当前位置: 仪器信息网 > 行业主题 > >

蓄电池模拟器

仪器信息网蓄电池模拟器专题为您提供2024年最新蓄电池模拟器价格报价、厂家品牌的相关信息, 包括蓄电池模拟器参数、型号等,不管是国产,还是进口品牌的蓄电池模拟器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合蓄电池模拟器相关的耗材配件、试剂标物,还有蓄电池模拟器相关的最新资讯、资料,以及蓄电池模拟器相关的解决方案。

蓄电池模拟器相关的资讯

  • 2000家铅酸蓄电池企业80%被关停
    标准不一的整治,使得一些三无企业可能继续逍遥法外,或者转入地下生产。   从上海浦东“康桥血铅”事件,到今年5月爆发的浙江“德清血铅”事件,包括2010年江苏大丰、四川隆昌、湖南嘉禾、甘肃瓜州、湖北崇阳、安徽怀宁等地的9起“血铅”事件……用铅量占八成的铅酸蓄电池行业,一度站在风口浪尖。今年5月始,一场史无前例的涉铅企业大整肃,席卷中国。   全国2000余家铅酸蓄电池企业80%被勒令关停。   大力度的整肃,不是短暂的突击,而是寄托了管理层形成长效机制的期望。而被外界视为“污染妖魔”的铅酸蓄电池行业,也希望业界为其正名,还其“行业砥柱”的本色。   环保“台风”   2011年10月31日,“2011国际新能源应用及电池展览会”在北京拉开序幕。   会上,中国电池工业协会副秘书长曹国庆说,频现的“血铅”事件,今年终于引来政策与管理层面的重拳出击。   铅酸蓄电池的铅污染主要集中于生产和回收环节。金属铅熔点低、高温下易挥发,在铅熔化制备合金、铸造工序中极易造成污染。这一行业的环保合格率仅为12.4%。   今年5月启动的整肃,几乎将环保不达标的铅酸蓄电池企业一网打尽,仅有13%的企业可维持正常生产。   处于风暴中心的,无疑是动力电池制造大省浙江:328家铅酸蓄电池生产企业,53家停产,204家直接关闭。   浙江蓄电池协会秘书长姚令春称,该省规模以上的电池制造企业增加值,今年4月份还同比增加45%,5月份下降到9.1%,6月份则是-7.6%。   铅酸蓄电池,主要应用于内燃机打火和电动自行车动力,市场份额分别为100%和98% 2010年,中国汽车和电动自行车的销量分别是1800万和3000万辆。在大力度的整肃下,铅酸蓄电池出现严重供应不足,今年5~6月缺口达40%,价格上升了20%~30%。   一些业界名牌也未能幸免。“中国动力电池第一股”的浙江天能动力(00819.HK),其旗下安徽、江苏和浙江三处工厂被环保部要求停产,占其总产能的54% 但其很快整改达标,后陆续复产。   同在香港上市的另一电池巨头浙江超威动力(00951.HK),因厂房周围500米内有上百户居民,也被叫停。   “500米的防护距离要求是个红线。浙江被关停的铅酸蓄电池企业,80%都是因未达到500米的防护距离。像超威动力、振龙电源、天能动力这样的大型企业,无论生产工艺还是污染排放都已达标。” 姚令春说。   苏州大学化学电源研究所王金良教授介绍,500米防护距离是1989年制定的。制定方法很简单,“就是相关部门选几个有代表性的企业,在不同距离测量其污染排放浓度,当达到基本无害程度时,确定此为卫生防护距离,当时这个距离平均大约就是500米”。   《财经国家周刊》记者获悉,《铅酸蓄电池行业准入条件》将于年内发布。除了这500米红线,还规定“低于50万KVAh的企业将不允许再立项,低于20万KVAH企业不再允许继续生产”。   如此,国内2000多家铅酸企业将留下不足300家。而历史上,想进入铅酸蓄电池行业,只需产品通过沈阳蓄电池研究所检测即可,门槛低得惊人。即便后来有了环评要求,一些地方也未严格执行。比如浙江台州的“速起”和德清的“海久”两家公司,虽然都做过环评并通过了审批,但直至“血铅”事件爆发后,调查组才发现,两家企业均存在未按要求设置卫生防护距离问题。   在这两起“血铅”事件中,除了企业主全部被刑拘外,有多名地方官员被停职、撤职。《财经国家周刊》记者还了解到,“海久”是德清县“标兵企业”,当地官员此前正在力推其上市IPO。   此前追责已逐步升级。环保部今年5月下发的《关于加强铅酸蓄电池及再生铅行业污染防治工作的通知》中明确要求,“建立重金属污染责任终身追究制”。   同时,《重金属污染综合防治“十二五”规划》成为第一个获批的“十二五”国家规划,足见高层对重金属污染防治的关注。   大浪淘沙   “企业原先规划和建设时符合500米的防护要求。但后来许多村民纷纷在防护区附近建房子,有的村民干脆把小卖部盖在了厂区门口。企业除了劝阻,别无他法。结果整顿一来,企业不是搬迁就得转产。” 超威动力总裁办主任刘建铭对《财经国家周刊》说。   中国电池工业协会副理事长王敬忠称,此次政府是真正祭出了铁腕政策、采用了休克疗法,鱼目混珠的铅污染企业受到了惩罚,但一刀切也让整个行业付出了惨痛代价。   天能动力董事局主席张天任告诉《财经国家周刊》记者,正规大企业并不惧怕整肃。早在“十一五”期间,天能动力就已投入2亿多元用于环保设备改造和工艺革新,早将铅污染的防治重心从生产环节延伸到了再生铅环节。目前,分三期建设、共投资了18亿元的天能动力循环经济产业园区,每年可回收15万吨废旧蓄电池,循环利用10万吨再生铅,形成年产600万KVAh的动力能源及风能、太阳能用储能电池产业基地。   纵览近期的券商报告,各分析师普遍认为,门槛提高让铅酸蓄电池行业迎来大洗牌,其带来的产品价格持续提升,对行业巨头的业绩是一个正面影响,纷纷看多风帆股份(600482.SH)、骆驼股份(601311.SH)、圣阳股份(002580.SZ)和南都电源(300068.SZ)等股票。   刘建铭告诉《财经国家周刊》记者,“超威的铅电极生产、涂布已基本实现无人化 自行车动力电池和汽车启动电池的电池极化已全部采用内化成技术 铅电池生产工艺已避免了铅尘和酸雾的无组织排放 大型生产线上,你再也看不到支口大锅炼铅板,一排排工人忙着安装焊接电池的景象”。   张天任认为,一部分人“谈铅色变”,是不了解铅酸蓄电池的生产工艺现状,“从2000~2010年,国内铅酸蓄电池年产量增长了10倍,产能接近1.5亿KVAh。中国铅酸蓄电池产业10年时间,就走完了欧美将近60年的产业发展历程,其生产状态早已发生了翻天覆地的变化”。   “一粒老鼠屎坏了一锅粥。”王金良教授告诉《财经国家周刊》记者,一些不具备清洁生产条件和缺乏社会责任感的企业,直接造成了大量铅污染事件的发生。   “对于大型上市企业而言,早就回头是岸了。”刘建铭说,“超威的环保固定资产投入已达到年投资额的25%,并且早在外省按照500米的防护距离集中建设了新的生产基地。”   但是,短板决定容水量——正是诸多还处在原始手工作坊状态的小企业,使这个行业被整体抹黑,尽管业内诸多大型上市企业已能和美国同行比肩。 “二八定律”,同样适用于中国铅酸蓄电池行业:20%的大企业,生产了行业80%的产量 而80%的小企业,生产了行业20%的产量。   那种使用简单熔炉就能从事铅酸蓄电池生产的作坊,投资最多数十万,且多处于难以监管的乡村,根本谈不上环保投资和监管。   “大量小企业靠省略环境成本、肆意压价生存,形成了劣币驱逐良币现象。”王敬忠认为,“铅酸蓄电池生产工艺简单成熟、进入门槛较低,引得一批没有实力、资质的小企业纷纷上马,留给社会一个‘坏孩子’印象。” 而此次将要出台的新厂不低于50万KVAh、旧厂改造不低于20万KVAh的门槛,意味着企业年产值至少超亿。有了规模,才可能保证环保有足够的投入。   巨头时代   中国铅酸蓄电池行业,即将进入“巨头”时代。采访发现,一些业内人士和准巨头们,却对未来的洗牌有些担忧。   “进入10月份,市场供应竟然迅速得到了补充。目前铅动力电池居然供过于求,价格回落到了原先水平。”姚令春反问,“占全国铅动力电池产量45%的浙江还没有恢复生产,为什么市场货源能够如此神速地得到补充?”   “作为此次整顿风暴的中心,浙江严格实施了关停,而其他省份和一些三无企业仍在拼命生产。”姚令春说。   天能动力张天任亦分析,此次整顿最为严厉的是浙江、广东、江苏三省,广东180多家企业几乎全部关停,江苏近500家企业停产产能60%,而有一些省份的停产产能约占1/3。   “标准不一的整治,一些三无企业可能继续逍遥法外,或者转入地下生产。”张天任说,“市场上还充斥着各种各样的价格便宜、质量低劣的三无电池。” 中国消费者对电池价格非常敏感,尤其是保有量高达亿辆以上的电动自行车主。姚令春说,“如果个别企业试图把环保、回收、科研成本在价格上有所体现,其市场竞争力将大大削弱”。   分析人士指出,近期爆发的血铅事件其均属于人为因素造成,或者企业违法肆意排污,或者少数官员疏于监管甚至为违法者提供保护。   “此次关停,一些小企业有可能在联合重组旗号下,依然搞以前的分散生产——如果地方政府想保护这些企业,那就变化不大。”一位参加“2011国际新能源应用及电池展览会”的厂商如是说。   一些业内人士更担心的是“铅酸蓄电池已被严重妖魔化”。   比如说“500米”问题,天能动力张天任对《财经国家周刊》记者表示,“如果企业环保措施达标,100米也没有问题 如果企业环保工作做得不好,别说500米,1公里也没用。”   2008年相关部门曾试图修改此规定,但因铅酸蓄电池行业的卫生防护距离标准只是总标准体系中的一个分标准,对其的修改涉及到整个体系变动,牵扯行业诸多,修改方案不了了之。“此次环保整顿,500米成了硬指标”。   据环保部知情人士透露,目前该部正着手对铅酸蓄电池行业卫生防护距离进行修改,但尚无明确时间表。   王金良教授称,从全球范围看,发明于1859年的铅酸电池,一直是动力电池和蓄能电池的主流,产量用量十分巨大,近几十年来一直鲜闻“血铅”事件和污染情况发生。比如美国,其铅酸蓄电池的用铅量要占其整个国家用铅量的95%以上,但是铅酸蓄电池制造厂排放的铅占不到1.5%。   在“十二五”国家新能源战略规划中,几乎所有绿色清洁能源和IT行业背后,都需要铅酸蓄电池的支撑:每3兆瓦的光伏发电装机,就需要近3亿元的铅酸蓄电池作储能配套 每100兆瓦的风力发电装机,也需要约1亿元的铅酸蓄电池储能 通讯IT行业终端设备尽管广泛采用了锂电池,但其基站、服务器所需备用电源依然是铅酸…… 有业内人士指出,未来20年里,铅酸蓄电池都难以被其他电池取代。譬如在汽车发动机打火领域,要求蓄电池能短时间内释放大电流,适应环境、温度多变等情形 而铅酸蓄电池恰恰能满足这样的要求,而且安全稳定、性价比高。   王金良教授认为,在未来3~5年内,锂电池在电动牵引电池的市场占有率不会超过4% 未来20~30年内,铅酸蓄电池在电动交通工具上的使用依然无法替代。
  • 中国排查1930家铅蓄电池企业 逾8成被停产
    中国环境保护部2日发布消息称,截至2011年7月底,中国各地共排查铅蓄电池企业1930家,其中,取缔关闭583家、停产整治405家、停产610家 另有252家企业在生产,80家在建。   为遏制儿童血铅超标高发态势,环境保护部、国家发展改革委等9部委于今年3月底召开联合会议,部署对铅蓄电池全行业进行彻底排查,并要求各地在7月底之前公布辖区内所有铅蓄电池企业名单。   目前,相关省份均已按时公布排查情况。从地域分布看,中国铅蓄电池企业主要集中在江浙地区。其中,江苏484家,居全国之首,浙江以328家紧随其后。广东、山东、河北、安徽的铅蓄电池企业也均在百家以上。青海、西藏、海南这3个地区没有发现铅蓄电池企业。   从行业分类看,全部1930家企业中,从事蓄电池极板加工生产的企业639家,单纯组装企业1105家,回收企业186家。仍在生产的252家企业中,极板加工生产的企业121家,单纯组装企业108家,回收企业23家。   环保部表示,从近期国务院9部门联合督查看,各地铅蓄电池企业仍存在规划布局凌乱、企业规模普遍偏小、工艺技术水平不高、污染防治设施不完善等问题。个别地区对铅蓄电池整治工作认识不高、整治工作力度有待加强。   环保部要求,各地应进一步加强对各类铅蓄电池企业的环境监管。对已经下达取缔关闭决定或自行关闭的,应督促企业做好后续环境整治工作,拆除生产设备,妥善处置危险废物 对自行停产或被责令停产整治的,未经验收不得擅自恢复生产 对限期治理的,逾期未完成治理任务,要报请当地人民政府责令关闭。   今年2月,《重金属污染综合防治“十二五”规划》被国务院正式批复,成为中国首个“十二五”国家规划。但血铅事件随后仍屡有发生。3月中旬,浙江省台州市168人被查出血铅超标,其中儿童53人。5月份,血铅事件又在浙江德清上演,332人被检测出血铅超标。
  • 欧盟将取消对无线电动工具中使用的电池及蓄电池的豁免
    2006年9月2日,欧盟理事会发布了有关电池及蓄电池的第2006/66/EC号指令。指令要求各成员国禁止含汞量超过0.0005%(重量百分比)所有的电池及蓄电池(不管是否与设备配套使用)以及含镉量超过0.002%(重量百分比)的便携式电池及蓄电池(包括与设备配套使用的产品)投放市场。但是指令也对紧急系统/警报系统、医疗设备、无线电动工具中使用的便携式电池及蓄电池进行了豁免。   2012年11月1日,欧盟理事会发布第G/TBT/N/EU/74号通报,拟修订关于电池和蓄电池以及废旧电池和蓄电池指令2006/66/EC,通报草案将于2016年1月1日起取消对无线电动工具中使用的便携式电池和蓄电池的镉含量的豁免。
  • 蓄电池保养与使用攻略
    蓄电池是汽车上的主要储能装置,为车辆上的所有电子系统提供电力。现代的汽车电子化程度越来越高,电池缺电将会导致整车瘫痪。 蓄电池的保养方法:   轿车用的蓄电池使用超过2年后,容量及放电能力将会下降。一般车用蓄电池寿命不会超过4年。当然了,保养良好的蓄电池的寿命会更长。下面我们来学习一下加水型铅酸电池和免维护型铅酸电池的保养方法。   加水型铅酸蓄电池:注重电池液液位及电池液密度。   铅酸电池的电池液是由硫酸和蒸馏水混合而成的。电池放电时,水会变多而硫酸会变少,这就导致电池液密度降低;充电时,则相反,水会变少而硫酸会变多。电池液浓度则反映了电池液中水和硫酸的比例。正常的电解液密度为1.28/1.29-1.30。   作为车主,我们应该定期检查电池液液位。当电池液不足时应添加蒸馏水至适当液位。在为电池添加蒸馏水后,我们应该检查电池液密度,时刻保持电池液密度在合理的范围内。   免维护型铅酸蓄电池:定期检查魔眼并保持电量充足。   由于免维护型电池没有加水孔以及电池液液位刻度。我们需通过电池上的&ldquo 魔眼&rdquo 来判断蓄电池的状态。魔眼为绿色表示电池正常,充电足;魔眼为黑色表示需要充电;魔眼为白色表示电池需要更换。   放电能力需要使用专用的电池检测仪检测。ATAGO爱拓MASTER-BC电池液折射仪适用于测量电池液比重以及检测作为汽车上的防冻剂混合物,太阳能系统热催化剂或其他工业用途的乙二醇和丙二醇的冷冻温度,其具有现场快速检测,方便携带的特点。   我们一般会使用电压表来检查电池电压,虽然能检测出电池的电压值但却不能检查出电池带负载能力的好坏。为检查出电池的实际状况,我们应该使用专用的电池检测仪检查电池的放电能力及带负载的能力。
  • 工业型防爆除湿器,电力换流站蓄电池室防爆除湿装置
    工业型防爆除湿器,电力换流站蓄电池室防爆除湿装置【新闻导读】高压换流站是整个电力供电系统中将交流电变换为直流电或者将直流电变换为交流电的转换,并达到电力系统对于安全稳定及电能质量的要求而建立的的一个站点,也是电能传输、转换过程中必不可少的一个环节,其运行是否正常直接影响电网的安全、稳定、灵活和经济运行!雨季来临之际,高压换流站的防潮除湿是一项不容忽视的重要工作内容 其中,蓄电池室或锂电池室则是整个高压换流站防潮除湿工作的关键场所!  目前,大部分高压换流站蓄电池室或锂电池室都配置有玻璃窗、轴流风机和百叶窗等,通过通风散热的方式来降低其室内的温度,但对蓄电池室或锂电池室的防潮防湿效果造成了很大的影响!在南方地区垢梅雨季节即使蓄电池室或锂电池室的门窗都关闭好了,但潮湿的空气是无孔不入的,百叶窗的存在则会使室外大量的潮湿空气源源不断的侵入蓄电池室或锂电池室,势必会造成许多不利的影响和危害!  据相关测试表明,在梅雨季节里南方地区很多高压换流站的蓄电池室或锂电池室内环境湿度高达80%RH甚至90%RH以上 在高温高湿的环境是很容易形成凝露现象的,常常引起蓄电池或锂电池柜内电气设备的漏电或放电,严重的甚至还有可能造成火灾与爆炸。另外,蓄电池室或锂电池室内电气设备长时间受到潮湿空气的侵害,极易造成各种金属材料严重锈蚀,最为直接的危害是造成开关柜拒动,以及及影响刀闸的正常操作。  那么,如何做好高压换流站蓄电池室或锂电池室的防潮防湿措施呢?根据每个高压换流站蓄电池室或锂电池室空间的大小,以及湿度的高低等各方面的实际情况安装与之相匹配的正岛BCFZD-8240C换流站蓄电池室除湿器及BCFZD系列工业型防爆除湿器,随时对室内空气进行快速有效除湿,即可避免出现湿度过高或空气过于潮湿的情况,那么以上所述的种种问题也就不会发生,从而确保了高压换流站蓄电池室或锂电池室设备的正常运行和安全   正岛BCFZD-8240C换流站蓄电池室除湿器及BCFZD系列工业型防爆除湿器是通过特殊防爆技术加工处理,可广泛应用于国防、科研、石油、化工、医药、加工制造、生物等存在ⅡA、ⅡB级,T1~T4组可燃性气体、蒸汽与空气混合形成的易引发爆炸的危险场所,本系列产品执行标准如下:  ◎GB3836.1-2010爆炸性环境第1部分:设备通用要求   ◎GB3836.2-2010爆炸性环境第2部分:由隔爆外壳“d”保护的设备   ◎GB3836.4-2010爆炸性环境第4部分:由本质安全型“i”保护的设备   ◎GB3836.9-2006爆炸性气体环境用电气设备第9部分:浇封型“m”   ◎GB3836.15-2000爆炸性气体环境用电气设备第15部分:危险场所电气安装(煤矿除外)。  欢迎您查询工业型防爆除湿器,电力换流站蓄电池室防爆除湿装置的详细信息!防爆除湿器的种类有很多,不同品牌的防爆除湿器价格及应用范围也会有细微的差别,而正 岛 电 器将会为您提供优质的产品和全面的售后服务。 正岛BCF-8240C及BCF系列防爆工业除湿器技术参数与选型参考:产品型号除湿量(l/d)适用面积(㎡)功率(w)电源(v/Hz)尺寸(mm)净重(kg)BCFZD-890C90100-1501700220/50480*430*97050BCFZD-8138C138150-2002000220/50480*430*110058BCFZD-8168C168180-2402800380/50605*410*1650126BCFZD-8240C240240-3604900380/50770*470*1650160BCFZD-8360C360360-4807000380/501240*460*1700200BCFZD-8480C480480-6009900380/501240*460*1750230  正岛BCFZD-8240C换流站蓄电池室除湿器及BCFZD系列工业型防爆除湿器的防爆处理,主要有哪些地方呢?总结起来有三条:  1、防爆除湿器工艺制作,除湿器的主要系统是制冷循环系统。各制冷系统的转换管路须采用紫铜焊接。如其中有外购部件,也必须符合相应的防爆等级要求,才能用于部件组装   2、防爆除湿器主要的外部空气循环系统,主要包括风机,而风机中的电机,也必须符合相应的防爆等级要求。风扇电机须符合GB3836.2-8.3和GB3836.9-90有关要求。  3、防爆除湿器的各种连接线及电源线,必须符合阻燃标准 防爆接线盒内的电路接头及本安电路的接头必须焊接并使用安全接线帽。  4、防爆除湿器的金属外壳及机架,必须做安全接地保护措施。电缆或数据线如有屏蔽层,必须单独接地。  综上所述:南方地区梅雨季节来临之际,及早做好高压换流站蓄电池室或锂电池室的防潮除湿工作是刻不容缓的 最为简捷有效的方法无疑就是配置相应的正岛BCFZD-8240C换流站蓄电池室除湿器及BCFZD系列工业型防爆除湿器来进行除湿,只要将其室内的湿度控制在45-65%RH左右,即可达到最为佳的防潮除湿效果,只在设备运转正常,高压换流站蓄电池室或锂电池室就不用再担心潮湿问题!  如果在高压换流站的蓄电池室或锂电池室内安装一套集中控制系统,根据室内湿度大小自动开启或关闭窗户与正岛BCFZD-8240C换流站蓄电池室除湿器及BCFZD系列工业型防爆除湿器,那么这样对于蓄电池室或锂电池室的防潮除湿和通风散热的效果就更好了。以上关于工业型防爆除湿器,电力换流站蓄电池室防爆除湿装置的全部新闻资讯报道是正 岛 电 器提供的,仅供大家参考!
