当前位置: 仪器信息网 > 行业主题 > >

电解电容检测

仪器信息网电解电容检测专题为您提供2024年最新电解电容检测价格报价、厂家品牌的相关信息, 包括电解电容检测参数、型号等,不管是国产,还是进口品牌的电解电容检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电解电容检测相关的耗材配件、试剂标物,还有电解电容检测相关的最新资讯、资料,以及电解电容检测相关的解决方案。

电解电容检测相关的资讯

  • 湖南地区万京源电子生产企业,卡尔费休水分仪安调、培训顺利完成
    万京源电子有限公司位于美丽的湖南省益阳市,是一家从事铝电解电容开发、制造及销售一体化的专业高新企业,铝电解电容器是各种电子产品中不可替代的基础元件,广泛应用在包括电源器,主机板,音响等电子设备。公司主要品种有:CD11G,CD11GH,CD11GA型等高压电解系列产品。 近年电子元器件的迅猛发展,全球市场对电容产品性能提出更高要求。小体积、长寿命、耐高温、低电阻是铝电解电容器的发展趋势。影响电容器性能的因素很多,除了制造工艺水平、阳极铝箔质量等方面,电容器中的工作电解液是一个重要制约因素,电解液是电容器的实际阴极,起提供氧离子、修补阳极氧化膜的重要作用。工作电解液要求具有高的氧化效率,稳定的物化性质、水分含量控制等,在铝电解电容器工作中,电解液介质中的水分子会与铝氧化膜反应生成水合氧化膜,导致电解电容器性能恶化甚至失效,因此在铝电解电容器中电解液的水分含量检测非常重要。 结合以上对铝电解电容器研发、生产的严格标准,上海禾工与万京源电子公司开展合作,禾工AKF-1卡尔费休容量法水分测定仪为铝电解电容器的发展尽锦薄之力。 2017年6月初,禾工技术工程师结合客户需求,精心安排了水分测定仪组装、样品测试、上机操作、日常维护等培训工作。电解液的水分含量检测结果符合标准,AKF-1水分测定仪简单的操作也是得到操作人员的“芳心”,仪器使用起来得心应手。
  • 中南大学物理仪器研发中心落户益阳
    1月17日上午,中南大学物理仪器研发中心揭牌仪式在益阳市鹏程科技有限公司举行。   创立于1988年的鹏程科技有限公司,是一家专业制造节能灯具、特长寿命中高压铝电解电容器的科技企业。公司致力于铝电解电容器技术的研究与开发,生产的Pchicon、Pchwl牌铝电解电容器已为国内外许多知名企业广泛应用,并获得市“优秀民营企业”等诸多称号。他们研制的新型数字旋光仪于2009年12月29日通过省科技厅鉴定,可广泛应用于药品制造等方面。鉴定委员会一致认为,该仪器技术先进,性能稳定,测量精度高,操作简便,其综合技术达国内领先水平。
  • 半导体电容器组件三合一检测关键技术通过评价
    3月7日,中国机电一体化技术应用协会在广州组织并主持召开了“半导体电容器组件三合一检测关键技术研究及应用”项目科技成果评价会议。此次成果评价会议以线上线下相结合的形式进行,经专家评价,该项目整体技术水平达到国际先进水平。该项目由广州诺顶智能科技有限公司、华南理工大学、广州天极电子科技股份有限公司共同完成,特邀中国工程院院士、浙江大学求是特聘教授谭建荣担任专家组组长,广东省科学院智能制造研究所教授级高工程韬波为副组长,评价会议由中国机电一体化技术应用协会科技质量部主任、专家委秘书长刘明雷主持。针对微小半导体电容器组件的外观检测、电性能检测、分选三合一高速高精度集成测试难题,该项目研发了光度立体成像技术与互补融合视觉检测算法、电容充电及测量快速精准切换控制技术、首创微小电容器组件三合一无损吸附测试技术等,研制出半导体电容器组件三合一智能检测设备。该设备集成了外观检测、电性能检测、分选等功能,具备兼容性好、测量精度高、智能化程度和分选效率高等特点,填补了微小半导体电容器组件的外观检测、电性能检测、分选三合一检测集成装备的空白,实现了进口替代。项目产品经广东产品质量监督检验研究院检测,所检项目符合相关要求。来自浙江大学、广东省科学院智能制造研究所、广州机械科学研究院有限公司、广东产品质量监督检验研究院、广东省机械研究所等单位的7位专家组成的评价委员会,认真听取了项目完成单位的报告,审查了相关资料。经质询和讨论,他们一致认为,该项目成果具有创新性,整体技术水平达到国际先进水平。此次成果评价会议得到多方资源的支持,受到中国机电一体化技术应用协会的高度重视及聚智诚团队专业的科技成果评价指导。据悉,广州诺顶智能科技有限公司自主研发的设备覆盖芯片、元器件、通信、汽车电子、新能源等领域。2020年,该公司在芯片半导体微小器件领域投入大量研发后,成功研发出01005级别微小器件封测技术。科技成果评价会议现场。中国工程院院士谭建荣以线上方式参加评价会议。评价专家与项目团队合影。项目产品(局部)。本文图片由朱汉斌拍摄
  • R&S推出全新LCX测试仪,强化高性能阻抗测量产品组合
    R&S LCX系列的LCR表能够用于传统的阻抗测量以及针对特定元件类型的专门测量,并提供研发所需的高精度以及生产测试和质量保证所需的高速度。用于高精度阻抗测量的R&S LCX LCR测量仪。   罗德与施瓦茨推出的新款高性能通用阻抗测试仪系列能够覆盖广泛的应用领域。R&S LCX支持的频率范围为4Hz至10 MHz,不仅适用于大多数传统家用电源的50或60 Hz频率以及飞机电源的400 Hz频率,还适用于从低频震动传感器到工作在几兆赫的高功率通信电路的所有设备。   对于选择合适的电容、电感、电阻和模拟滤波器来匹配设备应用的工程师来说,R&S LCX提供了市场领先的高精度阻抗测量。与此同时,LCX还支持以生产使用精度进行更高速度的质量控制和监控测量。测试方案包含生产环境所需的所有基本软件和硬件,包括远程控制和结果记录,仪器的机架安装,以及用于全系列测试的夹具。   R&S LCX使用的自动平衡电桥技术通过测量被测设备的交流电压和电流(包括相移)来支持传统的阻抗测量。然后用该数据来计算任何给定工作点的复阻抗。作为一种通用LCR测量仪,R&S LCX涵盖了许多应用,如测量电解电容和直流连接电容的等效串联电阻(ESR)和等效串联电感(ESL)。   此外,除了全方位的阻抗测量之外,用户还可以测试变压器及测量直流电阻。为了研究元件的阻抗值在不同频率和电平下的变化,选配装置R&S LCX-K106能支持以频率、电压或电流作为扫描参数,进行动态阻抗测量。   R&S LCX系列推出两个型号:R&S LCX100的频率范围为4 Hz至300 kHz,R&S LCX200的基本配置频率范围为4 Hz至500 kHz,可选配覆盖高达 10 MHz 所有频率的选件。两种型号均配备出色的测量速度、精度和多种测量功能。包括:配备大型电容式触摸屏和虚拟键盘,支持所有主要测量工作的点击测试操作。   用户也可以使用旋钮设置电压、电流和频率值。不常用的功能则可以使用菜单操作。设置、结果和统计数据可以显示在屏幕上,还能导出以便进行自动后处理。用户最多可选择四个测量值并绘制成时间曲线,将最大值和最小值显示在屏幕上,一目了然地进行通过/失败分析。   罗德与施瓦茨的子公司Zurich Instruments AG生产的MFIA阻抗分析仪作为R&S LCX的完美补充,能够支持更多材料的阻抗研究。通过MFIA,研究人员可以表征半导体或进行材料研究,范围包括绝缘体、压电材料、陶瓷和复合材料,组织阻抗分析、细胞生长、食品研究、微流体和可穿戴传感器。
  • 两国家地方联合实验室落户乌市企业
    乌鲁木齐国家高新区驻区企业新疆众和股份有限公司、特变电工新疆新能源股份有限公司日前经国家发改委批准,分别成立国家地方联合工程实验室。   据了解,众和公司被批准成立“铝电子材料国家地方联合工程实验室”,新疆新能源公司被批准成立“光伏发电控制及集成国家地方联合工程实验室”。众和公司是全球最大的高纯铝研发和生产企业之一,也是中国最大的铝电解电容器用电子铝箔生产企业之一,形成了“能源—高纯铝—电子铝箔—电极箔”资源优势转化链。新疆新能源股份有限公司是我国最早从事太阳能产业开发的企业之一,目前已形成了从太阳能级硅片—太阳能电池组件—光伏控制逆变系统—太阳能光伏发电系统集成的完整产业链条,成为我国集研究、生产、示范和应用于一体的太阳能高科技示范基地和专业的太阳能系统应用集成商,设计建造的离网型光伏电站和并网型光伏电站在国内市场占有率已分别位居第一和第二。   这两个国家地方联合工程实验室将依托企业自身的科研条件和人才技术优势,主要围绕铝产业和太阳能优势资源工程建设和产业发展的迫切需求,加强关键技术供给,提升产业持续发展能力,推进建立产学研合作机制,加快产业关键共性技术的研发步伐,促进科技成果向现实生产力转化,形成西部地区集试验研究、技术开发与集成、新产品产业化及人才培养为一体的高水平实验平台。
  • 热像仪应用_电路研发
    电 路 研 发电路研发工程师利用热像仪根据电路中元器件发热、电路板热分布情况,可以 分析出电路原设计存在的不足或隐患,能够避免许多潜在的风险。这将能够大 大提高产品研发成功率和产品稳定性。 电路研发温度分析1. 电路元器件温度分析 当前,电子设备主要失效形式就是热失效。据统计,电子设备失效有55%是温度超过规定值引起,随着温度增加 ,电子设备失效率呈指数增长。一般而言电子元器件的工作可靠性对温度极为敏感,器件温度在70-80℃水平上每增 加1℃,可靠性就会下降5%。2. 负载分析 在电路研发过程中,可以除了常规的测试(如示波器、万用表等)手段外,还可以用热像仪对电路板进行检测, 通过显示出的不同温度点,对元器件所承受的电流,电压等情况进行了解,工程师根据所检测的温度点,完善电路, 提高转换效率、减少功耗、减少电路内部温升,提高电路的可靠性。 3. 整个电路温度场分布分析 采用合理的器件排列方式,可以有效的降低印制电路的温升,从而使器件及设备的故障率明显下降。 4. 快速分析问题 在某些研发维修场合,如对短路板的快速检修时,通过热像仪无须使用线路图即可快速定位板内短路点在何处, 以便进一步处理。红外热像仪为什么能进行温度分析?电路元器件在工作时,由于通过元器件的电流的不同,各个器件之间的差异等原因,而产生的热量也会随之 不同,体现在元器件表面特征就是温度差异。红外热像仪就是利用各个元器件温度之间差异,分析出电路的不同 性能特点。热像仪检测独特优势1. 现有的温度分析工具 许多工程师都会抱怨现有的手段难以支持他们进行一个细致而全面的温度场描绘,同时操作不方便、而且可能 改变原温度场分布,如: a)数据采集器 使用接触式数据采集器可能会遇到如下问题:电路板断电,贴片热电偶不够多,操作不方便,反应时间较慢( 30秒至1分钟),同时使用接触式数据采集器还将改变所测器件的散热状况等。 b)红外点温仪 外点温仪只能测量一个区域的平均温度,无法检测较小的目标,无法得到电路整体温度分布。 2. 热像仪温度分析优点 红外热像仪和数据采集器、红外点温仪相比较,有自身的优点: a)通过红外线热像仪检测目标电路时,不需要断电,操作方便,同时非接触测量使原有的温度场不受干扰;b)反应速度较快,小于1秒; c)选用合适的红外镜头,能够检测出较小目标; d)利用红外分析软件对所获得的电路温度数据进行全面分析。拍摄时可能会遇到哪些问题?1. 电路板上有部分器件(如电解电容顶面、电源模块背面及其它芯片光洁面),其发射率比较低,所以检测出的温 度差异较大。在拍摄此类器件时,要将其表面用黑笔或黑漆涂黑,然后进行测温等操作。 2. 当用标准镜头无法分辨小目标时,可以更换10.5mm广角镜。如何才能拍摄优质电路红外热像?现代电路微型化,组件高密度集中化的趋势正在迅速普及,所以在使用红外热像进行拍摄时,若要得到一幅清 晰的红外热图,我们建议:1. 尽量选择热灵敏度较高的热像仪; 2. 拍摄焦距应尽量对准,使热像仪红外镜头面轴线与所要拍摄的电路板垂直; 3. 先使用自动模式测量的温度范围;然后手动设置水平及跨度,将温度范围设置在最小,并包含有先前测量的温度 范围。
  • 大连化物所研制高系统性能和高集成度的微型超级电容器模块
    近日,大连化物所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员团队与单细胞分析研究组(1820组)陆瑶研究员团队,以及中国科学院深圳理工大学、中国科学院金属研究所成会明院士等合作,开发了高精度的光刻、自动喷涂和3D打印技术,研制出具有高系统性能和高集成度的小型单片集成微型超级电容器。   为适应小型化、可穿戴、可植入微电子设备的快速发展,需要发展具有小体积、高集成度、高性能和高兼容度的微型储能器件。平面微型超级电容器由于无需隔膜和外部金属连接线的特殊结构,同时具有可靠的电化学性能和易于调控的连接方式,在微电子领域有着重要的发展潜力。然而,由于缺少可靠的高精度微电极阵列制备和高效的电解液精确沉积技术,大规模制备高集成度、高性能的微型超级电容器仍具挑战。因此,急需发展创新性的微加工技术,来实现规模化、稳定性地制备高度集成、高性能、可定制的微型超级电容器。本工作中,合作团队发展了一种结合高精度的光刻、自动喷涂和3D打印技术的通用可靠策略,实现了高精度微电极阵列的大规模制备和凝胶电解质精确快速添加,研制出具有高面积数密度、高输出电压、性能稳定的集成化微型超级电容器模块。团队首先采用高精度光刻加工技术和高稳定性自动喷涂技术,制备出超小型集成化微型超级电容器,单个器件的面积仅为0.018cm2,器件间距为600μm,实现了面积器件数密度为每平方厘米28个,即3.5×4.1cm2区域内包含400个器件。随后,团队设计并发展了具有优异流变特性的凝胶电解质墨水,采用精确可控的3D打印技术,实现了极小区域内电解质的精确均匀添加,使得相邻单元微器件之间形成良好的电化学隔离,所得集成化微型超级电容器可以稳定输出200V的高电压,单位面积工作电压达75.6V/cm2,是目前已有报到工作的最高值。此外,该微型超级电容器模块在162V的极端工作电压下,循环4000次后,仍然保持92%的初始容量。该工作为超小体积、高电压微型功率源的发展奠定了一定的科学基础。   相关研究成果以“Monolithic integrated micro-supercapacitors with ultrahigh systemic volumetric performance and areal output voltage”为题,于近日发表在《国家科学评论》(National Science Review)上。该工作的共同第一作者是我所508组博士后王森和1820组博士后李林梅。上述工作得到国家自然科学基金、中科院A类先导专项“变革性洁净能源关键技术与示范”、大连市高层次人才创新支持计划、中国博士后科学基金等项目的资助。
  • 大连化物所研制出二维赝电容多电子反应储锂新材料
    近日,大连化物所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员团队在构筑高性能二维赝电容多电子反应储锂材料方面取得新进展,设计并制备出一种超薄二维VOPO4赝电容正极新材料,显著提升了多电子反应的动力学,构筑出高能量密度和高功率密度固态锂金属电池。   “多电子反应”通常被定义为每个活性材料分子转移一个以上电子的反应。作为一类典型的具有V4+/V5+和V3+/V4+多重氧化还原电对的多电子反应正极材料,VOPO4由于其负电性(PO4)3-阴离子具有较高的电势(3.55至3.95 V),可提供更高的能量密度。然而,VOPO4由于体积扩散过程和低本征电导率(10-8S/cm),其反应动力学缓慢。本工作中,团队通过调控VOPO4中的V4+缺陷,实现了高倍率多电子反应化学赝电容正极。团队制备的二维VOPO4/石墨烯纳米片,不仅具有超薄纳米片结构(2.8nm)以提高电子和离子电导率,而且通过控制V4+缺陷的含量,有效调节了多电子反应均匀性和反应动力学,降低了电极极化。该赝电容多电子反应正极在0.1C时的容量达313mAh/g,在50C的超快速率下保持了116mAh/g。进一步,团队提出了一种新型紫外光固化固态电解质(ETPTA-LiClO4-SSE),室温离子电导率可达0.99mS/cm,明显高于聚环氧乙烷固态电解质(约10-6S/cm)。团队组装的Li||ETPTA-LiClO4-SSE||VOPO4固态锂金属电池实现了85.4Wh/kg的高能量密度和2.3kW/kg的高功率密度,同时软包电池显示出出色的机械柔性和安全性。该工作为开发用于高比能高功率锂金属电池的多电子化学二维赝电容快充正极材料提供了一条新途径。   相关研究成果以“2D VOPO4 pseudocapacitive ultrafast-charging cathode with multi-electron chemistry for high-energy and high-power solid-state lithium metal batteries”为题,于近日发表在Advanced Energy Materials上。该工作的第一作者是我所508组博士研究生邢菲菲。上述工作得到了国家自然科学基金、我所创新基金等项目的资助。
