当前位置: 仪器信息网 > 行业主题 > >

电解式膜厚仪

仪器信息网电解式膜厚仪专题为您提供2024年最新电解式膜厚仪价格报价、厂家品牌的相关信息, 包括电解式膜厚仪参数、型号等,不管是国产,还是进口品牌的电解式膜厚仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电解式膜厚仪相关的耗材配件、试剂标物,还有电解式膜厚仪相关的最新资讯、资料,以及电解式膜厚仪相关的解决方案。

电解式膜厚仪相关的资讯

  • 解决“电解水“产气问题,皖仪推出IC6000系列双极膜离子色谱系统
    离子色谱是当今世界上公认的分析阴离子的&ldquo 黄金分析手段&rdquo ,广泛应用于&ldquo 食品安全,环境保护,国防反恐,核工业,电力电子,半导体,军工,石油化工,地质探矿,生命科学,农业植保等诸多领域,而在阳离子分析方面,也具有重要的地位,尤其是在无机阳离子价态分析领域,具有不可替代的用途。 传统电解水淋洗液自动发生技术 由于传统淋洗液自动生成技术通过向系统中引入超纯水,利用&ldquo 电解水&rdquo 原理,产生离子色谱系统工作所必须的&ldquo 淋洗液&rdquo ,从而提高了仪器的使用性能。但是&ldquo 电解水&rdquo 理论在生成&ldquo 淋洗液&rdquo 时会产生气体进入&ldquo 淋洗液&rdquo 中,气体对&ldquo 淋洗液&rdquo 的品质造成了严重影响,为了消除影响,需要采用复杂的脱气装置去除气体。 传统的淋洗液发生技术使用&ldquo 电解水&rdquo 产生的氢离子和氢氧根离子,方程式为:阳极:2H2O &mdash 4H+ + O2 阴极:2H2O &mdash 2OH- + H2。 双极膜解离水淋洗液自动发生技术 双极膜技术是近年来推出的新技术,皖仪公司巧妙的利用双极膜&ldquo 水解离&rdquo 的功能,结合合理的结构设计,完全避免了&ldquo 淋洗液&rdquo 生成过程中气体的产生,因此省去了复杂的脱气系统,提高了系统的可靠性。 双极膜离子色谱技术使用双极膜&ldquo 解离水&rdquo 产生氢离子和氢氧根离子,方程式为: H2O -- H+ + OH- 不产生气体。&ldquo 免试剂,不除气&rdquo (RGFIC TM Regent-Gas-Free Ion chromatography)的双极膜离子色谱系统理论在根源上解决了&ldquo 电解水&rdquo 理论气体产生所带来的问题。 皖仪IC6000系列双极膜离子色谱系统 2010年9月8日~10日,&ldquo 第十三届全国离子色谱学术会议&rdquo 在美丽的海滨城市青岛隆重召开,安徽皖仪科技股份有限公司首次展示全球第一台IC6000系列双极膜离子色谱系统,引起业内强烈关注。 皖仪IC6000系列双极膜离子色谱系统 采用双极膜技术的皖仪IC6000系列双极膜离子色谱系统,是针对于国内外对高端产品的需求而研发的,由于采用了双极膜技术,不但可以完成现有自动淋洗液发生设备的全部功能,而且还节省了脱气设备,使系统可靠性大大增强,降低了运行成本。除此之外,皖仪IC6000系列还完全兼容现有的&ldquo 电解水&rdquo 免试剂离子色谱系统的耗材,可以使用传统的淋洗液配置方式来工作,并且完全可以使用国外和国内厂家的&ldquo 模抑制器&rdquo 以及&ldquo 色谱柱&rdquo ,方便用户进行各个厂家仪器性能比对,其核心指标完全达到国际先进水平。
  • 硅基超亲电解液锂电池隔膜研究获进展
    能量型锂金属电池作为下一代电化学储能技术,是电动汽车、航空航天等领域发展的基础。然而,在构建高比能锂金属电池的条件下,锂枝晶不可控生长和中间产物穿梭等问题严重制约了其产业化进程。近日,中国科学院兰州化学物理研究所环境材料与生态化学研发中心和淮阴师范学院合作,在硅基超亲电解液锂电池隔膜研究取得新进展。一种仿树叶结构的锂电池隔膜,用于解决高能量密度锂金属电池中不可控的锂枝晶生长等问题。相关论文发表于Small。据了解,课题组受树叶分级结构及其精细流体通道的启发,研究人员结合液体/温度诱导相分离和原位聚合反应,设计了一种具有分级多孔结构和离子选择性的凹凸棒石/聚合物复合隔膜。研究表明,该隔膜可有效、快速传递锂离子,同时能抑制锂盐阴离子的通过,从而实现了锂离子在锂金属负极表面均匀、定向沉积,改善了电池的界面稳定性和循环稳定性。此外,该隔膜展示了超亲电解液性能、高的电解液吸液率和保留率、良好的热稳定性和阻燃性能。研究人员将其应用于锂-硫电池和锂-磷酸铁锂电池时,在室温或高温条件下均表现出优异的循环稳定性和倍率性能等。仿树叶结构凹凸棒石/聚合物复合隔膜的制备及表征。兰州化物所供图。
  • 上海高研院在质子交换膜电解水制氢有序化膜电极方面获进展
    近日,中国科学院上海高等研究院研究员杨辉团队在质子交换膜电解水制氢研究中取得重要进展。相关研究成果以Overall design of anode with gradient ordered structure with low iridium loading for proton exchange membrane water electrolysis为题,发表在Nano Letters上。质子交换膜水电解(PEMWE)是实现零碳排放制氢的关键技术之一。目前,由于阳极侧贵金属Ir的高用量大幅增加了PEMWE成本,制约其商业化进程。制备高活性低Ir含量催化剂是降低Ir用量的常用方法。然而,在PEMWE实际使用过程中,膜电极(MEA)需要在高电流密度(≥1-2 A cm-2)下运行以保证高效产氢,因此需要同时解决催化剂利用率低、高欧姆电阻以及传质受限等问题。构筑有序结构MEA有望同时降低电催化动力学、传质和欧姆损失,是氢能燃料电池研究追求的目标,但颇具挑战性。鉴于此,科研团队从MEA结构一体化设计的角度出发,创新地提出利用纳米压印技术结合静置法,制备一种阳极兼具梯度化锥形阵列以及三维膜/催化层界面的新型有序结构MEA。锥形阵列与梯度催化层结构增加了活性位点的暴露;梯度和三维膜/催化层界面增强了界面结合强度;垂直排列的空隙为气、液传输提供了快速通道。该结构MEA可同时降低电催化动力学、欧姆与传质极化造成的性能损失。与Ir载量为2 mg cm-2的传统MEA相比,该有序结构将电化学活性面积提高至4.2倍,同时分别将传质和欧姆极化过电位降低了13.9 %和8.7 %。这种新型有序MEA在Ir载量低至0.2 mg cm-2时,仍表现出1.801 V @ 2 A cm-2的优异性能,与Ir载量是其十倍的传统结构MEA性能相当,并表现出良好的稳定性。本研究为开发高性能、低贵金属催化剂载量及长寿命的PEMWE提供了新策略。研究工作得到国家重点研发计划、中科院战略性先导科技专项、国家自然科学基金等的支持。有序结构膜电极示意图、谱学表征和水电解性能评价