  • 《新能源汽车动力蓄电池回收利用试点实施方案》发布(附全文)
    p   日前,工业和信息化部、科技部、环境保护部、交通运输部、商务部、质检总局、能源局发布了关于组织开展新能源汽车动力蓄电池回收利用试点工作的通知。为贯彻落实《新能源汽车动力蓄电池回收利用管理暂行办法》,探索技术经济性强、资源环境友好的多元化废旧动力蓄电池回收利用模式,推动回收利用体系建设,工业和信息化部、科技部、环境保护部、交通运输部、商务部、质检总局、能源局将组织开展新能源汽车动力蓄电池回收利用试点工作。以下为具体内容: /p p style=" text-align: center "    strong 新能源汽车动力蓄电池回收利用试点实施方案 /strong /p p   为贯彻落实《新能源汽车动力蓄电池回收利用管理暂行办法》,探索技术经济性强、资源环境友好的多元化废旧动力蓄电池回收利用模式,推动回收利用体系建设,制定本方案。 /p p   一、总体要求 /p p   以党的十九大精神为指导,全面贯彻落实生态文明建设要求,践行新发展理念,选择新能源汽车保有量大、动力蓄电池回收利用基础好、区域带动性强、有积极性的地区开展动力蓄电池回收利用试点。以市场为主导,充分发挥汽车生产、电池生产和综合利用企业主体作用,探索动力蓄电池回收利用市场化商业运作模式,完善相关标准,突破动力蓄电池梯次利用、高效再生利用产业发展瓶颈,建设示范工程,为建立科学完善的动力蓄电池回收利用制度提供实践支撑。 /p p   到2020年,建立完善动力蓄电池回收利用体系,探索形成动力蓄电池回收利用创新商业合作模式。建设若干再生利用示范生产线,建设一批退役动力蓄电池高效回收、高值利用的先进示范项目,培育一批动力蓄电池回收利用标杆企业,研发推广一批动力蓄电池回收利用关键技术,发布一批动力蓄电池回收利用相关技术标准,研究提出促进动力蓄电池回收利用的政策措施。 /p p   二、试点内容 /p p   (一)构建回收利用体系 /p p   充分落实生产者责任延伸制度,由汽车生产企业、电池生产企业、报废汽车回收拆解企业与综合利用企业等通过多种形式,合作共建、共用废旧动力蓄电池回收渠道。鼓励试点地区与周边区域合作开展废旧动力蓄电池的集中回收和规范化综合利用,提高回收利用效率。坚持产品全生命周期理念,建立动力蓄电池产品来源可查、去向可追、节点可控的溯源机制,对动力蓄电池实施全过程信息管理,实现动力蓄电池安全妥善回收、贮存、移交和处置。 /p p   (二)探索多样化商业模式 /p p   充分发挥市场化机制作用,鼓励产业链上下游企业进行有效的信息沟通和密切合作,以满足市场需求和资源利用价值最大化为目标,建立稳定的商业运营模式,推动形成动力蓄电池梯次利用规模化市场。加强大数据、物联网等信息化技术在动力蓄电池回收利用中的应用,建设商业化服务平台,构建第三方评估体系,探索线上线下动力蓄电池残值交易等新型商业模式。 /p p   (三)推动先进技术创新与应用 /p p   鼓励新能源汽车、动力蓄电池生产企业在产品开发阶段优化产品回收和资源化利用的设计 开展废旧动力蓄电池余能检测、残值评估、快速分选和重组利用、安全管理等梯次利用关键共性技术研究,鼓励在余能检测、残值评估等阶段适当引入第三方评价机制 开展废旧动力蓄电池有价元素高效提取、材料性能修复、残余物质无害化处置等再生利用先进技术的研发攻关。同时,形成一系列动力蓄电池回收利用相关标准和技术规范,推动废旧动力蓄电池无害化、规范化、高值化利用。 /p p   (四)建立完善政策激励机制 /p p   鼓励试点地区将动力蓄电池回收利用工作作为落实生态文明建设要求、推动绿色制造产业发展的重要内容及举措,研究支持新能源汽车动力蓄电池回收利用的政策措施,探索促进动力蓄电池回收利用的相关政策激励机制,充分调动各方积极性,促进动力蓄电池回收利用。 /p p   三、组织实施与管理 /p p   (一)试点范围 /p p   在京津冀、长三角、珠三角、中部区域等选择部分地区,开展新能源汽车动力蓄电池回收利用试点工作,以试点地区为中心,向周边区域辐射。支持中国铁塔公司等企业结合各地区试点工作,充分发挥企业自身优势,开展动力蓄电池梯次利用示范工程建设。 /p p   (二)实施年限 /p p   试点工作实施年限原则上不超过2年。 /p p   (三)方案编制与申报 /p p   各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门可自愿申报,会同相关部门按照《新能源汽车动力蓄电池回收利用试点实施方案编制指南》(见附件)组织编制本地区试点实施方案,并报工业和信息化部。中国铁塔公司等结合本企业特点和目标,自行编制示范工程实施方案,报工业和信息化部。 /p p   (四)审核确定 /p p   工业和信息化部、科技部、环境保护部、交通运输部、商务部、质检总局、能源局组织专家对申报的实施方案进行论证,确定试点地区,并对实施方案进行备案。 /p p   (五)实施管理 /p p   试点地区按照试点工作总体要求,积极指导和督促相关企业开展试点工作,进行阶段性评估、经验总结,加强试点工作的过程管理和优化调整。 /p p   (六)总结评估 /p p   试点工作结束后,试点地区对试点完成情况进行总结,中国铁塔公司等企业对示范工程实施情况进行总结,并报工业和信息化部。工业和信息化部、科技部、环境保护部、交通运输部、商务部、质检总局、能源局组织试点验收和示范工程评估,总结试点示范经验,在全国范围内推广。 /p p   四、保障措施 /p p   (一)加强组织领导 /p p   试点地区应高度重视试点工作,加强对试点工作的组织领导,成立试点工作领导小组,按照试点方案目标、重点任务和具体计划,确定各项任务分工,落实责任,确保试点目标任务按期完成。 /p p   (二)加大政策扶持 /p p   试点地区应加强资源整合,积极协调利用现有政策措施和资金渠道,加大对试点工作的支持力度。支持中国铁塔公司等优势企业联合设立产业基金,加强政府、企业和金融机构的对接,引导金融机构创新产品和服务。 /p p   (三)强化能力建设 /p p   国家建立统一的溯源管理平台,对试点地区动力蓄电池全生命周期实现信息溯源管理,支撑试点工作科学开展和阶段性评估。发挥行业协会、骨干企业和科研机构等各方面优势,搭建动力蓄电池回收利用交流平台,促进试点地区产学研用合作,建立动力蓄电池回收利用技术联合攻关和推广应用机制。 /p p   (四)加强宣传推广 /p p   充分发挥电视、广播、报纸、互联网等新闻媒体作用,加强对社会公众的宣传,增强公众资源节约与环境保护意识。试点地区应在网站上公布本地区试点企业名单和相关信息,积极引导公众参与新能源汽车动力蓄电池回收利用。 /p
  • 环保风暴将至 铅酸蓄电池业命悬一线
    《重金属污染综合防治‘十二五’规划》日前已正式出台,记者日前从中国电器工业协会铅酸蓄电池分会了解到,铅酸蓄电池行业已经被明确为今年的排查重点。全行业都需要加大环保投入,部分企业还面临着重新选址搬迁的问题。   协会人士表示,“很多企业没有觉得压力大,但实际上我们已经命悬一线。”不久前,国务院正式批复了《重金属污染综合防治‘十二五’规划》,今年排查的重点还是铅酸蓄电池行业。   铅酸蓄电池行业成为排查重点不是偶然事件。2011年伊始,安徽省怀宁县高河镇新山社区23名儿童在省儿童医院检测出血铅超标,后经安徽省安庆市人民政府初步调查后认定,血铅事件与当地环保部门对博瑞电源有限公司长期违法试生产,并未采取有效措施有重大联系。此前的血铅污染事件还曾出现在陕西凤翔、湖南武冈和福建上杭等地。   因此《重金属污染综合防治‘十二五’规划》明确了内蒙古、江苏省等14个重金属污染综合防治重点省份、138个重点防治区域和4452家重点防控企业,同时根据污染排放情况和环境情况划定了141家铅酸蓄电池企业、7个重点区域,开展铅酸蓄电池的综合防控。   根据环保部门的思路,届时将“发现一个,解决一个,警示一片”。据透露,此次的调子是“态度要坚决,手段要严厉”。   事实上,部分铅酸蓄电池企业对生产环境和环保设备的投入也在逐年增加,一些大型的铅酸蓄电池生产企业甚至实现了零排放。但是在目前已发生产许可证的1700多家蓄电池企业中,环保设施有问题企业的比例依然不小。   因此该人士认为,“今后一段时间,全行业都需要重新审视环保的重要性并投入更多的资金,有些企业在最多五年内面临着重新选址搬迁的问题。”   市场人士认为,环保风暴给行业龙头带来的更多是机遇。长时间以来,一部分蓄电池行业的环保投入很少,没有正规纳税,加之不当的竞争手段,“导致行业的盈利能力普遍偏弱减弱,大多都是艰难求生存”。   今后,通过加强铅酸蓄电池行业的整顿,一些不规范的企业会被淘汰出局,而可持续发展的规范企业也会从中受益,净化后的蓄电池行业经营秩序和环境也将得到改善。目前,A股市场上铅酸蓄电池行业的龙头企业是风帆股份。
  • 铅蓄电池行业规范企业新名单出炉148家都有谁?
