当前位置: 仪器信息网 > 行业主题 > >

地表水采样器

仪器信息网地表水采样器专题为您提供2024年最新地表水采样器价格报价、厂家品牌的相关信息, 包括地表水采样器参数、型号等,不管是国产,还是进口品牌的地表水采样器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合地表水采样器相关的耗材配件、试剂标物,还有地表水采样器相关的最新资讯、资料,以及地表水采样器相关的解决方案。

地表水采样器相关的资讯

  • 地表水采测分离这些技术细节你注意了吗?
    p   国家地表水手工断面采测分离作为我国监测事权上收的重要工作,正在如火如荼的开展,工作的重要性不言而喻,但是成功的关键还是要注重细节。 /p p   2018年1月-3月,中国环境监测总站对各采样公司的采样和现场监测的操作规范性,以及分析测站的质量管理体系运行情况进行了质控检查,发现了一些容易忽略的细节问题,望引起大家的注意。 /p p   1、现场河宽、河深的勘测问题 /p p   一个断面的垂线数和分层数需要根据实际河宽、河深计算确定,随着季节变化,河流或者湖库的宽度深度会有较明显的变化,如果只是死板的依据计划采样,不进行实际勘测,数据就不能反映实际情况,参考性降低。 /p p   2、石油类采样量问题 /p p   石油类采样确实是考验采样技术的重点和难点,也是现场发现问题较多的项目,采样器设计不合理操作困难时有发生,多次反复采样、一次性打水过满、再次采样不更换采样瓶,这些现象都将影响数据的代表性。 /p p   3、采水曝气和沉降问题 /p p   用排空式采水器时从上口倾倒水样、沉降时忽略防尘、沉降后灌装BOD5时出水口在水面上、虹吸管入口端没有固定措施,这些不当行为都为数据带来偏差。铜、铅、锌、镉、铁和锰,指的是溶解态含量,采样后在现场需立即用0.45微米的微孔滤膜过滤,部分采样人员对此规定不熟悉,与其他常规项目同样自然沉降30分钟后再过滤,影响数据的准确性。 /p p   4、温度计位置摆放问题 /p p   部分冷藏箱温度计紧挨冰块放置,不能反映保温性能最差处温度情况,导致温度失真,影响冷藏效果。 /p p   5、记录的填写问题 /p p   部分采样人员认为系统里已经上传了数据,不需要再填写现场记录,部分分析测站也有记录未及时填写或填写不规范的现象,这些记录的缺失和不规范填写将会影响监测数据的溯源。 /p p   6、平行样分装问题 /p p   采集现场平行样时应等体积轮流分装成两份,并分别加入保存剂,禁止装完一份样品再装另一份样品。 /p p   7、电导率数据报出问题 /p p   电导率随温度变化而变化,温度每升高1℃,电导率增加约2%,通常规定25℃为测定电导率的标准温度。 /p p   当测试设备不具有温度修正功能时,需将测定值修正到25℃时的值 若设备具备温度修正功能,需要核实此功能是否开启。 /p p   8、汞的实验室分析问题 /p p   汞的样品分析过程中实验用水、试剂、比色管、消解过程和仪器残留均会带来污染,实验人员应尤其注意操作细节的规范性,避免沾污,并控制实验室空白。 /p p   这些细节问题,希望大家在今后的工作中能够重视,加强培训和学习,更好的做好采测分离工作,确保采测分离的数据质量。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/noimg/d7b049bb-2c40-4960-bea0-d204b3b5c4e2.jpg" title=" 采样船.webp.jpg" / img src=" http://img1.17img.cn/17img/images/201803/noimg/bd593431-4a59-4547-bce0-14e04bb359bc.jpg" title=" 采样瓶.webp.jpg" / /p
  • 地表水检测移动实验室仪器配置及监测项目一览
    p   随着我国对地表水现场检测的需求不断扩大,地表水快速检测移动实验室在检测过程中的重要性逐渐显现,因此对地表水快速检测移动实验室的采样、检测仪器等相关设备也引起了高度重视。作为地表水采样与检测一体化的移动实验室平台,制定统一、规范的地表水快速检测移动实验室用于地表水现场采样与检测等显得尤为必要。 /p p   日前,全国移动实验室标准化技术委员会发布关于通知,对《地表水快速检测移动实验室通用技术规范》征求意见。本标准由全国移动实验室标准化技术委员会提出并归口,起草单位为青岛佳明测控科技股份有限公司,合作单位为中国环境监测总站、青岛市环境监测中心、上海安杰环保科技股份有限公司、山东正泰希尔专用汽车有限公司。 /p p   我们国家目前已经建立了《地表水环境质量标准》、《移动实验室通用要求》、《地表水自动监测技术规范》等标准,但是没有移动实验室地表水监测的专业性标准,本标准参考了以上标准,根据地表水的相关规定,做了相关规范,填补了地表水检测移动实验室没有技术规范的空白。 /p p   标准中明确了地表水快速检测移动实验室仪器设备配置参考及地表水快速检测移动实验室监测项目。其中,地表水快速检测移动实验室可参考地表水快速检测移动实验室监测项目来选配仪器设备。详细内容如下: /p p style=" text-align: center " strong 地表水检测移动实验室配置仪器设备 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 39" p style=" text-align:center " 序号 /p /td td width=" 157" p style=" text-align:center " 检测类别 /p /td td width=" 480" p style=" text-align:center " 仪器设备 /p /td /tr tr td width=" 39" rowspan=" 2" p style=" text-align:center " 1 /p /td td width=" 157" rowspan=" 2" p style=" text-align:center " 采样器、样品采集、存储类 /p /td td width=" 480" p style=" text-align:center " a href=" https://www.instrument.com.cn/Consumables/s_82.htm" target=" _blank" 聚乙烯塑料桶 /a 、 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 单层采水瓶 /a 、 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 直立式采水器 /a 、 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 在线自动监测设备 /a /p /td /tr tr td width=" 480" p style=" text-align:center " a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 硬质玻璃瓶 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_82.htm" target=" _blank" 聚乙烯瓶 /a 等容器、 a href=" https://www.instrument.com.cn/Consumables/s_82.htm" target=" _blank" 无菌瓶 /a 等容器、 a href=" https://www.instrument.com.cn/list/main/03.shtml" target=" _blank" 车载冰箱 /a /p /td /tr tr td width=" 39" p style=" text-align:center " 2 /p /td td width=" 157" p style=" text-align:center " 试验类 /p /td td width=" 480" p style=" text-align:center " a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 烧杯 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 试管 /a 、 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _blank" 试剂盒 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 容量瓶 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 量筒 /a 、 a href=" http://移液枪" target=" _blank" 移液枪 /a 、 a href=" https://www.instrument.com.cn/Consumables/s_81.htm" target=" _blank" 移液管 /a 等 /p /td /tr tr td width=" 39" p style=" text-align:center " 3 /p /td td width=" 157" rowspan=" 3" p style=" text-align:center " 检测仪器类 /p /td td width=" 480" rowspan=" 3" p style=" text-align:center " a href=" http://五参数分析仪" target=" _blank" 五参数分析仪 /a 、 a href=" https://www.instrument.com.cn/zc/1687.html" target=" _blank" 高锰酸盐指数分析仪 /a 、 a href=" http://氨氮分析仪" target=" _blank" 氨氮分析仪 /a 、 a href=" https://www.instrument.com.cn/zc/319.html" target=" _blank" 总磷分析仪 /a 、 a href=" https://www.instrument.com.cn/zc/319.html" target=" _blank" 总氮分析仪 /a 、 a href=" https://www.instrument.com.cn/zc/35.html" target=" _blank" 可见/紫外分光光度计 /a 、 a href=" https://www.instrument.com.cn/zc/24.html" target=" _blank" 离子色谱仪 /a 、 a href=" https://www.instrument.com.cn/zc/1158.html" target=" _blank" 气相分子吸收光谱仪 /a 、 a href=" https://www.instrument.com.cn/zc/39.html" target=" _blank" 原子发射光谱仪 /a 。 a href=" https://www.instrument.com.cn/zc/1650.html" target=" _blank" 重金属分析仪等在线自动监测仪 /a 、 a href=" https://www.instrument.com.cn/zc/646.html" target=" _blank" 重金属分析系统 /a 、 a href=" https://www.instrument.com.cn/zc/293.html" target=" _blank" 电感耦合等离子体质谱仪ICP-MS /a 、 a href=" https://www.instrument.com.cn/zc/24.html" target=" _blank" 离子色谱仪 /a 、 a href=" https://www.instrument.com.cn/zc/1.html" target=" _blank" 气相色谱仪 /a 、 a href=" https://www.instrument.com.cn/zc/290.html" target=" _blank" 气相色谱-质谱联用仪 /a 、 a href=" https://www.instrument.com.cn/zc/290.html" target=" _blank" 气相色谱-飞行质谱联用仪 /a 、 a href=" https://www.instrument.com.cn/zc/143.html" target=" _blank" 培养箱 /a 等。 /p /td /tr tr td width=" 39" p style=" text-align:center " 3 /p /td /tr tr td width=" 39" p style=" text-align:center " 3 /p /td /tr /tbody /table p   地表水快速检测移动实验室仪器设备选择原则:a) 根据使用的实际需求选择合适的仪器设备。 b) 有限选用主流分析方法的仪器设备  c) 仪器设备宜便捷、小型化。 /p p style=" text-align: center " strong 地表水快速检测移动实验室监测项目 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 44" valign=" top" p style=" text-align:center " & nbsp /p /td td width=" 280" valign=" top" p style=" text-align:center " strong 必测项目 /strong strong /strong /p /td td width=" 314" valign=" top" p style=" text-align:center " strong 选测项目 /strong strong /strong /p /td /tr tr td width=" 44" valign=" top" p style=" text-align:center " 河 流 /p /td td width=" 280" valign=" top" p style=" text-align:center " 水温、pH、溶解氧、高锰酸盐指数、化学需氧量、BOD5、氨氮、总氮、总磷、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、 br/ & nbsp & nbsp & nbsp 石油类、阴离子表面活性剂、硫化物和粪大肠菌群 /p /td td width=" 314" valign=" top" p style=" text-align:center " 总有机碳、甲基汞,根据纳污情况由各级相关环境保护主管部门确定 /p /td /tr tr td width=" 44" valign=" top" p style=" text-align:center " 集中式饮用水源地 /p /td td width=" 280" valign=" top" p 水温、pH、溶解氧、悬浮物②、高锰酸盐指数、化学需氧量、BOD5、氨氮、总磷、总氮、铜、锌、氟化物、铁、锰、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物、硫酸盐、氯化物、硝酸盐和粪大肠菌群 /p /td td width=" 314" valign=" top" p 三氯甲烷、四氯化碳、三溴甲烷、二氯甲烷、1,2-二氯乙烷、环氧氯丙烷、氯乙烯、1,1-二氯乙烯、1,2-二氯乙烯、三氯乙烯、四氯乙烯、氯丁二烯、六氯丁二烯、苯乙烯、甲醛、乙醛、丙烯醛、三氯乙醛、苯、甲苯、乙苯、二甲苯③、异丙苯、氯苯、1,2-二氯苯、1,4-二氯苯、三氯苯④、四氯苯⑤、六氯苯、硝基苯、二硝基苯⑥、2,4-二硝基甲苯、2,4,6-三硝基甲苯、硝基氯苯⑦、2,4-二硝基氯苯、2,4-二氯苯酚、2,4,6-三氯苯酚、五氯酚、苯胺、联苯胺、丙烯酰胺、丙烯腈、邻苯二甲酸二丁酯、邻苯二甲酸二(2-乙基己基)酯、水合肼、四乙基铅、吡啶、松节油、苦味酸、丁基黄原酸、活性氯、滴滴涕、林丹、环氧七氯、对硫磷、甲基对硫磷、马拉硫磷、乐果、敌敌畏、敌百虫、内吸磷、百菌清、甲萘威、溴氰菊酯、阿特拉津、苯并(a)芘、甲基汞、多氯联苯⑧、微囊藻毒素-LR、黄磷、钼、钴、铍、硼、锑、镍、钡、钒、钛、铊 /p /td /tr tr td width=" 44" valign=" top" p style=" text-align:center " 湖泊水库 /p /td td width=" 280" valign=" top" p 水温、pH、溶解氧、高锰酸盐指数、化学需氧量、BOD5、氨氮、总磷、总氮、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物和粪大肠菌群 /p /td td width=" 314" valign=" top" p style=" text-align:center " 总有机碳、甲基汞、硝酸盐、亚硝酸盐,其它 br/ & nbsp & nbsp & nbsp 根据纳污情况由各级相关环境保护主管部门确定 /p /td /tr tr td width=" 44" valign=" top" p style=" text-align:center " 排污河(渠) /p /td td width=" 280" valign=" top" p style=" text-align:center " 根据纳污情况,参照表中工业废水监测项目 /p /td td width=" 314" valign=" top" p style=" text-align:center " & nbsp /p /td /tr /tbody /table p br/ /p
  • 环保部上收地表水监测事权 将派员进驻任务滞后省
    p   为保障监测数据独立性,地表水监事权上收工作正快速推进,今年7月底前将基本完成水质自动站建设。 /p p   日前,环保部在沈阳分别召开国家地表水自动站建设工作推进视频会议与东北片区国家地表水自动站建设推进座谈会。这是自去年8月31日地表水监测事权上收工作动员会以来的第二次全国视频会议。 /p p   据悉,在2050个国家考核断面中,除279个不具备建站条件的断面外,目前已有727个完成自动站建设任务,占总任务量的41%。根据时间表要求,今年7月底前,基本完成水质自动站建设。 /p p   环保部介绍,总体建设进度较快,但是,部分地区仍存在自动站建设工作进展缓慢的情况。对此,环保部强调,从5月开始,对工作不力、任务进展严重滞后的省份,由环保部与省级环保部门联合派出工作组,公开进驻相关地市。 /p p   已建成727个自动站 /p p   环境监测数据造假行为一直是环保部关注和打击的重点,虽然在高压之下,监测数据造假的情况得到了很好遏制,但是,仍旧难从根本上得以解决。 /p p   去年7月,环保部发布通报称,为降低环境空气质量自动监测数据值,2016年2~3月,时任西安市长安分局环境监测站站长李森、副站长张锋勃以及阎良分局环境监测站站长张峰分别进入行政区域内空气子站,利用棉纱堵塞采样器的方法,干扰环境空气质量自动监测系统数据采集。李森还指使两名临聘人员被告人张楠、张肖对子站监测系统进行干扰。时任长安分局局长何利民、阎良分局局长唐兴民分别指使、授意李森和张峰实施上述行为。 /p p   对此,去年6月16日,西安市中级人民法院一审判决,李森等7人行为构成破坏计算机信息系统罪,获刑从1年3个月到1年10个月不等。 /p p   在今年1月的环保部例行发布会上,环保部环境监测司司长刘志全表示,环保部狠抓环境监测质量管理,确保监测数据真实、准确、全面。目前建立的环境监测数据质量监督机制以远程监控与实地抽查相结合,采用飞行检查、例行检查、专项检查等形式,加大环境空气、地表水监测质量监督检查力度,对西安空气监测数据造假案件等人为干扰和环境监测数据弄虚作假行为进行严肃处理,持续保持高压震慑态势。其中,在地表水方面,正在推进地表水监测体系改革,实施国家地表水环境质量监测事权上收,实现水质自动监测。 /p p   据悉,在2050个国家考核断面中,除279个不具备建站条件的断面外,目前已有727个完成自动站建设任务,占总任务量的41%。其中,上海、山东、浙江、湖南、湖北、北京、江西等省份建设进度较快,工作任务完成过半。 /p p   环保部称,各省份由省政府发文明确各地市政府作为水质自动站建设的实施主体,将工作纳入省政府对地市年度考核内容和各地市年度重点工作,为自动站建设提供有力政策保障。各地还积极协调财政等部门,争取落实自动站建设补助资金,同时在国家规范基础上,结合本地实际,对全省站房建设进行统一设计和具体指导 建立定期调度通报机制,对进度滞后的地方发函督办 对进度快,成效好的地方通报表扬并推广经验,发挥了良好效果。 /p p   多举措加快建站速度 /p p   环保部指出,在此前环保部开展的专项督导工作中还发现了一些突出的问题。建设工作时间紧、任务重、部分地市建设资金等准备工作不充分、工作推进机制不完善等问题仍然导致自动站建设工作进展缓慢。同时,部分地方还反映,当地有关部门对项目审批耗时过长、过程繁琐,也是导致整体进度缓慢的原因之一。 /p p   此前,一位地方环保系统工作人员告诉《每日经济新闻》记者,自动站建设一般是建在较为偏远的地区,同时,在建设自动站过程中,也涉及一些其他部门的职权,需要作一些协调,需要多部门加强沟通、协调。 /p p   其中,作为工作推进缓慢地区之一,云南省环保厅相关负责人表示,今后要加大工作力度,加强协调和调度,建立通报制度,对进度滞后、措施不力的地区进行全省通报,确保自动站建设工作在6月20日之前全部完成。 /p p   为了加快自动站建设,视频会提出,建立工作群,每周在工作群中报告各站点建设情况和运行情况 建立定期信息调度与公开制度。3月~4月实施两周一调度,5月~7月将实行每周一调度。同时从2月开始,将每月向社会公开通报各地调度情况 建立视频会议制度。从4月开始,每月召开一次视频会议,请工作任务进展缓慢的地市参加。 /p p   同时,视频会强调,建立派驻工作组制度。从5月开始,对工作不力、任务进展严重滞后的省份,由环保部与省级环保部门联合派出工作组,公开进驻相关地市。 /p p   据悉,从去年8月起,环保部就已分阶段、分步骤开展国家地表水监测事权上收工作。第一阶段是自2017年10月起,全国2050个考核断面全面推行地表水采测分离模式 第二阶段是2018年7月底前,基本完成水质自动站建设,实现地表水“自动监测为主、手工监测为辅”的模式。 /p p   环保部介绍,今年1月份,全国2050个地表水监测断面已全面实施“采测分离”并稳定运行,第一阶段的“采测分离”任务圆满完成。目前,环保部按照地表水监测事权上收工作安排,正在全力推进水质自动站建设,各项准备工作正在有序推进。 /p p   对此,公众环境研究中心主任马军向《每日经济新闻》记者介绍,通过上收监测事权,建设地表水自动站,有效规避地方政府的干扰,能够有效杜绝监测数据造假的情况出现。由于水质监测专业性较强,需要在此下功夫,使监测数据能真实反映环境质量。 /p p   马军认为,为了保障监测数据的独立性,此前已有一些地方将自动监测站的运维工作交由第三方专业机构承担,从实际情况看,水质监测的标准、规范等方面工作需要不断加强,自动站未来的运营需要更多专业人员,保障数据真实性、有效性。 /p
  • 地表水新标即将实施!污染物检测有新变化?
    随着“自动监测为主、手工监测为辅”监测模式的推行,我国地表水环境监测能力与自动预警水平持续提升,配套的多项地表水监测标准得到修订。2022年5月,生态环境部发布《地表水环境质量监测技术规范》(HJ 91.2-2022),该标准适用于江河、湖泊、水库和渠道等地表水的水环境质量手工监测,支撑《地表水环境质量标准》(GB 3838-2002)实施,并将于2022年8月1日实施。修订了什么?《地表水环境质量监测技术规范》(HJ 91.2-2022)为首次修订,适用于江河、湖泊、水库和渠道等地表水的水环境质量手工监测。与《地表水和污水监测技术规范》(HJ/T 91-2002)相比,本标准明确了总磷监测的现场前处理方法,完善了布点与采样、监测项目与分析方法、监测数据处理、质量保证与质量控制等相关内容,进一步规范地表水环境质量手工监测工作,支撑《地表水环境质量标准》(GB 3838-2002)实施。自动监测市场,再现“新空间”2019 年 5 月,生态环境部印发《地级及以 上城市国家地表水考核断面水环境质量排名方案(试行)》,提出为充分发挥城市国家地表 水考核断面水环境质量排名的倒逼作用,对设置有国家地表水考核断面的所有地级及以上城市水环境治理进行排名。十四五以来,自动为主、手工为辅的融合监测模式更是在全国落地开花。《“十四五”生态环境监测规划》提出开展自动为主、手工为辅的融合监测,以支撑全国水环境质量评价、排名与考核,精准、及时的自动监测数据将作用于各城市排名。与此同时,《生态环境 监测规划纲要(2020-2035 年)》提出建立 9+N 自动监测能力要求,即在常规 9 参数基 础上,增加化学需氧量、五日生化需氧量、阴阳离子、重金属、有机物、水生态综合毒性 等特征指标。不难看出,多方讯号显示水质在线监测仪器市场将迎来新增长。无论是手动监测,还是自动监测,若想精准检测数据,检测人员、仪器分析依然是关键!基于此,仪器信息网将于7月14日举办地表水检测分析技术网络研讨会,届时将邀请领域内权威专家出席,优秀厂商进行技术分享!点击链接报名:https://www.instrument.com.cn/webinar/meetings/surfacewater20220714/详细会议日程(持续更新中):报告时间报告方向报告嘉宾09:30--10:00《地表水环境质量监测技术规范》(HJ 91.2-2022)标准解读标准制定单位专家邀请中10:00--10:30待定吉天仪器10:30--11:00安捷伦质谱技术助力环境监测与保护杜伟安捷伦科技(中国)有限公司 液质应用工程师11:00--11:30微波消解-离子色谱法测定地表水中痕量总磷中国环境监测总站 业务主管/高级工程师14:00--14:30地表水自动监测技术难点解析钟声江苏省环境监测中心 高级工程师16:00--16:30待定孙娟江苏省南京环境监测中心 科室主任/高级工程师
  • 通知公告|关于征集地表水无人监测技术测试单位的通知
    为加快建设现代化生态环境监测体系,全面提升空天地海一体化生态环境监测能力,有序推进国家网地表水无人监测,测试“无人采样与无人实验室分析”监测技术的可行性,提高国家网运行质量与效率,推动新技术应用。中国环境监测总站(以下简称总站)拟开展第一阶段地表水无人监测测试工作。本次测试主要为验证无人采样设备与人工采样的水样代表性、无人实验室与手工分析实验室的数据一致性。欢迎符合申报条件且具备履约能力的测试单位报名参加。具体内容详见附件。相关咨询:陈鑫 18611696797、沈嘉豪 15010136816附件:附件1:地表水无人监测技术测试方案.docx附件2:申报材料目录及申请表.docx关于征集地表水无人监测技术测试单位的通知.pdf
  • 便携式离心机|地表水总磷现场前处理工作
    上海净信现场便携式离心机JX-L02是根据中国环境监测总站要求研发,满足《地表水总磷现场前处理技术规定(试行)》的文件参数要求。体积小巧、手提式设计、耗电量低,适用于现场操作,也可使用车载电源或蓄电池为其供电,是一款地表水总磷现场前处理的产品。环保总站发表的《地表水总磷现场前处理技术规范(试行)》通知指出:总磷在测试前需先进行样品处理后再采集检测总磷指标,而原水处理参照的重要指标就是浊度值。例如一般水体,当遇到藻类聚集先进行63微米过滤筛网然后根据浊度值选择自然沉降或者离心操作。①当浊度低于200NTU自然沉降处理30min而后取上清液;②介于200~500NTU自然沉降处理60min而后取上清液;③大于500NTU进行2000rpm离心处理2min而后取上清液;④感潮河段浊度值200NTU以下选用自然沉降处理30min而后取上清液,浊度200NTU以上用2000rpm离心处理1min而后取上清液。净信便携式离心机JX-L02完全能够满足《地表水总磷现场前处理技术规定(试行)》的文件参数。在运行过程中是转速是定制的2000rpm,设定离心时间可在1s~99min自由设定,单次离心的水样可达1L~2L。整机采用人体工学设计,外观大气美观。操作简单,一键式操作,免维护。zuei佳三角平衡点牢牢地固定在底部,使整套系统运行极为平稳,超低噪音,高可靠性,高稳定性。在产品设计时充分考虑到用户防水防潮的需求,产品内部采用独创的复合多层环保高密度材料,具有极强的隔音隔热作用;风道结构采用独创的半圆弧形特殊点位结构使其达到zuei佳的散热传热效果。离心腔腔内与盖子风道形成循环风道系统,内部电路全部采用悬挂式设计,可自动进行通风循环散热。目前我国生态环境的发展受到越来越多的关注,保护环境已成为国民的一项事业,也因此环境监测体系要不断完善,以满足环境保护各项措施的实施。在环境检测体系中,关于地表水的监测是其重要组成部分,地表水的监测与人们日常饮水安全息息相关。目前,环境监测中地表水的监测,其问题突出表现在检测数据难以达标,监测期间缺乏管理及环境分析水平不足,工作人员采样监测不便利等方面。在这种问题的影响下,则会直接影响环境监测中地表水监测的整体效果。水质采样、前处理与监测工作都需要相应的仪器设备,净信现场便携式离心机会给工作人员带来更多的便利。