  • 【前沿快讯】刀片式研磨机用于全固态电解质前驱体的制备
    全固态锂离子电池因为采用固体电解质,不含易燃、易挥发组分,彻底消除因漏液引发的电池冒烟、起火等安全隐患,被称为最安全的电池体系。固体电解质是全固态锂离子电池的核心部件,硫化物固体电解质因为高离子电导率、合适的电化学窗口以及较好的力学性能而受到广泛关注。目前,制备含硫固体电解质的方法一般采用振动球磨法长时间球磨混合前驱体原料后,再高温煅烧而获得。深圳大学田冰冰教授团队首次报道了一种创新的制备含硫固体电解质的方法:采用刀片式研磨机高速混合前驱体原料,仅需不到5分钟,即可进入煅烧步骤制得含硫固体电解质。通过此法制得的硫化物固体电解质离子电导率高达20 mS cm-1,组装成固态电池后测得在0.1C电流密度下,比容量达到165 mA h g-1,同时,具有良好的倍率性能和循环寿命。如下为文献[1]中提到的刀片式研磨机高速混合与传统球磨方法的优势对比:制备方法传统球磨高速研磨混合设备行星式球磨机高速刀片式研磨机混合方式球磨刀片研磨最大处理量50g500g转速180/360rpm10000-25000rpm耗时重复次数1-2h10-20次25s6次煅烧条件取10-20g置于密封石英管中460-555℃×16h取100-300g置于氧化铝坩埚中460-555℃×16h显然,采用高速刀片式研磨机混合前驱体,处理量增大了近十倍,且缩短了研磨时间,大大提高了制备效率。IKA Multidrive control研磨机是一款采用了德国先进制造工艺的高速刀片式研磨机,可满足各种需要高速研磨或高速混合的应用场景。 关于IKAIKA 集团是实验室前处理、分析技术、 工业混合分散技术的市场领导者。电化学合成仪、磁力搅拌器、顶置式搅拌器、分散均质机、混匀器、恒温摇床、恒温培养箱/烘箱、移液器、研磨机、旋转蒸发仪、加热板、恒温循环器、粘度计、量热仪、生物反应器、化学合成釜、实验室反应釜等相关产品构成了IKA 实验室前处理与分析技术的产品线;而工业技术主要包括用于规模生产的混合设备、分散乳化设备、捏合设备、以及从中试到扩大生产的整套解决方案。IKA 还与全球知名大学和科学家进行着密切的合作, 支持其在科研道路上不断探索。我们致力于为客户提供更好的技术, 帮助客户获得成功。IKA 成立于1910年,集团总部位于德国南部的Staufen,在美国、中国、印度、马来西亚、日本、巴西、韩国、英国、波兰等国家都设有分公司。 艾卡(广州)仪器设备有限公司是IKA 集团于2000年设立的全资子公司,主要负责为中国和蒙古国提供产品、技术和服务支持。
  • 电池电解液液体透射测量工具—台式色差仪
    随着科技的飞速发展,电池已经成为我们日常生活中不可或缺的能量储存好帮手!从我们的便携式电子设备,到那些酷炫的电动交通工具,都要靠电池的支持才能动起来。没错,电池可是真正的能量源头呢!然而,要说到电池的性能和稳定性,可真得多亏了电解液,它是电池的核心组件之一!电解液主要由溶剂、导电盐和添加剂组成。溶剂通常是有机溶剂,例如碳酸酯、碳酸酰、醚类等,导电盐则是决定电池电导率的关键因素。添加剂的加入可以调节电解液的性质,如粘度、化学稳定性等,以提高电池的性能。有了优秀的电解液,电池的表现就会更稳定、更强劲。这样一来,我们的电子设备就能续航更久,电动交通工具也能跑得更远。所以说,不管是充电还是输出电能,电解液功不可没啊!然而,电解液的透射性质有时候可能会遇到一些问题哦!比如,如果电解液的透明性不够好,光线就可能被挡住,影响电池内部的能量传输效率,让电池性能变差。另外,电解液对特定波长的光线吸收过多,可能引起化学反应,导致电池不稳定。而且,电解液中溶质的浓度变化也会影响光线透射的特性。那么,我们要如何解决这个透射相关的问题呢?这就需要依靠Ci7x00系列的Ci7800台式分光色差仪与Ci7860精密色差仪来帮忙!这两款仪器可谓是我们的得力助手!Ci7800台式分光色差仪,可以简单快速地测量电解液的透射率,看看它有没有足够的透明性,保证光线能顺利穿过,让电池能高效传导能量。Ci7800色彩色差仪支持多达5个反射孔径和4个透射孔径,可通过不同位置的端口来测量各种样品的色彩与外观。这项功能使得它在许多领域中都得到了广泛应用。此外,Ci7800还支持多达3个UV滤光镜来控制纺织品、塑料、油漆、涂料和纸张中的荧光增白剂。设备内置数码相机具有预览和主动目标定位功能,可保证测量区域的准确定位,并能捕获图像以备日后检索。同时,它还能检测样品上的污点、划痕或缺陷,并提供随附的测量数据以备审计,为质量控制提供了有效支持。如果我们想要更深入的了解电解液的光学特性,这时候Ci7860精密色差仪就派上用场了!它不仅可以测量透射率,还能给我们提供更多数据,包括吸收特性和反射率等等。这样一来,我们就能全方位地了解电解液的性质,发现其中的问题,进而针对性地优化电解液的配方。Ci7860精密色差仪广泛应用于多个工业领域,包括纸张、纺织物、塑料、颜料、汽车以及屏幕色彩校正等。它为这些行业提供了可靠的色彩测量和管理解决方案,帮助企业提高产品质量,降低生产成本,增强市场竞争力。有了这两款色差仪,我们可以轻松解决电解液透射相关的问题!通过优化电解液的性能,我们就能让电池表现得更稳定、更强劲,让我们的电子设备续航更久,电动交通工具跑得更远,让我们的生活更便利、更美好。同时,这些仪器的应用也推动着科技的不断发展,让能源领域取得了更大的进步。随着技术的不断创新和仪器的不断完善,相信电池的未来会变得更加出色!“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 大连化物所揭示固体氧化物电解器阴极动态重构和CO2电解反应机制
