当前位置: 仪器信息网 > 行业主题 > >

蛋白质离定仪

仪器信息网蛋白质离定仪专题为您提供2024年最新蛋白质离定仪价格报价、厂家品牌的相关信息, 包括蛋白质离定仪参数、型号等,不管是国产,还是进口品牌的蛋白质离定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合蛋白质离定仪相关的耗材配件、试剂标物,还有蛋白质离定仪相关的最新资讯、资料,以及蛋白质离定仪相关的解决方案。

蛋白质离定仪相关的论坛

  • 蛋白质与多肽蛋白质粉

    蛋白质与多肽蛋白质粉 人类的营养物质有许多种类,最为重要的为蛋白质,碳水化合物和脂肪,其它则是微量营养物质,如维生素、电解质和微量元素等。虽然每一种营养物质对人体来说都是不可或缺的,但绝大多数的营养学家都会有充分的理由认为,真正最重要的营养物质是蛋白质。一、蛋白质是构成人体的基本物质。 蛋白质是由氨基酸通过肽链相连而构成的,它是人体包括骨骼、肌肉、皮肤和脑的重要物质基础,同时氨基酸也是生成核酸的基本物质。我们知道,核酸既形成遗传密码,也是体内储存能量的基本物质。因而从根本上说,人体是由蛋白质组成的。构成人体蛋白质的生理功能概括有如下三个方面:1)人体组织的主要构成成份:如肌肉、骨骼、血液、皮肤、神经、肝、心等等。2)具有特殊生理功能:可以这样说,人类的一切生理活动都与蛋白质有关。如酶蛋白能催化机体的一切化学反应,包括蛋白质、脂肪、碳水化合物的消化等;载脂蛋白运送脂肪;血红蛋白运送氧;激素蛋白调节代谢与生理活动包括情感;血浆白蛋白调节渗透压、运输金属离子、胆红素和抗生素等。3)供给机体能量:成年人每日约需要更新400g蛋白质,每克蛋白质彻底分解能释放出约4 Kcal的热量。4)为机体提供氮原料:人体内所必需的嘧啶、嘌呤、肌酸、胆碱、肾上腺素、肉碱、牛磺酸等,都是以多肽、氨基酸为原料的。表1. 世界粮食组织(FAD)和世界卫生组织(WHO)根据中国人的体质和膳食结构推荐的中国人蛋白质的摄入量(RNLs)。年 龄蛋白质RNL(g/d) 初生—6个月 1.5-3 1岁 35 3岁 45 5岁 55 7岁 60 9岁 65 10-16岁 75-85 成年女性 65 成年男性 75 妊娠 +15 乳母 +20 根据统计资料:由于贫困、工作紧张、精神压力、减肥节食、以及肠胃疾病、癌症、贫血、肾病、各种结核病、肝硬化、腹水、烧伤、失血等,以及老龄人均不同程度地存在着蛋白质的摄入不足。 上世纪80年代以来,我国营养学家对7个省18个贫困地区,1万名学龄前儿童进行了为期4年的连续调查,发现营养不良现象非常严重,其中蛋白质的摄入量不足WHO规定的60%。近年社会医学工作调查,在发达地区由于生活节奏加快,精神压力异常增加,以及办公室白领阶层的减肥节食,也导致蛋白质摄入不足,代谢异常的人群增加。二、蛋白质缺乏的体征和临床症状 单纯的蛋白质营养不良又叫加西长病,这或许是来源于非洲的单词,单纯的能量不足时叫消瘦;临床上通常把这两种现象叫单纯性蛋白质能量营养不良症或PEM。单纯的PEM症在临床上较少见到,但在慢性消耗性疾病患者中则常见,尤其是在癌症患者和艾滋病的患者中几乎占到90%以上。 现代都市和贫困地区存在着相当数量的蛋白质营养不良族群,他们的临床表现主要是能量损失或不足,如体力不支、睡眠不安、怕冷、怕热、性冷淡、无法进行正常的体力劳动和运动,其次为肌肉组织萎缩、皮肤松驰;腿部、脸部易水肿、脂肪肝、无名皮疹、伤口愈合不良、记忆力下降、视力减弱等。再者免疫力低下易感冒、感染。在做血检时通常会发现这些族群的血浆蛋白处于正常值的下限,其中白蛋白、转铁蛋白、甲状腺素结合前体蛋白和视轴蛋白(retinol-binding protein)均处于低水平时,患者易于感染各种疾病并且出现早衰症状,如果是儿童则感染后死亡率增加30%-40%,对于这类人群WHO的专家最好的建议就是迅速补充优质(或全价)的蛋白质。三、优质蛋白质和劣质蛋白质的区别。 要弄清楚何为优质蛋白质?何为劣质蛋白质?我们要引入什么是必需氨基酸的概念。营养生理学家、生化学家发现构成人体蛋白质的氨基酸共有21种,而这些氨基酸中其中有4种是可以由体内含碳和含氮底物自己合成的,被称为非必需氨基酸,还有10个必需的氨基酸,是人类机体无法制造需要从饮食中摄取的,另有7个是介于这两者之间的被称为条件必需氨基酸。表2. 必需、条件必需和非必需氨基酸 必需氨基酸条件必需氨基酸 非必需氨基酸 亮氨酸牛黄酸 丙氨酸 异亮氨酸酪氨酸 谷氨酸 缬氨酸甘氨酸 天冬氨酸 赖氨酸丝氨酸 天冬酰胺 苯丙氨酸(酪氨酸)脯氨酸 蛋氨酸(半胱氨酸)谷氨酰酸 苏氨酸 胱氨酸 色氨酸 组氨酸 精氨酸 虽然蛋白质广泛存在于许多动物性和植物性食物中,但是必需氨基酸的构成异差很大,WHO把“蛋白质其组成恰好符合人体需要”的蛋白质称为理想蛋白质,在自然界这种理想的蛋白质普遍认为是鸡蛋蛋白,因此就把鸡蛋蛋白作为衡量蛋白质优劣的参照蛋白,科学家把它作为一把尺子来衡量各种蛋白质,并制定出标准,以4种必需氨基酸为最低限来决定其优劣,即色氨酸、苏氨酸、赖氨酸或者蛋氨酸(半胱氨酸)。 通过比较科学发现,肉、鱼、蛋、牛奶、乳酪含有优质蛋白,大豆、花生、豌豆也含有较多的高质量蛋白。进一步研究发现它们都不够完美,因而要求大家对优质的动物性蛋白和植物性蛋白进行了科学搭配才是最完美的全价蛋白质(complete protein)。表3. 部分高质量蛋白

  • 【转帖】生命所需——蛋白质和多肽蛋白质粉!

