差;另外,光学设备在正式采样前都需要一段预热的时间,如预热时间不够也会造成数值偏差;[hr/][b]二、氮氧化物的转化与计算。[/b]氮氧化物是NO和NO2的混合气并最终以NO2的成分含量进行表示,因此需要将NO的浓度进行折算然后再与实测的NO2浓度相加才是最终的NOX含量。如果是以质量浓度表示时,NOX=NO×1.53+NO2;若果是以体积浓度表示时,NOX=NO+NO2 。[align=center][img=,690,138]http://ng1.17img.cn/bbsfiles/images/2017/11/201711291533_01_3254867_3.jpg!w690x138.jpg[/img][/align]

  • 【仪器心得】DL-6300自动烟尘烟气测试仪--推荐指南

    [align=center][b][font=宋体]DL-6300自动烟尘烟气测试仪[/font][/b][/align][font=宋体][font=宋体] 固定污染源一直是工厂废气中的重点,工厂废气一般包括有组织废气和无组织废气,而固定污染源就是有组织。而固定污染源采样是工厂废气采样的重点,一般情况下,工厂出于应对职业卫生安全检查、消防安全检查、安全评价检查还有一些环境保护的法律法规等会设置废气、烟尘等集气和处理设施,所以大多数污染物会从固定污染源进行处理和排放。那么如何精确有效的进行这些污染物的测定呢,这里介绍一台仪器[/font]---[/font][font=宋体]DL-6300型自动烟尘烟气测试仪[/font][font=宋体]。[/font][font=宋体]DL-6300型自动烟尘烟气测试仪是[/font][font=宋体]青岛动力伟业研发和生产的[/font][font=宋体]新一代智能型烟尘烟气测试仪[/font][font=宋体],[/font][font=宋体][font=宋体]青岛动力伟业是一家研发生产环境、水质、气体安全检测及采样仪器的技术型企业。在第一次接触青岛动力伟业这家公司的时候是在[/font]2017年,当时入职一个新公司,公司准备扩项环境,而之前我们公司购买的环境采样设备大多数是某应,某瑞等品牌,但是新公司的资金流转出现问题,不可避免的要选择性价比高的产品,这时才接触了这家公司。青岛动力伟业自产产品线已覆盖环境、水质、气体三大类,红外分光测油仪、分光光度计、烟尘烟气分析仪、智能中(大)流量颗粒物采样器、大气采样器、[/font][font=宋体]COD[/font][font=宋体]快速测定仪、[/font][font=宋体]BOD[/font][font=宋体]快速测定仪等产品畅销[/font][font=宋体]30[/font][font=宋体]多个省。产品类型众多,曾经我还以为其是一个仪器供应商,而非仪器生产商。[/font][font=宋体] DL-6300型自动烟尘烟气测试仪[/font][font=宋体]的第一个优点是烟尘烟气[/font][font=宋体]同机采样及检测[/font][font=宋体],[/font][font=宋体]能够[/font][font=宋体]大大缩短现场工作时间[/font][font=宋体]。[/font][font=宋体][font=宋体]之前我们使用过的好几个品牌的设备,都是需要一边测工况,一边用烟气分析仪进行烟气的采样,感觉非常浪费仪器,一天测一个大工厂的日常监测都做不了。而使用[/font]DL-6300型[/font][font=宋体]自动烟尘烟气测试仪[/font][font=宋体]就不太一样,其主机内[/font][font=宋体]集成差压、微压传感器、微处理器、直流[/font][font=宋体]无刷[/font][font=宋体]旋片泵,基于皮托管平行法等速采样原理,自动测量跟踪烟气流速等速采集烟尘[/font][font=宋体],[/font][font=宋体]而且主机内有温度传感器和压力传感器,能测量[/font][font=宋体]计算包括动压、静压、全压、烟气流速、干、湿球温度、含湿量、烟气排放量等在内的所有参数[/font][font=宋体],[/font][font=宋体]工况参数基本全覆盖,[/font][font=宋体][font=宋体]适用于各种锅炉、工业炉窑的烟尘排放浓度、折算浓度和排放总量的测定和各种锅炉、工业炉窑的[/font]SO[/font][sub][font=宋体][font=宋体]2[/font][/font][/sub][font=宋体][font=宋体]、[/font]NO、NO[/font][sub][font=宋体][font=宋体]2[/font][/font][/sub][font=宋体][font=宋体]、[/font]CO、H[/font][sub][font=宋体][font=宋体]2[/font][/font][/sub][font=宋体][font=宋体]S等有害气体的排放浓度、折算浓度和排放总量的测定及各类脱硫设备效率的测定[/font][font=宋体]。[/font][/font][font=宋体] DL-6300型自动烟尘烟气测试仪[/font][font=宋体]的第二个优点是方便快捷。首先是电化学传感器,这个是与线路板一起设计的,如果因为标准更新或者其他原因想升级新一代产品会更加简捷方便。然后是不同种类的打印选项,因为[/font][font=宋体]烟尘烟气监测数据繁多,不同顾客不同测试目的对数据要求各异,[/font][font=宋体]如果打印的时候出现错误就比较麻烦,所以根据[/font][font=宋体]需求来选择要打印的数据[/font][font=宋体]也是比较方便的。[/font][font=宋体] 当然[/font][font=宋体]DL-6300型自动烟尘烟气测试仪[/font][font=宋体]最大的特点并不是技术特点,而是售后,我想大多数用户在选择购买设备的其中一个重点就是维修维护售后等内容。就我目前了解的,青岛动力伟业并没有在全国广设售后点,但是线上响应及时加上设备维修一般较简单,除非是硬件损坏需更换的情况下一般都能在现场解决。[/font][font=微软雅黑] [/font][font=微软雅黑] [/font][font=微软雅黑] [/font][font=微软雅黑] [/font][font=微软雅黑] [/font][font=微软雅黑] [/font]

