当前位置: 仪器信息网 > 行业主题 > >

射线吸收量仪

仪器信息网射线吸收量仪专题为您提供2024年最新射线吸收量仪价格报价、厂家品牌的相关信息, 包括射线吸收量仪参数、型号等,不管是国产,还是进口品牌的射线吸收量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合射线吸收量仪相关的耗材配件、试剂标物,还有射线吸收量仪相关的最新资讯、资料,以及射线吸收量仪相关的解决方案。

射线吸收量仪相关的论坛

  • X射线吸收问题

    请问我想计算防护X射线的厚度,用什么公式呢?质量吸收系数和线吸收系数这两个参数在哪里可以查到啊?

  • X射线吸收问题

    请问我想计算防护X射线的厚度,用什么公式呢?质量吸收系数和线吸收系数这两个参数在哪里可以查到啊?

  • 【求助】Ti、Zr的X射线吸收系数???

    有谁知道Ti、Zr的X射线吸收系数啊?因为想对钛合金做小角X射线散射测试,试样厚度需根据元素的吸收系数来确定。不知各位大虾有没有做过这方面的实验?[em09512]

  • 【转帖】原子吸收分光光度计与X射线荧光分析仪有什么区别?

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法是依椐处于气态的被测元素基态原子对该元素的原子共振辐射有强烈的吸收作用而建立的。该法具有检出限低(火熖法可达ng?cm–3级)准确度高(火熖法相对误差小于1%),选择性好(即干扰少)分析速度快等优点。 在温度吸收光程,进样方式等实验条件固定时,样品产生的待测元素相基态原子对作为锐线光源的该元素的空心阴极灯所辐射的单色光产生吸收,其吸光度(A)与样品中该元素的浓度(C)成正比。即 A=KC 式中,K为常数。据此,通过测量标准溶液及未知溶液的吸光度,又巳知标准溶液浓度,可作标准曲线,求得未知液中待测元素浓度。 该法主要适用样品中微量及痕量组分分 1 什么是XRF? 一台典型的X射线荧光(XRF)仪器由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激励被测样品。样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。 利用X射线荧光原理,理论上可以测量元素周期表中的每一种元素。在实际应用中,有效的元素测量范围为11号元素 (Na)到92号元素(U)。 2 X射线荧光的物理意义: X射线是电磁波谱中的某特定波长范围内的电磁波,其特性通常用能量(单位:千电子伏特,keV)和波长(单位:nm)描述。 X射线荧光是原子内产生变化所致的现象。一个稳定的原子结构由原子核及核外电子组成。其核外电子都以各自特有的能量在各自的固定轨道上运行,内层电子(如K层)在足够能量的X射线照射下脱离原子的束缚,释放出来,电子的逐放会导致该电子壳层出现相应当电子空位。这时处于高能量电子壳层的电子(如:L层)会跃迁到该低能量电子壳层来填补相应当电子空位。由于不同电子壳层之间存在着能量差距,这些能量上的差以二次X射线的形式释放出来,不同的元素所释放出来的二次X射线具有特定的能量特性。这一个过程就是我们所说的X射线荧光(XRF)。原子分光一般是测元素的,而且是一般是重金属 荧光则是测荧光物质的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]AAS是吸收光谱,逐个元素测量,样品处理成液体,痕量分析,用于典型重金属元素定量分析。XRF是可分析元素周期表上11号元素 (Na)到92号元素(U),样品为固体或粉末压片测试,可从常量到微量分析。

  • 【原创】原子吸收分析线和发射线宽度

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析线和发射线宽度指的是空心阴极灯发射出来的谱线宽度和火焰中吸收谱线的宽度吗?请指教!