    人类的营养物质有许多种类,最为重要的为蛋白质,碳水化合物和脂肪,其它则是微量营养物质,如维生素、电解质和微量元素等。虽然每一种营养物质对人体来说都是不可或缺的,但绝大多数的营养学家都会有充分的理由认为,真正最重要的营养物质是蛋白质。一、蛋白质是构成人体的基本物质。蛋白质是由氨基酸通过肽链相连而构成的,它是人体包括骨骼、肌肉、皮肤和脑的重要物质基础,同时氨基酸也是生成核酸的基本物质。我们知道,核酸既形成遗传密码,也是体内储存能量的基本物质。因而从根本上说,人体是由蛋白质组成的。构成人体蛋白质的生理功能概括有如下三个方面:1)人体组织的主要构成成份:如肌肉、骨骼、血液、皮肤、神经、肝、心等等。2)具有特殊生理功能:可以这样说,人类的一切生理活动都与蛋白质有关。如酶蛋白能催化机体的一切化学反应,包括蛋白质、脂肪、碳水化合物的消化等;载脂蛋白运送脂肪;血红蛋白运送氧;激素蛋白调节代谢与生理活动包括情感;血浆白蛋白调节渗透压、运输金属离子、胆红素和抗生素等。3)供给机体能量:成年人每日约需要更新400g蛋白质,每克蛋白质彻底分解能释放出约4 Kcal的热量。4)为机体提供氮原料:人体内所必需的嘧啶、嘌呤、肌酸、胆碱、肾上腺素、肉碱、牛磺酸等,都是以多肽、氨基酸为原料的。表1. 世界粮食组织(FAD)和世界卫生组织(WHO)根据中国人的体质和膳食结构推荐的中国人蛋白质的摄入量(RNLs)。年 龄 蛋白质RNL(g/d)初生—6个月 1.5-31岁 353岁 455岁 557岁 609岁 6510-16岁 75-85成年女性 65成年男性 75妊娠 +15乳母 +20根据统计资料:由于贫困、工作紧张、精神压力、减肥节食、以及肠胃疾病、癌症、贫血、肾病、各种结核病、肝硬化、腹水、烧伤、失血等,以及老龄人均不同程度地存在着蛋白质的摄入不足。上世纪80年代以来,我国营养学家对7个省18个贫困地区,1万名学龄前儿童进行了为期4年的连续调查,发现营养不良现象非常严重,其中蛋白质的摄入量不足WHO规定的60%。近年社会医学工作调查,在发达地区由于生活节奏加快,精神压力异常增加,以及办公室白领阶层的减肥节食,也导致蛋白质摄入不足,代谢异常的人群增加。二、蛋白质缺乏的体征和临床症状单纯的蛋白质营养不良又叫加西长病,这或许是来源于非洲的单词,单纯的能量不足时叫消瘦;临床上通常把这两种现象叫单纯性蛋白质能量营养不良症或PEM。单纯的PEM症在临床上较少见到,但在慢性消耗性疾病患者中则常见,尤其是在癌症患者和艾滋病的患者中几乎占到90%以上。现代都市和贫困地区存在着相当数量的蛋白质营养不良族群,他们的临床表现主要是能量损失或不足,如体力不支、睡眠不安、怕冷、怕热、性冷淡、无法进行正常的体力劳动和运动,其次为肌肉组织萎缩、皮肤松驰;腿部、脸部易水肿、脂肪肝、无名皮疹、伤口愈合不良、记忆力下降、视力减弱等。再者免疫力低下易感冒、感染。在做血检时通常会发现这些族群的血浆蛋白处于正常值的下限,其中白蛋白、转铁蛋白、甲状腺素结合前体蛋白和视轴蛋白(retinol-binding protein)均处于低水平时,患者易于感染各种疾病并且出现早衰症状,如果是儿童则感染后死亡率增加30%-40%,对于这类人群WHO的专家最好的建议就是迅速补充优质(或全价)的蛋白质。

