当前位置: 仪器信息网 > 行业主题 > >

快速学停留仪

仪器信息网快速学停留仪专题为您提供2024年最新快速学停留仪价格报价、厂家品牌的相关信息, 包括快速学停留仪参数、型号等,不管是国产,还是进口品牌的快速学停留仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合快速学停留仪相关的耗材配件、试剂标物,还有快速学停留仪相关的最新资讯、资料,以及快速学停留仪相关的解决方案。

快速学停留仪相关的资讯

  • 科学基金助力我国免疫学整体快速发展
    免疫学领域发表论文最多的10个国家(美国未列出)SCI论文的时间序列分布(2000~2009年)。 免疫学科16个研究方向中国论文产出能力与学术影响力的世界排名变化。   2011 年诺贝尔生理学或医学奖再度授予3位免疫学家,展示了免疫学科在科学前沿的重要位置。   中国免疫学研究在国家科技创新体系乃至医学和生命科学领域中的地位尚不够凸显。在当前中国免疫学学科整体快速发展、冲击国际前沿的态势下, 中国免疫学正面临着前所未有的机遇和挑战。   免疫学是一门新兴学科,起步于20世纪60年代后。随着胸腺免疫功能的发现、淋巴细胞免疫功能的确认,以及抗体分子结构与功能的研究进展,人们在器官、细胞和分子水平上揭示了机体存在一个十分重要的功能系统——免疫系统。自此,免疫学开始发展成为一门独立的学科,并逐渐渗透生物医学的所有分支学科。   现代免疫学研究以一种典型的“基础研究—应用研究—高技术开发”模式快速发展。其特点决定了免疫学研究既是生物医学学科的基础,又在医药工业中发挥着越来越重要的作用。   短短几十年中,我国免疫学经历了起步、积累和迅猛提升阶段。这一过程中,国家自然科学基金的资助起到了重要推动作用。   “在中国免疫学发展的过程中,科学基金发挥了重要的、不可替代的引领作用。”国家自然科学基金委员会医学科学部六处吕群燕在《科学通报》撰文评价说(《免疫学的发展与国家自然科学基金》,《科学通报》2012年第6期)   中科院动物研究所研究员赵勇用“不可或缺”来概括科学基金对我国免疫学领域研究的贡献。   “科学基金的资助,促进了一批研究成果的产出,也有效培植了我国本领域的研究群体,为我国该学科的快速、持续发展与创新打下了坚实基础。”赵勇对《中国科学报》说。   科学基金资助免疫学的25年   在国家科技评估中心组织实施的“科学基金资助与管理绩效国际评估”中,科学基金对免疫学科的促进作用作为医学科学部的重要内容被单独列出。科学基金对我国免疫学发展的引领和导向作用也被充分肯定。   在基金委尚未设立独立的免疫学学科评审组时,就将免疫学确定为优先资助的研究领域,并通过项目指南鼓励展开相关研究。   在1991年的科学基金项目指南中,基金委明确指出“免疫学已逐渐成为一门独立的学科”,并再次把免疫学列为基础医学资助的主要范围。在1992年、1993年的项目指南中,免疫学相关内容都单独列出。   1994年,基金委将原来列在预防医学与卫生学科中的传染与免疫、免疫技术、免疫生物学、移植免疫、免疫性疾病、变态反应病6个学科代码归到一起,成为新成立的免疫学科评审组的学科代码。这大大推动了国内免疫学的发展,当年科学基金申请项目的数量就从1993年的96项跃升到150项,增长幅度达55%。   1998年,基金委生命科学部又把原来列入临床医学学科的“器官移植学”代码归入免疫学科评审组。1999年,基金委将免疫学科的学科代码进行了细化和调增,新设立了细胞免疫学等7个学科代码。2000年,基金委又增加了两个学科代码。2008年,随着国际上免疫学的迅速发展,基金委再次对免疫学学科代码进行细化和调整。   2003~2006年间,基金委生命科学部每年向免疫学科倾斜100万元经费,资助面上、青年和地区基金项目。2007年,生命科学部再次向免疫学科倾斜300万元经费,从根本上改变了免疫学科资助率长期偏低的现象。   此后,基金委通过重点和重大项目,吸引和鼓励免疫学家在前沿领域开展研究,支持跨学科交叉研究。基金委还鼓励国际合作与交流基金,通过海外青年合作基金,促进我国免疫学国际合作研究的发展。   科学基金对优秀科学家及其团队的连续长期的资助,使一批免疫学科科学家成长起来。第二军医大教授曹雪涛、中科大教授田志刚、中科院上海生命科学研究院教授孙兵、第三军医大教授吴玉章、北京大学教授蒋争凡、中科院动物研究所研究员赵勇等一批学术带头人脱颖而出。   “科学基金对免疫学科发展的重要性毋庸置疑。如果没有科学基金的资助,我们不可能做出像样的工作来。”北京大学教授蒋争凡对《中国科学报》说。   在国家资助格局中的作用   目前国家对免疫学研究的主要资助体系包括国家自然科学基金,国家 “973”、 “863”计划,国家创新药物/传染性疾病两个重大专项,以及国家“211工程”、“985工程”对某些免疫学重点实验室的支持,但是国家自然科学基金在国家整体资助格局中发挥的作用无可替代。   据统计,在1991~2009年间,科学基金资助免疫学科自由申请项目(2007年后改称面上项目)974项,青年基金项目371项,地区基金项目53项,重点项目47项,杰出青年基金18项,重大项目3项。科学基金资助的覆盖面和长期稳定性是国家其他资助计划所无法代替的。   国家的其他资助计划所支持的项目,一般都得到科学基金的前期支持。虽然国家其他资助计划资助强度较高,但资助项目数量少,覆盖面小。我国最早的免疫学领域“973”项目2001年开始,迄今共资助9个这方面的项目。   “其中8位首席科学家在获得‘973’项目资助之前都曾长期获得过国家自然科学基金多种项目类型的资助。”吕群燕说。   “2009年,基金委设立医学科学部,免疫方面的项目主要由医学科学部资助。但免疫学属于交叉学科,其他科学部也资助部分该领域的项目,比如生命科学部仍有资助免疫学科项目的科学处。”一位基金委工作人员对《中国科学报》说。   进步最快的国家   在科学基金资助下,我国免疫学研究近年来得到了长足的进步。该领域技术平台已经建立、研究队伍基本形成、研究方向逐步明确,我国免疫学家发表的SCI论文的数量和质量都有明显提高。   统计表明,中国免疫学家发表的SCI免疫学论文数量1975~1984年间共15篇,1985~1990年间增长到每年10篇以上,1992~1999年间每年20~40篇左右,在2000年之后则呈现出总体迅速上升的趋势:从268篇增长到2771篇,世界论文数量排名也从2000年的第22位跃升到2009年的第10位。   “这些论文的分布在各个研究方向上出现了整体推进的局面,我国免疫学研究在各个方向的整体进步是与国家自然科学基金的资助分不开的。”吕群燕说。   “(我国)成为近10年来免疫学研究进步最快的国家。中国免疫学研究的发展也引起了世界免疫学同行的关注。”国家科技评估中心撰写的《科学基金资助与管理绩效国际评估报告》中这样评价。   但目前我国的免疫学研究总体上和先进国家仍有不小差距。我国高水平论文的数量少、论文的平均篇引用率低、担任高水平免疫学相关杂志的编委的学者也很少。此外,我国的免疫学研究目前还面临着缺乏成熟的实验动物模型,特别是独特的疾病动物模型等基础研究条件不完善的现象。   “我国的免疫学研究今后还需要科学基金长期稳定持续的资助。”赵勇建议,在继续强化免疫学基础研究资助的同时,应重视免疫相关动物模型的建立及免疫相关研究技术、方法、试剂、仪器的研发与创新等方面的资助,为更强的自主创新进行必要的“物质”基础准备。
  • 净信携全自动样品快速研磨仪出席全国植物基因组学大会
    第十七届全国植物基因组学大会于2016年8月19日-22日在福州中庚喜来登酒店顺利召开。本次会议由中国遗传学会植物遗传与基因组学专业委员会主办;由福建农林大学、福建省遗传学会承办,充分展示植物基因组研究领域的重大进展,推动我国植物基因组学研究的深入和农业生物技术产业的快速发展,本届大会邀请了国内外植物基因组学研究领域知名科学家做学术报告。上海净信荣幸获邀出席本届大会,为广大的植物科研领域专家展示样品处理方法——全自动样品快速研磨仪,得到会上科研工作者们的认可与赞赏。 上海净信依靠稳定的产品质量,优质的售后服务,严谨的工作作风,率先推出的"JXFSTPRP"以及“Tissuelyser”系列研磨机等产品,先后在中科院、农科院、医科院等高等研究院所以及上海交通大学、复旦大学、浙江大学、香港中文大学、香港理工大学等大专院校的国家重点实验室受到科研工作者的青睐而被广泛采用。 净信——做中国人自己的研磨仪!
  • Picarro L2140-i水同位素分析仪功能升级—新增“快速”和“调查”模式
    随着激光测量技术的发展,氢氧稳定同位素已广泛应用于植物水分利用来源、树木年轮或叶蜡烷烃中记录的气候或生理生态过程信息、降水水汽来源、土壤水运移和补给机制、地下水机制、水体蒸发、水体的营养动态和停留时间、植物蒸腾和土壤蒸发的区分、径流的形成和汇合、岩盐地质年龄、重建古气候、水文循环过程与机制等各方面研究。其中,17O-盈余可用于重建空气质量轨迹、确定水源区、重建过去湿度、识别大气中注入平流层的水汽、在树叶尺度上的蒸散收支限制、了解热带地区的云对流等方面研究。基于光腔衰荡光谱(CRDS)技术的L2140-i水同位素分析仪是Picarro的旗舰产品,操作快速、简单且无需样品转换,可准确同步测量固体、液体或气体中的δ18O、δD、δ17O和17O-盈余。Picarro L2140-i水同位素分析仪新增的快速和调查模式可满足高通量测试需求(适用于δ18O和δD测量模式)。. 快速模式:每天测量多达50个样品,同时保持出色的精度。通过将样品测量分为两个阶段来实现通量的加倍:记忆效应减少阶段和样品分析阶段。. 调查模式:可对大批样品水同位素值进行快速测量(每天多达900次进样)。使用户能进行快速调查,以按同位素值对样本进行排序。最大限度地减少相邻样品之间的同位素差异,在记忆效应减少阶段避免不必要的注射。
  • 岛津超快速质谱助力靶向代谢组学研究
    靶向代谢组学中,通常需要同时检测多个目标组分,这对质谱数据的采集速度提出了很高的要求。 岛津超快速质谱(UFMS)拥有业内首屈一指采集速度。以LCMS-8050为例,其驻留时间(Dwell time≥0.8 ms)、切换时间(Pause time≥1 ms)、扫描速度(Scan speed≤30000 u/sec)、正负极切换速度(Polarity switching time=5 ms);并且具有触发子离子扫描功能,可以实现MRM定量的同时对目标组分进行子离子扫描定性分析。 以下图为例,假设一个峰宽6秒的UHPLC色谱峰用于定量分析,必须有20个采集点左右,峰型才足够平滑,峰面积和出峰时间的重复性才能达标。如此算来,每个采集点的循环时间(loop time)只有300 ms。在300ms的时间段内,需要进行所有目标组分的采集,如下AB正离子,CD负离子: 1.采集循环开始,切换时间内对质谱通道电压进行调整(为A离子对“铺路”);2.A母离子通过四级杆Q1、碰撞池内进行碰撞、四级杆Q3筛选子离子、最终到达检测器进行离子计数,这段时间总和即为驻留时间;3.为B离子重复以上过程,到此正离子采集完成;4.接着切换从离子源到质谱通道到检测器的电压为负,此为正负极切换时间;5.进入到C、D的采集过程,过程与AB一样;6.最后将电压切换为正,到此结束整个循环时间,开始下个采集点的循环时间。 这只是两个正离子和两个负离子的采集例子,如果采集目标组分数量急剧增加,在峰宽不变的情况下(即循环时间loop time不变),分到每个离子的驻留时间和切换时间将急剧减少,因此最小驻留时间和切换时间,直接决定了该质谱在所能同时采集的离子对数量,这对于靶向代谢组学或其他需要进行多目标物同时筛查的项目,至关重要! 图2. 质谱采集信号的过程,以及频率和点数的关系最后,举例说明岛津UFMS在靶向代谢组学中的一个应用实例:脂质组学属于代谢组学的一个分支。为进行靶向脂质组学研究,岛津公司利用超快速质谱适于多化合物同时检测的特性,推出了第三版脂质介质方法包:包含了主要脂类化合物如类花生酸、二十二碳六烯酸(DHA)和二十碳五烯酸(EPA)等多价不饱和脂肪酸代谢物,花生四烯酸乙醇胺(AEA)、血小板活化因子(PAF)等196种主要脂质介质及其相关物质的色谱、质谱条件(MRM通道)。 该方法只需20分钟的色谱分析便能获得这196种化合物的脂质介质的分析结果。此外,方法包中还根据出峰时间和结构特性,准备了18种氘代内标化合物的MRM通道。另外,该方法包可进行保留时间校正,可使用内标法进行半定量,所以可用于检索多变量解析时的标记物。下图显示了超快速质谱MRM模式中,196种脂质和18种内标同时分离所采集得到的色谱图。 图3. 脂质介质方法包用于196种脂质,18种内标的分离 撰稿人:钟启升
  • 基因组学北京市重点实验室在京揭牌
    随着基因检测技术的飞速进步,基因检测逐渐走入我们的生活,&ldquo 滴血验癌&rdquo &ldquo 基因分析预测疾病&rdquo 等提法屡见不鲜,有些公众愿意做第一批&ldquo 吃螃蟹的人&rdquo ,而有些公众对此持怀疑态度。基因组学北京市重点实验室12月5日在京揭牌,这个实验室将来会做些什么工作?对推动我国基因检测技术及应用的发展能起到什么作用?未来基因检测将为我们的生活带来什么改变?为此,记者采访了该实验室的相关专家。   集合优势资源攻关十大疾病   基因组学北京市重点实验室学术委员会主任沈岩院士表示,该实验室集结了北京市的优秀科研资源, 这个创新平台是开放性的,与医院、大学和研究机构合作,不搞&ldquo 一言堂&rdquo ,不搞&ldquo 一家独大&rdquo ,目标是集中北京基因组学的优势力量,重点为&ldquo 首都十大疾病科技攻关项目&rdquo 做贡献。   &ldquo 我们正在做拇指外翻的遗传学研究&rdquo ,中国中医科学院望京医院的温建民教授告诉记者,望京医院一年做北京60%以上的拇指外翻手术,经病例研究发现,拇指外翻以女性居多,遗传因素非常明显。如果找到相应的基因位点,进而提前干预,将减少拇外翻的病例。北京阜外心血管病医院流行病学专家顾东风教授表示,目前阜外医院对心血管疾病的研究停留在患者家族的中风史、吸烟史上,如果能够进行基因遗传学研究,将大大推进我国心血管疾病的流行病学的发展。这些临床专家表示,疾病易感基因的研究应与临床密切结合,进而推动基因检测科学与医学临床研究的进展。   推动我国基因组学研究发展   该平台同时也将与药企展开良好合作,&ldquo 找到新的药物靶点必须借助于基因测序技术&rdquo ,生物制药专家沈心亮表示,近些年来,基因测序技术飞速发展,基因组学发展快速,给生命科学的发展带来很多启示。   &ldquo 基因组学北京市重点实验室的建立将为我国基因组学的研究发展起到重要推动作用,&rdquo 沈岩告诉记者,&ldquo 我们拥有最先进的基因检测设备、测序技术、最优秀的基因研究人才,建立这个平台有助于医院、研究院所、基因测序公司抱团发展,将对推动我国生命科学医学发展有重要意义。&rdquo   沈岩院士告诉记者,我国最早的发展依靠廉价劳动力,后来的发展以消耗能源为代价,先发展后治理是件难受的事,但却是必经阶段。目前已经到了依靠原始创新、依靠科学技术发展的时候了,北京市支持成立基因组学北京重点实验室,体现了北京市支持原始创新的决心。   北京市科委副主任杨伟光表示,北京市科委一直大力支持原始创新项目,此平台的建立仅拉开了北京市建立一系列科研创新平台的序幕。   以基因检测预知风险   基因与人体健康无疑有着相当密切的关系。基因组学北京市重点实验室学术委员会的一位专家告诉记者, 时至今日,基因研究已经在人类健康生活中起到重大作用。基因检测可以诊断疾病,也可以用于疾病风险的预测。比如新生儿遗传性疾病的检测、遗传疾病的诊断和某些常见病的辅助诊断。   目前有1000多种遗传性疾病可以通过基因检测技术做出诊断。一些基因测序公司已经开展了预测性基因检测项目,利用基因检测技术在疾病发生前就发现疾病发生的风险,提早预防或采取有效的干预措施。   一位该平台学术委员会资深专家告诉记者,科学家已经能够分析出某些基因与疾病的关系,但与基因个性化咨询、基因治疗疾病、解读人类遗传密码尚有较远距离。他认为,至少还需要20年科学家们才能把基因测序得到的数据,科学的分析清楚。基因分析可以告诉人们,某些基因会有得某种疾病的风险,我们个体遭受巨大打击后,往往还能逐渐恢复,绝不仅仅是一、两个基因在起作用。   他告诉记者,目前基因测序已经用于设计新药上。由于个体遗传基因有差异,不同的人对外来物质(如药物)产生不同的反映。服用相同的适量药物,有些病人觉得药效明显,有些病人没有明显感觉,有的病人可能会出现药物过敏、红肿发疹的现象。基因检测是针对个人的基因做检测,根据每一个人的基因情况,制定特定的治疗方案,从而科学地指导患者使用药物的种类和剂量,避免药物毒副作用,让患者走出用药盲区,用准药,用好药,把握最佳治疗时期。目前,美国食品药品监督管理局要求药品企业新药注册申请时,应先进行基因测序。另外,一些价格昂贵的抗体药物在临床使用前,也应进行基因检测工作,以便找出适合的病人,节省药费,合理用药。
  • 快速解读DNA碱基序列技术问世
    日本研究人员在6日的英国《自然纳米技术》杂志网络版上发表论文说,他们开发出只需少量DNA(脱氧核糖核酸)就能快速解读其碱基序列的新技术。这将有助于提高基因诊断、犯罪侦破等工作效率。   日本大阪大学产业科学研究所田中裕行等研究人员利用能在真空中以千分之一秒速度喷射液体的喷雾器,将含有微量DNA的水溶液喷射到铜板上。为使水溶液更容易附着到铜板上,研究人员令铜板倾斜45度,喷射后再冷却铜板。这时,在细胞内呈螺旋状的DNA就会在铜板上伸展开并停留在铜板上。这样一来,研究人员利用“扫描隧道显微镜”就很容易观察DNA的碱基序列。
  • 质谱革命:推动蛋白组学市场快速增长的黄金技术