  • 终于确定:地表水国控点将以自动监测为主
    p   目前,国家地表水环境监测网共设置国控断面(点位)2767个,其中实施自动监测的点位为310个,占比为11%。随着国家地表水环境质量监测事权上收工作的开始,这些点位是否开展自动监测?手工监测是否有新模式?一系列问题受到广泛关注。 /p p   昨天,环保部地表水环境质量监测事权上收工作视频会展开,环保部副部长翟青正式宣布: /p p    span style=" color: rgb(0, 176, 240) " 一是手工监测全面推行采测分离模式。 /span 中国环境监测总站已针对样品采集发布了招标公告,总金额达2.66亿元。(详见: a href=" http://www.instrument.com.cn/news/20170817/226921.shtml" target=" _blank" title=" " 地表水国控点手工监测招标 总金额达2.66亿 /a ) /p p    span style=" color: rgb(0, 176, 240) " 二是加快推进水质自动站建设。逐步建立以自动监测为主、手工监测为辅的监测模式。 /span 这意味着,未来我国地表水自动监测仪器市场将迎来新一轮高峰,根据目前国家站的建设投资估算,总金额将近50亿元。 /p p   翟青指出,地表水监测事权上收是贯彻落实党中央、国务院生态文明建设和环境保护决策部署的重要举措,是厘清中央和地方事权、化解不当行政干预的必然要求,是提升环境监测能力、减轻基层压力的现实需求,是加强数据应用共享、满足公众和社会需求的重要保障。总体思路是:以“国家考核、国家监测、数据共享”为原则,以确保地表水监测数据质量为核心,以提升水质自动监测能力和水平为任务,以实现监测数据实时共享和信息公开为目标,统一标准规范和质控要求,国家、地方和第三方机构各负其责,分阶段、分步骤开展国家地表水监测事权上收,上收后监测数据实行联网共享并公开。 /p p   具体来说,要完成三方面的任务: /p p   一是全面推行采测分离模式。所谓采测分离,就是将考核断面水质采样和分析测试工作交由不同单位承担,改变现行属地监测模式,从机制上与利益相关方脱钩。 /p p   二是加快推进水质自动站建设。逐步建立以自动监测为主、手工监测为辅的监测模式,提升环境监测能力和自动预警水平。 /p p   三是实行数据联网共享。采测分离数据由承担检测分析任务的实验室直传中国环境监测总站,监测总站与各级环保部门实行数据共享。水质自动站数据也将统一联网并共享。同时开展远程质控和实时监督,确保数据真实、准确,并向社会实时公开发布。 /p p   翟青强调指出,上收工作时间紧、任务重,各地方、各有关单位要按照任务时间节点,倒排工期,确保上收工作顺利完成。 /p p   具体要把握好以下四个方面: /p p   一是要把握上收总体要求,本次上收范围为2050个考核断面,自今年10月起实施采测分离, span style=" color: rgb(0, 112, 192) " 2018年7月底前基本完成自动站建设 /span 。 /p p   二是要严格落实责任,各省(区、市)环境保护厅(局)、各地市人民政府及相关部门、监测总站,要加强协调联动,切实负起各自责任,积极稳妥推进上收工作。 /p p   三是要加强沟通协调,环境保护部专门成立地表水监测事权上收工作领导小组,建立工作调度与督办制度,加强监督检查,对进度缓慢、工作不力的,要现场督办,对工作成效明显的,要予以公开表扬。 /p p   四是要严格纪律要求,提高廉政意识,坚决遵守法律法规和八项规定要求,决不能触碰法律红线。加强监督,公开透明,确保干成事、不出事。 /p
  • 哈希公司地表水监测解决方案:为地表水安全助力
    近期上海黄浦江松江段水域大量漂浮死猪的情况,引起了人们对饮用水源安全的思考和讨论,地表水是人类宝贵的水源,地表水的质量与人民生活密切相关。然而,层出不穷的地表水污染事件使得公众对水质监控越来越关心。如何确保水质安全以及如何对地表水源实时监测等技术问题也成为了环保业内人士热点讨论的话题。 哈希公司作为水质监测业内一员,一直都对地表水源监测技术的开发投入了相当大的资源。哈希地表水在线监测解决方案,可以为客户提供快速、准确的实时水质监控数据。 地表水常规五参数:提供pH,溶解氧,电导率,浊度,水温等常规水质参数的检测。 蓝色卫士:可根据客户需求最多同时监控8种水质参数,并可自动根据当地水源状况监测出突发的水质变化情况并报警。在添加了客户定制数据库的情况下,蓝色卫士系统还可以根据数据库内容分析水质变化的原因,为相关部门决策及快速反应提供重要的参考依据。 湖泊、水库等浮标式水质检测系统 DREL2800系列便携式水质分析实验室:全面的便携式快速水质分析系统。适用于野外各种环境水质测试要求,也适用于突发事件的快速水质参数检测。 Eclox便携式水质毒性分析仪:快速分析水质综合毒性。克服了传统发光细菌法的使用限制,操作更加简单方便,可以在各种环境下快速提供水质毒性参考。可用于常规检测或突发事件的处置。 document.write("") xno = xno+1 更多信息可以致电哈希公司客户热线电话了解:400-686-8899 / 800-840-6026 更多详情请点击
  • 国家地表水水质自动监测系统介绍
    p   实施地表水水质的自动监测,可以实现水质的实时连续监测和远程监控,及时掌握主要流域重点断面水体的水质状况,预警预报重大或流域性水质污染事故,解决跨行政区域的水污染事故纠纷,监督总量控制制度落实情况。 /p p   及时、准确、有效是水质自动监测的技术特点,近年来,水质自动监测技术在许多国家地表水监测中得到了广泛的应用,我国的水质自动监测站(以下简称水站)的建设也取得了较大的进展,环境保护部已在我国重要河流的干支流、重要支流汇入口及河流入海口、重要湖库湖体及环湖河流、国界河流及出入境河流、重大水利工程项目等断面上建设了100个水质自动监测站,监控包括七大水系在内的63条河流,13座湖库的水质状况。 /p p   现有100个水站分布在25个省(自治区、直辖市),由85个托管站负责日常运行维护管理工作。其中:(1)位于河流上有83个水站,湖库17个 (2)位于国界或出入国境河流有6个,省界断面37个,入海口5个,其他42个。目前还有36个水质自动站正在建设中,水站仪器设备更新项目也在实施中。 /p p    strong 地表水质自动监测站仪器配置与运行方式 /strong /p p   水质自动监测站的监测项目包括水温、pH、溶解氧(DO)、电导率、浊度、高锰酸盐指数、总有机碳(TOC)、氨氮,湖泊水质自动监测站的监测项目还包括总氮和总磷。以后将选择部分点位进行挥发性有机物(VOCs)、生物毒性及叶绿素a试点工作。 /p p   水质自动监测站的监测频次一般采用每4小时采样分析一次。每天各监测项目可以得到6个监测结果,可根据管理需要提高监测频次。监测数据通过公外网VPN方式传送到各水质自动站的托管站、省级监测中心站及中国环境监测总站。 /p p   为充分发挥已建成的100个国家地表水质自动监测站的实时监视和预警功能,经研究定于2009年7月1日在互联网上发布国家水站的实时监测数据。 /p p   每个水站的监测频次为每4小时一次,按0:00、4:00、8:00、12:00、16:00 20:00、24:00整点启动监测,发布数据为最近一次监测值。 /p p   每个水站发布的监测项目为pH、溶解氧(DO)、总有机碳(TOC)或高锰酸盐指数(CODMn)及氨氮(NH3-N)共5项。执行《地表水环境质量标准》(GB3838—2002)中相应标准,对每个监测项目的结果给出相应的水质类别。总有机碳(TOC)目前没有评价标准。 /p p   为使水质状况表达容易理解,按水质类别将水质状况分为优(I、II类水质)、良(III类水质)、轻度污染(IV类水质)、中度污染(V类水质)及重度污染(劣V类水质)。 /p p style=" text-align: center " 评价指标在GB3838-2002标准中的标准限值 /p p style=" text-align: right "   单位:mg/L /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/f5b6ff1f-72b5-4ba2-a8c7-44bd05995212.jpg" title=" QQ截图20171027153506.jpg" / /p p   水质自动监测站为在线连续监测设备,在仪器故障检查维修、日常维护校准时将出现数据缺失现象。水质自动监测站在日常运行中也会经常受到停电、洪水、断流、雷击破坏、通讯中断等意外影响,造成水站暂停运行。目前部分水站的仪器设备已运行8~9年,已超过使用寿命,造成故障率较高或停止运行,目前已列更新计划,年底前实施完毕。 /p p    strong 主要监测指标含义 /strong /p p   pH:表征水体酸碱性的指标,pH值为7时表示为中性,小于7为酸性,大于7为碱性。天然地表水的pH值一般为6~9之间,水体中藻类生长时由于光合作用吸收二氧化碳,会造成表层pH值升高。 /p p   溶解氧(DO):代表溶解于水中的分子态氧。水中溶解氧指标是反映水体质量的重要指标之一,含有有机物污染的地表水,在细菌的作用下有机污染物质分解时,会消耗水中的溶解氧,使水体发黑发臭,会造成鱼类、虾类等水生生物死亡。在流动性好(与空气交换好)的自然水体中,溶解氧饱和浓度与温度、气压有关,零度时水中饱和氧气含量可14.6mg/L,25℃为8.25 mg/L。水体中藻类生长时由于光合作用产生氧气,会造成表层溶解氧异常升高而超过饱和值。 /p p   高锰酸盐指数(CODMn):以高锰酸钾为氧化剂,处理地表水样时所消耗的量,以氧的mg/L来表示。在此条件下,水中的还原性无机物(亚铁盐、硫化物等)和有机污染物均可消耗高锰酸钾,常被作为地表水受有机污染物污染程度的综合指标。也称为化学需氧量的高锰酸钾法,以别于常作为废水排放监测的重铬酸钾法的化学需氧量(COD)。 /p p   总有机碳(TOC):代表水体中有机物质含量的另一项综合指标。采用燃烧水样中的有机物,通过测定生成的二氧化碳(CO2)含量,以C元素的量来表示总有机碳的含量。对于化学成分相同的水样,总有机碳与高锰酸盐指数存在一定的相关性。 /p p   氨氮(NH3-N):氨氮以溶解状态的分子氨(又称游离氨,NH3)和以铵盐(NH4+)形式存在于水体中,两者的比例取决于水的pH值和水温,以含N元素的量来表示氨氮的含量。水中氨氮的来源主要为生活污水和某些工业废水(如焦化和合成氨工业)以及地表径流(主要指使农田使用的肥料通过地表径流进入河流、湖库等)。 /p p    strong 应用实例 /strong /p p   随着国家水质自动监测系统的运行,充分发挥了实时监视和预警功能。在跨界污染纠纷、污染事故预警、重点工程项目环境影响评估及保障公众用水安全方面已经发挥了重要作用。 /p p   2002年在浙江-江苏的跨省污染纠纷处理过程中,自动站的连续监测数据在监督企业污染治理和防止超标排放方面发挥了重要作用。 /p p   长江干流重庆朱沱和宜昌南津关水质自动监测站在2003年5~6月三峡库区蓄水期间,共取得库区上下游2520个水质实时数据,为管理部门的决策提供了有力的依据。 /p p   淮河干流淮南、蚌埠及盱眙站成功地全程监视了2001~2006年淮河干流大型污染团的迁移过程,为沿淮自来水厂及时调整处理工艺,保证饮水安全提供了依据,为环境管理及时提供了技术支持。 /p p   汉江武汉宗关自动监测站自建立以来,每年对汉江水华的预警监测都发挥了重要作用,及时通知武汉市主要饮用水处理厂提前做好处理,保障水厂出水达标。 /p p   2007、2008、2009年太湖蓝藻预警监测期间,太湖沙渚、西山和兰山嘴水质自动监测站开展了加密监测,通过水质pH、溶解氧等藻类生长的水质特异性指标预测判断水体的藻类生长状况,为饮用水水质预警提供了大量实时数据,发挥了重要作用。 /p p   2008年四川汶川特大地震发生后,中国环境监测总站立即通过水质自动监测系统远程查看灾区水质状况,将灾区7个水质自动监测站的监测频次由原来的4小时一次调整为2小时一次,在第一时间分析了地震灾区地震前后水质状况,并将灾区水质无明显变化的情况及时向国务院抗震救灾总指挥部上报,并编制《汶川大地震后相关国家水质自动监测站水质监测结果》,每天在互联网上发布自动监测结果,为保障灾区饮用水安全,稳定灾区群众发挥了重要作用。 /p p   2008年北京奥运会期间,利用北京密云古北口自动站(密云水库入口)、门头沟沿河城自动站(官厅水库出口)、天津果河桥自动站(于桥水库入口)、沈阳大伙房水库及上海青浦急水港自动站等国家水质自动监测站对城市的饮用水源实施严密监控,每日以《奥运城市地表水自动监测专报》形式上报环境保护部,为奥运期间饮水安全提供了技术保障。 /p
  • 国家地表水水质自动监测站与实验室同步比对工作启动会在京召开
    10月26日,中国环境监测总站(以下简称总站)组织召开了2021年度国家地表水水质自动监测站与实验室同步比对工作启动会。总站副站长刘廷良、副总工程师杨凯、31个省级生态环境监测部门分管负责同志、各运维单位项目负责人参加会议。水运管中心就本次比对工作方案进行了全面宣贯。详细介绍了比对范围、目的、方式、责任分工、工作实施要求和时间安排,尤其是对采样、送样、样品交接、预处理、分析方法、质控手段、数据报送等关键环节做了明确解读。刘廷良副站长首先肯定了本次比对工作的重要意义,既是对自动监测数据准确性的验证,也是对新一轮国家站运维交接工作和运维规范性的考核,希望参与比对工作的地方监测部门和运维单位高度重视,相互配合,按时保质保量完成比对工作。并对下一步工作提出了明确要求,一是参与单位在开展比对工作过程中,应提高政治站位,强化责任担当,坚守数据底线,高质量完成比对工作,为地表水自动监测数据全面用于国家考核、评价、排名提供技术支撑。二是严格按照比对工作方案,统一采样流程、统一分析方法、统一质控手段,做好人、机、料、法、环全过程的前期准备,保障比对工作的顺利开展。 贵州、陕西、青海、江苏、湖南等省站做了表态发言,表示将按总站要求积极落实相关比对工作,精心组织辖区内任务承担单位与运维单位做好衔接,高质量、高效率完成本次任务。
  • 国家地表水首次采测分离工作告捷:已完成断面95.8% 25日前完成数据审核