  • 燃气流量对火焰颜色的影响

    燃气流量对火焰颜色的影响

    火焰原子吸收光谱法测定矿石中Cu时,点火之后发现火焰颜色不正常,一看燃气流量,仪器默认燃气流量是2000ml/min,在未进样的情况下,火焰颜色如下,http://ng1.17img.cn/bbsfiles/images/2013/06/201306211211_446805_2352694_3.jpg在实验室过程中,看了看仪器其他参数,没有问题的http://ng1.17img.cn/bbsfiles/images/2013/06/201306211212_446806_2352694_3.jpg看了安老师以前一个帖子,知道了是燃气流量太大,调节到1600ml/min,火焰颜色正常了,http://ng1.17img.cn/bbsfiles/images/2013/06/201306211212_446807_2352694_3.jpg

  • 烟气流量检测时间的问题

    如题,在一般的废气检测中,有些项目(非颗粒物)要求测流量,再采样如vocs等项目。那这些项目测流量要测多长时间呢?五分钟?十分钟?或者一分钟就行?有相关标准要求吗?

  • 火焰燃气流量控制问题

    我的原子吸收是普析的TAS-990,最近在使用过程中,感觉火焰高度不正常,比如燃气流量1300的,点燃后火焰高度感觉就好像有1500+,测Pb时,1500的燃气流量,看着火焰高度似乎和2000的差不多高,测铜时,2000的燃气流量,那火焰高度更高。我想知道这样对于测量的准确度是否有影响,还有就是怕这个安全问题,该如何去检测燃气流量是否正常,监测流量的那块东西运行的是否正常。坏了又有什么法子去解决?求教各位前辈了

  • 锅炉烟尘烟气计算

    请大家帮我算个题:某企业有一台锅炉(位于二类区),2001年6月安装使用,以轻质柴油为燃料。经测试烟气含量为4.2%,修正前烟尘和二氧化硫浓度为24mg/Nm3和22PPm,烟气流量为1600Nm3/h。计算烟尘和二氧化硫的排放浓度和排放速率。

  • 火焰燃气流量设置?

    火焰燃气流量设置?

    设置燃气流量是1.8L/min。http://ng1.17img.cn/bbsfiles/images/2011/09/201109011752_313649_1601823_3.jpg为什么点火时,燃气流量显示的2.5L/min,然后才逐渐降低,这是什么原因呢。http://ng1.17img.cn/bbsfiles/images/2011/09/201109011751_313648_1601823_3.jpg由于燃烧头上次清洗时(见同版帖子火焰燃烧头,一次大意的罪过),被同时腐蚀了,现在每次点火,流量都是从2.5L/min,开始降低,每次都发出口哨声音,真是渗的慌。

  • 锅炉测试过程中烟气流速为0时,怎样判断最终污染物含量呢

    今天锅炉测试过程中遇到个问题,待测锅炉是那种50℃~100℃控温加热型的,当温度低于50℃时,锅炉会开始烧,到100℃时,就停止降温,我用仪器测量工况时发现流速为0,但是在测烟气时,锅炉燃烧加热过程中氧气含量是会下降到8%左右,同时污染物含量会升高,但是一旦锅炉温度从100℃下降时,氧气含量又逐渐升高到21%,污染物含量下降,这种情况该怎么判断污染的含量呢?而且烟气流速为0,那这些污染物是怎么排放出去的呢?