    近日,大连化物所催化基础国家重点实验室包信和院士、汪国雄研究员与吕厚甫博士团队在高温CO2电解研究中取得新进展,通过电化学原位表征研究,揭示了固体氧化物电解器阴极动态重构和CO2电解反应机制。   固体氧化物电解器(Solid Oxide Electrolysis Cell,SOEC)在高温条件下利用可再生能源将CO2高效电解还原为CO,是一种极具工业应用潜力的负碳技术。然而,在CO2电解过程中,对SOEC阴极催化活性位点原位动态重构及CO2吸附活化机理认识仍然不足。本工作中,研究团队借助高温原位电化学X射线衍射(XRD)、近环境压力X射线光电子能谱(NAP-XPS)和原位X射线吸收光谱(XAS)等表征方法,深入研究了Ir掺杂的Sr2Fe1.45Ir0.05Mo0.5O6-δ(SFIrM)钙钛矿催化剂的动态电化学重构特性以及CO2吸附活化机制。研究发现,SFIrM钙钛矿阴极在CO2电解过程中表面偏析溶出高分散、高密度IrFe合金纳米颗粒(粒径约1.0nm,密度高于80000μm-2);并且IrFe合金纳米颗粒表现出随电压施加和停止相应形成和消失的特征,阐明了电压作为主要驱动力在CO2电解过程中原位促使IrFe合金纳米颗粒在钙钛矿表面溶出的机制。   此外,碳酸盐物种作为CO2吸附和活化反应中间体在原位NAP-XPS中被观测到,其强度随IrFe@SFIrM界面的形成与消失而相应变化。相对于未发生表面溶出的Sr2Fe1.5Mo0.5O6-δ电极,SFIrM电极具有更高的碳酸盐/CO2面积比,证明IrFe@SFIrM界面作为CO2电解反应中的催化活性位点,表现出更高的CO2吸附活化能力。IrFe合金纳米颗粒可通过短暂氧化实现再分散,进一步提高了SOEC中CO2电解稳定性。   本研究阐明了SFIrM阴极的表面重构过程和催化作用机制,有助于深入研究认识SOEC中CO2电解过程。   相关工作以“In situ electrochemical reconstruction of Sr2Fe1.45Ir0.05Mo0.5O6-δ perovskite cathode for CO2 electrolysis in solid oxide electrolysis cells” 为题,发表在《国家科学评论》(National Science Review)上。该工作第一作者是我所502组博士研究生沈俞翔和刘天夫博士。该工作得到国家重点研发计划、国家自然科学基金等项目的支持。
  • 活动回顾|东西分析参加第二届固态电解质技术与市场发展论坛暨第七届先进电池电解质/隔膜材料技术国际论坛
    2024年6月12-13日,第七届先进电池电解质/隔膜材料技术国际暨第二届固态电解质技术与市场发展论坛在苏州召开。东西分析携AA-7050型原子吸收分光光度计参加了此次活动。第七届先进电池电解质/隔膜材料技术国际论坛暨第二届固态电解质技术与市场发展论坛由中国化学与物理电源行业协会和中国电子科技集团公司第十八研究所共同主办,论坛上,来自各地的专家学者和企业代表围绕“提升锂电行业新质生产力”的主题,就固态电解质技术、先进电池电解质/隔膜材料技术等方面展开深入讨论。他们通过分享最新的研究成果、技术进展和市场趋势,为与会者带来前沿的学术报告和技术分享。东西分析展台前,参观交流的观众络绎不绝。此次东西分析展出的展品是AA-7050型原子吸收分光光度计。这款仪器以其精准度高、操作简便、功能强大等特点,赢得了参观者的一致好评。在展台前,工作人员以专业的态度,耐心地向每一位观众介绍这款仪器在电池领域应用中的实际案例和检测效果。电池,作为可再生能源发电体系中关键组件,肩负着推动全球可持续能源发展的重要使命。为确保电池材料及产品的安全可靠性,从电池原材料至电解质的每一个环节,均需经过严格的精确分析测试。这些测试可以全面评估电池的性能、寿命及安全性,为电池行业的稳健发展奠定基础。东西分析公司,依托其丰富的质谱、光谱、色谱等多条产品线,为电池行业提供了一套全方位的分析测试解决方案。这些方案可以进一步提升电池的性能和品质,从而推动电池行业的健康发展,为可持续能源事业贡献力量。仪器推荐电池材料中重金属检测推荐仪器适合分析电池材料中的重金属含量,满足《GB/T 11064.4-2013、GB/T 11064.5-2013、GB/T 11064.6-2013碳酸锂、单水氢氧化锂、氯化锂中钾量、钠量、钙量和镁量的测定 火焰原子吸收光谱法》、《YS/T 1472.4-2021 富锂锰基正极材料中锂、镍、钴、钠、钾、铜、钙、铁、镁、锌、铝、硅含量的测定 电感耦合等离子体发射光谱法》等检测需求。电池材料中有机成分检测推荐仪器气相色谱质谱联用仪适用于分析电池电解液溶剂及相关原料中的有机成分,比如环状碳酸酯(PC、EC)、链状碳酸酯(DEC、DMC、EMC)及羧酸酯类(MF、MA、EA、MA、MP等)。电池材料检测及产品中气体检测推荐仪器气相色谱可用于电池产气分析,电池电解液原料纯度分析等,符合《SJ/T 11568-2016 锂离子电池用电解液溶剂》、《HG∕T 5786-2021 工业用碳酸丙烯酯》等标准检测要求。电池材料中离子检测推荐仪器离子色谱适用于分析电池电解液溶剂及相关原料中的氟离子,氯离子,硫酸根等,满足《SJ/T 11568-2016 锂离子电池用电解液溶剂》、《GB/T19282-2014 六氟磷酸锂的分析方法》等标准的检测需求。请点击下方链接,获取电池行业的全面解决方案实用干货|助力锂电行业,共迎科技未来
  • 【行业应用】赛默飞发布气相色谱-质谱法测定锂电池电解液组分
    赛默飞世尔科技(以下简称:赛默飞)近日发布法测定锂电池电解液组分的解决方案,通过操作简单,科学准确,灵敏度高的分析方法,满足锂电池电解液组成成分分析要求。锂电池电解液是电池中离子传输的载体,一般由锂盐和有机溶剂组成。有机溶剂主要是酯类化合物,这些酯类化合物种类和含量对锂电池的性能起关键性作用。 本方法是将锂电池电解液样品直接稀释,用气相色谱质谱进行定性、定量。方法操作简单,9种酯类化合物检出限在3.0 μg/L-30.0 μg/L 之间。 样品中的9 种酯类化合物用乙酸乙酯稀释至合适浓度后直接进样,采用赛默飞新型Thermo ScientificTM TRACETM 1300 气相色谱仪,配合Thermo ScientificTM ISQTM 系列四极杆 GC-MS 系统检测和确证,外标法定量。结果表明,9 种酯类化合物的回收率为92.4.3-105.3%,6次平行测定的RSD 值≤ 4.16%。解决方案下载,请查看:http://tools.thermofisher.com/content/sfs/brochures/Measurements%20of%20electrolyte%20components%20in%20the%20lithium%20battery%20by%20GCMS.pdf 更多产品信息,请查看:TRACETM 1300 气相色谱仪https://www.thermofisher.com/order/catalog/product/14800400?ICID=search-product ISQTM 系列四极杆 GC-MS 系统https://www.thermofisher.com/order/catalog/product/IQLAAAGAAJFALOMAYE?ICID=search-product ---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • 大连化物所开发无氯电解液抑制镁负极阳极析氢