  • 蛋白质组,蛋白质组学及研究技术路线

    基因组(genome)包含的遗传信息经转录产生mRNA,一个细胞在特定生理或病理状态下表达的所有种类的mRNA称为转录子组(transcriptome)。很显然,不同细胞在不同生理或病理状态下转录子组包含的mRNA的种类不尽相同。mRNA经翻译产生蛋白质,一个细胞在特定生理或病理状态下表达的所有种类的蛋白质称为蛋白质组(proteome)。同理,不同细胞在不同生理或病理状态下所表达的蛋白质的种类也不尽相同。蛋白质是基因功能的实施者,因此对蛋白质结构,定位和蛋白质-蛋白质相互作用的研究将为阐明生命现象的本质提供直接的基础。生命科学是实验科学,因此生命科学的发展极大地依赖于实验技术的发展。以DNA序列分析技术为核心的基因组研究技术推动了基因组研究的日新月异,而以基因芯片技术为代表的基因表达研究技术为科学家了解基因表达规律立下汗马功劳。在蛋白质组研究中,二维电泳和质谱技术的黄金组合又为科学家掌握蛋白质表达规律再铸辉煌。蛋白质组学(proteomics)就是指研究蛋白质组的技术及这些研究得到的结果。蛋白质组学的研究试图比较细胞在不同生理或病理条件下蛋白质表达的异同,对相关蛋白质进行分类和鉴定。更重要的是蛋白质组学的研究要分析蛋白质间相互作用和蛋白质的功能。蛋白质组学的研究内容包括:1.蛋白质鉴定:可以利用一维电泳和二维电泳并结合Western等技术,利用蛋白质芯片和抗体芯片及免疫共沉淀等技术对蛋白质进行鉴定研究。2.翻译后修饰:很多mRNA表达产生的蛋白质要经历翻译后修饰如磷酸化,糖基化,酶原激活等。翻译后修饰是蛋白质调节功能的重要方式,因此对蛋白质翻译后修饰的研究对阐明蛋白质的功能具有重要作用。3.蛋白质功能确定:如分析酶活性和确定酶底物,细胞因子的生物分析/配基-受体结合分析。可以利用基因敲除和反义技术分析基因表达产物-蛋白质的功能。另外对蛋白质表达出来后在细胞内的定位研究也在一定程度上有助于蛋白质功能的了解。Clontech的荧光蛋白表达系统就是研究蛋白质在细胞内定位的一个很好的工具。4.对人类而言,蛋白质组学的研究最终要服务于人类的健康,主要指促进分子医学的发展。如寻找药物的靶分子。很多药物本身就是蛋白质,而很多药物的靶分子也是蛋白质。药物也可以干预蛋白质-蛋白质相互作用。在基础医学和疾病机理研究中,了解人不同发育、生长期和不同生理、病理条件下及不同细胞类型的基因表达的特点具有特别重要的意义。这些研究可能找到直接与特定生理或病理状态相关的分子,进一步为设计作用于特定靶分子的药物奠定基础。不同发育、生长期和不同生理、病理条件下不同的细胞类型的基因表达是不一致的,因此对蛋白质表达的研究应该精确到细胞甚至亚细胞水平。可以利用免疫组织化学技术达到这个目的,但该技术的致命缺点是通量低。LCM技术可以精确地从组织切片中取出研究者感兴趣的细胞类型,因此LCM技术实际上是一种原位技术。取出的细胞用于蛋白质样品的制备,结合抗体芯片或二维电泳-质谱的技术路线,可以对蛋白质的表达进行原位的高通量的研究。很多研究采用匀浆组织制备蛋白质样品的技术路线,其研究结论值得怀疑,因为组织匀浆后不同细胞类型的蛋白质混杂在一起,最后得到的研究数据根本无法解释蛋白质在每类细胞中的表达情况。虽然培养细胞可以得到单一类型细胞,但体外培养的细胞很难模拟体内细胞的环境,因此这样研究得出的结论也很难用于解释在体实际情况。因此在研究中首先应该将不同细胞类型分离,分离出来的不同类型细胞可以用于基因表达研究,包括mRNA和蛋白质的表达。LCM技术获得的细胞可以用于蛋白质样品的制备。可以根据需要制备总蛋白,或膜蛋白,或核蛋白等,也可以富集糖蛋白,或通过去除白蛋白来减少蛋白质类型的复杂程度。相关试剂盒均有厂商提供。蛋白质样品中的不同类型的蛋白质可以通过二维电泳进行分离。二维电泳可以将不同种类的蛋白质按照等电点和分子量差异进行高分辨率的分离。成功的二维电泳可以将2000到3000种蛋白质进行分离。电泳后对胶进行高灵敏度的染色如银染和荧光染色。如果是比较两种样品之间蛋白质表达的异同,可以在同样条件下分别制备二者的蛋白质样品,然后在同样条件下进行二维电泳,染色后比较两块胶。也可以将二者的蛋白质样品分别用不同的荧光染料标记,然后两种蛋白质样品在一块胶上进行二维电泳的分离,最后通过荧光扫描技术分析结果。胶染色后可以利用凝胶图象分析系统成像,然后通过分析软件对蛋白质点进行定量分析,并且对感兴趣的蛋白质点进行定位。通过专门的蛋白质点切割系统,可以将蛋白质点所在的胶区域进行精确切割。接着对胶中蛋白质进行酶切消化,酶切后的消化物经脱盐/浓缩处理后就可以通过点样系统将蛋白质点样到特定的材料的表面(MALDI-TOF)。最后这些蛋白质就可以在质谱系统中进行分析,从而得到蛋白质的定性数据;这些数据可以用于构建数据库或和已有的数据库进行比较分析。实际上像人类的血浆,尿液,脑脊液,乳腺,心脏,膀胱癌和磷状细胞癌及多种病原微生物的蛋白质样品的二维电泳数据库已经建立起来,研究者可以登录www.expasy.ch/www/tools.html等网站进行查询,并和自己的同类研究进行对比分析。Genomic Solution可以为研究者提供除质谱外的所有蛋白质组学研究工具,包括二维电泳系统,成像系统及分析软件,胶切割系统,蛋白质消化浓缩工作站,点样工作站等;同时还可以提供相关试剂和消耗品。LCM-二维电泳-质谱的技术路线是典型的一条蛋白质组学研究的技术路线,除此以外,LCM-抗体芯片也是一条重要的蛋白质组学研究的技术路线。即通过LCM技术获得感兴趣的细胞类型,制备细胞蛋白质样品,蛋白质经荧光染料标记后和抗体芯片杂交,从而可以比较两种样品蛋白质表达的异同。Clontech最近开发了一张抗体芯片,可以对378种膜蛋白和胞浆蛋白进行分析。该芯片同时配合了抗体芯片的全部操作过程的重要试剂,包括蛋白质制备试剂,蛋白质的荧光染料标记试剂,标记体系的纯化试剂,杂交试剂等。对于蛋白质相互作用的研究,酵母双杂交和噬菌体展示技术无疑是很好的研究方法。Clontech开发的酵母双杂交系统和NEB公司开发的噬菌体展示技术可供研究者选用。关于蛋白质组的研究,也可以将蛋白质组的部分或全部种类的蛋白质制作成蛋白质芯片,这样的蛋白质芯片可以用于蛋白质相互作用研究,蛋白表达研究和小分子蛋白结合研究。Science,Vol.293,Issue 5537,2101-2105,September 14,2001发表了一篇关于酵母蛋白质组芯片的论文。该文主要研究内容为:将酵母的5800个ORF表达成蛋白质并进行纯化点样制作芯片,然后用该芯片筛选钙调素和磷脂分子的相互作用分子。最后有必要指出的是,传统的蛋白质研究注重研究单一蛋白质,而蛋白质组学注重研究参与特定生理或病理状态的所有的蛋白质种类及其与周围环境(分子)的关系。因此蛋白质组学的研究通常是高通量的。适应这个要求,蛋白质组学相关研究工具通常都是高度自动化的系统,通量高而速度快,配合相应分析软件和数据库,研究者可以在最短的时间内处理最多的数据。

  • 双缩脲法测定蛋白质浓度

    目的]掌握双缩脲法测定蛋白质浓度的原理和标准曲线的绘制。[align=center]原理][/align][align=center]双缩脲(NH2CONHCONH2)在碱性溶液中与硫酸铜反应生成紫红色化合物,称为双缩脲[/align][align=center]反应,蛋白质分子中含有许多肽键(-CONH-)在碱性溶液中也能与Cu2+反应产生紫红色化合物。在一定范围内,其颜色的深浅与蛋白质浓度成正比。因此,可以利用比色法测定蛋白质浓度。[/align][align=center]双缩脲法是测定蛋白质浓度的常用方法之一。操作简便、迅速、受蛋白质种类性质的影响较小,但灵敏度较差,而且特异性不高。除-CONH-有此反应外,-CONH2、-CH2NH2、-CS-NH2等基团也有此反应。[/align][align=center]操作][/align][align=center](一) 绘制标准曲线[/align][align=center](二) 未知样品蛋白质浓度的测定 [/align][align=center] 1.取12支试管[/align][align=center]6支分别加入0,0.4,0.8,1.2,1.6,2.0毫升的标准[/align][align=center]   6支分别加入1毫升不同稀释浓度的待测液(两两相同)。[/align][align=center] 2.分别加水补足到2毫升。[/align][align=center] 3.分别加入4毫升双缩脲试剂在室温/37℃下放置30分钟。[/align][align=center][

  • 蛋白质化学与蛋白质组学(推荐)