    p style=" text-align: justify "   为推动铅蓄电池行业可持续发展,依据《铅蓄电池行业规范条件(2015年本)》(以下简称:《规范条件》),工业和信息化部组织专家组开展了铅蓄电池企业规范审核工作。 /p p style=" text-align: justify "   截止目前,工业和信息化部发布2017年第20号公告称,经企业申请、省级工业和信息化主管部门初审、专家审核、工业和信息化部复核以及网上公示等程序,共148家企业列入符合《铅蓄电池行业规范条件(2015年本)》企业名单。 /p p style=" text-align: justify "   据悉,2012年发布的《铅蓄电池行业准入条件》由工业和信息化部会同有关部门及相关行业协会制定,并于2015年进行修订后形成《铅蓄电池行业规范条件》(2015年本)(以下简称《规范条件》)。《规范条件》于2015年12月10日发布,12月25日起正式实施。 /p p style=" text-align: justify " 以下为148家企业详细内容: /p p style=" text-align: center " & nbsp 拟公告的符合《铅蓄电池行业规范条件(2015年本)》企业名单(第六批) /p p style=" text-align: center " img title=" 9.JPG" alt=" 9.JPG" src=" https://img1.17img.cn/17img/images/201812/uepic/a8747939-ea1a-4ecd-be34-08a247569c8c.jpg" / /p p style=" text-align: center " 符合《铅蓄电池行业规范条件(2015年本)》企业名单(第五批) (排名不分先后) /p p style=" text-align: center " img title=" 8.JPG" alt=" 8.JPG" src=" https://img1.17img.cn/17img/images/201812/uepic/68f947a7-ae19-4dc9-a937-fd760dc1d1f4.jpg" / /p p style=" text-align: center " 符合《铅蓄电池行业规范条件(2015年本)》企业名单(第四批) (排名不分先后) /p p style=" text-align: center " img title=" 6.JPG" src=" https://img1.17img.cn/17img/images/201812/uepic/dc4d6eae-9262-4e1a-8ae8-eba56edbb2f1.jpg" / /p p style=" text-align: center " img title=" 7.JPG" src=" https://img1.17img.cn/17img/images/201812/uepic/a692ba80-7771-403b-9f8f-940cbb10fe03.jpg" / /p p style=" text-align: center " 符合《铅蓄电池行业规范条件(2015年本)》企业名单(第三批) (排名不分先后) /p p style=" text-align: center " img title=" 5.JPG" src=" https://img1.17img.cn/17img/images/201812/uepic/d8ff515b-be4e-44f9-84c9-0864c6305562.jpg" / /p p style=" text-align: center " 符合《铅蓄电池行业规范条件(2015年本)》企业名单(第二批) (排名不分先后) /p p style=" text-align: center " img title=" 3.JPG" alt=" 3.JPG" src=" https://img1.17img.cn/17img/images/201812/uepic/57d763dc-5907-4e78-85e7-35aec5c81442.jpg" / /p p style=" text-align: center " img title=" 4.JPG" src=" https://img1.17img.cn/17img/images/201812/uepic/5ed74051-cf04-4169-976a-bbccff479ed6.jpg" / /p p style=" text-align: center " 符合《铅蓄电池行业规范条件(2015年本)》企业名单(第一批) (排名不分先后) /p p style=" text-align: center " img title=" 1.JPG" src=" https://img1.17img.cn/17img/images/201812/uepic/7d2c42a4-27c0-4ea0-8089-0ceba8000110.jpg" / /p p style=" text-align: center " img title=" 2.JPG" src=" https://img1.17img.cn/17img/images/201812/uepic/90ac786e-5db4-4b1f-a67e-a43b0b6df677.jpg" / /p p /p p br/ /p p style=" text-align: justify " br/ /p p style=" text-align: justify " br/ /p p style=" text-align: justify " br/ /p p /p
  • 工信部:推进长三角新能源汽车动力蓄电池回收利用试点工作
    p   记者25日从工业和信息化部获悉,工信部将推进长三角新能源汽车动力蓄电池回收利用试点工作。 /p p   为推进长三角地区新能源汽车动力蓄电池回收利用试点工作顺利开展,促进区域协作,工信部节能与综合利用司司长高云虎近日带队前往江苏省、浙江省开展新能源汽车动力蓄电池回收利用工作调研,并在浙江省衢州市组织召开了长三角地区工作座谈会,上海市、江苏省、浙江省工业和信息化主管部门有关负责人参加调研活动及会议。 /p p   座谈会上,上海市、江苏省、浙江省三地工业和信息化主管部门分别介绍了工作进展情况,并就下一步加快区域合作提出了思路和建议。 /p p   高云虎指出,加快推进新能源汽车动力蓄电池回收利用,对于保障我国新能源汽车产业健康持续发展、推进生态文明建设具有重要意义。当前要统筹谋划,加快推进试点方案制定及实施各项工作。一是加强区域协作,打破区域和行业界限,加强跨区域产业合作,将动力蓄电池回收利用工作打造成为长江经济带绿色发展工作的亮点。二是加快构建回收体系,充分发挥政府引导和监督作用,促进汽车生产企业全面落实生产者责任,建立回收渠道,加强与电池生产、综合利用等企业合作,通过多种形式构建跨行业联合共同体。三是加强产业布局,重点抓好“两头”,即前端回收和后端再利用及无害化处置,鼓励梯次利用企业创新发展,严格控制湿法冶炼企业的规模和布点。四是加强政策引导,充分利用现有财税等支持政策,鼓励企业持续加强技术研发与创新,做好技术储备,进一步提升企业环保水平,从全生命周期角度实现产业绿色发展。 /p p br/ /p
  • 浙江台州等地168人血铅超标 蓄电池厂停业整顿
    受台州蓄电池企业污染致168人血铅超标事件的影响,台州、武进等多地铅蓄电池厂被停业整顿。   中国电工技术学会铅酸蓄电池专业委员会秘书长徐红告诉《第一财经(微博)日报》记者,目前国家相关部门正在对我国可能存在污染的重金属企业进行排查,以便制定更为详细的防止重金属污染的方案。   工艺落后致污染严重   截至3月26日下午5时,台州路桥区当地已有168人检测出血铅超标。台州环科院等单位专家的调查认定:这是一起由速起蓄电池公司引起的铅污染事件。路桥区环保局局长蒋新才在昨天的新闻发布会上透露,速起蓄电池公司周边300米范围内的土壤已被重金属污染,当地受污染较严重的土壤可能会被彻底挖除。   记者从速起蓄电池公司官方网站了解到,该公司是一家致力于开发、制造各类摩托车、汽车、UPS等专用密封式可充电蓄电池产品的生产型企业。据中新社报道,该公司厂房离居民区仅一墙之隔,站在厂房外就能闻到一股股刺鼻的气味。厂区里时有污水排出,而村民洗衣服、种菜,大多使用井水。   徐红告诉本报:“由于爆出铅酸污染事件,目前,台州、武进等多地铅蓄电池厂已经被停业整顿。”   徐红介绍,此次铅污染事件主角速起蓄电池公司产量并不算高,根据污染程度看,该公司的生产技术极可能是目前铅酸蓄电池行业落后的外化成工艺,但由于此类技术成本较低,不少蓄电池企业仍在使用。她告诉记者:“(国家)相关部门已经决定在两到三年内彻底淘汰这类技术的生产企业。改换成技术可靠、污染较少的内化成工艺。”   废旧蓄电池流入无证企业   这起事件距离2月18日国务院正式批复《重金属污染综合防治“十二五”规划》仅一个多月,该规划是我国第一个“十二五”专项规划。规划要求对未进行环评和“三同时”验收的重金属企业一律停产整改。徐红表示:“近期,国家相关部门已经按照规划要求,对可能存在重金属污染的企业进行地毯式排查,这其中包括铅酸蓄电池企业。”   然而,困难来自多方面。徐红坦言,首先,在标准制定上,尺度把握较难。“以前的相关规定,现在看来并不一定科学,比方说某一定产能蓄电池厂要求离居民400米,但是,400米之外不一定就没有铅污染,这需要根据各个企业的具体规模以及技术等来进行科学测算。”   其次,地方保护较严重,监管力度上仍需加强。徐红透露,此次有关部门排查中发现,很多蓄电池厂处于无证生产,“一些有证的企业很容易找到,而无证的企业很难查到。”   此外,徐红认为,更为严重的是在废旧铅酸蓄电池回收。按照国家相关规定,回收废旧铅酸蓄电池需要很大的投入,但许多无证企业利用不按照国家规定生产、减少环保投入的成本优势,违规低价回收蓄电池获利,造成更为严重的污染。
  • 山东严控重金属污染 92家铅蓄电池企业停产整顿
    日前发布的2010年山东省环境状况公报披露,自去年开始,山东已连续开展了省、市、县三级涉铅等重金属污染专项整治。通过整治,山东省摸清了重金属污染企业底数,对存在环境违法问题的92家铅蓄电池企业坚决予以停产整顿,对18家“土小”炼铅企业予以关闭取缔,初步遏制了涉铅等重金属污染的高发态势。   据统计,山东省重金属污染企业涉及24个行业、114个县(市、区)。全省共有涉铅、汞、镉、铬、砷等5种重金属企业536家,其中涉铅企业156家,铅蓄电池企业134家。2010年山东省环保厅会同有关部门制定了《关于加强重金属污染防治工作实施方案》,并组织编制《山东省重金属污染综合防治规划》。   “十二五”期间,山东省将围绕预防、预警、应急三大环节,加快重金属污染防控体系建设。全省将严格落实重金属污染防治工作地方政府负责制,强化环境执法监管力度,实施强制性清洁生产审核。将严格环境影响评价制度,禁止在重要生态功能区和因重金属导致环境不能稳定达标区域新建相关项目,把铅蓄电池生产企业建设项目环评文件的审批权,全部上收到省级行政主管部门。对所有重金属废水排放企业安装特征污染物自动监控装置,实现实时监控。
  • GB/T 36972-2018《电动自行车用锂离子蓄电池》将于2019年07月01日正式实施
    由国家市场监督管理总局、国家标准化管理委员会批准的GB/T 36972-2018《电动自行车用锂离子蓄电池》国家标准于2018年12月28日正式发布,将于2019年07月01日正式实施,该标准对推动电动自行车用锂离子电池综合标准化工作及电动自行车锂离子电池推广应用具有重要意义和作用,同时也为电动车用锂离子电池引领了一条健康、可持续发展的道路。我国是全球电动自行车生产和销售大国,经过多年的市场发展,人们环保意识的加强,绿色出行的理念深入人心,电动自行车逐渐成为消费者日常短途出行的重要交通工具。工信部数据显示,当前国内电动自行车的社会保有量约2亿辆,年产量为3000多万辆。而锂电池产品占有量仅约10%。随着现行强制性国家标准GB 17761-2018《电动自行车通用技术条件》即将于2019年04月15日强制实施,新的电动自行车国标明确规定电动自行车需具有脚踏骑行能力,zui高设计车速不超过25Km/h,整车质量(含电池)不超过55Kg,电机功率不超过400W,蓄电池标称电压不超过48V等。电动自行车新国标的执行,在车型结构、重量及相关性能等各方面要求很大程度指向锂电款,铅酸电池因其重量过大,加之标准对车辆脚踏行驶能力有要求,所以铅酸款电动自行车要通过3C认证比较困难,未来电动自行车采用锂电池是大势所趋。随着强制性新国标的势在必行,让具备质量轻、容量大、充放电次数多等优势的锂电池成为新日、爱玛、雅迪、立马、绿源、台铃、新大洲、新蕾、绿能、绿佳、凤凰、小牛、金箭、新本?冈田等多家电动自行车企业产品研发的主攻方向。电动自行车用锂离子蓄电池与传统的铅酸蓄电池相比,在安全性、性价比、互换性和回收处理等方面还存在一些问题。此次工信部正式发布出台的GB/T 36972-2018《电动自行车用锂离子蓄电池》新的标准体系以锂离子蓄电池为核心,主要从电芯及电池组、附件及部件和电动自行车应用等方面完善优化,以促进锂离子电池在电动自行车市场中的应用。GB/T 36972-2018《电动自行车用锂离子蓄电池》主要由国家轻型电动车及电池产品质量监督检验中心、星恒电源股份有限公司、山东中信迪生电源有限公司、天津力神电池股份有限公司、浙江超威创元实业有限公司、杭州万好万家动力电池有限公司、浙江天能能源科技股份有限公司、宁德时代新能源科技股份有限公司、江苏双登富朗特新能源有限公司、河南环宇赛尔新能源科技有限公司、浙江振龙电源股份有限公司、上海化工研究院有限公司、大连中比动力电池有限公司、云南能投汇龙科技股份有限公司、捷奥比电动车有限公司、深圳市深铃车业有限公司、雅迪科技集团有限公司等单位起草。本标准规定了电动自行车用锂离子蓄电池的术语和定义、符号和型号命名、要求、试验方法、检验规则及标志、包装、运输及贮存。本标准适用于电动自行车用锂离子蓄电池组(以下简称电池组)。此次同时发布的还有其他几项相关标准:1)GB/T 36943-2018《电动自行车用锂离子蓄电池型号命名与标志要求》本标准主要由国家轻型电动车及电池产品质量监督检验中心、浙江超威创元实业有限公司、上海德朗能动力电池有限公司、优科能源(漳州)有限公司、雅迪科技集团有限公司等单位起草。本标准规定了电动自行车用锂离子蓄电池型号命名方法和标志要求。本标准适用于电动自行车用锂离子蓄电池。2)GB/T 36945-2018《电动自行车用锂离子蓄电池词汇》本标准主要由上海德朗能动力电池有限公司、国家轻型电动车及电池产品质量监督检验中心、浙江超威创元实业有限公司、浙江天能能源科技股份有限公司、雅迪科技集团有限公司等单位起草。本标准规定了电动自行车用锂离子蓄电池的一般词汇。本标准适用于电动自行车用锂离子蓄电池。电动自行车新国标GB17761的发布及实施,要求整车重量不大于55KG。采用铅酸蓄电池的电动自行车已不能完全满足国家强制标准的要求。为适应电动自行车新国标的要求,很多企业纷纷推出以锂离子电池为动力源的电动自行车。然而现行电动自行车锂离子电池标准要求滞后,行业缺乏准入门槛。该三项锂电池国家标准的实施将对促进锂电池产品技术水平提升,引导行业升级,走高质量发展道路。3)GB/T 36944-2018《电动自行车用充电器技术要求》本标准主要由国家轻型电动车及电池产品质量监督检验中心、南京西普尔科技实业有限公司、浙江超威创元实业有限公司、南京特能电子有限公司、清华大学、天能电池集团有限公司、浙江绿源电动车有限公司、雅迪科技集团有限公司、爱玛科技集团股份有限公司、江苏新日电动车股份有限公司、立马车业集团有限公司、澳柯玛(沂南)新能源电动车有限公司、浙江聚源电子有限公司、江苏江禾高科电子有限公司、江苏海宝电池科技有限公司、扬州奥凯新能源科技有限公司、上海协津自行车科技服务有限公司、无锡市产品质量监督检验院、台州市质量技术监督检测研究院等单位起草。本标准规定了电动自行车用充电器的术语和定义、分类和代号、要求、试验方法、检验规则、标志、说明书、包装、运输和贮存。本标准适用于额定电压不超过250V的电动自行车用蓄电池充电器。本标准不适用于电动自行车用车载充电器。电动自行车用充电器是使用极为广泛的民用品,同时它也是新能源中最主要的组成部分,由于充电器质量问题,可能直接导致被充电的铅酸或锂离子电池损坏,甚至引起人生、财产安全事故。目前,涉及普通消费者的其他产品基本都有安全标准,该标准项目是电动自行车用充电器安全使用中的迫切需求的,可以填补国家标准在这方面检测标准的空白,对于电动自行车用充电器规范及发展和普通消费者的安全使用都将起到重要的作用。Delta德尔塔仪器专注于锂电池方面的检测设备,如锂电池温控型外部短路试验机|锂电池过充过放测试系统|过充过放测试防爆试验箱|锂电池振动冲击试验台|锂电池挤压针刺一体试验机|锂电池重物冲击试验机|锂电池热冲击(热滥用)试验箱|锂电池燃烧喷射试验机|锂电池加速度冲击试验台|锂电池高低温冷热冲击试验箱|锂电池跌落试验机|锂电池高空低气压试验箱。除了锂电池方面的检测设备,还专注电动自行车用的电气安全安规、环境可靠性、车架部件检测设备的研发制造,如电动自行车充电器测试仪|电动自行车路视仪|电动自行车把立管弯曲强度试验机|电动自行车车架前叉振动试验机|车架前叉组合件落下试验机|车架前叉组合件落重试验机等等,符合GB17761-2018电动自行车新国标要求。18128028677张工。