    近日,大连化学物理研究所燃料电池研究部醇类燃料电池及复合电能源研究中心金属燃料电池系统研究组(DNL0313组)王二东研究员团队在水系镁空气电池电解液设计研究方面取得新进展,提出一种无氯电解液,有效避免了镁负极在传统氯化钠(NaCl)电解液中的阳极析氢腐蚀问题。水系镁空气电池具有理论能量密度高、环境友好、安全性高、成本低和贮存寿命长的特点,是一种理想的应急储备电源,其主要应用场景包括露营、日常停电或者遇到地震、洪水等灾难的紧急情况。该类电池无需充电,使用前加注河水、海水或者其他水源,电池即可对外供电。然而,镁负极在NaCl电解液中发生阳极溶解反应时还伴随着剧烈的析氢腐蚀反应,且存在负差效应(随着放电电流密度增大,析氢腐蚀速率加快)。长期以来,文献报道中的镁负极利用率停留在60%左右,使得镁空气电池的比能量大打折扣。   该工作中,团队提出采用乙酸钠(NaAc)电解液,构建均匀溶解和无局部腐蚀的镁负极/电解液界面;借助乙酸根离子中甲基的空间位阻效应,增加阴离子在表面膜中的扩散能垒,避免镁负极表面膜的破坏,从而抑制了镁负极在放电过程中的阳极析氢腐蚀。基于该策略下的镁负极在10 mA cm-2电流密度下的利用率可达84%,高于在传统NaCl电解液中的59%,基于镁负极质量计算的比能量由1370 Wh kg-1提升到1770 Wh kg-1。此外,团队还在商业化镁空气电池中证实了NaAc电解液的实用性。该工作为设计高性能镁空气电池提供了一条简单可行的途径,同时揭示了镁负差效应的根本原因。   上述工作以“A chloride-free electrolyte to suppress the anodic hydrogen evolution corrosion of magnesium anode in aqueous magnesium air batteries”为题,于近日发表在《化学工程学报》(Chemical Engineering Journal)上。该工作的第一作者是大连化学物理研究所DNL0313组博士后高建新。上述工作得到了国家自然科学基金、中科院重点部署项目等资助。
  • 如何清洗、干燥微量水分测定仪的电解池?
    如何清洗、干燥微量水分测定仪的电解池? 新购买的库伦法微量水分测定仪的电解池不需要清洗,当您使用中的卡尔费休试剂失效【判断试剂失效的具体表现为:①使用一个月以上;②卡尔费休试剂颜色变深(非过碘状态下);③电解过程很难达到终点】,需要更换时,我们建议您对电解池进行清洗、干燥:  电解池的清洗:清洗时,请把电解池所有配件分别用无水乙醇、无水甲醇等试剂清洗干净(注意:电解电极和测量电极不能用水清洗,否则会造成测量误差,并且不要清洗到电极引线处)。  电解池的干燥:放在大约60℃的烘箱内烘干4小时,然后使其自然冷却。
  • 院士团队固态电解质成果遭质疑 仪器大战佐证关键论点
    p   2019年1月25日,清华大学材料科学与工程学院南策文院士和李亮亮副研究员团队通过系统实验结合第一性原理计算,探究了一种新型的PVDF基固态电解质与锂金属阳极之间的界面,发现原位形成具有稳定、均匀镶嵌结构的纳米级界面层可以有效抑制锂枝晶的生长。研究成果以“Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes”为题发表在Advanced Materials上。 /p p style=" text-align: center " img width=" 500" height=" 215" title=" Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes.jpg" style=" width: 500px height: 215px max-height: 100% max-width: 100% " alt=" Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes.jpg" src=" https://img1.17img.cn/17img/images/202003/uepic/65f43a48-13ea-4629-b162-95b1cb55e798.jpg" border=" 0" vspace=" 0" / /p p   意大利米兰-比科卡大学的Piercarlo Mustarelli教授团队对上述工作中“纯PVDF基固态电解质”这一概念提出质疑,他们认为不可能利用纯PVDF聚合物制备出无溶剂的锂离子导体固态电解质,而且由于DMF溶剂的存在,文中所报道的固态电解质实际上应该是凝胶电解质。相关评论以“Is It Possible to Obtain Solvent‐Free, Li+‐Conducting Solid Electrolytes Based on Pure PVdF? Comment on “Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes””为题,于2020年2月27日在线发表在Advanced Materials上。 /p p style=" text-align: center " img width=" 500" height=" 209" title=" Comment on Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes.jpg" style=" width: 500px height: 209px max-height: 100% max-width: 100% " alt=" Comment on Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes.jpg" src=" https://img1.17img.cn/17img/images/202003/uepic/8d830fb1-9742-4479-b38c-d4a221db4e79.jpg" border=" 0" vspace=" 0" / /p p   Piercarlo Mustarelli教授等人认为DMF沸点高达153℃,即便在真空条件下也不可能从聚合物基质中完全移除。而且,南策文院士团队的文章中并没有给出相应的热重表征数据来证实DMF已经被完全从PVDF电解质中移除。 /p p   为验证这一说法,PiercarloMustarelli教授团队根据南院士文中的描述,采用同样的PVDF-LiFSI(3:2, w:w)电解质体系和DMF-THF(3:7, v:v)的溶剂体系进行研究,并且同样在80℃真空干燥20h。然而, 热失重曲线表明,即使是沸点相对较低的THF溶剂(66℃),经过上述处理后都没被完全除去。而且由于DMF的蒸发,曲线几乎呈线性下降趋势,甚至持续到250℃的高温都没能完成,说明PVDF电解质体系中至少含有13%以上的DMF溶剂。TGA曲线(N sub 2 /sub 氛围)同样证实,上述电解质体系中含有大约14%的溶剂残留。 /p p style=" text-align: center " img title=" PVDF电解质薄膜的热重分析结果.jpg" style=" max-width:100% max-height:100% " alt=" PVDF电解质薄膜的热重分析结果.jpg" src=" https://img1.17img.cn/17img/images/202003/uepic/b3bf7fa0-b712-4e4c-89e0-b6e4d0a51676.jpg" / /p p style=" text-align: center " PVDF电解质薄膜的热重分析结果 /p p   同日,Advanced Materials在线发表了南策文院士与李亮亮副研究员团队正面回应上述质疑的文章,文中认为少量溶剂残留并不代表该电解质就一定是凝胶电解质,“含有自由溶剂分子”的才算是,而文中报道的PVDF电解质中不存在自由DMF溶剂分子,因此实质上是不含自由溶剂的固态电解质而非凝胶电解质。 /p p style=" text-align: center " img width=" 500" height=" 210" title=" Response to Comment on “Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes.jpg" style=" width: 500px height: 210px max-height: 100% max-width: 100% " alt=" Response to Comment on “Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes.jpg" src=" https://img1.17img.cn/17img/images/202003/uepic/8737b43e-c5f7-47e4-91c4-dd176f220965.jpg" border=" 0" vspace=" 0" / /p p   南策文院士与李亮亮副研究员团队从自由溶剂存在形式、离子传导机制以及性能优越性等角度出发,针对质疑进行了正面回应:之前文章所报道的PVDF基固态电解质薄膜中确实存在着少量DMF溶剂的残留。气相色谱和固态核磁共振光谱结果证实,PVDF-LiClO4体系和PVDF-LiFSI体系中溶剂的残留量分别为13%和15%。然而,他们认为尽管有少量的溶剂残留,但是并不代表该电解质就一定是凝胶电解质。 /p p   虽然文中报道的PVDF基电解质薄膜中有少量溶剂存在,但是其中溶剂并不是以自由分子的形式存在。由于大量吸收液体电解质,普通PVDF基凝胶电解质的溶剂含量通常超过50%,其中含有大量的自由溶剂分子。而我们所制备的电解质薄膜中溶剂含量(13%-15%)远低于凝胶电解质中的溶剂含量,更重要的是,薄膜中不存在自由DMF溶剂分子。拉曼光谱和红外光谱证实, PVDF基电解质薄膜中经过80℃长达12小时或20小时的真空干燥处理后检测不到自由DMF分子的拉曼或红外信号,这说明残留的DMF溶剂分子全部与Li+发生配位形成了[Li(DMF)x]+的离子复合物。因此,南策文院士团队认为,他们制备的PVDF基电解质中残留的DMF溶剂分子以键合态而非游离形式存在,与那些含有大量游离溶剂分子的普通凝胶电解质是不同的。 /p p style=" text-align: center " img title=" PVDF基电解质膜与常规PVDF基凝胶电解质中溶剂含量对比.jpg" style=" max-width:100% max-height:100% " alt=" PVDF基电解质膜与常规PVDF基凝胶电解质中溶剂含量对比.jpg" src=" https://img1.17img.cn/17img/images/202003/uepic/47a9676d-3ed0-4ae3-8f74-afd50a66dbd2.jpg" / /p p style=" text-align: center " 南院士团队所制备的PVDF基电解质膜与常规PVDF基凝胶电解质中溶剂含量对比 /p p style=" text-align: center " img title=" PVDF电解质薄膜中DMF溶剂分子的存在形式表征.jpg" style=" max-width:100% max-height:100% " alt=" PVDF电解质薄膜中DMF溶剂分子的存在形式表征.jpg" src=" https://img1.17img.cn/17img/images/202003/uepic/768065f5-f623-4a00-9f31-34787388fc4b.jpg" / /p p style=" text-align: center " PVDF电解质薄膜中DMF溶剂分子的存在形式表征 /p p   全固态型电解质是由锂盐和高分子基质络合而成,而凝胶型电解质则是由锂盐与液体塑化剂、溶剂等与聚合物基质形成稳定凝胶的电解质材料。毫无疑问,固态电解质是非溶剂体系,而凝胶电解质中含有大量的溶剂。那么,含有少量非游离溶剂残留且具有类固体机械性能的电解质属于固体电解质还是凝胶电解质呢? /p p br/ /p
  • 扫描电镜在电解铜箔中的应用