    p   10月20日,经济观察网记者从环保部获悉,截至10月18日下午17时,所有国家地表水考核断面第一次采测分离采样及现场监测工作均按计划如期顺利完成。环保部相关负责人对经济观察网表示,其中95.8%的断面完成了采样、现场监测和样品交接工作,4.2%的断面已完成采样、现场监测工作,目前正处于混样运输阶段。 /p p   国家地表水环境值监测网采测分离采样及现场监测工作的按期顺利完成标志着国家地表水环境质量监测网采测分离工作取得了阶段性成功,国家地表水监测事权上收工作迈出坚实的一步。 /p p   上述负责人告诉经济观察网,“下一步,各地环境监测部门将紧锣密鼓地推进所有样品的分析和数据上报工作,环境保护部也将组织做好采测分离监测数据审核分析工作,争取在25日前完成当月所有数据的审核分析,及时与各地政府共享。” /p p   据环保部相关负责人介绍,自10月9日国家地表水环境质量监测网采测分离工作全面启动以来,在环境保护部精心组织和安排部署下,各地环保部门和第三方采样公司严格按照《关于开展国家地表水环境质量监测网采测分离工作的通知》和相关技术规范要求,积极筹备,昼夜奋战,全力推进国家地表水环境质量监测网采测分离工作。 /p p   经济观察网了解到,按环保部的设计思路,采测分离就是将国家考核断面水样采集和分析测试工作交由不同单位承担,改变现行属地监测模式,从机制上与利益相关方脱钩。由中国环境监测总站统一制定实施计划,第三方机构按照统一技术规范进行采样,对水样加密混合后随机分送至各分析实验室。分析实验室对水样进行集中分析,原始监测数据直传监测总站,并对监测全流程各环节留痕质控,确保数据真实、准确。监测总站完成数据汇总审核后,及时与地方共享。 /p p   环境保护部环境监测司司长刘志全在官方网站上表示,每个断面位置都设置了一个带有二维码和编号的断面桩,第三方采样人员只有到达断面使用手机扫描断面桩上的二维码后才会得知具体任务,使用标注有编号和二维码的样品瓶收集样品后会全部运送至最近的集合点。 /p p   “此后会将来自不同地区不同断面的样品进行随机分配,由第三方公司运输至各地环境监测站进行分析化验,分析数据再对应每个样品的编号汇总至国家环境监测总站的数据库中进行解码,这就是我们说的采测分离。”刘志全说。 /p
  • 萃取法升级!TF-SPME法分析地表水农残的效率翻倍
    由于农药在农业中的广泛使用,地表水中农药等环境污染物的增加,公共饮用水的质量控制是政府环境机构的优先事项之一。美国环境保护署(US EPA)要求,必须在低浓度和亚浓度下测定水样中的农药。从水样中提取、富集和净化农药的样品制备技术中,其中液-液萃取(LLE)和固相萃取(SPE)是两种成熟的技术,同时也作为美国环保署的官方方法被广泛使用。 SPME今天提出一种全新的前处理方法薄膜固相微萃取SPME,已广泛应用于多种应用,包括水采样和分析、食品分析、生物流体、体内和非破坏性分析、代谢组学和组织取样等。与LLE 和SPE 技术不同,SPME 是一种不完全萃取的样品前处理技术。 图1:萃取技术的分类完全萃取 vs 非完全萃取技术?完全萃取技术是一种使用较大量溶剂或吸附材料将目标分析物全部或者接近全部分离和提取出来的技术,而固相微萃取技术是一种使用微量萃取吸附材料,基于萃取材料与目标物分子之间的分配平衡,有选择性的将特定目标成分提取分离和富集的技术,属于非完全萃取技术。萃取定量公式如下: Kfs:目标物在样品中的分配系数Vf:涂层体积Vs:样品体积C0:样品的初始浓度薄膜固相微萃取技术(以下简称TF-SPME或TFME),作为SPME方法的扩展,TF-SPME薄膜固相微萃取技术可以通过增加涂层体积Vf↑和表面积以增加吸附容量,达到更低的检测限,可以进一步提高技术灵敏度。实验应用:TF-SPME分析地表水中的农药残留薄膜固相微萃取技术特别适用于环境样品的分析,薄膜固相微萃取的发明者加拿大滑铁卢大学的Pawliszyn教授及其团队提出碳网片支撑的TF-SPME薄膜固相微萃取分析地表水中的农药残留。应用一 具体实验从加拿大安城滑铁卢不同地点的格兰德河采集地表水样本,在3 个月内采集了3 批地表水样品(共18 个样品)进行盲样分析验证,分别提交给官方认证的第三方实验室和滑铁卢大学进行分析,分别用LLE 和TF-SPME的方法对23 种农药在不同实验室之间的地表水进行了定量分析,其中LLE法根据EPA 8720中方法操作。TF-SPME萃取方法:# 萃取方法:30ml去离子水中加标5ng/mL# 萃取时间:30min# 搅拌速度:600rpm# 涂层类型:PDMS/DVB下图分别是两种方法的准确度和检出限的比较。 图2:TF-SPME和LLE方法分析18个地表水样品的准确度 表1:TF-SPME和LLE方法的检测限比较,μg/L结论通过对23 种农药在不同实验室之间的地表水中的实验室间研究,TF-SPME法与LLE 法测定结果的一致性表明,TF-SPME法可用于地表水样品中农药的常规分析,TF-SPME薄膜固相微萃取法还具有以下优点:● 研究表明,两种方法之间有良好的一致性,LLE和TF-SPME都有着相似的准确度,在70-130%之间;● 灵敏度高——在所研究的浓度水平下,90% 的农药残留物可以通过 TFME 进行定量,而只有 53% 的化合物可以使用 LLE 方法进行定量,尤其是浓度低于 1 mg/L 时的样品;● TF-SPME所需样品量少——LLE法至少需要800mL样品,一定程度上增加了实验室废液和增加运输成本;● 方便易用——TF-SPME法可以同时萃取/分析所有农药,而LLE时需要通过调节pH值分别提取酸性、中性、碱性化合物;● 绿色环保——无溶剂/萃取技术,避免对有机溶剂的使用。实验应用:现场采样分析地表水中的农药残留 与此同时,TF-SPME也可以用于现场采样现场采样可用于恶劣环境中的现场采样。Hamed Piri-Moghadam等人采用TF-SPME薄膜固相微萃取和便携式GC-MS耦合现场采样分析地表水中的农药残留。 图3:TF-SPME用于现场采样综上所述,这些结果表明TF-SPME法分析地表水中农药残留的应用非常可行,同时它是一种精确的分析方法,为许多化合物提供了更低的检测限。应用于现场取样时,TF-SPME所能达到的灵敏度将弥补便携式仪器低灵敏度的不足。TF-SPME需要的样品量少、并且可以同时分析酸性、碱性和中性化合物,是一种快速、低成本和绿色环保的样品前处理技术。TF-SPME产品订购信息货号描述规格200212-002-04TF手动包:4×2cm PDMS/DVB TF-SPME固相微萃取薄膜&顶空配件20*4.85*0.04mm200212-004-04TF手动包:4×4cm PDMS/DVB TF-SPME固相微萃取薄膜&顶空配件40*4.85*0.04mm200213-102-04TF手动包:4×2cm PDMS/HLB(1μm)TF-SPME固相微萃取薄膜&顶空配件20*4.85*0.04mm200213-104-04TF手动包:4×2cm PDMS/HLB(1μm)TF-SPME固相微萃取薄膜40*4.85*0.04mm参考文献【1】Inter-laboratory validationof a thin film microextraction technique fordetermination of pesticides in surface water samples. Hamed Piri-Moghadam a, Emanuela Gionfriddo a, Angel Rodriguez-Lafuente b,Jonathan J. Grandy a, Heather L. Lord b, Terry Obal b, Janusz Pawliszyn Analytica Chimica Acta xxx (2017) 1-11【2】Development and validation of eco-friendly strategies based on thinfilm microextraction for water analysis. Hamed Piri-Moghadam, Emanuela Gionfriddo, Jonathan J. Grandy, Md. Nazmul Alam,Janusz Pawliszyn. Journal of Chromatography A, 1579 (2018) 20–30
  • 新疆环境监测总站首次参加国家地表水采测分离数据审核工作
    p   国家环境监测总站近日在北京组织开展了2月份采测分离数据审核工作,新疆环境监测总站首次参加该项工作,共完成了32个断面、960个数据的审核,并将审核后的数据结果反馈各地州市环境监测站,实现了数据共享,确保地表水环境质量监测数据“真、准、全”。 /p p   地表水采测分离是分阶段、分步骤推进地表水水质“国家监测、国家考核”工作的重要步骤。根据国家要求,自治区环保厅于2018年1月9日正式启动新疆国家地表水环境质量监测网采测分离工作。新疆环境监测总站作为技术支撑单位,组织新疆昌源水务科学研究院和新疆吉方坤诚检测公司2家采样公司,严格按照《国家地表水环境质量监测网监测任务作业指导书》要求,按时完成了2月份全区32个国考断面水质样品采集和现场监测工作。各地州市环境监测站在完成样品接收核对基础上,第一时间开展样品分析并将结果及时上报国家环境监测总站,确保了数据审核工作的顺利开展。 /p
  • 地表水重金属专项监测方案征求意见
    关于征求《地表水重金属专项监测方案》意见的通知   总站水字[2011]177号   内蒙古自治区、江苏省、浙江省、江西省、河南省、湖北省、湖南省、广东省、广西壮族自治区、四川省、云南省、陕西省、甘肃省、青海省、重庆市、贵州省环境监测中心(站):   为配合《重金属污染综合防治“十二五”规划》的实施,结合2011年6月在京召开的重金属专项监测研讨会的有关精神,我站编制了《地表水重金属专项监测方案》(征求意见稿)(详见附件)。方案中监测断面由各省环境监测中心(站)根据重点区域情况设置,同时总站增加了部分重点区域内的国控监测断面(含“锰三角”地区15个监测断面),共计299个。   现就《地表水重金属专项监测方案》向你站征求意见,同时,请你站补充监测断面表中相关断面的具体地理位置(表中指标项为“所在地区”具体到某县、某乡镇、某村)和经纬度(详见方案中表5)。请于8月21日前,将意见或建议电子版发送至总站水室邮箱(Email:water@cnemc.cn),纸质版请邮寄至总站水室。   根据安排,我站拟定于今年9月份正式开展地表水重金属专项监测工作,具体开展时间和工作安排,我站将另行通知。   联系人:姚志鹏 电话:010-84943091   附件:《地表水重金属专项监测方案》(征求意见稿)   二〇一一年八月五日   地表水重金属专项监测方案   (征求意见稿)   中国环境监测总站   二〇一一年八月   一、 目的   为配合《重金属污染综合防治“十二五”规划》(以下简称“规划”)的实施,结合重点地区、重点企业重金属排放状况,以全面、准确、客观地反映重点地区地表水重金属污染状况为目的,通过开展重点地区地表水重金属专项监测工作,及时发现重点地区地表水重金属污染状况和潜在风险,为重金属环境治理提供数据支持和技术支撑,制定本方案。   二、 监测范围和期限   监测范围主要是《重金属污染综合防治“十二五”规划》中重点省份(内蒙古自治区、江苏省、浙江省、江西省、河南省、湖北省、湖南省、广东省、广西壮族自治区、四川省、云南省、陕西省、甘肃省、青海省)的重点地区(名单见附表1)、“锰三角”地区和其他存在重金属污染风险的地区,同时增加重金属经常超标的国控地表水监测断面和饮用水源地断面。   地表水重金属专项监测工作,原则上由地市级环境监测站承担监测任务,结合《重金属污染综合防治“十二五”规划》开展为期5年的专项监测工作。   三、 监测断面设置原则   监测断面(点位)设置原则上采用现有国控、省控、市控断面,各省环境监测中心(站)结合本辖区内重点区域污染源排放情况设置监测断面(点位),主要原则如下:   1、重点区域内受现有或潜在重金属污染风险的主要干流、湖(库)体及一级支流的的国控、省控、市控断面   2、重点区域内受重金属污染潜在影响的河流型或湖库型的集中式饮用水源地   3、重点区域内受重金属重点污染源影响的河流设置监测断面。   4、将“锰三角”监测断面纳入到重金属专项监测之中   四、 监测指标   开展重金属监测工作前,各承担重金属监测工作的单位每年开展一次重金属全分析监测工作,筛选重金属特征污染物,作为当年度的选测指标。   1、监测指标   监测指标包括必测和选测指标,必测指标为:铅、汞、镉、铬(六价)、砷 选测指标:铜、锌、硒、镍、钒、铊、锰、钴、锑或其他当地特征污染物。   2、每年在枯水期开展一次重金属全分析工作,监测指标为:铅、汞、镉、铬(六价)、砷、铜、锌、硒、镍、钒、铊、锰、钴、锑及当地特征污染物。   3、底泥监测,每年开展一次底泥全分析监测,监测指标与水体相同,监测结果不参与评价,作为水体中重金属含量的参考。   五、 监测方法   1.分析方法   我国重金属监测的标准分析方法主要以分光光度法和原子吸收分光光度法为主。由于我国环境监测仪器的分析能力近年来有较大提高,因此本工作主要推荐使用国内应用较多的原子吸收法、原子荧光法以及较先进的电感耦合等离子体发射光谱法(ICP-AES)、电感耦合等离子体-质谱法(ICP-MS)作为分析方法。   当选择原子荧光法、原子吸收法、电感耦合等离子体发射光谱法(ICP-AES)分析地表水中重金属指标时,可依据我国水环境中重金属监测常用标准分析方法进行(表1、表2)。由于我国目前缺少电感耦合等离子体-质谱法(ICP-MS)的现行标准分析方法,故选择电感耦合等离子体-质谱法分析地表水中重金属指标时,本监测方案推荐统一采用EPA标准分析方法 200.8(1994)《Determination Of Trace Elements In Waters And Wastes By Inductively Coupled Plasma - Mass Spectrometry》(电感耦合等离子体-质谱法测定水和废物中痕量元素)。   必测与选测重金属指标的推荐标准分析方法见详见表1、表2。   