  • 《电动自行车用锂离子蓄电池安全技术规范》强制性国标发布
    4月25日,国家市场监督管理总局(国家标准化管理委员会)批准发布《电动自行车用锂离子蓄电池安全技术规范》强制性国家标准,于2024年11月1日起实施。国家标准《电动自行车用锂离子蓄电池安全技术规范》 由339(工业和信息化部)归口,委托TC155SC1(全国自行车标准化技术委员会电动自行车分会)执行 。主要起草单位:无锡市检验检测认证研究院 、星恒电源股份有限公司 、厦门新能安科技有限公司 、天能帅福得能源股份有限公司 、中国电子技术标准化研究院 、雅迪科技集团有限公司 、爱玛科技集团股份有限公司 、中国自行车协会 、中国电池工业协会 、中国质量认证中心 、浙江南都电源动力股份有限公司 、广东博力威科技股份有限公司 、浙江超威创元实业有限公司 、江苏小牛电动科技有限公司 、浙江绿源电动车有限公司 、台铃科技(江苏)股份有限公司 、应急管理部上海消防研究所 、北京市产品质量监督检验研究院 、惠州市亿纬锂能股份有限公司 、华为数字能源技术有限公司 、村田新能源(无锡)有限公司 、九号智能(常州)科技有限公司 、立马车业集团有限公司 、江苏新日电动车股份有限公司 、欣旺达电子股份有限公司 、深圳市比亚迪理电池有限公司 、合肥国轩高科动力能源有限公司 、益阳科力远电池有限责任公司 、广州集泰化工股份有限公司 、上海哈啰普惠科技有限公司 、河南克能新能源科技有限公司 、无锡市消防救援支队 、广东产品质量监督检验研究院 、天津摩托车质量监督检验所 、佛山市质量计量监督检测中心 、浙江方圆检测集团股份有限公司 、威凯检测技术有限公司 、山东省产品质量检验研究院 。本文件规定了电动自行车用锂离子蓄电池单体和电池组的安全要求和试验方法,适用于符合GB17761规定的电动自行车用锂离子蓄电池单体和电池组。主要检验项目包括:电池安全项目:过充电、过放电、外部短路、热滥用、针刺;电池组机械安全项目:挤压、机械冲击、振动、自由跌落、提手强度、模制壳体应力等;电池组电气安全项目:强制放电、过充电保护、过流放电保护、短路保护、温度保护、绝缘电阻、静电放电等;电池组环境安全项目:低气压、高低温冲击、浸水、盐雾、湿热、阻燃性等;人身安全项目:热扩散。该标准发布后,企业为达到要求,要根据产品升级可行性,需要采取旧产品淘汰、技术研发、原材料采购、生产设备升级等方式,满足标准要求。
  • 铅酸蓄电池生产 | 通过在线浓度测量优化化学反应和实现快速转产
    可靠的在线硫酸浓度测量可以确保化学反应过程的质量和蓄电池中的最终 H2SO4浓度。另外还可以缩短加注站转产期间的停机时间。 铅酸蓄电池是最早、最成熟的可充电电池。由于价格低、功率质量比相对较大,因此尽管能量重量比非常小,但它主要用作汽车起动、照明和点火 (SLI) 电池。蓄电池生产中的硫酸在铅酸蓄电池的生产过程中,需要用到不同的浓度。硫酸浓度不仅取决于生产步骤,还取决于蓄电池的类型和尺寸。铅酸蓄电池的主要成分是由铅制成的阳极、由二氧化铅制成的阴极和作为电解质的稀硫酸 (H2SO4)。化学反应需要硫酸的第一个生产步骤是极板化成。化学反应过程中会在正极板上形成α和β PbO2。α和β PbO2之间的比率直接影响蓄电池的电流效率。在化学反应过程中,H2SO4浓度是实现正确比率的一个重要参数。槽化完成后,会组装蓄电池,加注正确浓度的硫酸,并进行充电。电池内化学反应后,会更换电解质(二次进料法)或调节硫酸(一次进料法)。在加注和储能结束时,硫酸浓度和电解质水平必须符合规定的浓度。应用解决方案 硫酸浓度测量在硫酸溶液中,密度测量非常适合测定高达90%的H2SO4浓度。在铅酸蓄电池生产中,0%至55% (1.4453 g/cm³ @ 20°C) 的浓度范围很重要,密度与硫酸浓度具有陡峭且几乎呈线性的相关性。密度值与H2SO4溶液浓度之间的关系稀释来料的硫酸高浓度硫酸 (98%) 主要通过卡车运输到生产现场。现场将浓缩的H2SO4稀释至所需的不同浓度。硫酸在稀释过程中会放出大量的热量,需要进行冷却。因此,硫酸的温度在稀释过程中变化很快。由于接液部件由玻璃制成,安东帕的高精度在线密度传感器L-Dens 3300 GLS版本可以轻松跟踪这些变化。所有塑料涂层传感器都是热惰性传感器,无法跟踪快速温度变化(例如大多数电导传感器)。硫酸稀释系统加注站在加注站稀释中小型工厂用罐中储存各种所需浓度的硫酸。大型工厂可以进行两阶段稀释过程。第一步是稀释并储存中等浓度的H2SO4,第二步是在加注站进行最终稀释(如上图所示 )。产品转换,即推出新类型或尺寸的蓄电池,可能引起加注站的浓度变化。如果仅由实验室浓度测量提供支持,则调整灌装罐的浓度可能需要长达40分钟。安东帕的在线密度传感器L-Dens 3300 可以协助实现自动控制浓度变化,从而将停机时间缩短到手动控制变化所需时间的一小部分。槽化成 在化学反应过程中,电解质的浓度将会增加。硫酸浓度测量和调节是实现高质量恒定化学反应过程的关键所在。循环方法会在化学反应期间测量和调节硫酸浓度应用优势 L-Dens 3300 GLS版本是一款非常紧凑的在线密度传感器,其接液部件由玻璃制成。它包括集成控制器和配备用户界面和电容式按键的高品质显示屏。优点:优化化学反应过程大幅缩短灌装线转产期间的停机时间确保加注过程的质量 测量温度/精度:安东帕硫酸在线密度传感器传感器:高度精确包括自动温度补偿易于操作且免维护适用于H2SO4 应用的其他安东帕解决方案硫酸生产测量 0% 至 110% 之间的 H2SO4 酸洗液监测
  • 六部委联合发布《新能源汽车动力蓄电池回收利用管理暂行办法》
    p style=" text-align: center " 工业和信息化部 科技部 环境保护部 br/ /p p style=" text-align: center " 交通运输部 商务部 质检总局 能源局 /p p style=" text-align: center " 关于印发《新能源汽车动力蓄电池回收利用管理暂行办法》的通知 /p p style=" text-align: center "   工信部联节〔2018〕43号 /p p 各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化、科技、环保、交通、商务、质检、能源主管部门,各有关单位: /p p   为加强新能源汽车动力蓄电池回收利用管理,规范行业发展,推进资源综合利用,保护环境和人体健康,保障安全,促进新能源汽车行业持续健康发展,工业和信息化部、科技部、环境保护部、交通运输部、商务部、质检总局、能源局联合制定了《新能源汽车动力蓄电池回收利用管理暂行办法》。现印发给你们,请认真贯彻执行。 /p p style=" text-align: right "   工业和信息化部 /p p style=" text-align: right "   科学技术部 /p p style=" text-align: right "   环境保护部 /p p style=" text-align: right "   交通运输部 /p p style=" text-align: right "   商务部 /p p style=" text-align: right "   国家质量监督检验检疫总局 /p p style=" text-align: right "   国家能源局 /p p style=" text-align: right "   2018年1月26日 /p p style=" text-align: center " strong   新能源汽车动力蓄电池回收利用管理暂行办法 /strong /p p   一、总则 /p p   第一条 为加强新能源汽车动力蓄电池回收利用管理,规范行业发展,推进资源综合利用,保障公民生命财产和公共安全,促进新能源汽车行业持续健康发展,依据《中华人民共和国环境保护法》《中华人民共和国固体废物污染环境防治法》《中华人民共和国清洁生产促进法》《中华人民共和国循环经济促进法》等法律,按照《国务院关于印发节能与新能源汽车产业发展规划(2012—2020年)的通知》及《国务院办公厅关于加快新能源汽车推广应用的指导意见》要求,制定本办法。 /p p   第二条 本办法适用于中华人民共和国境内(台湾、香港、澳门地区除外)新能源汽车动力蓄电池(以下简称动力蓄电池)回收利用相关管理。 /p p   第三条 在生产、使用、利用、贮存及运输过程中产生的废旧动力蓄电池应按照本办法要求回收处理。 /p p   第四条 工业和信息化部会同科技部、环境保护部、交通运输部、商务部、质检总局、能源局在各自职责范围内对动力蓄电池回收利用进行管理和监督。 /p p   第五条 落实生产者责任延伸制度,汽车生产企业承担动力蓄电池回收的主体责任,相关企业在动力蓄电池回收利用各环节履行相应责任,保障动力蓄电池的有效利用和环保处置。坚持产品全生命周期理念,遵循环境效益、社会效益和经济效益有机统一的原则,充分发挥市场作用。 /p p   第六条 国家支持开展动力蓄电池回收利用的科学技术研究,引导产学研协作,鼓励开展梯次利用和再生利用,推动动力蓄电池回收利用模式创新。 /p p   二、设计、生产及回收责任 /p p   第七条 动力蓄电池生产企业应采用标准化、通用性及易拆解的产品结构设计,协商开放动力蓄电池控制系统接口和通讯协议等利于回收利用的相关信息,对动力蓄电池固定部件进行可拆卸、易回收利用设计。材料有害物质应符合国家相关标准要求,尽可能使用再生材料。新能源汽车设计开发应遵循易拆卸原则,以利于动力蓄电池安全、环保拆卸。 /p p   第八条 电池生产企业应及时向汽车生产企业等提供动力蓄电池拆解及贮存技术信息,必要时提供技术培训。汽车生产企业应符合国家新能源汽车生产企业及产品准入管理、强制性产品认证的相关规定,主动公开动力蓄电池拆卸、拆解及贮存技术信息说明以及动力蓄电池的种类、所含有毒有害成分含量、回收措施等信息。 /p p   第九条 电池生产企业应与汽车生产企业协同,按照国家标准要求对所生产动力蓄电池进行编码,汽车生产企业应记录新能源汽车及其动力蓄电池编码对应信息。电池生产企业、汽车生产企业应及时通过溯源信息系统上传动力蓄电池编码及新能源汽车相关信息。 /p p   电池生产企业及汽车生产企业在生产过程中报废的动力蓄电池应移交至回收服务网点或综合利用企业。 /p p   第十条 汽车生产企业应委托新能源汽车销售商等通过溯源信息系统记录新能源汽车及所有人溯源信息,并在汽车用户手册中明确动力蓄电池回收要求与程序等相关信息。 /p p   第十一条 汽车生产企业应建立维修服务网络,满足新能源汽车所有人的维修需求,并依法向社会公开动力蓄电池维修、更换等技术信息。新能源汽车售后服务机构、电池租赁等运营企业应在动力蓄电池维修、拆卸和更换时核实新能源汽车所有人信息,按照维修手册及贮存等技术信息要求对动力蓄电池进行维修、拆卸和更换,规范贮存,将废旧动力蓄电池移交至回收服务网点,不得移交其他单位或个人。 /p p   新能源汽车售后服务机构、电池租赁等运营企业应在溯源信息系统中建立动力蓄电池编码与新能源汽车的动态联系。 /p p   第十二条 汽车生产企业应建立动力蓄电池回收渠道,负责回收新能源汽车使用及报废后产生的废旧动力蓄电池。 /p p   (一)汽车生产企业应建立回收服务网点,负责收集废旧动力蓄电池,集中贮存并移交至与其协议合作的相关企业。 /p p   回收服务网点应遵循便于移交、收集、贮存、运输的原则,符合当地城市规划及消防、环保、安全部门的有关规定,在营业场所显著位置标注提示性信息。 /p p   (二)鼓励汽车生产企业、电池生产企业、报废汽车回收拆解企业与综合利用企业等通过多种形式,合作共建、共用废旧动力蓄电池回收渠道。 /p p   (三)鼓励汽车生产企业采取多种方式为新能源汽车所有人提供方便、快捷的回收服务,通过回购、以旧换新、给予补贴等措施,提高其移交废旧动力蓄电池的积极性。 /p p   第十三条 汽车生产企业与报废汽车回收拆解企业等合作,共享动力蓄电池拆卸和贮存技术、回收服务网点以及报废新能源汽车回收等信息。回收服务网点应跟踪本区域内新能源汽车报废回收情况,可通过回收或回购等方式收集报废新能源汽车上拆卸下的动力蓄电池。 /p p   报废新能源汽车回收拆解,应当符合国家有关报废汽车回收拆解法规、规章和标准的要求。 /p p   第十四条 新能源汽车所有人在动力蓄电池需维修更换时,应将新能源汽车送至具备相应能力的售后服务机构进行动力蓄电池维修更换 在新能源汽车达到报废要求时,应将其送至报废汽车回收拆解企业拆卸动力蓄电池。动力蓄电池所有人(电池租赁等运营企业)应将废旧动力蓄电池移交至回收服务网点。废旧动力蓄电池移交给其他单位或个人,私自拆卸、拆解动力蓄电池,由此导致环境污染或安全事故的,应承担相应责任。 /p p   第十五条 废旧动力蓄电池的收集可参照《废蓄电池回收管理规范》(WB/T 1061-2016)等国家有关标准要求,按照材料类别和危险程度,对废旧动力蓄电池进行分类收集和标识,应使用安全可靠的器具包装以防有害物质渗漏和扩散。 /p p   第十六条 废旧动力蓄电池的贮存可参照《废电池污染防治技术政策》(环境保护部公告2016年第82号)、《一般工业固体废物贮存、处置场污染控制标准》(GB 18599-2016)等国家相关法规、政策及标准要求。 /p p   第十七条 动力蓄电池及废旧动力蓄电池包装运输应尽量保证其结构完整,属于危险货物的,应当遵守国家有关危险货物运输规定进行包装运输,可参照《废电池污染防治技术政策》(环境保护部公告2016年第82号)、《废蓄电池回收管理规范》(WB/T 1061-2016)等国家相关法规、政策及标准要求。 /p p   三、综合利用 /p p   第十八条 鼓励电池生产企业与综合利用企业合作,在保证安全可控前提下,按照先梯次利用后再生利用原则,对废旧动力蓄电池开展多层次、多用途的合理利用,降低综合能耗,提高能源利用效率,提升综合利用水平与经济效益,并保障不可利用残余物的环保处置。 /p p   第十九条 综合利用企业应符合《新能源汽车废旧动力蓄电池综合利用行业规范条件》(工业和信息化部公告2016年第6号)的规模、装备和工艺等要求,鼓励采用先进适用的技术工艺及装备,开展梯次利用和再生利用。 /p p   第二十条 梯次利用企业应遵循国家有关政策及标准等要求,按照汽车生产企业提供的拆解技术信息,对废旧动力蓄电池进行分类重组利用,并对梯次利用电池产品进行编码。 /p p   梯次利用企业应回收梯次利用电池产品生产、检测、使用等过程中产生的废旧动力蓄电池,集中贮存并移交至再生利用企业。 /p p   第二十一条 梯次利用电池产品应符合国家有关政策及标准等要求,对不符合该要求的梯次利用电池产品不得生产、销售。 /p p   第二十二条 再生利用企业应遵循国家有关政策及标准等要求,按照汽车生产企业提供的拆解技术信息规范拆解,开展再生利用 对废旧动力蓄电池再生利用后的其他不可利用残余物,依据国家环保法规、政策及标准等有关规定进行环保无害化处置。 /p p   四、监督管理 /p p   第二十三条 工业和信息化部会同国家标准化主管部门研究制定拆卸、包装运输、余能检测、梯次利用、材料回收、安全环保等动力蓄电池回收利用技术标准,建立动力蓄电池回收利用管理标准体系。 /p p   第二十四条 建立动力蓄电池回收服务网点上传制度,汽车生产企业应定期通过溯源信息系统上传动力蓄电池回收服务网点等信息,并通过信息平台及时向社会公布有关信息。 /p p   第二十五条 工业和信息化部、质检总局负责建立统一的溯源信息系统,会同环境保护部、交通运输部、商务部等有关部门建立信息共享机制,确保动力蓄电池产品来源可查、去向可追、节点可控。 /p p   第二十六条 工业和信息化部会同有关部门对梯次利用电池产品实施管理,加强对梯次利用企业的指导,规范梯次利用企业产品,保障产品质量和安全。 /p p   第二十七条 鼓励社会资本发起设立产业基金,研究探索动力蓄电池残值交易等市场化模式,促进动力蓄电池回收利用。 /p p   第二十八条 工业和信息化部会同质检总局等部门,在各自职责范围内,通过责令企业限期整改、暂停企业强制性认证证书、公开企业履责信息、行业规范条件申报及公告管理等措施,对有关企业落实本办法有关规定实施监督管理。 /p p   第二十九条 任何组织和个人有权对违反本办法规定的行为向有关部门投诉、举报。 /p p   五、附则 /p p   第三十条 本办法由工业和信息化部商科技部、环境保护部、交通运输部、商务部、质检总局、能源局负责解释。 /p p   第三十一条 本办法自2018年8月1日施行。 /p p   附录 /p p   术语和定义 /p p   一、动力蓄电池:为新能源汽车动力系统提供能量的蓄电池,由蓄电池包(组)及蓄电池管理系统组成,包括锂离子动力蓄电池、金属氢化物/镍动力蓄电池等,不含铅酸蓄电池。 /p p   二、废旧动力蓄电池是指: /p p   (一) 经使用后剩余容量或充放电性能无法保障新能源汽车正常行驶,或因其他原因拆卸后不再使用的动力蓄电池 /p p   (二) 报废新能源汽车上的动力蓄电池 /p p   (三) 经梯次利用后报废的动力蓄电池 /p p   (四) 电池生产企业生产过程中报废的动力蓄电池 /p p   (五) 其他需回收利用的动力蓄电池。 /p p   以上废旧动力蓄电池包括废旧的蓄电池包、蓄电池模块和单体蓄电池。 /p p   三、回收:废旧动力蓄电池收集、分类、贮存和运输的过程总称。 /p p   四、拆卸:将动力蓄电池从新能源汽车上拆下的过程。 /p p   五、拆解:对废旧动力蓄电池进行逐级拆分,直至拆出单体蓄电池的过程。 /p p   六、贮存:废旧动力蓄电池收集、运输、梯次利用、再生利用过程中的存放行为,包括暂时贮存和区域集中贮存。 /p p   七、利用:废旧动力蓄电池回收后的再利用,包括梯次利用和再生利用。 /p p   八、梯次利用:将废旧动力蓄电池(或其中的蓄电池包/蓄电池模块/单体蓄电池)应用到其他领域的过程,可以一级利用也可以多级利用。 /p p   九、再生利用:对废旧动力蓄电池进行拆解、破碎、分离、提纯、冶炼等处理,进行资源化利用的过程。 /p p   十、汽车生产企业:获得《道路机动车辆生产企业及产品公告》的国内新能源汽车生产企业和新能源汽车进口商。 /p p   十一、电池生产企业:国内动力蓄电池生产企业和动力蓄电池进口商。 /p p   十二、回收服务网点:汽车生产企业在本企业新能源汽车销售的行政区域(至少地级)内,通过自建、共建、授权等方式建立的废旧动力蓄电池回收服务机构。 /p p   十三、报废汽车回收拆解企业:取得资质认定,从事报废汽车回收拆解经营业务的企业。 /p p   十四、综合利用企业:是指符合《新能源汽车废旧动力蓄电池综合利用行业规范条件》要求的废旧动力蓄电池梯次利用企业或再生利用企业。 /p p   十五、梯次利用企业:即梯次利用电池产品生产企业,是指对废旧动力蓄电池(或其中的蓄电池包/蓄电池模块/单体蓄电池)进行必要的检测、分类、拆解和重组,使其可应用至其他领域的企业。 /p p   十六、再生利用企业:是指对废旧动力蓄电池进行拆解、破碎、分离、提纯、冶炼等处理,实现资源再生利用、原材料回收利用等的企业。 /p p br/ /p
  • 江苏大丰:儿童血铅中毒“祸首”为蓄电池厂
    江苏省大丰市河口村50多名儿童近日被查出血铅含量严重超标,大丰市政府经调查后对外宣布,污染源是该村附近的一家蓄电池厂,这是继陕西凤翔和湖南武钢等地之后国内爆出的又一起血铅事件。   河口村村民郭林玉三岁的儿子从2009年8月份开始就出现了厌食、呕吐、哭闹等症状,医院检查显示郭林玉的儿子血铅含量高达每升364微克,已经属于中度铅中毒。   江苏大丰市河口村村民郭林玉的孩子现在排铅,明显的记忆力下降,腿夜里酸的哭,我们坐在铺上给他肉腿。   据大丰市官方统计的数据称,河口村接受检查的110多名儿童当中查出血铅含量超标的有51名,大丰市政府同时公布,距离河口村不足百米的大丰市盛翔电源有限公司是此事件的罪魁祸首,该企业以生产铅酸蓄电池为主,所用原料多是铅锭。去年11月20日监测到该公司排放的铅尘当中部分指标超标一到两倍,环保部门随即要求其停产整顿,目前肇事企业已被关停,当地政府已经启动责任追究程序。
  • 天津市发布《铅蓄电池工业污染物排放标准》,LUMEX原子吸收助力铅镉污染物监测
    《导读》--天津市生态环境局近期会同市市场监管委发布《铅蓄电池工业污染物排放标准》(DB12/856-2019)(以下简称《标准》),明确了pH值等11项污染物排放限值。新建企业自2019年2月1日起执行《标准》,现有企业自2020年1月1日起执行。 该标准规定了铅蓄电池生产行业水、大气污染物排放限值、监测和控制要求,以及标准实施与监督等相关规定。本标准控制项目包括11项污染物排放限值和单位产品基准排水量;其中涉及水污染物8项,包括pH值、化学需氧量、悬浮物、总磷、总氮、氨氮、总铅、总镉;大气污染物3项,包括铅及其化合物、硫酸雾和颗粒物。LUMEX高频塞曼原子吸收可以为铅、镉污染物检测提供有效、稳定、准确的解决方案。 铅蓄电池工业是重金属污染防治的重点监管行业,是我市铅排放占比最高的行业。该标准实施后,可以有效促进企业加强运营管理、提高工艺水平、减少无组织排放,有利于天津市地表水环境质量及环境空气质量的改善,通过减少铅、镉等对人体健康有危害的重金属污染物排放,有助于铅蓄电池行业的健康、可持续发展。 LUMEX公司自1991年成立以来一直致力于新产品和先进技术的开发,现已拥有100多种分析方法,为全球用户提供相应行业的解决方案,现产品和方法用户遍布全球80多个国家。LUMEX原子吸收经过二十年多年的发展,具备成熟的仪器方法和配置,独特的优势特点受到广大用户的好评。 LUMEX将其独有的高频塞曼背景校正专利技术、无极放电灯技术用于石墨炉原子吸收,并结合最优软件流程设计,研制出快速、稳定、可靠、智能的MGA1000原子吸收光谱仪。产品特点:高频塞曼背景校正技术(50KHz)塞曼全波段校正有效消除化学背景干扰和结构背景干扰,实现超低检出限,测定稳定性更好。极快的升温速率—瞬时升温高达7000℃/秒瞬时升温速度高可有效提高原子化效率,减少挥发损失,灵敏度较高,检测结果更准确。光源设计—高强度无极放电灯先进的高强无极放电灯EDL光源保证能够实现超低痕量重金属的准确检测,砷As和硒Se无需氢化物发生器即可直接检测。灯座设计—兼容性强旋转六灯座同时兼容空心阴极灯和高强度无极放电灯(EDL),无需额外EDL灯位及供电系统,操作更简单,检测结果更加稳定。独有的准双光束光路设计独特设计有效消除由于元素灯、电子元件和设备引起的仪器漂移,提高仪器的长期稳定性。STPF稳定温度石墨炉平台技术结合快速升温速率,可兼容Massman 石墨管和Lvov’s平台石墨管,纵向加热及STPF设计使石墨管寿命更长,石墨管平台与石墨管契合度好,原子化效率高,能够消除基质干扰,提高分析重复性一体化冷却循环水设计仪器集成冷却循环水系统,冷却效率高,无需单独外接冷却循环水和其他管线。开机即测—仪器无需预热即使仪器和元素灯不经预热,测量数据也能保持很好的稳定性。卓越的软件控制—实现全自动测量高智能型软件设计,全自定义元素、样品及序列等参数,实现六种元素灯自动切换,所有样品自动顺序测量,完全实现无人值守自动测量。精巧设计紧凑一体化设计,整合石墨炉电源,布局合理,安全性能高,外观紧凑小巧,节省实验室空间。前 言为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》《中华人民共和国水污染防治法》等法律、法规,保护环境,防治污染,促进铅蓄电池工业生产工艺和污染治理技术的进步,结合天津市实际情况,制定本标准。本标准实施之日起,天津市铅蓄电池工业污染物排放控制按本标准的规定执行,环境影响评价文件或排污许可证要求严于本标准时,按照批复的环境影响评价文件或排污许可证执行。本标准由天津市生态环境局提出并归口。本标准起草单位:天津市生态环境监测中心。本标准主要起草人:刘佳泓、周晶、赵吉睿、孙猛、张骥、张莹、高翔、杨丽萍、张玉慧、张丽红、张震、何富生、陈魁。本标准由天津市人民政府于2018年12月27日批准。本标准为首次发布。铅蓄电池工业污染物排放标准1 适用范围本标准规定了铅蓄电池生产企业(含生产设施)水、大气污染物排放限值、监测和控制要求,以及标准实施与监督等相关规定。本标准适用于天津市辖区内铅蓄电池生产企业(含生产设施)水、大气污染物的排放管理,新建、改建、扩建项目的环境影响评价、环境保护设施设计、竣工环境保护验收、排污许可证管理及其建成投产后的水、大气污染物排放管理。本标准适用于法律允许的污染物排放行为。新设立污染源的选址和特殊保护区域内现有污染源的管理,按照《中华人民共和国大气污染防治法》《中华人民共和国水污染防治法》《中华人民共和国海洋环境保护法》《中华人民共和国固体废物污染环境防治法》《中华人民共和国环境影响评价法》《天津市大气污染防治条例》《天津市水污染防治条例》等法律、法规、规章的相关规定执行。2 规范性引用文件本标准引用下列文件或其中的条款。凡是不注日期的引用文件,其最新版本(包括所有修订单)适用于本标准。GB 3097海水水质标准GB 3838地表水环境质量标准GB 6920水质 pH值的测定 玻璃电极法GB 7475水质 铜、锌、铅、镉的测定 原子吸收分光光度法GB 11893水质 总磷的测定 钼酸铵分光光度法GB 11901水质 悬浮物的测定 重量法GB 30484电池工业污染物排放标准GB/T 14295空气过滤器GB/T 15432环境空气 总悬浮颗粒物的测定 重量法GB/T 16157固定污染源排气中颗粒物测定与气态污染物采样方法HJ/T 55大气污染物无组织排放监测技术导则HJ/T 397固定源废气监测技术规范HJ/T 399水质 化学需氧量的测定 快速消解分光光度法HJ 75固定污染源烟气(SO2、NOX、颗粒物)排放连续监测技术规范HJ 535水质 氨氮的测定 纳氏试剂分光光度法HJ 536水质 氨氮的测定 水杨酸分光光度法HJ 537水质 氨氮的测定 蒸馏-中和滴定法HJ 539环境空气 铅的测定 石墨炉原子吸收分光光度法HJ 544固定污染源废气 硫酸雾的测定 离子色谱法HJ 636水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法DB12/ 856—2019水质 氨氮的测定 连续流动-水杨酸分光光度法HJ 667水质 总氮的测定 连续流动-盐酸萘乙二胺分光光度法HJ 670水质 磷酸盐和总磷的测定 连续流动-钼酸铵分光光度法HJ 685固定污染源废气 铅的测定 火焰原子吸收分光光度法HJ 700水质 65种元素的测定 电感耦合等离子体质谱法HJ 776水质 32种元素的测定 电感耦合等离子体发射光谱法HJ 828水质 化学需氧量的测定 重铬酸盐法HJ 836固定污染源废气 低浓度颗粒物的测定 重量法3 术语和定义下列术语和定义适用于本标准。3.1 铅蓄电池 lead-acid battery又称铅酸蓄电池。含以稀硫酸为主的电解质、二氧化铅正极和铅负极的蓄电池。3.2 铅蓄电池生产企业 lead-acid battery manufacturing plants指从事铅蓄电池生产、极板加工、电池组装的生产企业。3.3 现有企业 existing facility指本标准发布之日前已建成投产或环境影响评价文件已通过审批的铅蓄电池生产企业。3.4 新建企业 new facility指本标准发布之日起环境影响评价文件通过审批的新建、改建、扩建的铅蓄电池生产企业。3.5 排水量 amount of drainage指生产设施或企业向企业法定边界以外排放的废水的量,包括与生产有直接或间接关系的各种外排废水(含厂区生活污水、厂区锅炉和电站排水等)。3.6 单位产品基准排水量 benchmark effluent volume per unit product指用于核定水污染物排放浓度而规定的单位铅蓄电池产品的废水排放量上限值。3.7 排气筒高度 stack height指排气筒(或其主体建筑构造)所在的地平面至排气筒出口的高度。3.8 企业边界 enterprise boundary指铅蓄电池生产企业的法定边界;若无法定边界,则指实际边界。3.9 标准状态 standard condition指温度为273K,压力为101325Pa时的状态。本标准规定的有组织大气污染物标准值以标准状态下的干空气为基准;企业边界无组织排放的铅及其化合物、硫酸雾、颗粒物浓度为监测时大气温度和压力下的浓度。3.10 公共污水处理系统 public wastewater treatment system指通过纳污管道(渠)等方式收集废水,为两家以上排污单位提供废水处理服务并且排水能够达到相关排放标准要求的企业或机构,包括各种规模和类型的城镇污水处理厂、区域(包括各类工业园区、开发区、工业集聚区等)废水处理厂等,其废水处理程度应达到二级或二级以上。3.11 直接排放 direct disge指排污单位直接向环境水体排放水污染物的行为。3.12 间接排放 indirect disge指排污单位向公共污水处理系统排放水污染物的行为。4 技术及管理要求4.1 实施时间新建企业自本标准发布之日起执行;现有企业自2020年2月1日起执行本标准。4.2 水污染物排放限值及要求4.2.1 水污染物排放限值执行表1的规定,单位产品基准排水量执行表2的规定。4.2.2 排放限值按污水不同的排放去向和不同的功能区分为三级,其中一级、二级为直接排放标准,三级为间接排放标准。4.2.3 排入GB 3838中IV类(含)以上水体及其汇水范围内水体的污水,以及排入GB 3097中二类、三类海域的污水执行一级标准。4.2.4 排入GB 3838中V类或排污控制区水体及其汇水范围内水体的污水,以及排入GB 3097中四类海域的污水执行二级标准。4.2.5 排入公共污水处理系统的污水执行三级标准。4.2.6 本标准规定的水污染物排放限值适用于单位产品实际排水量不高于单位产品基准排水量的情况。若单位产品实际排水量超过单位产品基准排水量,则按照GB 30484的相关规定换算为水污染物基准排水量排放浓度,并据此判定排放是否达标。4.3 大气污染物排放限值及要求4.3.1 大气污染物排放限值执行表3的规定。4.3.2 企业边界无组织排放小时浓度限值执行表4的规定。4.3.3 产生大气污染物的生产工艺和装置必须设置局部或整体气体收集系统,并安装集中净化处理装置。排气筒高度应不低于15m,具体高度按批复的环境影响评价及排污许可文件从严确定。4.3.4 生产设施应采取合理的通风措施,不得故意稀释排放。在国家未规定生产设施单位产品基准排气量之前暂以实测浓度作为判定是否达标的依据。5 污染物监测要求5.1 一般要求5.1.1 企业应按照有关法律、法规、规章、规范性文件及相关标准等规定,建立企业监测制度,制定监测方案,对污染物排放状况及其对周边环境质量的影响开展自行监测,保存原始监测记录,并公布监测结果。5.1.2 新建企业和现有企业安装污染物排放自动监控设备的要求,按有关法律、法规、规章、规范性文件及相关标准等规定执行。5.1.3 企业应按照环境监测管理规定和技术规范的要求,设计、建设、维护永久性采样口、采样测试平台和排污口标志。5.1.4 对企业排放废水和废气的采样,根据监测污染物的种类,在规定的污染物排放监控位置进行,有废水和废气处理设施的,应在处理设施后监测。5.1.5 企业产品产量的核定,以法定报表为依据。5.1.6 对企业污染物排放情况进行监测的采样点位置、采样时间和监测频次等要求,按国家有关污染源监测技术规范的规定和生态环境主管部门的要求执行。5.1.7 本标准发布实施后,新发布的国家环境监测分析方法标准中,其方法适用范围相同的,也适用于本标准排放对应污染物的测定。5.2 水污染物监测要求水污染物浓度的测定采用表5所列的方法标准。5.3 大气污染物监测要求5.3.1 排气筒中大气污染物的监测采样按GB/T 16157、HJ/T 397或HJ 75的规定执行。5.3.2 无组织排放监测按HJ/T 55进行监测。5.3.3 大气污染物浓度的测定采用表6所列的方法标准。6 其它污染控制要求6.1 有组织废气污染控制要求。各生产工序产生的废气必须收集、处理达标后方可排放;熔铅、板栅、制粉、和膏、分片、称片叠片、组装等工序产生的含铅废气,应采用符合GB/T 14295要求的高效空气过滤器或其他更先进的除尘设施。6.2 无组织废气污染控制要求。所有涉铅生产工序应集中布置在独立、封闭的车间内。厂房设置机械排风,维持负压运行,排风需经过废气处理装置处理。6.3 污染治理设施运行与管理要求。企业应加强对污染治理设施的运行管理和定期维护,并做好记录,保留台账备查。7 实施与监督7.1 本标准由各级生态环境部门负责监督实施。7.2 在任何情况下,企业均应遵守本标准规定的污染物排放控制要求,采取必要措施保证污染治理设施正常运行。在发现企业耗水或排水量有异常变化的情况下,应核定企业的实际产品产量和排水量,按照GB 30484要求换算水污染物基准排水量下的排放浓度。7.3 各级生态环境部门在对排污单位进行监督检查时,可以现场即时采样,监测结果可以作为判定污染物排放是否超标的证据。来源:LUMEX分析仪器
  • 选购LED光源太阳光模拟器你应该知道的3件事!