  • 【原创】CEMS烟气在线监测系统在火电厂的应用

    1.引言火力发电厂是排放二氧化硫的主要排放源。二十世纪七十年代一些发达国家就开始对烟气排放的二氧化硫进行监测。烟尘分析对于电厂烟气排放也是一个主要指标。烟气连续监测系统(简称CEMS)是为烟气排放污染物连续监测而专门设计的在线监测系统。下面以西克麦哈克(北京)仪器有限公司的SMC-9021为例介绍一下CEMS在火电厂的应用。2. 系统构成该系统由SO2/O2/NOX分析仪、烟尘仪、流量计、压力变送器、湿度/湿度计及数据处理单元(DAS)组成。见下图: 图1:系统构成图2.1. 气态污染物监测系统气态污染物监测系统有三种设计方法:直接抽取法,稀释取样法和现场安装型。对于电厂的脱硫系统过程控制和环境监测,高温处理的直接抽取法是最适合的方法。这种方法的优点是维护方便、校准简单、测量准确。SMC-9021就是这种利用方法。SMC系统采用高温取样,高温输气和快速制冷脱水的方法,保证测量结果的准确性。高温取样探头包括进入烟囱/烟道中的取样管和在烟囱/烟道外的取样过滤器及其恒温控制器。见采样探头示意图。 图2: 采样探头示意图从烟囱/烟道中通过取样探头抽出的样气通过加热输气管线到达气体分析系统。输气管线是自热式的,利用加热材料的居里点进行控温。系统的预处理包括压缩机制冷器、泵、取样/校准/反吹电磁阀组、蠕动泵、细过滤器和流量控制器等。压缩机制冷器降温效果好,SMC-9021采用两级制冷,第一级将温度从140℃降至室温,随后经过泵输入到第二级制冷器把温度降到4℃±0.1℃。整个过程的时间小于5秒钟。因此,SO2可以认为没有损失。蠕动泵将冷凝水排出,收集在储液管中。系统还配备了温度报警、压力报警和湿度报警。对高温取样的状态、取样过滤器的堵塞和冷凝情况进行监控,与取样泵连锁,保证系统取样的准确和仪器工作的可靠性。2.2. 烟尘测定仪在线尘监测仪用得最多的是光学方法。其原理分浊度法测量和激光散射法测量两种。FW300设计中对光路采用两种方案,大烟囱采用单光路单光程,小烟囱采用单光路双光程,使量程和精度得到了兼顾。同时在软件设计中引入了消光值差的慨念,使灵敏度又提高了10倍。即0-100mg/m3的测量范围的灵敏度提高到0-10mg/m3。FW300配备了具有无故障连续工作的特点的2BH13型鼓风机,与清洗连接部件一起使仪器不受烟气的污染,该鼓风机还有故障报警功能。2.3. 气体流速仪气体流速测量有三种方法:压差法、热差法和超声波方法。热差法适宜于便携式测量,超声波法测量结果最好,皮托管差压法为常用方法。在此我们采用超声波方法进行气体流速测量。用的是FLOWSIC100UHA SSTi超声波型流量计。测量过程为非接触式,具有较高的测量精度,并可以进行烟气的温度测量。两套超声波的发射器/接收器成直线安装在烟道中,与烟气流向成一定的夹角a,声波的传输时间随气体的流向变化:在与气流方向相同的方向上,传播时间Tv被缩短;在与气流方向相反方向上,传播时间Tr被延长。声波的传输时间随气体的流向变化;气体流速计算公式为 设烟道横截面积为A,烟气体积流量为: 其中,Vm——测定烟道断面的烟气平均流速L——超声波在烟道中的传播路径a——烟道中心线与超声波的传播路径的夹角Tv——声波顺气流方向在烟道中的传播时间Tr——声波逆气流方向在烟道中的传播时间FLOWSIC100UHA SSTi超声波型流量计是通过测量超声波在烟气中顺流和逆流行进的时间差来计算烟气流速,与环境温度、压力及气体的具体成分没有关系,测量精度高。而且,测量所得是烟道横截面的平均流速,代表性很强。超声波发送器用钛制造,探头用SS316制造,耐腐蚀性很好。系统不需要进行反吹,操作简单。结合中国目前CEMS的安装使用情况,超声波流量计的成本过高,在一般电厂又常采用热差法来测量烟气流量。2.4. 湿度测量系统采用的是一种高温应用的湿度传感器HMP235,该系列湿度连续监测仪采用电容型传感器,湿度变化引起电容解质介电常数的变化,因而使电容量发生变化,通过测量电容就可以测量湿度。其外型图如下: 图5 湿度仪外形图2.5. 数据采集系统系统采用SMC-900型数据采集系统。该采集系统是以数据采集/控制仪为基础建立的,它是以工控机为主体设计的,具有强大的硬件和软件功能。其硬件有:CPU:P4 1.8G或以上、硬盘:40G、内存:256M、光驱:CD-ROM、软驱:3.5”1.44M、显示器:17’纯平、打印机:A4幅面激光打印机、模拟输入:24路4-20mA、状态输入:32路开关量、输入电流:4-20mA、用电量(KVA):0.2、输入阻抗:250Ω、数字接口:RS232,RS485(可选)。软件主要功能有:使用含氧量计算折算浓度、使用湿度计算干气浓度、使用温度,压力计算标态浓度、计算总排放量、形成实时报表、自动生成日报表,月报表,年报表、记录故障事件、故障报警:声,光、缺失数据的处理、记录校准报告、通过数据通讯终端向上位机传送数据和报表,数据处理和表格型式符合HJ/T76-2001的规定。可以扩充的功能有:对气体分析系统的反吹,校准进行控制。对探头堵塞,加热输气管温度,气体湿度进行连锁控制。显示CEMS的流程图,帮助操作人员了解系统运行情形。形成趋势图,棒图、实现无线通信等。3. 结论 SMC-9021系统采用全新模块式设计,可以灵活地根据应用场合及用户的具体需要,进行自由设置和组合。系统可提供6种测量模块,可测量多达60种不同气体组分。在电厂运行中系统可与DCS系统连接并在控制室中进行监测。在古交电厂、合山电厂实际应用效果非常好。[IMG]http://[/IMG]