表1 5种必测重金属指标推荐标准分析方法 监测项目 监测方法 方法来源 铅 螯合萃取-火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 汞 冷原子吸收分光光度法 HJ 597-2011水质 总汞的测定 冷原子吸收分光光度法 冷原子荧光法 HJ/T 341-2007 水质 汞的测定 冷原子荧光法(试行) 原子荧光法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 镉 螯合萃取-火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 铬(六价) 二苯碳酰二肼分光光度法 GB7467-87水质 六价铬的测定 二苯碳酰二肼分光光度法 砷 氢化物发生 原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 原子荧光法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 表2 9种选测重金属指标推荐标准分析方法 监测项目 监测方法 方法来源 铜 螯合萃取-火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 锌 火焰原子吸收分光光度法 GB 7475-87水质 铜、锌、铅、镉的测定 原子吸收分光光度法 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 硒 石墨炉原子吸收分光光度法 GB/T 15505-1995水质 硒的测定 石墨炉原子吸收分光光度法 原子荧光法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 镍 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 钒 石墨炉原子吸收分光光度法 GB/T 14673-1993水质 钒的测定 石墨炉原子吸收分光光度法 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 铊 萃取石墨炉原子吸收分光光度法 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 锰 火焰原子吸收分光光度法 GB 11911-89水质 铁、锰的测定 火焰原子吸收分光光度法 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 钴 电感耦合等离子体发射光谱法(ICP-AES) 水和废水监测分析方法(第四版增补版) 电感耦合等离子体-质谱法(ICP-MS) EPA 200.8 锑 原子荧光法 水和废水监测分析方法(第四版增补版)电感耦合等离子体-质谱法(ICP-MS) EPA 200.8   2.前处理方法   2.1 样品采集   样品采集后均现场沉降30分钟,取上清液保存,24小时内回实验室分析。如现场不具备沉降条件的,可在24小时内回实验室沉降30分钟后取上清液测定。24小时内不能及时分析的,需酸化保存。   2.2 样品制备   样品均按照水和废水监测分析方法(第四版增补版)中前处理要求(除非国标有特殊规定要求),消解后上仪器进行测定。所有前处理消解过程中均不加氢氟酸。选用ICP-MS方法分析地表水中重金属元素时,前处理过程按照EPA200.8方法中相关要求进行消解处理,详见表3。   表3 ICP-AES与ICP-MS分析样品的前处理方法 监测项目 监测方法 前处理方法 方法来源 铅、镉、砷、铜、锌、镍、钒、锰、钴 电感耦合等离子体发射光谱法(ICP-AES) 取一定体积的均匀样品(自然沉降30min取上层非沉降部分),加入(1+1)硝酸若干毫升(视取样体积而定,通常每100mL样品加5.0mL硝酸)置于电热板上加热消解,确保溶液不沸腾,缓慢加热至近干取下冷却,反复进行这一过程,直到试样溶液颜色变浅或稳定不变。冷却后加入硝酸若干毫升,再加入少量水,置电热板上继续加热使残渣溶解。冷却后用水定容至原取样体积,使溶液保持5%的硝酸酸度。 水和废水监测分析方法(第四版增补版) 铅、汞、镉、砷、铜、锌、硒、镍、钒、铊、锰、钴、锑 电感耦合等离子体-质谱法(ICP-MS) 前处理时,将水样摇匀,量取(100±1)ml水样于250ml烧杯中。加入2ml(1+1)硝酸和1.0ml(1+1)盐酸于上述烧杯中。电热板(置于通风柜中)上加热消解,加热温度不得高于85℃。消解时,烧杯应盖上带架的表面皿,或采取其他措施,保证样品不受通风柜周边的环境污染。在85℃持续加热,直至样品蒸发至20ml左右。在烧杯口盖上表面皿,以减少过多的蒸发,并保持轻微持续回流30min。待样品冷却后,将其全部转移至50ml容量瓶或A级具塞比色管中,用试剂水定容,加盖,摇匀保存。若消解液中存在一些不溶物可静置过夜或离心以获得澄清液。样品在上机前,应调节水样中氯离子的浓度,取20ml已制备的样品于50ml容量瓶中,用试剂水定容,混匀若溶液中溶解性固体含量>0.2%,需要进一步稀释,以防固体颗粒堵塞采样锥和截取锥。若执行的是直接加入程序,内标在上机前即加入样品中。因为无法估计不同基体对被稀释溶液稳定性的影响,所以一旦样品前处理完毕,应尽快进行分析。 EPA 200.8   3.方法选择原则   3.1各承担重金属监测工作单位依据现有实验室仪器条件,选择相应的重金属标准分析方法(表1,表2),具备ICP-MS与ICP-AES的监测单位可优先选用推荐的ICP-MS与ICP-AES标准分析方法,监测项目和前处理步骤见表3及方法文本。   3.2 若ICP-AES、火焰原子吸收分光光度法等方法检出限高于或接近地表水环境质量标准《GB3838-2002》中该重金属标准限值时,应选择检出限较低,灵敏度较高的石墨炉原子吸收分光光度法或ICP-MS方法。   3.3 若承担监测的单位不具备实验室仪器条件的,也可选用分光光度方法(国标)进行分析。   六、 监测时间频次   手工监测:每月1—10日 逢法定假日监测时间可后延,最迟不超过每月15日。每月开展一次。   重金属全分析在每年枯水期开展一次。   七、 数据报送及报告编制   各有关环境监测站20日前向相关省(自治区)环境监测中心(站)报送水质监测数据。数据报送参照附表3、4,各省(自治区)环境监测中心(站)审核后,在每月25日前暂以excel格式数据通过FTP(地址ftp://11.200.0.101)报送中国环境监测总站水室。“锰三角”地区监测结果按照原有的方式报送。   重金属全分析结果通过FTP报送总站水室。   八、 数据报送格式   报送监测数据时,若监测值低于检测限,在检测限后加“L”,未监测项目填写“-1”,超标项目由相关监测站组织核查,并向总站报送超标原因分析,数据报送格式表见附表4、5。   九、 质量控制和保证   监测数据实行三级审核制度,省站对报送的监测结果负责。   质量保证按照《地表水和污水监测技术及规范》(HJ/T 91-2002)及《环境水质监测质量保证手册》(第二版)有关要求执行。   十、 附表   表1:重金属污染重点区域 序号 省份 重点区域 1 内蒙古 巴彦淖尔乌拉特后旗 2 赤峰巴林左旗 3 赤峰克什克腾旗 4江苏 无锡惠山区 5 泰州姜堰市 6 泰州靖江市 7 泰州海陵区 8 浙江 温州鹿城区 9 温州平阳县 10 宁波鄞州区 11 宁波余姚市 12 嘉兴海宁市 13 台州玉环县 14 湖州长兴县 15 江西 赣州大余县 16 赣州南康市 17 上饶市上饶县 18 上饶弋阳县 19 赣州章贡区-赣县 20 南昌进贤县 21 赣州崇义县 22 河南 焦作济源市 23 三门峡灵宝市 24 安阳龙安区 25 洛阳栾川县 26 焦作孟州市 27 三门峡义马市 28 周口项城市 29 湖北 黄石市区 30 黄石大冶市及周边 31 襄樊谷城县 32 十堰郧县 33 荆门钟祥市 34 孝感大悟县 35 湖南 株洲清水塘及周边地区 36 湘潭竹埠港及周边地区 37 郴州三十六湾及周边地区 38 长沙七宝山地区 39 娄底冷水江地区 40 岳阳原桃林铅锌矿及周边地区 41 意义按桃江安化涉砷锑地区 42怀化沅陵、辰溪、溆浦等涉砷镉地区 43 邵阳邵东县 44 永州东安县 45 张家界慈利县镍钼矿开采区 46 常德石门县雄黄矿地区 47 广东 韶关乐昌市 48 韶关浈江区 49 清远清城区 50 珠三角电镀区 51 韶关大宝山矿区及周边区域 52 韶关凡口铅锌矿周边 53 汕头潮阳区 54 广西 河池金城江区 55 河池南丹县 56 河池环江县 57 四川 凉山会东县 58 凉山会理县 59 德阳什邡市 60 凉山西昌县 61 内江隆昌县 62 宜宾翠屏区 63 绵阳安县 64 云南 昆明东川区 65 红河个旧市 66 曲靖会泽县 67 怒江兰坪县 68 文山马关县 69 昆明安宁市 70 曲靖陆良县 71 保山腾冲县 72 红河金平县 73 玉溪易门县 74 陕西 安康旬阳县 75 宝鸡凤县 76 渭南潼关县 77 宝鸡凤翔县 78 商洛商州区 79 汉中略阳县 80 汉中宁强县 81 商洛洛南县 82 商洛镇安县 83 宝鸡陈仓区 84 甘肃 白银市 85 金昌金川区 86 陇南成县 87 酒泉瓜洲 88 陇南西和县 89 陇南徽县 90 嘉峪关甘肃矿区 91 酒泉玉门市 92 酒泉肃北县 93 西宁湟中县 94 海西格尔木市 95 西宁城东区 96 西宁大通县 97 吴中青铜峡市 98 锰三角地区 贵州松桃县、重庆秀山县、湖南花垣县   表5 重金属监测断面表(略)   表6 锰三角地区监测断面表(略)   表7 河流监测断面数据报送格式表(略)   表8 湖库监测点位数据报送格式表(略)
  • 地表水监测仪器需求或将主要来自地方省市
    仪器信息网讯 2014年4月18日,中国科学仪器行业的“达沃斯论坛”——2014中国科学仪器发展年会(ACCSI 2014)于北京召开,作为发展年会的分会场之一,环境监测仪器技术论坛也在同期召开。此次会议上,中国环境监测总站工程师姚志鹏就《我国地表水和饮用水环境监测管理与技术》做了报告,报告就我国水环境监测网络体系、国控地表水环境监测网络体系、地表水环境监测网现状等进行了全面的介绍分析。 中国环境监测总站工程师姚志鹏讲解我国地表水和饮用水环境监测技术   针对较多人问到的水质自动监测站建设情况,姚志鹏透露,目前国家已在大江大河的省界断面和重要国界河流建设了149个地表水水质自动监测站,监测频次为4小时一次,监测项目为常规五参数、高锰酸盐指数、总有机碳、氨氮等。水质自动监测站需要建设费用、运行维护费用,持续监测生成的海量数据也需要处理,而相关费用大多已投入到大气监测方面,即使是水质自动监测站的一些比较旧的水质监测仪器的更新有些也因此搁置,因此目前来看,“十二五”期间,国控地表水水质自动监测站建设将会比较少,增建站点的可能性比较小,而一些地方省市的建设力度则是比较大的,如河南、江苏等,其省内包括浮标站在内的自动监测站就已经增加到二百多个甚至三百多个。   姚志鹏也为参加会议的业内人士介绍了最受关注的水质监测相关政策法规如“水十条”等的情况,他透露,《地表水环境质量标准》的修订工作或为“水十条”让路,因而其修订工作将大幅延期。《地表水和污水监测技术规范》的修订工作也在进行之中,过去的旧规范把地表水和污水的检测标准融合在一起,比较注重其科学性,但对实际应用中的可操作性考虑的不够,如果完全严格按照规范进行水质监测,很难去完成检测工作,但如果不按规范进行检测,检测数据又不具有法律效力,因此新规范的修订将更注重其实际应用,修订工作最快可能于2015年完成。
  • 水质监测 重任千钧 | 谱育科技中标环境监测总站逾5千万地表水监测项目
    2月25日,中国政府采购网发布中标公告,谱育科技旗下子公司杭州谱育检测有限公司(简称“谱育检测”),成功中标“2020-2022年地表水国控断面采测分离样品采集技术服务项目”,以综合评分第一的优异成绩,获得了第1包和第2包,中标金额5080.48万元,将持续为中国环境监测总站和保障国家水质安全提供服务。『 重任千钧 再奋蹄』□□□□从2017年10月至今,谱育检测已为中国环境监测总站提供了300多个地表水国控断面的水体采样和监测服务。3年来,谱育检测严格按照总站要求的标准,扎实开展相关服务工作,全面保障和提升采测分离工作质量。 2020年2月,谱育检测再度中标中国环境监测总站 “2020-2022年地表水国控断面采测分离样品采集技术服务项目”,将承担浙江、上海、江苏、安徽、贵州、四川、重庆、湖北、湖南、甘肃、陕西共11个省份的650个地表水国控断面的样品采集、监测等服务工作。谱育检测凭借成熟的技术水准、优质的服务质量再次获得了中国环境监测总站和评审专家的信任和认可,我们也将继续全力以赴,为国家地表水环境质量的考核、评价提供真实、客观、有效的监测数据。『 恪尽职守 显担当 』□□□□一直以来,谱育检测都竭尽全力为中国环境监测总站地表水国控断面提供水体采样和监测服务,全力以赴打赢“碧水攻坚战”、为保障居民饮用水安全提供有效支撑,尽心尽职、表现优异。春节期间,新冠肺炎蔓延全国,为保证疫情期间主要饮用水水源地的水质安全,国控断面采测分离项目刻不容缓,谱育检测逆势前行、积极应对,第一时间调配相关采样设备,集结全国采样工程师,快速制定解决方案,多措并举确保疫情期间河南、浙江等多地区采样工作正常开展。为确保地表水样检测的高效性,谱育检测团队承担重任,积极奔赴河南信阳、浙江温州等国控断面采样点,奋战在生态环境应急采样第一线,全力保障重点关键断面采样工作,及时向国家环境监测总站提供了精准数据。娴熟的项目经验、专业的采样检测技术服务、不畏险阻的谱育精神获得总站诸多赞扬。 重任千钧再奋蹄,恪尽职守显担当。谱育科技将持续提升技术服务水平,用 “真、准、全”的监测数据助力国家实现水环境监测 “国家考核、国家监测、数 据共享”,促进地方政府水污染防治的力度,推动地表水环境质量持续改善。
  • 环保部今起公布地表水水质实时监测数据
    国家地表水水质自动监测站是我国地表水环境监测网络的重要组成部分。自1999年至今,已在主要河流的省界断面、入海口、支流汇入口以及重要湖区及国界河流上,建设了100个水质自动监测站,初步形成了覆盖我国主要水体的水质自动监测网络。多年来,在地表水监测预警、跨界污染纠纷处理、省界水质目标考核、保障人民群众用水安全方面,水质自动监测站发挥了重要作用。   为进一步深化环境信息公开工作,充分发挥国家地表水水质自动监测站在环境管理、水污染防治方面的实时监控与预警监视作用,落实省界目标责任制,满足人民群众的环境知情权,积极为环境保护优化经济发展和构建和谐社会提供基础性服务,环境保护部定于2009年7月1日起向社会公开发布国家地表水水质自动监测站的实时监测数据。   本次发布的国家地表水水质自动监测站的实时监测数据,主要指标包括:pH、溶解氧、CODMN、氨氮、TOC。监测频次为每四小时一次,每天动态发布六次监测数据。
  • 复盘丨地表水水质监测现状与规约
    地表水是人类可利用的宝贵资源,随着人类文明的不断发展,分布于全球各地的地表水系正经历前所未有的挑战。作为世界水质检测、分析和处理领域的价值引领者,赛莱默正致力于为包括中国在内的全球各国和机构提供我们的全套解决方案及得到广泛应用的知识体系。9月11日,由赛莱默分析仪器应用专家赵博老师主讲的在线课程《地表水水质监测现状与规约》,为大家带来关于地表水监测方面的前沿干货,现在就让我们一起领略吧!讲座视频 精彩的课程听不够未来赛莱默分析仪器会不定期邀请行业专家及技术工程师为大家带来更多有价值的课程,敬请关注赛莱默分析仪器官方微信平台!