    金属铜具有优异的导电性、可塑性和导热性,制出的铜箔工艺成熟,成本低,已被广泛运用于各个行业。在电子制造行业中,铜箔是生产印制电路板(PCB)的主要原材料,高密度互联技术的发展,对印刷电路板提出更密、更薄、更平的要求;在锂电行业,电解铜箔作为负极集流体,是制备锂离子电池的基础原材料,同样轻薄化也是未来锂电铜箔的发展方向。铜箔的分类 近年来,随着智能消费类电子产品、5G 通信和动力汽车的迅猛发展带动了铜箔行业的繁荣,铜箔已成为国民经济不可或缺的基础性原材料。常规而言铜箔是指厚度小于200 μm 的铜薄膜材料,目前常采用以下几类方法对其进行分类:按应用可分为印制线路板铜箔、覆铜层压板铜箔、装饰用铜箔和锂电池用铜箔等。按生产工艺可分为压延铜箔和电解铜箔。除此之外,还可以按照铜箔厚度和表面形貌进行分类。图1:电解铜箔的分类电解铜箔的应用 压延铜箔延展性优、工艺更复杂且成本高。压延铜箔是通过轧制厚铜板并进行一系列表面处理后形成的铜箔,其优点在于屈服强度和延展性较高、表面粗糙度较低,致密度和弹性较好。缺点在于生产工艺复杂、流程长、成本高,且极限厚度和宽度受到轧辊限制,因此应用受限。电解铜箔工艺较成熟,生产效率高成本低。电解铜箔是以硫酸铜溶液为原料,在电解槽中进行电解达到的。电解槽中以不溶性材料为阳极、阴极辊为阴极,其中阴极辊底部浸在硫酸铜电解液中旋转,溶液中的铜沉积到阴极辊筒的表面形成铜箔。这种方法的优势 在于生产工艺相对压延法简单,成本低,铜箔厚度和宽度可控范围大。目前电解铜箔制造技术已较为成熟,高性能电解铜箔已广泛应用于PCB与锂离子电池制造中。图2.电解生箔的工序流程 电解铜箔的生产壁垒主要在添加剂和阴极辊的选择。阴极辊是生箔机的核心及关键部件,其质量决定铜箔的档次和品质。由于阴极辊长期处于强腐蚀性的工作环境中,表面腐蚀快,要求阴极辊辊面钛材料的微观组织均匀细微化,晶体尺寸一致和低含氢量等,才能保证铜离子在阴极上均匀沉积,得到厚度均匀的铜箔。电解铜箔的微观形貌 如何评价电解铜箔表面晶粒的均匀性是表征铜箔性能的重要指标。扫描电镜作为材料微观尺寸分析的重要工具,在铜箔表面晶粒观察中起到了不可替代的作用。如下图3所示,采用赛默飞智能型钨灯丝扫描电镜AxiaChemiSEM所获的的PCB铜箔毛面形貌图。图3右图铜箔晶体晶粒细小紧密且均匀,结晶组织为等轴、球形晶粒结构。铜箔粗化面呈现较浅而圆的轮廓状,而传统工艺生产的厚铜箔(图3左)是锯齿状或山丘形的表面状态。图3:不同工艺生产的PCB铜箔毛面形貌 铜箔由于具有良好的导电性、柔韧性和适中的电位,耐卷绕和辗压,制造技术成熟,且价格相对低廉,在电池充放电过程中便充当石墨等负极活性材料载体,同时作为负极集流体,将电池活性物质产生的电流汇集起来,以产生更大的输出电流。相比于电子铜箔,锂电铜箔要求铜箔的厚度更薄,表面更光滑,晶粒更细小且均匀。 铜箔厚度越薄,在电芯体积不变的条件下,可以增大活性材料的用量,浆料涂覆厚度增厚,使电芯能量密度提高。除此之外,铜箔表面粗糙度和晶粒大小也直接影响负极活性物质在铜箔表面的附着力。如图4采用赛默飞智能型钨灯丝扫描电镜AxiaChemiSEM所拍摄的锂电铜箔表面形貌。从图中可以看出,铜箔毛面非常平整、无明显缺陷,说明该工艺配方具有较好的整平效果,得到的铜箔组织均匀且具有较好的外观。图4. 不同放大倍数下锂电铜箔表面形貌赛默飞Axia ChemiSEM 赛默飞Axia ChemiSEM全新智能型钨灯丝扫描电镜,具备操作方便,适用人群广泛的特点。全中文操作界面,日常操作无需光阑合轴,内置的用户使用指南方便任何人员进行操作,降低了设备操控性。不仅如此,Axia的高稳定样品仓设计,还可以容纳大而重的样品。标配5种探测器,完善的探测系统和直观的导航系统,可帮助用户快捷、全面的掌握样品信息。赛默飞Axia ChemiSEM智能型钨灯丝扫描电镜参考资料:1. “高性能锂电铜箔紧俏,优质龙头乘东风”-国盛证券研究所.2. 杨森. 锂电池用高性能超薄电解铜箔的研究[D].常州大学.3. 王帅.我国电解铜箔技术现状与趋势前瞻[J].有色金属加工,2023.4. 周启伦. PCB用厚铜箔市场发展与其性能的提高[C],2020.5. 何铁帅,樊斌锋,彭肖林等.极薄高安全性能锂电铜箔的工艺研究[J].山东工业技术,2020.
  • OPTON微观世界 | 第41期 扫描电镜观察不同电解液温度下纯铜粉末表面形貌变化
    背景介绍铜粉是粉末冶金中基础原料之一。也是我国大量生产和消费的有色金属粉末,在现在工业生产中起着不可替代的作用,由于铜及其粉末具有良好的导电导热性能,耐腐蚀性能,表面光洁和无磁性等特点。因而被广泛应用于摩擦材料,金刚石工具,电碳制品,含油轴承,电触头材料,导电材料,机械零件等行业。铜粉的制备方法主要有电解法,雾化法,氧化还原法等。本实验采用电解法制备纯铜粉末,电解液采用0.06mol/L硫酸铜溶液和0.2mol/L硫酸,用铜或者不锈钢做阴极,铜做阳极。制取铜粉的基本工艺:本实验通过改变电解液温度来研究铜粉表面形貌变化。采用ZEISS的Sigma500型号电镜拍摄并观察其表面形貌,对比图片如图1: 图1 不同电解液温度铜粉形貌结果表明:电解法制备的铜粉比表面积大,结晶粉末一般为树枝状,压制性较好。图a1、a2,b1、b2,c1、c2三组图片,电解液温度分别为15°、30°、45°,为了观察整体铜粉形貌以及局部形貌,每组都是在2000X,5000X进行拍摄,通过对比三组图片,能够看出提高电解液温度,扩散速度增加,晶粒长大速度也增大,树枝晶逐渐变大变粗。
  • 真空精馏法在锂电池电解液回收中的应用
    为什么要进行锂电池电解液回收处理?众所周知,锂离子电池是由正极(锂钴氧化物、锂镍氧化物等)、负极(一般为炭素材料)、电解液、隔膜(聚乙烯、聚丙烯等)、粘结剂(聚偏氟乙烯、聚乙烯醇、聚四氟乙烯)等组成。目前有关废旧锂离子电池处理工艺的研究大多集中在贵重金属方面,例如镍、钴、锰、锂等金属材质因其自身的经济价值被先行深入研究。而电解液成分复杂,尤其是LiPF6 的存在,使得电解液接触高温环境就易发生分解,产生有毒有害物质,因此电解液处置不当会带来严重的安全和环境问题。同时,电解液本身的高附加值也决定需合理回收电解液。电解液组成及性质是什么?在各种商用锂离子电池系统中,液态电解液占主流地位。液态电解液一般由锂盐、有机溶剂、添加剂三部分组成。电解质盐,主要为六氟磷酸锂(LiPF6),其暴露在空气中易反应生成 HF、 LiF、PF5 等对人体有害的物质;有机溶剂主要有碳酸酯类、醚类和羧酸酯类;添加剂作为电解液中非必要成分,主要有碳酸亚乙烯酯、乙酸乙酯等,含量较少。表1:常见电解液的溶剂、溶质及添加剂种类[1]真空精馏方法在电解液回收处理的优势真空精馏法是在高真空环境下利用电解质和溶剂的沸点不同,经过多次冷凝和汽化后将电解质分离出来。在高真空下,精馏主要是为了防止电解液挥发损失。案例分享中海油天津化工研究设计院,周立山等[2]在惰性气体的氛围下拆解电池得到电解液,然后经过精馏装置减压真空精馏,将电解液分为有机溶剂和六氟磷酸锂初级产品,再对这两部分分别进行纯化,使之成为高纯度的产品,其中纯化后的六氟磷酸锂回收率可达 82.7%。