  • 半导体电容器组件三合一智能集成检测装备科技创新成果获评国际先进水平
    3月7日,中国机电一体化技术应用协会在广州组织并主持召开了“半导体电容器组件三合一检测关键技术研究及应用”项目科技成果评价会议。经专家评价,该项目整体技术水平达到国际先进水平。该项目由广州诺顶智能科技有限公司、华南理工大学、广州天极电子科技股份有限公司共同完成。此次成果评价会议以线上线下相结合的形式进行,特邀中国工程院院士、浙江大学求是特聘教授谭建荣担任专家组组长,广东省科学院智能制造研究所教授级高工程韬波为副组长,会议由中国机电一体化技术应用协会科技质量部主任、专家委秘书长刘明雷主持。针对微小半导体电容器组件的外观检测、电性能检测、分选三合一高速高精度集成测试难题,该项目研发了光度立体成像技术与互补融合视觉检测算法、电容充电及测量快速精准切换控制技术、首创微小电容器组件三合一无损吸附测试技术等,研制出半导体电容器组件三合一智能检测设备。该设备集成了外观检测、电性能检测、分选等功能,具备兼容性好、测量精度高、智能化程度和分选效率高等特点,填补了微小半导体电容器组件的外观检测、电性能检测、分选三合一检测集成装备的空白,实现了进口替代。项目产品经广东产品质量监督检验研究院检测,所检项目符合相关要求。来自浙江大学、广东省科学院智能制造研究所、广州机械科学研究院有限公司、广东产品质量监督检验研究院、广东省机械研究所、广东阿达半导体设备股份有限公司、广东博威尔电子科技有限公司的7位专家组成的评价委员会认真听取了项目完成单位的报告,审查了相关资料。经质询和讨论,他们一致认为,该项目成果具有创新性,整体技术水平达到国际先进水平。此次成果评价会议得到多方资源的支持,受到中国机电一体化技术应用协会的高度重视及聚智诚团队专业的科技成果评价指导。该项目获授权发明专利6件、实用新型专利8件和软件著作权6件;主导制订企业标准1项;发表高水平论文2篇。项目成果在国内外头部半导体企业转化应用后,取得了良好的经济效益和社会效益。
  • 金属所在基于金刚石/膨胀垂直石墨烯的层状限域双电层电容行为的研究获进展
    多孔或层状电极材料具有丰富的纳米限域环境,表现出高效的电荷储存行为,被广泛应用于电化学电容器。而这些限域环境中形成的双电层(限域双电层)结构与建立在平面电极上的经典双电层之间存在差异,导致其储能机理尚不清晰。因此,解析限域双电层结构对探讨这类材料的电化学电容存储机理和优化电化学电容器件的性能具有重要意义。中国科学院金属研究所沈阳材料科学国家研究中心项目研究员黄楠团队与比利时哈塞尔特大学教授杨年俊合作,设计并制备了具有规则有序0.7 nm层状亚纳米通道的膨胀垂直石墨烯/金刚石复合薄膜电极。其中,金刚石与垂直膨胀石墨烯纳米片共价连接,作为机械增强相为构筑层状限域结构起到支撑作用。进一步,研究发现,该电极表现出离子筛分效应,离子部分脱溶等典型的限域电化学电容行为,是研究限域双电层的理想电极材料。基于该材料,科研人员利用原位电化学拉曼光谱和电化学石英晶体微天平技术分别监测充放电过程中电极材料一侧的响应行为和电解液一侧的离子通量发现,在阴极扫描过程中,电极材料一侧出现拉曼光谱   峰劈裂现象,溶液一侧为部分脱溶剂化阳离子主导的吸附过程。该研究综合以上实验结果并利用三维参考相互作用位点隐式溶剂模型的第一性原理计算方法,在原子尺度上评估了限域双电层中离子-碳宿主相互作用,揭示了在限域环境中增强的离子-碳宿主相互作用会诱导电极材料表面产生高密度的局域化图像电荷。该工作完善了限域双电层电容的电荷储存机理,为进一步探讨纳米多孔或层状材料在电化学储能中的功能奠定了基础。   8月9日,相关研究成果以Highly localized charges of confined electrical double-layers inside 0.7-nm layered channels为题,在线发表在《先进能源材料》(Advanced Energy Materials)上。研究工作得到国家自然科学基金和德国研究联合会基金的支持。图1. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的制备和表征:(A)制备流程示意图;(B)石墨插层化合物的拉曼光谱;(C-D)XRD图谱;(E)SEM和TEM图像。图2. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的电化学行为:(A)CV曲线;(B)微分电容-电极电势关系;(C)离子筛分效应;(D)EIS图谱;(E-F)动力学分析。图3. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的原位电化学拉曼光谱:(A-D)原位电化学拉曼光谱;(E-F)拉曼特征演变幅度分析。图4. 层状限域双电层电容的储能机理分析:(A)拉曼光谱中的G峰劈裂;(B)电化学石英晶体微天平分析;(C)电极质量变化和拉曼特征变化的关联性;(D)DFT-RISM计算获得的图像电荷分布。
  • 目标2.1万亿!被动元器件竞争加剧
    “2019年我国的电子元器件销售额超过了人民币1.86万亿元,2023年预测达到2.1万亿元,其中有15家企业营收规模或将突破100亿元。”这是《基础电子元器件产业发展行动计划》起草参与者王若达在最近一次研讨会上发表的看法。我国作为电子元器件产业的大国,但不是强国,高端MLCC的企业分布在日韩,电感同样,高端电感产品都掌握在村田、TDK等日厂手中。日本出口暴增日本电子情报技术产业协会6月30日公布统计数据显示,因来自欧美的需求暴增,带动4月份日本电子元器件在全球的出货额同比大增38.2%,达到3578亿日元。同时日本电子元器件出货额连续8个月突破3000亿日元大关,创下了2014年来最好纪录。从区域来看,中国仍然是日本电子元器件最大的出口地。4月份日本对中国市场的出货额为1382亿日元,同增17.4%,对亚洲其它地方的出货额为763亿日元,同增46%。在所有地区中,欧美地区的出货额增长最高,其中美洲出货额为341亿日元,同增129.2%,对欧洲的出货额为344亿日元,同增103.4%。从品类来看,电容仍然是电子元器件的主力,日本的电容出口已经连续11个月呈现增长,连续8个月突破1000亿日元大关,在4月份实现1238亿日元的出口额,同增39%。半导体重镇封国日本是被动元器件强国,但马来西亚是被动元器件的生产重镇。全球第二大钽电容厂商美国AVX、全球第一大MLCC厂商日本村田、全球第四大MLCC厂商太阳诱电、全球前两大铝电容厂佳美工和尼吉康、固态电容龙头松下等都在大马设厂。另外还有中国台湾地区的芯片电阻及MLCC大厂华新科、旺诠、凯美等。不过受到当前疫情的影响,马来西亚宣布原定6月28日结束的全国封锁措施无限期延长。当地众多半导体及元器件厂商仍需遵守当地政府政令管制,维持降载生产,不少厂商仍只能保留6成员工。TrendForce集邦咨询表示,包括MLCC日厂太阳诱电 、石英晶体日厂NDK & Epson、电解电容大厂日本松下、芯片电阻厂华新科技等,于当地的生产和货运排程皆持续受阻。尽管太阳诱电于马来西亚的厂房已于6月14日复工,并依当地政府规定调配60%的出勤人力,使其产能稼动率逐渐恢复至80%,然受到七月延长管制影响,整体产能应无法再往上突破。日本扩产一方面缺货,另一方面需求旺盛。由于第三季度苹果将推出新品,所以iPhone与Macbook Pro的MLCC主要供应商村田、太阳诱电与京瓷,将在第三至第四季逐渐迎来需求高峰。太阳诱电已于6月16日宣布,由于服务器、智能汽车、5G终端设备与基站的需求旺盛,带动MLCC持续增长。因此计划在八幡原工厂厂区内兴建MLCC材料新工厂、生产MLCC材料钛酸钡。该厂区投资50亿日元,将于今年9月动工,12月可完工。预计这个财年MLCC产能将同增10%~15%。此外,东洋纺也将扩增生产MLCC所必须的离型膜产能,计划投资约100亿日元在宇都宫工厂内增建新产线(新厂房)、并预计于2024年启用生产,届时离型膜年产能将扩增约7成。国巨收购6月30日早上,被动元件大厂国巨和全球第三的电感厂奇力新双双停牌。随后下午,国巨宣布,将以股份为对价,和奇力新进行股份转换,取得奇力新全部股权,奇力新自此成为国巨100%持股子公司,并终止上市及公开发行。收购奇力新之后,国巨预估营收将会增加15%左右,奇力新高端产品在未来每年将有10-15%的增长。同时,国巨将在电容、电感、电阻统统跻身全球前三。纵观国巨近几年的发展,有一条清晰的成长路径,那就是不断的进行产业并购与投资,扩大自身的市场份额以及借机冲击高端市场。仅仅是2018年,国巨就完成了5次收购,2次入股投资。当年4月,国巨公开收购上市公司君耀控股,5月,国巨以7.4亿美金收购美国普思电子,这两项收购帮助国巨强化了自身在汽车及工业产品上的竞争力。同时国巨的孙公司凯美还分别并购了帛汉,斥资新台币3.51亿元入股保护元件厂佳邦。2019年,国巨又以16.4亿美元收购了美国被动元器件大厂基美。根据公开信息,基美的钽质电容市占率全球第一,而且仅是钽质电容的获利就跟国巨全公司相当,全球主流的车厂都是基美的客户。并购完成之后,基美将成为国巨进军高端市场的关键。竞争加剧被动元器件产能紧张,价格上涨,交货周期拉长的现象已经持续许久,此前央视也曾报道关注。但目前被动元器件的产能以及价格短期内难以恢复正常水位,尤其是随着马来西亚的封国,产能或将再次出现紧缺。另一方面,村田、太阳诱电、TDK、国巨、华新科以及中国大陆的风华高科等全球知名被动元器件厂,都在拼尽全力扩产,以最大努力取得更高的市场份额。随着智能汽车的发展和5G终端的普及,对被动元器件的需求也在不断增强。在行业竞争加剧的情况下,本文开篇所述的预计2023年我国电子元器件销售额将达到2.1万亿元,其中15家企业营收规模将突破100亿元的目标能否实现,我们拭目以待。
  • 哈工大(深圳)魏军团队 AFM综述:3D打印超级电容器 - 技术、材料、设计及应用
    便携式、柔性和可穿戴电子设备的发展促进了高性能的电化学储能设备的快速发展。与电池和燃料电池相比,超级电容器表现出显著的优势,具有优异的倍率性能、杰出的循环寿命和卓越的安全性。然而,超级电容器的能量密度相对较低,不足以为电子设备提供连续且稳定的电源。为了提高能量密度,厚电极设计是有效的手段。而在传统的三明治结构的超级电容器中,平面电极的活性材料质量负载是相当有限的。设计三维多孔电极可以有效地提高活性物质的质量负载,同时保持较短的离子/电子传输距离和快速的反应动力学。但传统的制备三维多孔电极的方法通常复杂、昂贵、耗时,并且很难精确控制电极的结构。3D打印技术,通过计算机辅助设计/制造模型,对预定义的3D模型进行数字化控制,使得在短时间内精确控制和制造复杂结构成为可能。区别于传统的等材和减材制造技术, 3D打印技术可以实现几乎任何所需的立体几何形状,不需要所谓的模具或光刻掩模。这使得打印的超级电容器具有可调整的几何结构、高度集成、节省时间和低成本、以及卓越的功率和能量密度。为了总结这一领域的最新进展并为未来的研究提供设想,来自哈尔滨工业大学(深圳)的魏军教授团队,在Advanced Functional Materials上发表题为“3D Printed Supercapacitor: Techniques, Materials, Designs and Applications”的综述文章,回顾了3D打印超级电容器的最新进展,如图1所示。 图1. 3D打印超级电容器研究进展首先,介绍了用于制备超级电容器的代表性的3D打印技术,不同技术的原理图和特点如图2所示。 图2. 制备超级电容器的各种3D打印技术的原理图和特点接下来,文章重点介绍了超级电容器的可打印模块,包括电极、电解液和集流体,如图3所示。 图3. 用于3D打印超级电容器的材料在研究合适的可打印材料的同时,制造中的打印设计对于优化超级电容器的性能也是重要的。因此,文章总结了电极的设计(图4)、打印电极的后处理,并概括了3D打印超级电容器的不同构型(图5)。图4. 3D打印电极的不同结构设计 图5. 3D打印超级电容器的构型此外,还总结了3D打印超级电容器的各种应用,包括柔性可穿戴电子设备(图6)、自供电集成电子设备和传感系统(图7)。 图6. 不同类型的智能响应型超级电容器 图7. 3D打印的自供电集成系统,和超级电容器驱动的传感器系统。如图8可知,目前制备的3D打印超级电容器的能量密度与铅酸、镍氢电池和锂电池相当,有的甚至更高。 图8. 3D打印超级电容器的 (a)质量Ragone图, (b) 面积Ragone图最后,总结了目前3D打印技术的局限性和未来3D打印超级电容器的研究面临的挑战,并提出了一些可能的研究方向。 图9. 3D打印超级电容器的未来展望文章信息:Mengrui Li, Shiqiang Zhou, Lukuan Cheng, Funian Mo, Lina Chen,* Suzhu Yu,* Jun Wei,* 3D Printed Supercapacitor: Techniques, Materials, Designs and Applications, Advanced Functional Materials, 2022, 202208034.原文链接:https://doi.org/10.1002/adfm.202208034
  • “检测别动队”在身边 ——访北京有色金属与稀土应用研究所理化中心主任王峰