  • 【原创】共振发射线,共振吸收线,共振线

    共振发射线:原子外层电子由第一激发态直接跃迁至基态所辐射的谱线称为共振发射线;共振吸收线:原子外层电子从基态跃迁至第一激发态所吸收的一定波长的谱线称为共振吸收线; 共 振 线:共振发射线和共振吸收线都简称为共振线。

  • X射线荧光光谱分析

    X射线荧光光谱分析

    X射线荧光光谱分析用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。http://ng1.17img.cn/bbsfiles/images/2011/12/201112280433_341844_1601823_3.jpg现将两种类型X射线光谱仪的主要部件及工作原理叙述如下: http://ng1.17img.cn/bbsfiles/images/2011/12/201112280434_341845_1601823_3.jpg两种类型的X射线荧光光谱仪都需要用X射线管作为激发光源。上图是X射线管的结构示意图。灯丝和靶极密封在抽成真空的金属罩内,灯丝和靶极之间加高压(一般为40KV),灯丝发射的电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生的一次X射线,作为激发X射线荧光的辐射源。只有当一次X射线的波长稍短于受激元素吸收限lmin时,才能有效的激发出X射线荧光。大于lmin的一次X射线其能量不足以使受激元素激发。          X射线管的靶材和管工作电压决定了能有效激发受激元素的那部分一次X射线的强度。管工作电压升高,短波长一次X射线比例增加,故产生的荧光X射线的强度也增强。但并不是说管工作电压越高越好,因为入射X射线的荧光激发效率与其波长有关,越靠近被测元素吸收限波长,激发效率越高。   X射线管产生的X射线透过铍窗入射到样品上,激发出样品元素的特征X射线,正常工作时,X射线管所消耗功率的0.2%左右转变为X射线辐射,其余均变为热能使X射线管升温,因此必须不断的通冷却水冷却靶电极。

  • 【分享】辐射检测:仙人掌到底吸不吸收辐射?

    【分享】辐射检测:仙人掌到底吸不吸收辐射?

    [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001051339_194277_1615922_3.jpg[/img]仙人掌生活在日照很强的地方,因此吸收辐射的能力特别好,然而台大园艺系副教授许明仁表示,未曾有任何的研究实验报告可证明,仙人掌吸收辐射的能力比其他物种优异。  许明仁说,任何动植物及人体,都有吸收辐射的自然能力,但目前并没有任何研究证明,某一物种吸收辐射的能力特别强,仙人掌生活在沙漠日照强烈的地方,许多人可能把辐射能当作辐射线,在想当然的推理情况下,就认为在计算机前摆一盆仙人掌吸收辐射,减少对人体的伤害。  仙人掌是一种喜欢日照的多肉植物,为了减少水份的蒸散,因此叶片表面积缩减,演化成针状,这是为了适应自然环境。  许明仁表示,仙人掌的外观型态,是为了抵挡阳光、紫外线的破坏,与计算机屏幕或其他电器用品产生的辐射线不同,所谓的辐射线是一种看不见的波,包括了αβγ三种射线,其中γ射线最强,具有穿透任何生物体的能力,并会破坏细胞的DNA,严重会造成突变,而阳光是一种辐射能,就像烛光一样会发热,并不会对人体产生立即的伤害。  因此把仙人掌当作抵挡辐射的工具,是没有任何根据的。  许明仁说,辐射线是一种直线进行的能量波,目前没有任何物质可以使辐射线转弯,因此吸收辐射线的说法,应该改成抵挡,我们生活的环境原本就充满着各种辐射线,只是数值上的多寡而已,目前的电器用品发散的辐射线跟电磁波其实非常轻微,可能由于辐射看不见、碰不到、闻不到,因此不了解的民众便会感到恐慌。  台大园艺系所的桌上计算机前,摆满着文件及各式实验器材,却看不到任何一株仙人掌,许明仁笑着说,他们自己研究植物的,都没有听过这种说法,他觉得这可能是贩售仙人掌商人的行销招式,建议常常用计算机的学生上班族,摆盆仙人掌绿化美观桌面可以,这样的确能够舒缓眼睛的疲劳,但是想要减少辐射线对人体的伤害,还是去买个屏幕护目镜吧。  江西省环保局辐射环境管理处叶昌林科长认为,地球本身是大磁场,人类每时每刻都生活在电磁辐射之中,人本身也是辐射体,不断吸收辐射,也不断散发辐射。现在社会上盛传一些植物能吸收电磁辐射,单从上述论据不足以确证。因此,电脑前摆放花卉植物,因人兴趣爱好而异,无可厚非;此举能否明显降低辐射,尚无正式研究成果,何况电脑辐射到底对人体有无影响,危害多大,也无定论;而商家借机炒卖花卉误导消费,甚至抬高价,也不是没有可能。  叶昌林科长对“恐辐族”提出了一些忠告和建议。首先,保持良好的心理状态尤为重要,不要“谈辐色变”,良好的心态远比买一盆花、穿一件“防辐射”服有利于健康。其次,由于电磁辐射具有“累积效应”,无论是孕妇还是公司白领,在电脑前端坐时间不可太长,应经常走动,这样会对健康有利。互联网上关于电磁辐射危害的宣传多半有夸大之嫌,不可轻信。另外,手机在接通一瞬间发散的电磁辐别要大大高于平时通话,所以不妨在接听之前让手机稍稍远离头部2秒钟,利用耳机接听也不失为一个好办法。