    随着可再生能源的快速发展,太阳能光伏产业正在蓬勃成长。为了测试太阳能电池的发电效率,需要使用太阳光模拟器进行室内模拟。LED光源由于具备节能、寿命长等优点,已成为太阳光模拟器的主流灯源之一。但在应用时,LED灯源也存在一些缺点和限制。本文将讨论LED太阳光模拟器在测试钙钛矿太阳能电池时的优劣分析。什么是LED?LED (Light Emitting Diode) 是一种二极管照明装置,它能把电能转换成光能。是由一个半导体材料制成的,当电流流过时可发出光。所发之光的颜色可以是红、黄、绿、蓝或白色,是根据不同的半导体材料而定。优点包括高效率、长寿命、节能省电、可调光、快速发亮,绿色环保。因此,LED已经广泛应用于各种照明、显示器和通信系统等领域。LED (Light Emitting Diode) 光源本身拥有许多优点,其中相当著名的特点如下:高效率:转换能效高,目前研发上可以转换85% 的电能为光能。寿命长:寿命非常长,在结温保持在25度的条件下,通常可以达到10,000 小时以上。节能省电:比传统灯具更省电,能减少80% 的能源消耗。可调光:LED 光源可以调节亮度,可以根据环境需求适当调整。快速发亮:点亮速度非常快,在开关时不需要等待时间。环保:LED 产品不含有毒物质,不会对环境造成危害。将LED作为太阳光模拟器灯源又有什么优点?根据LED灯源的特性,太阳光模拟器制造商通常会强调使用LED灯作为太阳光模拟器灯源有下列7点优势:色温可调:可以根据不同的需求,调整色温,用以模拟不同的日照情况。可控性高:可以根据不同的模拟需求,进行亮度和色温的调整。省电:耗电比传统的灯具灯源更低。环保:LED灯源不含有毒物质,对环境无害。寿命较长:LED光源的宣称寿命非常长,可以标榜可达10,000 小时以上,但前提是结温(Junction Temperature)恒定在25°C的条件下应用广泛:可用于各种植物照明、人工智能研究、光学研究、生物研究、摄影棚照明等领域可以模拟多种天气状态,如晴天,阴天等。但LED灯真的这么好吗?长效寿命的定义与迷思LED寿命是指在特定温度条件与特定电流条件下,维持发光亮度至少70%时间的时间。其计算方式是以发光二极管的发光亮度衰减到剩原始亮度的70%,所需经历的时间为作为衡量标准,然而测试实验通常用多个灯泡为一组的实验中进行,当同组平均一半以上数量的LED灯光亮度衰减到70%的时候,其平均时间就是该LED灯泡群体的平均寿命,但寿命长度实验通常是在特定安排的理想使用环境条件下所量测评估的,例如必须控制温度、电流、环境等。常见的控制条件有在结温(Junction Temperature) 25°C下,2 mA特定电流条件下,进行发光强度与时间的寿命监控等等。换言之,一旦使用的环境条件不符该LED灯在实验室量测标准条件,将会大幅影响寿命。用LED作为光伏用太阳模拟器灯源不好吗?实际缺点与潜在问题理论上,更高的驱动电流会增加光输出。但伴随而来的是会增加耗损功率且在最终造成光输出和效率的损失。此外,较高的温度也会导致LED 的正向电压降低,从而使恒流源的耗损功率更高。因此同样地,LED 的主波长、光输出和正向电压相互影响,如下方所列。 (参考资料: NEWARK )光输出与电参数和热参数之间的关系电、热、光,三种要素均会影响LED 的输出特性。图2.解释了光输出与电参数和热参数之间的关联。容易热衰竭的LED灯--光输出随温度升高而降低据文献指出,AlInGaP 四元LED 对热相当敏感,我们可以从实验中了解,白光 LED 的光通量要保持80%,其结温就必须保持在 100°C 以下。而在琥珀色的LED,输出光通量也明显随着结温的升高而急剧下降。上图为结温与光通量的关系。容易随着温度变脸的LED灯----主波长(颜色变化)随温度变化TJ 增加波长或颜色会偏移,LED的主波长取决于结温,我们可以在下列附表中看到依颜色划分的1瓦高亮度的典型值,表中可很明显发现,琥珀色是相当敏感的,因为它会移动 0.09nm/°C。所以我们假设室内照明的环境情境,室温范围为10 至 40 摄氏度,那么在 30 摄氏度的温度范围内,琥珀色的主波长偏移为2.7 纳米 (40 - 10 * 0.09)。场面越热,LED越Down----正向电压随温度降低使用LED的研究人员不能不知道,当温度升高时,VF 降低 2mV/°C,虽然 LED 串联连接时,因为它驱动恒流,所以VF 变化应该不是一个严重的问题。但是如果LED是并联,VF就会随着温度升高而下降,导致电流增加。随着电流增加,TJ 就随之继续增加,导致 VF 更进一步下降,不断交互影响,直至达到平衡。反之,随着低温 VF 增加,就导致电流下降,这可能使得在恒压操作LED灯的环境下难以获得所需的固定光度。热到不想动的LED----寿命随温度降低LED 的可靠性是结温的直接函数,较高的结温往往会缩短LED 的使用寿命。而IES LM-80-08 是一项标准,规范了LED 制造商和照明制造商如何测试LED 组件,用以确定其随时间推移变化的发光性能。而LED 的 L70 寿命就是定义了LED 输出流明在25°C条件下,从100% 降低到70% 所经历的时间(如下图)。LM-80-08 报告用于预测各种温度和驱动电流操作环境下的LED 流明维持率。下图解释了L70寿命与结温之间的关系。据观察,LED 寿命随着结温的升高而降低,在85°C下,LED 寿命均小于1200小时。(参考资料: MDPI)The attained total radiant flux maintenance results of the mid-power blue LEDs, sorted by case temperature and forward current.LM-80-08 报告:中功率蓝色 LED在各外壳温度与正向电流下的LED 流明维持率。(参考资料: MDPI)
  • 新品上市|涂料管道模拟方案---剪切应力模拟器
    剪切应力模拟器polyshear----模拟液体涂料和油漆的剪切效应在涂装车间或喷涂线上,涂料需从不同口径、不同排布的管道、减压器和泵中输送。此过程中会产生剪切力,这些剪切力可能会导致涂料的降解,变质,粘度和色彩的改变。通过使用德国orontec公司生产的polyshear剪切应力模拟器,可以判断某种涂料原料是否会在输送管道和搅拌中产生问题,降低风险。德国orontec公司制造的polyshear剪切应力模拟器可模拟合理测试时间中的剪切应力。包括与工业环境相关联的涂料管道。剪切应力模拟器polyshear仅使用确定的剪切力元件,装置体积小巧且有优秀的重复性。剪切应力模拟器polyshear客户剪切应力模拟器polyshear广泛运用在涂料,汽车油漆,以及工业喷涂线等领域,发挥出重要的作用。部分客户如下:polyshear剪切应力模拟器工作原理---泵跟剪切应力元件是剪切应力两个重要影响因素油漆在喷漆车间的管道中循环时,会在管道内的各种元件流动,在剪切力的作用下发生粘度和颜色改变,从而造成喷涂时的质量问题。使用剪切应力模拟器,可以重现这过程,为进料检验,产品优化提供快速有效的方法。☞ 泵以活塞泵为例,如下图所示,剪切应力总是发生在重要部位上(直径最小的位置),剪切率可以达到15000 1/s。以齿轮泵为例,如下图所示,剪切应力总是发生在重要部分上(齿轮口边缘),剪切率可以达到10000 1/s。☞ 剪切应力元件德国orontec的剪切应力模拟器中有个重要的剪切应力元件,可以模拟涂料在管道中受到的压力情况,如下图左所示,关闭剪切应力元件上的膜时引起的压力变化。压力的变化会改变流速,如下图右所示,剪切应力元件上膜关闭后,流速为0.12kg/s。剪切应力元件也可以很好的模拟涂料在管道中受到的剪切率,如下图所示,剪切应力元件可以达到大于10000 1/s的剪切率。涂料的颜色受到剪切应力的影响,如下图所示,在泵的作用下,涂料颗粒大小的分布发生了变化,因此模拟涂料在管道中受到的剪切应力,可以帮助客户对进料进行检验。剪切应力模拟器polyshear的基础模块由一个小机动柜组成,只需一个6条的压力线即可运行。喷涂材料充满小罐(1l)后,在泵的作用下通过剪切应力元件流动。其循环流动次数与涂装输送管道有良好的相关性,且相关性已被研究证明。在测试过程中或在测试后,都可以检测样品的粘性和颜色(使用液体涂料色浆测色系统lcm),由此可得出剪切应力与材料降解的相关性。与此同时,在基础模块上可额外添加额外的配件,例如有自动停功能的循环次数计数器、温度传感器。此外,还有另一型号可测试5升样品,此型号可装在手推车上并可以移到如喷涂机器人等装置上。剪切应力模拟器polyshear特点✔专为实验室研制,机动性强且占用空间小。✔涂料测试量仅为1l✔高重复性与与重现性✔与工业喷涂线有优秀的关联性(例如automotive oem paint shops)✔较短的循环周期✔模块化安装,基础模块可以通过更高级的在线测量传感器扩展✔可实现与模拟软件相结合✔可与lcm液体测色系统实现无缝联接✔德国fraunhofer ifam, bremen开发并获得专利剪切应力模拟器polyshear基础型号内部结构说明剪切应力模拟器polyshear基础型号技术参数材质不锈钢外壳和连接器用于测试观察和控制的玻璃窗尺寸长: 400 mm,宽: 660 mm,高: 640 mm重量约56kg压力锅体积约1 l最大压力输入6 bar最大材料压力21 bar泵比约3.5:1翁开尔是德国ORONTEC中国总代理,欢迎咨询剪切应力模拟器更多产品信息和技术应用
  • 锂电池安全性多尺度研究策略:实验与模拟方法
    作者:甘露雨 1,2 陈汝颂 1,2潘弘毅 1,2吴思远 1,2禹习谦 1,2 李泓 1,2第一作者:甘露雨(1996—),男,博士研究生,研究方向为锂离子电池安全性,E-mail:ganluyu@qq.com;通讯作者:禹习谦,研究员,研究方向为高比能锂电池关键材料、电池先进表征与失效分析,E-mail:xyu@iphy.ac.cn。单位: 1. 中国科学院物理研究所,北京 100190;2. 中国科学院大学材料科学与光电技术学院, 北京 100049DOI:10.19799/j.cnki.2095-4239.2022.0047摘 要 作为新一代电化学储能体系,锂离子电池在消费电子产品、交通动力系统、电网储能等领域具有重要的应用价值。然而,在锂离子电池的商业化进程中,安全性事故时有发生,影响了锂离子电池的大规模应用。本文从电池安全性的三个研究尺度:材料、电芯、系统,综述了与之对应的重要研究方法,其中每个尺度均包括基于物理样品的实验方法和基于计算机数学模型的模拟方法。本文介绍了这些方法的基本原理,通过典型案例展示了这些方法在安全性研究中的适用场景和作用,并探讨了实验和模拟方法之间的联系,着重介绍了材料热分析、材料加热过程中结构分析、电芯加速度量热分析、电芯安全性数值模拟等方法。基于对多尺度研究策略的系统综述,认为安全性研究需要在各个尺度联合同步开展。最后,展望了下一代锂电池,如固态电池、锂金属电池等,可能面临的电池安全性问题。这些新体系的安全性研究仍处于早期,其材料和验证型电芯的安全性研究是当前阶段值得关注的重要课题。关键词 锂离子电池;安全性;实验方法;数值模拟;固态电池;锂金属电池锂离子电池的研究始于1972年Armand等提出的摇椅式电池概念,商业化始于1991年SONY公司推出的钴酸锂电池,经历超过三十年的迭代升级,已经成熟应用于消费电子产品、电动工具等小容量电池市场,并在电动汽车、储能、通信、国防、航空航天等需要大容量储能设备的领域中展现出了巨大的应用价值。然而,自锂离子电池诞生开始,安全性便一直是限制其使用场景的重要问题。早在1987年,加拿大公司Moli Energy基于金属锂负极和MoS2正极推出了第一款商业化的金属锂电池,该款电池在1989年春末发生了多起爆炸事件,直接导致了公司破产,也促使行业转向发展更稳定地使用插层化合物作为负极的锂离子电池。如图1所示,锂离子电池进入消费电子领域后,多次出现了因电池火灾隐患而开展的大规模召回计划,2016年韩国三星公司的Note7手机在全球发生多起火灾和爆炸事故,除了引起全球性的召回计划外,“锂电池安全性”再次成为广受关注的社会话题。在电动交通领域,动力电池的安全性事故伴随着新能源汽车销售量的提升逐渐增加,据统计,中国在2021年有报道的电动车火灾、燃烧事故超过200起,电动汽车安全性成为消费者和电动车企最关心的问题之一。在储能领域,韩国在2017—2021年期间发生了超过30起储能电站事故,2021年4月16日北京大红门储能电站爆炸事故除导致整个电站烧毁外还造成2名消防员牺牲、1名员工失踪。随着锂离子电池的应用场景日益扩大,其安全性在工业界和学术界均引发了广泛的讨论和研究。图1 锂离子电池近年引起的安全事故在锂电池发展的早期阶段,产业界和学术界更关注锂电池发生安全性事故的本质原因,基于长期的认识积累,锂电池发生安全事故的本质可以总结为:电池在过充、过热、撞击、短路等异常使用条件下温度异常升高,引发内部一系列化学反应,引起电池胀气、冒烟、安全阀打开,同时这些反应会大量释放热量使整个电池温度进一步升高,最终各个化学反应剧烈发生,电池温度不可控地迅速上升,引起燃烧或爆炸,导致严重的安全事故,这一过程也被称为电池的“热失控”。电池从异常升温到热失控过程中存在多个重要的化学反应,它们与温度的对应关系如图2所示。图2 锂离子电池热失控的诱发机制随着锂离子电池的广泛应用,关于锂离子电池安全性的研究逐渐深入,从早期简单的描述现象和定性预测,发展为在多个尺度、采用多种手段研究安全性机理,基于精准测量和数值化模型准确预测电池安全性表现,最终提出应用化解决方案的综合性研究策略。如图3所示,目前对于电池安全性的研究一般从理解锂离子电池电芯的热行为出发,包括利用各类滥用条件测试确定电池的安全使用极限和失效表现,利用绝热量热等手段具体分析电池的热失控行为和特征温度,以及利用热失控数值模拟方法模拟电池的热失控表现;在认识电芯热行为的基础上,需要深入材料本质,利用热分析、物质结构和化学成分分析、理论计算等方法理解电芯发生热失控在材料层面的反应机制,从而为设计制造高安全性的电池提供基础理论的指导;此外,电芯作为电池系统的基础,其热失控行为的精准测量和准确模拟也为在系统层面设计更高安全性的电池系统和管理预警方案提供了理论指导。本文从材料热稳定性、电芯热安全性和大型电池系统热安全性三个尺度介绍安全性研究策略,着重介绍几种实验和模拟方法。基于商用体系锂离子电池的研究策略和成果,进一步探讨了这些方法对于产学研各界研发下一代锂电池所具有的重要意义。图3 锂离子电池安全性研究策略1 材料热稳定性研究锂离子电池发生热失控的根本原因是电池中的材料在特定条件下不稳定,从而发生不可控的放热反应。目前商业化使用的电池材料中,与安全性关系最密切的主要是充电态(脱锂态)过渡金属氧化物正极、充电态(嵌锂态)石墨负极、碳酸酯类电解液和隔膜,其中前三者在高温下均不稳定且会发生相互作用,在短时间内释放大量的热量,而现行常用的聚合物隔膜则会在140~150 ℃熔融皱缩,导致电池中的正负极直接接触,以内短路的形式快速放热。研究人员自20世纪末开始进行了大量材料热稳定性的研究工作,发展了以热分析认识材料热行为,结合形貌、结构、元素成分和价态表征综合研究内在机理的研究方法。近年来计算材料学的发展也为从原子尺度模拟预测材料的稳定性提供了新的方法和手段。1.1 热分析方法热分析是最直接和直观认识材料热行为的方法,指在一定程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。对于电池材料来说,一般关注其质量、成分、吸放热行为随温度的变化关系。质量与温度的关系可通过热重分析获得,吸放热与温度的关系可通过差示扫描量热法获得,TG和DSC可以设计在同一台仪器中同步测试,该种方法又被称为同步热分析。TG、DSC、STA等仪器通常采用线性升温程序,通过热天平、热流传感器等记录样品的质量、吸放热变化,由于发展时间较早,测试技术和设备工程化水平较为成熟,已成为认识材料稳定性最重要的测试手段之一。基于热分析结果可以确定材料发生相变、分解或化学反应的起始温度、反应量和放热量,但在锂离子电池中,往往更关心充电态材料在电解液环境下的稳定性和反应热。良好的热稳定性是电池材料进入应用的必要条件,而产热量和产热速度则影响电池热失控的剧烈程度。用于常规热分析样品的坩埚一般为敞口氧化铝材质或开孔的铝金属材质,为了研究材料在易挥发电解液中的热表现,需要使用自制或设备厂商专门提供的密封容器。Maleki等通过STA系统研究了钴酸锂/石墨圆柱电池中各种材料的热分解行为,由于电解液采用高沸点的EC溶剂,所以仅在敞口容器中便可以测试,研究发现全电池截止电压4.15 V时,脱锂态钴酸锂在178 ℃发生分解,产生的氧气和电解液反应释放大量热量,释放的能量达到407 J/g,嵌锂态负极的SEI会优先分解,温度在125 ℃之前,之后会出现持续的放热反应,释放能量为697 J/g,而当负极发生析锂后释放能量会上升到827 J/g,这一结论有力支持了近年来析锂电池安全性下降的报道。Yamada等利用DSC确认了充电态磷酸铁锂(LiFePO4)的稳定性很好,与电解液的反应温度大于250 ℃,放热量仅为147 J/g,显著低于层状氧化物材料。Noh等利用密封容器系统研究了不同Ni含量的三元正极材料Li(NixCoyMnz)O2,比较热分析结果发现脱锂态三元材料的热稳定性与Ni含量呈现负相关性,且在x0.6之后加速下降。材料经过改性后,其稳定性需要通过热分析进行确认,研究人员基于DSC发现核壳浓度、包覆等方法均能不同程度地提高正极材料的热稳定性。需要注意的是,热分析的数据质量与实验条件、样品制备方法密切相关,目前并没有严格一致的测试规范,文献中不同单位之间的测试结果横向对比性很差,很多电池材料的热稳定性尚缺乏准确定量的结论。除了DSC、TG外,还有一类特殊的热分析方法是利用加速度量热仪研究反应的起始温度。