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 伟业往往孕于平凡,默默无闻处总有顶天立地的脊梁。在北京就有这样一家单位,他们的工作鲜见报道,但却是“身怀绝技”。北京奥运场馆热轧带钢筋的检查工作由其负责,国庆60周年观礼台工程主结构材料由其检测,北京朝阳区保障性住房钢筋的检测工作中也尽是他们的身影& #8230 & #8230 完成这些成就的单位究竟是怎样的面貌,又有哪些不为人知的精彩?近日,仪器信息网有幸走进北京有色金属与稀土应用研究所理化中心,采访了理化中心主任王峰。 /span /p p style=" text-align: left text-indent: 0em " span style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 663px height: 482px " src=" https://img1.17img.cn/17img/images/201912/uepic/74e7e3d8-5f8a-4682-8d07-2f4ff4b8e404.jpg" title=" “检测别动队”在身边.1.jpg" alt=" “检测别动队”在身边.1.jpg" width=" 663" height=" 482" border=" 0" vspace=" 0" / & nbsp /span /p p style=" text-align: center text-indent: 0em " strong 工作中的北京有色金属与稀土应用研究所理化中心主任王峰 /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 有色检测标准的“攻坚别动队” /strong /span /p p style=" text-align: justify text-indent: 2em " 标准与检测一向焦不离孟,作为有色及黑色金属材料及制品权威检测机构,除了在上述国家重大任务中承担检测职责,理化中心还参与了大量相关标准的制制修订工作,其中就有国家标准《GB/T 22638.6-2016 铝箔试验方法 第 6 部分 直流电阻的测定》,王峰恰好是该标准的主要起草人之一。“铝箔直流电阻是电子、电力、电解电容器用铝箔的一个重要技术指标,指标的均匀性可以反映出铝箔化学成分控制、内部组织和厚度均匀性的优劣,如何准确的测定铝箔直流电阻,为铝箔生产提供准确、客观的数据,是铝箔质量控制的一个重要保障。”王峰强调。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/c60fea25-9de6-4833-8814-c43edf8b0a05.jpg" title=" “检测别动队”在身边...jpg" alt=" “检测别动队”在身边...jpg" / /p p style=" text-align: center text-indent: 0em " strong 理化中心的电阻率仪 /strong /p p style=" text-align: justify text-indent: 2em " 随着“一带一路”基础设施建设的相继开展,铝箔已成为应用最广泛的有色金属制品之一,在建筑、车辆、船舶、能源等领域发挥着越来越大的作用,也为中国铝箔产品全面走向世界带来巨大机会。王峰表示,为铝箔产品标准的修订提供检测技术支撑是非常重要的工作。“我们的修订,主要是结合国内仪器设备生产情况与国外先进标准,使该系列检测方法标准更加科学、合理,符合国际惯例,并真正起到指导国内铝箔企业生产、提高技术水平。” /p p style=" text-align: justify text-indent: 2em " 在上述国标之外,理化中心也参与了大量有色行业标准的制定,包括金锡合金化学分析检测标准、变形铝合金铸锭超声波检测标准、氯化钯化学分析标准等等& #8230 & #8230 据王峰介绍,我国目前已建立起比较完善的有色金属标准体系,但部分标准使用率还不高,标准在检测维度的适应性、有效性以及配套协调性也有待进一步提高。“比如有的产品标准中规定了检测指标,但却没有检测方法,或者有了检测方法标准,又缺乏产品标准中规定的检验标准。”王峰说道,“而这一部分就需要我们做相关检测工作的人积极参与其中,并且付出更多的努力。” /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 五脏俱全的高精尖仪器基地 /span /strong /p p style=" text-align: justify text-indent: 2em " 支撑理化中心参与国家标准化工作的底气,来源于单位雄厚的仪器储备。在参观走访中笔者了解到,理化中心检测仪器设备达40余台套。拥有电子扫描显微镜、激光粒度仪、电感耦合等离子体质谱仪、电感耦合等离子体光谱仪、三坐标测量仪、水浸超声探伤、金相显微镜、同步热分析仪、激光热导仪、热膨胀仪、氧氮联测仪、原子吸收光谱仪、力学实验机、硬度计等一系列国内外先进仪器。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 300px height: 400px " src=" https://img1.17img.cn/17img/images/201912/uepic/87b5c6cb-d170-4c3a-bc7b-6ff6f94ab721.jpg" title=" “检测别动队”在身边....jpg" alt=" “检测别动队”在身边....jpg" width=" 300" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 理化中心进口显微硬度计 /strong /p p style=" text-align: justify text-indent: 2em " “比如我们这套进口的显微硬度计,最小载荷可达到0.00002kg,镜头放大倍数可达到1000倍,比头发丝还细的键合丝硬度都可以测量,此外还能应用于材料不同相区的检测分析。”王峰介绍到。这些高水准的仪器错落分布在1000余平米的检测专用实验室中,在理化中心数十位专业检测人员的操控下,井然有序地开展着各项检测任务。“我们实验室麻雀虽小,但是五脏俱全。”王峰开玩笑说,谦虚又充满自信。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 开放共享 “检测别动队”并不遥远 /span /strong /p p style=" text-align: justify text-indent: 2em " 如此权威又专业的检测单位,其实离我们普通人的距离并不遥远。“作为第三方检测机构,我们是可以面向社会承接金属制品的物理性能和成分分析等测试服务的。”王峰笑着说,“比如北工大、北科大等高校的学生,在学校排不上号时,经常也会把相关样品送到我们这检测。” /p p style=" text-align: justify text-indent: 2em " 在他看来,当前在检测行业,资源的开放与共享是未来发展的一个重要方向。“比如我们理化中心,除了专门用于有色金属检测的专用仪器设备外,还拥有很多通用型的高端仪器设备,很多仪器其实闲置率是很高的,与其浪费资源,不如造福社会。”正因为如此,理化中心相继加入了北京材料测试服务联盟、首都科技条件平台检测与认证领域中心、国家新材料测试评价平台等一系列促进科学仪器设备共享服务的重要组织,不断探讨如何为社会提供更好的检测服务。”就在仪器信息网到访之时,恰好有外面的用户送来了一组氧化物粉末样品,工作人员正在使用产自珠海欧美克的LS-909激光粒度仪测量该样品的粒度和粒度分布。 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/85a61b82-9693-4b2d-aa23-906de92f134c.jpg" title=" “检测别动队”在身边.....jpg" alt=" “检测别动队”在身边.....jpg" / /p p style=" text-align: center text-indent: 0em " strong 图电脑后侧为LS-909干湿二合一激光粒度仪 /strong /p p style=" text-align: center text-indent: 0em " strong 图电脑左侧为仪器所配的DPF-110干法进样器和SCF-105B湿法进样器 /strong /p p style=" text-align: center text-indent: 0em " strong ( a href=" https://www.instrument.com.cn/netshow/C240671.htm" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 点击了解仪器详情 /span /a ) /strong /p p style=" text-align: justify text-indent: 2em " “我们研究所本身需要检测的金属合金粉体材料往往是球形的,数十微米级单分散颗粒,检测粒度非常容易。”王峰解释说,“但是像这种从外面送来的样品往往粒度粒形更为复杂,对激光粒度仪分散性、重现性、重复性、精准度等指标的要求更高,并且经常会提出检测异常尺寸颗粒的灵敏性等涉及其他应用测试特性的要求,而这也恰好能让我们购买的高端仪器物尽其用。”现如今理化中心的LS-909激光粒度仪几乎每天都要迎来各种需求的粒度测试任务。“还是那句话,物尽其用,我们单位的仪器设备是开放共享的。” /p p style=" text-align: justify text-indent: 2em " 后记:采访中,王峰主任还分享了他对中国检测机构未来发展趋势的第二个看法,认为:检测机构将从单纯提供样品检测数据向提供产品的综合性能评价转型。而想做到这一点,需要检测机构在精通检测的同时,更多地深入学习、掌握相关材料和产品的应用。“我还只是个学徒工,需要提高的还很多。”王峰认真地说。 /p p style=" text-align: justify text-indent: 2em " strong 附录1,理化中心简介: /strong /p p style=" text-align: justify text-indent: 2em " 北京有色金属与稀土应用研究所理化中心隶属于北京有色金属与稀土应用研究所,负责研究所自研有色金属焊接材料、功能材料等产品的研发与检测工作。同时,理化中心还是北京市有色金属与黑色金属材料权威检验机构,并在此基础上成立了由北京市质量技术监督局依法授权的市级质量监督检验站——北京市冶金产品质量监督检验站,具有独立法人资格。 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/1a7b2127-d910-42e9-9838-eba69d64dc9b.jpg" title=" “检测别动队”在身边......jpg" alt=" “检测别动队”在身边......jpg" / /p p style=" text-align: center text-indent: 0em " strong 理化中心一角 /strong /p p style=" text-align: justify text-indent: 2em " 理化中心拥有CMA计量认证和CNAS实验室认可证书,目前已授权检测方法 200 余项,授权检测产品 100 余项。”测试的材料,被广泛应用于航空航天、电力电子、光电信息、铁路交通、建筑检测等诸多领域。 /p p style=" text-align: justify text-indent: 2em " strong 附录2,王峰简介: /strong /p p style=" text-align: justify text-indent: 2em " 王峰,男,1985年出生,硕士学位,现任北京有色金属与稀土应用研究所理化中心主任,先后从事金属材料物理性能检测、有色金属新产品研发、标准起草与修订、实验室体系管理等工作。十多年来,始终坚持扎根科研检测一线,为首都打造科技创新中心贡献一份力。 /p
  • 展会回顾 | 助力新能源新材料研发,晶泰科技亮相2024第九届超级电容器及电池关键材料学术会议
    2024 第九届超级电容器及电池关键材料学术会议于 8 月 9~11 日在济南隆重召开!600 多位专家、学者、师生等齐聚美丽的泉城,共享超电界的学术盛宴!晶泰科技自动化商务拓展总监李敬芝受邀出席大会,并作 “晶泰科技,AI+Automation 驱动研发创新” 主题演讲。晶泰科技的 “AI+Automation” 智能化自动化解决方案已应用于 “新能源新材料研发” 领域,如电解液配方研究、无机材料研究、高分子材料研究等科研场景。AI+Automation助力新能源新材料研发晶泰科技的 “AI+Automation” 智能化自动化解决方案可广泛应用在石油化工、新能源、新材料、生物医药等行业领域,提供的自动化产品与服务包含:智慧实验室一站式建设服务、机器人工作站等,已为客户落地构建了药物研发智慧实验室、催化剂研究智慧实验室、无机材料研究智慧实验室以及电解液配方研究智慧实验室等。自 2022 年晶泰科技官宣自动化业务以来,我们深切感受到了大学校园对自动化智能化的迫切需求。晶泰科技非常重视与科研院校在尖端科技领域的合作,一直积极与科研院校专家学者交流互动,探索产学研多元主体的创新协同模式。晶泰科技作为一家在自动化智能化领域的新质生产力代表,积极响应国家及各级政府对新质生产力进校园的号召,期待帮助高校高效完成设备更新、改变固有科研模式,助力人才培养与时代发展接轨,促进科研成果高效转化,打造新质生产力创新生态圈。以锂电领域为例,近年来,我国锂电池产业发展迅速,《锂电池行业规范条件﹙2024年本﹚》对锂电池行业的技术进步和产品质量提升提出更高要求,对电池能量密度、功率密度、循环寿命等性能指标设定了更为严格的标准。电解液是电池的重要组成部分,高通量电解液配方筛选设备可以帮助企业快速找到最佳电解液配方,以提高电池的性能和寿命,降低成本。晶泰科技的电解液自动化配制系统,将自动化技术与手套箱有机结合,可自动完成称量、混合,高通量配液等流程,并通过串联特定功能自动化仪器设备完成电解液配方性能测试,实验结果可追溯,不同电解液性能一目了然,帮助研究人员快速优化电解液配方,以提高电池的性能和效率。晶泰科技人工智能+机器人:助力新能源新材料研发
  • 南科大杨灿辉和葛锜团队:多材料3D打印具有多模式传感功能的离子电容传感器
    在过去十年中,离电器件(Ionotronics or Iontronics,离子-电子混合器件,即基于离子与电子协同作用的器件)因其固有的柔韧性,可拉伸性,光学透明性和生物相容性等优势引起了越来越多的关注。然而,现有的离电传感器由于器件结构简单、成分易泄漏,导致器件稳定性差,传感功能单一,极大地限制了实际应用。因此,设计制造性能稳定且具有多模式传感能力的离电传感器具有重要的工程应用价值。南方科技大学力学与航空航天工程系杨灿辉团队与机械与能源工程系葛锜团队,报道了通过多材料光固化3D打印技术一体化设计制造基于聚电解质弹性体的多模式传感离子电容传感器,解决了传统离电传感器稳定性差和功能性单一的问题,为可拉伸离电传感器的设计、智造与应用提供了新的解决方案。相关研究成果以“Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing”为题发表在《Nature Communication》期刊。南方科技大学科研助理李财聪、博士生程健翔和何耘丰为论文共同第一作者,杨灿辉助理教授与葛锜教授为论文共同通讯作者。本研究得到了深圳市软材料力学与智造重点实验室和广东省自然科学基金等项目支持。如图1所示,受人体皮肤对于拉、压、扭及其组合等外力的多模态感知能力的启发,研究人员利用多材料光固化3D打印技术制备了具有多模式传感能力的离电传感器。传感器采用了聚电解质弹性体(PEE),其高分子网络中含有固定的阴离子或阳离子,以及可移动的反离子,具备抗离子泄漏的特性。在打印过程中,PEE材料与传感器上的介电弹性体(DE)材料之间通过共价和拓扑互连形成了牢固的界面粘接。图1. 皮肤启发的多模式传感离电传感器。(a) 人体皮肤内多种力感受器示意图。(b) 人体皮肤可以感知单一的力学信号如压拉、压、压+剪、压+扭。(c) 基于多材料数字光固化3D打印技术制备具有多模式传感能力的离电传感器。研究人员首先合成了一种名为1-丁基-3-甲基咪唑134-3-磺丙基丙烯酸酯(BS)的单体,作为聚电解质材料的组成成分之一,并与另一种名为MEA的疏水单体一起进行共聚。然后通过优化BS和MEA的比例,平衡聚电解质材料的力学性能和电学性能,从而优化传感器的性能,如图2所示。图2. 聚电解质弹性体的设计、制备与光学、力学、电学性能以及热、溶剂稳定性。如图3所示,研究人员进行光流变测试验证了所开发的PEE材料的可打印性。然后通过180°剥离测试,分别测量了3D打印和手动组装的PEE/DE双层结构的界面粘接强度。结果表明,3D打印的双层结构由于PEE和DE之间形成的共价键和拓扑缠结而具有强韧的界面,剥离过程发生了PEE材料的本体断裂, 粘接能达339.3 J/m2;相比之下,手动组装的PEE/DE双层结构界面弱,剥离过程发生了界面断裂,粘接能只有4.1 J/m2。