  • 水纹预警溯源技术助力地表水水质监测
    p   地表水的保护一直是各地环保工作的重点,而我国南方地区因人口密集、经济发达,污染物排放总量居高不下,再加上复杂的水网地形,保护难度更大。近年来,地表水保护有了长足进步。以江苏省为例,在饮用水源地、国控点等地表水重点监控断面已实现自动监测的全覆盖,可实时监测pH、溶解氧、氨氮、总磷、总氮、高锰酸盐指数、蓝绿藻等常规指标。地表水应急预警监测实现了常态化。但常规有机物监测指标(如高锰酸盐指数等)只反映总量,不反映有机物毒性和来源。,所以当前水体管理存在着入侵污染物的性质说不清、变化原因说不透,污染源头更难抓的突出问题。由于地表水污染事件频发,监控污水偷排以及诊断污染来源已成为当前预警监测亟待解决的重点和难点,迫切需要一种新型的在线监测技术。 /p p   三维荧光光谱检测水体中的有机污染物是近年新兴的一项技术,但目前多数研究还只用于监测水体中的有机物浓度,未发现被用来识别污染来源的报道。清华大学研发了污染预警溯源技术,可用于水体水质异常的快速预警以及污染类型的快速诊断。苏州环境监测中心基于该项技术对南方某水体开展在线监测应用,研究了水体的荧光水纹特征、强度规律及荧光强度与常规监测指标的关系,并针对研究期间检测到的水质异常现象进行了污染溯源分析。 /p p   水体中天然有机物的主要成分(如腐殖质、蛋白质以及叶绿素等)都有特征荧光。污水也含有很多FOM,如油脂、蛋白质、表面活性剂、腐殖质、维生素、酚类等芳香族化合物、药品残余及其代谢产物等。由于每种FOM都有特定发光位置,大部分工业和生活污水的水纹也各不相同,可作为污染类型的判断依据。目前,清华大学已将该技术仪器化。该仪器能在15—30 min识别污染类型并发出警报。目前可识别长三角地区的10种主要废水,包括生活污水、印染废水、电子废水、石化废水、焦化废水、造纸废水和金属制造废水等。通常情况下,仪器判定的与已知污染的相似度大于0.9,就可以认定水样受到该种污水的污染。 /p p   水纹预警溯源技术及其在线仪器的应用,增强了水质自动监测站的预警监测能力。预警溯源仪已具备了良好的预警和溯源功能,成功地捕捉了水质异常并确定了污染类型,为环境监管提供了有力的技术支撑。 /p
  • 地表水总磷现场检测前处理介绍
    一、总磷及其前处理介绍水体富营养化造成的水生态系统问题是地表水等常见危害。而水体富营养化主要是磷、氮等物质促使藻类和其他水生生物繁殖迅猛,使水体透明度、溶解氧等指标异常,造成地表水水质超标,引起生态危害。生态环保部公布的《全国地表水质量状况》中指出总磷也是我国地表水主要污染指标之一。环保总站引发的《地表水总磷现场前处理技术规范(试行)》通知指出:总磷在测试前需先进行样品处理后再采集检测总磷指标。而原水处理参照的重要指标就是浊度值。例如一般水体,当遇到藻类聚集先进行63微米过滤筛网然后根据浊度值选择自然沉降或者离心操作。当浊度低于200NTU自然沉降处理30min而后取上清液;介于200~500NTU自然沉降处理60min而后取上清液;大于500NTU进行2000rpm离心处理2min而后取上清液;感潮河段浊度值200NTU以下选用自然沉降处理30min而后取上清液,浊度200NTU以上用2000rpm离心处理1min而后取上清液。 二、总磷样品浊度测试步骤仪器:WZB-175型便携式浊度仪和DGB-401型多参数水质分析仪试剂:浊度标液、总磷工作试剂包、总磷校准液样品:上清液WZB-175浊度测试流程如下:DGB-401总磷测试流程:三、仪器介绍雷磁WZB-175和DGB-401便携式仪器可对地表水浊度、总磷等进行精|准有效测量。其中WZB-175便携式浊度仪符合国标GB 1075和ISO7027标准要求,采用LED光源,量程高达1000NTU;DGB-401内置总磷、总氮、氨氮、COD等多参数检测功能等,两款仪器详情如下WZB-175便携式浊度仪WZB-175便携式浊度计依据ISO 7027 、HJ 1075等标准进行设计,采用850 nm红外LED光源,通过比率校正的方式,有效降低颜色对于浊度测量的干扰。外观新颖,小巧便携,使用方便,可以广泛应用于地表水、工业用水、饮用水、饮料、景观水、游泳池水、废水等样品的浊度检测。 【主要特点】● LED光源,采用850 nm波长,满足ISO 7027和HJ 1075标准;● 采用散射-透射光测量原理,多方向接收散射光信号,比率校准,自动色度补偿;● 量程自动切换,自动调零;● 支持零点和最多6点校准;● 支持平均测量功能;● 支持存储2000组测试数据,符合GLP规范;● 支持USB通讯,支持连接PC进行数据采集;● 支持电池供电和USB供电,支持电源管理,支持自动关机;● IP65防护等级,良好防水防尘性能;● 配套提供浊度校准溶液。 【技术参数】型号技术参数WZB-175光源850 nm LED,满足ISO 7027标准测量范围(0~20.00)NTU,(20.0~200.0)NTU,(200~1000)NTU分辨率0.01 NTU,0.1 NTU,1 NTU示值误差±6%重复性±0.5%零点漂移±0.5% FS/30min示值稳定性±0.5% FS/30min防护等级 IP65尺寸(mm),重量(kg)220×100×80, 0.8 DGB-401型多参数水质分析仪 【主要特点】● 内置420nm、470nm、620nm、700nm四个LED光源,寿命长,精度高;● 采用分光光度法,内置高低化学需氧量(COD)、氨氮、总磷、总氮5个检测项目,检测项方法直接调用,无需进行波长选择;● 支持单点和多点校准,支持用户编辑校准曲线;● 支持吸光度和浓度两种测量方式;● 支持两种读数方式:Smart-Read功能(智能判别终点),Cont-Read功能(连续测量); ● 每个检测项目可存储测量结果各200套,符合GLP规范,支持数据查阅、删除和打印;● 支持USB通讯,支持连接PC进行数据采集;● 支持电池供电和USB供电,支持电源管理功能,可设置自动关闭光源和自动关机;● IP65防护等级,良好防水防尘性能;● 支持固件升级,支持恢复出厂设置,允许功能扩展和应用拓展。 【技术参数】测量参数测量方法光源波长测量范围(mg/L)示值误差重复性低COD重铬酸钾法470nm0.0~150.0mg/L±8%3%高COD重铬酸钾法620nm150.0~1500mg/L±8%3%氨氮纳氏试剂法420nm0.000~4.000mg/L,可扩展至 300mg/L±10%3%总磷钼酸盐分光光度法700nm0.000~1.000mg/L,可拓展至25.00mg/L±10%3%总氮过硫酸盐氧化法420nm0.000~30.00mg/L,可扩展至300mg/L≤10mg/L:±1 mg/L;>10mg/L:±5%;3%
  • 进一步规范∣多项地表水水质自动监测站相关国家生态环境标准征求意见
    日前,生态环境部办公厅发布通知,对《地表水水质自动监测站选址与基础设施建设技术要求》、《地表水水质自动监测站(常规五参数、CODMn、NH3-N、TP、TN)安装验收技术规范》、《地表水水质自动监测站(常规五参数、CODMn、NH3-N、TP、TN)运行维护技术规范》、《地表水自动监测系统通信协议技术要求》等多项标准征求意见。环境监测是环境管理的顶梁柱,为环境管理提供了重要技术支撑。与常规的手工监测相比,水质自动监测具有运行连续、监测实时、数据量大等优势。水站的建设与水质自动监测网络的完善,可实现监测数据的共享、提高监测数据的质量,能有效反映所在断面水质状况、预警和防范水环境风险,为进一步提升水环境管理水平、引导地表水监测发展方向提供有力支撑。因其在时间和空间上的连续性,弥补了手工监测的不足,水质自动监测在监测水质变化及变化趋势、实时掌握水质状况等方面发挥了重要作用,已成为我国地表水环境监测中的一个重要组成部分。据《地表水水质自动监测站选址与基础设施建设技术要求(征求意见稿)》编制说明介绍:我国从1999年开展地表水水质自动监测,按照《“十四五”国家地表水环境质量监测网设 置方案》(环办监测〔2020〕3号),共设置国考断面3646个,其中1837个断面建有国控水站,仍有1809个断面未建设国控水站。这些监测断面仍然以每月一次的手工采样、实验室分析为主,存在工作任务繁重、数据量少、数据时效性不足、易受外部因素干扰等问题,无法满足新形势下国家对环境管理的需要。《地表水水质自动监测站(常规五参数、CODMn、NH3-N、TP、TN)安装验收技术规范(征求意见稿)》编制说明提到,截至目前,国家已在国考断面建设水质自动监测站1837个,新建站监测项目主要有水温、 pH、溶解氧、电导率、浊度、高锰酸盐指数、氨氮、总磷、总氮共计九个。目前运行频次均为水温、pH、溶解氧、电导率、浊度自动监测仪器1小时/次,其他项目4小时/次。各省市也建设了数千个水质自动监测站,监测项目以九参数和增配特征污染物为主,水站所有监测项目运行频次与国家网一致。大批量水站的新建和运行对现有技术体系提出挑战,当前也存在一些问题,比如在地表水水质自动监测站站房和采水单元的建设与验收方面,缺乏系统的、统一的技术规范;水站在安装方面存在水路电路安装不规范、仪器设备随意摆放、整体效果不美观、对水样代表性有一定影响等问题;在仪器设备调试方面由于运维人员水平参差不齐,现有规范调试方法不明确,且忽略了功能检查和调试,导致水站调试不全面,影响后续运行;系统试运行目前的主要依据是试运行期间的数据传输率和故障情况,并未要求进行完善的质控测 试,导致试运行结果不能充分代表新系统的运行情况;大部分水站的质控是通过维护人员到现场进行相关质控测试的方式,存在质控措施单一、质控间隔长、难以实现远程质控等问题,不能及时了解分析仪器的运行状态等。而此次系列标准的制定是建立健全“自动监测为主、手工监测为辅”的地表水环境质量监测体系重要技术支撑。其中,《地表水水质自动监测站选址与基础设施建设技术要求》规定了地表水水质自动监测站选址、站房与采水单元等基础设施建设和验收等技术要求,是对《地表水自动监测技术规范(试行)》(HJ 915—2017)中地表水水质自动监测站站址选择、站房建设与采水单元建设部分的修订;《地表水水质自动监测站(常规五参数、CODMn、NH3-N、TP、TN)安装验收技术规范》明确了地表水水质自动监测站设备安装、系统调试、试运行、验收、档案与记录等技术要求,明确了地表水水质自动监测站设备安装、系统调试、试运行、验收、档案与记录等技术要求;《地表水水质自动监测站(常规五参数、CODMn、NH3-N、TP、TN)运行维护技术规范》规定了地表水水质自动监测站检查维护、运行质量控制、异常情况处置和运行记录等技术要求,是对《地表水自动监测技术规范(试行)》(HJ 915—2017)地表水水质自动监测站运行维护、质量保证与质量控制等部分内容的修订;《地表水自动监测系统通信协议技术要求》为首次发布,规定了地表水水质自动监测系统数据传输的系统结构、协议层次和协议内容等技术要求。更多阅读:6项水质国家生态环境标准征求意见发布,涉及光、色、质谱及运行维护规范
  • 环保部称近1/4地表水被污染
    中国环保部周一发布的环境监控数据显示,中国近四分之一的地表水仍处于污染状态,甚至不能做为工业用水,而只有不到一半的地表水可以饮用。   环保部网站(www.mep.gov.cn)发布报告称,今年上半年,该部监察员对全国主要河道及湖泊的水样进行检测,仅有49.3%的地表水可以安全饮用,同比提高1.3个百分点。   中国将水质分为六个级别,前三个级别可以安全饮用并用于洗浴。四级和五级地表水占26.4%,六级占24.3%,前者仅能做为工农业用水,而後者完全不能使用。   尽管过去十年间环保部门了颁布更为严格的法律法规,但依然难以遏制数以千计的小型造纸厂、水泥厂、化工厂的污水直接排放至江河,化肥过量使用导致国内湖泊及河流藻类过度繁殖等现象。   环境部称,今年上半年全国环保重点城市空气质量明显好转,二氧化硫同比下降30.2%。但在今年上半年,监测的443个城市中,189个城市出现酸雨。
  • 2018年全国地表水水质好转
    p   生态环境部7日通报的全国地表水环境质量状况显示,2018年1月份至12月份,1940个国家地表水评价考核断面中,水质优良(Ⅰ—Ⅲ类)断面比例为71.0%,同比提高3.1个百分点 劣Ⅴ类断面比例为6.7%,同比降低1.6个百分点。 /p p   2018年1月份至12月份,长江、黄河、珠江、松花江、淮河、海河、辽河、西北诸河、西南诸河和浙闽片等十大流域水质优良(Ⅰ—Ⅲ类)断面比例为74.3%,同比提高2.5个百分点 劣Ⅴ类断面比例为6.9%,同比降低1.5个百分点。主要污染指标为化学需氧量、氨氮和总磷。其中,西北诸河、西南诸河水质为优,长江、珠江流域和浙闽片河流水质良好,黄河、淮河和松花江流域为轻度污染,辽河、海河流域为中度污染。与2017年同比,黄河、淮河和海河流域水质有所好转,辽河、松花江流域水质有所下降,其他流域水质均无明显变化。 /p p   2018年1月份至12月份,监测的111个重点湖(库)中,水质优良(Ⅰ—Ⅲ类)湖库占66.7%,同比提高4.2个百分点 劣Ⅴ类水质占8.1%,同比降低2.6个百分点。主要污染指标为总磷、化学需氧量和高锰酸盐指数。 /p p   “老三湖”中,太湖为轻度污染、轻度富营养,主要污染指标为总磷 巢湖为中度污染、轻度富营养,主要污染指标为总磷 滇池为轻度污染、轻度富营养,主要污染指标为化学需氧量和总磷。与2017年同比,滇池水质明显好转,太湖、巢湖无明显变化。 /p p   “新三湖”中,洱海水质为优、中度富营养 丹江口水库水质为优、中度富营养 白洋淀为轻度污染、轻度富营养。与2017年同比,三湖库水质和营养状态均无明显变化。 /p
  • 搞地表水检测?看看行业专家是怎么说的
    p style=" text-align: justify text-indent: 2em " 社会经济的迅猛发展加之人口数目的不断增长,导致地表水污染不断加剧,水资源安全受到了严重的威胁。随着国家对环保问题关注力度的增强,水污染已受到环保部门的高度重视。今年3月底,国家生态环境部新发布了3项水质检测的国家环境保护标准的征求意见函,标准中对水中58种污染物及微生物检测方法做出了明确的规定。 /p p style=" text-align: justify text-indent: 2em " 确保水质的健康安全,做好水质检测工作至关重要。 /p p style=" text-align: justify text-indent: 2em " 鉴于此,仪器信息网( a href=" https://www.instrument.com.cn/" _src=" https://www.instrument.com.cn/" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn/ /span /a )联合 strong span style=" color: rgb(255, 0, 0) " 青岛市分析测试学会 /span /strong ,将于 strong 2020年5月13日 /strong 召开“ strong 地表水检测与分析” /strong 主题网络研讨会,携手该领域的专家和一线工作者带来精彩的分享,解读水质检测标准,探讨提高水质检测水平的相关技术,力求可以为水环境的保护尽绵薄之力。 /p p style=" text-align: center text-indent: 2em " span style=" font-family: 微软雅黑 color: rgb(255, 0, 0) " strong span style=" font-family: 微软雅黑 font-size: 18px " 精彩内容抢先看↓↓↓ /span /strong /span /p p strong 一、会议日程 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/11da8250-1ca0-4731-8a64-2e25030c3d13.jpg" title=" 地表水日程.png" alt=" 地表水日程.png" / /p p strong 二、演讲嘉宾阵容 /strong /p p & nbsp /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/cc857e11-22a0-46b5-997f-73ac6f70fe3c.jpg" title=" 地表水专家.png" alt=" 地表水专家.png" / /p p style=" text-align: justify " strong 三、会议报名 /strong /p p style=" text-align: center " 扫描下方二维码或点击链接: span style=" color: rgb(0, 112, 192) text-decoration: underline " a href=" https://www.instrument.com.cn/webinar/meetings/DBS2020/" _src=" https://www.instrument.com.cn/webinar/meetings/DBS2020/" style=" color: rgb(0, 112, 192) text-decoration: underline " https://www.instrument.com.cn/webinar/meetings/DBS2020/ /a /span /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " 了解会议详情及报名& nbsp /span /p p span style=" color: rgb(0, 112, 192) " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/02ed3bdb-87a4-4ac5-b593-14daca58d833.jpg" title=" 地表水.png" alt=" 地表水.png" / /p p style=" text-align: center " br/ /p p style=" text-align: center " strong 扫描下方二维码 /strong /p p style=" text-align: center " strong 提前进入“地表水检测”会议群 /strong /p p style=" text-align: center " strong 了解更多会议信息 /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 291px height: 464px " src=" https://img1.17img.cn/17img/images/202004/uepic/89239e66-d861-435b-a75c-a6c970a2defa.jpg" title=" 微信图片_20200430134522.png" alt=" 微信图片_20200430134522.png" width=" 291" height=" 464" / /p p br/ /p p & nbsp /p
  • 力合科技中标中国环境监测总站2千万地表水监测项目