  • 高含湿量的情况下,烟气怎么采样!

    昨天我们去了一个现场。垃圾发电厂的在线比对。 含湿量20%,温度在165左右。我们需要测试烟气流量、烟气流速、氮氧化物(一氧化氮、二氧化氮)、一氧化碳、二氧化硫、氯化氢。但是在线仪器上面数据除了二氧化氮的数据在3-5之间跳动外。其他的都能测出。但是我们在测烟气数据的时候(我们采用电化学法氯化氢除外)在用普通的烟气枪(没有加热功能)枪时,二氧化硫的数据基本上是测不出来。用加热枪也是测不出来二氧化硫的数据。但是在刚用加热枪的时候,在预热阶段的时候我们也是测不出来的。但是15分钟后,预热阶段完成时,二氧化硫的数据在我们的测试仪器上面显示在200左右。在接着显示的二氧化硫的数据基本上又是归零了。高湿度的情况下一般高温的状况下,烟气该如何采样。 在我们采样过程中冷凝下来的水,我收集下来。带回实验室测试PH 值在2.34。冷凝水中是否含有二氧化硫、氯化氢。因为还在实验当中。但是一般而言,烟气采样电位法的话一般都是用加热枪来辅助,如果加热枪都没有效果的话,国标方法中目前就推荐了这两种方法吧! 那碰到这种情况,该怎么操作呢?怎么样才能捕集到二氧化硫?