在耐久度测试中,基于PEE的电容式传感器由于无离子泄漏可以长时间保持稳定的信号,而基于传统的LiTFSI掺杂离子的弹性体的传感器由于离子泄漏,信号持续发生漂移,直至发生短路。图3. 离电传感器的可打印性与性能。(a) PEE存储模量和损耗模量随光固化时间的变化曲线。(b) 固化时间与能量密度随层厚的变化关系。(c) 打印的PEE阵列展示。(d) 3D打印和手动组装的PEE/DE双层结构的180°剥离曲线。(e) 3D打印的PEE/DE双层结构本体断裂示意图。(f) 手动组装的PEE/DE双层结构界面断裂示意图。(g) 基于PEE和基于LiTFSI掺杂离子的弹性体的电容式传感器的ΔC/C0随时间变化曲线。(h) 基于PEE的电容式传感器无离子泄漏。(i) 基于LiTFSI掺杂离子的弹性体的电容式传感器离子泄漏示意图。3D打印技术为器件的结构设计提供了极高的灵活性。如图4所示,研究人员分别设计并一体化打印了拉伸、压缩、剪切、扭转四种不同的离电传感器,器件均具有良好的性能和稳定性。特别地,通过器件的结构设计,即可以实现传感器灵敏度的大幅度优化,例如通过在压缩传感器的介电弹性体层引入微结构可以将灵敏度提高两个数量级,又可以实现传感器灵敏度的按需调控,例如通过设计剪切传感器前端的轮廓线或扭转传感器的扇形区域数量可以分别实现不同相应的剪切传感器和扭转传感器。图4. 拉伸、压缩、剪切、扭转离电传感器。(a) 拉伸传感器原理示意图。(b) 电容-拉伸应变曲线。(c) 压缩传感器原理示意图。(d) 有/无微结构的压力传感器的电容-压力曲线。(e) 剪切传感器原理示意图。(f) 一种剪切传感器实物图。(g) 不同灵敏度的剪切传感器的电容-剪切应变曲线。(h) 剪切传感器的疲劳测试曲线。(i) 扭转传感器原理示意图。(j) 一种扭转传感器实物图。(k) 不同灵敏度的扭转传感器的电容-扭转角曲线。(l) 扭转传感器的疲劳测试曲线。如图5所示,研究人员进一步设计并一体化打印了拉压、压剪、压扭三种组合式离电传感器。组合式传感器最大的挑战之一在于不同传感通路之间相互的信号串扰,例如,当器件拉伸时,由于材料的泊松效应会导致垂直方向上的器件几何尺寸缩小,等效于压缩变形,导致拉伸激励引起压缩通道的信号变化。研究人员结合有限元模拟分析,通过合理的器件结构设计,有效地避免了不同通道之间的信号串扰。图5. 组合式离电传感器。(a) 拉压组合传感器示意图。(b) 器件实物图。(c) 拉压组合传感器等效电路图。(d) 单一传感模式下的器件信号。(e) 压缩激励下的电容-圈数变化曲线。(f) 拉伸激励下的电容-圈数变化曲线。(g) 拉压组合变形下的信号谱。(h) 压剪组合传感器示意图。(i) 器件实物图。(j) 压剪组合传感器等效电路图。(k) 单一传感模式下的器件信号。(l) 压扭组合传感器示意图。(m) 器件实物图。(n) 压扭组合传感器等效电路图。(o) 单一传感模式下的器件信号。最后,研究人员展示了一个由四个剪切传感器和一个压缩传感器组成的可穿戴遥控单元,并将其连接到一个远程控制系统,用于远程无线控制无人机的飞行,如图6所示。这个可穿戴遥控单元中的四个剪切传感器负责感知手部的手指运动,用于控制无人机的方向。而压缩传感器则用于感知手指的压力,控制无人机的翻滚。这种可穿戴遥控单元的设计可以实现人机交互,提供更加灵活的控制方式。图6. 组合式离电传感器用于无人机的远程无线操控。(a) 无人机控制系统示意图。(b) 组合式离电传感器中剪切传感模块工作模式示意图。(c) 剪切传感模块工作原理。(d) 传感器五个通道电容信号测试。(e) 指令编译逻辑。(f) 组合式离电传感器实时电容信号。(g) 不同时刻的无人机飞行状态。文章来源:高分子科技023-40583-5MultiMatter C1基于高精度数字光处理3D打印技术和独家离心式多材料切换技术,MultiMatter C1多材料3D打印装备可实现任意复杂异质结构快速成型,在力学超材料、生物医学、柔性电子、软体机器人等领域具有重要应用潜力。离心式多材料切换技术:独家开发的离心式多材料切换技术可实现高效材料切换和残液去除。离心转速可调,最高达8000转/分钟,60秒内即可完成多材料切换,单次打印多材料切换最大次数高达2000次,处于业内领先水平。可打印材料范围广:该设备支持粘度在50-5000 cps范围内的硬性树脂、弹性体、水凝胶、形状记忆高分子和导电弹性体等材料及这些材料组合结构的多材料3D打印,为不同行业和应用领域,提供了材料选择的灵活性。多功能多材料耦合结构实现:该设备可打印高复杂度、高精度、多功能、多材料耦合结构,支持同时打印2种材料,可打印层内多材料和层间多材料,且多材料层内过渡区尺寸在200μm以内,为复杂多材料结构制造提供高精度解决方案。
  • 河南发文大力发展新材料,目标产业规模突破1万亿
    近日,河南省人民政府印发《河南省加快制造业“六新”突破实施方案》(下称《方案》),提出把“六新”(新基建、新技术、新材料、新装备、新产品、新业态)突破作为提升战略竞争力的关键举措和重要标志,找准着力点、突破口,开辟发展新领域、新赛道,塑造发展新动能、新优势,加快推进新型工业化。《方案》提到,要大力发展新材料。将新材料作为新兴产业发展的基石和先导,聚焦先进基础材料、关键战略材料、前沿新材料等领域,推动全省新材料产业产品高端化、结构合理化、发展绿色化、体系安全化。到2025年,全省新材料产业规模突破1万亿元,实现从原材料大省向新材料强省转变,为制造强省建设提供有力支撑。《方案》明确,为实现1万亿元新材料产业规模目标,将开展以下三大措施:(一)提质发展先进基础材料1. 先进钢铁材料。推进先进钢铁材料产业精品化、优特化、品质化、特色化发展,大力发展EP防爆钢、超高强钢等高品质特殊钢,重点开发智能制造、轨道交通等领域高端装备用钢,突破发展海洋工程装备和高技术船舶用特种棒线材、板材、管材以及高强度汽车钢等尖端产品,加快发展高端轴承钢、齿轮钢等核心基础零部件用钢,依托河南钢铁集团打造全国一流大型钢铁企业,优化钢铁产业布局,引领先进钢铁材料全产业链提升。2. 先进有色金属材料。推动先进有色金属材料产业延伸高端产品链条,实现从材料向器件、装备跃升。突破铝基复合材料、高端工业型材等关键技术,大力发展新能源、航空航天等领域轻量化高端铝材,推动铝合金向高端精品铝加工延伸。加快发展高精度铜板带、高端铜箔等铜基新材料,推进高端铜基材料在高端装备、新能源汽车等领域应用。推进研发低成本高纯镁提纯精炼、高性能铸造镁合金和镁铝复合材料等制备及精密成型技术,拓展轻量化高强度镁合金在军工、电子信息等领域应用。发展超宽高纯度高密度钨钼溅射靶材、电子功能钨钼新材料及精深加工产品。加强铅锌冶炼伴生有价金属提取、提纯等技术研发应用,提高资源综合利用率。3. 先进化工材料。推进先进化工材料产业向功能化学品、专用化学品、精细化学品发展,延伸发展下游高端产品,实现从关键基础原料到高端化工新材料跨越。大力发展特种尼龙纤维、尼龙切片等尼龙新材料,发展尼龙注塑、聚氨酯精深加工,打造国内领先的尼龙新材料生产研发基地。加快推动可降解材料、生物基材料、先进膜材料、氟基新材料、盐化新材料向终端及制成品方向发展,推动产品迭代升级。4. 先进无机非金属材料。推进先进无机非金属材料向绿色化、功能化、高性能化方向提升,实现从耐材、建材等传统领域向电子信息、航空航天等新兴领域拓展。重点发展芯片制造、油气钻探等领域用复合超硬材料及制品和关键装备,扩大应用领域,打造全球最大的超硬材料研发生产基地。聚焦细分领域,加快发展吸附分离、高效催化分子筛材料,空心玻璃微珠材料,气凝胶材料等先进无机非金属材料,重点发展功能耐火材料、高效隔热材料、氢冶金用关键耐火材料等,积极发展优质浮法玻璃、超薄玻璃等新型玻璃和特种水泥、绝缘及介质陶瓷等新型建材。(二)培育壮大关键战略材料1. 电子功能材料。加快发展半导体、光电功能材料、新型电子元器件材料产业,打造全国新兴先进电子材料基地。加快布局发展氮化镓、碳化硅、磷化铟等半导体材料,开发Micro—LED(微米发光二极管)、OLED(有机发光二极管)用新型发光材料,薄膜电容、聚合物铝电解电容等新型电子元器件材料,电子级高纯试剂和靶材、封装用键合线、电子级保护及结构胶水等工艺辅助及封装材料。加快湿电子化学品、高纯特种气体、高纯金属材料研发和规模化生产。2. 高性能纤维材料。重点研发48K以上大丝束、T1100级碳纤维制备技术,重点发展玄武岩纤维、电子级玻璃纤维等高性能纤维材料,推动碳纤维在汽车制造、航空航天等领域应用,建设国内最大的碳纤维生产基地。重点突破对位芳纶原料高效溶解等关键技术和大容量连续聚合、高速纺丝等制备技术,推动产业链向航空航天、国防军工等领域延伸。重点发展超高分子量聚乙烯板材、薄膜、纤维等制品,拓展在机械制造、医疗器械等领域应用。加快发展光致变色纤维、温感变色纤维等功能化、差别化再生纤维素纤维和差别化氨纶纤维,推动氨纶产业发展壮大。3. 新型动力及储能电池材料。大力发展正负极、电解液、隔膜等金属离子电池材料,布局发展钠离子电池、全(半)固态电池产业。突破发展质子交换膜、膜电极、催化剂和扩散层等氢燃料电池关键材料,建设国家氢燃料电池产业基地。重点发展晶体硅光伏电池材料和化合物薄膜,开发大尺寸单晶硅、多晶硅太阳能硅材料、多晶硅薄膜等,研发新型高效钙钛矿电池材料和铜铟镓硒等薄膜电池材料,打造“硅烷—颗粒硅—单晶硅片—电池片—组件—电站”产业链。4. 生物医用材料。重点研发体外膜肺氧合机用中空纤维膜、CT(电子计算机断层扫描)用弥散强化金属及合金等医疗装备材料,打造一批医疗装备材料生产基地。加快发展用于心血管、人工关节等临床治疗的功能性植/介入医用材料,推动聚乳酸可降解材料在医用领域应用。突破发展医用苯乙烯类热塑性弹性体、生物相容性材料、生物墨水、医用级聚砜/聚醚砜材料等先进材料,推动医疗耗材产业高端化发展。5. 节能降碳环保材料。加快发展基于溶剂、膜材料、金属有机框架等碳捕集材料,重点研发CO2(二氧化碳)合成低碳烯烃、芳烃、醇酯等碳利用技术,加快发展结构装饰一体化保温板材、节能自保温型墙体及材料,推动珍珠岩保温材料、超高保温节能玻璃等产品研发应用。大力发展水污染治理、工业废气处理等领域催化剂材料、混合基质膜、高性能中空纤维膜,加强相关技术研发和产品推广,研发推广有害物质含量低的涂料、油墨等材料,减少有害物质源头使用。(三)抢滩占先前沿新材料1. 纳米材料。积极发展金属、陶瓷、复合材料等领域纳米材料,开发电子级球形纳米材料、稀土纳米材料等产品,前瞻布局发展量子点发光材料、球形氧化铝氮化硼导热材料等先进纳米材料,加快济源纳米材料产业园建设,支持碳纳米管、分子筛等细分领域持续壮大。2. 石墨烯材料。重点发展石墨烯储能器件、功能涂料等特种功能产品,拓展在防腐涂料、触摸屏等领域应用,开发基于石墨烯的散热、传感器材料等,研发规模化制备和微纳结构测量表征等关键技术,开发大型石墨烯薄膜制备设备及计量检测仪器,加快建设一批石墨烯产业基地。3. 增材制造材料。加快发展3D打印专用钛合金、铝合金等金属粉末,开发高性能稳定性光敏树脂、粘结剂、工程塑料与弹性体和碳化硅、氮化硅等陶瓷粉末、片材,研发金属球形粉末、纳米改性球形粉体等材料成形与制备技术,加快培育增材制造材料产业。4. 先进复合材料。大力发展超导复合材料、碳/碳复合材料等,开发高性能碳纤维、硼纤维、碳化硅纤维等增强体和先进树脂、合金、陶瓷等基体材料,开展高熵合金、液态金属等先进合金研究,打造“高性能纤维—先进复合材料—功能部件”产业链。附件:河南省新材料重点事项清单
  • 二十载匠心,感恩回馈水分仪用户~
    在时光的长河中,2024年,上海禾工仪器迎来了璀璨的20周年。二十载砥砺前行,上海禾工仪器以专业的品质、精湛的技术和贴心的服务,在仪器领域树立了口碑效应。为感恩老用户一路以来的支持与陪伴,上海禾工仪器在这个特殊的时刻推出了温暖的回馈活动。针对带卡式加热炉的卡尔费休水分测定仪,特别赠送分子筛和变色硅胶。本次分子筛 赠送活动时间为2024年9月10日起至2024年9月30日。我们衷心希望用户在使用了这些赠品后,能够写下使用心得或者反馈报告,因为我们十分重视用户的心声,会根据用户的反馈不断改进,以便更好地为用户服务。卡式炉水分测定仪,以其众多优势成为众多用户的得力助手~以AKF-CH6为例▼1、它是一款集水分测量模块和加热进样模块于一体的卡尔费休水分测定设备。2、它具有高精度的测量能力,能够准确地测定各种样品中的水分含量。3、其操作简便,即使是没有专业技术的用户也能轻松上手。4、同时,仪器的稳定性极高,能够在不同的环境条件下保持准确的测量结果。AKF-CH6卡式炉水分测定仪可用于以下行业领域(包括不限于)的水分检测~【能源领域】例如在钠离子电池的正极材料(如焦磷酸磷酸铁钠)、隔膜等部件的生产中,精确检测水分含量对电池性能至关重要。其可以测定钠离子电池正极材料和隔膜中的水分,助力提升电池的能量密度、循环稳定性和安全性。【电子领域】能够用于检测电子元器件、半导体材料等中的水分。例如在钽粉的生产中,AKF-CH6 可用于测定其中的水分含量,钽粉常用于制造高质量的电解电容器,广泛应用于军事设备和高技术领域。【医药行业】可用于检测体外诊断试剂、医用胶、片剂、胶囊、注射剂等中的微量水分含量。对于药品的质量控制和性能保证具有重要意义。【塑料行业】用于测定塑料薄膜等制品中的水分含量,对塑料产品的性能和质量控制有重要作用。近期,部分卡式炉水分测定仪用户的实验室中,可能存在温度不稳定、湿度较高等情况,这些不利因素相互作用,使得在使用卡式炉水分测定仪时出现了分子筛通气平衡时间过长以及气体纯度不够的问题。此外,也有可能是由于用户购买的分子筛并非专门针对卡式炉水分测定仪,毕竟分子筛有多种类型。收到反馈后,我司高度重视,迅速行动。公司始终坚持以用户为中心,将用户的需求和痛点视为前进的动力。为了解决这一问题,上海禾工仪器的研发团队立即展开深入调研和测试,不惜成本,精心挑选,最终全新定制分子筛。同时,特别回馈赠送分子筛和变色硅胶给用户体验。此次赠送的分子筛具有明显优势:①脱水效果优异,常规环境极限漂移可低至 10ug/min。②迅速降低背景,通气平衡快,更换分子筛后漂移从 60ug/min 降低至 30ug/min 仅需 20min。③采用真空包装,小包装分装使得更换更方便。④大颗粒结构,不易堵塞气路。⑤定期更换分子筛可以加快平衡时间,提升测试效率。分子筛,如同一位默默守护的卫士~它具有强大的吸附能力,能够高效吸附卡式炉水分测定仪中的水分和杂质,为测量结果的准确性保驾护航。同时,分子筛的干燥作用可保持仪器内部干燥,极大地延长了仪器的使用寿命,让您的投资更具价值。 而变色硅胶,则像是一位贴心的小助手~它的神奇之处在于能够通过颜色变化直观地显示仪器内部的湿度情况。当吸收水分后,变色硅胶会从蓝色变为粉红色,提醒用户及时更换干燥剂,确保仪器始终处于最佳运行状态。其吸附水分的能力同样出色,与分子筛携手为仪器提供双重干燥保障。一位老用户在使用了赠送的分子筛和变色硅胶后,激动地分享了自己的使用心得:“上海禾工仪器的这份回馈礼物实在是太贴心了!分子筛的加入让卡式炉水分测定仪的测量结果更加精准,我再也不用担心水分对测量的影响。变色硅胶的颜色变化一目了然,让我能够随时掌握仪器的湿度状况,及时更换干燥剂。感谢上海禾工仪器对老用户的关怀,期待未来能继续享受这样优质的产品和服务。”在此,我们也温馨提醒各位用户在使用分子筛和变色硅胶时的一些注意事项:①首先,安装时要确保分子筛和变色硅胶放置在正确的位置,以充分发挥其干燥和指示作用。②其次,要定期检查变色硅胶的颜色变化,当发现变色硅胶大部分变为粉红色时,应及时更换,以保证仪器的干燥效果。③另外,在存储分子筛和变色硅胶时,要避免高温、高湿和阳光直射的环境,防止其性能受到影响。上海禾工仪器的卡式炉水分测定仪老用户们注意啦!如果您还没有领取这份贴心的礼物,可以联系区域商务负责人进行申请领取。上海禾工仪器,二十年如一日,始终将用户需求放在首位。此次回馈活动,不仅是一份礼物,更是一份承诺,承诺在未来的日子里,继续以精湛的技术、可靠的品质和周到的服务,为用户创造更多价值。让我们共同见证上海禾工仪器的下一个璀璨的二十年!