    蛋白组学是当今生命科学和精准医学的研究热点,目前仍处于早期快速发展阶段。其发展轨迹与早期的基因组学相似,随着时间的推移,蛋白组学在研究和临床中的应用潜力将逐渐释放,有望接近基因组学的市场规模。当前,全球蛋白组学市场规模已达500亿美元,且呈现快速增长趋势。随着资本市场的关注,不断有新公司进入并获得融资,推动了新技术的不断涌现。 蛋白组学技术的扩展与应用 蛋白质组学技术已从最初的蛋白质定性鉴定扩展至多个领域,包括蛋白质定量表达分析、翻译后修饰鉴定和定量、蛋白质互作分析、蛋白质复合物成分解析、空间蛋白质组分析以及单细胞蛋白质组分析。这些技术不仅应用于基础科学研究,更在药物开发、临床医学和转化医学等领域展现出巨大潜力。这一切得益于质谱技术、蛋白质分离技术、生物化学技术和计算机技术的快速发展。 质谱技术:蛋白组学发展的关键 质谱技术是推动蛋白质组学发展的关键技术,特别是在生物标志物发现方面具有黄金标准地位。在全球范围内,只有少数制造商发明了能够区分小至单肽分子的复杂质谱技术,包括布鲁克公司(Bruker)、赛默飞公司(Thermo Fisher Scientific)、安捷伦公司(Agilent)、沃特世公司(Waters)和 Sciex 公司。其中,赛默飞世尔公司在蛋白组学研究质谱市场中拥有超过90%的市场份额,主要归功于其创新的Orbitrap系列。布鲁克公司的TimsTOF系列则是蛋白组学领域增长最快的质谱之一,从赛默飞公司那里获得了市场份额,以约30%的速度增长。质谱技术的持续创新将对蛋白组学的发展产生深远影响。然而,质谱技术的标准化和应用流程的复杂性,尤其是样品制备阶段的缺乏标准化,成为其进一步推广的瓶颈。正是在这一背景下,像Evosep等公司在液相色谱标准化方面取得了突破,逐步占据了60%以上的市场份额。这种创新反映了市场对流程效率提升的迫切需求。与此同时,新兴技术如Seer、Olink和Somalogic通过纳米粒子分离技术和适配体蛋白质检测技术,正在改变传统的蛋白质组学检测方式,显著提高了检测精度和通量。 蛋白组学的产业链 蛋白组学市场已形成涵盖上游质谱仪器和蛋白质组学试剂供应商、中游蛋白组学技术服务公司以及下游蛋白组学终端客户的完整产业链条: 颠覆性技术与企业的崛起 近年来,Seer、Olink、Somalogic、Nautilus和Quantum-Si等企业凭借其颠覆性技术,改变了传统的蛋白组学检测方式,极大地提升了检测的通量、准确性、特异性和敏感性:&bull Seer:发明了一种在液相色谱分离之前对蛋白质进行标准化消化和分离的工作流程。其专有的纳米粒子技术将蛋白质分成4组,增强了低丰度蛋白质的检测。&bull Olink:通过DNA编码连接到蛋白质上,实现蛋白质定量可通过基因测序的基础设施进行。其PEA(临位延伸分析)检测技术在qPCR仪器或Illumina的下一代测序仪上工作,提供高通量和特异性。&bull Somalogic:利用适配体进行蛋白质检测,其SomaScan平台可以识别并检测大量的蛋白质。该公司拥有一个由7000个独特适配体组成的文库,能够在48小时内从单个样品中识别7000种不同的蛋白质。&bull Nautilus:其技术利用专有仪器、流动池和试剂,对样品中95%的蛋白质组进行量化。设计了一个"超密集单分子蛋白质纳米阵列",实现了单分子分辨率。 国内市场的快速发展 在蛋白组学行业,欧美企业布局早,经过多年发展成熟后逐渐得到资本市场认可。包括Seer、Olink、Nautilius、Quantum-Si以及Somalogic在内的多家生物科技公司从2020年开始陆续上市。Seer、Olink、Somalogic是欧美三家蛋白质组学的标杆企业,Seer是其中最年轻的公司,但是为下一代蛋白质组学带来了创新技术和路径。与之相比,国内企业起步较晚,但发展迅速。景杰生物、中科新生命等专注于蛋白组学,而诺禾致源、华大基因、美吉生物、欧易生物等企业也同时提供蛋白组学服务。国内市场规模从2016年的1.2亿元增长到2020年的5.8亿元,年复合增长率高达49.1%,预计2025年将达到22.6亿元。(摘自弗若斯特沙利文分析)与此同时,随着精准医学和转化医学的快速发展,越来越多新发现蛋白质生物标志物的检测工作,将为蛋白质组分析带来巨大的市场需求。我们发现抗体-药物偶联物(ADC)药物正在快速发展,其结合了单克隆抗体的靶向能力和细胞毒性药物的强效性,成为癌症治疗领域的突破性疗法。在ADC药物的研发过程中,蛋白组学起到了至关重要的作用。(点击查看→ADC药物如何精准制导癌症治疗、质谱如何推进ADC药物研发)蛋白组学技术可用于鉴定和验证ADC的靶标蛋白,帮助研究人员筛选出最具潜力的治疗靶点。此外,蛋白组学在分析抗体与抗原的结合位点、优化抗体结构以提高药物效力和降低副作用方面也具有重要价值。总而言之,蛋白组学还是处于发展的黄金时代,质谱技术的不断进步将推动着整个行业的快速前进。随着多组学整合、人工智能赋能、空间蛋白质组学兴起和临床应用加速落地等趋势的出现,蛋白组学将在生命科学、精准医学和药物研发等领域发挥越来越重要的作用。在全球蛋白质组学有着千亿美元市场的机遇下,就需要加强核心技术研发,尤其是在质谱、单细胞和空间蛋白质组学等领域实现突破。同时,积极推动多组学整合,结合基因组学、代谢组学等数据,构建全面的生物学信息网络,深化对复杂疾病的理解。此外,深化国际合作与交流,吸收全球先进技术和经验,增强自身的创新能力,参与全球市场竞争,提升国际影响力。通过这些努力,中国企业将有望在全球蛋白组学市场中分得一杯羹,为生命科学和精准医学的发展做出更大贡献。
  • 德祥:CPhI China 2012落下帷幕,绿色、安全、快速却将与化学全程相伴
    绿色仪器Vapourtec / Yamazen篇 &ldquo Let&rsquo s go with green&rdquo 这已然不再停留于一句广告词上,而是渐渐渗入到我们工作和生活的点点滴滴。如果您是一名化学工作者,您一定在期待可以在绿色的环境下、使用绿色安全而又快速的实验仪器完成您的实验研究。现在来到徳祥,您就可以体验到这些。举几个小小的例子看这些绿色高效的仪器将会如何影响您的实验生活: Vapourtec Flow Chemistry: 连续流动合成仪。应用微通道反应的原理,结合自动化的高效泵和产物收集装置,加上调节精确的温控系统,可以使用少量、纯试剂连续进行一系列化学反应的合成。让您的化学反应在安全、快速、少浪费的宗旨下轻松完成。Flow Chemistry 已然成为Green Chemistry, Fast Chemistry & Safe Chemistry的代表性合成方式,您还在等什么呢?还不快加入我们? 英国Vapourtec流动合成仪 Yamazen Flash Chromatography: 中压快速制备。模块化设计,方便客户根据需要DIY,智能化的软件系统,配备Yamazen*的Rf Gradient技术,可以帮自动建立适合您样品的*分离条件,保证分离效率的前提下,最少的溶剂消耗,最短的分离时间,最高的分离效率;宽的OD范围也保证您想要的任何化合物不发生遗漏,也避免少量便过载的情况;同时配备多款填充柱供您分离的需要,确保您的实验分离更快速、精确。 Yamazen色谱产品 德祥展台 快来徳祥把这些绿色安全而又快速高效的仪器带回您的实验室吧!!! 更多产品请登陆德祥官网:www.tegent.com.cn 德祥热线:4008 822 822 联系我们(直接用户) 联系我们(经销商) 邮箱:info@tegent.com.cn
  • TSI公司举办的PM2.5现场快速检测技术网上讲座的视频链接
    美国TSI公司于2014 年5 月27日上午10:00举办了“TSI公司PM2.5现场快速检测技术”网上讲座,前期共有107人报名参加,59人按时出席了此次讲座。 随着我国工业化、城镇化的深入推进,能源资源消耗持续增加,大气污染防治压力继续加大,我国大气环境面临的形势仍然非常严峻。特别是大气污染物PM2.5,由于其粒径小且可入肺,比表面积大于PM10,更易吸附有害的物质且在大气中停留时间长,输送距离远等特性,将会严重影响人类的生存健康和环境质量。目前对于PM2.5的连续在线监测手段已经相对比较成熟,但快速实时监测技术,特别是光散射方法如何改进以更好的进行快速准确测量,已成为当前PM2.5监测技术领域讨论和关注的焦点问题。本次讲座向大家介绍了PM2.5的概念、来源、危害、标准等一些基本知识,着重讲解光散射检测技术与传统称重法的技术比对,以及TSI新一代PM2.5快速检测产品的一些专利技术特性与原理、目前已有的一些重点应用实例等。敬请没能实时参见此次讲座的各位观看TSI网上讲座录制视频,网址为:http://www.instrument.com.cn/webinar/Video/index?videoId=102018 关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 检验检疫让“澳洲牛肉”停留在中国口岸之外
    p   近段时间以来,随着澳大利亚总理莫里森游说各国支持新冠病毒起源“独立调查”,中澳关系在多次唇枪舌战中达到新低。就在这样的紧张局势之下,中国突然宣布,即日起暂停澳大利亚4家牛肉厂商的出口资格。公告原文如下,5月11日,海关总署更新了《符合评估审查要求的国家或地区输华肉类产品名单》,暂停受理澳大利亚170、235、239、640等4家输华肉类企业自2020年5月12日起启运的输华肉类产品进口申报。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/712befe5-4aaf-4d49-8c1d-df0a6ceaf0d4.jpg" title=" 1589356823526.jpg" alt=" 1589356823526.jpg" / /p p   据悉,编号为170和235的两家生产商隶属于澳大利亚最大的牛肉出口商JBS集团,640和239生产商也都是澳大利亚两家规模较大的牛肉加工厂。上述四家牛肉加工商所集团属的在2019年对华牛肉规模出口达12.2万吨,约占澳大利亚牛肉对华出口总量的35%。中国作为澳大利亚牛肉最大的出口市场,2019年中国从澳大利亚进口牛肉总量达30万吨,约占其出口总量的30%。无疑,中国此举将对澳洲牛肉生产造成重大打击。 /p p   根据澳方消息,本次暂停进口与澳大利亚主张的新冠病毒来源调查无关,而是因为产品的标签不符合规定,即肉类产品对不上其出示的健康证明。这并不是澳洲对华牛肉出口首次遇阻。2017年,中国也曾援引产品标签不合规为据,对6家在中国设有分支机构的澳大利亚肉类出口商发出了暂停进口禁令。禁令实施了三个月。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/d71f317d-3045-4b17-a3fe-31f38595c3bc.jpg" title=" 5ad41449e4478.jpg" alt=" 5ad41449e4478.jpg" / /p p   strong  那么,导致澳洲牛肉进口多次受阻的产品标签究竟是怎样的,如何才能达到合格合规的要求?它在国际贸易中又扮演了怎样的一个角色? /strong /p p   食品标签是预包装食品容器上的文字、图形、符号,以及一切说明物,是向消费者表明食品特征的一种重要形式。“进口肉类产品标签”是在贮藏运输过程中以传递产品信息、提供保护和方便搬运为目的的食品贮运包装、标识。预包装食品的中文标签需同时符合我国对预包装食品的相关要求。 /p p   原国家质检总局第136号令《进出口肉类产品检验检疫监督管理办法》第十四条规定,进口鲜冻肉类产品包装应当符合下列要求:内外包装使用无毒、无害的材料,完好无破损;内外包装上应当标明产地国、品名、生产企业注册号、生产批号;外包装上应当以中文标明规格、产地(具体到州/省/市)、目的地、生产日期、保质期、贮存温度等内容,目的地应当标明为中华人民共和国,加施输出国家或者地区官方检验检疫标识。《进口肉类产品的检验检疫监管工作手册》中第一节第5部分规定:进口肉类产品外包装应加施输出国(地区)官方检验检疫标识,外包装上应当以中文标明品名、生产企业注册号、生产批号、规格、产地(具体到州/省/市)、目的地、生产日期、保质期、储存温度等内容,目的地应当标明为中华人民共和国;内包装使用无毒、无害的全新材料,并标明产地国、品名、生产企业注册号、生产批号,与外包装信息一致。 /p p   发达国家对于食品标签管理均有非常详细的法律法规。我国对进口食品标签管理也有相关法律依据,但不够详细,特别是对于进口肉类产品。监管机构可以依照原国家质检总局第136号令、《进口肉类产品检验检疫监管工作手册》等对标签不合格情况进行分类,情节严重的,可作整批退回或销毁处理。 /p p   近年来我国进口肉类产品数量不断增加,越来越多的国家或地区与我国签订了输华肉类产品《议定书》。《议定书》中详细规定了双方的权利与义务,对输华肉类产品做出了详细的规定,其中就包括了货物包装与标签的情况。 strong 标签不合格违反了《议定书》中的规定,我国有权利暂停不合格输华注册厂的资质。 /strong 只有做到有法可依,违法必究,才能更好地维持输华肉类产品的秩序,也能得到外方更多的尊重。 /p p   尽管此次中国的牛肉进口禁令已被归结于技术性问题,但目前尚不清楚禁令将持续多长时间,以及是否将其扩展到澳洲其他肉类出口企业。根据中国去年的牛肉进口数据来看,中国对牛肉的需求越来越高。2019年中国进口牛肉总量高达165.9万吨,比2018年增加了59%,进口金额高达82亿美元,比2018年增加了71%。而且,近年来我国积极推动肉制品进口多元化策略,多国牛肉都在涌向中国市场。据央视网5月3日报道,近日约有21.4吨的俄罗斯牛肉运抵我国上海西郊国际农产品交易有限公司。据悉,这也将是有史以来俄罗斯牛肉首次出现在我国消费者的餐桌。除了俄罗斯以外,美国、日本等国的牛肉也在等待进入中国市场。若是澳洲牛肉持续被禁,不难想象,澳洲牛肉恐怕很难在中国市场重拾辉煌。 /p
  • 全球首台快速土壤检测设备在北京研制成功
    良田沃土,方能育出丰登五谷。4月19日,记者从北京市农林科学院获悉,由该院自主研制、具有自主知识产权的快速精准低成本土壤现场监测传感器“知土”已研制成功并投入使用,实现38个土壤指标的精确测量,将原需数周的实验室检测周期缩短到了田间10分钟,这一技术领跑全球。在北京小汤山国家精准农业研究示范基地内,“知土”已经上岗,成为种植专家们的“军师”。从农田里取来一杯土,放进地头的一台仪器内,等待几分钟后,氮、磷、钾、水、硒、镁、钙、铁等含量的数据呈现在眼前。“在农业生产中,因为无法对土壤的各项指标进行即时的监测,导致对土壤施肥不够精确,要么是用多了,要么是不够。肥力欠缺会对产量、品质有影响,但用多了,会产生食品安全隐患和地表水污染的风险。”北京市农林科学院智能装备技术研究中心赵春江院士团队的技术人员董大明介绍,“知土”可以一次性检测38个指标,首先是各种形态的氮磷钾,能够了解土壤的肥力情况,实现精准施肥。其次是重金属指标,关乎食品安全。此外还有关乎食品营养的各类微量元素。此前,要想获取土壤的这些指标,需要将土壤样本拿到实验室测试,通过添加化学试剂等方式来分析出具体含量,不仅成本较高,还需要数天乃至数周的土壤检测周期。如今只需要10分钟,且不受地形条件限制,就能方便地在田间地头实现检测。“目前国际上的其他国家仍停留在实验室检测阶段,我们的设备是全球首台。”董大明透露,这一想法最早来自火星探测器。火星探测活动中有一项技术,利用超强激光束将岩石气化,从而获取足够有用的信息来分析岩石的组成以及是否含有机物等。“我们的技术原理与之相似,将土壤放到测试舱内,再用一道激光将其气化,从而实现土壤各项指标的快速分析。”董大明说,团队从2011年启动项目,历经10余年的研发与迭代升级,最终实现了技术突破。“‘知土’的核心技术完全自主,获得12项国家发明专利、2项国际专利保护,70%器件实现了国产化。”董大明说,在尖端仪器领域欧美发展在先,但近年来国产激光器市场发展迅猛,技术水平达到一线水准,且成本优势巨大,为“知土”核心部件的国产化奠定了基础。“‘知土’最核心的部件是激光器。用作检测用途的激光器对稳定性要求很高,每一次独立出光的数值必须稳定,这个是非常关键的指标。我们目前使用的国产激光器,在实验中发射了上万次的激光,表现优异,性能稳定。”目前,“知土”已更新至第二代,在农业精准作业、土壤普查、“测土配方”施肥中具有重要的应用前景,有望对农业生产方式产生革命性影响。“知土”目前已完成2000余个土壤样品测试工作,大大提升了土壤检测的工作效率,初步建立了土壤大数据平台。下一步,市农林科学院将进一步开展普及推广,推进农业科技现代化,实现科技赋能农业。
  • 氯盐类融雪剂浓度快速测定和用量控制方法
    融雪剂是冬季常用的除雪方法,国内外常见的融雪剂按主要成分一般分为醋酸钾(有机融雪剂)和氯盐两类。氯盐类融雪剂因其价格便宜、效果明显,从而被国内广泛使用。 氯盐类融雪剂的融雪原理是:&ldquo 氯盐类&rdquo 融雪剂溶于水(雪)后,其冰点在零度下,如,氯化钠(食盐)溶于水后冰点在-10℃,氯化钙在-20℃左右,醋酸类可达-30℃左右。盐水的凝固点比水的凝固点低,因此在雪水中溶解了盐之后就难以再形成冰块。此外,融雪剂溶于水后,水中离子浓度上升,使水的液相蒸气压下降,但冰的固态蒸气压不变。为达到冰水混和物固液蒸气压等的状态,冰便融化了。这一原理也能很好地解释了盐水不易结冰的道理。简单地说,就是融雪剂降低了雪的熔点,使其更容易融化。 融雪剂使用时并非越多效果越好,需要针对不同的情况精确计算使用量并进行均匀铺撒。因此发达国家禁止人工撒布融雪剂,要求必须用撒布机进行机械式撒布。但在中国,多数城市融雪剂的撒布完全依靠人工进行,根本无法做到精确均匀,融雪效果难以保证的同时也浪费了大量的融雪剂,间接导致其滥用。 发达国家融雪剂撒布设备的剂量精确与否会由专门的检测机构进行标定,以确定撒布设备是否可以使用。标定不通过的设备,严禁上路进行除雪作业。中国很长一段时间内缺乏融雪剂制造和使用标准。直到2002年,北京市才出台了中国首个融雪剂地方标准,对融雪剂的腐蚀性和污染性进行了规范,并同时出台了专门的《融雪剂使用管理办法》。而北京市的融雪剂使用量却连年上升,从之前的1000吨到2003年的7000吨,再到2010年的3万吨,这相当于此前5年冬季融雪剂使用量的总和。 融雪剂浓度、用量与融雪效果密切相关,同时控制融雪剂的用量,检测融化后的盐水浓度,可以最大的降低对道路桥梁、土壤生态的破坏作用。ATAGO氯盐类手持式浓度快速测定仪可以快速方便随身携带,在3秒之内的测量各类氯盐了,如氯化钠(NaCl)PAL-03S( 氯化钠浓度计)、氯化钙(CaCl2)PAL-41S( 氯化钙浓度计)、氯化镁(MgCl2)的浓度PAL-43S( 氯化镁浓度计)。 图为ATAGO(爱拓)融雪剂浓度折射仪 欢迎登陆东南科仪官网www.sinoinstrument.com了解详情。我们将热情提供完整、快速的现场分析试用!