  • 关于雾化气流量的影响

    关于雾化气流量的影响

    因为有探究方法的打算设计过实验探究雾化气流量对实际测试的影响根据一些资料可知:雾化器流速大小直接影响雾化器提升量、雾化效率、雾滴粒径、气溶胶的停留时间。对于300nm以下的波长/300nm以上的波长划分为硬线和软线,硬线在高功率等离子体中的强度最强,硬线比软线需要的电离激发能需要更多(8ev),硬线在高功率等离子体中的强度最强,适合低雾化器压力(停留时间),适合更高的等离子体和雾化器流速,具有高电离能,软线在低功率等离子体中强度最强,适合高雾化器压力。由此设计以不同雾化气流量对于不同元素和不同波长之间(以300nm上下作对比)的影响取Cu 224.56、Cu 324.57先进行相同元素的不同波长对比工作曲线浓度:0,0.5,1.0,1.5,2.0,2.5 ppm样品浓度:2ppm测定5次取强度均值和RSD做对比[img=,395,242]https://ng1.17img.cn/bbsfiles/images/2022/01/202201191102237089_1992_5401354_3.png!w395x242.jpg[/img]结论:根据测试数据来看对于Cu的硬谱线(224)来说,气流量大小(KPa)从160~300的变化是增大再减小,在240KPa处达到最高点,而对于软谱线(324)来说,雾化气压力在200以下比240小得多,240以上差别不大。再取一组软硬谱线进行对比,取Ni和Pd,因为我的常测元素300nm以上的波长只有钯就只做再一组对比了[img=,396,255]https://ng1.17img.cn/bbsfiles/images/2022/01/202201191111102496_6997_5401354_3.png!w396x255.jpg[/img]结论:上述实验可以得到验证,软线和硬线的变化趋势不同,但雾化气流量对软硬线的变化趋势可以认为是软线呈峰状,硬线会先升高后不变或平衡。疑问:对于硬谱线(224)来说,气流量大小的影响呈峰状趋势,对于理论中的适合低雾化气压力来说反映最低到只有240,240以下也会变低,对于软谱线(324)来说,适合高雾化气压力似乎也在240以上就表明足够“高”了,再高对净强度的提高没有帮助了。关键在于强度其实跟检出结果或者检出灵敏度之间的关系到底是怎么样的,理想情况下信背比基本一致的情况下,那可以说强度越高,检测灵敏度越高,检出结果越准确吗?我的理解是强度越高,数值越高,越能减小仪器绘制曲线、测量波动的影响当然上述实验其实数据也没多少,可信度我自己都还得保守观望,大家可以稍微看看