  • 大连化物所吴忠帅团队研制出可定制化全3D打印锌离子杂化电容器
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员团队,提出了通过油墨直写成型和熔融沉积成型两种3D打印方法,构建全打印可定制水系锌离子杂化电容器的新策略。团队利用该策略,构筑了具有分级多孔结构的高面容量正极,以及无枝晶稳定结构的锌金属负极,制备出高比能、长循环稳定的锌离子杂化电容器。随着定制化电子产品使用的增加,发展高能量密度且形状可定制的电化学储能器件已逐渐成为清洁能源转化和存储的迫切需求。锌离子电化学储能器件因其低氧化还原电位(-0.76 V)、高理论电容(823 mA h/g)、高安全性而引起了广泛关注。锌离子杂化电容器有效结合了锌离子电池和超级电容器的优点,可同时实现高能量密度和高功率密度。然而,水系锌离子杂化电容器仍存在面容量较低、锌枝晶生长及器件形状因子的限制,阻碍了其在实际应用中的进一步发展。本工作中,该团队通过油墨直写成型和熔融沉积成型两种3D打印方法构建了全打印锌离子杂化电容器,包括多孔微晶格正极、无枝晶的金属锌负极、凝胶电解质和塑料封装。其中,锌负极上打印的金属稳定结构有效地抑制了锌枝晶的生长,延长了锌离子杂化电容器的循环寿命(10000次循环后的电容保持率为100%)。分级多孔正极提高了活性材料的面积负载,从而提高了锌离子杂化电容器的面积电容,所制备的锌离子杂化电容器表现出4259 mF/m2的高面电容和1514 μWh/cm2的高面能量密度。团队结合熔融沉积成型3D打印技术,在构建锌离子杂化电容器的基础上,构筑出了与电极结构相符的封装结构,成功实现了形状可定制的全3D打印锌离子杂化电容器。该工作展现了3D打印技术在可定制化储能器件的应用潜力。相关研究成果以“All 3D Printing Shape-conformable Zinc Ion Hybrid Capacitors with Ultrahigh Areal Capacitance and Improved Cycle Life”为题,于近日发表在《先进能源材料》(Advanced Energy Materials)上。上述工作得到国家自然科学基金、中科院洁净能源创新研究院合作基金、辽宁省中央引导地方专项等项目的资助。文章链接:https://doi.org/10.1002/aenm.202200341
  • 高能镍碳超级电容器问世 解决电动车电源问题
    周国泰院士(左二)和科技人员一起检验汽车用高能镍碳超级电容器   你看满大街上跑的汽车,有几辆是电动车?   2008年北京奥运会,2010年上海世博会,人们看见电动汽车上路了,跑起来了。让人振奋!   可是,到了今天,电动汽车还是“雾里看花”。   怎么回事呢?   周国泰院士斩钉截铁地说,问题出在电动车的电源上。电动车的电池技术还没有“过关”。   这是在北京的总后军需物资油料部“周国泰院士工作室”,科技日报记者采访周国泰院士的一段对话。   紧接着,周国泰说:“如今,我们研发成功了高能镍碳超级电容器,这是电动车电源的一个新突破,将对电动车产业发展带来深刻影响。”   他随手拿给记者一份邀请函,是8月24日天津市政府印发的。上面写道:“天津市围绕推动新能源产业发展,与中国工程院院士周国泰合作,成功开发出高能镍碳超级电容器产品。经天津市科委组织成果鉴定,达到国际先进、国内领先水平,在电动汽车和储能电站中将具有竞争优势。天津市人民政府定于2011年9月1日上午10时在天津大礼堂召开高能镍碳超级电容器产品新闻发布会。”   眼前的周国泰院士,怎么搞起电动汽车研究了?   周国泰,我国军用、民用功能服装材料和士兵个体防护研究领域的知名专家。   从一名战士,到大学生,到走上总后军需装备研究所的科研之路,几十年来,周国泰在防弹装备、特种防护服装和防寒保暖材料研究等方面,取得多项成果。先后主持研制防弹背心、防弹头盔,解决了防弹材料及防弹结构体复合成型、树脂基体合成等一系列技术关键,研究成果居国际先进水平,他研制出的服装已装备军、警、法等部门,并出口美国等10余个国家。开展静电防护理论、特种防护服装研究与技术开发,研制的防静电、抗油拒水、阻燃等系列防护服装,装备到全国各大油田,并广泛用于石化、冶金、林业等部门。主持被服保暖材料、保暖机理和生产技术研究,合作研制成功热熔粘结絮片和PTFE防风防水透湿层压织物,广泛用于作训服、防寒服、南极考察服和运动服等。创建我国服装工效研究中心和单兵防弹装备V50弹击试验室,系统开展了服装工效学研究,实现了我国防弹装备测试评价与国际接轨。曾先后获得国家科技进步一等奖3项、二等奖3项,省部级科技进步奖多项成果奖励。1999年,当选为中国工程院院士,并晋升为少将。   今天的话题,还是谈谈你搞的超级电容器吧。   “你千万别说是我一个人搞成的。我有一个研发团队,有中央领导同志、有多个部委的关心支持,有天津市、张家港市、淄博市,有一大批多学科、多领域的专家协同合作创新,才开发出超级电容器,成为电动汽车的新电源。”院士、将军集于一身的周国泰,说话睿智果断,开门见山。   高能镍碳超级电容器,有哪些技术突破   高能镍碳超级电容器,成为一种用在电动车上的全新电源,周国泰说:“实现了几个突破。”   周国泰介绍,高能镍碳超级电容器,首先在加大材料的比表面积上实现突破。传统电容,100年前就发明了,电容是靠比表面积存储电荷,其优点是可无数次充放电,而且不发热。储电量的大小由其内部比表面积大小而决定。超级电容器,就是在研发出新材料的基础上,尽可能地扩大比表面积,使储电量大幅增加 第二,超级电容在正负极的材料结构上获突破。电池的优点是储电量大,由电能转化成化学能,再转化成电能释放出来,其比功率比传统电容高得多。超级电容,在结构上实现了电池和传统电容的内并,实现了电池和电容的优点兼备。   锂离子电池,不是业界推崇的电源吗?周国泰说:“技术还不过关!”他将这种电池与超级电容器作了比较。   第一,锂离子电池存在安全隐患。锂离子、有机电解质,其本身有易燃、易爆性,杭州、上海曾发生的电动汽车自燃事件,今天谈起来还让人后怕。超级电容器,充满电后用射钉枪打,使其短路,任何反应都没有 放火上烧,不锈钢外壳快烧红了,也没发生爆炸。锂离子电池,一旦发生短路,就会燃烧或者爆炸。   第二,锂离子电池,基本是300A电流充电,时间长,一次充电要6—8小时,使用不方便。超级电容器,可1500A,甚至3000A大电流充电,单块充满电只要几秒钟,上百块串联在一起充电,6分钟可达90%以上。   第三,锂离子电池寿命短。充放电的标准是2000次,目前很少有能达到的,即使达到了,性价比不实用。超级电容器,可大电流充电,瞬间大电流放电,效果理想,充放电可达5万—50万次,而充放电的国家标准是5万次。就说在淄博那次试验,公交车装上超级电容器充电后,乘坐满员,上了高速路,时速120公里,一次充电跑了210公里。使用超级电容器的小轿车,瞬间可大提速,时速可达130公里。   “你说超级电容器的优势怎么样?”说到此,周国泰问记者。大家都笑了。   回顾电动汽车发展历程,人们不难掂量出超级电容器的分量,也不难理解天津市政府为什么要召开新闻发布会的原因。   电动汽车诞生有100多年了,1839年,苏格兰人罗伯特安德森造出了世界上的第一台“电动车”。不过它不十分成功。主要原因是,电池寿命太短,电力太小,只能挪动一个非常轻的底盘。到了19世纪后期,长效电池诞生,促进了电动车的进一步发展,人们才在伦敦的大街上见到电力驱动的出租车,不过行驶距离非常短,还必须不停地在充电站里充电。   罗伯特不会预想到,历史进入到21世纪,随着全球能源危机的不断加深,石油资源的日趋枯竭以及大气污染、全球气温上升的危害加剧,各国政府及汽车企业普遍认识到节能和减排是未来汽车技术发展的主攻方向,发展电动汽车成为解决这两个技术难点的最佳途径。电动汽车也随之成为世界各国的选择和技术竞争的一个焦点。   一些专家曾经估计,全球能源矿产资源仅够支撑不到100年 而我国的石油只能支撑国内消耗30年,煤炭最多能支撑100年。目前,我国每年有85%的汽油和20%的柴油被汽车烧掉,汽车无疑成为了能源消耗大户,能源紧张与汽车行业发展的关系十分密切。如果中国的人均汽车拥有量追上美国,中国的道路上就会奔跑着6亿多辆小汽车,这一数字将超过世界其他国家小汽车数量的总和,对能源的需求将不言而喻,中国必将成为第一大油耗和石油进口国。   国人不会忘记,当年铁人王进喜在首都北京看到汽车背着的“大包袱”,缺石油,被人瞧不起啊!   到了今天,汽车背的“大包袱”没有了,可城市却背上了“大包袱”。从地上看天,见不到蓝天白云,从空中往下看,灰蒙蒙的,不见城市的倩影。说重了,是民族的耻辱!   从能源、环境的角度审视,发展新能源汽车,是我国的必然选择。而且从技术的角度看,我国有自身的优势。   据相关资料显示:我国虽然在传统汽车领域落后于发达国家近二三十年,但在电动汽车领域,我国与国外的技术水平和产业化程度差距相对较小,并有机会在该领域获得重要席位。这也为我国汽车工业技术实现跨越发展提供了一次历史性的机遇,更重要的是我国还有后发优势。目前,我国电动汽车的研发已具备一定的基础,一些企业在20世纪90年代中期就推出了电动汽车样车。   我国“八五”以来电动汽车被正式列入国家攻关项目,对电动汽车的投入显著增加。我国的汽车企业和高校、科研院所等200多家单位投入了大量的人力、财力和物力研发电动汽车,并取得了一系列科研成果。“九五”期间,电动汽车被列入863计划12个重大专项之一,全国汽车标准化技术委员会于1998年新组建了电动汽车车辆标准化分技术委员会。科技部又于2001年启动了电动汽车重大科技专项,使我国电动汽车技术水平和产业化程度与国外处在同一起跑线上。     现代电动汽车一般可分为三类:纯电动汽车(PEV)、混合动力汽车(HEV)、燃料电池电动汽车(FCEV)。但是近几年在传统混合动力汽车的基础上,又派生出一种外接充电式(Plug-In)混合动力汽车,简称PHEV。目前在全世界,电动汽车一直是各大汽车集团花费巨资研发的新兴领域。   然而,制约电动汽车发展的瓶颈,还就是电池。世界电动车协会主席陈清泉在2011中国长春国际汽车论坛上表示,当前我国电动汽车电池技术存在两个明显缺点:第一个缺点就是缺乏深层次技术。比如电池的化学问题、物理问题、温度问题、结构问题等,在这些方面我们研发还不够,没有能够建立数学模型把这些问题搞清楚 另一个缺点是缺乏评价体系。比如电池的安全性怎么样,在高温、低温环境下能不能正常工作,这些都没有一个好的评价。   有资料介绍,电动汽车对电池的要求比较高,电池要具备高比能、高比功率、快速充电和具有深度放电功能,循环和使用寿命要长。铅酸电池,虽然其比能量、比功率和能量密度都比较低,但是高的性价比使其应用广泛,然而带来的是严重的环境问题。镍镉电池和镍氢电池虽然性能好于铅酸电池,但是其性价比不高,含重金属,用完后回收处理难,若遗弃会对环境造成严重污染。   目前,越来越多的研究人员选用锂离子电池作为电动汽车的动力电池,但这种电池的缺陷十分明显,前面已叙。   “针对目前各种电池的缺陷,我们开发了超级电容器。”周国泰顿了一下,说,这种电容器的技术优势前面说了。所以,很顺利地通过了天津市科委组织的成果鉴定。   高能镍碳超级电容器,老百姓也用得起   有专家说,目前,几乎所有的人都认为电动汽车是未来的发展趋势,但种种迹象表明,电动汽车离我们还是比较遥远。但电动自行车风靡全国,每天提几公斤的电池上下楼,在居民小区并不鲜见。电动汽车怎么办?   为此,有学者发表文章,对电动汽车提出种种担忧和质疑。有说电动汽车在电池上不成熟的,有说原子电池、聚合物电池、燃料电池、锂离子电池等任何电池都不环保的,各种议论不绝于耳。   有各种质疑和担心,也属正常。科技创新,正是在质疑中前行、在争论中创新的。说着,周国泰从沙发上站起来:“在发展电动汽车的过程中,有各种担心,是可以理解的。电池的问题卡住了电动汽车的脖子,这也是事实。”他扳着手指头,就说公交车吧,一辆公交车,走100公里,若用油30升,按8元1升算,要240元 而用电,走100公里。用电70度,每度电平均按6毛钱算,是42元钱。还是用电省吧。因此,发展电动车,不应动摇!   还以锂离子电池为例,与超级电容器比,锂离子电池成本7万元,充电2000次,每充电1次按行驶100公里算,20万公里就要更换电池 超级电容器,也按充电1次行驶100公里算,可充电5万次,甚至可达10万次、50万次,超级电容器的价格不高于锂离子电池。超级电容器回收后,对材料再激活处理后还可以使用。计算一下,综合成本有多低!这样,老百姓是不是就能用得起了?   超级电容器的生产是环保的,你可以到淄博年产100万只的生产基地去看,生产车间,只有一个地漏,那是用来打扫卫生冲水用的,整个生产过程,不产生废水、废气,没有污染排放。还用担心环保问题吗?   高能镍碳超级电容器,“协同会战”的结果   话题回到采访周国泰院士的开头。他还是坚持说那句话,超级电容器的研发,是多方支持,多领域、多学科专家协同攻关的成果。   “周院士说的是事实!”原海军后勤部技术装备研究所研究员陈同柱讲起了周国泰。   周院士是一位军人科学家。多年来,他创建了我们国家的军事科研的新模式和新路子。他作为领军专家,坚持军民融合发展,他把军内外有关专家,战略研究的,军事需求的,科研管理的专家都联合起来,充分集成地方的科研力量、技术成果,甚至地方的资金资源,高效组合起来,形成优势。