与常规热分析采用线性升温不同,ARC使用的升温程序是加热-等待-检索模式,即步进式地在每个温度点保持恒温,如果检索程序发现样品的升温速率超过0.02 K/min,则通过同步样品的升温速率保持样品处于绝热状态,从而跟踪样品的自加热升温过程,否则开始加热至下一个温度点进行恒温、检索。不难发现,ARC获取的是样品近似热力学上的失稳温度,由于检测精度高,获得的失稳温度往往比DSC、TG等方法获得的低很多。Dahn课题组基于ARC测试了大量材料-电解液体系的反应起始温度,基本均低于DSC数据中的放热主峰。事实上,Wang等在低升温速率的DSC测试中也发现充电态材料与电解液的放热起始点远早于剧烈的放热峰。这些信息表明材料失稳到完全失控的过程并不是突变式的,整个体系动态演变的过程仍然缺乏深入的研究认识。图4 (a) DSC基本原理;(b) 脱锂态正极-电解液的DSC测试结果1.2 物相分析技术电池材料在升温过程中发生相变和化学反应,其形貌、结构、成分和元素价态都有可能发生变化,这些变化需要基于对应的方法进行表征分析,如利用扫描电子显微镜观察材料热分解前后的形貌变化,利用X射线衍射和光谱学研究材料结构和元素价态演变。由于材料热分解和热反应存在显著的动力学效应,在加热过程中原位测试可以最大程度地还原物相变化的真实过程。目前较为成熟的原位表征技术主要有两类:一类是与热分析仪器串联使用的质谱、红外光谱等,可以实时监测物质分解产生的气体类型,判断材料加热过程中化学组成的变化;另一类是原位X射线衍射技术,通过特制的样品台,可以在升温过程中实时、原位测定材料的结构变化,目前全球多数同步辐射光源和一些实验室级的X射线衍射仪上都可以实现原位变温XRD测试。Nam等利用变温XRD发现脱锂态LiNi1/3Co1/3Mn1/3O2结构在350 ℃向尖晶石转变,而加入电解液后该转变温度会下降至304 ℃。Yoon等在LiNi0.8Co0.2O2中发现了类似的规律,并发现MgO包覆可以改善脱锂态正极在电解液中的相变。图5展示了变温XRD和MS的联用技术,系统研究了不同Ni含量的脱锂态NCM三元正极在升温过程中的结构和成分变化,研究发现三元正极失稳释放氧气的过程与结构在高温下转化为尖晶石相的行为直接对应,且这一过程的起始温度随镍含量的上升显著下降,NCM523的起始相变温度约为240 ℃,NCM811则小于150 ℃,从体相结构的本征变化解释了高镍正极在电池应用中热安全性差的原因。以上工作都是基于同步辐射光源实现的,由于同步辐射提供的光源质量高、扫谱速度快,更适用于研究与时间相关的动力学问题。除此之外,近年来基于X射线谱学以及拉曼光谱实现同步表征的方法均有所发展。结合通过热分析手段观察得到的材料热行为信息,并对升温过程中材料物相变化的研究,可以更深刻地理解材料演变以及电池体系热失稳的动力学过程,为材料的安全性改良提供理论指导。图5 基于原位XRD和质谱对镍钴锰酸锂结构稳定性的研究1.3 计算材料学基于材料原子结构计算预测材料的全部性质是计算材料学家的终极追求。材料的热力学稳定性可以基于密度泛函理论计算。DFT中判断材料稳定性的依据是反应前后的能量差ΔE是否小于0,如果ΔE小于0,反应能发生,则反应物不稳定,反之同理。Ceder等在1998年就计算了LiCoO2脱锂过程结构相变的过程,计算结果与实验结果吻合良好。然而目前大多数热力学计算不考虑温度效应,且热力学只能作为反应进行方向的判据,无法预测反应速率等动力学问题,考虑温度和动力学计算则需要使用成本较高的分子动力学、蒙特卡洛或者过渡态搜索方法。相对于材料本身的稳定性,计算材料学对于计算预测两种材料间的界面稳定性存在一定优势。Ceder等计算了不同正极和固态电解质之间的稳定性,为选取界面包覆的材料提供理论指导。Cheng等利用AIMD模拟Li6PS5Cl|Li界面,发现界面副反应会持续发生,材料界面之间的副反应是自发发生的,与通常认为的界面钝化效应有所差异。此外,正极材料中的相变析氧、过渡金属迁移等问题的计算模拟也都处于初期开发阶段,仍需持续探索。总的来说,目前阶段材料层级的理论模拟技术与实验技术的差距仍然较远,需要研究人员的持续努力。2 电芯热安全性研究电芯指电池单体,是将化学能与电能进行相互转换的基本单元装置,通常包括电极、隔膜、电解质、外壳和端子。电芯的热安全性特征是电池工业界最关注的内容之一,它是电池材料热稳定性的集中表现,也是制定规模化电池系统安全预警和防护策略的基础。由于电芯内部具有一定的结构,其安全性会呈现一些在纯材料研究中不被讨论的特点,使得电芯安全性具有更广泛的外延和认识角度。工业上一般通过滥用实验来研究和验证电芯产品的安全性,近年来基于扩展体积加速度量热仪(又称EV-ARC)的安全性测试方法有较快发展,此外电芯安全性模拟方法也从早期的定性分析发展到可以准确仿真预测热失控进展的水平。2.1 滥用测试国际电工委员会(IEC)、保险商实验室(UL)和日本蓄电池协会(JSBA)最初定义了消费电子产品电芯的滥用测试,模拟电芯工作可能遇到的极端条件,通常分为热滥用、电滥用和机械滥用。常见的热滥用为热箱实验,电滥用包括过充电和外部短路实验,机械滥用包括针刺、挤压、冲击和振动等。企业和行业标准一般将电池对滥用测试的响应描述为无变化、泄漏、燃烧、爆炸等,也可基于附加的传感器和检测系统记录温度、气体、电压对滥用的响应。电芯通过滥用测试的标准是不燃烧、不爆炸。锂电池应用早期研究人员大量研究了电池对各类滥用测试的响应与使用条件、材料体系、充电电量等的影响,提出了各类滥用机制引发电池热失控的机理。滥用测试中最难通过的项目是针刺测试,近年来关于针刺测试的存废引起了较大争议,但提高电芯的针刺通过率仍是锂电池安全性研究的重要课题之一。由于滥用测试针对的是商用成品电芯和贴近真实的使用条件,目前更多作为电池行业的安全测试标准而非研究手段。2.2 EV-ARC测试早期的ARC只适用于研究少量材料样品的热失控行为,Feng等发展了利用EV-ARC研究大体积电芯绝热热失控行为的方法,研究的方法原理和结论如图6所示,由于EV-ARC的加热腔更大,所以需要更精准的控温技术和更严格的校准方案。基于EV-ARC测试可以定量标定出电芯热失控的特征温度T1、T2和T3,分别对应电芯自放热起始温度、电芯热失控起始温度和电芯最高温度,为评价电芯安全性提供了更精确定量的评价指标,标准化的测试条件可以帮助建立统一可靠的电芯热失控行为数据库,分析了不同体系电芯的热失控机理。Feng等利用EV-ARC首次提出正负极之间的化学串扰会引起电芯在不发生大规模内短路的情况下热失控,说明脱锂正极释氧是现阶段影响电芯安全性的关键因素。Li等研究快充后的电芯发现快充析锂导致T1大幅下降,说明析锂同样是电芯安全监测中需要重点关注的问题。以上这些问题都是在常规的滥用测试中难以定量验证的。图6 基于EV-ARC对电芯热失控的研究相比于普通的加热滥用实验,EV-ARC实验环境的温度由程序精确控制,获得的测试结果重复性更好、数据可解读性更高,近年来已成为评价和研究电芯安全性的重要手段。然而EV-ARC模拟的绝热热失控环境与真实的电池滥用工况仍有所差异,评价电芯的实际安全性仍需大量模拟真实严苛工况的测试手段。2.3 高速成像技术为了更直观地理解热失控过程中电池内部物质、结构的演化,研究人员发展了结合红外测温以及原位针刺等辅助功能的透射X射线显微方法如图7(a)~(c)所示。由于热失控往往是在极短的时间内发生剧烈的反应,同时伴随剧烈的物相、结构变化。这一特点给TXM表征方法提出了相当高的时间分辨率的要求。实验室X光源能够发射出的X射线光电子数量有限,采集一组TXM影像数据需要较长的时间。为了观察剧烈变化的热失控过程,Finegan等在欧洲同步辐射实验室(ESRF)使用同步辐射光源将TXM的曝光时间降低至44 μs,配合针内预埋的热电偶温度传感器,实现了对针刺发生时电池内部形貌与刺入点温度的同步监控。该团队利用这种手段研究了刺针纵向与径向刺入18650商业圆柱电池时电池内部热失控行为的差异。Yokoshima等采用实验室光源进行连续实时的透射X射线照相技术,也得到了软包电池在针刺过程中结构随时间变化的一组透射投影图。该方法以4 ms的时间分辨率较为清晰地观察到了针刺入软包电池后电池内部每一层材料的形变过程,以及针刺深度与热失控程度的对应关系。图7 基于X射线成像技术对电芯热失控的研究由于透射投影图只能反映某一方向上二维的信息,如果要对真实三维空间中物质的分布做精确地定量,需要借助计算机成像技术。如图7(d)所示,Finegan等利用同步辐射光源X射线高亮度的特征,在欧洲同步辐射装置(ESRF)的线站上搭建了一套集合原位红外加热、红外测温与高速CT的装置。使用红外加热,实现在线的18650电池升温,同时进行连续的X射线CT成像。连续扫描的TXM投影图能够反映极高时间分辨率的热失控电池内部情形。基于每500张TXM重构得到1个X射线CT结果能够达到2.5帧每秒,实现了一定时间分辨率的电池内部空间分布成像。通过CT结果能够清晰地看到热失控过程中各个阶段的电池材料变化,如电极活性物质层破损、铜集流体融化再团聚等。结合TXM技术获得的投影图和高速X射线CT结果,可以清晰认识热失控过程中电池内部不同位置各个材料的反应、产气、结构破坏等失效行为。另一方面,配合诸如针刺、红外加热、挤压、拉伸等原位实验,可以帮助研究与理解电池的各类宏观失效行为。2.4 电芯热失控数值模拟电芯安全测试的维度广、涉及的测试项目多,通过实验评价电芯安全性需要大量样品和时间成本。同时,产品级电芯的研发周期长、成本高,安全性评估往往处于电芯研发周期的后端。通过数值模拟方法预测电芯安全性测试表现可以大幅度降低实验成本,且在产品研发的前期便对体系的安全性做出判断,大大提高研发效率。电芯热失控数值模型的核心是准确描述电芯热失控过程中的化学反应及吸放热量,从而基于能量守恒模拟电池温度在不同条件下的动态变化。化学反应的吸放热一般通过Arrhenius公式描述 (1)式中,图片指反应的产热量;图片为反应物的质量;图片为反应单位质量的吸放热;α为反应的归一化反应量;图片为机理函数;图片为反应的指前因子;图片为反应活化能。通过热分析实验可以测定求解以上参数,这也是热分析动力学的基本问题。电芯升温过程中内部会发生多个反应,它们对电芯升温的贡献可以看作线性叠加,通过准确描述所有反应即能较为精准地预测电芯在不同条件下的温度变化行为 (2)上述方程中,图片为电芯密度;图片为等压比热容;图片、图片、图片为电芯中沿各个方向的热导率;图片为对所有化学反应的产热速率求和;图片为电池与环境换热所引起的能量变化。预测温度变化需要求解二阶含时偏微分方程,如果认为电池中的反应和空间无关,电芯温度均匀上升且电芯体系与外界无热交换,也可简化为一阶微分方程 (3)基于该理论,Hatchard等将电池中主要的化学反应总结为SEI分解、负极-电解液反应、正极-电解液反应、电解液分解反应,计算了方形和圆柱电芯在热箱中的热行为。Spotnitz等总结了早期文献中的反应动力学参数,并基于均一电芯模型系统预测了不同材料体系的电芯在各类滥用测试中的表现。通过理论模拟,可以仅基于少量小规模实验数据对实际电芯的安全性表现进行系统预测。Feng等、Ren等基于热分析动力学和非线性优化算法重新标定了电池中关键反应的动力学参数并进行了更准确的热失控模拟,他们的模型利用DSC测试获得的参数准确预测了电池在ARC中的热失控表现,可以进一步用于预测热箱、短路等条件下的安全性。需要指出的是,不同材料体系、配方和工艺的电芯中涉及的反应机制和动力学可能存在差异,如近年来电芯内短路、正极-电解液反应和正负极化学串扰三者是否均在热失控过程中主导发生的问题引起了广泛争论,安全性的数学模拟并非空中楼阁,而是建立在具体实验和对电池内部化学反应深刻理解的基础上。由于算力的限制,早期的安全性仿真工作大多不考虑温度空间分布或只计算一维分布,而空间分布在大容量电池和真实工况中是不可忽略的,Kim等、Guo等较早提出了描述热失控温度分布的三维电池模型。近年来数值计算方法的发展和商业计算软件的成熟大幅降低了安全性模拟仿真的难度,Feng等利用商业化的有限元计算软件Comsol Multiphysics建立了大容量三元方形锂离子电芯的热失控仿真模型,可以模拟电芯在短路状态下热失控过程和温度的分布,与实测有较好地拟合结果。除了电芯的热行为,电滥用和力学失效对安全性也存在一定的影响,目前,通过构建电-热耦合模型研究电池非等温电化学性能和短路热失效表现的方法目前已较成熟[59-60],而力学失效如碰撞、针刺等引起热失控的数值模型仍需要持续地开发。3 系统热安全性研究电池系统的安全性是目前锂电池应用面临的最直接问题,其研究重点是系统中热失控的扩展规律与抑制、预警措施。目前商品化电芯的热失控无法完全避免,在系统层面防止热失控扩展是可能的安全性解决方案。在系统层级开展实验研究的成本较高,但难以避免,在模拟仿真的辅助下可以提前预测优化系统设计,降低实验成本。3.1 热失控扩展和火灾危险性测试电池系统热扩展的实验研究成本和危险性较高,主要方法是通过加热、过充、针刺等方式诱发电芯单体的热失控,并利用接触式热电耦、红外测温等手段研究温度在系统中的分布和变化,这种方式只能获得局部多点的热失控信息。Wang团队在国内首次开发了全尺寸锂离子电池火灾危险性测试平台,用来测量大尺寸动力电池及电池组的燃烧特性,除了可以获得电池温度变化外,还可以获得电池组失控过程中的质量变化、火焰温度等信息,同时基于锥形火焰量热等技术可以测定大型电池系统宏观燃烧所释放的能量。与电芯EV-ARC等方法获得的信息不同,在真实环
  • 国内首个自主研发的地球模拟器正式投入使用
    p   记者从中国航天科工集团二院207所获悉,首个国内自主研发的用于真空模拟系统中的多波段复合地球模拟器顺利完成交付验收试验,正式投入使用。 /p p   207所专家表示,该地球模拟器是国内首个用于真空系统中的多波段复合地球模拟器,也是目前国内最大的地球模拟器,其主要作用是为真空测试环境提供地球背景环境模拟,通过多波段复合方式实现地球辐射特性的模拟。 /p p   据介绍,该地球模拟器具有多波段模拟、快速升温、快速降温、精确控温、均匀性和稳定性良好、可长时间持续工作等优势,各项技术指标均处于国内领先水平。 /p p   后续,地球模拟器研制团队将在现有地球模拟器的技术基础上,继续攻关,争取形成地球模拟器系列化产品,使地球模拟技术取得更大的发展。 /p
  • 全国首个城市双碳模拟器在济南发布
    6月8日,第一届城市碳达峰碳中和高端战略研讨会暨济南双碳模拟器发布会召开,全国首个城市双碳模拟器——济南双碳模拟器正式发布。据介绍,济南双碳模拟器主要功能包括天空地碳监测多源数据的预处理、碳源汇动态模拟反演、减污降碳协同模拟等功能板块。模拟器的研发以济南市为应用目标,充分考虑了通用性和易移植性,可推广至各级行政区域、河流流域、不同规模的各种类型园区、不同行业或领域,服务各级政府、各行业部门等,使碳排放和碳汇监测、核算、预测预警、调度管理等实现数字化和智能化,实现数字双碳动态管理。目前,济南双碳模拟器的大气二氧化碳模拟和同化反演子模块已经顺利移植到国家超级计算济南中心服务器上并成功运行,开始为济南碳监测试点提供技术支持。城市双碳模拟器将对城市绿色低碳高质量发展提供重要数值模拟技术平台,能为政府碳排放动态调控和产业优化升级管理提供有力科学支撑,为我国众多城市实现碳达峰目标和碳中和愿景保驾护航。济南市科技局党组书记、局长陈西武介绍到,近年来,济南市紧紧围绕“双碳”工作目标,加快推动绿色低碳发展,成功申报国家碳监测评估试点城市,成为全国8个综合试点之一,率先开展了城市大气温室气体监测评估工作,为城市碳监测评估体系建设贡献了“济南案例”。中科院大气所在济南成立齐鲁中科碳中和研究院,为济南市聚集和培养了一批技术创新团队,为济南市碳排放监测和评估提供了技术支撑,特别是此次发布的济南双碳模拟器,必将推动相关绿色科技成果在济南落地转化,为济南市实现“双碳”目标奠定坚实基础。
  • MTS 发布新模拟器——地下设施和管道的守护者
    p style=" text-align: justify text-indent: 2em " 全球知名高性能试验机和传感器供应商MTS系统公司于9月25日宣布,已开发出一种独特的土壤-结构相互作用模拟器,该模拟器可在地下基础设施的保护工作中发挥重要作用。 /p p style=" text-align: justify text-indent: 2em " 这一全新的系统将首先亮相于于英国伯明翰大学的新国家地下基础设施(NBIF)中,用以研究土壤位移和地面移动对地下设施、管道以及地下结构的影响。沉降和变形常使土壤发生位移,形成地下空洞和不稳定断裂区域,由此而产生的压力对埋在地下的管道施加了巨大的作用力,造成地下管道失效、泄漏和破裂的潜在风险,如果破裂的管道是天然气管道或石油管道,那很有可能将对人类、野生动物和财产带来极其严重的危害。运用MTS的这一新模拟系统,伯明翰大学大学将能够更好地研究复杂的土体变形过程及其对地下结构的影响。 /p p style=" text-align: justify text-indent: 2em " 这个巨大的模拟系统有一个5× 10米的可移动地板,可以埋在地下5米深的设计复杂的坑内。可移动地板的运动依靠50个MTS DuraGlide制动器提供动力,额外的地面制动器将可以控制土壤的运动,并在尺度模型和全尺度试验中模拟灰岩坑等地面位移。据悉,伯明翰大学计划在未来利用这一革命性的新系统来改进管道检测和评估的地球物理遥感技术。 /p p style=" text-align: justify text-indent: 2em " MTS总裁兼CEO Jeffrey Graves博士接受采访时表示:“基础设施老化是一个全球性的问题,用MTS这一新模拟系统来开发的土壤稳定解决方案将对保护看不见的地下基础设施大有裨益,让建筑物和整个人类赖以生存的环境更加安全。”他告诉记者,这一模拟系统是MTS在众多应用领域成功经验的高度结晶。融合了汽车设计和构造、地震研究、航空航天多通道控制等各个维度的先进技术手段。伯明翰大学土木工程系主任& nbsp Nigel Cassidy教授补充说:“MTS在液压试验机等领域积累了大量专业知识和经验,我们很高兴能与他们合作,共建这一创新性的新设施。” /p