  • 【资料】烟气监测系统论述

    摘 要:针对目前部分电厂已安装的在线监测系统的选型、安装、调试、验收、运行及维护等问题进行了经验性阐述。  关键词:火电厂;烟气污染物;在线监测系统   Abstract:This paper presents an experienced explanation on model selection,installation,commissioning,acceptance,operation and maintenance of fluegas pollutant on-line supervisory systems already installed in some power plants.  Keywods:fossilfired power plants flue gas pollutant on-line supervisory system  烟气污染物在线监测系统(CEMS)是实时、连续监测污染物参数的系统,主要监测烟气中的颗粒物浓度(或浊度)、气态污染物浓度(SO2、NOx、CO、CO2)、辅助参数(烟气温度、流速、氧量、湿度、压力)等。颗粒物浓度监测方法有激光透射法、激光反散射法及电荷感应法,气态污染物浓度监测方法主要有完全抽取法、稀释法、电化学法3种。在电力行业中,颗粒物监测主要采用激光透射法,气态污染物浓度监测主要采用完全抽取法。1系统组成及功能1.1系统组成 一个完整的CEMS主要包括颗粒物监测子系统、气态污染物监测子系统、烟气排放参数监测子系统、系统控制及数据采集处理子系统、气源电源通讯等辅助设施子系统。1.2主要功能  颗粒物监测子系统主要对烟气中的烟尘浊度进行监测,并通过试验标定转换为烟气浓度参数。气态污染物监测子系统主要对烟气中SO2、NOx、CO、CO2的浓度进行监测,常见的分析原理为红外吸收法(或紫外吸收法)。烟气排放参数监测子系统主要测试烟气温度、流速、压力、湿度、氧量等参数,通过流速可以得出烟气流量,同时根据烟气温度、压力、湿度得出标准干烟气量,通过氧量将浓度换算为规定过剩空气系数下的浓度。系统控制子系统主要对反吹、采样进行控制,数据采集处理子系统对信号采集、进行数据处理并生成报表等。气源为系统提供反吹气体,电源为系统提供相应电压等级的电能,通讯系统进行模/数转换及数据通信等。2设备选型应注意的问题  目前各电厂安装的CEMS系统均由设备厂家全权负责,已安装的CEMS系统不能正常投运的重要原因之一是CEMS选型中存在着各种不完善之处,因此选型时应有针对性地从源头进行质量控制。2.1监测参数应实用、全面  标准的监测参数主要有8个,包括3个污染物参数(SO2、NOx、烟尘),3个湿流量参数(流速、温度、压力),2个换算参数(换算干基的湿度、折算浓度的氧量)。  CEMS系统至少应包括上述8个参数,但是在实际中,设备厂家为了降低成本,在实际投标中少一个或几个参数的情况时有发生,例如没有湿度测量装置而规定一个数值,甚至部分系统没有氧量测量装置而人为地输入一个值,这都不能真实反映烟气中实际污染物的浓度值。而有的系统又多增加设备以测量参数,如目前流量计大多都有测量烟气温度参数的功能,而在CEMS系统中又额外增加热电偶来测量温度,增加了设备投资。2.2联锁保护及报警系统应完善  有的设备厂家为了能中标,在标书中将各种联锁保护功能加入很多,报警功能也很多,但在实施中根本未实现,或有些报警系统根本不需要。例如:当采样管线堵塞时样气流量降低造成采样泵负荷加大,系统在无低流量报警或有低流量报警而无停泵联锁时,泵长期在低流量下运行而损坏。2.3仪表量程及校准用标准气应根据实际情况选用  某些烟气分析仪表未结合实际选定量程。在已经安装CEMS系统的电厂,出现某些烟气分析仪表因SO2量程选择偏低而无法正常监测污染物浓度的问题,或某些分析仪表量程选择偏高,如对于某些CFB锅炉烟气中NOx浓度较低,一般为100 mg/m3(标准状态下)左右,而分析仪表选择的量程又偏大而造成监测精度不高。  对于校准用的标准气浓度,一般应选满量程的70%~100%,而部分电厂标准气浓度选择过低或过高。如选择过低则降低了系统值的准确性,过高时又根本无法用此标气进行标定。2.4系统监视画面及组态  由于CEMS标准中并未对上位机中的监视画面做出具体、详细的规定,所以各个设备厂家设计的CEMS的画面水平差异很大。数据处理系统采用高级语言编程或采用组态软件,两种方式各有优劣:采用高级语言编程方式报表功能较强,但当系统配置变化时软件修改不方便 采用组态软件对配置变化后重新组态及修改非常方便,但对于相关标准要求的报表功能相当弱化。故应根据实际情况选择合适的方式。

  • 【求助】请问燃煤烟气TVOC检测用什么装置器材采样?采样口,温度,方法?

    我正在设计一套燃煤烟气处理系统需检测烟气中的TVOC(total volatile organic compounds),打算采样后用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析,现在面临如下几个问题:1、在设计系统时,需要在烟气通道上预留采样口(烟气温度大概在100℃左右),采样口可否用钢管引出,需要设计成多大的烟气流量,钢管内径多大合适?采样温度多少适宜?2、是否需要配备TVOC热解析仪?若是不需要配热解析仪,那用什么样的采样装置、器材或者容器采样?3、如何采样?谢谢!