  • 液体中全X射线阿秒瞬时吸收光谱技术获得重大突破

    [color=#000000]美国和德国科研团队在实验中首次拍摄了液态水中电子实时运动的“定格帧”。该研究提供了一个窗口,使科学家能在以前用X射线无法企及的时间尺度上了解液体中分子的电子结构,标志着实验物理学的重大进步。相关研究发表在《科学》上。[/color][color=#000000]这项研究是通过美国直线加速器相干光源(LCLS)的同步阿秒X射线脉冲对而实现的。此前,辐射化学家只能在皮秒(等于一百万阿秒)的时间尺度上解析电子运动。现在,在阿秒尺度上研究X射线击中目标的电子反应的能力使科研人员能够深入研究辐射引发的化学反应,比以前的方法快100万倍。研究中开发的技术,即[b]液体中的全X射线阿秒瞬时吸收光谱[/b],使他们能在原子核移动之前,在电子进入激发状态时“观察”由X射线激发的电子。[/color][color=#000000]这项研究建立在阿秒物理学这一新学科的基础上,[b]揭示了物质受到X射线照射时的瞬时电子变化,不仅加深了科学家对辐射诱导化学的理解,还标志着阿秒科学新纪元的开始。[/b][/color][来源:科技部][align=right][/align]

  • 【原创】关于日本理学的X射线荧光分析仪

    我是搞化验的,专门管维护x射线荧光分析仪 是日本理学产的,我们单位有发X射线计量仪,没有什么防护措施,主任说相当于一台29寸彩电的辐射量,不知道到底对身体有 什么影响 尤其是对女性 哪位了解给说下啊[em61]

  • X射线的防护

    X射线对人体组织能造成伤害。人体受X射线辐射损伤的程度,与受辐射的量(强度和面积)和部位有关,眼睛和头部较易受伤害。   衍射分析用的X射线(属“软”X射线)比医用X射线(属“硬”X射线)的波长长,穿透弱,吸收强,故危害更大。所以,每个实验人员都必须牢记:对X射线“要注意防护!”。人体受超剂量的X射线照射,轻则烧伤,重则造成放射病乃至死亡。因此,一定要避免受到直射X射线束的直接照射,对散射线也需加以防护,也就是说,在仪器工作时对其初级X射线(直射线束)和次级X射线(散射X射线)都要警惕。前者是从X射线焦点发出的直射X射线,强度高,它通常只存在于X射线分析装置中限定的方向中。散射X射线的强度虽然比直射X射线的强度小几个数量级,但在直射X射线行程附近的空间都会有散射X射线,所以直射X射线束的光路必需用重金属板完全屏蔽起来,即使小于1mm的小缝隙,也会有X射线漏出。  防护X射线可以用各种铅的或含铅的制品(如铅板、铅玻璃、铅橡胶板等)或含重金属元素的制品,如含高量锡的防辐射有机玻璃等。  按照X射线防护的规定,以下的要求是必须遵守的:  1. 每一个使用X射线的单位须向卫生防疫主管部申请办理“放射性工作许可证”和“放射性工作人员证”;负责人需经过资格审查。  2. X射线装置防护罩的泄漏必须符合防护标准的限制:在距机壳表面外5cm处的任何位置,射线的空气吸收剂量率须小于2.5μGy/小时(Gy -戈瑞,吸收剂量单位)。在使用X射线装置的地方,要有明确的警示标记,禁止无关人员进入。  3. X射线操作者要使用防护用具。  4. X射线操作者要具备射线防护知识,要定期接受射线职业健康检查,特别注意眼、皮肤、指甲和血象的检查,检查记录要建档保存。  5. X射线操作者可允许的被辐照剂量当量定为一年不超过5雷姆或三个月不超过3雷姆(考虑到全身被辐照的最坏情况而作的估算)。  请参照以下标准:    GB4792 — 84 《放射卫生防护基本标准》    GB8703 — 88 《辐射防护规定》    GWF01 — 88 《放射工作人员健康管理规定》