    蛋白质化学与蛋白质组学夏其昌 曾嵘 等编著2004年4月出版ISBN 7-03-012401-4/Q.133116开,平装,580页定价: 75.00元 本书系统论述了蛋白质化学基础理论和实验技巧,也反映了蛋白质组学研究的最新成果。内容包括:蛋白质的表征,蛋白质的组成分析和序列测定,与此相关的实验方法,包括各种色谱、电泳、质谱技术等,以及应用在蛋白质表征研究和基因工程产品的质检方面的实际范例。在蛋白质组学领域介绍了基本概念、样品制备、双向凝胶电泳的图像分析和定量分析、质谱等常规方法,并介绍了国际上最新的多维技术在研究中的应用;同时充分体现了生物信息学在蛋白质组研究中的重要性。 本书可作为生物学、医学、化学专业大学生,研究生和教学人员的参考书,也是从事生物化学、分子生物学、医学等领域中分离分析工作人员的参考书。

  • 蛋白质降解指数

    请问肉制品在加工过程中蛋白质降解指数一定不断增大吗?比如腊肉和火腿。非蛋白氮含量先降后增,总氮含量持续增大,最终结果是蛋白质降解指数先降低后增大,这样可以吗?看文献里有解释是水分含量降低使得总氮在肉制品中的占比增大。

  • 【资料】什么是蛋白质

    蛋白质的英文名词来源于希腊文,其含义是“第一”和“基本的”。反映了蛋白质是生命活动中最基本的和最重要的物质。蛋白质由碳、氢、氧、氮4种主要元素组成,有的蛋白质还含有硫、磷等其他元素。如血红蛋白含有铁、甲状腺球蛋白含有碘等。蛋白质的基本结构单位是氨基酸。氨基酸的特点是在分子一端含有氮和氢元素组成的化学基团——氨基。动物不能合成氨基,只有植物有利用硝酸盐合成氨基的能力。所以在动物饲养中,要依靠含有氨基酸、蛋白质的饲料,使家畜、家畜等生产蛋白质(净肉)。 蛋白质由一长串氨基酸链组成。一般都很长,如血红蛋白是由580个氨基酸组成。但氨基酸种类只有20种,在蛋白质中按严格的顺序排列,构成多种多样的生物专一性的蛋白质。由于人体不能合成氨基酸,只能从食物中获得蛋白质,并在肠内将蛋白质分解成各种氨基酸,这些氨基酸被吸收后,重新合成人体的特殊蛋白质。合成蛋白质的主要器官是肝脏。 从蛋白质这个名字看,好像蛋白质来源离不开蛋。其实动物、植物以及其他生物体都含有蛋白质。虽然最常党见的蛋白质——蛋清是白色的。但并非所有蛋白质都是白色的。血液上的血红蛋白是红色的,绿色植物的叶绿蛋白是绿色的。 同碳水化物和脂肪相比,蛋白质的两个代谢特点,一是它主要在代谢中发挥作用,而不是分解后为人体提供能量;二是蛋白质代谢的起点和终点都是蛋白质,即起点是人体的异蛋白质(如鱼的蛋白质,鸡肉蛋白质等),而终点则成了人体特有的蛋白质。蛋白质由氨基酸组成,是另一种重要的供能物质,每克蛋白质提供4卡路里的热量。但蛋白质的更主要的作用是生长发育和新陈代谢。过量的摄入蛋白质会增加肾脏的负担。因此蛋白的摄入要根据营养状况、生长发育要求达到供求平衡。通常蛋白摄入所产生的热量约占总热量的20%左右为宜。