天津卡特化工技术有限公司,毛国柱等[3]则另辟蹊径,通过真空精馏的方法,先将有机液体从电解液中分离出来,剩余的电解液通过添加比其多7 倍的硫酸氢钾,在高温下持续煅烧 5 h,然后与饱和 KF 溶液反应得到可以作为产品的 LiF。例如,下图1所示,为乙醇和水的连续分离过程,上升汽流和下降的液流在塔内直接接触,易挥发组分将更多的由液相转移到汽相,而难挥发组分将更多的由汽相转移到液相。这样,塔内上升的汽流中乙醇的浓度将越来越高,而下降的液流中水的浓度会越来越高,只要塔足够高,就能够使塔顶引出的蒸汽中只有乙醇,加热釜引出的溶液只有水。图1:乙醇-水溶液连续精馏流程1-精馏塔;2-冷凝器;3-再沸器同样,利用真空精馏法来回收锂电池电解液,主要有以下优势:● 得到的产物可以达到比较高的纯度,能够用于电池再生产,节约生产成本;● 该过程环保清洁,不易造成二次污染;● 和碱液吸收法、热裂解法、超声萃取法等其他工艺相比较,不会破坏主要成分,锂盐和有机溶剂的回收率相对较高。由以上得知,锂电池电解液成分复杂,混合了锂盐和多种有机试剂等,高温易蒸发,且多为热敏性物质。需通过真空精馏的方式,使用较高的理论塔板数的精馏塔才能将这些成分依次分离,从而达到分类回收的目的,实现资源重复利用的可能性。那么,德国Pilodist同心管精馏柱技术可以给锂电池电解液回收带来什么便利呢?德国Pilodist同心管精馏柱技术同心管精密分馏柱由两根经精巧设计和精密校准的同心管玻璃柱融合而成,垂直上升的蒸气与同心环形间隙中的液体薄膜之间高效传质,使得精密分馏柱具有很高的分离效率。同心管的外圆内壁和内圆外壁均设计成为精密设计的螺旋刮痕形式,使得在冷凝器冷凝的液体通过刮痕可以顺流而下,并形成液膜加大热交换接触面积,直至蒸馏釜。同心管技术具有如下的技术优势:&bull 压力降小&bull 滞留量小&bull 适用于热敏性物质&bull 高分离效率&bull 极少量蒸馏(低至1mL)&bull 极少工作流量而且,Pilodist精馏线产品主要有精密分馏装置PD104/PD105、微型精馏系统HRS500C和溶剂回收装置PD107等,都可以配备同心管精馏柱,特别适合热敏性物质在真空条件下的柔性蒸馏分离提纯。Pilodist HRS 500C实验室微型精馏系统其中,HRS500理论塔板数高达 60 块理论塔板。Pilodist PD 104精密分馏系统Pilodist PD 105精密分馏系统PD104和PD105的理论塔板数高达90块理论塔板数。Pilodist PD 107溶剂回收系统PD107溶剂回收系统,60块理论塔板数。可针对客户不同处理量、不同实验需求等选择不同的仪器配置方案。如果你对上述产品或方案感兴趣,欢迎随时联系德祥科技,可拨打热线400-006-9696。参考文献:[1] 陆剑伟,潘曜灵,郑灵霞,等. 锂离子电池电解液的清洁回收利用及废气治理方法[J].浙江化工. 1006-4184(2021)10-0040-06.[2] 周立山,刘红光,叶学海,等. 一种回收废旧锂离子电池电解液的方法: 201110427431.2[P]. 2012-06-13.[3] 毛国柱,侯长胜,霍爱群,等. 一种回收处理废旧锂电池电解液及电解液废水的处理方 法 : 201310562566.9 [P].PILODIST德国PILODIST是德祥集团资深合作伙伴之一。德国PILODIST公司源自于蒸馏及精馏设备供应商。公司传承原Fischer公司专业的蒸馏及精馏设备制造技术,为全球石油化工、精细化工行业及科研院所客户提供高品质的原油蒸馏系统、精馏系统、溶剂回收系统、汽液相平衡和分子蒸馏等。德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 大连化物所揭示高效二氧化碳/一氧化碳电解反应的选择性变化机制
    近日,中国科学院院士、中科院大连化学物理研究所纳米与界面催化研究组研究员包信和与研究员汪国雄、高敦峰团队,在二氧化碳/一氧化碳电解制备燃料和化学品研究中取得新进展。该研究揭示了碱性膜电解器中二氧化碳/一氧化碳电催化还原反应覆盖度驱动的选择性变化机制,并组装出千瓦级电堆,为二氧化碳/一氧化碳电解的实际应用提供了参考。   二氧化碳电解反应利用可再生能源产生的电能将二氧化碳转化为高附加值燃料和化学品,是近年来快速发展、颇具应用前景的负碳技术。乙烯、乙酸和乙醇等多碳产物具有较高的能量密度和市场需求,是理想的电解产物。然而,在工业级电流密度下高选择性生成多碳产物仍存在挑战。   本工作基于钢铁工业排放出大量的二氧化碳/一氧化碳混合废气这一现状,通过改变进料气组成来调变碱性膜电解器阴极氧化铜催化剂的微环境,实现了在工业级电流密度下高效二氧化碳/一氧化碳电解制备多碳产物。随着进料气中一氧化碳压力的增加,电解主产物逐渐由乙烯转变为乙酸,且电流密度显著增加。在0.6 MPa CO条件下,乙酸法拉第效率为48%,总电流密度达到3 A cm-2。机理研究表明,产物选择性变化受到*CO覆盖度和局部pH值影响,低*CO覆盖度时优先生成乙烯,高*CO覆盖度和高局部pH值利于乙酸的形成。在优化的电解条件下,多碳产物的法拉第效率和分电流密度分别达到90.0%和3.1 A cm-2,对应于100.0%碳选择性和75.0%收率,优于热催化CO加氢反应。为进一步验证电解过程的可行性,该团队组装了4节100 cm2的碱性膜电堆,其电解功率最高达到2.85 kW,在总电流为150 A时,乙烯的生成速率为457.5 mL min-1;在总电流为250 A时,乙酸的生成速率为2.97 g min-1。该研究不仅为单一多碳产物的定向生成提供了重要参考,而且为二氧化碳/一氧化碳电解从实验室走向实际应用奠定了技术基础。   相关研究成果以Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis为题,发表在《自然-纳米技术》(Nature Nanotechnology)上。研究工作得到国家重点研发计划、国家自然科学基金、中科院战略性先导科技专项(A类)“变革性洁净能源关键技术与示范”等的支持。大连化物所揭示高效二氧化碳/一氧化碳电解反应的选择性变化机制
  • 快速分析锂离子电池电解液的劣化