  • X射线荧光光谱分析的基本原理 及应用

    X射线荧光光谱分析的基本原理   当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子。它的能量是特征的,与入射辐射的能量无关。当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。图10.1给出了X射线荧光和俄歇电子产生过程示意图。   K层电子被逐出后,其空穴可以被外层中任一电子所填充,从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线……。同样,L层电子被逐出可以产生L系辐射(见图10.2)。如果入射的X射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα射线,同样还可以产生Kβ射线 ,L系射线等。莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下: λ=K(Z-s)-2   这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础。此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析。

  • 原级X射线中是否含有样品元素特征的二次射线?

    原级X射线(一次X射线)为连续谱线(含各个波长的X射线),用它来激发样品中元素的特征谱线:我认为:一次X射线中含有待测元素的特征谱线,它对建立标准曲线和分析样品有啥影响?——相比被激发元素的特征谱线强度,它是否比较小,同时被样品吸收,因而可以忽略其影响呢?

  • 【分享】基础知识--γ射线

    γ 射线是不带电的中性粒子(也即是电磁波), 波长短于0.2埃的电磁波。首先由法国科学家P.V.维拉德发现,是继α、β射线后发现的第三种原子核射线。γ射线是因核能级间的跃迁而产生,原子核衰变和核反应均可产生γ射线 ,其静止质量等于零,也称为光子. 当γ射线和物质相互作用时,同带电粒子与物质的相互作用情况大不相同,γ射线不能使物质直接电离和激发,也没有射程的概念.γ 射线与物质相互作用有3种主要形式, 即光电效应,康普顿效应和电子对效应. 能量较低的γ射线, 在物质中主要产生光电效应 中等能量时,主要产生康普敦效应 而能量较高时, 主要是电子对效应. 3种效应都会产生能使物质的原子电离或激发的次级电子, 而次级电子在物质中的射程不长,所以在考虑对γ射线的屏蔽时,不需要另外采取防护措施. 这就是说, 3种效应产生次数的多少,即是物质吸收γ辐射多少的标志. 理论和实践都证明, 光电效应正比于吸收物质的原子序数Z的4次方,康普顿效应正比于Z/A, 而电子对效应正比于Z 平方.因此屏蔽γ射线时,以采用原子序数高的重物质为最好,例如铅. 通过对γ射线谱的研究可了解核的能级结构。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。γ射线对细胞有杀伤力,医疗上用来治疗肿瘤。 γ射线是一种强电磁波,它的波长比X射线还要短,一般波长<0.001纳米。在原子核反应中,当原子核发生α、β衰变后,往往衰变到某个激发态,处于激发态的原子核仍是不稳定的,并且会通过释放一系列能量使其跃迁到稳定的状态,而这些能量的释放是通过射线辐射来实现的,这种射线就是γ射线。 γ射线具有极强的穿透本领。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正 常化学过程受到干扰,严重的可以使细胞死亡。 γ射线在物质中的吸收 [flash]http://ng1.17img.cn/bbsfiles/images/2017/10/2009814235322_01_0_3.swf[/flash]g射线通过物质时,由于光电效应、康普顿效应和电子对生成而损失能量,并逐渐被物质吸收。物质对g光子阻挡能力用半值厚度(half value layer)表示,半值厚度即使g光子活度减弱一半所需要的物质厚度。半值厚度与入射光子能量和介质密度有关,入射光子能量越低,介质密度越大则半值厚度越小,即物质对射线的阻挡作用越强。故g射线常用密度大的物质进行防护