  • 蛋白质浓度测定的各种方法及原理

    [font=宋体][font=宋体]蛋白质浓度测定的各种方法及原理是生物化学和分子生物学实验中的重要环节。蛋白质浓度的准确测定对于研究生物分子相互作用、蛋白质功能和动力学、以及生物样品的分析和鉴定等方面都具有重要的意义。本文将介绍几种常用的蛋白质浓度测定方法及其原理,包括紫外吸收法、微量凯氏定氮法、双缩尿法、[/font][font=Calibri]Lowry [/font][font=宋体]法和考马斯亮蓝法等。通过对这些方法的比较和分析,可以更好地了解它们的优缺点,以便根据实际实验需求选择合适的方法来测定蛋白质浓度。[/font][/font][font=宋体] [/font][font=宋体][b]①紫外吸收法[/b][/font][font=宋体] [/font][font=宋体]检测原理:[/font][font=宋体] [/font][font=宋体][font=宋体]蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共扼双键,使蛋白质具有吸收紫外光的性质。吸收高峰在[/font][font=Calibri]280nm[/font][font=宋体]处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在[/font][font=Calibri]238nm[/font][font=宋体]的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,进行蛋白质含量的测定。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体]方法特点:[/font][font=宋体] [/font][font=宋体]优点:简便、灵敏、快速,不消耗样品,测定后仍能回收使用。[/font][font=宋体] [/font][font=宋体]缺点:测定蛋白质含量的准确度较差,干扰物质多。[/font][font=宋体] [/font][font=宋体]干扰物:含有嘌呤、嘧啶、核酸等吸收紫外光的物质。[/font][font=宋体] [/font][font=宋体][font=宋体]检出限:[/font][font=Calibri]50~100ug[/font][font=宋体]蛋白含量。[/font][/font][font=宋体] [/font][font=宋体]适用范围:适于用测定与标准蛋白质氨基酸组成相似的蛋白质。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]②微量凯氏定氮法[/b][/font][font=宋体] [/font][font=宋体]凯氏定氮法被国内外视为蛋白质含量的标准检验方法,可作为衡量其他蛋白质含量检测方法准确性的标准。[/font][font=宋体] [/font][font=宋体]实验原理:[/font][font=宋体] [/font][font=宋体]样品与浓硫酸共热,含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。[/font][font=宋体] [/font][font=宋体]方法特点:[/font][font=宋体] [/font][font=宋体]优点:通用性强,测定费用低,易实现,仪器简单且测定结果的重复性和重现性好。[/font][font=宋体] [/font][font=宋体]缺点:实验耗时长、灵敏度低。[/font][font=宋体] [/font][font=宋体][font=宋体]检出限:[/font][font=Calibri]0.2~1mg[/font][font=宋体]蛋白含量。[/font][/font][font=宋体] [/font][font=宋体]适用范围:凯氏定氮法测的是总蛋白的量,一些非蛋白氮无法检测出。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]③双缩尿法[/b][/font][font=宋体] [/font][font=宋体]实验原理:[/font][font=宋体] [/font][font=宋体][font=宋体]双缩尿([/font][font=Calibri]NH3CONHCONH3[/font][font=宋体])是两个分子经[/font][font=Calibri]180[/font][font=宋体]℃左右加热,放出一个分子氨后得到的产物。在强碱溶液中,双缩尿与[/font][font=Calibri]CuSO4[/font][font=宋体]形成紫色络合物,称为双缩尿反应。凡具有两个酰胺基或两个直接连接的肽链,或能过一个中间碳原子相连的肽键,这类化合物都有双缩尿反应。紫色络合物颜色的深浅与蛋白质浓度成正比,与蛋白质分子量及氨基酸成分无关。[/font][/font][font=宋体] [/font][font=宋体]方法特点:[/font][font=宋体] [/font][font=宋体]优点:适合检测总蛋白质的含量,操作简单、测量速度快。[/font][font=宋体] [/font][font=宋体]缺点:标准物质必须使用代表性很强的样品,需使用其他参考方法测出标准物质中的蛋白质总含量,故测定工作费力费时。不宜测定样品种类多、彼此差异大的样品。[/font][font=宋体] [/font][font=宋体][font=宋体]检出限:测定蛋白质含量测定范围为[/font][font=Calibri]1-20mg[/font][font=宋体]蛋白质。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]干扰物:硫酸铵、[/font][font=Calibri]Tris[/font][font=宋体]缓冲液和某些氨基酸等。[/font][/font][font=宋体] [/font][font=宋体]适用范围:常用于需要快速,但并不需要十分精确的蛋白质测定。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b][font=宋体]④[/font][font=Calibri]Lowry [/font][font=宋体]法[/font][/b][/font][font=宋体] [/font][font=宋体][font=Calibri]Lowry [/font][font=宋体]法是双缩脲法的发展,结合了双缩脲试剂和酚试剂与蛋白质的反应,是最灵敏的蛋白质测定方法之一,在生物化学领域得到广泛的应用,目前分为基本法和改良简易法,改良简易法可获得与基本法相近的结果。[/font][/font][font=宋体] [/font][font=宋体]基本法实验原理:[/font][font=宋体] [/font][font=宋体][font=宋体]显色原理与双缩尿法相同,但加入了[/font][font=Calibri]Folin-[/font][font=宋体]酚酞试剂,以增加显色量,从而提高检测蛋白质的灵敏度。这两种显色反应产生深兰色的原因是:①在碱性条件下,蛋白质中的肽键与铜结合生成复合物。②[/font][font=Calibri]Folin[/font][font=宋体]一酚试剂中的磷钼酸盐一磷钨酸盐被蛋白质中的酪氨酸和苯丙氨酸残基还原,产生深兰色(钼兰和钨兰的混合物)。在一定的条件下,兰色深度与蛋白的量成正比。[/font][/font][font=宋体] [/font][font=宋体]特点:[/font][font=宋体] [/font][font=宋体]优点:灵敏度高。[/font][font=宋体] [/font][font=宋体]缺点:耗费时间长,操作时间需精准控制,标准曲线绘制麻烦,专一性较差,干扰物质比较多。[/font][font=宋体] [/font][font=宋体][font=宋体]检出限:可检测的最低蛋白质量达[/font][font=Calibri]5ug[/font][font=宋体]。通常测定范围是[/font][font=Calibri]20~250ug[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]干扰物:酚类、柠檬酸、硫酸铵、[/font][font=Calibri]Tris[/font][font=宋体]缓冲液、甘氨酸、糖类、甘油等。[/font][/font][font=宋体] [/font][font=宋体]适用范围:除蛋白含量测定,也可用于酪氨酸和色氨酸的定量测定。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]⑤考马斯亮蓝法[/b][/font][font=宋体] [/font][font=宋体]实验原理:[/font][font=宋体] [/font][font=宋体][font=宋体]考马斯亮蓝[/font][font=Calibri]G-250[/font][font=宋体]染料,在酸性溶液中与蛋白质结合,使染料的最大吸收峰的位置([/font][font=Calibri]max[/font][font=宋体]),由[/font][font=Calibri]465mm[/font][font=宋体]变为[/font][font=Calibri]595nm[/font][font=宋体],溶液的颜色也由棕黑色变为蓝色。经研究认为,染料主要是与蛋白质中的碱性氨基酸(特别是精氨酸)和芳香族氨基酸残基相结合。在[/font][font=Calibri]595mm[/font][font=宋体]下测定的吸光度值[/font][font=Calibri]A595[/font][font=宋体],与蛋白质浓度成正比。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体]方法特点:[/font][font=宋体] [/font][font=宋体][font=宋体]优点:灵敏度比[/font][font=Calibri]Lowry[/font][font=宋体]高约[/font][font=Calibri]4[/font][font=宋体]倍,高效率、检测过程简便、只需要一种试剂,抗干扰能力强。[/font][/font][font=宋体] [/font][font=宋体]缺点:测定误差大,不适用于不同蛋白的检测。[/font][font=宋体] [/font][font=宋体][font=宋体]检出限:其最低蛋白质检测量可达[/font][font=Calibri]1ug[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]干扰物:干扰物质少,但去污剂、[/font][font=Calibri]TritonX-100[/font][font=宋体]、十二烷基硫酸钠、[/font][font=Calibri]0.1N[/font][font=宋体]的[/font][font=Calibri]NaOH[/font][font=宋体]会干扰实验测定。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]蛋白质含量测定方法选择[/b][/font][font=宋体] [/font][font=宋体]蛋白质含量测定时,考虑以下因素后选定适用的检测方法。[/font][font=宋体] [/font][font=宋体]①实验对测定所要求的灵敏度和精确度;[/font][font=宋体] [/font][font=宋体]②蛋白质的性质;[/font][font=宋体] [/font][font=宋体]③溶液中存在的干扰物质;[/font][font=宋体] [/font][font=宋体]④测定所要花费的时间。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供多种类型的[url=https://cn.sinobiological.com/resource/protein-review][b]蛋白资源[/b][/url],不仅有重组蛋白服务还有各种大咖讲座,详情可以关注[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review[/font][/font][font=Calibri] [/font]