  • 烟气脱硝系统中CEMS 存在的主要问题

    1.1 粉尘浓度高引起的采样系统堵塞问题脱硝系统的CEMS 布置在省煤器和空预器之间,由于烟气没有经过除尘器,烟气中的粉尘浓度高达30g/m3,有的甚至更高,极易造成烟气采样系统堵塞。用探头位置设置过滤装置,避免粉尘颗粒进入采样管,引起采样管线堵塞,一旦堵塞,处理起来的难度就会很高。同样,在测量烟气流速时,也要考虑皮托管的堵塞问题。因而解决好采样系统中过滤器的堵塞和清理对烟气样气分析至关重要。共性问题:1.烟气采样系统中采样管线伴热效果差,采样管线的伴热温度不能维持在烟气露点温度以上,造成烟气在管内结露、在烟气中粉尘的共同作用下引起采样管堵塞。2.因锅炉投油助燃,烟气中的大量油烟污染并堵塞取样探头。3.烟气中粉尘含量过大,导致取样探头内的过滤器堵塞。4.取样探头内的过滤器滤芯孔径的选择不合理,孔径过大,进入取样管线的灰尘过多。5.采样探头中过滤网的孔径的选择太小,增大了堵塞几率。6.安装时,管道弯曲半径过小或打折,流道受阻,产生堵塞。7.吹扫时间间隔设置过长。8.吹扫用压缩空气是带水、含油,从而污染堵塞管道。1.2 分析仪因无流量而失灵由于脱硝CEMS 的工作环境相当恶劣,可能造成取样系统堵塞,因此分析仪会因无流量而失灵,监测分析数据失效。共性问题:1.取样管道或探头堵死。2.预处理系统内部过滤器堵塞。3.预处理系统中冷凝器结冰,除湿效果差;4.预处理系统中蠕动泵故障,冷凝器不能正常工作,除湿效果差。5.预处理系统中的抽气泵长时间带水运行,烟气抽取不出。1.3 高温的问题一般情况下,脱硫系统入口的烟温约为115~150℃,脱硫系统出口的烟温约为50℃(无GGH)。而在脱硝系统入口的烟温在310~420℃左右,出口烟温与入口相差不大。因此,如果采用与脱硫CEMS 系统相同的测量方法,则采样探头、皮托管流量计的取压元件,温度仪表等需插入烟道中设备必须选用耐高温的材料,确保其能在高温环境下安全、稳定的运行,从而保证数据的准确性。1.4 腐蚀变形的问题脱硝系统中的烟气中含有、NO、NO2、水蒸气、NH3、和SO2 等。烟气在反应过程中可能生成酸或者碱以及强酸弱碱盐等物质。工作环境比较恶劣,采样探头、皮托管流量计的取压元件、温度仪表都置于烟道内,同时烟道内的烟气流速比较快(一般为15m/s),这些都会导致传感器的变形和腐蚀,引起测量仪表失效。共性问题:脱硫脱硝系统中的SO22 气体都易溶于水,溶解体积比分别为1:40(水:气)和1:4(水:气)。SO22 气体溶于水后分别生成硫酸和硝酸溶液,该酸性溶液的腐蚀性随其浓度的增大而变大。脱硫系统的SO2/SO3 原烟气露点温度在120℃~130℃;脱硝系统的NOx 原烟气露点温度在60℃左右。对于直接抽取式CEMS,如果取样管线温度控制不当,则污染物气体会直接结露。脱硝系统净化烟气中NH3 与SO3 反应生成硫酸氢铵和硫酸铵。这两种物质都是强酸弱碱盐,水溶液具有一定的腐蚀性。并且,硫酸铵固体在280℃开始分解,分解物质为硫酸氢铵和氨气,因此这两种物质在取样管中有结晶的可能。1.5 分析传感器的量程以及检出限的问题针对燃煤锅炉的实际情况,脱硝装置前烟道内NOx 的浓度在400~1000 mg/Nm3,《大气污染物排放标准》(GB13223-2011)规定脱硝后的氮氧化物浓度不大于100mg/Nm3。因此脱硝装置前后NOx的检测要求传感器具有较大的量程,并且具有较低的检测限,确保脱硝前后NOx 的检测的准确性。同时,为了防止脱硝过程中还原剂NH3 的逃逸造成二次污染,以及生成氨盐腐蚀下游设备,在脱硝装置的出口设置了氨逃逸检测设备,《火电厂烟气脱硝工程技术规范_SCR》(HJ_562-2010)逃逸氨的浓度不大于3 ppm,因此对逃逸氨设备最低检测限的要求则更高,一般要求为0.15~0.3 ppm。3 针对主要问题的解决措施针对以上脱硝系统中CEMS 系统中存在的主要问题,提出相应的对策,以供参考。3.1 取样管堵塞解决对策3.1.1 加强电加热器装置的定期维护,保证设备的正常运行,建议伴热管线的温度设定的参考值为150℃-180℃。3.1.2 根据实际烟气成分,选择合适的过滤器滤芯。3.1.3 安装时,管道弯曲度要平缓,保证流道通畅。3.1.4 吹扫频率或者间隔时间必须满足取样管基本使用要求。3.1.5 提高吹扫压缩空气品质,确保满足要求。3.2 取样探头堵塞解决对策:3.2.1 锅炉启动投油阶段,一直进行取样器反吹,避免油烟进入。3.2.2 根据实际烟气成分,选择适合的过滤器滤芯。3.2.3 定期清洗、及时维护取样探头,如每三个月清洗维护一次。3.3 分析仪因无流量而失灵解决对策:3.3.1 取样管道或者探头防堵见前面相应的对策。3.3.2 定期检查

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制