这就是他的“小核心大联合”的科研创新模式。   陈同柱说,就说超级电容器这个新能源项目,看起来是解决电动汽车动力问题,最终是军民两用,可能在潜艇、航天,包括新型飞机、导弹都可应用,解决国防军事急需的新能源,花了最少的钱,取得了大成果。现在,导弹、飞机、航天火箭,液体燃料的推力远远不够用了,他的科研找到了路子,很可能要在这方面突破。这就是军民融合。   回顾周国泰的科研历程,他倡导“大科研”的思路清晰可见。   多年来,他打破研究所的“高大院墙”,广泛合作,先后有十几名院士和知名专家给他当顾问,直接参与课题研究。他把研究室主任带到训练场上去,带到船上去,干什么?上去找科研课题。他说,你研究的防寒服装,要自己穿上到寒区部队去和战士一块体验。比如,研究出舰船食品,就到船上去,风浪颠簸后看自己能不能吃。   他说:“好舵手会用八面风!科研,要兼容式、融合式,广泛联合、协作,充分发挥各方面的力量,发扬‘两弹一星’精神!”正是这样,在“九五”期间,周国泰创造了一个不足百人的研究所获得11项全军科研重大贡献奖,而有几千人的一个研究院才获9项。   关于获得多方面支持和合作,周国泰讲了一个故事。   一次,周国泰向一位中央领导同志汇报,说超级电容器用在电动汽车上,从起步,上坡,提速,包括充电速度如何快等等,讲得头头是道。这位领导同志说,我不听你讲,把车开来看看。   果然,周国泰把车开来了,领导坐了一圈,给予肯定:好!并详细过问还有什么困难。这件事发生在2010年。   超级电容器研发,像许多创新成果一样,最初从实验室做起,始于2008年。   怎么想到了研发超级电容器呢?   先看看这一年有关电动汽车的信息,各种电池技术及生产的消息,铺天盖地。人们的胃口吊起来了,期待着大街上有更多的电动汽车在跑。同时,业界在电动汽车电池技术上,也有不少争论。有人认为,电动汽车电池技术上解决了,只是成本高,国家出台补贴政策,就能推进电动汽车产业的发展。也有人提出,靠国家补贴,不是长久之计,有人在借机圈钱,电池技术还没有真正“过关”。   在这样的氛围下,周国泰组织创新团队攻关。他注意到,有人在传统电池上做文章,力求技术新突破。传统电池,是电能变成化学能,再转变成电能。而传统电容,是做大比表面积,通过研发各种物质材料,用增加比表面积的办法,来提高电容的性能。比表面积最大的材料,是活性碳。周国泰,在传统电池和传统电容之间,选择了一条科研的“中间路线”,集成电池和电容的优点于一身。   科技创新,往往是在不经意间,又往往以科研思路正确取胜。有成就的科学家,首先是在科研思路和方法上与众不同,从而获得科学突破。周国泰就是这样的科学家。在近4年的时间里,他领着科研团队,日夜苦干。他像当年研究石油工人防护服那样,从实验室到油田,身背大包服装搞试验,四处奔波 他像当年研究作战防护服、防弹头盔那样,上靶场,进深山,钻猫耳洞。研发超级电容器,还是那样“拼命三郎”。为此,4年间,周国泰病倒两次住院。   这里难以记述周国泰和研发团队更多的创新故事。不过,在近4年的时间里,他和研发团队终于获得了新成果:高能镍碳超级电容器。在天津市科委组织的成果鉴定会上,获得很高的评价。   采访周国泰院士,他不愿讲自己“过五关、斩六将”的故事,而是不间断地谈超级电容器研发获得的方方面面的大力支持和研发中的大团队协同。   他说,这是事实啊!从中央领导,到国家发改委、科技部等多个部委、天津市、天津市科委、张家港市、淄博市等,各级领导重视、关心、支持,涉及汽车等多领域、多学科专家密切合作,步调一致,协同攻关。不如此,这个超级电容器搞不出来,更不能成功用在汽车上。   举个例子吧。发改委的有关领导多忙啊!可是,领导多次表示:“周院士来谈项目,随时可见。”   做实验,急需一笔资金,张家港市委书记黄钦、市长徐美健得知后,当即拍板:“资金一周内到位。” 徐美健说:“这是国家的大事、民族的大事,即使失败了,我们张家港也愿意交这个学费!”   超级电容器中试,需要投入一笔资金,建中试生产线,淄博市委书记刘慧晏、市长周清利也还是当即决定:“中试生产线建在淄博,年产100万块,投资一周内到位。”周清利说:“实现零排放,还百姓一片蓝天是我们共产党人的责任,我豁出老命也要一干到底。”不仅如此,市科技局局长周元军就住在厂里,中试生产线高质量、高标准,以最快的速度建成。   周国泰还讲了几件他难忘的事。   超级电容器要在汽车上做试验。那是一个大冬天,北京那天出奇的冷。淄博市科技局局长周元军带着汽车,大汽车上驮着小汽车,一路从淄博赶到北京,下了车双手冰凉,身体发抖。再看几位穿工作服的随行,装车、卸车。旁人不知道,这几位是山东理工大学领军级的教授啊!   超级电容器做汽车发动机试验,涉及到天津军交实验室、天津无线电18所、汽研中心等多家单位、多位科研人员,大家一呼百应,一项试验要求5天完成,天津军交学院院长犹如战场下命令:“5天完成,只能提前。”   尤其是天津市,张高丽书记在不到一年的时间5次亲自召开会议协调和讨论此项目,并做多次批示。分管工业的副市长王治平召开20余次专门会议协调政府有关部门。天津市有关企业联合攻关,科委领导多次来试验室,具体指导项目的进程。他们心中装的是环境,装的是百姓,装的是那一片蔚蓝的天!   周国泰说:“我不是搞汽车的。超级电容要用在汽车上,如果没有这样的大力支持、协同攻关、良好的合作,是根本不可能的!协同,使每个人的创新潜能充分释放出来,整合起来。”   又说起为研发超级电容器项目,周国泰不到4年两次住院。院士也当了,将军的衔也授了,功成名就了,何必再“拼命”呢?!   周国泰说:“节能减排,哥本哈根会议上,温总理有承诺。还老百姓一片蓝天,作为科技工作者,我有一份责任!”   走出周国泰院士工作室,记者还回味着这句话。
  • 负氧离子检测仪的工作原理与选择
    空气中负氧离子的含量是空气质量好坏的关键。在自然生态系统中,森林和湿地是产生空气负(氧)离子的重要场所。在空气净化、城市小气候等方面有调节作用,其浓度水平是城市空气质量评价的指标之一。自然界中空气正、负离子是在紫外线宇宙射线、放射性物质、雷电、风暴、瀑布、海浪冲击下产生,既是不断产生,又不断消失,保持某一动态平衡状态。由于负离子的特性,空所中的负离子产生与消失会保持一个平衡,因此判断环境下负离子浓度需要借助专门的空气离子检测仪进行准确测量。负氧离子是带负电荷的单个气体分子和轻离子团的总称,简言之就是带负电荷的氧离子。在自然生态系统中,森林和湿地是产生空气负氧离子的重要场所。其浓度水平是城市空气质量评价的指标之一,有着 “空气维生素”之称。工作原理:空气离子测量仪是测量大气中气体离子的专用仪器,它可以测量空气离子的浓度,分辨离子正负极性,并可依离子迁移率的不同来分辨被测离子的大小。一般采用电容式收集器收集空气离子所携带的电荷,并通过一个微电流计测量这些电荷所形成的电流。测量仪主要包括极化电源、离子收集器、微电流放大器和直流供电电源四部分。首要要了解自己选负离子检测用途,目前有进口的负离子检测仪,国产的负离子检测仪,仿冒的负离子检测仪等等。分为便携的负离子检测仪,在线的负离子检测仪,按原理分又分为平行电极负离子检测仪和圆通电容器负离子检测仪两种。空气负氧离子检测分为 “平极板法测空气负离子” 和”电容法测空气负离子“这两种原理,其中“平极板”原理是比较常用的一种方法,检测快速,经济实惠,用于个人、工厂、实验室等单位。电容法测空气负离子检测仪是一种高性能检测方法,具有防尘、防潮等特点,相对于平极板法测空气负离子更加,特别适合于森林、风景区的使用,是林业局,科研单位测量空气质量的常见仪器。按收集器的结构分,负离子检测仪可以划分为平行板式和Gerdien 冷凝器式/双重圆筒轴式两种类型。1.Ebert式/平行电板式离子检测仪平行电板式离子检测仪是目前低端空气离子检测仪比较常用的一种方法。A跟B是一组平行的且相互绝缘的电极,B极顶端边着一个环形双极电极,空气通过右下角的风扇吸入,空气中的负离击打A/B电极放电,电荷传导到E环形电极形成自放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上比较成熟,造价成本也比较低,但是易受外部环境影响,另外这种结构自身的弱点容易导致电解边缘效应,容易造成气流湍流,造成检测结果偏移较大。2.Gerdien冷凝器式/双重圆筒轴式双重圆筒轴式离子检测仪是目前中高端空气离子检测仪成熟的一种方法。整体结构由3个同心圆筒组成,外围筒身及内轴为电极,空气通过圆筒时,离子撞击筒身跟轴产生放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上已非常成熟,但由于内部复杂的结构及控制,造价成本高昂,这种结构可以有效解决平行电板式结构固有的电解边缘效应,同时圆筒本身的结构及特殊的进气方式可以保持气流通过的平顺性,对离子数量及大小的检测精确性有极大提高。
  • 高分辨质谱技术丨赋能锂电池电解液成分表征
    概述锂电池与我们生活密切相关,比如手机、ipad、电脑、充电宝、玩具、电动汽车、电动轻型车和新型储能等都有锂电池的身影,锂电池综合优势与下游领域对电池大容量、高功率、使用寿命和环境保护日益提升的需求相契合,存在广阔的市场应用前景。锂离子电池四大关键材料包括正极材料、负极材料、隔膜、电解液。锂电池的正极材料中,行业已经认可镍钴锂、磷酸铁锂等材料,不过也有许多企业逐渐转入了新型复合材料的研发中,液相色谱串联高分辨质谱仪在该研发过程中,可以在探究新型材料氧化还原反应机理研究、及活性基团位置不同对电化学性能的影响等方面贡献力量。金属锂的高化学活性使其易于与大多数电解质发生不可逆反应,从而在阳极表面形成固体电解质层(SEI)。液相色谱串联高分辨质谱仪可以对SEI膜成分进行结构解析,帮助研究其形成机制,减少其形成。电解液被誉为电池的“血液”,是实现锂离子在正负极迁移的媒介,对锂电容量、工作温度、循环效率以及安全性都有重要影响。所以对电解液体系中的特有成分的鉴定,杂质鉴定,其在不同电极作用,不同循环次数,不同放置时间,不同添加剂等等条件变化下电解液组成的变化,反应机理的研究,这对电池性能研究都具有重要作用。X500R QTOF 系统在锂电池电解液成分分析的应用研究本实验采用X500R QTOF系统的IDA+DBS采集技术对锂电池电解液成分进行快速准确鉴定,仪器标配的ESI源和APCI源可兼顾不同性质的化合物,IDA+DBS采集技术能够保证在有限的时间内采集到的有效信息,一针进样同时获得高分辨一级和二级质谱图,应用SCIEX OS软件对数据分析,为表征电解液提供解决方案。图 1 数据处理流程图流程一:SCIEX OS软件并结合SCIEX高分辨二级谱库的靶向流程SCIEX OS软件可以设定的条件,快速筛选出一级偏差准确,同位素分布合理,二级质谱图匹配得分高的结果,帮助我们快速鉴定化合物。图2 TOF MS和TOF MS/MS谱图流程二:统计学分析得到差异化合物鉴定流程对于不同品牌来源,不同放置时间,不同循环时间的电解液等样本的差异比较,可以采取组学的思路,使用SCIEX OS软件中MarkerView&trade 统计学分析模块进行PCA,T-test等统计学分析,MarkerView&trade 统计学分析模块和Explorer鉴定化合物模块互相链接,无需不同软件间转移,减少格式转化带来的数据丢失。可以将原始数据导入MarkerView&trade 统计分析后得到样本间具有统计学差异的离子后,可以直接查看一级和二级质谱图,进行鉴定分析。图3 MarkerView&trade 统计学界面展示流程三:非靶向流程软件可以设置空白样本,根据设定的峰面积比扣除空白样本中的离子,软件自动将不同加和离子形式和不同电荷数进行分组,增加鉴定准确度并减少重复鉴定的工作量。提取出来的离子会自动给出分子式,链接SCIEX本地数据库或者在线数据库进行检索,根据和二级质谱图匹配的情况,给出得分,同时也可以根据软件自动给出的二级偏差判断碎片归属,二级碎片可以和结构一一对应,有助于我们进行结构解析,分析合理性图4 非靶向流程中部分界面展示小结本实验采用X500R QTOF系统的IDA+DBS采集技术对锂电池电解液成分进行快速准确鉴定,分别使用ESI源和APCI源对样本进行采集,兼顾不同性质的化合物,可以更全面的表征化学成分。IDA+DBS采集技术能够保证在有限的时间内采集到的有效信息,一针进样同时获得高分辨一级和二级质谱图,应用SCIEX OS软件并结合SCIEX高分辨二级谱库的靶向流程简便且准确。对于不同品牌来源,不同放置时间,不同循环时间的电解液等样本的差异比较,可以使用统计学软件找到统计学差异的离子,进行鉴定分析。也可以采用软件自动扣除空白,自动识别离子的不同加和离子形式,电荷形式,结合SCIEX本地数据库或者在线数据库的非靶向流程,是结构鉴定和解析的有力工具,为表征电解液提供了的解决方案。 参考文献 [1]冯东,郝思语,谢于辉,等.锂离子电池电解质研究进展[J].化工新型材料,2023,51(2):35-41.[2]付文婧,汪熙媛,柯伟,等.汽车电动化的重要发展方向——锂电池技术[Z].时代汽车,2023(7):123-125.[3]Ma, Ting, et al. "Functional Polymer Materials for Advanced Lithium Metal Batteries: A Review and Perspective." Polymers 14.17 (2022): 3452.