  • 三永发布高准直太阳光模拟器新品
    日本SAN-EI公司推出高准直太阳光模拟器(高平行太阳光模拟器),准直度半角小于0.3度,实现了高准直性测试的各种要求。目前已被国内权威机构采购并使用。AM1.5G /AM0 太阳光光谱;准直接半角不稳定性2% 均匀性可定制;照射距离可定制;照射角度和方向可定制;创新点:高准直稳态太阳光模拟器,准直度半角小于0.3度,实现了高准直性测试的各种要求。目前已被国内权威机构采购并使用。 高准直太阳光模拟器
  • 中国首发城市双碳模拟器,助力城市绿色低碳高质量发展
    记者8日从中国科学院大气物理研究所(中科院大气所)获悉,由该所主办、济南市科学技术局协办的“城市碳达峰碳中和高端战略研讨会”当天下午在山东济南举行,中国首个城市双碳模拟器在会上发布,将对城市绿色低碳高质量发展提供重要数值模拟技术平台,为政府碳排放动态调控和产业优化升级管理提供有力科学支撑,为中国众多城市实现碳达峰目标和碳中和愿景做出贡献。中科院大气所主办“城市碳达峰碳中和高端战略研讨会”并发布首个城市双碳模拟器。 当天首发的城市双碳模拟器,是由齐鲁中科碳中和研究院研究团队,基于中科院大气所牵头建立的地球系统数值模拟国家大科学装置——地球模拟器“寰”(EarthLab),以及配套的国际先进水平的地球模型系统研制而成,充分考虑到城市双碳功能定位和需求,对复杂系统进行顶层构建和精细化设计。“寰”是中国首个具有自主知识产权的专用地球系统数值模拟装置,它以地球系统各圈层数值模拟软件系统为核心,实现软、硬件最佳适配,具有建构数字“孪生”地球系统的能力,其综合技术水平位于世界前列。最新发布的城市双碳模拟器被称为1.0版系统,其主要功能包括天空地碳监测多源数据的预处理、碳源汇动态模拟反演、减污降碳协同模拟、碳达峰碳中和预测和路径优化、城市风光资源评估与模拟预测、双碳与气候效应以及跨界碳输送模拟和预测等功能板块。该模拟器的研发以济南市为应用目标,充分考虑通用性和易移植性,可推广至各级行政区域、河流流域、不同规模的各种类型园区、不同行业或领域,通过提供碳达峰与碳中和进程、碳源汇时空变化、碳污动态协同演进、未来双碳情景预测、双碳全景可视化等,可服务各级政府、各个行业部门等,使碳排放和碳汇监测、核算、预测预警、调度管理等实现数字化和智能化,实现数字双碳动态管理。据了解,目前,济南版城市双碳模拟器的大气二氧化碳模拟和同化反演子模块,已经顺利移植到国家超级计算济南中心服务器上并成功运行,开始为济南碳监测试点提供技术支持。城市碳达峰碳中和高端战略研讨会上,与会专家学者代表围绕城市尺度碳达峰碳中和科技支撑工作进行深入研讨,聚焦碳达峰碳中和最新科技进展,包括碳源汇宏观管理、城市和区域温室气体监测、碳模拟和同化反演技术方法等议题,针对城市碳达峰碳中和实施工作中的难点与挑战建言献策。
  • 海洋光学发布RaySphere系统用于太阳光模拟器的质量检测
    美国海洋光学(www.oceanopticschina.cn)近日推出一款 RaySphere 光学测量系统,用以测量太阳光模拟器和其他辐射源的绝对辐照度。RaySphere系统可测量从紫外线到近红外光谱(380-1700nm)的不同光谱范围的绝对辐照度(mW/cm2/nm)。 下载高清晰图像:http://halmapr.com/oo/RaySphereRelease.jpg (图片说明:海洋光学 RaySphere 系统评估并判定太阳能闪光灯和太阳光模拟器的光谱分布是否合格) 作为一种用于验证已安装的太阳能闪光灯输出的工具,RaySphere 特别适用于太阳光模拟器制造商以及研发实验室。太阳光模拟器的闪光可用于目的为根据光谱反应组合细胞像素的光电制造流程、以及目的为测量最终光电效能的光电制造流程。RaySphere 的系统具有必要的精确度和分辨率,以测量和分析闪光器的性能和稳定性,并通过高级的低频抖动方式触发电子设备为闪光测量计时。RaySphere 的刻度经过公认的认证实验室的确认,以确保精确的探测,并使太阳能闪光灯和太阳光模拟器的评估和资格认证符合由 ASTM 和 IEC(IEC60904-9 2007)等标准制定机构制定的标准。 两台热电冷却探测器使太阳能闪光灯的光谱分析(380-1700nm)可复验性高且准确。第二种型号的 RayShere 含有一个冷却探测器,以测量最多 1100nm 的光谱。 该系统同时包含高级、高速的电子设备,以及直观、强大的软件界面。极少的测量次数可实现在闪光期间,甚至于闪光间隔期间的完整光谱检测。此外,测量还可以由一个快速反应的发光二极管促发。该二极管可在百万分之一秒内通过增加闪光强度而做出反应。 关于海洋光学(Ocean Optics)和豪迈(HALMA): 总部位于美国佛罗里达州达尼丁市的海洋光学(www.OceanOpticsChina.cn)是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过150,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈(HALMA www.halma.cn)是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有3700多名员工,约40家子公司。豪迈目前在上海、北京、广州、成都和沈阳设有代表处,并且已在中国开设多个工厂和生产基地。
  • Bruel & Kjaer 5128型高频头和躯干模拟器问世
    5128型高频头和躯干模拟器问世全新“小绿人” Bruel & Kjaer的全新高频头和躯干模拟器已问世。 它解决了可听声范围内逼真、精确和可重复的声学测量需求。 为了满足越来越高的手机音频品质需求,以及耳机在通信及娱乐中的日益普及,我们的电信/音频团队开发了5128型高频头和躯干模拟器(HATS)。 高频HATS解决了可听声范围内逼真、精确和可重复的声学测量需求。人工头还提供大面积的硅胶围绕耳廓,以实现头戴式耳机的完美密封。高频HATS将音频性能测量的频率范围扩展到比目前市场上的头和躯干模拟器更高的频率范围。此外,人工头的结构更易接近内部组件。 高频HATS具有真实人耳结构的耳道,可在整个频率范围内实现正确的声阻抗并通过传感器电子数据表(TEDS)提供耳模拟器相关的校准信息。通过精确地复现人耳的音频响应,高频HATS可以前所未有的精确度提供高达20 kHz的音频测试。此外,口模拟器的性能也得到提高,可提供12 kHz及以上的均衡输出。这显著提高了智能设备及其配件的音频性能的主、客观评估之间的相关性,确保了新产品在市场上的先进地位,缩短了开发时间。 请访问Bruel & Kjaer官方网站,查询有关5128型高频头和躯干模拟器的详细信息。 关于Bruel & KjaerBruel & Kjaer是先进的声学与振动测量系统制造商和供应商。我们帮助客户测量和管理其产品与环境中的声音与振动质量。我们关注的领域包括航空航天、太空、国防、汽车、地面交通、机场环境、城市环境、电信和音频。我们的声学与振动设备系列包括声级计、传声器、加速度计、适调放大器、校准器、噪声与振动分析仪和PULSE软件。我们还设计和制造LDS系列振动测试系统,以及完整的机场和环境监测系统:WebTrak,ANOMS,NoiseOffice和Noise Sentinel。全面了解我们的解决方案、系统和产品,请访问我们的官方网站。Bruel & Kjaer是总部位于英国的思百吉集团旗下的子公司。思百吉集团2016年销售额达13亿英镑,集团的4个业务板块在全球共有大约7,500名员工。
  • 华裔教授参与研究将锂电池蓄电量提升十倍
    据美国《星岛日报》报道,电池技术的改良并非经常出现,有如美国西北大学(Northwestern University)一群工程人员所声称的突破更为罕见。华裔教授Harold Kung及其研究团队表示,已成功把锂离子电池的蓄电量及充电速度提升十倍。   据Kung教授指出,关键在于各层石墨烯(Graphene)之间的锂离子是如何移动。这些离子穿过电池内石墨烯层的速度直接影响到充电速度。为加快这过程,Kung教授决定在电池的石墨烯层刺上数百万个直径只有10至20纳米的极细小孔,为离子提供通往另一层的“快捷方式”。而结果发现这些刺孔电池的充电速度比传统电池快上十倍,15分钟内便可由零到充满电。   这成果未能满足研究员,Kung教授及其团队再着手为电池加大蓄电量。他们在各层石墨烯之间,注入细小集束的硅来增加锂离子的密度。这方法利用石墨烯的可塑性,避免过往改善蓄电量时所遇上的硅膨胀问题,从而让更多离子积聚在电极处。   以这方法制成的电池,每次充电便可用上超过一星期。Kung教授表示,现在已近乎两全其美,硅可提供更高的能源密度,而夹层则减少了因硅膨胀收缩所引致的容量损失。即使这些硅集束分裂也不会让硅失去。   但这电池仍有一项缺点,在充电150次后,蓄电量及充电速度皆大幅衰减。但正如Kung教授指出,蓄电量的增加将足以弥补这缺点。他在接受英国广播公司(BBC)访问时表示,即使在充电150次之后,这相等于一年或以上的运作,这电池的效率比现时市面上的锂离子电池还要高出五倍。
  • 虹科案例 | CAN+BMS?虹科CAN卡如何为新能源电池“续电”?
    虹科案例 | CAN+BMS?虹科CAN卡如何为新能源电池“续电”?BMS是什么BatteryManagement System简称BMS,中文是动力电池管理系统。电动汽车的电池管理系统,即对电池进行监控和管理的系统,这项技术使汽车在满足各种方案的高性能要求方面发挥了作用,通过对电压、电流、温度以及SOC等参数采集、计算,进而控制电池的充放电过程,实现对电池的保护。电池组的实时监测和控制在电动汽车中是必不可少的,提升电池综合性能的管理系统,这是连接车载动力电池和电动汽车的重要纽带,而这正是CAN通信也是我们PCAN的用武之地。BMS能做什么通过CAN通信,BMS可以提供关于电池组状态的准确、最新的信息,包括其温度、电压和其他关键参数,这些信息对于确保电池组的安全和高效运行至关重要。只要一台笔记本和一个CAN卡,就可以显示BMS上报的所有信息,具体是怎么样实现的呢?下面是几个关于我们的客户实际运用的案例,来听听我们的客户怎么说。1.电池单元的实时监控、监测和保护 如下图,PCAN被用来收集每个电池的数据,包括温度、电压和其他参数,BMS处理这些信息以实时监测电池单元的状态。BMS利用CAN通信持续监测电池组的温度、电压和电流,并且在上位机PE6上解析,检测是否有任何异常情况,比如过热、过度充电或过度放电等。2.蓄电池组平衡。 电池组的平衡对于保持每个电池单元的最佳充电状态(SOC)是必要的,BMS可以通过监测每个电池的SOC来平衡电池组,并控制充电和放电速率,以确保每个电池均匀地充电和放电。BMS使用CAN通信与充电器和电机控制器通信,以调节充电和放电速率。如上图,测试环境是模拟整车,对车载电源进行测试,用到的协议都是标准的CANFD和CAN2.0,PCAN-Explorer 6可以同时连接几个CAN和CAN FD网络,这个测试是需要按照客户DBC文件和产品进行通讯,进行数据交互,并且可以可以以图形表示现场记录或基于trace的信号序列。 总之,CAN通信技术已经成为电动汽车BMS的一个重要组成部分;PCAN在BMS系统中,目前被用于检测电池组的参数,如电压电流温度等,除此之外,它还可以控制汽车的各种功能。它在实时监控、故障检测和隔离、电池组平衡以及安全监控和保护方面的应用使电动汽车变得更加安全、可靠和高效。在BMS中继续使用PCAN去通信将使电动汽车变得更加方便智能!
  • 四方光电标准呼吸模拟器,多重质控满足肺功能检查仪临床检测/计量校准要求
    肺功能检查仪进行检测校准的必要性    慢性呼吸系统疾病排在心脑血管病、癌症之后,成为我国居民慢性病致死的第三位死因。肺功能检查作为慢性气道等呼吸疾病诊断的金标准之一,是慢性阻塞性肺疾病防治和检查的关键。肺功能检查仪是检测肺脏吸入、呼出气体容量和速率,从而了解呼吸生理和呼吸功能是否正常的一种设备,主要由肺量计、气体分析器等部件组成。肺功能检查仪对于早期检出肺及气道的病变,诊断病变部位和评估疾病的严重程度具有重要的临床意义。    在钟南山院士、王辰院士等国内权威专家的推动下,“要像测量血压一样,测量肺功能”近年来得到社会各界的广泛关注和认可。2019年推出的《健康中国行动(2019—2030年)》明确提出将肺功能检查纳入40岁及以上人群常规体检内容。随着2020年国家基层呼吸系统疾病早期筛查干预能力提升项目在各地的实施落地,以及社区居民对呼吸系统慢性疾病早防早治意识的增强,不同原理类型的肺功能检查仪在全国各地基层医疗卫生机构得到了广泛配置及使用。    但肺功能检查仪的检测结果容易受多方面因素影响。比如不同肺功能检查仪的生产厂家采用的检测原理和设备结构不一样,会导致性能有较大差异,加上仪器设备在使用过程中因磨损或受环境因素而影响其正常使用,将出现检测结果的不准确。所以临床上常见发生同一个患者在不同医院所进行的肺功能测试结果有较大的偏差,给诊断造成很大影响。因此,对肺功能检查仪进行定期检测校准等质量控制、确保其测量的准确性极为重要。    肺功能检查仪检测校准的标准要求    校准是肺功能检查设备质控的关键措施,国际上美国胸腔协会(ATS)、欧洲呼吸协会(ERS) 、英国标准协会(BSI)分别发布的肺功能检查技术指南中,均提出了肺功能检查设备的技术性能标准和质控规范,我国也于2008年颁布了JJF 1213-2008 《肺功能检查仪校准规范》,解决肺功能检查仪的质量控制和量值溯源问题。    对肺功能检查仪肺量计的检测通常采用标准呼吸模拟器进行校准,要求必须能模拟人体器官肺的基本运动模式,标准规范主要参考美国胸腔协会(ATS)肺功能检测标准的内容。该标准对肺功能检查仪性能指标、测定方法、校准装置、BTPS修正、对FVC及PEF等指标检测的操作方法作了具体的要求和说明,并提供了24条标准波形检测肺功能检查仪的FVC指标,26条流量标准波形检测PEF指标。    (表:校准用设备性能表)    肺功能检查仪检测校准质控设备的选择    肺功能检查仪校准用标准呼吸模拟器必须能够精确模拟人体器官肺的运动模式,特别是模拟输出ATS推荐的标准波形,因此普通气体流量计计量标准和肺量计定标筒,不适合用于肺功能检查仪的量值传递。    四方光电呼吸模拟器是一款肺功能检查仪校准专用设备,由气缸、交流伺服电机、伺服电机控制器、专用控制卡和计算机组成。通过计算机控制软件驱动控制卡进而驱动伺服电机转动,推动活塞作往复运动,压出或者吸入气缸中的空气,从而模拟人的平静呼吸、深吸气、用力快速吹气等呼吸动作,为检验肺功能检查仪 VC、FVC、MVV 等测试指标提供了标准方法。    四方光电呼吸模拟器不但可精准输出ATS的24条标准FVC及26条PEF波形曲线,还可用于智能检测分析被校正肺功能检查仪的准确度和频率速度响应情况,有助于医生对肺功能检查仪所测定的病人肺功能状况的数据指标作准确判断。产品符合多重质控标准,满足临床检测/计量校准要求,可为《呼吸学科医疗服务能力指南(2018年版)》、《健康中国行动(2019—2030年)》的实施提供装备支撑。    ■ 设备标准质控    符合美国胸科学会发布的“肺活量测定的标准化”(2005)    符合ISO 23747:2015(ATS)    符合EN ISO 26782:2009    ■ 模拟波形质控    ATS标准24个容量-时间波形    ATS标准26个流量-时间波形    13项波形符合EN ISO 26782:2009附录C要求的标准波形    10项波形符合EN ISO 23747:2009附录C外形A要求的标准波形    用户还可自定义波形    ■ 使用过程质控    为所有类型的呼气曲线提供完整的BTPS模拟    根据ATS全面支持人体差异测试    全自动测试程序可由用户定义,如自定义容量、自定义流速、自定义运行次数    ■ 结果判读质控    所产生波形的参数均可完全溯源至国家标准    根据ATS评估测试结果并进行错误分析    四方光电标准呼吸模拟器应用领域及技术参数     计量院肺功能检查仪年检手段     科研单位呼吸模拟测试研究     肺功能检查仪企业溯源设备    关于四方光电    四方光电股份有限公司(以下简称“四方光电”)是一家从事智能气体传感器和高端气体分析仪器的科创板上市企业(股票代码688665)。公司2003年成立于武汉“光谷”,形成了包括光学(红外、紫外、光散射、激光拉曼)、超声波、MEMS金属氧化物半导体 (MOX)、电化学、陶瓷厚膜工艺高温固体电解质等原理的气体传感技术平台。这个平台为四方光电开发基于呼气分析的医疗器械应用提供和强有力的技术保障。    四方光电建设有省级企业技术中心和湖北省气体分析仪器仪表工程技术研究中心。同时公司积极融入国家技术创新体系,先后获得国家重大科学仪器设备开发专项、工信部物联网发展专项、工信部强基工程传感器“一条龙”、科技部科技助力经济2020重点专项、湖北省技术创新重大项目等多个项目的支持,被国内外行业权威机构列为中国气体传感器主要厂商和代表性企业,并荣获中国物联网产业联盟“最具影响力物联网传感企业奖”。     在健康医疗领域,四方光电超声波肺功能检查仪是一款用于肺通气功能和肺活量检查的高新技术产品,是检查哮喘、COPD、其它呼吸病患者以及评估吸烟者、慢性咳嗽和多痰者的肺功能的有力测定仪器。同时公司开发的肺功能检查仪定标筒、制氧机用氧气传感器、呼吸机用流量及气体成分传感器、监护仪用红外EtCO2传感器在国内外医疗机构及设备中得到广泛应用。未来,四方光电还将大力开拓基于呼吸监测的智能医疗健康板块,加大在呼吸机、麻醉机、监护仪等更广阔医疗器械开拓力度,推动提升肺功能检测仪在医疗机构、社区及家庭的配置率。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制