  • 氯盐类融雪剂浓度快速测定和用量控制方法
    融雪剂是冬季常用的除雪方法,国内外常见的融雪剂按主要成分一般分为醋酸钾(有机融雪剂)和氯盐两类。氯盐类融雪剂因其价格便宜、效果明显,从而被国内广泛使用。 氯盐类融雪剂的融雪原理是:&ldquo 氯盐类&rdquo 融雪剂溶于水(雪)后,其冰点在零度下,如,氯化钠(食盐)溶于水后冰点在-10℃,氯化钙在-20℃左右,醋酸类可达-30℃左右。盐水的凝固点比水的凝固点低,因此在雪水中溶解了盐之后就难以再形成冰块。此外,融雪剂溶于水后,水中离子浓度上升,使水的液相蒸气压下降,但冰的固态蒸气压不变。为达到冰水混和物固液蒸气压等的状态,冰便融化了。这一原理也能很好地解释了盐水不易结冰的道理。简单地说,就是融雪剂降低了雪的熔点,使其更容易融化。 融雪剂使用时并非越多效果越好,需要针对不同的情况精确计算使用量并进行均匀铺撒。因此发达国家禁止人工撒布融雪剂,要求必须用撒布机进行机械式撒布。但在中国,多数城市融雪剂的撒布完全依靠人工进行,根本无法做到精确均匀,融雪效果难以保证的同时也浪费了大量的融雪剂,间接导致其滥用。 发达国家融雪剂撒布设备的剂量精确与否会由专门的检测机构进行标定,以确定撒布设备是否可以使用。标定不通过的设备,严禁上路进行除雪作业。中国很长一段时间内缺乏融雪剂制造和使用标准。直到2002年,北京市才出台了中国首个融雪剂地方标准,对融雪剂的腐蚀性和污染性进行了规范,并同时出台了专门的《融雪剂使用管理办法》。而北京市的融雪剂使用量却连年上升,从之前的1000吨到2003年的7000吨,再到2010年的3万吨,这相当于此前5年冬季融雪剂使用量的总和。 融雪剂浓度、用量与融雪效果密切相关,同时控制融雪剂的用量,检测融化后的盐水浓度,可以最大的降低对道路桥梁、土壤生态的破坏作用。ATAGO氯盐类手持式浓度快速测定仪可以快速方便随身携带,在3秒之内的测量各类氯盐了,如氯化钠(NaCl)PAL-03S( 氯化钠浓度计)、氯化钙(CaCl2)PAL-41S( 氯化钙浓度计)、氯化镁(MgCl2)的浓度PAL-43S( 氯化镁浓度计)。 图为ATAGO(爱拓)融雪剂浓度折射仪 如欲了解新产品测量方案,我们将热情提供完整、快速的现场分析试用,请点击这里。 要了解ATAGO(爱拓)科技的信息,请访问:http://www.atago-china.com
  • 评仪器技术之“最”探国产仪器创新之路——ACCSI 2012科学仪器技术发展趋势论坛纪实
    2012年3月22日-23日,中国科学仪器行业目前最高级别的峰会——“2012中国科学仪器发展年会(ACCSI 2012) ”在北京武青会议中心隆重召开。   3月23日下午,ACCSI 2012精彩环节之一 “科学仪器技术发展趋势论坛”隆重举行。该论坛由北京蛋白质组研究中心多肽组实验室负责人魏开华研究员主持,出席论坛的嘉宾有:中国广州分析测试中心主任陈江韩研究员、国家环境分析测试中心POPs研究室主任董亮研究员、清华大学分析中心主任林金明教授、华质泰科生物技术有限公司总裁兼首席技术官刘春胜博士、北京吉天仪器有限公司董事长刘明钟高工、北京化工大学材料分析与评价中心主任袁洪福教授。   各位嘉宾对近年来我国科学仪器主要进展、国产仪器技术创新采取的模式、“十二五”期间我国科学仪器发展应重点关注的技术等问题进行了讨论。 技术发展趋势论坛主持人:魏开华研究员 论坛嘉宾 (上排从左至右分别是:陈江韩研究员、董亮研究员、林金明教授; 下排从左至右分别是:刘明钟高工、刘春胜博士、袁洪福教授) 盘点仪器技术之“最”   许多科学技术重大成就的取得和科学领域的开辟,往往以科学仪器和技术方法上的突破为先导。如,阵列式毛细管电泳测序仪的问世,使得人类基因组计划的测序任务3年就完成了;生物质谱的诞生,使得蛋白质组学研究成为现实……   那么,近年来,科学仪器技术存在哪些突破性进展?哪些仪器技术是最值得发展?哪些仪器技术又需要谨慎发展?就此,各位嘉宾点评了“最具潜力的仪器技术、最应扶持的仪器技术、最自豪的仪器技术、发展速度最快的仪器技术、对人类健康影响最大的仪器技术、最失意的仪器技术”等仪器技术之“最”。   最自豪的,也是最应扶持的仪器技术——原子荧光、微波等离子体光谱   刘明钟高工谈到,国产科学仪器技术值得自豪的不多,最自豪的、最应扶持的仪器技术应该是那些拥有核心技术的仪器技术,而中国拥有核心技术、获得国外同行认可承认的技术非原子荧光、微波等离子体光谱莫属。原子荧光之前发展的不错,但是今后还需要得到国家的大力支持。“十二五”环保规划——重金属污染防治作为第一个发布的“十二五”规划,需要大量在线、现场测量技术。但是,目前的原子荧光仪器还停留在实验室阶段,如果向现场、在线监测技术发展,则需国家进一步支持。   而对于另一个中国人自己研发的仪器技术——微波等离子体光谱,刘明钟高工介绍到,我国科学家金钦汉教授早在1985年就提出了微波等离子体炬的概念,并于90年代开发了相关仪器,当时所研发的微波等离子体光谱的功率为200W、600W。微波等离子体原子发射光谱仪可实现空气中运行,无需再使用易燃或昂贵的气体,极大地降低了运行成本。而在2011年,安捷伦公司推出了激发功率可达1000W的大功率、真正商品化的微波等离子体原子发射光谱仪。如果国家能够对微波等离子体光谱仪进行大力扶持的的话,我国的微波等离子体光谱技术必将上一个台阶。   说到这里,陈江韩研究员则马上提醒到,原子荧光还有很长的路要走,我们不要太沉醉。而主持人魏开华研究员向在场的嘉宾发布了一个喜讯,原子荧光、微波等离子体光谱这两个技术已经被科技部列为重点支持的项目之一了。   关于最自豪的仪器技术,董亮研究员提到,便携气相色谱-质谱仪一直是进口产品的天下,现在国产便携气相色谱-质谱仪实现了真正商品化,已经完全可以与进口同类产品相竞争、相抗衡,希望这一技术走得更远、更好。   现场观众“大陆”在发言中指出,深紫外全固态激光技术是国人足可自豪的技术。中科院自上世纪90年代初开始研究,并率先发展出实用化的深紫外固态激光源。深紫外全固态激光源指输出波长在200纳米以下的固体激光器,可作为核心部件应用在多种光谱仪器上。中国是当今世界上唯一掌握深紫外全固态激光技术的国家。   最失意、最尴尬的仪器技术——气相色谱-单四极杆质谱   董亮研究员认为,对于国产分析仪器来说,气相色谱-单四极杆质谱可以说是最失意、最尴尬的仪器技术。国外几家质谱公司都有成熟的相关产品,为了扩大市场份额,这些公司在提高技术的同时,纷纷压低成本,使得气相色谱-单四级杆质谱的价格大幅下降。而国产气相色谱-单四极杆质谱若想突出重围,或在技术上超越进口产品,或者是仪器“能”用,同时价格极低,即以高性价比占领市场。但是目前,这两方面,国产气相色谱-单四极杆质谱都很难实现,其核心技术如真空系统、分子涡轮泵、质量分析器等皆是采用“别人”的技术,核心部件受制于人,导致整机价格相对于进口产品很难产生优势。这些应该引起我们的反思,或者“跳过”该技术,例如发展气相色谱-三重四极杆质谱或飞行时间质谱等。   最具潜力的仪器技术——无损、快速检测技术   袁洪福教授认为,近红外、红外、拉曼、太赫兹等技术结合化学计量学,可以快速测定样品,并实现在线、现场监测,成为解决社会生活中实际问题的有利手段,是最具潜力的仪器技术。   刘春胜博士也指出,大型实验室分析仪器永远不会落后、过时,是基础研究、科学发现的重要工具。而小型化、便携化、在线监测等仪器技术来源于实验室分析仪器技术的进一步延伸。   发展速度最快的仪器技术——质谱   对于发展速度最快的仪器技术,林金明教授认为,近年来质谱技术是发展最快的仪器技术,而离子源技术又是质谱技术中发展最快的,质量分析器技术则是质谱技术中发展最慢的。在离子源技术方面,我国科学家已经取得了一定进展,目前正在对一些小型化等技术进行攻关。而质量分析器技术则还有很长的路要走。   对人类健康影响最大的仪器技术——芯片诊断技术   关于对人类健康影响最大的仪器技术,陈江韩研究员认为,虽然目前芯片诊断技术还有一些问题,例如基体干扰、成本等需要攻克,但是随着这些问题的解决,芯片诊断技术将得到普及,并会福泽到非常广泛的人群包括偏远地区。 “敢问”国产仪器技术创新路在何方?   为贯彻落实《国家中长期科学与技术发展规划纲要(2006—2020年)》,推动我国重大科研仪器设备自主研制工作,2011年,中央财政拨专款设立国家重大科研仪器设备研制和开发专项,一个支持科研仪器创新的布局在国家层面展开。   同时我国科学仪器行业一直面临着巨大的威胁,从海关数据显示,每年我国进口的分析仪器是国产仪器的3倍还多,具体到色谱仪器每年进口10000多台,质谱每年进口5000多台,光谱进口则达到50000-60000台。从技术层面来讲,国产分析仪器行业如何迎接这一冲击?   科学仪器的发展要靠技术创新,没有自己创新出来的仪器设备,很难获得世界一流的突破性、变革性成果。然而,创新有着不同的道路,那么中国国产仪器技术创新应该走哪条道路? “十二五”期间,我国科学仪器发展又应重点关注哪些关键技术、共性技术和前沿技术?   基础理论研究与应用层面研发,哪个更重要?   基础理论研究与应用研究,二者都很重要,在不同的条件下、不同的时期,其重要性有所不同。   袁洪福教授、董亮研究员等更倾向于重视应用研究。袁洪福教授举例说明,全球只有二、三家仪器公司在做NMR,我国若投入大量力量研发,即使能够达到和进口产品相同的水平,但是市场上已经先入为主,国产相关仪器也很难与进口仪器相竞争。所以,目前我国应该实行跨越式发展,以解决实际问题为目标,将具体应用与仪器技术结合,发展专用仪器。董亮研究员也指出,我国应该加大应用研究的投入力度,走一条“捷径”,研制出更多成熟的产品技术,更快进入市场、满足市场需求。   而刘春胜博士、刘明钟高工等皆认为基础理论研究更重要。刘春胜博士谈到,从国家层面来讲,基础理论研究具有非常重要的战略地位。中国科学仪器要做大做强,必须要有一批不用考虑实际应用的基础理论研究学者,不断地、稳定地进行技术研究工作。中国的基础理论研究可以走差异化的道路,例如,在高场NMR研制有难度的情况下,我国可优先发展便携、小型化的NMR。刘明钟高工认为,我国科学仪器行业发展的当务之急是要有产品出来,同时从长远来讲要重视基础理论研究。   当前国产科学仪器创新应走集成创新,还是原始创新之路呢?   集成创新是指将不同的技术集合到一起成为一种产品,发展速度、经济效益等都很快。而原始创新之路是一条“长征”之路。   虽然原始创新之路困难多多,但是刘春胜博士、刘明钟高工等还是一致选择了该条道路。刘明钟高工强调,原始创新并不神秘。虽然当前国产科学仪器创新应该走引进国外先进技术、消化吸收、再创新之路,但是,中国科学仪器企业要壮大就要努力发展拥有自己的核心技术,即重视原始创新。   袁洪福教授、林金明教授、陈江韩研究员、董亮研究员等嘉宾则认为,我国目前的技术现状、发展条件等决定了国产科学仪器创新应选集成创新之路。林金明教授说到,在我国经济快速发展过程中迫切需求一些仪器设备,所以短期内我们应该以集成创新为重点,“吃透”外来技术,并应用到自己产品上。陈江韩研究员也赞同的说到,近期内我们需要采取集成创新的模式,做好产品。 论坛现场   论坛的最后,各位嘉宾用一句话描述了,“十二五”期间,我国科学仪器发展应重点关注的关键技术、共性技术和前沿技术:   袁洪福教授——分子光谱中的傅里叶变换技术,以及标准样品发展。   刘春胜博士——应重点关注的关键技术应该是质谱技术,而前沿技术则还是质谱中的离子化技术。   刘明钟高工——用于环境监测、食品安全检测的现场、快速测量技术。   林金明教授——关键是研发人才的培养。   陈江韩研究员——仪器设计的质量管理体系建设。   董亮研究员——前沿技术是应用分子生物学、生物传感器技术的快速、低成本分析技术,该类技术将在环境、食品领域有广阔的应用前景。撰稿编辑:刘丰秋
  • 我国在细胞生物学领域获新进展
    我国科学家在细胞生物学研究中又获新进展。2月9日,国际著名学术期刊《自然—细胞生物学》(Nature Cell Biology)在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所研究员朱学良和美国华盛顿卡耐基研究所教授郑诣先的合作研究结果:Nudel和胞质动力蛋白在纺锤体基质组装中发挥重要作用,进而调控有丝分裂纺锤体的正确形成。   纺锤体是主要由微管形成的纺锤形的动态结构,负责真核细胞有丝分裂过程中遗传物质(染色体)的均等分离。因此,纺锤体的异常会引起遗传不稳定,从而导致细胞死亡或肿瘤、癌症等疾病的发生。早在几十年前,人们就提出可能存在一些独立于微管的基质成分,对纺锤体组装起着重要作用,但一直未能被证实。郑诣先研究组近来利用偶联有蛋白质激酶Aurora A的微小磁珠在非洲爪蟾卵抽提物中组装成的纺锤体,证明了一种富含生物膜的纺锤体基质(spindle matrix)的存在,并发现B型核纤层蛋白(Lamin)也是其中的一个重要成分。这种纺锤体基质与微管相辅相成,前者促进后者形成正常的纺锤体结构,而后者的聚合又增强前者的组装。另一方面,纺锤体的正确形成需要胞质动力蛋白(dynein),即一种被称作“分子马达”的能够朝向微管负端运动的蛋白质复合物。朱学良研究小组发现,Nudel是dynein的调节因子,并在有丝分裂中有重要功能。   作为中科院“海外合作伙伴计划”的成员,他们共同探索了纺锤体组装的机理。博士研究生马丽观察到体外纺锤体形成过程中微管和基质的详细变化,发现微管首先从Aurora A磁珠上长出,形成放射状的星体(aster),同时在微管上出现含Lamin B的颗粒 随着时间的推移,星体微管密度加大但长度变短,形成球状物,在此过程中,两个星体会融合形成以磁珠为两极的纺锤体,Lamin B的颗粒也变得高度富集。她和同事们发现,分离出的纺锤体基质中含有dynein和Nudel,并且Lamin B可以和Nudel直接结合。去除Nudel或失活dynein,都可以抑制基质的富集并使纺锤体组装停留在星体阶段。去除Lamin B后,则形成膨大的异常纺锤体。这些结果说明,Nudel和dynein可以通过聚集Lamin B等纺锤体基质成分来调节纺锤体的组装。而且,由于分离的纺锤体基质中还含有大量参与细胞信号转导、转录调控、膜运输等功能的重要蛋白质分子,研究人员推测,纺锤体基质可能还行使其他有待进一步认识的功能。   这项研究得到了科技部、国家自然科学基金委、中国科学院以及美国霍华德休斯医学院、美国卡耐基研究所的经费支持。
  • 技术干货 | 如何同时快速检测每个纳米颗粒的元素和粒径信息
    纳米材料,由于尺寸在1~100纳米范围,其微观尺度赋予其独特的光、电、磁、机械和光学等特性。纳米技术是一个快速发展的新兴领域,其发展和前景也给科学家和工程师们带来了许多巨大的挑战。纳米颗粒正在被应用于众多材料和产品之中,如涂料(用于塑料、玻璃和布料等)、遮光剂、抗菌绷带和服装、MRI 造影剂、生物医学元素标签和燃料添加剂等等。然而,纳米颗粒的元素组成、颗粒数量、粒径和粒径分布的同步快速表征同样也是难题。对于无机纳米颗粒,最为满足上述特点的技术就是在单颗粒模式下应用电感耦合等离子体质谱分析法,即单颗粒ICP-MS。ICP-MS 测量溶解样品和单纳米颗粒分析的响应信号如图1 所示。在分析溶解态元素时,产生的信号基本上属于稳态信号,测量单纳米颗粒时,产生的信号是非连续信号。四极杆作为检测器,工作时在各质荷比(m/z)停留一段时间,然后移动到下一质荷比(m/z);各质荷比(m/z)的分析时间被称作“驻留时间”,即工作时间。在各驻留时间的测量完成之后,执行下一次测量之前,通过一定时间进行电子器件的稳定。该时间段被称作“稳定时间”,即暂停和处理时间。当单颗粒的离子云进入四级杆后,如果单颗粒(“信号”峰)的离子云落在驻留时间窗口之外,则可能无法被检测到,如图3a 所示。当单颗粒的离子云落入驻留时间窗口内时,可以检测到该离子云,如图3b 所示。当快速连续检测到多个颗粒时,所得到的信号是一系列峰,各个峰都来自于某一颗粒,具体如图3c 所示。在单颗粒ICP-MS 中,瞬态数据的采集速度由两个参数组成:驻留时间和稳定时间。十分重要的是,ICP-MS 采集信号所需的驻留时间少于颗粒瞬态时间,从而避免因部分颗粒合并、颗粒重合和团聚/ 聚集产生的错误信号。稳定时间越短,颗粒遗漏的可能性就越小。最理想的情况是一秒钟内可进行10,000 次测量,不存在稳定时间,所有时间皆用于寻找纳米颗粒(图5c)。快速连续数据采集的另一个好处是可以从单个颗粒获得多个数据点,从而消除颗粒遗漏,或仅检测到颗粒部分离子云的情况。驻留时间越短,对单颗粒离子云采集的数据点越多,获得的峰型更加准确。珀金埃尔默公司NexION系列ICP-MS,最短驻留时间可达10 μs,单质量数据采集能力可达100000点每秒。配合专业的 Syngistix™ 软件,无需更多数据处理即可获得样品的颗粒浓度,尺寸及分布等信息,是进行单颗粒ICP-MS实验的首选。想要了解更多详情,请扫描二维码下载完整的资料和仪器信息。
  • 那些年学化学给我们留下的无法磨灭的印记
    那些年学化学给我们留下的无法磨灭的印记   每次喝酒,我总是习惯性的把商标标签转到手心才安心倒酒   朋友聚餐,总是会写坩埚杏鲍菇   老板,猪血炖白菜少放点NaCl。。。   分白酒大家都习惯每倒一点都把瓶子举起至液面凹出与视线齐平,观察下少了多少....   每次开盖子,不论是茶杯盖子,开水瓶盖子,饮料瓶盖子,罐头盖子,锅盖子,所有盒子的盖子。。都要把盖子倒置放在桌上!   每次刷碗的时候都会抑制不住的想到&ldquo 既不聚集成滴,也不成股流下&rdquo   当看到双胞胎就想到同分异构体   当看到字母C先想到的总是碳   看见TCL就觉得是它写错了   做饭时油倒多了,就用筷子引流从平底锅倒回油瓶   做饭放盐:先用右手拿着勺子,左手轻拍右手手腕,把盐抖到锅里...   每次从大碗往小碗盛汤,若是没有勺子,总想用根筷子做下引流的动作。。。。   洗碗时最后一个步骤是用清水冲三次   刷某个容器,刷完用蒸馏水润洗,再用无水乙醇润洗,之后正准备吹干,发现刷的是自己的饭盒。。。   泡咖啡每次放糖的时候都让糖块顺着杯子侧壁滑下去   喝果粒橙前的摇动姿势和摇容量瓶一样   离开家、办公室的时候,在门口稍作停留,默念&ldquo 水电气风氮&rdquo ,才关门上锁离开。   看到各种东西,都习惯性地看成份,即使吃根雪糕也一样   看到各种化妆品宣传都会由衷的感谢他们用这么多花哨地方式养活了我一帮干合成苦逼同学。   无法忍受&ldquo 无任何化学添加剂&rdquo 的宣传   买衣服前先看成分,然后告诉同伴,这种材料(纤维)的热稳定性不好,不能用热水洗,而且这个材料根本不值这么多钱,没事就爱研究护肤品里的成分表,然后告诉朋友这些宣传都是噱头,有效成分排名太靠后&hellip &hellip   去药店买了瓶枇杷叶,医生说每次喝10ml一天三次,于是乎我每天在纠结10ml︶︿︶   W=Pt,这个物理公式一直记成是钨和铂是同物质   骂人喜欢说苯酚(装纯(醇))。。。   总觉得iphone4s后面应该是iphone4d iphone4p 然后才是5s&hellip &hellip   生个娃娃,取名叫吲哚或者呋喃,也是极好听的^~^
  • 地球科学中自动化矿物学的未来