  • 【转帖】X射线的防护

    X射线对人体组织能造成伤害。人体受X射线辐射损伤的程度,与受辐射的量(强度和面积)和部位有关,眼睛和头部较易受伤害。   衍射分析用的X射线(属“软”X射线)比医用X射线(属“硬”X射线)的波长长,穿透弱,吸收强,故危害更大。所以,每个实验人员都必须牢记:对X射线“要注意防护!”。人体受超剂量的X射线照射,轻则烧伤,重则造成放射病乃至死亡。因此,一定要避免受到直射X射线束的直接照射,对散射线也需加以防护,也就是说,在仪器工作时对其初级X射线(直射线束)和次级X射线(散射X射线)都要警惕。前者是从X射线焦点发出的直射X射线,强度高,它通常只存在于X射线分析装置中限定的方向中。散射X射线的强度虽然比直射X射线的强度小几个数量级,但在直射X射线行程附近的空间都会有散射X射线,所以直射X射线束的光路必需用重金属板完全屏蔽起来,即使小于1mm的小缝隙,也会有X射线漏出。   防护X射线可以用各种铅的或含铅的制品(如铅板、铅玻璃、铅橡胶板等)或含重金属元素的制品,如含高量锡的防辐射有机玻璃等。  按照X射线防护的规定,以下的要求是必须遵守的:  1. 每一个使用X射线的单位须向卫生防疫主管部申请办理“放射性工作许可证”和“放射性工作人员证”;负责人需经过资格审查。  2. X射线装置防护罩的泄漏必须符合防护标准的限制:在距机壳表面外5cm处的任何位置,射线的空气吸收剂量率须小于2.5μGy/小时(Gy -戈瑞,吸收剂量单位)。在使用X射线装置的地方,要有明确的警示标记,禁止无关人员进入。  3. X射线操作者要使用防护用具。  4. X射线操作者要具备射线防护知识,要定期接受射线职业健康检查,特别注意眼、皮肤、指甲和血象的检查,检查记录要建档保存。  5. X射线操作者可允许的被辐照剂量当量定为一年不超过5雷姆或三个月不超过3雷姆(考虑到全身被辐照的最坏情况而作的估算)。  请参照以下标准:  GB4792 — 84 《放射卫生防护基本标准》  GB8703 — 88 《辐射防护规定》  GWF01 — 88 《放射工作人员健康管理规定》

  • 【转帖】便携全反射X射线荧光分析仪

    转录 请自己 google 搜索 便携全反射X射线荧光分析仪 全反射X射线荧光分析仪 等文章全反射X荧儿(TXRF)分析技术是十多年前才发展起来的多元素同时分析技术,它突出的优点是检出限低(pg、ng/mL 级以下)、用样量少(Μl、ng级)、准确高度(可用内标法)、简便、快速,而且要进行无损分析,成为一种不可替代的全亲的元素分析方法。国际上每两年召开一次TXRF分析技术国际讨论会。该技术被誉为在分析领域是最具有竞争力的分析手段,在原子谱仪领域内处于领先地位。从整个分析领域看,与质谱仪中的ICP-MS和GDMS、原子吸收谱仪中的ETAAS和EAAS以及中子活化分析NAA等方法相比较,TXRF分析在检出限低、定量性好、用样量少、快速、简便、经济、多元素同时分析等方面有着综合优势。在X荧光谱仪范围内,能谱仪(XRF)和波谱仪(WXRF)在最低检出限、定量性、简便性、准确性、经济性等方面,都明显比TXRF差。在表面分析领域内,尤其在微电子工业的大面积硅片表面质量控制中,TXRF已在国际上得到广泛应用。1. TXRF分析仪工作原理:TXRF利用全反射技术,会使样品荧光的杂散本底比XRF降低约四个量级,从而大大提高了能量分辨率和灵敏率,避免了XRF和WXRF测量中通常遇到的木底增强或减北效应,大大缩减了定量分析的工作量和工作时间,同时提高了测量的精确度。测量系统的最低探测限(MDL)可由公式计算: (2)这里, 是木底计数率,t为测量计数时间,M为被测量元素质量,l代表被测量元素产生的特征峰净计数率,S=I/M就是系统灵敏度,由公式可以看出,提高灵敏底、降低木底计数率、增加计数时间是降低MDL的有效办法。木氏低、灵敏度高正是TXRF方法的长处,因而MDL很低。