  • 仪器维护保养费一年多少才合理?
    提到售后服务,定期维护保养,大多数用户总希望“我购买了你家的仪器,那这台仪器的售后服务你们就该负责。后续出现的问题你们就应该帮我搞定!”。 也就是说,起码大部分用户不愿意为售后服务、维护保养买单!更别提花10几万买服务、买保养了,但也许是你out了,请看下面的例子: 2.最近,上海市水环境监测中心就“气质谱仪、液质、气相色谱等仪器的维护保养项目”进行招标,安捷伦科技最终以12万元的价格中标,服务期限为一年。售后服务的免费误区 就服务而言,与国外相比,中国用户还没有建立起,花钱为仪器买服务的意识,售后服务的需求需要培养。大多数用户没有意识到售后服务的价值,对于售后的服务的理解,只是单纯的认为仪器坏了需要工程师来修而已,其实不然,所谓的服务还可以包括平时仪器的维护保养、定期检测等项目在内。 其实,针对这部分用户,不难向其解释,用车来举例,买一台汽车,之后保养、维修、汽油等的费用很大,几年后其花费就与一辆车的价值差不多。其实,购买仪器也是一样,后期也需要大量的消耗品、维护保养等花费。 定期维护保养很有必要 早期用户最关心的是仪器的性能和价格,现在更关注的是能否解决工作中的难题以及长期成本。随着经济的发展,很多实验室用户开始追求实验室更高效,除了从购买高精尖仪器来提高之外,很多用户和实验室负责人开始意识到平时仪器设备的维护和保养的重要性,只有保证仪器无故障运行不停机,才能切实做到提高实验室效率。 搞好仪器防护工作,将利于实验的正常进行,有利于新实验方法的采用,有利于实验水平的提高:可以避免实验事故的发生、扩大仪器的使用范围,从而延长仪器设备的使用寿命,间接拉低了实验室的维护成本。 仪器设备的保养时间:精密仪器:每月要保养一次;贵重仪器,每季度保养一次;一般仪器,每半年保养一次。 设备的维护保养通常包括日常维护、定期维护、定期检查和精度检查四项内容,日常维护是大家最易忽略的设备维护保养,另外,除了常规的维护保养,冷却系统维护和仪器设备的润滑同样是设备维护保养的一个重要内容。 为服务买单的几点建议 有时候,实验室仪器设备比你想象的更加耐用。正如一辆新车,用个七八年完全没有问题。此时,我们就要好好了解一下它们的保修和服务合同真正覆盖了哪些方面。哪些需要买单,哪些冤枉钱可省。在您签单购买仪器之前,最好看看下面的几点建议:了解保修的范围保修和延保服务(即维护合同)完全是两码事。保修是在仪器购买中附加的,已包含在购买价格内。服务合同则是个可选项,覆盖那些保修条款中完全不覆盖或者在保修期外不覆盖的特定维修和人力。服务合同并不便宜。据介绍,一年期合同的市场价格大约是仪器购买价的10%。服务合同通常不会提供那些保修条款已覆盖的项目。仔细阅读条款。千万别为那些可能是免费的服务买单。预计服务需求每个制造商都会检测其产品,以确定平均无故障时间(MTTF),这指的是仪器在发生故障之前通常运行了多久。销售代表通过密集的产品培训和客户反馈,一般都知道仪器的MTTF。理想的情况是在它发生故障之前就已过时,但实际情况很复杂,有些仪器三年就坏了,而有些却能用个7-8年。了解答案的最佳时机是购买之时。问问:仪器往往什么时候会坏?它哪里坏了?维修需要多少钱?向周围人打听如果附近的实验室也有相同的仪器,那么不妨去跟实验室管理员聊聊,挖掘一些消息。了解一下他们需要做些什么,以确保仪器校准。你可能会发现,不是每一台仪器都需要服务合同。比如,热循环仪,成本只有几万块,买个新的还更方便、更便宜。但对于几百万的流式细胞仪,它可能就需要定期维护,这超出了您的专业知识。有时,服务合同会提供免费的软件升级和预防性维护。你对仪器的优缺点了解地越多,就会越清楚你是否需要服务合同。了解合同条款极少数的服务合同才会覆盖所有的维修,所以在购买时必须头脑清醒。服务合同的条款和覆盖范围会差别很大。例如,银牌、金牌和白金服务的的价格可能在8-12%不等。一个可能只覆盖50%的部件和材料,而另一个覆盖100%。另一个是现场维修的覆盖:是技术人员过来,还是要送去指定地点?实验室仪器毕竟不是个手机,打包和运输都是个大问题。仔细阅读条款,在订单完成之后,就很难修改了。你在采购订单上的签名是具有约束力的。考虑后期购买销售代表有时会受服务合同销售代表的委托,因此当他们特别热心时,要小心。你完全可以在销售后购买服务合同。制造商清楚他们的客户,也有专门的部门,会定期拜访你,看看你需要买些什么,或者续签服务合同。不过,如果你在后期购买,通常会有一笔重新认证的费用。技术人员必须来看看这台仪器,以确认它是否工作。如果你自己使用第三方的配件来维修它,那么你可能已经违反了服务范围的条款。 总的来说,是否购买服务合同在很大程度上取决于你的需求和经费。事先做好调查,就不会后悔。如果仪器不太可能会坏,那干嘛花那个冤枉钱。 附:维护保养方法 分析仪器种类繁多,在日常的工作实践中,可从以下几个方面做好仪器设备的维护工作: 1.制定设备维护计划。要对所有的仪器设备,根据其特性及使用情况,确定维护周期,维护部件,维护方法,维护人员。维护后做好维护记录。实验室要责任到人,定期组织巡检。 2.对于所有仪器设备一般的维护方法。使用、维护人员在开箱后,应认真研读随机带的说明书,掌握其结构、原理、功能、操作要点,维护与保养要求。仪器内外保持清洁,注意防潮,防锈,防干扰。精密仪器要轻取轻放。光学部件要用擦镜纸,不能使用湿布擦抹。对电子线路板要除尘,检查仪器接地情况;机械及传动部分要除锈迹、污物和润滑上油。 3.对于使用频次高的仪器的维护方法。按照仪器的特性,属于热交换的,要定期检查通风口,及时清理灰尘及燃烧杂物;属于油压机械的或内有介质溶液的,要定期检查介质变色或界面下降,及时更换介质或适量添加;属于易损件的,要及时清理更换,如气相色谱仪的隔垫。有水循环的仪器,要防止因粉尘、浮游物等聚集,导致水流量不足,影响冷却效果或者因电导率升高影响仪器的性能。使用气源的仪器,要定期用肥皂水检查气路接头,防止漏气引起事故,或影响结果的准确性。 4.对于使用频次低的仪器的维护方法。电子仪器和设备要定期通电预热,防止电解电容变质,电子线路板局部短路或性能不良,影响仪器使用效果;对于用干电池的仪表,长期不用时要将电池取出后存放,防止电池腐烂损坏电极;微安表要将输入端短接后存放,灵敏检流计要将输入线圈锁住后存放;经常检查仪器的干燥硅胶,以防内部部件受潮,影响仪器的稳定性指标。光学通道要定期除尘,除污及霉点。内容来自:看仪器网
  • 镀层检测技术在质量控制过程中的灵活运用
    汽车的历史新闻:  近几年,汽车的质量问题屡见不鲜。时下的汽车安全问题,一直是汽车行业消费最关注的话题之一。那么,如今的汽车质量是否能跟上其日新月异的发展节奏呢?本次我们讨论的话题是,汽车电器中电器接插件方面的质量问题与其对应方法。在金属镀厚的过程中,主要有以下几种因素会影响其镀层质量: 镀前处理:生产实践证明造成镀层质量事故多数是由于金属制品的镀前处理不当或欠缺所致。镀前处理的每道工序都会直接问影响到镀层质量。电镀溶液:镀液的性质、各组成成分的含量以及附加盐、添加剂的含量等都会影响镀层质量。基体金属:镀层金属与基体金属的结合是否良好,与基体金属的化学性质有密切关系。如基体金属的电位负于镀层金属的电位,或对易于钝化的基体或中间层,若不采取适当的措施,难以获得结合牢固的镀层。电镀过程:电流密度、镀液温度、送电方式、移动和搅拌的速度等,也会直接影响镀层质量。析氢反应:在宁波电镀过程中大多数镀液的阴极反应都伴随着氢气的析出。当析出的氢气黏附在阴极表面上时会产生针孔或麻点;当一部分被还原的氢原子渗入基体金属或镀层中,会使基体金属及镀层的韧性下降而变脆,叫氢脆。氢脆对高强度钢及弹性零件产生的危害尤其严重。镀后处理:镀后对镀件的清洗、钝化、除氢、抛光、保管方法等都会继续影响镀层质量。电源问题:近年来除采用一般的直流电外,根据实际需要广泛采用换向电镀的方法,使用周期换向电流,还有脉冲电源提供的脉冲电流等都会对镀层质量产生影响。   那么,成品镀件的质量究竟该如何管控呢?  镀层厚度测量已成为加工工业、表面工程质量检测的重要环节,是产品达到优等质量标准的必要手段。为使产品国际化,我国出口商品和涉外项目中,对镀层厚度有了明确要求。目前镀层厚度的测量方法主要有:楔切法,光截法,电解法,厚度差测量法,称重法,X射线荧光法,β 射线反向散射法,电容法、磁性测量法及涡流测量法等等。这些方法中前五种是有损检测,测量手段繁琐,速度慢,多适用于抽样检验。  X射线和β 射线法是无接触无损测量,测量范围较小,X射线法可测极薄镀层、双镀层、合金镀层。β 射线法适合镀层和底材原子序号大于3的镀层测量。电容法仅在薄导电体的绝缘覆层测厚时采用。  随着技术的日益进步,特别是近年来引入微机技术后,采用X射线镀层测厚仪 向微型、智能、多功能、高精度、实用化的方向进了一步。测量的分辨率已达0.1微米,精度可达到1%,有了大幅度的提高。它适用范围广,量程宽、操作简便且价廉,是工业和科研使用最广泛的测厚仪器。  金属表面处理技术广泛应用于电子行业,而电镀处理更是其主要的表现形式,电镀效果也将直接影响电子设备的性能发挥,汽车电子行业也不例外,其中汽车电子连接器端子的电镀将会影响汽车电子设备的导电和信号传输等方面的性能发挥。 目前在汽车电子连接器端子中较为常见的是Sn/Ni/CuZn、Au/Ni/CuZn、Sn/Ni/CuSn、Au/Ni/CuSn等镀层结构,日立FT110系列产品能够有效地对应Sn/Ni/CuZn、Au/Ni/CuZn、Sn/Ni/CuSn、Au/Ni/CuSn结构的膜厚测量,使用日立FT110对Sn/Ni/CuZn、Au/Ni/CuZn结构的测量来讨论电镀工艺在质量管理上的重要性。解决方案请见: http://www.instrument.com.cn/netshow/SH100718/s544330.htm
  • 第19届全国电化学大会上岛津展示综合检测方案
    第19届全国电化学大会暨能源与环境国际电化学论坛于日前在上海国际会议中心召开。此次会议汇聚了电池领域研究的高校、科研院所、企业单位约2000多人。大会召开期间,按十大主题(包括:纳米与材料电化学、下一代储能电池及其它化学电源、锂离子电池、燃料电池、超级电容器、有机/环境/工业电化学与腐蚀电化学、基础电化学、能源与环境国际电化学论坛、光电化学与新型太阳能电池、电分析与生物电化学),安排了621个报告,墙报展示1286张。这其中,锂离子电池安排7个场次,燃料电池安排了7个场次,下一代储能电池及其它化学电源安排了7个场次,且常常爆满,可以说,此次会议达到了历年之最。大会现场传真 岛津公司作为先进分析仪器的提供商,积极参与了此次会议并设置展台,以“提供锂电池材料分析检测整体解决方案”为主题,向参会代表展示了岛津在正负极材料、电解液、隔离膜及电池模块等方面的综合检测方法及案例。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 水电解制氢新时代:SUPER-DEW3在线露点仪树立含水量检测标杆,共筑绿色氢能愿景
    在全球能源结构转型与环境保护的双重驱动下,氢能以其清洁、高效的特性,正稳步迈向未来能源体系的核心位置。水电解制氢技术,作为氢能制备的关键路径,通过电解作用将水资源转化为氢能,不仅原料广泛可得,且产物纯净,实现了零排放的绿色生产。然而,在这一转化过程中,氢气的品质控制,尤其是含水量的精确管理,成为了确保氢能应用效能、延长产业链设备寿命及满足高端市场需求的关键挑战。水电解制氢新时代:SUPER-DEW3在线露点仪树立含水量检测标杆,共筑绿色氢能愿景尽管水电解原理上追求水分子完全分解为氢氧的理想状态,实际操作中却难以避免地受到电解槽密封效能、电解质纯净度及操作条件波动等因素的影响,导致产出的氢气中混杂有少量水分。这些残留水分若未能妥善清除,将对氢气的后续利用构成显著障碍:水电解制氢新时代:SUPER-DEW3在线露点仪树立含水量检测标杆,共筑绿色氢能愿景损害氢气纯度:在燃料电池驱动、精细化工合成等高端领域,氢气纯度至关重要。水分作为杂质,会直接影响氢气在这些领域的应用效果,降低产品整体性能。加速设备老化:在氢能系统的储存、运输、加注等关键环节,水分容易引发金属部件的腐蚀,缩短设备的使用寿命,增加维护成本。水电解制氢新时代:SUPER-DEW3在线露点仪树立含水量检测标杆,共筑绿色潜藏安全风险:在高压工作环境下,水分可能凝结成冰晶,阻塞管道系统;而在燃料电池内部,过量水分则可能导致电极淹没,影响电化学反应效率,甚至引发系统故障。鉴于此,对水电解制氢工艺中的氢气进行严格的含水量测试,不仅是对氢气品质的基本保障,更是氢能系统安全、稳定运行的必要条件。通过这一举措,可以有效控制水分含量,提升氢气纯度,为氢能产业的可持续发展奠定坚实基础。水电解制氢新时代:SUPER-DEW3在线露点仪树立含水量检测标杆,共筑绿色针对这一挑战,英国肖氏SHAW匠心打造的在线露点仪SUPER-DEW3凭借其稳定的性能与前沿技术,脱颖而出成为水电解制氢工艺中含水量检测的首选工具。作为DIN风格的专业面板安装设备,在线露点仪SUPER-DEW3与Shaw传感器完美融合,其背光五位数七段LED显示屏不仅清晰醒目,还支持多种工程单位切换,灵活应对不同测试需求。操作界面上,在线露点仪SUPER-DEW3以简洁直观著称,四键薄膜键盘设计让用户轻松上手,通过简单操作即可快速访问并调整湿度水平。自动电位计功能实现了传感器的自动校准,简化了繁琐的校准流程,降低了人为操作误差。同时,该仪器内置的用户可控安全系统,为设备的安全稳定运行提供了坚实保障。在警报与通讯方面,英国肖氏SHAW在线露点仪SUPER-DEW3同样表现出色。其配备的双向警报装置支持上升或下降边缘触发,结合视觉LED指示与切换继电器功能,能够即时远程反馈异常状况,确保问题得到迅速处理。RS485通讯接口的加入,则让实时监控工艺变化与仪器状态成为可能,极大提升了生产管理的便捷性与设备维护的效率。水电解制氢新时代:SUPER-DEW3在线露点仪树立含水量检测标杆,共筑绿色性能方面,在线露点仪SUPER-DEW3其高较精度、分辨率及重复性的特性,确保了测试结果的准确无误。无论是温度范围还是采样流量的适应性,都能轻松满足各种复杂工艺条件下的测试需求。此外,316不锈钢探头与50微米不锈钢过滤器的结合,不仅提升了设备的耐腐蚀性与耐高温能力,还有效防止了杂质侵入,保障了传感器的长期稳定运行。IP54级别的防水设计,则让在线露点仪SUPER-DEW3能够在恶劣的工业环境中游刃有余。英国肖氏SHAW在线露点仪SUPER-DEW3以其全面的技术优势、便捷的操作体验、强大的警报与通讯功能以及稳定的耐用性,在水电解制氢工艺中含水量检测领域展现出了非凡的实力与价值。它不仅是提升氢气品质、保障氢能系统安全运行的得力助手,更是推动氢能产业高质量发展的关键力量。水电解制氢新时代:SUPER-DEW3在线露点仪树立含水量检测标杆,共筑绿色氢能愿景、请致电英肖仪器仪表(上海)有限公司1⃣ ️ 7⃣ ️ 3⃣ ️ 1⃣ ️ 7⃣ ️ 6⃣ ️ 0⃣ ️ 8⃣ ️ 3⃣ ️ 7⃣ ️ 6⃣ ️ ,英肖仪器仪表(上海)有限公司是进口露点仪品牌英国肖氏SHAW总代理、SUPER-DEW3在线露点仪代表处、露点仪变送器SDT-EX、防爆露点仪、肖氏SHAW露点仪售后服务保障。英国Alphasense传感器、英国Alphasense阿尔法传感器、氧传感器O2-A2、一氧化碳传感器CO-B4、二氧化硫传感器SO2-B4、一氧化氮传感器NO-B4、氯化氢传感器HCL-A1、光离子传感器、PID传感器、VOC传感器请致电英肖仪器仪表(上海)有限公司获取进口传感器详细资料。