    随着 2021 年 11 月 Mineralogic 3D 的推出,自动化矿物学刚刚见证了其技术的最大转变。这是一项广泛的开发计划,旨在定义 X 射线吸收对比断层扫描 (ACT) 数据的校准和标准化,以实现一致和准确的识别矿物相直接来自 3D 成像。这对于自动化矿物学来说是真正的新领域,不仅可以非破坏性地进行相识别,而且只需极少或无需样品制备。3D 测量具有许多优点,包括识别次要相位、无立体效应以及对珍贵样品(例如陨石)进行无损分析。介绍几十年来,“自动化矿物学”一词一直是地球科学中电子显微镜的代名词。使用能量色散光谱 (EDS) 快速绘制样品图和识别感兴趣的相已逐渐从其最初的行业应用转移到学术研究环境中。对于希望利用这一强大工具的学者来说,一个主要问题是原始平台在其行业设计的输出方面是僵化的,并且能够提供自动化输出的软件和硬件都缺乏开发。蔡司矿物学一直采用不同的方法,2D 和 3D 的持续发展意味着我们现在拥有有史以来设计的最全面和最先进的岩石学研究平台,重新定义了自动化矿物学这一短语。使用定量 EDS 分析,EM 的矿物学一直领先一步。这使得它在自动化矿物学系统中独树一帜,成为真正的地球化学工具,能够计算薄片等区域的矿物和整体成分。然而,这种能力仍然在传统的自动化矿物学软件的框架内,用户如何访问和使用地球化学信息的灵活性有限。在 Mineralogic 1.8 中,这一切都发生了变化,自动化矿物学的使用方式发生了重大转变,特别是在工作流程高度可变的学术环境中。在最新版本中,地球化学信息被放在首位,与软件设计的阶段 ID 一样重要(图 1)图 1:大颗粒观察器 (LPV) 用于可视化苏格兰西北部路易斯安杂岩中的麻粒岩相超长岩的完整薄片。单击即可从 BSE 和矿物分类图更改为定制的范围元素热图,所有这些都来自同一次扫描。图像显示 a) 灰度 BSE,b) 矿物分类,以及 c) 和 d) 定量 Fe 和 Mg 热图。新的大粒子查看器可以将完整的薄片查看为定量元素热图,并且收集的所有地球化学数据都可以导出为简单的 .csv 文件格式。这种简单的数据导出允许将定量地球化学测量值直接导入为地球科学家专门设计的第三方软件,例如 XMapTools。技术上最大的转变是在 2021 年 11 月推出 Mineralogic 3D。这是在一项广泛的开发计划之后定义 X 射线吸收对比断层扫描 (ACT) 数据的校准和标准化,以允许直接从3D 成像。这对于自动化矿物学来说是真正的新领域,不仅可以非破坏性地进行相识别,而且只需极少或无需样品制备。3D 测量具有许多优点,包括识别次要相位、无立体效应以及对珍贵样品(例如陨石)进行无损分析。现代、灵活的自动化矿物学技术可以应用于地球科学以外的许多材料,包括金属、陶瓷,甚至是根和骨头等有机物质。然而,矿物物种在主要元素化学、结构和密度方面的全球一致行为使其成为此类自动化工作流程的理想候选者。完整的蔡司矿物学软件包现在提供最全面的矿物学和岩石学解决方案,这只是对地球科学界长期投资的开始。突破二维自动化矿物学的极限自动化矿物学在四个十年的使用中几乎没有变化。对严格的行业应用程序进行粒子分析的一致输出的要求导致看似相似的软件环境在输出方面几乎没有灵活性。该设置非常适合设计自动化矿物学的常规工作流程、矿物学处理的长期一致性以及破碎样品的地质冶金学,这些样品在数月和数年内在单个地点几乎没有变化。最大的挑战是在学术环境中越来越多地使用自动化矿物学平台。吸引力非常明显,能够将传统的颗粒分析方法转化为 SEM 中的各种样品的映射,从环氧树脂安装的颗粒分离器到完整的薄片和抛光的芯板。能够用模态丰度、纹理信息等绘制矿物学图,对于构建大型数据集、拥有“大数据”和了解我们个体样本的统计相关性的现代科学来说似乎是完美的。然而,在一个依赖灵活性的研究环境中,这个看似理想的工具却受到为工业应用设计的输出的刚性所阻碍。在蔡司,我们对地球科学界做出了承诺,不仅包括推动仪器的功能和为社区量身定制我们的显微镜解决方案,而且投资于地球科学专业知识以帮助推动技术进步。因此,该软件现在是 SEM 自动化矿物学最全面、最灵活的平台,是定量地球化学分析与定量结构分析的独特组合。 从头到尾的灵活性地球科学家是多产的显微镜用户,他们的 SEM 系统通常以具有多种成像模式和用户要求的探测器“圣诞树”而闻名。结果是集成解决方案的必要性,并最大限度地减少操作员和/或技术人员实现目标的时间,因为在一个会话中需要多种成像技术是很常见的。Mineralogic 并不固定在某个平台上,因此从一开始您就可以从钨丝 (CSEM) EVO 系列到 FESEM Sigma 和 GeminiSEM 系列中选择适合您需求的 SEM。无论对成像分辨率、可变压力和探测器组合有什么要求,使用 Mineralogic 的自动化矿物学都可以成为您设置的一部分。定量 EDS 分析的使用始终使该软件有别于其他自动化矿物学解决方案。通过校准和标准化化学分析,它不仅仅是一种识别矿物种类的简单机制,而是将自动化矿物学转变为真正的地球化学工具,提供真实的矿物成分,以及测绘区域的“整体成分”。在研究环境中,能够获得定量的主要元素化学是许多工作流程的关键方面。通过在单一技术中以内在连接的方式将不同的信息组合在一起,在纹理分析的同时获取这些信息可以简化项目。定量地球化学还提供了另一个明显的优势,因为矿物分类库基于每种元素的 wt% 元素值,而不是定性的峰值强度值。这意味着矿物库更易于理解,并且可以在实验室之间和可变光束条件下立即转移,从而改善协作并减少操作员处理新样品或困难样品的时间。与大多数行业工作流程相比,研究项目的可变性要大得多,并且涉及定制的、采集后的图像和数据分析。很难准确预测数据将如何在研究环境中使用,不仅不同的研究小组有不同的要求,而且即使是同一个项目也可能需要根据样本灵活地询问信息。为了充分利用 Mineralogic 定量矿物学的强大功能,收集的数据必须不锁定在专有数据格式中,假设看似不灵活的输出适合所有人。为此,在可视化和导出方面,数据灵活性被置于软件的核心。自动矿物学的图像输出通常涉及两种图像类型,一种是背散射电子 (BSE) 图,另一种是基于自动矿物学分类的假彩色相图。与其将定量地球化学简化为数值输出,不如将这些信息带到最前沿,能够生成以完全数据拼接格式检测到的任何元素的定量元素热图(图 2)。现在可以通过单击导出在屏幕上查看的任何这些图像,为报告和手稿创建即时数据。图 2:a) 苏格兰格莱内尔格变质岩的全薄片扫描。Ca 热图突出显示分区的石榴石,然后以更高的分辨率重新分析。
 图 2: b) 石榴石图显示了元素和浓度范围选择的周期表用户界面。 比灵活的可视化更重要的是能够决定您希望如何处理数据本身,如果软件平台中的数据库无法访问,这是不可能的。Mineralogic 允许以最简单、最灵活的格式导出所有地球化学热图。这允许在任意数量的通用外部数据和可视化平台中查看数据集,作为电子表格或图像,或合并到定制的图像分析程序和脚本中。特别值得注意的是伯尔尼大学的 Pierre Lanari 设计的 XMapTools (xmaptools.ch/) 的使用。XMapTools 专为地球科学家设计,可从元素图中提取信息,这些信息已通过额外的电子探针样品分析步骤进行量化。将定量 EDS 图直接从 Mineralogic 导入 XMapTools 避免了这一额外的校准步骤,并允许使用矿物数据即时计算有用的参数,例如元素氧化物、末端成员成分和每个公式单位的阳离子,以及进行热力学计算。Mineralogic-to-XMapTools 工作流程最大限度地利用了灵活的数据输出,并为石油学家提供了一个出色的集成工具。通过采用定量地球化学并使其与自动矿物分类本身一样易于访问和重要,该软件现在在一个平台上提供了矿物学和岩石学应用的一站式商店,该平台可以结合许多其他图像和分析技术,如 EBSD 、WDS 和 CL。3D 自动化矿物学 - 新领域数十年来,通过微型计算机断层扫描 (µCT) 进行的非破坏性 3D 成像已被用于研究材料科学样品。这些仪器的性质意味着它们长期以来一直停留在成像领域,并没有被大量用于除分割等操作之外的定量分析。CT 平台通常设计用于增强对比度以可视化样本中的特征,从而导致信噪比抑制复杂的异质样本(如岩石)的详细分析,这一事实进一步阻碍了这一点。长期以来,能够完全基于 X 射线衰减值直接从 CT 吸收对比断层扫描 (ACT) 中识别矿物一直是一个目标,然而,由于校准、标准化和信噪比问题的多重障碍,直到现在这种量化仍然遥不可及。随着 2022 年 11 月 Mineralogic 3D 的推出,这个梦想现在已成为现实(图 3)。图 3: a) X 射线数据的自动矿物分割允许对矿物质地和丰度进行非破坏性分析。这些数据为您的岩石样本提供最可靠和最具代表性的 3D 分析,并指导相关工作流程。
图 3:b) 3D X 射线断层扫描的最新进展已使其超越成像并进入定量分析 (1) DeepRecon Pro 机器学习图像增强,(2) 非破坏性晶体取向分析,现在 (3) 自动化矿物学和定量样品分析。
 Mineralogic 3D 是一种突破性的新软件解决方案,旨在同时在 ZEISS Context (µCT) 和 Versa X 射线显微镜 (XRM) 上运行。预计 3D 自动化矿物学将迅速在工业的常规工作流程应用中找到一席之地,它非常适合识别硫化物和氧化物等矿物种类,计算它们的丰度,并确定它们彼此之间的关系以及脉石矿物. X 射线平台在这方面具有显着优势。ACT 的样品制备很少或根本不存在,整个或粉碎的样品可以在提取后立即加载,并且不需要环氧树脂底座的制作、固化和抛光。获取 3D 数据也消除了抛光表面的立体效应,显着提高数据质量,同时减少获取数据的时间。然而,以最少的样品制备或损坏获得如此详细的定量信息的能力意味着各种研究工作流程很可能也将采用该技术。Mineralogic 3D 将许多单独的解决方案组合到一个软件包中,利用校准和量化蔡司 X 射线平台从源到探测器的各个方面的能力,这意味着可以克服以前所有矿物识别的障碍。为了始终如一地识别矿物相并量化它们的关系,3D 重建需要具有尽可能高的信噪比,必须考虑 X 射线衰减伪影,并且必须分割 100% 的感兴趣体积。这些问题以及许多其他技术挑战已通过最近针对蔡司 CT/XRM 的高级开发计划得到解决。Mineralogic 3D 中最重要的并行进展之一是 DeepRecon Pro 的开发,它是最新的 Advanced Reconstruction Toolbox (ART) 的一部分。DeepRecon Pro 于 2021 年推出,是一种深度学习图像增强算法包,利用神经网络将 ACT 的信噪比提高到前所未有的水平(图 4)。图 4:借助 DeepRecon Pro 的图像增强功能,可以以更快的速度对样本进行成像,以清晰地显示复杂的特征。这里是c的增生lapilli。苏格兰西北部的 1 Ga Stac Fada 撞击喷射层在分割富含氧化铁的边缘后可以清楚地看到。 这对执行自动化矿物学的能力有两个积极影响,扫描时间显着减少,加快了常规分析的过程,并且类似的矿物通过其衰减值变得可区分。将这种“日常人工智能”组件纳入显微镜工作流程现在已成为公司在光、电子和 X 射线显微镜方面的理念的一个组成部分,使用户能够最大限度地提高仪器的输出,同时将对其时间的影响降至最低。量化分析工作流程的每一步的能力对于保持跨平台每次分析的同一矿物的一致价值至关重要,而且该价值本身与分析材料本身的内在特性相关,因此是有意义的. 与此相关的是考虑光束硬化的影响,即随着不同能量的 X 射线被样品吸收,通过材料的信号变化。该伪影通常被视为图像处理问题,需要在分析后进行校正,这对于简单的单相材料来说是一项可以完成的任务,但对于复杂的异质岩石样品却充满了问题。通过使用定量平台,并直接从第一原理应用这些和其他修正,在确定了 3D 断层扫描中存在的矿物质后,自动矿物学过程的一个重要组成部分就是能够计算矿物质比例及其关系(图 5)。图 5:完整的 Mineralogic 3D 工作流程可用于提高图像质量、自动分类矿物和分割样品的全部体积以计算 3 维的定量矿物模式和关系。图 1 中的示例是在 DeepRecon Pro 增强(灰度)和分割(彩色体积)之后看到的。全 3D 分段重建可以提供比 2D 更准确和详细的信息,并且几乎不需要样品制备。这意味着 100% 的分析体积必须被分割,矿物之间没有重叠,即体积的任何部分都不会被计算两次。这意味着所有标准输出,例如解放和锁定关系都可以以真正的 3D 形式计算。专门为此目的设计的智能分割例程,可快速生成用于定量纹理分析的 3D 体积,旨在确保忠实地表示微量矿物质,而不会被更大比例的矿物质吞噬。Mineralogic 3D 是一项改变游戏规则的技术,将 40 年历史的自动化矿物学概念带入一个全新的维度,允许对自然 3D 状态下的岩石样本进行全面定量分析。虽然 3D 分析相对于岩石中矿物和结构的复杂性有明显的好处,但 ACT 的非破坏性和完全定量分析可能是处理珍贵样品(如陨石和博物馆标本)工作流程中的关键步骤。 总结和结论/未来发展能够跨多种成像模式生成大型数据集是解决地质问题的理想选择,自动化流程以减少用户时间、建立统计相关性并为大型项目带来一致性至关重要。自动化矿物学的这些新发展也突出了相关显微镜的方向。越来越多的数据集被放置在云环境中,数据可以存储在大型、可访问的服务器中,为协作项目共享,并使用强大的在线处理工具进行处理。跨多个平台的自动化矿物学允许关联变得更加简化,因为跨这些平台的矿物库能够在此类云环境中进行通信并通过智能数据管理构建连接的数据集。用于矿物鉴定的地球科学中最多产的技术是光学显微镜 (LM),通常使用岩相显微镜。虽然 LM 一直是岩相学的中流砥柱,但它也是最难实现矿物识别自动化的技术,因为参数很少且变化足以区分静态图像中的矿物。因此,使用我们训练有素的地质学家的大脑,通过肉眼识别 LM 中的矿物质仍然比在大量矿物质中自动化该过程要容易得多。然而,即使是这项技术也有可能在未来发生转变。新的 Axioscan 7 Geo 是专为透射光岩相学设计的数字化平台,可在平面、交叉和圆偏振光(PPL、XPL、CPL)的整个薄截面上快速收集 LM 数据集,图 6:a) Axioscan 7 Geo 数字化平台为偏光显微镜生成独特的数据集,在多个方向捕获多种光模式。这使得数字薄切片可以在虚拟岩相显微镜中查看,或询问像素或晶粒尺度信息。
图 6:b) Axioscan 7 Geo 可以创建光学矿物学所需的所有成像模式,并将数字信息转换为模态丰度、取向、晶粒尺寸等的强大定量分析信息。
这些丰富的数据集是大量矿物学光学信息的基础,它们自然地提供了自动化的可能性。虽然这最初可能仅限于具有相对受控矿物组合的常规工作流程,但它为自动化矿物学在未来桥接光、电子和 X 射线显微镜铺平了道路,允许真正多模式和多尺度的相关项目自然。Mineralogic 软件套件处于自动化矿物学的最前沿,正在为工业和学术界的定量地球科学新时代铺平道路。可以将 2D 和 3D 矿物和纹理信息层与定量地球化学相结合,以创建对岩石样本的全面描述,并在整个地球科学中具有丰富的应用。关于作者理查德泰勒 Rich Taylor 博士Carl Zeiss 显微镜,Zeiss House,剑桥郡,英国Rich 于 2009 年在爱丁堡大学完成了实验岩石学博士学位,之后前往西澳大利亚科廷大学担任 SIMS 实验室专家。随后,他在科廷大学地球与行星科学学院担任研究职位,研究地球化学和地球年代学,专门研究成像和微量分析。2017 年,他搬到剑桥大学,使用新的显微镜技术研究地球上最古老材料中的磁性包裹体。2019 年,Rich 搬到了位于英国坎伯恩的蔡司,担任全球地球科学应用开发职位。原文:The future of automated mineralogy in geoscienceWiley Analytical Science ——Microscopy,7 June 202
  • Nature子刊!华大智造研发团队发布基于对比学习的多模态单细胞算法,快速实现千万级单细胞多组学数据建模
    近日,华大智造研发团队在Nature子刊Nature Machine Intelligence(IF=25.898)上在线发表了题为Contrastive learning enables rapid mapping to multimodal single-cell atlas of multimillion scale的研究成果。研究人员开发了一种基于对比学习的多模态单细胞算法工具——Concerto (协奏曲)。“协奏曲”的命名, 既包含了“对比学习建模细胞表征”的英文首字母,又暗含了组织器官中不同类型、不同状态的细胞协同发挥作用之意。该算法通过自监督训练的方式,可快速对千万级无标注的单细胞多组学数据进行建模,得到的细胞表征(cell embedding)可以用于自动注释、多模态整合、聚类、跨批次整合、参考映射注释等下游应用。Concerto在各项任务中都展现了优异的性能,进一步丰富了单细胞大数据领域的算法工具。研究背景单细胞多组学工具在解析细胞多样性的研究中发挥着至关重要的作用,可绘制单细胞水平的多组学图谱,进而从多模态角度揭示细胞功能或状态的异质性。百万甚至千万级别的单细胞多组学大数据需要通过智能高效的计算工具助力科学发现,定义细胞类型和状态。同时,已发表的大量未经人工注释或者注释颗粒度不够精细的数据集本身也是宝贵的资源,若加以有效利用,可以帮助快速解读新产生的数据集。目前主流的单细胞数据分析工具大多依赖于统计学特征选择(如高可变基因)和线性降维方法(如主成分分析PCA[1])来提取关键信息,但该预处理方法可能会造成信息量丢失。此外,单细胞数据集不可避免地存在不同程度的批次效应,在数据整合的过程中需要在保留每个样本包含的细微生物学状态差异前提下完成批次效应的适度去除。随着单细胞大数据时代的到来,亟需可快速构建千万级别单细胞多模态图谱并可实现映射注释的算法。华大智造自主开发的Concerto算法,采用人工智能领域新兴的对比自监督学习框架并进行优化适配,以应用在海量单细胞组学数据的建模中。何谓对比学习?简而言之,就是构造一个直观简洁的学习任务,让机器去对比和区分哪些样本与哪些样本相似,哪些样本与哪些样本不相似,从而学习到每个样本蕴含的高阶特征。这就好比是试图理解世界的婴儿,即使还未建立起认知世界的知识框架,也可能会意识到,相比于“史努比”,“加菲猫”和“黑猫警长”长得更像。婴儿通过比较不同物体之间的异同,或许可以学习到这些物体最重要的特征。对比学习示意图相比于传统的监督学习,在自监督学习中,机器学习的标签来自于样本自身。在真实世界中,有标签或者说有高质量标签的数据集是稀缺的,通过对比学习这样的自监督训练框架,可以很好地利用大量真实世界未注释的数据集。在机器视觉领域,Google和Meta近年来相继提出多种对比自监督学习算法,包括SimCLR[2]、 MoCo[3]等。在ImageNet分类基准测试中,最新的自监督算法甚至能优于有监督的基线方法。正如图灵奖得主Yann LeCun所预测,自监督学习是AI的未来,它就像人一样自觉观察数据,可能使AI产生类人的推理能力。在生物学领域,通过新兴的单细胞、时空组学工具获得的全新数据集,大大拓展了人类对于复杂生物系统的认知,这些数据还有大量未被人类标记或仅仅是依赖于已有知识进行注释。借鉴机器学习领域中不依赖标签数据的智能建模思想,以无偏的方式去利用好这些全新的单细胞数据,可以帮助科学家发现新的细胞类型、细胞状态,进而重新定义细胞类型。