  • 【资料】化学常识——X射线和放射性的发现!

    一、X射线的发现  X射线是1895年德国物理学家伦琴(Rontgen W.K.1845-1923)发现的 。1895年11月8日晚,伦琴为了进一步研究阴极射线的性质,他用黑色薄纸板把一个克鲁克斯管严密地套封起来,在完全暗的室内做实验。在接上高压电流进行实验中,他意外地发现在放电管一米以外的一个荧光屏(涂有荧光物质铂氰化钡的纸屏)上发生亮的光辉。一切断电源,荧光就立即消失。这个现象使他非常惊奇,于是全神贯注地重复做实验。他发现即使在跷仪器二米处,屏上仍有荧光出现。伦琴确信,这个新奇现象不是阴极射线造成的,因为实验已证明阴极射线只能在空气中进行几厘米,而且不能透过玻璃管。他决定继续对这个新发现进行全面检验。一连六个星期都在实验里废寝忘食地工作着。经过反复实验,他确信发现了一种过去未被人们所知的具有许多特性的新射线。这种射线的本质一时还不清楚,所以他取名为“X射线”(后来科学界称之为伦琴射线)。他在12月下旬写的论文中说明了初步发现的X射线的如下性质:(1)阴极射线打在固体表面上便会产生X射线;固体元素越重,产生的X射线越强。(2)X射线是直线传播的,在通过棱镜时不发生反射和折射,不被透镜聚焦。(3)与阴极射线不同,不能借助磁体(即使磁场很强)使X射线发生任何偏转。(4)X射线能使荧光物质发出荧光。(5)它能使照相底片感光,而且很敏感。(6)X射线具有很强的贯穿能力,比阴极射线强得多。它可以穿透射线具有很强的贯穿能力,比阴极射线强得多。它可以穿透千页的书,二、三厘米厚的木板,几厘米的硬橡皮等。15毫米厚的铝板,不太厚的铜板、银板、金板、铂板和铅板的背后,都可以辨别荧光。只有铅等少数物质对它有较强的吸收作用,对1.5毫米厚的铅板它实际上不能透过。伦琴一次检验铅对X射线的吸收能力时,意外地看到了他自己拿铅片的手的骨髂轮廓。于是他请他的夫人把手放在用黑纸包严的照相底片上,用X射线照射,底片显影后,看到伦琴夫人的手骨像,手指上的结婚戒指也非常清晰,这成了一张有历史意义的照片。