  • AEM:高储钠性能超级电容器研究分享
    北京化工大学杨志宇教授AEM:高储钠性能超级电容器研究分享超级电容器因其良好倍率性能、循环性能的可再生能源存储设备,已成为热门的电化学可再生设备。然而,超级电容器的实际应用仍面临能力密度低、性能提升依赖于先进电极材料开发等困难。目前常采用法拉第电极材料,包括过渡金属氧化物、过渡金属氮化物和过渡金属二硫化物等提高超级电容器的能量密度。其中,过渡金属氧化物因具有高理论电容,低成本,环境友好等优势,作为潜力巨大的电极材料应用在超级电容器中。然而半导体性质的过渡金属氧化物仍有固有电子电导率低,充放电过程中容量和倍率性较差等不足,因此如何设计良好的电子结构对于优化过渡金属氧化物的电化学性能至关重要。北京化工大学杨志宇研究员及团队在知名期刊Advanced Energy Materials上发表了题为“Elevating the Orbital Energy Level of dxy in MnO6 via d–π Conjugation Enables Exceptional Sodium-Storage Performance”的文章。过渡金属氧化物 (TMO) 具有固有的低电子电导率,而原子轨道相关的调节对于促进储能应用中的电子转移动力学至关重要。该研究利用 d-π 共轭策略来提高 TMO 的电子电导率。选择具有大共轭体系的酞菁 (Pc) 分子来修饰过渡金属氧化物 (δ-MnO2)。通过密度泛函理论(DFT)模拟,验证MnO2和Pc之间的强d-π共轭可以提高MnO6单元中低能轨道(dxy)的轨道能级,进而提高dxy的氧化还原活性,从而显著提高电化学钠存储性能。结果与讨论作者采用扫描电镜和透射电镜等设备分析材料的形貌结构,X射线能谱分析样品的电子结构和成分信息,紫外可见吸收光谱检测材料在250-800nm波长范围带隙,采用X射线吸收光谱展现材料的边缘结构和精细结构。使用北京卓立汉光仪器有限公司自主研发的Finder Viseta激光显微共聚焦拉曼光谱仪检测原位拉曼光谱,用于揭示其充放电循环过程中结构变化。图1 a)MnO2-Pc合成示意图;b)XRD谱图;c)FTIR光谱图;d)能量损失图;e) TEM图像;f)选定区域电子烟摄图;g)高分辨率TEM图像;h-l)元素映射图图2:a)CV曲线,MnO2-Pc 和MnO2 在20 mV s&minus 1;b)GCD曲线,MnO2-Pc 和MnO2 在 1 Ag&minus 1;c)GCD曲线,MnO2-Pc在不同电流密度下;d)比容量 ,MnO2-Pc和MnO2在不同电流密度下;e)Nyquist图,MnO2-Pc and MnO2;f) CV曲线,MnO2-Pc在不同扫描速率下;g)拟合曲线 h)电流贡献值 i)三次充放电过程中原位拉曼光谱图图3 a-c)pDOS(投影状态密度)曲线;d)轨道能级图;e-f)计算 ELF的DFT切片;g)轨道能级提升和加速电子转移特征示意图。图4 a) MnO2-Pc(阴极)// AC(阳极)ASC原理图。b) 1.0 m Na2SO4溶液中MnO2-Pc和AC的CV曲线。c) 100 mV s&minus 1时不同电位范围的CV曲线。d)不同扫描速率下CV曲线;e) GCD曲线(不同电流密度)。f)本工作中ASC的Ragone图与报道结果进行比较。结论:本文用 Pc 修饰 MnO2 以调节低能轨道 dxy 的轨道能级,并获得了更高的 MnO2-Pc 电化学储能性能。DFT 研究表明,轨道杂化引起的强 d-π 共轭提高了 dxy 的轨道能级并扩展了轨道能量分布,从而促进了电子转移动力学并激活了 dxy 的氧化还原活性。轨道能级提升策略有效地提高了 MnO2-Pc 的电化学 Na+ 存储能力。获得的 MnO2-Pc在 1 A g-1 时显示出 310.0 F g-1 的高比电容,在 20 A g-1 时显示出 211.6 F g-1 的优异倍率容量。这项工作为改进 过渡金属氧化物的电化学 Na+ 存储提供了轨道能级提升策略的机理见解,这种有效的策略可以扩展到储能应用中其他先进电极材料的设计。原文链接:https://doi.org/10.1002/aenm.202300384相关产品推荐本研究的拉曼光谱采用Finder系列拉曼光谱仪检测,该系统全新升级为930全自动化拉曼光谱分析系统,如需了解该产品,欢迎咨询。产品链接:https://www.zolix.com.cn/Product_desc/1105_1562.html 作者简介杨志宇,北京化工大学研究员。北京理工大学博士学位,清华大学博士后。主要研究方向为电化学领域。目前的研究方向是 (i)电化学储能,(ii)电催化CO2还原,电催化甲酸氧化和电催化氮还原 (iii)电容除盐。已发表一作、通讯SCI论文60余篇,包括JACS、AEM、AFM、Nano Energy、JEC、Small、CEJ、JMCA、JPS,申请专利7项,授权5项。免责声明北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。如果您认为本文存在侵权之处,请与我们联系,会第一时间及时处理。我们力求数据严谨准确,如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发表您的观点和见解。
  • 超级电容器多孔炭首个国际标准发布
    记者24日从中国科学院山西煤炭化学研究所获悉,日前由该所主持,宁波中车新能源科技有限公司、深圳市标准技术研究院及国家纳米科学中心共同参与制定的国际标准——电化学电容器多孔炭(简称电容炭)空白详细规范,经国际电工委员会纳米电工产品与系统技术委员会通过,正式对外发布。该标准由中国科学院山西煤炭化学研究所709组技术团队承担制定工作。  这一电容炭领域首个国际材料空白详细规范,全面梳理了材料对器件性能的影响因素,包括电容炭的化学、物理、结构及电化学关键控制特性23项,其中电化学关键控制特性除了比容量、倍率性能等一些短期性能指标,还包括了下游用户更加关心的长期稳定性、温度耐受性等指标。标准对这23项关键控制特性的测试方法进行了详细的阐述,并且通过查阅国际国内标准,对这些测试方法的标准化成熟度进行了归类。  技术团队通过主持该标准的制定,一方面能全方位梳理总结材料影响器件性能的潜在因素,从内部把技术做精做细,另一方面也能促进国内研发人员与技术水平先进的国际公司充分交流,帮助技术升级,从而助力国产电容炭走向国际市场。  电化学电容器以其超快的充放电能力、长循环寿命、宽工作温度范围、高安全可靠性和低维护成本,被广泛用于电力监测通信终端、电网调频和规模储能等领域,拥有广阔的市场前景。然而,我国电化学电容器的关键活性材料——电容炭,长期依赖日韩进口。  近年来,我国电容炭生产技术取得重要突破。中国科学院山西煤炭化学研究所打通电容炭料—材—器—用技术创新链,成功实现成果转移转化,启动500吨电容炭产业化项目建设,目前已进入量产阶段。在电容炭研究过程中,科研人员发现其制备工艺路线长、影响因素繁多、构效关系复杂,缺乏标准文件指导。  基于此,技术团队自2019年向IEC(国际电工委员会)提出制定电容炭空白详细规范国际标准和超级电容器电极片空白详细规范的标准提案,旨在通过一系列高质量的国际标准“组合拳”引导该行业健康快速发展。
  • 比奥罗杰参展2016年超级电容器关键材料与技术专题会议
    为发展超级电容器器件及关键材料,促进解决关键科学问题,突破应用瓶颈,进一步推动超级电容器关键材料及技术的发展,促进我国超级电容器行业的健康有序融合与发展,由中国化工学会储能工程专业委员会主办,燕山大学环境与化学工程学院承办的“2016超级电容器关键材料与技术专题会议”于2016年8月25-27日在秦皇岛召开。比奥罗杰携SP-300系列高性能电化学工作站参展了本次会议, SP-300电化学工作站现场测试超级电容器样品表现出的稳定性及精确性让参会的超级电容器科研老师对bio-logic系列电化学工作站表现出浓厚的兴趣,并非常欣赏EC-LAB电化学软件在超级电容器应用上的优化。第一分会场报告实况 Bio-Logic仪器展示 晚宴黄晟副校长致辞 报到大厅
  • 电容去离子技术让“硬水”快速“服软”
    p style=" text-indent: 2em " 记者从中科院合肥研究院获悉,该院固体所环境与能源纳米材料中心团队,基于电容去离子技术发展了铜基普鲁士蓝(CuHCF)选择性吸附电极,基于其独特的晶体通道及特有的赝电容效应,该电极展现出高效的选择性电吸附钙离子能力,该工作对于硬水软化技术具有重要意义。相关成果日前发表在《ACS应用材料与界面》上。? /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/616c07a5-64f1-4a55-b2ff-025308b70477.jpg" title=" c6ef220360ec4e42a68b6c1ce16fb4c7.png" alt=" c6ef220360ec4e42a68b6c1ce16fb4c7.png" / /p p style=" text-indent: 2em " 水的硬度是世界各国普遍存在的水质问题。据统计,85%以上的可用淡水为硬水。自来水、地面水、河水等常见的硬水一般都是由钙、镁离子引起的,会导致洗涤剂作用减弱,锅炉、管道、热交换器结垢。长期饮用硬水还会增加人体泌尿系统结石的得病率,因此硬水的软化处理得到高度关注。然而,现有的硬水处理技术如化学沉淀法、离子交换、膜过滤等,需要过度使用化学物质、复杂的基础设施、昂贵的维护且能源消耗高。 /p p style=" text-indent: 2em " 电容去离子技术(CDI)作为一种新型的水处理技术,由于其操作方便、环境友好、能耗低等优点,引起了人们的广泛关注。但由于该技术所用电极材料多为碳材料,缺乏目标离子的高效选择性,而具有高比电容的赝电容材料因其特有的离子选择性有望用于CDI硬水软化领域。? /p p style=" text-indent: 2em " 为此,科研人员基于Ca2+离子的插层作用,首次利用铜基普鲁士蓝CuHCF作为赝电容电极,在Na+、Ca2+、Mg2+等多种阳离子混合溶液中对Ca2+实现了高选择性电吸附。在非对称电容去离子装置中,1.4?V工作电压下获得了42.8?mg/g的钙离子最大吸附容量,尤其是在高钠/钙离子摩尔比(10:1)溶液中依然保有最高吸附选择性系数3.05,并且在循环过程中铜基普鲁士蓝CuHCF电极材料也能保持原有的形貌和稳定的吸附容量。科研人员结合电化学表征以及分子动力学模拟技术,阐明了铜基普鲁士蓝CuHCF电极材料选择性吸附钙离子的赝电容本征特性。 /p p style=" text-indent: 2em " 该研究成果对于探索CDI赝电容电极材料高效选择性电吸附目标离子以及CDI硬水软化技术具有重要意义。? /p p br/ /p
  • 第八届超级电容器及关键材料学术会议顺利召开
    为推动超级电容器器件、关键材料及相关技术的发展,解决瓶颈性问题,促进我国超级电容器行业的持续发展及有序融合,2023第八届超级电容器及关键材料学术会议于2023年7月21-23日在天津滨海丽呈酒店顺利召开。华洋科仪作为大会主要赞助商之一,携法国BioLogic最新系列电化学工作站产品出席了此次会议,吸引了众多参会者纷纷驻足咨询交流,了解最新的技术应用。随着能源危机与环境问题不断加剧,如何开发新的绿色能源已经成为全球关注的大事。超级电容器作为新一代绿色能源技术之一,近年来备受关注。华洋科仪一直致力于为我国各学科领域的前沿科学技术发展贡献一份力量,我司总代理的法国BioLogic电化学工作站及电池测试系统,能够为超级电容器器件及关键材料的科学研究提供完整的解决方案,满足不同用户的需求。华洋科仪报导2023年7月23日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制