华大智造团队通过构造对比学习任务,让每个细胞自己跟自己“学习”,类似的细胞离得更近,不类似的细胞离得更远,从而实现对千万级别单细胞数据的快速建模。基于华大智造自主研发的便携、易用、经济友好的DNBelab C4单细胞建库平台,结合GPU的使用,利用Concerto构建千万级别的单细胞参考集仅需1.5h,快速注释5万个细胞仅需8s。同时,该模型可以整合不同模态、不同批次、不同测序平台和不同单细胞建库的方法。值得一提的是,Concerto的对比学习架构可以有效支持将一个细胞的所有基因作为输入建模,避免了直接降维过程中的信息丢失,同时该优势对于跨数据集的迁移注释至关重要,可以更好地扩展跨数据集间可利用的交集基因信息。华大智造DNBelab C4 Concerto模型架构具体而言,研究团队对每个细胞通过非对称的“双塔”蒸馏模型框架,并借鉴自然语言处理技术中的隐空间Dropout策略[4],得到一个细胞的两个不同表征(cell embedding)并使其互为正样本,而与其他细胞则互为负样本。通过对比学习在超球面空间[5]上将正样本拉近,负样本推开,从而学习到高质量的细胞表征(图1a)。经过Concerto训练好的细胞表征,可以在zero-shot或者few-shot的场景下应用于多种下游分析任务(图1c)。图1 Concerto模型的结构示意图Concerto整合单细胞多模态数据在RNA和蛋白同时测序的人类外周血单核细胞数据集中(PBMC160K),作者利用Concerto进行多模态数据整合,作者发现:细胞的不同模态信息反应了之前科学家定义的不同细胞分类的颗粒度和类型。例如:CD4 T细胞和CD8 T细胞在只用RNA模态的情况下,不能很好地区分,需要加上蛋白的信息;而如果只用蛋白的模态,单核细胞monocytes和树突状DC细胞不能很好地分开,需要加上RNA的信息(图2)。Concerto在整合了RNA和蛋白质两个模态后,学到了更好的细胞表征:细胞大类和存在细微生物差异的细胞亚群都被很好地区分,而且也很好地捕捉到了细胞发育的轨迹。如CD8 T细胞谱系,可以看到CD8 naïve — CD8 TCM — CD8 TEM的轨迹,并且可以通过高维超球面空间到二维的映射看出,杀伤性的T细胞和NK细胞的距离更近,说明Concerto学习到的映射空间可以将功能接近的细胞互相靠近。图2 Concerto在RNA、蛋白、RNA+蛋白三种设置下学到的细胞表征在迁移注释任务的表现在公开的胰岛细胞数据集上(HP)迁移注释任务中,与目前主流单细胞迁移注释算法比较,Concerto准确率最高(图3),超过了纽约基因组中心Rahul Satija团队开发的Seurat V4[6]、德国亥姆霍兹慕尼黑中心Fabian Theis团队开发的scArches[7]以及Broad研究所Soumya Raychaudhuri团队开发的Symphony[8]。人类胰岛数据集(HP)包括5种单细胞测序方法得到的数据,Concerto整合4种技术构建了一个参考空间,在这个过程中没有用到任何标签信息,只是“each cell learns from itself”。然后把待注释的数据投射到这个参考空间,每个待注释的细胞都可以“找到”在参考空间里和它最像的k个参考细胞,最后只需要综合这k个参考细胞的信息就可以为待注释细胞打上注释。另外,Concerto除了可以跨技术平台进行迁移注释,也可以跨物种进行迁移注释。图3右展示了Concerto利用HP数据构建参考空间,对鼠胰岛(MP)细胞进行注释的性能。图3 胰岛数据集上迁移注释性能比较,华大智造Concerto模型准确率超过现有方法就像序列比对工具BLAST 将生物序列数据比对到参考基因组的功能一样,将新产出的包含不同样本、研究、疾病状态的单细胞数据集,映射到复杂的、数百万细胞的参考图谱上,可以实现快速识别相关的细胞状态和表型,此种方法将成为单细胞数据分析的全新范式。本研究另一亮点在于,利用现有已注释数据构建大型的细胞图谱作为参考(Reference),新的数据作为查询(query),可以直接在Reference上“查找”最相近的“已知“细胞,这样我们就可以知道query细胞的性质了。构建百万级别免疫细胞参考图谱,对新冠数据进行快速注释在COVID-19研究中,研究人员将华大智造DNBelab C4产出的新冠病人外周血单核细胞(PBMC)数据与其他研究小组已发表的通过其他平台所采集的数据进行整合,构建了大型新冠病人外周血免疫细胞参考图谱,涵盖了健康人及轻型、重型COVID-19患者,并针对查询数据集进行快速注释,发现不同感染状态差异的免疫学信号。由于在参考数据中存在与查询数据类似的与疾病相关的细胞状态,所以Concerto可以快速将查询新冠数据集映射到参考图谱上。Schulte-Schrepping等人[9]的研究主要针对髓系细胞,如单核细胞monocytes和中性粒细胞neutrophils在不同感染状态下的差异。通过参考映射的快速注释,复现了该数据集的淋系细胞与其他新冠研究里的一致信号,如Concerto注释了稀有细胞亚群proliferative-exhausted CD8 T,与Su[10]等人的研究一致。此前,深圳华大生命科学研究院刘龙奇团队联合中国疾控中心等机构科学家利用华大智造C4单细胞平台进行了大规模的新冠研究[11],注释出了activated CD4 T细胞,并发现这种细胞的丰度会在患者体内上调。此次,利用Concerto构建的新冠参考数据集包含了这种细胞类型,也成功在Schulte-Schrepping的数据集中注释出activated CD4 T细胞,同时发现Schulte-Schrepping数据集中新冠患者的activated CD4 T细胞差异高表达CD2AP基因,也与此前华大研究院等人的发现一致。通过此项研究也证明,华大智造C4平台产出的数据可以和其他平台适配。将来科研人员可以利用Concerto构建整合不同单细胞数据产出平台的大型参考数据集,用以对新产出的数据进行快速注释。图4 将健康人与COVID-19患者整合的参考数据集对查询数据集进行迁移注释华大智造高级副总裁倪鸣博士表示:“单细胞组学的研究已进入高通量、大数据、多模态的研究阶段,此次基于对比学习的最新人工智能方法Concerto 用于单细胞参考数据集映射注释成果的发布,丰富了华大智造此前自主研发DNBelab C4单细胞平台,实现了单细胞组学领域硬件与软件的深度结合,相信未来会在单细胞领域赋能更多用户。”单细胞多组学时代的来临,使得重新定义细胞成为可能。华大集团联合创始人、董事长汪建曾提出 “六定”:定性、定量、定位、定时、定向、定标。未来,华大智造将继续开发用于单细胞多组学研究的硬件、试剂、软件工具,支持科研人员提高研究效率、拓展探索的边界。
  • 卫生部紧急研制猪流感快速诊断试剂
    据新华社电 昨日,卫生部新闻发言人毛群安接受记者专访时表示,卫生部已对防控人感染猪流感疫情作出部署,要求各级各类医疗机构加强对可疑病例的监测,一旦发现疑似病例要及时报告。 卫生部还要求,各地要指定定点医疗机构,对可疑病例立即组织专家会诊并进行医疗救治。同时,卫生部紧急组织有关科研机构研制快速诊断试剂,并积极开展病例诊断标准,以及疫苗和药物研究,为应对可能发生的疫情做好技术储备。 毛群安告诉记者,美国、墨西哥等地发生人感染猪流感疫情后,我国政府高度重视,温家宝总理、李克强副总理就此事分别作出重要指示。李克强副总理召集相关部门领导举行专题会议,研究防控、应对的措施和方案。 毛群安介绍说,卫生部密切关注疫情进展,并采取相应措施,充分做好预案。卫生部已组织专家对该病毒序列进行分析,对疫情进行研判,并根据疫情形势启动相应措施。 据了解,接到世界卫生组织通报的疫情后,卫生部部长陈竺便部署相关防控工作,启动了卫生部防控领导小组和专家组工作机制,同时向农业、质检等相关部门及时通报了疫情信息,向世卫组织、美国和墨西哥有关方面进一步了解疫情和防控工作情况。 毛群安说,卫生部将及时向公众发布相关疫情信息以及防控知识。他还表示:“中国愿意为发生疫情的国家提供专家和技术支持。” ■ 应对 中国叫停进口美墨猪肉 涉及墨西哥,美国得州、加州、堪萨斯州;禁止邮寄相关制品 本报讯 (记者鲍颖)国家质量监督检验检疫总局27日发布公告称,中国已禁止从墨西哥和美国进口生猪和猪肉制品,即日生效。 该机构表示,由于猪流感暴发,禁止直接或间接从墨西哥和美国得克萨斯州、加利福尼亚州、堪萨斯州输入猪及其产品,停止签发从墨西哥和美国得克萨斯州、加利福尼亚州、堪萨斯州进口猪及其产品的《进境动植物检疫许可证》,撤销已经签发的《进境动植物检疫许可证》。此外,禁止邮寄或旅客携带来自墨西哥、美国的猪及其产品进境,一经发现,一律作退回或销毁处理。 此前,国家质检总局已发布公告称,过去两周去过流行地区的人员,入境后出现流感样症状的,要及时与当地检验检疫机构联系。 世卫可能提高警报级别 紧急会议提前一天举行,承认对病毒了解不够 针对在墨西哥、美国暴发的猪流感疫情,世界卫生组织昨日表示,他们将在当天晚些时候召开会议,决定是否上调警报级别。 世卫组织发言人法德拉查伊博当天表示,世卫组织将原定于28日举行的紧急会议提前到27日召开。会议将确定是否将警报级别从现阶段的3级提高至4级,即“大范围流行风险显著增加”。 世卫另一名发言人彼得科丁雷当天也对媒体说,“现在还处于疫情初发期,尚不清楚这种病毒是否会大规模蔓延,进而对全球构成威胁。坦白地说,我们对于这种病毒了解得还不够,还需要做更多努力。”科丁雷说,乘飞机出行是病毒扩散的一个重要途径。 世卫组织助理总干事福田敬二说,现阶段还没有证据表明,“人体接触猪肉或生猪会得病”,也没有证据表明这起疫情与生物恐怖袭击有关。尽管猪流感病毒可能发生变异,但过去数年来防治流感的努力使得全球有能力和资源应对这场疫情。福田敬二表示,仅世卫组织就备有可用于500万个疗程的“达菲”。各制药商也都大幅提高了抗病毒药产能,如有需要,可以在短时间内大量生产。(吴妮) ■ 难点 世卫组织未通报猪流感病毒基因序列 快速检测难辨“猪流感” 目前尚无证据表明猪流感能通过食物传播。因此,食用处理得当的熟猪肉和猪肉制品是安全的。 北京市疾控中心传染病所所长王全意说,目前,虽然还没有预防人感染猪流感病毒的疫苗,但阻止人感染猪流感可防可控。专家建议由于此病主要通过空气和接触传播,因此注意开窗通风,勤洗手,避免在空气不流通和人员拥挤的地方长期停留等都是降低感染率的有效措施,同时如果出现感冒发热等情况及时就医,并注意戴口罩,以免传染他人。 他坦言,目前世卫组织尚未确定并通报猪流感病毒的基因序列,因此,快速检测方法目前不能判别猪流感病毒,实验室检测对人感染猪流感病毒的鉴别,还须通过对普通流感病毒和禽流感病毒的排除。 本报记者 魏铭言 ■ 解读 华农大专家称吃肉可宽心,检疫需加强 所谓“猪流感”实为“人流感” 虽然目前各界均将本次墨西哥暴发的流感病毒称为猪流感,但华南农业大学动物科学学院首席专家毕英佐昨日接受本报记者采访时则表示,这实际上是一种误读,“这一次暴发的流感病毒是一种全新变异毒株,经过基因的分析,当中含有一些猪流感的基因片段,但同时也含有禽流感和人流感的片段,而且本次感染人群基本没有接触过猪,因此这是一种人流感病毒,大家可以大方吃猪肉,不要有恐惧。” 毕英佐解释称,猪流感为一种常见病,其死亡率不高,仅在密切接触人群中有偶尔感染现象,但是不会造成人之间的传播,“猪是个流感病毒的混合器,体内既有感染禽流感的受体,也有感染人流感的受体,没有证据表明本次墨西哥暴发的流感是由猪直接传染给人的。” 至于本次流感是否会在中国乃至世界大规模流行,毕英佐则认为这受诸多因素的影响,“比如美国距离墨西哥那么近,病毒基因非常相似,但是这次美国感染者症状就非常轻微,我认为我们不要太过忧虑。”但其也强调检疫部门不应掉以轻心,“应该对人的检疫高度重视,而不是把重心放在进口猪肉的检疫上来。”
  • 美国发明用“喷雾解析电离质谱法”快速准确辨识指纹
    想必所有的侦探小说迷都知道,提取和分析指纹真是一桩乏味且冗长的活计。如小说中描写的那样,严谨的法医们挥着小刷子、在指纹上施粉、再粘上胶带……即使对最为耐心细致的人,这都是一个不小的挑战。不过现在,法医们不必再像《犯罪现场鉴证》(CSI)中描绘的那样,为辨识指纹焦头烂额了。只需一个便携式指纹分析器,棘手问题不难迎刃而解。   8月份的《科学》杂志撰文介绍了“喷雾解析电离质谱法”(简称DESI)的文章,这项技术的发明者是来自印第安纳普渡大学的戴米安艾法教授和他的团队。该技术的过人之处在于:不同于传统的光学技术,DESI是一种化学技术。它能够快速、准确地鉴定指纹,易于野外操作,对重叠指纹和罪犯曾接触物体的情况也能了如指掌。   这项技术的工作原理是:在一片极小的指纹区域(约0.15mm×0.15mm)内,喷上带电的甲醇与水的混合物。当这些小液滴与指纹相接触时,它会自动提取指纹中的化学物质,制造出一层液态薄膜。随着该指纹区域内喷洒的液滴的增加,先前形成的液状薄膜就会散开,并吸入光谱仪。此时,光谱仪便开始进行所收集分子的分析。这一过程所耗时间仅为数十秒。   DESI正是通过对指纹上所含分子的辨析来“抓出”真凶的。指纹上的每一个分子都会被光谱仪赋予一个所谓的化学“像素”。这里的“像素”当然和屏幕上的像素意义不同:后者代表一种颜色,而前者则代表着一种分子。指纹由各个指纹片断构成。   DESI是一项基于化学原理的技术。所以,相比视觉技术,它便拥有另一个卓越之处:能够检测留下指纹的人在此之前接触过那些物品。艾法和他的同事们在实验中就曾检验出手指接触过的可卡因、大麻、炸药等物。此外,对于光学技术很难辨析清楚的重叠指纹,DESI也能轻松搞定。   DESI不仅将成为侦探们探案的利器,也极有牵引医生目光的潜力。 因为DESI也同样能够化验指纹上的器官分泌物。这些分泌物虽停留在指纹上,却是身体内部新陈代谢的直接产物。因而,它们又可以被视为是人体健康的风向标之一。或许,我们可以期待有一天医生能够凭着扫描病人的一块皮肤就诊断出病人身上的病症。   现在,艾法团队的成员格拉汗库克斯 (Graham Cooks)已经成功制作出一台内置微型质谱仪的DESI仪器, 这台仪器有医药箱那么大,很适宜于法医随身携带。面对日益强大的指纹分析技术,看来,是惯犯们收敛自己双手的时候了。   (译自《经济学人》)
  • 华中师大郝格非教授:我与IKA奖学金的不解之缘
    有句话说的很好“陪伴是最长情的告白”。从曾经嗷嗷待哺到如今为人师表,一路走来都有你的陪伴,感谢有你——IKA。与IKA的故事要从迈进华中师范大学门槛那刻讲起。2015年,夏天,我怀揣着自己的农药梦师从杨光富教授从事农药分子设计研究,初入师门,整日奋战在实验台上并与IKA结下了不解之缘。师兄师姐对IKA的仪器颇为好评,并听闻学院与IKA有着多年的合作关系,因此,我对IKA产生了浓厚的兴趣。通过检索网页,IKA给我留下了深刻的印象,我发现,该集团已成为全球范围内首屈一指的领头企业,并且热衷公益事业。自2007年起,IKA在国内设立了奖学金项目,并已有多名优秀研究生获此资助,这似乎预示着什么,但是,我万万没有想到自己会与IKA奖学金有什么不解之缘。《研究生生涯》是浴火重生的奋斗史,也是满布荆棘的追梦路!充实的生活让我们来不及回首,但时间已经不经意间在指缝中溜走了。从刚进实验室时的青涩到研二时的懵懂再到研三的深入浅出,硕士期间转瞬即逝,然而自己脚步却显得略慢了一些,梦想依然停留在千里之外。2009年,IKA奖学金进驻华中师范大学化学学院,“IKA进步奖学金”评审委员会也正式设立,这对于我来说是个机会,但是那时的我依然还是个毛头小子,自知无论是文章还是专业素养都与“优秀”相差甚远。因此,我果断地放弃了当年奖学金的评选,留下更多的是拼搏的动力,这里的拼搏不只是为了那个区区的数千元奖学金,更多的是想要得到别人的认可,想要找到继续向前的动力。自那之后,我把自己绝大多数的精力放到了实验上,与文献为伴,虽然单调,但是乐在其中,都说兴趣是最好的老师,终于,我于2009年获得国家公派全额奖学金资助,赴美国肯塔基大学药学院进行博士生联合培养。在那里我感受着不一样的学术氛围,享受着不一样的风土人情,更重要的是结交了很多来自五湖四海的朋友,那几年也是我学生时代最为难忘的几年。在此期间,我接到了学校申请“IKA进步奖学金”的通知,心中先是一喜,而后在杨光富教授的鼓励下仔细地填写好了申请表。但是,答辩对于远在他乡的我是个大难题,不过好在IKA以及学院接受了授权答辩的方式,这促使我顺利拿到了当年的奖学金。这无疑是对我工作学习的一种认可,同时我也让我体会到IKA的大度。在国外游学期间我在实验室里见到了大量的IKA产品,感觉非常亲切,当我向实验室的美国同事介绍自己是“IKA奖学金”获得者时,美国同事很惊讶的说:Really?是的,IKA是低调的,它不仅带给了我们高质量的产品,而且它把公益事业落到实处,然而却并没有高调的宣传过自己的慈善,它一直都在默默的付出,为我们的科研事业奉献了一份力量,也为我们的人才培养提供了基础。2011年6月博士毕业后我留校工作,保留着学生时代的那份科研激情,未曾消退,我对专业的热爱就像学院与IKA的合作一样从来没有停止过。2014年,在双方合作已有十年之际,IKA工程师对300余台设备一一“体检”,现场诊断仪器是否处于良好运行状态,对仪器作一般性问题现场排查。此外,IKA免费为我们更换密封圈、马达等配件,重新启动了近30台的报损设备,为我们的老师和学生提供了专业、贴心和及时的上门服务。这使我对IKA有了更加全面的认识。转眼间,已从事教师工作五年之久,我实现了从学生到教师的完美蜕变。如今我已是华中师范大学的一名年轻教授,今年,我再次站到了“IKA奖学金”的领奖台上,并以教师获奖代表的身份发言讲话,内心的激动无以言表,也弥补了我学生时代那一丝丝的遗憾。华中师大郝格非教授2005到2016这11年间,一直有IKA相伴,多年坚持,与梦想同行;百年IKA,坚持公益正能量,而今,它公益众筹玩出大学生创业基金,这将使更多的莘莘学子从中获益。因此,我想对IKA说:“感谢一路有你,让我不再孤单;感谢一路有你,让我变得更加坚强。”愿IKA不仅能将产品越做越好,更能在公益的道路上越走越好。IKA大中华区市场总监张华蓉女士:收到来自华中师范大学郝格非老师这封信,我内心充满了特别的喜悦!这种喜悦一方面来自体会到我们伟大祖国科学家的内心境界,倍感骄傲鼓舞;另一方面来自对IKA一直在奖学金等公益道路上的坚持,现在更加坚定我们的付出是有价值的;IKA的slogan是:designed for scientist, 不论是IKA产品,还是IKA使命,都在为科学家提供价值,所谓不忘初心,方得始终。以下是我从其他人眼中了解到的郝格非教授:初见郝格非老师,给人一种历练成熟的感觉,好像是已经被时光打磨过的玉,没有耀眼的光芒,却于朴实无华中散发淡淡的幽泽。2011年,他博士毕业后选择留在武汉,留在这片挥洒了10年青春的土地上。在华师任教的短短两年多时间里,他已先后主持了国家自然科学基金、教育部博士点基金、霍英东青年教师基金、博士后面上及博士后特别资助等多个科研项目, "周洪宇华大卓越人才奖”是对他工作的最好肯定。此外,他还入选了“香江学者计划”,获得了赴香港深造的机会。他的博士学位论文——《农药合理设计的分子基础研究》还荣获了2013年“全国百篇优秀博士学位论文奖”,这个奖项是对他博士学业的最大肯定。他说,他要坚持做自己喜欢的科学研究,永不止息。“IKA祝愿郝格非教授在科研道路上,勇敢奔跑,攀登一个又一个科学高峰!