    9月11日,中国政府采购网发布中国环境监测总站国家地表水环境监测网手工监测断面监测技术服务中标公告,力合科技成功中标包6,项目编号/包号(0747-1761SITCA154/6)中标金额逾两千万元。该项目实施后,将对公司营业收入和净利润产生积极影响。在该项目投标过程中,力合科技依靠其在水质监测领域积累的丰富工作经验,针对性的提出了水样采集和现场监测方案及优化保障方案,从而得到了招标评审方的青睐。据悉,为进一步加快国家地表水环境监测事权上收,实现“国家考核,国家监测”,中国环境监测总站将除新疆、西藏、青海和海南外的 27 个省(自治区、直辖市)的国家地表水环境监测网 1854 个考核断面 2017 年 10 月至 2020 年 9 月每月样品采集、保存、运输以及部分现场监测项目测试的任务,通过公开招投标的方式面向市场采购服务。本次力合科技中标项目包含安徽、福建、广东、湖北、湖南、江西六个省份共计163个断面的水样采集、监测工作。监测任务具体包括:(1)按照招标人每月制定的采样计划,到达指定采样地点完成水样和质控样的采集,并确保水样和质控样在 0~5℃条件下冷藏保存。 (2)每个断面的样品采集量详见附件,质控样包含全程序空白样和平行样两种,采集的数量分别为样品采集量的 10%。( 3)一般情况下,每日将 3 组 3 个断面的样品集中混样后,使用冷藏车运输至指定分析机构。如遇不能达到 3 组 3 个混样的特殊情况,需在中标后的实施方案中,提出实际混样解决方案,并得到招标人批准后,写入合同。(4)在指定采样地点,完成部分项目的现场监测。在项目实施过程中,力合科技将凭借自身积累的技术和项目经验,与各相关单位保持紧密合作,按时保质完成本项目。
  • 地表水国控监测点位由759个调整为972个
    总站水字[2012]101号   关于按照“十二五”地表水国控点位   开展监测工作的通知   各省、自治区、直辖市环境监测中心(站):   根据环保部“关于印发国家地表水、环境空气监测网(地级以上城市)设置方案的通知”(环发[2012]42号)的有关精神,地表水国控监测点位由759个调整为972个(详见附件)。请各省(自治区、直辖市)于2012年6月份起,每月按照新点位开展地表水环境质量监测工作,监测数据按照原有方式报送。并于6月1日前,报送本辖区内监测点位的经纬度和2010年以来的监测数据至总站水室邮箱water@cnemc.cn,经纬度按照“度、分、秒”的格式报送,监测数据报送格式参照附表1和附表2。   联系人:姚志鹏电话:010-84943091   沈 欣010-84943177   二〇一二年五月九日   附件1:国家城市环境空气质量监测网点位.pdf   附件2:各省市点位信息填报表.rar   附件3:监测数据报送格式.doc
  • 干货分享|“地表水检测与分析”主题研讨会精彩视频回放
    p style=" text-indent: 2em " 2020年5月13日,由仪器信息网和 span style=" color: rgb(255, 0, 0) " strong 青岛分析测试学会 /strong /span 联合举办的 strong “地表水检测与分析” /strong 主题网络研讨会成功召开。10位来自各地环境监测中心、科研院校的专家及来自仪器企业的应用技术专家齐聚,为地表水检测领域的同行带来精彩的报告分享。 /p p style=" text-indent: 2em " 会议期间,听众朋友积极与报告老师互动问答,反响较好,收获颇丰。 /p p style=" text-indent: 2em " 为方便各位网友回顾学习相关知识,仪器信息网特整理此篇内容,欢迎观看会议回放视频,温故知新。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 130px height: 138px " src=" https://img1.17img.cn/17img/images/202005/uepic/86e6db33-2151-44b1-8322-080c70141217.jpg" title=" 谭丕功.jpg" alt=" 谭丕功.jpg" width=" 130" height=" 138" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" font-family: 黑体, SimHei text-indent: 2em " 谭丕功 研究员 /span /p p style=" text-align: center " span style=" font-family: 黑体, SimHei text-indent: 2em " 山东省青岛生态环境监测中心 /span /p p style=" text-indent: 2em " strong 报告题目: /strong 地表水监测标准及相关问题 /p p style=" text-indent: 2em " strong 报告简介: /strong 针对地表水环境质量标准(GB3838-2012)所列项目,重点从监测项目的形态、监测指标的特点和一些监测分析方法之间的差异几方面详细讲解地表水监测的难点以及存在的问题和解决的方法。 /p p style=" text-indent: 2em " strong 视频回放链接: /strong a href=" https://www.instrument.com.cn//webinar/video_112524.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn//webinar/video_112524.html /span /a /p p style=" text-indent: 2em " & nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 142px height: 150px " src=" https://img1.17img.cn/17img/images/202005/uepic/ec1fef6f-a474-4f8c-a571-a411664a1a15.jpg" title=" 姜啸龙.jpg" alt=" 姜啸龙.jpg" width=" 142" height=" 150" / /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 姜啸龙 分析计测事业部市场部GCMS专员 /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 岛津企业管理(中国)有限公司 /span /p p style=" text-indent: 2em " strong 报告题目: /strong 岛津GCMS水质分析解决方案 /p p style=" text-indent: 2em " strong 报告简介: /strong 1、介绍针对国家法规更新不断完善的GCMS分析方法包 /p p style=" text-indent: 2em " 2、水中嗅味物质分析研究的最新进展 /p p style=" text-indent: 2em " 视频回放链接: a href=" https://www.instrument.com.cn//webinar/video_112525.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn//webinar/video_112525.html /span /a /p p style=" text-indent: 2em " & nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 133px height: 129px " src=" https://img1.17img.cn/17img/images/202005/uepic/285582d7-5cbf-45a7-b9d1-208ecaa56403.jpg" title=" 高松.jpg" alt=" 高松.jpg" width=" 133" height=" 129" / /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 高松 研究员 /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 吉林大学 /span /p p style=" text-indent: 2em " strong 报告题目: /strong 针阱微萃取& amp 气相色谱法快速分析水中有机污染物 /p p style=" text-indent: 2em " strong 报告简介: /strong 针阱微萃取(Needle trap Microextraction, NTME)是从固相微萃取(solid-phase microextraction,SPME)技术发展而来,该技术集样品采样、免溶剂萃取、浓缩及色谱进样于一体,克服了SPME易碎裂、吸附容量低、静态萃取时间长等缺点,可实现对环境大气、水、土壤等样品中挥发半挥发性有机物的动态免溶剂提取,并直接耦合GC/GCMS进行定性定量分析。针阱微萃取提取气态样品仅0.1mL-100mL,水样0.2-10.0mL,3分钟即可完成样品前处理(采样、提取、浓缩),广泛适用多种目标物包括VOCs、SVOCs、POPs、农残、新型污染物、石油烃等,本报告将以环境水质中6种典型硝基苯类化合物为目标物SVOC,研究建立针阱微萃取快速提取& amp 气相色谱测定的分析方法。 /p p style=" text-indent: 2em " strong 视频回放链接: /strong a href=" https://www.instrument.com.cn//webinar/video_112526.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn//webinar/video_112526.html /span /a /p p style=" text-indent: 2em " & nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 137px height: 133px " src=" https://img1.17img.cn/17img/images/202005/uepic/ced23a17-75dd-402a-94dd-f77d070785fe.jpg" title=" 郭英田.jpg" alt=" 郭英田.jpg" width=" 137" height=" 133" / /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 郭英田 YSI水质应用专家 /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 赛莱默分析仪器中国(Xylem Analytics) /span /p p style=" text-indent: 2em " strong 报告题目: /strong YSI数字水质仪在地表水监测中的应用 /p p style=" text-indent: 2em " strong 报告简介: /strong YSI数字水质仪在地表水监测中的应用,塞莱默旗下YSI公司是水质仪器的领导者,创新推出的专业型数字水质仪,满足地表水监测的广泛需求。原位监测地表水的水质参数,温度,电导率,盐度,溶解氧,PH,ORP,浊度,藻类和叶绿素。分成三部分,一,ProDSS多参数仪,二,Prosolo (ODO—T,ODO—CT),三,Proswap 单参数仪。 /p p style=" text-indent: 2em " strong 视频回放链接: /strong a href=" https://www.instrument.com.cn//webinar/video_112527.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn//webinar/video_112527.html /span /a /p p style=" text-indent: 2em " & nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 159px height: 168px " src=" https://img1.17img.cn/17img/images/202005/uepic/7fda025d-2d3a-4c26-93b2-83a56d37b461.jpg" title=" 张秀蓝.jpg" alt=" 张秀蓝.jpg" width=" 159" height=" 168" / /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 张秀蓝 副研究员 /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 国家环境分析测试中心 /span /p p style=" text-indent: 2em " strong 报告题目: /strong 水质 磺胺类抗生素的测定 液相色谱串联质谱法 /p p style=" text-indent: 2em " strong 报告简介: /strong a)& nbsp 水质抗生素药物的研究进展 /p p style=" text-indent: 2em " b) 药物测定的主要方法以及存在的困难 /p p style=" text-indent: 2em " c) 如何发现样品测定中的问题 /p p style=" text-indent: 2em " d) 解决问题及方法建立 /p p br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 158px height: 160px " src=" https://img1.17img.cn/17img/images/202005/uepic/9de682a2-51c1-4a36-8fcf-62c3c8cc4831.jpg" title=" 陈漪洁.jpg" alt=" 陈漪洁.jpg" width=" 158" height=" 160" / /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 陈漪洁 技术负责人 /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 国家城市供水水质监测网青岛监测站 /span /p p style=" text-indent: 2em " strong 报告题目: /strong 固相微萃取/气相色谱质谱联用技术检测水中痕量有机物 /p p style=" text-indent: 2em " strong 报告简介: /strong 固相微萃取技术的研究现状;固相微萃取技术的优缺点;固相微萃取技术用于检测水中常见嗅味物质、醛类、二恶烷、四乙基铅等痕量有机物的方法应用情况简介。 /p p style=" text-indent: 2em " strong 视频回放链接: /strong a href=" https://www.instrument.com.cn//webinar/video_112528.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn//webinar/video_112528.html /span /a /p p br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 161px height: 159px " src=" https://img1.17img.cn/17img/images/202005/uepic/2d7f514d-3f50-411b-acc4-fa276f5952e7.jpg" title=" 孙文军.jpg" alt=" 孙文军.jpg" width=" 161" height=" 159" / /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 孙文军 食品环境市场部 高级应用工程师 /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " Waters /span /p p style=" text-indent: 2em " strong 报告题目: /strong 水体中痕量级有机污染物快速、全自动化定量分析技术 /p p style=" text-indent: 2em " strong 报告简介: /strong 介绍一种操作友好、无需前处理、一体化、自动化的前沿水体分析液质技术:超高效在线固相液质系统。并介绍该技术在地表水体监测应用:成功用于检测痕量的微囊藻毒素、农药、抗生素和精神性药物等。 /p p style=" text-indent: 2em " strong 视频回放链接: /strong a href=" https://www.instrument.com.cn//webinar/video_112529.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn//webinar/video_112529.html /span /a /p p style=" text-indent: 2em " & nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 155px height: 162px " src=" https://img1.17img.cn/17img/images/202005/uepic/9b5b9965-8151-4649-b0c6-b4a4ac762988.jpg" title=" 潘婷.jpg" alt=" 潘婷.jpg" width=" 155" height=" 162" / /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 潘婷 产品专员 /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 德国元素 /span /p p style=" text-indent: 2em " strong 报告题目: /strong 地表水中总有机碳(TOC)测定解决方案 /p p style=" text-indent: 2em " strong 报告简介: /strong 地表水是人类、动物、植物等赖以生存的源泉。近年来,地表水的有机物污染越来越严重,导致水质恶化、鱼虾死亡,危害人类健康,引起了大家的极度关注。总有机碳-有机物污染评价的高效手段,其测定具有简单、快速、结果准确等优势,已被引入相关法规。针对地表水检测的特点,Elementar德国元素为您提供全面的应用分析解决方案。主要内容如下: /p p style=" text-indent: 2em " 1. 解读相关标准 /p p style=" text-indent: 2em " 2. 地表水测定难点及德国元素相应解决方案 /p p style=" text-indent: 2em " 3. 经典案例分享 /p p style=" text-indent: 2em " strong 视频回放链接: /strong a href=" https://www.instrument.com.cn//webinar/video_112530.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn//webinar/video_112530.html /span /a /p p br/ /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 155px height: 150px " src=" https://img1.17img.cn/17img/images/202005/uepic/0015edd6-f397-4f2e-a40d-6429f1a349d2.jpg" title=" 孙明辉.jpg" alt=" 孙明辉.jpg" width=" 155" height=" 150" / /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 孙明辉 质谱部门应用工程师 /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 布鲁克· 道尔顿(Bruker Daltonics) /span /p p style=" text-indent: 2em " strong 报告题目: /strong Bruker高分辨质谱在地表水污染物筛查中的应用(靶向和非靶向结合) /p p style=" text-indent: 2em " strong 报告简介: /strong 布鲁克 TargetScreener 多目标物筛查方案的靶向筛查功能,联合 MetaboScape 软件的非靶向筛查流程,可以在基于高分辨的数据、强大的数据库和未知物结构解析工具的基础上,轻松完成环境、食品等样品中未知物的筛查工作,大幅度提高筛查水平。 /p p style=" text-indent: 2em " strong 视频回放链接: /strong a href=" https://www.instrument.com.cn//webinar/video_112531.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn//webinar/video_112531.html /span /a /p p br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 151px height: 154px " src=" https://img1.17img.cn/17img/images/202005/uepic/f19a6629-318f-4cf3-9a32-77c7fb6da06c.jpg" title=" 杨丽莉.jpg" alt=" 杨丽莉.jpg" width=" 151" height=" 154" / /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 杨丽莉 总工程师 /span /p p style=" text-indent: 2em text-align: center " span style=" font-family: 黑体, SimHei " 南京市环境监测中心站 /span /p p style=" text-indent: 2em " strong 报告题目: /strong 地表水中挥发性有机化合物的测定 /p p style=" text-indent: 2em " strong 报告简介: /strong 针对常用地表水中挥发性有机化合物的检测技术,从检测原理到分析测试注意事项及质量保证质量控制的要点进行详细解读。 /p p style=" text-indent: 2em " strong 视频回放链接: /strong a href=" https://www.instrument.com.cn//webinar/video_112532.html" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn//webinar/video_112532.html /span /a /p p style=" text-indent: 2em " & nbsp /p p style=" text-indent: 2em text-align: center " span style=" color: rgb(247, 150, 70) " strong span style=" font-family: 黑体, SimHei " “地表水检测与分析”会议回放视频集锦 /span /strong /span /p p style=" text-indent: 2em text-align: center " span style=" color: rgb(247, 150, 70) " strong span style=" color: rgb(247, 150, 70) font-family: 黑体, SimHei " 点击图片观看 /span /strong /span /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/Video/Video/Collection/10544" target=" _blank" img style=" max-width: 100% max-height: 100% width: 529px height: 225px " src=" https://img1.17img.cn/17img/images/202005/uepic/0b633594-b7fd-4066-b6a7-a32b27b67cd2.jpg" title=" w1125h480dibiaos.jpg" alt=" w1125h480dibiaos.jpg" width=" 529" height=" 225" / /a /p p style=" text-indent: 2em " br/ /p p style=" text-indent: 2em " 为了方便相关领域用户交流,我们建立了“地表水检测会议”参会群,1群已满,大家可以扫描下方二维码加入2群,以便今后在群中讨论交流地表水检测相关技术与进展。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 290px height: 462px " src=" https://img1.17img.cn/17img/images/202005/uepic/9c6132ba-9c6a-4d92-8752-a80ce3e9942a.jpg" title=" 地表水.jpg" alt=" 地表水.jpg" width=" 290" height=" 462" / /p p style=" text-indent: 2em text-align: center " span style=" font-size: 16px " strong span style=" font-family: 黑体, SimHei color: rgb(247, 150, 70) " br/ /span /strong /span /p p style=" text-indent: 2em text-align: center " span style=" font-size: 18px " strong span style=" font-family: 黑体, SimHei color: rgb(247, 150, 70) " 精彩网络研讨会预报名 /span /strong /span /p table style=" border-collapse:collapse " tbody tr class=" firstRow" td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 247" valign=" middle" align=" center" strong span style=" font-size: 14px " 会议名称 /span /strong /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 127" valign=" middle" align=" center" strong span style=" font-size: 14px " 会议时间 /span /strong /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 228" valign=" middle" align=" center" strong span style=" font-size: 14px " 会议日程(完善中) /span /strong /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 247" valign=" top" span style=" font-size: 14px " “生活饮用水检测与分析”主题网络研讨会 /span /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 128" valign=" top" span style=" font-size: 14px " 2020.6.5 /span /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 228" valign=" top" a href=" https://www.instrument.com.cn/webinar/meetings/dw2020/" target=" _blank" style=" text-decoration: underline font-size: 14px color: rgb(0, 112, 192) " span style=" font-size: 14px color: rgb(0, 112, 192) " https://www.instrument.com.cn/webinar/meetings/dw2020/& nbsp /span /a span style=" font-size: 14px color: rgb(0, 112, 192) " & nbsp /span /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 247" valign=" top" span style=" font-size: 14px " “土壤重金属检测技术”主题网络研讨会 /span /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 127" valign=" top" span style=" font-size: 14px " 2020.5.21 /span /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 228" valign=" top" a href=" https://www.instrument.com.cn/webinar/meetings/turang0521/" target=" _blank" style=" text-decoration: underline font-size: 14px color: rgb(0, 112, 192) " span style=" font-size: 14px color: rgb(0, 112, 192) " https://www.instrument.com.cn/webinar/meetings/turang0521/& nbsp /span /a span style=" font-size: 14px " /span /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 247" valign=" top" span style=" font-size: 14px " “第三届标准物质技术与应用”主题网络研讨会 /span /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 127" valign=" top" span style=" font-size: 14px " 2020.6.3-6.4 /span /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 228" valign=" top" a href=" https://www.instrument.com.cn/webinar/meetings/BZWZ2020/" target=" _blank" style=" text-decoration: underline font-size: 14px color: rgb(0, 112, 192) " span style=" font-size: 14px color: rgb(0, 112, 192) " https://www.instrument.com.cn/webinar/meetings/BZWZ2020/& nbsp /span /a span style=" font-size: 14px " /span /td /tr tr td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 247" valign=" top" span style=" font-size: 14px " 第九届光谱网络大会(iCS2020) /span /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 127" valign=" top" span style=" font-size: 14px " 2020.5.26-5.29 /span /td td style=" border: 1px solid rgb(0, 0, 0) word-break: break-all " width=" 228" valign=" top" a href=" https://www.instrument.com.cn/webinar/meetings/iCS2020/" target=" _blank" style=" text-decoration: underline font-size: 14px color: rgb(0, 112, 192) " span style=" font-size: 14px color: rgb(0, 112, 192) " https://www.instrument.com.cn/webinar/meetings/iCS2020/& nbsp /span /a span style=" font-size: 14px " /span /td /tr /tbody /table p style=" text-align: center " & nbsp /p p style=" text-align: center " strong 更多精彩会议预告,请关注 /strong strong span style=" color: rgb(247, 150, 70) " “仪器信息网微服务公众号” /span /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 309px height: 309px " src=" https://img1.17img.cn/17img/images/202005/uepic/7ec9970e-7fed-4e61-b29a-35dd078404b8.jpg" title=" 仪器信息网为服务.jpg" alt=" 仪器信息网为服务.jpg" width=" 309" height=" 309" / /p p style=" text-align: center " strong 厂商精品环境类会议视频合集推荐: /strong /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/Video/Video/Collection/10538" target=" _blank" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn/webinar/Video/Video/Collection/10538 /span /a /p p br/ /p
  • 浙江136处地表水水质监测数据 可网上实时查看
    本月起,浙江136处地表水的水质监测数据网上实时可查。据省环保厅消息,浙江省地表水水质自动监测数据发布平台于8月1日正式上线。登录这个水质数据发布平台会发现,它与浙江省此前发布的空气质量监测数据发布平台类似,都是在一张地图上标记出所有自动监测站点的位置,并实时显示每个站点的监测数据。据了解,此次上线的地表水断面自动监测站点一共136个,这些站点覆盖全省钱塘江、京杭大运河等8大水系主要流域水体。其实时数据、日报数据和月报数据均可随时查到。具体数据包含了pH酸碱度、溶解氧、高锰酸盐指数、总磷、氨氮5项指标。每个监测站点会因为不同监测数据的好坏,按一类至劣五类分成蓝、浅蓝、绿、黄、橙、红,一共六种颜色,使市民登录后,一眼便可看出这里的水好不好。目前,打开发布平台,可以看到采集情况。如杭州市九溪水厂于8月2日20点采集情况:pH监测值为7.14,蓝色;溶解氧为7.34mg/l,淡蓝色;高锰酸盐指数为2.5mg/l,淡蓝色;总磷浓度为0.217mg/l;黄色;氨氮浓度为0.21mg/l,淡蓝色。这也就意味着,在钱塘江边供应杭州饮用水的主力军九溪水厂的地表水,除总磷一项指标为四类外,其他都达到一二类水平。来源:水之守护者微信
  • EZ1009 六价铬分析仪在地表水站的应用
    EZ1009 六价铬分析仪在地表水站的应用哈希公司背景介绍铬是环境风险较高的重金属元素之一,特别是六价铬,具有致癌致畸毒性和生物富集性。健康的自然水体中六价铬本底值非常低,一般不具有环境风险和健康风险。冶金、皮革制造等工业活动是引起水体中六价铬超标的主要原因之一,此外水体酸化也会导致土壤中六价铬成分析出,从而引起六价铬超标。桂林是以山水闻名的旅游城市,工业虽少,但地处西南酸雨带, 六价铬在部分流域依然是重点关注参数。在桂林几处地表水站安装有 EZ 系列六价铬分析仪。应用情况客户现场安装的是 EZ1009 标准版本:量程 0-500ppb、1 路进样、1 路 mA 输出,水样在前端进行沉淀预处理。现场六价铬每小时测试一次,由运维商定期更换试剂并进行校准。日常数据一般小于 10ppb,偶尔由于降雨会增加水样浊度,进而导致结果偏离日常值。水样经前端水泵打入集成样品管,由仪器自带样品经蠕动泵吸入。试剂除必需成份外还配有纯净水用于管路冲洗。目前已应用一年半的时间,运维商主要工作为定期添加试剂及更换备件。需要注意的是样品的预处理,本案例中仅采用简单的静置沉淀处理,难以解决汛期水样浊度及色度上升带来的浊度干扰,建议可采用微滤预处理以消除类似干扰。现场安装示意图如图 1 所示。▲ 图1 现场安装图▲ 图2 现场部分时间监测数据现场数据表明,该地地表水六价铬指标大多数情况满足《地表水环境质量标准》(GB3838-2002)中I类水要求,少数情况下满足II类水标准。对于水中六价铬含量的波动,EZ1009能够较为准确的进行监测反馈,这也体现了其优异的性能。总结EZ1009 六价铬分析仪能够实现地表水六价铬的在线监测需求。客户现场情况表明EZ1009 性能稳定、维护量少,能够在较短的时间内提供准确的数据。整体而言,其优异的性能得到了客户的认可。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取便携乐扣弹跳杯哦!
  • 《地表水自动监测技术规范》征求意见
    关于征求国家环境保护标准《地表水自动监测技术规范》(征求意见稿)意见的函 各有关单位:   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制定国家环境保护标准《地表水自动监测技术规范》。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面修改意见返回我部科技标准司。征求意见截止时间为2010年4月30日。   联系人:环境保护部科技标准司 谷雪景   通信地址:北京市西直门内南小街115号   邮政编码:100035   联系电话:(010)66556214   传真:(010)66556213   附件:1《地表水自动监测技术规范》(征求意见稿)   2.《地表水自动监测技术规范》(征求意见稿)编制说明
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制