  • 蛋白修饰与蛋白质鉴定

    现在,在实验研究基础上,借助多方面的生物信息学方法,可以快速高通量的预测和进行蛋白质鉴定蛋白翻译后修饰。分泌蛋白和膜相关蛋白附着于细胞膜上的或将被排泄出去的蛋白质是由细胞内质网膜上附着的核糖体合成。附着有核糖体的内质网被称为糙面型内质网。这类蛋白质都含有一个N-末端(或氨基端),我们称之为信号序列或信号肽。这个信号肽通常情况下含有13-36个主要疏水性残基,同时它含有多蛋白复合物,我们称之为信号识别粒子(SRP)。这种信号肽在通过内质网膜之后会被去除。信号肽的去除过程是在信号肽酶催化作用下完成的。含有一个信号肽的蛋白质被称为前蛋白,有别于原蛋白。然而,某些用于分泌的蛋白在分泌之后会进一步被蛋白水解,因此包含有原蛋白的序列。这类蛋白质被称为前原蛋白。蛋白水解性裂解许多蛋白质在翻译之后会经历水解性裂解过程。其中最为简单的形式是去除起始蛋氨酸。许多蛋白质合成了不活跃的前体细胞,这些细胞只能在合适的生理条件下通过限制性蛋白水解过程产生活性。在凝血过程中使用到的胰腺酶和酶类就是后者的例证。多肽去除时产生活性的不活跃的前体蛋白,我们称之为原蛋白。前原蛋白的翻译后加工过程的一个复杂的例子就是脑垂体分泌合成的前阿黑皮素原的裂解过程(有关前阿黑皮素原的讨论,见肽类激素页)。这类前原蛋白经过复杂的裂解,根据合成的前阿黑皮素原的细胞定位而不同,其路径也有所不同。另一个前原蛋白的例子就是胰岛素。由于胰岛素是由胰腺分泌的,因此它有一个前肽。随着含24个氨基酸的信号肽的裂解,这类蛋白也折叠成了胰岛素原。胰岛素原进一步分裂,产生活跃的胰岛素,它包含两个肽链,由二硫键进行连接。但仍有其他的蛋白(酶类)被合成为非活跃的前体细胞,被称为酶原。酶原在蛋白水解性裂解时会产生活性,在凝血串联蛋白质链的若干蛋白质中都会发生这种现象。甲基化作用蛋白翻译后的甲基化过程主要发生在氮原子和氧原子上。活性甲基供体是活性腺苷甲硫胺酸(SAM)。最常见的甲基化作用发生在赖氨酸残基的ε-amine上。脱氧核糖核酸组蛋白中赖氨酸残基的甲基化作用可调节核染色质结构,因此可调节其转录活性。赖氨酸原本被认为是一种常设共价标记,可提供长期信号,甚至包括转录记忆时的组蛋白依赖机制。然而,最近的临床研究表明赖氨酸甲基化作用与其他共价修饰体相似,作用时间短,并能通过反脱甲基化活动进行动态调节。最近的组学研究发现表明,赖氨酸残基的甲基化作用不仅发生在核染色质层面,而且还通过修订转录因子影响基因表达。组氨酸的咪唑环,精氨酸的胍基部分以及谷氨酸盐和天冬氨酸盐的R组酰胺(R-group amides )上,都发现了额外的氮甲基化作用。谷氨酸盐和天冬氨酸盐的R组羧化物也会发生氧甲基化作用并形成甲基酯。蛋白可能在半胱氨酸的R[

  • 蛋白质的测定

    [color=#444444]现在有两个方法:[/color][color=#444444]GB/T 5413.1-1997,[/color][color=#444444]主要用于婴儿配方食品和乳制品中蛋白质的测定;[/color][color=#444444] GB5009.5-2003,[/color][color=#444444]主要用于食品中蛋白质的测定。都用凯氏定氮法,但是最后计算公式有差异。[/color][color=#444444]5413:蛋白质含量=[u] (V-V0)* C(H+)*2* 0.014 *F [/u] * 100[/color][color=#444444] m* 25/1005009:蛋白质含量=[u] (V1-V2)* C* 0.014 *F [/u] * 100[/color][color=#444444] m* 10/100[/color][color=#444444]折算下来,5413 乘的系数是 8,而5009乘的系数为10。搞不懂了?为啥会这样?[/color][color=#444444][/color][color=#444444]究竟用两种方法测出的奶粉的蛋白质,会不会有很大差异呢?[/color]

  • 【原创】有愿意合作蛋白质结构的吗?

    我是在国外做蛋白质生物分子结构的.我们有500,800,900M NMR. 主要做蛋白质生物分子结构.如果您也是做蛋白质的,并且想结合其结构而发好的文章.我们可以考虑一起合作.如果您真的意,请您留下联系方式.蛋白质最好小于20kDa.如果蛋白质可以稳定的形成dimer(40kDa),也可以。盼合作者

  • 什么是大豆蛋白质?

    [size=10.5pt][color=#0000ff][font=微软雅黑]什么是大豆蛋白质?[/font][/color][/size][size=10.5pt][font=微软雅黑]大豆蛋白质是一种植物性蛋白质。大豆蛋白质的氨基酸组成与牛奶蛋白质相近,除蛋氨酸略低外,其余必需氨基酸含量均较丰富,是植物性的完全蛋白质,在营养价值上,可与动物蛋白等同,在基因结构上也是最接近人体氨基酸,所以是最具营养的植物蛋白质。[/font][/size][size=10.5pt][font=微软雅黑]大豆蛋白质是由一系列氨基酸通过肽键结合而成的高分子有机聚合物,它主要由清蛋白和球蛋白组成,其中清蛋白约占5%,球蛋白约占90%。[/font][/size][size=10.5pt][font=微软雅黑]大豆蛋白也有缺点,怕高温,气味怪。大豆蛋白的食用温度最好不要用鲜开始,100℃的开水会破坏大豆蛋白质结构,会降低其营养价值。同时,大豆蛋白含有的大豆异黄酮等等物质让大豆蛋白质的冲食具有一定的腥味。[/font][/size]

  • 蛋白质检测仪是什么仪器

    蛋白质检测仪是什么仪器

    [size=16px][font=-apple-system, BlinkMacSystemFont, &][color=#05073b]蛋白质检测仪是什么仪器[/color][/font]蛋白质检测仪是一种用于检测食品、生物样品和其他物质中蛋白质含量的仪器。它通过不同的方法,如凯氏定氮法、分光光度法、[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]法等,对样品中的蛋白质进行定量和定性分析。蛋白质检测仪可以广泛应用于实验室、质量控制部门和科研机构等领域。它具有操作简便、快速准确、灵敏度高、重复性好等优点,能够满足不同领域的需求。蛋白质检测仪的原理主要是根据蛋白质与特定试剂的反应,如与双缩脲试剂的显色反应,或与某些染料的结合反应,来测定样品的蛋白质含量。不同的蛋白质检测仪采用不同的原理和方法,但它们都具有相同的目的是准确测定样品中的蛋白质含量。在使用蛋白质检测仪时,需要注意样品的处理和试剂的选择。不同的样品需要不同的处理方法,如血液样品需要进行离心分离,组织样品需要进行匀浆等。同时,试剂的选择也需要注意,如双缩脲试剂需要使用硫酸铜和氢氧化钠等试剂进行配制。总之,蛋白质检测仪是一种重要的实验室仪器,可以用于测定样品中的蛋白质含量。它具有操作简便、快速准确等优点,能够满足不同领域的需求。同时,需要注意样品的处理和试剂的选择,以确保测定的准确性和可靠性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311131032246528_1186_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 【分享】蛋白质的分离纯化操作使用