  • 展会动态 | 富睿捷展位吸引众多大咖驻足停留
    富睿捷科技携旗下原位冷冻干燥机Mercury系列参加于2022年6月30日-7月1日,举办的2022第六届国际生物医药(杭州)创新峰会。国际生物医药(杭州)创新峰会立足医药产业界的重大、热点事件,集聚海内外 2 位院士、50余位行业大咖,70+分享嘉宾,借由生物医药道路的探索样本,窥见新药开发的勇气与智慧,把握下一个十年中国医药创新发展的历史性机遇。富睿捷原位冻干机的应用领域集中在药物研发,疫苗冻干,体外诊断试剂研发等,与此次会议主题相契合,希望借由此次创新峰会,让更多的医药企业了解我们的产品。大会亮点展位盛况原位冻干机首亮相富睿捷科技始终都抱着为科研行业前进的一份子而努力,在国产替代的浪潮下,我们希望打造出可以对标进口仪器的好产品。每一次展会的参与,我们都希望可以让更多的人了解富睿捷这个品牌,了解富睿捷科技的好产品。
  • 赛默飞发布快速分析PM2.5中多环芳烃与多氯联苯的方法
    2014年11月21日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布了使用TSQ 8000 GC-MS/MS结合ASE 350,同时分析PM2.5中多环芳烃与多氯联苯的解决方案。 频繁出现的灰霾,严重影响空气质量及能见度。其中PM2.5因富含有毒、有害物质,在大气中停留时间长、输送距离远,且能直接进入肺部,而对人体健康造成物理性、化学性及生物性的危害。 研究表明,PM2.5的分布受空间与时间的影响,其危害程度与多达上千种的化学组分密切相关。鉴于问题的复杂性及因此而产生的大量基础性研究,开展PM2.5组分的快速检测技术十分必要。与此同时,从对健康危害的角度来看,当前人们最关注的是PM2.5中的多环芳烃类物质(PAHs)与持久性有机污染物(POPs),这些污染物可在体内蓄积,严重影响人的健康。 现行标准HJ646-2013《环境空气和废气 气相和颗粒物中多环芳烃的测定 气相色谱-质谱法》中,前处理采用的是索氏萃取法,样品萃取时间为16小时,耗时长、成本高,具有潜在安全风险。赛默飞始终致力于如何提高实验室效率并降低成本的技术开发。实验采用ASE 350,利用加速溶剂萃取技术将萃取效率提高整整48倍,仅需溶剂20mL;ASE 350还可同时选用四种溶剂进行选择性萃取,方便进一步方法开发与研究。该技术安全、全自动,广泛应用于环境、食品、药物等领域。另一方面,利用TSQ 8000 GC-MS/MS技术替代单杆技术,通过二级质谱扫描,充分减少了基质中的背景干扰,提高了灵敏度。Auto-SRM技术,可以在2小时内帮助用户自动完成所有待测化合物的母离子、子离子及碰撞能量的优化。------------------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 珀金埃尔默携全线细胞学方案点亮2020中国细胞生物学会年会@苏州
    2020年8月4-7日,中国细胞生物学学会2020年全国学术大会暨学会成立40周年庆展将于苏州举行。珀金埃尔默将携全线细胞学方案及新品深度参与本次生命科学领域的重要盛会。届时,珀金埃尔默细胞学明星产品 Opera Phenix 高内涵细胞成像分析系统、Muvicyte活细胞显微成像实时分析系统和VICTOR Nivo 多模式微孔板读板仪及试剂耗材,将会展现在T3展台现场。 另外,在“类器官在生理功能探索、疾病发生研究和精准医疗中的作用”分会场,我们将在8月4日12:00-13:00举办午餐会,期待与您分享珀金埃尔默在此热门应用领域的前沿解决方案。8月5日上午,珀金埃尔默还将在T3展台举办新品揭幕仪式,与您一共揭开Muvicyte活细胞显微成像实时分析系统的神秘面纱。杀伤功能是免疫系统清除异源物的一个重要过程。近年来,随着细胞治疗行业蓬勃发展,尤其是肿瘤免疫治疗取得了极大进展,评价免疫杀伤细胞的有效性尤为重要,其中细胞杀伤实验也成为免疫治疗研究中必不可少的实验方法。今天首先给您推荐的是为本次大会特别录制的细胞杀伤ADCC相关的前沿技术应用,由珀金埃尔默公司资深技术人员精心制作,全程干货,欢迎您观看。如需了解更多详情,欢迎于大会期间光临我们的午餐会和展台,与我们的技术专家现场交流。在机体抗击异源物,如病毒感染的途径中,由抗体依赖的细胞介导的细胞毒作用(Antibody-dependent cell-mediated cytotoxicity,ADCC)是一种细胞介导的免疫防御机制,在靶细胞膜表面抗原结合了特异性的抗体的情况下,激活免疫系统的效应细胞裂解靶细胞。从相互作用的角度来看, ADCC的发生是由分子水平的相互作用(结合)介导的细胞水平的相互作用(细胞杀伤),是重要的体外互作研究模型。此外,抗体Fab段介导的靶蛋白识别是抗原特异的,而Fc段和Fc受体之间的相互作用则是非抗原特异的。因此,ADCC融合了固有免疫和适应性免疫,是非常强大的免疫调节反应。除了控制感染外,作为抗体的核心作用机制(Mechanism of Action,MOA)之一,ADCC也是抗体药物有效性和安全性的重要检测指标。而且,基于不同作用机制的抗体药物对ADCC活力的需求也可能会差异很大。特别是肿瘤治疗靶向类抗体药物,如著名的HER2靶向抗体赫赛汀,是需要通过ADCC发挥抗癌作用的。相比下,目前火热的免疫检查点抑制剂,如PD-1/PDL1抗体则是要弱化其ADCC效应。因此,如何有效地控制ADCC活力成为了抗体药研究的重要方向之一。目前的一个研究趋势就是探究ADCC和一些其他的关键细胞行为,如细胞/抗原吞噬等活动的相互作用。例如,在近期发表在Cell上的一份工作中,研究证明利用小分子药物短程、可逆的阻断抗原内吞,能有效提升抗原在细胞表面的聚集和停留,提升靶向药物的ADCC活力鉴于ADCC的复杂性,作用于抗体、靶细胞(如肿瘤细胞)和效应细胞(如NK细胞)的调控均可能会有效的影响ADCC活力。针对ADCC的特殊性,珀金埃尔默的生命科学产品线提供了涵盖分子互作到细胞互作研究的全面解决方案,助力前沿的ADCC调控研究。在今天的报告中,我们会向大家进一步介绍ADCC的原理和意义,并从抗体互作、免疫细胞活力和肿瘤细胞行为三个方面向大家展示珀金埃尔默细胞学整体解决方案。点击链接完成线上签到,即可于大会期间至珀金埃尔默展台领取精美礼品一份!http://wx.custouch.com/OauthLink/preauth/wx898a40f01b0e70bc?r=http://wx.custouch.com/OauthLink/proxy/app/wx898a40f01b0e70bc?r=https://wechat.custouch.com/question/t/wx898a40f01b0e70bc/5f02be35fdf42c1600ca902d
  • 拉曼光谱助力 新型纳米孔器件有望用于表观遗传学快速测序
    p   比利时校际微电子中心(IMEC)9日发表公报说,该中心成功开发出一种能直接读取单分子DNA(脱氧核糖核酸)碱基的新型光学纳米孔器件,有望用于遗传学研究快捷测序。 /p p   据介绍,新型器件结合了表面增强拉曼光谱和纳米孔流体技术,能以超高分辨率,实现无标记检测DNA中的遗传编码以及表观遗传变异。研究近期发表在英国《自然· 通讯》杂志上。 /p p   具体来说,这项技术通过纳米流体技术驱动DNA分子穿过一种拉长的纳米孔结构--表面等离子体纳米缝。而拉曼光谱是一种可反映分子特征结构的分子振动光谱。当DNA分子穿过纳米缝时,就会同时激发表面增强拉曼光谱,提供碱基分子的“指纹图”,以达到化学键水平的精准识别。 /p p   据介绍,这种新型纳米孔器件不仅可以“读取”DNA编码,还可以“读取”碱基的各种化学修饰产物。这些修饰产物通常携带了与表观遗传变异相关的大量信息,同时它们也影响细胞中的基因表达,对进化研究和分析癌症等疾病的发展具有重要意义。 /p p   表观遗传学是遗传学研究中最为前沿的领域之一,研究基因的DNA序列不发生改变的情况下,基因表达发生了可遗传的改变等现象。目前使用的表观遗传测序方法大都繁琐费时且价格昂贵。新型器件“是向开发可用于表观遗传学研究的快捷测序方案迈出的重要一步”,IMEC资深研究员陈昌博士说。 /p p   比利时校际微电子中心成立于1984年,是一家在纳米电子、能源和数字技术研究和创新领域领先的独立研究中心,总部位于比利时鲁汶,并在荷兰、美国和中国等地拥有研发小组。 /p
  • 第四届国际水光谱组学会议召开 水光谱组学研究取得进展
    2021年3月20-22日,第四届水光谱组学会议在日本神户大学召开,本次会议主题依然延用“Exploring water molecular systems in nature(探索自然界的水分子体系)”,吸引了来自世界各地100余位代表参加,其中参会的中国学者有20余位。由于疫情的原因,本次会议采用线上和线下结合的形式召开,国际代表通过网络会议形式参加了会议。  本次会议的主要内容是水光谱组学及相关领域的研究与应用。为了更好的普及水光谱组学的基础知识,便于初学者的理解与应用,会前进行了学习培训。来自意大利罗马萨皮恩扎大学的Marini教授和日本神户大学的Muncan助理教授呈现了题为“A closer look at preprocessing with focus on aquaphotomics”和“Aquaphotomics tutorial-from experiment to interpretetation”的报告,分别介绍了光谱预处理方法以及水光谱组学的研究进展。水光谱组学概念的提出者,日本神户大学Tsenkova教授以公开讲座(open lecture)的形式进行了题为“From non-invasive disease diagnostics to aquaphotomics”的报告,其从不同角度介绍了水光谱组学的由来、发展、优势和应用。另外,会议还安排了科学前沿讲座,介绍了近红外光谱技术及水光谱研究的研究前沿,比如Ozaki教授介绍了不同分子光谱技术用于水结构的研究进展,对于水结构复杂性的认识具有重要帮助。  本次会议报告的参会论文共有63篇,其中大会报告43篇,墙报(poster)20篇。报告分为13个会议单元,主题分别是水光谱组学的应用(2个单元)、生物分子的水合作用与界面水的研究(4个单元)、生命中水的作用(2个单元)、基础研究与新视野(3个单元)、化学计量学(1个单元)以及量子脑动力学(1个单元)。水光谱组学的应用是本次会议的重要内容,会议安排了两场主题报告和七个口头报告,主题报告的题目分别是“From water structure and spectral patterns to diagnostics”和“Aquaphotomics for food quality control”。前者主要内容是基于水光谱组学利用水的光谱信息进行疾病诊断,后者主要包括近红外水光谱组学在食品监控方面的应用内容,包括农作物、奶制品以及水果等。  21日的大会由南开大学邵学广教授开始,进行了题为“Analyzing the water in chemical changes by temperature-dependent near-infrared spectroscopy”的报告。邵学广教授介绍了利用温控近红外光谱技术结合化学计量学方法,通过提取随温度变化的水光谱信息,可以了解水的结构和性质,以及将水作为探针可以探测溶液或生物体系中分子的定量信息和结构变化。温控近红外光谱技术与水光谱组学的原理不谋而合,都是通过获取水对扰动的变化信息来反映分析物的变化。邵学广教授利用随温度变化的水光谱信息,对化学结构及其变化过程中水的作用及作用机理进行了分析,包括蛋白质变性、温敏性聚合物的LCST行为以及与小分子相互作用过程等。同时,还利用分子动力学模拟,提出了水的九种不同氢键结构,为未来开展水结构研究奠定了基础。  本次会议的重点内容还包括生命过程中的水、生物分子的水合作用及界面水研究,还包括大量关于生物分子和脂质膜与水相互作用的研究内容。Yusui教授进行了题为“Water biology and medicine-roles of aquaporins in biological system”的报告,为了理解水通道蛋白(AQP)在生命过程中的作用,利用拉曼散射(CARS)成像技术直接定量通过细胞膜的水,结合水光谱组学的知识辅助理解细胞中水的动力学性质以及AQP的功能。在都柏林大学从事博士后研究的徐君丽介绍了不同细胞表面与水的相互作用,利用水的光谱建立偏最小二乘回归模型用于细胞响应值的预测,比如细胞活性、形态特征等。来自山东大学的臧恒昌教授介绍了利用近红外水光谱组学研究透明质酸与水的相互作用,研究表明透明质酸在溶液中起着结构制造者的作用,使水结构更加有序,并且在不同浓度下促进不同氢键的水结构的形成,对理解水在生物系统中功能的理解提供了参考。从会议报告内容来看,已经有很多研究人员将近红外光谱技术结合水光谱组学应用于实际细胞或者生物分子的研究,但是由于实际生物体系过于复杂,真正理解水在生物过程中的作用还需要漫长的研究。  化学计量学一直是水光谱组学研究的重要手段,来自法国的Roger博士以“New trends in the pre-processing of near-infrared spectra”为题讲述了预处理方法的原理和作用,指出预处理的选择应该从其原理和作用出发,而不是通过枚举法来选择。同时,强调了预处理方法作为建立稳健模型的重要策略,在近红外光谱分析中起到重要作用。目前,如何选择最佳的预处理方法组合仍然是一个值得深入研究的课题,原理的理解和经验的积累对预处理方法的选择有很大帮助。来自奥地利因斯布鲁克大学的Bec研究员将非线性高斯过程回归(GPR)和人工神经网络等化学计量学方法应用于天然药物的水分测定,这些方法也帮助微小型仪器达到与实验室台式仪器相似的预测性能。  此外,还有一些有趣的研究内容令大家印象深刻。比如来自奥地利因斯布鲁克大学的Tonauer教授进行了题目为“Extending the spectrum: NIR spectroscopy of crystalline H2O-ices”的报告,介绍了利用NIR光谱技术研究不同冰型的高压冰的结构,在不同温度和压力下观察到了不同类型冰结构之间的转变,通过实验证明OH基团的一级倍频波段是区分不同含氧亚晶格的冰以及区分晶体冰和不同非晶体冰的极好标志。这一开创性的工作填补了高压冰在近红外光谱领域的空白,对于利用近红外光谱研究天体冰幔提供了技术手段和研究基础。另外,来自日本大阪府大学Takeuchi副教授进行了题为“Investigation on the reaction mechanism of Mg(OH)2 dehydration and MgO hydration by NIR spectroscopy”的报告,介绍了自热小火锅中放置的发热包吸水发热的反应机理,通过研究Mg(OH)2脱水过程与MgO水合过程中水与MgO的相互作用,揭示了水的OH基团与MgO之间的氢键在反应中具有重要的作用。  虽然由于疫情的影响,国际代表只能通过网络会议的形式与大家见面,但是大家的热情丝毫不减,会议期间的讨论非常热烈。在会议中场休息期间,还为Tsenkova教授举行了退休仪式,来自世界各地的友人送上了视频祝福。Tsenkova教授最突出的贡献是推动了近红外水光谱组学的发展,通过广泛的国际合作加强了世界各地水光谱研究工作者的交流,拓宽了近红外光谱技术的应用。与之前的水光谱会议相比,本次会议的学术性和科研水平明显提升。通过本次会议可以看出,水光谱组学的研究已经取得一些阶段性的进展,但是对于水在生命体系中的作用与功能仍然停留在探索阶段。随着科研工作的不断深入,研究技术与手段将不断进步,越来越多的水光谱特征将得到挖掘,成为探索和理解水在化学和生物过程中作用与功能的重要信息来源。(孙岩,段潮舒,王冕,邵学广 南开大学化学学院)
  • 生物药行业快速发展,设备耗材国产替代正当时