  • 【原创】X射线荧光光谱仪基础知识普及(一)X射线

    X射线波长小于0.01nm的称超硬X射线,在0.01~0.1nm范围内的称硬X射线,0.1~10nm范围内的称软X射线。X射线具有很强的穿透力,医学上常用作透视检查,工业中用来探伤。长期受X射线辐射对人体有伤害。X射线可激发荧光、使气体电离、使感光乳胶感光,故X射线可用电离计、闪烁计数器和感光乳胶片等检测。晶体的点阵结构对X射线可产生显著的衍射作用,X 射线衍射法已成为研究晶体结构、形貌和各种缺陷的重要手段。特点  X射线的特征是波长非常短,频率很高,其波长约为(20~0.06)×10-8厘米之间。因此X射线必定是由于原子在能量相差悬殊的两个能级之间的跃迁而产生的。所以X射线光谱是原子中最靠内层的电子跃迁时发出来的,而光学光谱则是外层的电子跃迁时发射出来的。X射线在电场磁场中不偏转。这说明X射线是不带电的粒子流,因此能产生干涉、衍射现象。  X射线谱由连续谱和标识谱两部分组成 ,标识谱重叠在连续谱背景上,连续谱是由于高速电子受靶极阻挡而产生的 轫致辐射 ,其短波极限λ 0 由加速电压V决定:λ 0 = hc /( ev )为普朗克常数, e 为电子电量, c 为真空中的光速。标识谱是由一系列线状谱组成,它们是因靶元素内层电子的跃迁而产生,每种元素各有一套特定的标识谱,反映了原子壳层结构 。同步辐射源可产生高强度的连续谱X射线,现已成为重要的X射线源。  X射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片感光以及空气电离等效应,波长越短的X射线能量越大,叫做硬X射线,波长长的X射线能量较低,称为软X射线。当在真空中,高速运动的电子轰击金属靶时,靶就放出X射线,这就是X射线管的结构原理。  放出的X射线分为两类:  (1)如果被靶阻挡的电子的能量,不越过一定限度时,只发射连续光谱的辐射。这种辐射叫做轫致辐射,连续光谱的性质和靶材料无关。  (2)一种不连续的,它只有几条特殊的线状光谱,这种发射线状光谱的辐射叫做特征辐射,特征光谱和靶材料有关。X射线的危害x射线和其他辐射线,一般对人的伤害分为两种,一是通过能量传递,对人体细胞的DNA进行破坏,称为物理效应,还有一种是,由射线对人体组织内水发生电离,产生自由基,这些自由基再和生物大分子发生作用,导致不可逆损伤,称为生物效应。x射线以生物效应为主。辐射作用于生物体时能造成电离辐射,这种电离作用能造成生物体的细胞、组织、器官等损伤,引起病理反应,称为辐射生物效应。辐射对生物体的作用是一个非常复杂的过程,生物体从吸收辐射能量开始到产生辐射生物效应,要经历许多不同性质的变化,一般认为将经历四个阶段的变化: ①物理变化阶段:持续约10-16秒,细胞被电离; ②物理-化学变化阶段:持续约10-6秒,离子与水分子作用,形成新产物; ③化学变化阶段:持续约几秒,反应产物与细胞分子作用,可能破坏复杂分子;④生物变化阶段:持续时间可以是几十分钟至几十年,上述的化学变化可能破坏细胞或其功能。辐射生物效应可以表现在受照者本身,也可以出现在受照者的后代。表现在受照者本身的称为躯体效应(按照显现的时间早晚又分为近

  • 【讨论】关于吸收限的理解?

    若以波长表示临界激发能量,其物理意义是指激发给定原子中某一轨道壳层电子,并能产特征X射线的最小波λab=1.23984/Ecrit 式中,λab以称为吸收限限,nm Ecrit为临界激发能量 能产特征X射线的最小波这句话如何理解,为什么是最小的,如果能量大,不是更能激发,并且波长会更小?

  • 能量色散X荧光谱仪(EDXRF) --- X射线荧光分析(电子档书籍)

    上传一份Down的,资料,与各位亲友们共享:资料的目录如下:有需要的友们,可去下载阅读。第一章 简单原理第二章 X射线的发生、衍射和吸收原理第三章 X射线的激发第四章 波长色散分光计和晶体性质第五章 探测器和电路第六章 能量色散第七章 分析的精密度和准确度第八章 定量分析的数学方法第九章 X射线光谱分析的应用和试样制备第十章 电子探针微区分析第十一章 附录

  • 有没有使用X射线个人计量仪的前辈同仁?

    各位前辈同仁,大家平常使用XRF的时候有没有使用X射线个人计量计的啊?有的话哪种型号的会比较好一点呢?要方便携带,可以累积当量,可以报警就可以了。有使用过比较好的仁兄推荐一下哈,谢谢!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制