    一,蛋白质(包括酶)的提取  大部分蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质则溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采用不同溶剂提取分离和纯化蛋白质及酶。(一)水溶液提取法  稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。提取的温度要视有效成份性质而定。一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。下面着重讨论提取液的pH值和盐浓度的选择。1、pH值  蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH范围内。用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液。2、盐浓度  稀浓度可促进蛋白质的溶,称为盐溶作用。同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等中性盐,一般以0.15摩尔。升浓度为宜。缓冲液常采用0.02-0.05M磷酸盐和碳酸盐等渗盐溶液。(二)有机溶剂提取法  一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的一定的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液。但必须在低温下操作。丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶特别优越,一是因为丁醇亲脂性强,特别是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为6.6%)不会引起酶的变性失活。另外,丁醇提取法的pH及温度选择范围较广,也适用于动植物及微生物材料。

  • 【转帖】蛋白质纯化

    蛋白质纯化 蛋白质分离纯化是用生物工程下游技术从混合物之当中分离纯化出所需要得目的蛋白质的方法。  是当代生物产业当中的核心技术。该技术难度、成本均高;例如一个生物药品的成本75%都花在下游蛋白质分离纯化当中。常用技术有:  1、沉淀,  2、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。根据支撑物不同,有薄膜电泳、凝胶电泳等。  3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。  4、层析:  a.离子交换层析,利用蛋白质的两性游离性质,在某一特定PH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。   b.分子筛,又称凝胶过滤。小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能时入孔内而径直流出。  5、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。不同蛋白质其密度与形态各不相同而分开。

  • 蛋白质测定仪的测定原理

    蛋白质测定仪是根据蛋白质中氮的含量恒定的原理,通过测定样品中氮的含量从而计算蛋白质含量的仪器但是实际中怎么操作呢?

  • 有关蛋白质与蛋白质水解物理化指标的理解

    [color=#444444]检测单上有两个指标的意思不是很理解,“相对分子质量小于1000的蛋白质水解物”所占比例为80%,而“蛋白质(以干基计),%”为70%。为什么蛋白质(以干基计)的数值还要更低呢。[/color]

  • 【求助】蛋白质的相关测定问题?

    请教 现在有关蛋白质的相关测定有那些知识和技术????就我所知的,目前蛋白质的测定主要是蛋白质总量的测定(凯氏定氮),那没有有测定分析食品中蛋白质种类的方法或技术呢???邀请大家来讨论!!!

  • 蛋白质公式

    知道凯氏定氮法测定蛋白质含量的计算公式中,有个V3是吸取消化液的体积,这个体积是在什么时候添加的,怎么添加的。如果看到请帮忙解答一下,谢谢了

  • 关于食品中蛋白质含量测定仪的详细信息

    食品中蛋白质含量测定仪是用于快速、准确地测量食品中蛋白质含量的专业仪器。这种仪器基于各种化学或物理方法,如凯氏定氮法、双缩脲法、考马斯亮蓝法(Bradford法)或紫外分光光度法等,来测定食品中蛋白质的含量。  以下是关于食品中蛋白质含量测定仪的一些详细信息:  工作原理  凯氏定氮法:这是一种经典的蛋白质测定方法。样品中的蛋白质在催化剂的作用下与硫酸共热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即可计算出样品的蛋白质含量。  双缩脲法:在碱性溶液中,双缩脲(尿素加热至180℃左右生成的二聚体)与铜离子形成紫色络合物,该络合物的颜色深浅与蛋白质含量成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。  考马斯亮蓝法(Bradford法):考马斯亮蓝G-250染料在酸性溶液中与蛋白质结合后,在595nm处有最大光吸收,其光吸收值与蛋白质含量成正比。因此,可用于蛋白质的定量测定。  紫外分光光度法:蛋白质中常含有酪氨酸、色氨酸等苯环结构,在280nm的紫外波段有较强的吸收峰,其吸光度与蛋白质含量成正比。这种方法操作简单、快速,但灵敏度较低,只适合测定蛋白质含量较高的样品。  应用领域  食品质量检测:蛋白质是食品中的重要营养成分,其含量是评价食品质量的重要指标之一。食品中蛋白质含量测定仪可用于检测各类食品(如肉类、奶类、蛋类、豆类、谷物等)中的蛋白质含量,为食品质量检测提供数据支持。  食品科学研究:在食品科学研究中,蛋白质含量测定仪可用于分析不同食品原料、加工工艺对蛋白质含量的影响,以及蛋白质在食品加工过程中的变化等。  注意事项  在使用蛋白质含量测定仪进行测试之前,需要仔细阅读产品说明书,了解仪器的使用方法、操作步骤及注意事项。  确保样品准备过程符合标准要求,避免样品污染或损坏导致检测结果不准确。  定期对仪器进行维护和校准,确保检测结果的准确性和可靠性。  在使用过程中注意安全防护措施,避免对人体造成伤害或对环境造成污染。  总之,食品中蛋白质含量测定仪是食品检测领域的重要工具之一,能够快速、准确地测定食品中的蛋白质含量,为食品质量控制和科学研究提供有力支持。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405151126410832_3840_4214615_3.jpg!w690x690.jpg[/img]

  • 【资料】蛋白质相关文献汇总

    蛋白质相关文献汇总1蛋白质20081101\凯氏定氮仪空白值大小的分析.pdf[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=134593]蛋白质20081101凯氏定氮仪空白值大小的分析.pdf[/url]2 蛋白质20081101\考量马兰测定蛋白质2.pdf[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=134594]蛋白质20081101考量马兰测定蛋白质2.pdf[/url]3蛋白质20081101\考量马兰测定蛋白质.pdf[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=134595]蛋白质20081101考量马兰测定蛋白质.pdf[/url]4蛋白质20081101\浅谈凯氏定氮法.pdf[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=134596]蛋白质20081101浅谈凯氏定氮法.pdf[/url]5蛋白质20081101\乳中非蛋白氮的测定方法.pdf[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=134597]蛋白质20081101乳中非蛋白氮的测定方法.pdf[/url]6蛋白质20081101\食品中蛋白质的测定方法-凯氏定氮法.pdf[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=134598]蛋白质20081101食品中蛋白质的测定方法-凯氏定氮法.pdf[/url]7蛋白质20081101\微量开始订单.pdf[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=134599]蛋白质20081101微量开始订单.pdf[/url]8蛋白质20081101\用GC测假蛋白氮-三聚氰胺的合理性探讨.pdf[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=134600]蛋白质20081101用GC测假蛋白氮-三聚氰胺的合理性探讨.pdf[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=134600]蛋白质20081101\用GC测假蛋白氮-三聚氰胺的合理性探讨.pdf[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=134599]蛋白质20081101\微量开始订单.pdf[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=134598]蛋白质20081101\食品中蛋白质的测定方法-凯氏定氮法.pdf[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=134597]蛋白质20081101\乳中非蛋白氮的测定方法.pdf[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=134596]蛋白质20081101\浅谈凯氏定氮法.pdf[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=134595]蛋白质20081101\考量马兰测定蛋白质.pdf[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=134594]蛋白质20081101\考量马兰测定蛋白质2.pdf[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=134593]蛋白质20081101\凯氏定氮仪空白值大小的分析.pdf[/url]