    1. 生物制品行业蓬勃发展,上游制造产业链迎来黄金发展机遇1.1. 单抗药物快速增长,基因/细胞疗法蓄势待发根据沙利文的统计,2020 年,全球生物药的市场规模达到 2979 亿美元, 2019年的增速为 9.7%,2020年受到疫情的影响,增速有所下降,预计疫情之后 将恢复 9-10%左右的增长。中国 2020 年的规模达到 3457 亿元,2016-2019 年 维持在 19-20%的高速增长,国内生物药市场维持大幅高于全球市场的增速。2010 年以来,全球处于研发阶段的生物制品数量急剧增加。2010-2021 年, 处于 3 期的数量从 115 个提升至 398 个,CAGR 为 11.95%,处于 2 期/2-3 期的 数量从 98 个增加至 802 个,CAGR 为 21.06%,处于临床 1 期/1-2 期的数量从 59 个增加至 926 个,CAGR 为 28.44%。中国来看,2010-2021 年,处于 3 期的 数量从 6 个增加至 78 个,CAGR 为 26.26%,处于 2 期/2-3 期的数量从 8 个增加 至 220个,CAGR为 35.16%,处于 1期/1-2期阶段的产品数量从 5个增加至 237 个,CAGR 为 42.02%。无论从全球还是中国来看,处于临床更早期的项目数量 增速更快,项目储备充足,随着临床阶段的推进,将有更多的项目从临床阶段走 向商业化阶段。从细分领域来看,国内 3 期前的生物药中,抗体占比 58.6%,细胞疗法占比 25.4%,疫苗占比 13.1%,在 3 期及商业化的项目中,抗体类占比 71.3%、疫苗类占比 21.7%。3 期至上市状态的药品中,抗体药物占比超过 70%,疫苗占比超过 20%。从临床进程推演产业发展趋势,抗体是商业化生产中规模最大的种类, 其次是疫苗,细胞治疗项目大多处于较早期,随着时间的推进,预计后续细胞治 疗商业化的需求将增加。1.1.1. 抗体类药物千亿市场,国内企业积极布局2018 年以来,中国抗体类药物进入蓬勃发展阶段,市场规模快速扩大,根 据沙利文的预测,2018 年市场规模仅为 160 亿元,2021 年达到 735 亿元, CAGR 为 66.24%,2026 年之前仍将保持 20%以上的高速增长,预计到 2030 年 能够达到 3678 亿元。2018 年以后,获批药品数量在快速增加,2021 年一年获批的抗体药物数量 达到 18个。在研数量来看,2018年以后,在研管线数量快速增加,2021年,处 于临床 3 期的抗体类数量达到 54 个,2 期/2+3 期数量 168 个,临床 1 期/1-2 期 的为 169 个,随着在研项目的推进,更多抗体类项目将获批上市,预计未来 2-3 年国内上市的抗体类项目将迎来快速增长期。药物处于不同的开发阶段,对药品的需求量差异较大,药物发现阶段,需求 量在毫克级别,临床前研究阶段,需求量在克级别,临床研究阶段,需求量在千 克级别,上市后销售后,随着药品销售量的增加,需求量有望在吨级。从生产方 式看,药品在上市之前,药品在实验室合成,进入商业化阶段后,药品需求通过 工厂合成,在新建工厂的过程中,需要进行厂房设施建设的同时,对生产用的设 备和耗材的需求量也会大量增加。随着抗体类药物临床及上市进程的推进,更多生物药企业开始了大规模的产 能建设,以百济神州为例,已建成产能 2.4 万升,在建产能 4 万升,规划产能最 高可达 13.6 万升,在建和规划产能量远远大于现有产能。随着药品临床及上市 进程的推进,我们预计,中国抗体类药物大规模的产能建设刚刚开始,后续将有 更多的产能进入在建阶段,从而拉动产业链设备及耗材的需求增加。1.1.2. 细胞/基因治疗蓄势待发,国内企业占据重要地位国内目前共 2 款细胞治疗药物获批,分别是复星凯特的阿基仑赛注射液 (2021 年 6 月获批),药明巨诺的瑞基奥仑赛注射液(2021 年 9 月获批)。2 款 基因治疗药物获批, 腺病毒注射液(商品名:今又生)和重组人 5 型腺病毒注射液(商品名:安柯瑞)。从在研数量来看,2021 年,国内细胞治疗药物共 2 款处于临床 3 期,8 款处 于临床 2 期/2+3 期,30 款处于 1 期/1-2 期,基因治疗领域有 5 款药物处于临床 3 期,2 款处于 1 期/1-2 期。国内细胞和基因治疗药物实现了从无到有,2018 年以来,在研产品数量也快速增加,预计随着在研产品进度的推进,国内将迎来更多 的细胞及基因治疗产品的上市,商业化产能的建设也将随之增加。根据沙利文的数据,2020 年全球CAR-T 细胞疗法市场规模为 11亿美元,预 计中国2021年CAR-T细胞疗法市场规模为2亿元。预计未来全球及中国的CART 细胞疗法市场规模将快速增加,2030 年全球预计达到 218 亿美元,2021-2030 年 CAGR 为 31.14%,2030 年预计中国市场规模为 289 亿元,2021-2030 年 CAGR 为 73.77%,中国 CAR-T 细胞治疗市场规模增速远远高于全球。基因治疗来看,2020 年全球基因治疗市场规模为 20.8 亿美元,中国为 0.2 亿元,预计到 2025 年,全球基因治疗市场规模达到 305.4 亿美元,中国达到 178.9 亿元,2021-2025 年全球 CAGR 为 71.14%,中国 CAGR 为 289.33%。预 计未来几年,全球及中国的基因治疗产业均飞速发展,中国的景气程度高于全球。1.1.3. 在研疫苗品种数量丰富,商业化产业链需求稳步增加全球来看,已经批准上市的疫苗数量为 235 个,申请上市 13 个,处于临床 3 期 120 个,2 期 250 个。中国来看,已经批准上市的疫苗品种数量是 50 个,申 请上市 3 个,临床 3 期 27 个,2 期 30 个。全球及中国疫苗在研管线数量丰富, 获批上市数量稳步提升。与药品不同,疫苗研发的品种选择性难度较高,但单个 品种的销售金额及销售时间均长于一般的药品,故某个疫苗品种一旦获批,对整 个产业链的带动作用高于一般的药品,国内处于 3 期的疫苗不乏大品种,一旦获 批,对生产设备及耗材的带动作用也将非常明显。2018 年以后,国内陆续获批多个抗体类药物,百济神州、君实生物等公司 开始大规模建设抗体产能,在全球产业转移的背景下,以药明生物为代表的生物 药 CDMO 企业产能规划也迅速扩大,带动抗体类生物药生产制备所需的设备及 耗材产业链需求的快速增加,随着临床阶段的推进,更多药物完成临床并获批上 市,设备和耗材需求量将进一步扩容。在细胞和基因治疗领域,国内药品已经完 成了从无到有的阶段,在研管线丰富,未来几年内潜力巨大,将为生物药生产和 制备产业链带来增量市场。多个重磅疫苗品种已经处于 3 期阶段,未来几年将陆 续批复,非新冠领域的疫苗产业链需求也在增加。整体看,抗体类、细胞/基因 治疗、疫苗等生物药的持续扩容,将带动生产用设备及耗材产业链需求增加。1.2. 中国贡献全球生物药产能主要增量,成为产业转移主要承接地根据 BPI 的数据,2017 年,全球生物药的产能为 1671.94 万升,2020 年达 到 1738.09 万升,产能增加了 3.96%。分地区来看,北美、欧洲、中东生物药产 能下降,其中,北美是产能减少最多的地区,占 2017-2020 年全球生物药减少产 能的 87%。日本及亚洲其他国家、中国、印度、俄罗斯及东欧、南美/中美、非 洲产能增加,中国生物药产能增加了 97.5 万升,是全球产能增加最多的地区, 占 2017-2020 年全球生物药新增产能的 77%。从产能分布看,2017 年,北美、欧洲产能合计占比超过 69%,日本及亚洲 其他国家占比 12.53%,中国、印度分别占比 5.19%、5.63%。2020 年,北美、 欧洲产能合计占比为 63.07%,中国产能占比已经达到 10.60%。从产能建设来看, 2017-2020 年,中国是全球生物药产能建设量最大的国家,贡献了全球新增产能 的绝大部分。从产业趋势上看,生物药产能从欧美发达国家地区向中国、印度等 制造能力较强的国家和地区转移的趋势明显。同时,欧美、中东外的其他地区生 物药产能也在逐渐增加。产业转移的趋势下,国内 CDMO 企业产能也在快速增加,以药明生物为例, 现在产能 15 万升,在建产能达到 28 万升,国内其他 CDMO 企业也在陆续新建 或者扩建产能。CDMO企业承接的国外订单数量在增加,中国化的生产进一步增 加了产业链设备和耗材的需求。1.3. 生物制品生产与传统小分子差异巨大,对应设备及耗材不同1.3.1. 小分子生产工艺以化学合成为主,可拆解成多个中间体典型的小分子生产工艺繁琐,有多步中间体生成,多个中间体合成原料药, 再加以辅料最后合成制剂,中间步骤可拆解,中间体与原料药合成多以化学合成 为主。以近期热门的瑞德西韦为例: 根据吉利德公司公布的第二代瑞德西韦合成方法,共六步反应,得率分别为 40%,85%,86%,90%,70%,69%,其中合成所需的原料和关键中间体基本 是化工原料通过化学合成,具体种类如下:化合物 1,CAS:55094-52-5,原料中间体可购买。化合物2,使用原料(CAS:159326-68-8)合成 6。中间体 6,经过两步合成,得率分别为 80%和 39%,所需原料化合物 8 (CAS:946511-97-3),4-硝基苯酚(CAS:100-02-7),二氯化磷酸 苯酯(CAS:770-12-7)。得到化合物 GS-5734(即瑞德西韦原料药)后,需要进行制剂化:注射用瑞 德西韦冻干制剂是一种不含防腐剂的白色至灰白色或黄色冻干固体,除药物活性 成分外,冻干制剂还包含注射用水、磺丁基倍他环糊精(SBECD)和盐酸和氢氧 化钠等非活性成分。1.3.2. 生物药生产以发酵为主,整个过程连续生物药生产过程以发酵为主,整个过程连续,生产用的设施和设备与小分子 药物完全不同。从生物药的生产流程来看,主要包括上游发酵、下游纯化和制剂灌装三个主 要流程。上游一般从细胞株的培养到大规模生物反应器生产,主要包括摇瓶培养 -波浪式生物反应器-生逐级放大培养-生物反应器发酵几个环节,得到细胞及其产 物。下游纯化是将生物反应器出来的细胞及产物进行分离了纯化,得到制剂原液 的过程,主要环节包括收获-层析捕获 -低 PH 病毒灭活及深层过滤-两步层析-除 病毒过滤-浓缩超滤-无菌过滤等环节,得到药品原液。制剂灌装主要是将纯化获 得的原液进行制剂化处理,经过配置-除菌过滤及灌装-冻干-轧盖-灯检-贴签与包 装后,最终获得产品。整个生产过程连续,中间环节较少,生产过程中所使用的 设备、耗材与小分子药物有很大的不同。2. 生物制品生产工艺拆解2.1. 上游发酵:从细胞株到大规模生物反应器生产的一系列细胞放大培养过程以抗体生产为例,对生物药生产流程进行拆解,上游发酵需要经过细胞复苏、 常规传代、摇瓶放大培养等逐步放大培养阶段,最后接种到生物反应器中进行大规模细胞培养等一系列过程。发酵过程需要控制温度、溶氧等参数指标,由于细胞发酵过程中会产生较多 的气泡,需要加入消泡剂,整个过程需要 3-4 周的时间,进入生物反应器后,细 胞进行大规模的生产和繁殖,经过大约 13-14 天的培养后,细胞可以进行收获。 该过程需要控制的参数有 CO2、温度、空气、氧气、搅拌、PH、消泡剂,同时 还需要进行培养基补料。上游发酵主要用到的耗材包括细胞冻存管、培养基、不同规格的摇瓶,一次性细胞培养袋、培养基进入反应器前需要进行除菌过滤,需要用到除菌滤器;主 要用到的设备及系统包括细胞冻存阶段用到的细胞液氮罐、二氧化碳培养箱、摇 床、波浪式生物反应器、生物反应系统、培养基配置系统、生物反应器等。上游发酵过程中,价值量较大的耗材是培养基及一次性反应袋。2.1.1. 上游发酵主要耗材之培养基:为细胞生长提供营养物质培养基是为细胞生长提供所需营养成分的物质,其进化历程是配方不断改进和优化的过程。1950-1960s 年代,培养基通常添加10-20%血清,血清含有上千种不同成分, 为细胞体外培养提供广泛而丰富的营养和各种因子,但动物血清的使用存在引进 外源病毒的风险,因此减少血清浓度甚至完全去除血清在培养基前期培养基改进 的主要方向。19 世纪 80 年代,科学家通过在培养基里面添加蛋白(如胰岛素、转铁蛋白 和白蛋白等),可以很大程度上替代血清,无血清培养基逐渐发展起来。 1997 年,第一个完全化学成分的培养基推出,培养基开发从此进入了一个 全新的时代,2000 年后,无动物源 CDM 持续优化,支持高密度培养和高产物表 达。生物制品的制备和生产均需要依赖细胞培养基,培养基是生物制品生产的关 键耗材。细胞培养基通常包含培养细胞的能量来源和调节细胞周期的化合物。培 养基的基本组分包括缓冲系统、无机盐、氨基酸、糖类、脂肪酸/脂质、维生素、 微量元素。补料培养基还包括补充氨基酸、维生素、无机盐、葡萄糖和血清等。培养不同类型的细胞,对培养基的成分需求均有较大的不同,CHO 细胞、 HEK293、杂交瘤细胞在无动物来源成分、化学合成、无蛋白成分、重组蛋白、 生长因子等方面的需求都不一样。培养基技术难度在于培养基的配方保密且培养 基需要根据细胞种类进行优化以获得较高的产物表达量。培养基主要的国外生产企业主要有 Cytiva、赛默飞、赛多利斯、默克等企业, 国内的生产企业主要有健顺生物、奥浦迈、澳斯康、多宁生物等,同时,由于培 养基在使用过程中需要调节较多,不同的细胞株对培养基适用情况也不一样,国 内也有较多的企业存在自配培养基的情况。2.1.2. 上游发酵主要耗材之生物反应器:细胞大规模繁殖的场所生物反应器是指利用生物反应机能的系统或场所,主要作用是为生物体代谢 提供一个优化的物理、化学环境,使生物体能更快更好的生长,以获得更多所需 要的生物量或代谢产物。传统的搅拌式生物反应器以不锈钢罐子为主,经过多年, 发展,一次性技术的应用领域不断扩充。一次性生物反应器的最初起源是因 Hyclone(目前为 Cytiva 旗下品牌)需要 大量供应血清,因此购买了一条大规模的食品袋生产线,用塑料袋包装血清并进 行运输,后逐渐发展为在储液、生物反应器领域应用。第一台一次性生物反应器 袋子被称为“波浪袋”,至今还在被广泛使用,而这个袋子的限制在于体积,为 了做得更大,人们回归到传统的搅拌槽设计,里面放置袋子作为衬垫,于是第一 代大型搅拌槽一次性生物反应器诞生了。与不锈钢设备相比,一次性生物技术可以提供更高的速度、效率和经济性。 一次性设备每批的生产成本可能更高,但批量吞吐量也更大。根据 Cytiva 对 50L 设备的经济模拟数据得出,由于不锈钢设备每次发酵完成后需要 CIP、SIP 的清 洁和验证环节,该过程所需时间大约 7 天左右,一次性不存在产品转结的清洗和 验证工作,故生产批次增加。基于 300 天的发酵,不锈钢每三天可以收获一批, 每年最多生产 100批,一次性发酵批次完成时间减少 33%,可以每隔一天收获一 次,每年最多收获 150 批。无论在单产品设备还是多产品设备生产中,一次性的 生产批次均高于不锈钢。在成本方面,一次性生物反应器消耗的成本更高,单一产品设施中每批一次 性使用的成本比不锈钢高出 29%,在多产品设施中高出 25%。但是,不锈钢的 资本投入,认证周期和年度维护成本更高,无论设备利用率如何,维护成本基本 不变,在设备利用率不高的情况下,不锈钢的综合性价比不高。不锈钢设备更多用于 2000L 以上大规模生产,广谱抗体药物(如 PD-1 等) 生产量大,生产集中,商业化阶段使用不锈钢设备生产具有较高的性价比。在临 床阶段及小规模生物药的生产过程中,由于无菌 GMP 环境的构建成本高,不锈 钢设备需要进行 SIP、CIP 清洗,造成清洗成本的同时停留时间较长,提高生产 效率带来的成本降低效应显著。在药品治疗的精准化趋势下,单个药品生产规模逐步降低。此外,基因细胞治疗与mRNA等新技术的发展,对于非标准环境下的洁净区提出要求,一次性反 应器在小批量生产中更具优势。一次性生物反应器在灵活性、便利性、快捷性等方面具有优势,在小规模生产中将被广泛使用,大规模生产中不锈钢的成本优势比较明显,更倾向于使用不锈钢设备,所以,在较长的时间周期内,一次性生物 反应器仍将与不锈钢罐共存。2.2. 下游纯化:从发酵液中获得制剂原液的一系列纯化行为上游发酵经过大规模细胞发酵后,获得细胞及其代谢产物,其中含有制剂原 液所需要的目标蛋白。细胞及代谢产物从生物反应器出来后,进入下游分离纯化环节,主要涉及收获、层析捕获、低 PH 病毒灭活及深层过滤、层析、除病毒过 滤、浓缩超滤、无菌过滤等环节。主要目的是从复杂的本体基质中分离、纯化和浓缩先前合成过的产物,从中分离出目标产物,得到制剂原液。下游分离纯化的第一步是离心,是实现液体与固体颗粒或液体与液体混合物 分离的主要方式。离心机通常分为过滤式离心机和沉降式离心机,主要使用进口 品牌阿法拉伐。整个过程中需要使用多种过滤器、膜包、亲和填料、离子交换填 料、一次性储液袋等多种耗材,需要使用超滤系统、除病毒过滤系统等多种过滤 系统及层析系统。下游纯化的两个核心环节分别为过滤及层析。2.2.1. 下游纯化核心环节之过滤:实现多种物质的分离和去除在生物药生产过程中,培养基过滤、深层过滤、澄清、细菌过滤、病毒过滤 等多个环节会使用到不同的孔径大小的过滤膜或者过滤器来实现不同尺寸颗粒的过滤,来实现分离和纯化。由于整个生产过程均需要在无菌的环境中进行,因此 培养基、缓冲液、进入生物反应器的空气等任何进入生产流程的物质均需要进行减菌过滤,发酵液从生物反应器出来后需要进行澄清过滤,层析之后需要进行除 病毒过滤、除菌过滤,浓缩置换过程中也需要通过 TFF 过滤完成。多项过滤中涉及不同的过滤原理。发酵液从生物反应器出来,经过离心后, 需要进行深层过滤,实现初步的固液分离。深层过滤的基本原理是通过筛分、拦 截、吸附的方式去除细胞、碎片以及其他颗粒。深层过滤是细胞固液分离后进行 的第一步过滤,需要将离心后的含有众多杂质的液体进行分离,在这个过程中可以去除颗粒、亚微颗粒、胶质物以及可溶物质,理论上,粒径大于过滤器孔径的 污染物可以很容易地通过机械过滤去除。在除菌、除病毒过滤中使用的是超滤。超滤是一种加压膜分离技术,即在一 定压力下,使小分子溶质和溶剂穿过一定孔径的膜,是对溶质中极小颗粒及可溶性分子进行分离的方法。这种分离主要基于分子的大小,滤膜介质的通透性也会受到样品的化学、分子及电荷特性的影响。超滤通常只能分离大小相差 3-5 倍以上的分子,而不适合分离大小相似的分子。通常,糖类、氨基酸、盐、抗生素、寡核苷酸等分子量较小的介质用反渗透 /纳滤的方式进行分离,蛋白质、部分疫苗、哺乳类病毒等用超滤的方式进行分离,细菌、大肠杆菌等用微滤的方式进行分离。超滤过程用到的过滤耗材主要有中空纤维膜和超滤膜包。 中空纤维采用切向流过滤的方式,把一定孔径的膜(如 0.45μm)制成纤维状的膜管结构,细胞培养液在膜管内部流过形成切向流,目标抗体透过膜孔,而细胞和细胞碎片被截留,收集透过端即得到澄清的培养液。超滤膜包是一种使用亲水性聚醚砜超滤膜的半透膜,它既保持了传统的纤维素材料蛋白非特异性吸附的优点,又克服了纤维素材料化学兼容性差的缺点,可 在 PH2-14 的范围内使用,非常适合用于单克隆抗体和治疗用蛋白药物的分离。超滤膜包具有较高的技术壁垒,默克旗下的密理博、Pall、赛多利斯是全球知名的厂商,产品质量和性能受到广泛认可,也是现有生产中使用最多的品牌。 国产企业中,科百特在滤膜、过滤器等方面具有技术优势,有微电子事业部、生 命科学事业部、工业过滤事业部、医疗事业部、实验室应用五大部门,产品在各 个领域有较为广泛的应用。2.2.2. 下游纯化核心环节之层析:实现蛋白捕获的重要环节深层过滤后的液体经过澄清后进入亲和层析环节。亲和层析是整个下游纯化 工艺的核心环节,目标蛋白在该环节中被捕获。 根据物质性质的不同,层析填料的分离原理也不相同。亲和层析是通过配基 特异性识别来实现分离,主要在抗体领域应用。离子交换层析是利用分子所带电 荷的不同,通过正负电荷相互吸引来实现分离,在抗体、蛋白等领域有应用。体 积排阻层析主要利用分子大小的不同,在填料中滞留时间的长短来实现分离,在 胰岛素及小分子分离中应用较多。疏水层析利用分子表面极性的不同,来实现分 离,在抗体和蛋白中应用较多。常用的大分子分离纯化技术有凝胶过滤层析、疏水层析、离子交换层析、亲和层析等,小分子常用分离方法为反相层析。抗体生产过程中使用量最大的是亲和层析,也是填料中价值量最大的种类。亲和层析:一种通过分子间的特异性识别并相互作用来分离纯化物质的层析 方式,主要利用的是抗体的 Fc 片段与 Protein A 配基具有天然的特异性结合的特 点,来实现蛋白捕获。Protein A 是金黄色葡萄球菌的一个株系细胞壁蛋白,它通过 Fc 区与哺乳动物的 IgG 结合,含有四个 Ig Fc 结合位点,重组的 protein A 含 有 5 个 Ig Fc 区域结合位点,故带有 protein A 配基的亲和层析是用于特异性捕获 抗体蛋白的理想方法。体积排阻过滤层析:利用复杂的孔径结构,对应不同大小的分子或离子在填 料内的停留时间长短来达到分离的目的。 疏水层析:高度有序的水壳围绕着配体和蛋白质的疏水表面,疏水物质被迫 合并,达到分离的效果。在实际生产过程中,通常需要经过多步层析,一般有一步纯化、两步纯化、 三步纯化,达到捕获、中度纯化、精细纯化等不同的目的。 一步纯化:亲和层析;两步纯化:亲和+凝胶过滤;亲和+离子交换;三步纯 化:离子交换层析+疏水层析+凝胶过滤层析;疏水层析+离子交换层析+凝胶过 滤层析。填料选择规则:粒径越小,分辨率越高,反压越高,流速越低。第一步追求 流速的载量的时候通常选择高流速的填料作为捕获的第一步。通常,在捕获阶段, 填料粒径大小在 75-90 微米,较多的使用亲和层析和离子交换层析;中度纯化粒 径大小 34-75 微米,使用离子交换层析、疏水层析、亲和层析和反相层析填料; 精度纯化粒径大小 3-34 微米,常用的纯化方式有体积排阻、离子交换等。
  • 广东医科大学合成新型探针材料可快速检测贫血症
    日前从广东医科大学药学院获悉,该学院通过国际合作,成功合成了2个罕见的纳米孔稀土金属—有机骨架材料,该材料可作为荧光探针高效检测铁离子等金属离子浓度,可为皮肤病和贫血症等疾病中Fe3+的定量分析以及环境中Fe3+的监测提供简单、高效的检测方法。  “传统荧光探针存在荧光信号不强、选择性差、灵敏度低、回收困难等问题,而金属—有机骨架荧光探针在用于金属离子检测方面,具有方法简单、灵敏度高、选择性好及响应速度快等优点。”刘建强说。  刘建强说,该研究以分子工程学为依据,通过简单的溶剂热方法合成了2个罕见的纳米孔稀土金属—有机骨架材料,该新型材料对不同浓度的离子进行探测后,对于铁离子和重铬酸根离子表现出了特殊的敏感性,荧光强度出现了快速的降低,并对二氧化碳有选择性吸附作用。  在探索合成纳米孔稀土金属—有机骨架材料规律的基础上,该团队将该材料应用于荧光探针领域,对金属离子可进行高效检测。“检测极限值越低代表灵敏度越高,检测效果也越好。以铁离子的检测而言,纳米孔稀土金属—有机骨架材料做成的荧光探针检测限度,远优于传统材料。”刘建强说。  “纳米孔稀土金属—有机骨架材料作为探针材料,表现出对铁离子良好的选择性和灵敏性,在荧光探针和生物标记等领域具有广泛的应用前景和发展空间。”广东医科大学药学院院长李宝红说。  此研究由该学院博士刘建强和西北大学博士侯磊、澳大利亚莫纳什大学博士斯图尔特巴顿等完成。相关科研成果近期发表在国际期刊《ChemPlusChem》上。
  • 2011年第4期现代科学仪器杂志刊登高速PCR技术文章
    高速PCR技术 赵晓光 薛燕 (国家生物医学分析中心 北京 100850) 摘要 PCR技术是现代分子生物学最基础的技术之一,在实现扩增效果的同时如何缩短PCR的实验时间成为实验工作者亟待解决的问题。本文从高速PCR的概念入手,阐述了实现高速PCR 仪器技术的原理、优势,及可能的应用。指出了高速PCR技术的核心在于,不仅要提高PCR仪器的升降温速率,更重要的是提高PCR样品温度与金属样品槽的一致性,从而达到缩短变性,退火,延伸等停留时间的目的,进而大大的缩短PCR时间。同时也指出,高速PCR对提高反应特异性带来的好处等。 关键词 PCR;高速PCR;自适配技术;产物特异性 中图分类号TH77 Rapid PCR Technology Zhao Xiaoguang,Xue Yan (National Center of Biomedical Analysis,Beijing,100850) AbstractPCR technology has been one of the basic and key technologies of Modern Molecular Biology. How to shorten PCR time is a question badly needed to be solved on the premise of PCR amplification effect. In the paper we describe the concept, principle, advantage and application of rapidPCR technology which can highly increase the PCR speed. As addressed in the paper, the Key of rapid PCR is not only to increase the heating and cooling rate of PCR machine, more important, it relays on reducing the temperature difference between the PCR module and sample solution, so that the holding time of denaturation, annealing, elongation could be shorten, and the whole PCR time could be shorten dramatically. While, rapid PCR could also lead to another benefit to improving the specificity of PCR. Key words PCR;rapid PCR;Self-Adapting-Container technology;product specificity 1.PCR仪的温度控制 PCR(Polymerase chain reaction:聚合酶链反应)即是在体外模拟体内DNA复制的过程,用一对寡聚DNA作为引物,通过加温变性-退火-DNA合成这一周期的多次循环,使目的DNA片段得到扩增[1]。PCR反应通常在热循环仪(DNA扩增仪、PCR仪)中的小型反应管,以10-200 微升的反应量进行。热循环仪对反应管进行加热和冷却,达到每个反应步骤所需的温度。一个常规PCR扩增温度循环:94℃变性保持1分钟;55℃退火保持2分钟;72℃延伸保持2分钟,一个循环持续5分钟。热循环仪的变温方式和性能是PCR技术的核心与关键,直接决定PCR的效率和DNA产物的质量与数量。自1985年Mullis等人发明PCR技术以来,出现多种变温方式的PCR仪[2,3],哪一种变温方式也难十全十美,目前主要有两种变温方式的PCR仪,一种是AB、伯乐、耶拿、Eppendorf、Biometra等公司的PCR仪所采用的半导体制冷器(peltier:帕尔帖)的PCR仪;另一种是以罗氏和corbett等公司采用专利的离心空气浴PCR仪(由于数量较少,本文暂不讨论)。温度控制的主要参数包括;温度的准确性、均匀性和升降温速度。 采用半导体制冷器[4]的PCR仪利用半导体制冷器既可以加热又可以制冷的特点,经过导热介质金属样品槽,控制PCR样品管的温度。主要特点:金属样品槽(银或铝)热传递速率快、易于自动化(没有机械部件)、体积小、控温简单、稳定可靠、环境影响小。主要缺点是金属样品槽的均匀性不好,大部分产品的温度均匀性只能控制在± 0.3℃左右。近几年这类产品的一个主要突破就是升降温速度的提高,这也是许多厂家喜欢大力宣传的指标,主要原因是关键部件半导体制冷器升降温速度的技术突破,表1是目前几种主要PCR仪的温度指标。其中尤以耶拿SpeedCycler2 PCR仪最为突出,升温速率高达15℃/sec,降温速率10℃/sec,在8-15分钟内即可完成标准的30个PCR循环,创建了高速PCR的业界新标准 。当然高速PCR不仅仅是节约时间,同时也具有应用意义! 表1. 几款常规PCR仪的主要温度参数 品牌 Analytik Jena ABI Biorad Eppendorf Biometra 型号 SpeedCycler² Veriti 96 Well Fast C1000 Mastercycler pro s Tprofessional 升温速率 最大15℃/s 5 ° C/sec 5℃/s 6 ° C/sec 最大6℃/s 降温速率 最大10℃/s 4.25 ° C/sec 5℃/s 4.5 ° C/sec 最大4.5℃/s 样品槽材质 银质镀金 合金 铝质 蜂巢式 银质 纯银镀金 加热元件 高速Peltier Peltier Peltier Peltier,三组回路技术 Peltier 温度控制范围 4 ° C- 105 ° C 4-99.9℃ 0-100℃ 4-99℃ 3-99℃ 控温准确性 &le ± 0.2℃ ± 0.25℃ ± 0.2℃ ± 0.2℃ ± 0.1℃ 控温均匀性 &le ± 0.3℃at 72℃ 0.5℃ ± 0.4℃ ± 0.3℃at 20-72℃ ± 0.15℃at 55℃ ± 0.25℃at 72℃ ± 0.4℃at 95℃ 2.高速PCR的标准与意义 高速PCR[5]这一概念最早是由在PCR和定量PCR技术领域享有盛誉的快速PCR先驱者、美国犹他大学的Carl Wittwer教授在二十世纪九十年代提出的,他认为在30分钟内完成30个循环的PCR扩增实验,才可称之为高速PCR。现在该定义已经被业界广泛认可接受,成为衡量是否为高速PCR的标准。 众所周知,目前常规PCR仪运行一个完整的PCR实验大约需要1~3小时,一天下来只能做3~4次PCR实验,这对于样品量大或使用者多的实验室来说,安排实验工作就非常不方便,严重影响工作效率。而高速PCR可在8-30分钟内即可完成一个常规PCR实验,大大缩短了PCR实验的时间,别小看这节约下来的几十分钟,一天下来就可以多运行好几轮了。而且缩短PCR反应时间,对医院、生产线产品质量控制、现场检测和应急处理等对时间敏感的场合,更有实用意义。 除了反应速度快外,高速PCR的另一个突出优点是可以提高PCR产物的特异性。影响PCR产物特异性的因素有很多,其中引物和模板的正确配对是最为关键的,而这又与引物的退火温度和时间密切相关。在退火温度一定的条件下,退火时间越短,越有利于提高准确配对的引物-模板的比例,进而提高扩增产物的特异性。由于高速PCR技术能使样品温度在非常短的时间内达到设定温度,所以可以大大缩短退火时间,进而扩增出高特异性的PCR产物。 3.高速PCR仪的原理与关键技术 为什么普通PCR仪的PCR反应需要1~3个小时呢?比如扩增1kb片段的目的基因,常规的PCR程序为:95℃ 预变性2min,95℃ 变性30s,58℃ 退火30s,72℃延伸1min,30个循环后再充分延伸2min。即使不考虑升降温变化所需的时间,单纯计算PCR三个步骤所需的时间,一次循环需2min,30个循环也需要60min。有个问题可能有些人没有想过,为什么变性-退火-延伸的步骤必须停留那么长的时间?缩短一点行不行?主要原因是热量从仪器传递到样品要通过半导体制冷器&rarr 传热介质金属样品槽&rarr 样品管&rarr 样品几个环节,而每个环节的热传递效率都会影响样品的实际温度变化,一般情况下样品的温度变化与加热模块相比会有时间上的滞后。当金属样品槽达到了设定温度时,样品实际温度还远远没有达到设定温度。图1为普通PCR仪金属样品槽温度和样品实际温度之间的差别,从中可以清晰地看出这一现象,当样品槽温度达到设定的50℃时,样品的实际温度还在65℃左右,而15s后,两者的温度还有1.5℃的差别。所以进行常规的PCR时,各步骤的停留时间必须足够的长,以使样品的温度达到设定的温度。 图1 普通PCR仪样品槽温度和样品实际温度之间的差别 所以要实现高速PCR反应,就必须解决两个关键问题,提高PCR仪的变温速率和热传导效率。这要取决于基础器件、材料、技术和方法的突破与创新。仪器方面,最主要的是高速大功率半导体制冷器的技术突破,因为他是PCR仪温度控制的源动力和高速PCR的根本。金属样品槽采用导热性好的银材质,由于银的热传导速率两倍于铝,银槽PCR仪的升降温速度及温度均匀性明显优胜于铝槽,银槽再镀金以避免银被氧化,可以最大幅度地提高银槽的导热效率。选择薄壁PCR管和减少反应体系,也可显著提高PCR管内样品的温度响应时间。在追求PCR速度越来越快的同时,反应体系越来越少也是一大发展趋势,这不仅可以节省样品和试剂用量,还可以加快样品的温度变化,和水壶里的水越少越容易烧开是一个道理。以前PCR反应体系通常为50µ L,后来改进为25或20µ L,现在已经有一些产品的反应体系能降低至5-10µ L,这也是实现高速PCR的一个前提条件。 金属样品槽导热虽然好,但是与反应管,很难做到无缝接触,影响样品槽和样品间的热传递效率。各厂商生产的PCR仪金属样品槽和PCR管也多少有些不同。这也是为什么有些厂家会推荐使用者使用某种特定品牌的样品管的原因。针对这个问题,耶拿公司推出专利的自适配容器技术(SAC:Self-Adapting-Container)。基本思路是让样品管形状适应样品槽的形状,随样品槽的形状而变化。技术关键是采用聚丙烯材料制成管壁仅50µ m极薄且富有弹性的PCR管,在PCR加热过程中,管内空气受热膨胀而对管壁施加压力,管壁就会像皮肤一样紧密贴合在样品槽上,实现无缝接触,如图2所示,使热量能快速穿过极薄的管壁传递到样品上,使样品温度和样品槽温度几乎同步变化,如图3所示,从而可大大缩短PCR循环各步骤的停留时间,把先前的几十秒缩短到几秒,进而实现高速PCR。可能处于专利的考虑,这种PCR管只能在耶拿自己独有的一种低缘紧凑型的银质镀金样品槽上使用,由于这种样品槽的深度仅有5mm,减少了银质镀金样品槽的质量,因而进一步提高了银质镀金样品槽与半导体制冷器之间的温度响应速度。比如说上述的常规PCR程序,如果改用SAC高速PCR技术,可实现变性2s,退火2s,延伸10s,升降温变化速率大于10℃/s,30个循环可以在25min甚至更短的时间内轻松完成。 PCR反应前 PCR反应期间 图2 PCR开始后,自适配样品管壁会紧密贴合在样品槽壁上,实现能量的快速传递 图3 高速PCR过程中,样品温度与加热模块温度几乎保持同步 在此,大家可能会产生一个疑问,高速PCR是否要使用特殊的高速PCR聚合酶?将延伸时间或退火停留时间缩短,是否可保证聚合?众所周知,延伸时间是受扩增产物的长度决定的,大家形成的常规概念是按1kb/min来设定。但实际上,普通Taq酶的扩增效率大约为35-100bp/s,扩增1kb仅需要10s-30s。 因此,如果产物长度在300bp,而且采用热平衡时间很短的高速PCR仪,10s的延伸时间就已足够。问题是常规PCR中,要保证样品温度要在延伸温度下停留10秒,须将模块温度停留30秒以上才能实现,而高速PCR由于保证了样品温度和金属样品槽温度的一致性,因此,将模块温度停留10秒即可。另外,近年来一些公司推出了一些快速的Taq 酶,例如,Bio-rad公司的Ssofast酶, Takara的TaKaRa Z-Taq酶等,这些酶的扩增速度比普通Taq酶快5-10倍,使用这些酶,使用高速PCR仪时,延伸时间可以进一步缩短。 4.结束语 PCR技术在生命科学研究领域是一个非常基础又非常重要的技术,随着各种应用需求越来越多,人们对能拥有一台速度快、样品量小、产物特异性好、试剂无特殊要求、操作简便的PCR仪的要求也越来越强烈,高速PCR技术将在不断地改进创新中成为PCR发展的一个必然趋势。参考文献 [1]黄培堂,俞炜源, PCR 技术原理和应用. 北京: 中国科学技术出版社, 1990:1- 9 [2]张文超.聚合酶链反应(PCR)技术与基因扩增分析仪器(PCR 仪).生命科学仪器,2005 第3 卷第3 期 [3]章春笋,徐进良.时域式PCR生物芯片中温度动力学研究进展.现代科学仪器,2005(03):13-17 [4]王南林,吴太虎.半导体制冷与医疗仪器. 医疗卫生装备,2002,6:28-30 [5]Wittwer,C.T.et al., in Mullis, K.et al.,(Eds.). The polymerase chain reaction. Birkhauser, Boston(1994):174-181 [6]高惠兰,方福德.聚合酶链反应技术.现代科学仪器,1993(01)07-10 收稿日期:2011-08-22 作者简介:赵晓光,男,主要研究方向:分析仪器
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制