  • 【原创】【第三届原创参赛】原子力显微镜在蛋白质研究中的应用

    蛋白质是荷兰科学家格里特在1838年发现的,它是生物体内一种极重要的高分子有机物。没有蛋白质就没有生命,它是与生命及与各种形式的生命活动紧密联系在一起的物质。人体的生长、发育、运动、遗传、繁殖等一切生命活动都离不开蛋白质,因此对于蛋白质的研究显得极其重要与急迫。AFM 对于蛋白质的研究是一个极好的工具,它可以测量蛋白质空间结构,表征蛋白质的结构与功能、了解分子间的相互作用等等。样品制备当用AFM对蛋白质进行观察时,样品制备很重要。蛋白质样品的制备原则与粉体材料基本相同,也需要固定到基片上,只是要研究一些活体蛋白时,必须为之提供一定的生理环境,如生理缓冲液,所以大多需要在溶液中进行研究,如成像,测定力曲线以研究其构形,构像转变等特性.所以应该选择合适的方法在固定蛋白质样品的同时仍能保持其生物特性。具体要求和方法如下:样品制备要求样品表面平整, 高度起伏≤10一20μm;表面有一定的硬度;基底面平滑;样品在基底表面要求相对均匀、分散等。样品制备过程蛋白质样品制备过程有两种方法蛋白质吸附固定法: 使用在中性条件下带负电云母片、玻璃及氧化硅为基底,将一定浓度的带正电的蛋白质溶液滴加于云母表面,蛋白便可很容易通过吸附固定吸附于云母表面蛋白质共价固定法: 在某些特定的条件下,蛋白分子需要通过共价吸附才能检测到。利用蛋白质分子上的氨基与疏基丙酸的羧基形成肽键连接的原理,进行蛋白质的固定。

  • 【求助】蛋白质沉淀和水解蛋白质结合物的应用规则

    在前处理中,内脏组织大多杂质很多,需要沉淀蛋白质,沉淀后离心,提上清夜再萃取,但内源性物质中的待检物同时也会和蛋白质成结合状态,需要水解,再萃取。所以请问如果我先沉淀了蛋白,那么会不会把成结合状态的待检物一同沉淀,损失待检物。在运用中如何处理蛋白质杂质和蛋白质结合物的前处理问题?

  • 污泥中蛋白质的测定

    关于固体蛋白质的测定,本人是参考GB 5009.5-2010食品安全国家标准:食品中蛋白质的测定,该标准介绍了三种方法用于检测食品中的蛋白质,分别是凯氏定氮、分光光度和燃烧法。 简单分析了三种方法,主要是依据现有设备和操作繁简程度,决定采用分光光度法(为防止他人误会,简单说一下该方法的原理:食品中的蛋白质在催化加热条件下被分解,分解产生的氨与硫酸结合生成硫酸铵,在pH 4.8 的乙酸钠-乙酸缓冲溶液中与乙酰丙酮和甲醛反应生成黄色的3,5-二乙酰-2,6-二甲基-1,4-二氢化吡啶化合物。在波长400 nm 下测定吸光度值,与标准系列比较定量,结果乘以换算系数,即为蛋白质含量。) 我困惑于国标方法其后提供的公式:详细见附件 求助如下:1)公式中的C和C0测定的氮是氨氮还是总氮?2)V1,V2,V3和V4描述的很啰嗦,可否指点一下对应标准中的何处? 再此谢谢各位!

  • 【分享】蛋白质提取

    介绍了不同几种来源蛋白质的提取方法以及在提取过程中的注意事项.对做蛋白研究的很有用..1.植物组织蛋白质提取方法2.植物组织蛋白质提取方法 3.组织:肠黏膜 4.lysis solution5.植物材料:水稻苗,叶鞘,根6.蛋白质样品制备7.植物根中蛋白质的抽取8.SDS extraction followed by acetone precipitation9.材料:细菌蛋白10.线粒体蛋白的提取 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=120198]蛋白质提取[/url]

  • 蛋白质检测

    请问鱼胶的蛋白质系数是多少?凯氏定氮法测含氮量大约15.6 %,按6.25计算,蛋白质97.5%,数值偏高了…

  • 蛋白质测定

    我在用定氮装置做蛋白质含量的实验室经常出现这个问题,就是蒸馏5分钟后,把蒸馏管内管的液体放出来的时候,总是吸不出来是怎么回事!上面水封的很好还是出不来!请教一下大家!另外做蛋白实验室有什么注意事项吗?谢谢

  • 【热点】蛋白质组学研究

    人类基因组计划的顺利实施,使生命科学研究的重心正逐渐转到生物功能的整体研究。基因组学由于自身的局限性,它不能回答诸如:蛋白质的表达水平和表达时间,翻译后修饰以及蛋白质与蛋白质或与其他生物分子的相互作用等问题。作为基因研究的重要补充,蛋白质组学在蛋白质的水平上定量的、动态的、整体的研究生物体。蛋白质组(Proteome)概念是最早是由澳大利亚学者Wilkins和Williams于1994年提出的,即基因所能表达的全部蛋白质,更为清楚的表达是细胞或组织或机体在特定时间和空间上表达的所有蛋白质。具体说它是对不同时间和空间上发挥功能的特定的蛋白质组群进行研究,进而在蛋白质的水平上探索其作模式、功能机理、调节调控以及蛋白质组群内的相互作用,从而为临床诊断、病理研究、药物筛选、新药开发、新陈代谢途径研究等提供理论依据和基础。 详情请见:[url=http://www.instrument.com.cn/hot/HA_56.htm]热点应用:蛋白质组学研究[/url]

  • 【热点】蛋白质组学研究

    人类基因组计划的顺利实施,使生命科学研究的重心正逐渐转到生物功能的整体研究。基因组学由于自身的局限性,它不能回答诸如:蛋白质的表达水平和表达时间,翻译后修饰以及蛋白质与蛋白质或与其他生物分子的相互作用等问题。作为基因研究的重要补充,蛋白质组学在蛋白质的水平上定量的、动态的、整体的研究生物体。蛋白质组(Proteome)概念是最早是由澳大利亚学者Wilkins和Williams于1994年提出的,即基因所能表达的全部蛋白质,更为清楚的表达是细胞或组织或机体在特定时间和空间上表达的所有蛋白质。具体说它是对不同时间和空间上发挥功能的特定的蛋白质组群进行研究,进而在蛋白质的水平上探索其作模式、功能机理、调节调控以及蛋白质组群内的相互作用,从而为临床诊断、病理研究、药物筛选、新药开发、新陈代谢途径研究等提供理论依据和基础。 详情请见:[url=http://www.instrument.com.cn/hot/HA_56.htm]热点应用:蛋白质组学研究[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制