    1. 前言随着全球工业化的进展,能源需求的增长,研究高性能的储能装置受到相关领域的广泛关注,锂离子电池是目前综合性能优异的电池体系。锂离子电池属于二次电池,可以充电后,再次使用,常用在电动汽车,手机,便携笔记本电脑中,属于绿色环保能源。具有体积小,寿命长,高电压,高功率密度,无记忆效应等特点。1.1 锂离子电池工作原理锂离子电池主要通过锂离子的“嵌入/脱出”实现电池能量的存储和释放。过渡金属的嵌锂化合物常用于正极材料,他们的晶格结构对电池的容量至关重要。如以LiCoO2为例,充电过程发生的反应如下:充电时,在外电场作用下,Li+从LiCoO2晶格脱出,穿过电解液隔膜,嵌入石墨负极,电子通过外电路从正极流出,流入负极,正极电压升高,负极电压降低,电池端电压升高,完成充电。放电时,Li+从石墨负极脱出,嵌入LiCoO2正极,电子经外电路从负极流出,对负载做功,流入正极,正极电压降低,负极电压升高,电池端电压降低,实现放电做功。 1.2 锂离子电池电解液正极材料,负极材料,隔膜材料,电解液材料是锂离子电池的四大关键部分。研发电池的关键材料是国内外开发的重点。其中电解液被称为锂离子电池的“血液”,是正负极材料之间传输电子的通道,是获得高功率,高能量密度,长寿命的锂离子电池的保证。电解液通常由纯度高的有机溶剂、锂盐、添加剂等组成。随着锂离子电池不断的充放电过程,电池会出现劣化,其中电解液状态是评价电池劣化的最主要因素之一,也是评价电池劣化的最直观的方法。因此,分析电解液的劣化非常重要。电解液分析的传统方法,如GC / LC-MS、核磁共振、傅里叶红外,这些方法在样品制备和前处理方面,耗时长,操作繁琐。另外,对于电解液中含量较少的成分,传统的方法很难检测出它们的变化差异。而三维荧光结合多变量分析方法,能够以更短的时间、更容易、高灵敏度的检测电解液的变化。客户可以使用三维荧光进行电解液中成分变化的筛选,联合传统分析方法确定变化的具体物质。因此三维荧光提供了一种快速寻找电池劣化的原因,可以有效减少或避免在研发或使用过程产生这种劣化的原因,大幅提高分析效率。 详细的应用数据请点击:https://www.instrument.com.cn/netshow/sh102446/s926995.htm荧光分光光度计F-7100和多变量分析软件3D SpectAlyze日立荧光分光光度计具有超高的扫描速度,无需复杂的样品前处理,能够快速测定样品。另外,日立具有专用多变量分析软件3D SpectAlyze,因此可以提供数据测量和解析一体化,从而获取样品的详细信息。使用荧光分光光度计结合多变量分析软件可以快速评价荧光强度发生变化的体系。
  • 盘点:PEM制氢电解槽测试系统厂商及产品概览
    2024 年 7 月,国家标准《PEM 电解槽性能测试方法》征求意见稿发布。电解槽测试系统是氢能领域重要的检测设备之一。本标准为首次修订。国内外产品纷纷从示范向市场化产品发展,用户迅速增长。随着PEM制氢电解槽的大规模商业化进程不断推进,无论是批量生产还是研发和技术储备,电解槽的开发和生产过程中都需要进行严格的测试。为此,专业的PEM电解槽测试平台应运而生,这些平台能够监控电解槽的各项参数和运行状态,实现包括伏安特性曲线在内的性能测试、敏感性测试以及寿命评估等多项功能。以下是部分PEM制氢电解槽测试系统厂商及产品的介绍,排名不分先后。一、KEWELL科威尔科威尔技术股份有限公司是一家以测试电源为基础产品,为多行业提供测试系统及智能制造设备的综合性测试装备公司。公司目前主要产品线有测试电源、氢能测试及智能制造装备、功率半导体测试及智能制造装备等。产品主要应用于新能源发电、电动车辆、氢能、功率半导体等工业领域。由于测试电源产品运用的广泛性特点,公司产品还应用于轨道交通、汽车电子、智能制造、机电设备、航空航天、实验室认证等众多行业领域。产品:E500系列、E500-H单池高压版、单池多通道版、HETS-PEM-S系列电解槽测试等。例:E500-L单池常压版该系统运行压力最高2bar,由去离子水循环系统、氮气吹扫单元、压力调节单元、气水分离单元、气体分析预处理单元、PLC采集与控制单元、人机操作单元和安全监控单元等组成,采用公司自主开发的系统测试软件,可满足PEM电解槽的极化曲线、电化学测试、氧中氢浓度在线测试、敏感性测试、耐久性测试、产氢能耗效率、产氢质量测试和产品寿命等测试。产品功能:极化曲线测试功能、手动和自动运行模式、电池电压监测功能、氢/氧压力、温度测试功能、氧中氢浓度在线检测功能、氢/氧自动背压功能、高效汽水分离功能、水路温度、流量及压力控制功能、全自动补水功能、水路电导率监控功能等。二、北京格睿能源科技有限公司北京格睿能源科技有限公司成立于2021年,公司围绕氢能和燃料电池相关领域,以测试设备为基础产品,提供领先的高性能高可靠测试技术解决方案,为氢能行业提供“制-储-运-加-用”测试设备与数字服务。公司依托北京科技大学和清华大学氢能与燃料电池团队,经过多年技术积累,研发产品涵盖了燃料电池堆测试设备、燃料电池系统测试设备、电解槽测试设备以及关键零部件和材料测试设备等,可提供百瓦级至百千瓦级全功率范围的电解水制氢和燃料电池测试设备,并为客户提供智能化测试数据处理分析软件和测试服务。目前,产品已在国内多家高校、相关企业中得到应用,并成功开拓了海外市场。产品:100W 桌面式PEM电解槽测试台、全独立八通道 100W PEM电解槽测试台、整体式八通道 100W PEM电解槽测试台、5KW PEM电解槽测试台、500KW PEM电解槽测试台、GR-WETS-PEM-S500K 系列电解水制氢槽测试系统等。例:GR-WETS-PEM-SC100 系列电解水制氢槽测试设备在行业现有产品性能的基础上,进行了多项升级改进和优化设计。本测试设备由去离子水循环系统、氮气吹扫单元、气水分离单元、气体分析预处理单元、PLC 采集与控制单元、人机操作单元和安全监控单元等组成,采用公司自主开发的系统测试软件,可满足电解槽的极化曲线、产氢能耗效率、产氢质量测试和产品寿命等测试。产品功能:阳极进水温度控制、阳极水流量控制、夹具辅热温度控制、阳极进水温度控制、阳极水流量控制、夹具辅热温度控制、阳极出口温度测量、阴极(氢侧)自动背压、阴极产氢测量、氧中氢浓度在线切换检测、氢气流量在线切换检测等。三、大连锐格新能源大连锐格新能源科技有限公司成立于2009年,是国内最早专门从事氢能检测装备研发、设计与生产的高科技企业之一,拥有目前氢能行业最齐全的检测装备产品系列,目前产品覆盖PEMFC、PEM电解水和SOFC三大品类,主要包括燃料电池测试平台、燃料电池发动机测试系统、燃料电池系统部件测试平台、电解水设备测试平台、燃料电池及系统产线测试产品、燃料电池发动机测试实验室搭建等全系列氢能检测装备。产品:PEM(AEM)电解水制氢测试平台系列等。PEM(AEM)电解水制氢测试平台系列是针对PEM(AEM)制氢电解槽设计的一款测试平台,适用额定功率范围100W~1MW之间的PEM(AEM)制氢电解槽的性能评价。PEM(AEM)电解池测试系统可按照用户操作条件实现PEM(AEM)电解池的性能测试、敏感性测试、部件选型、寿命评估和理论基础研究等功能。通过操作软件实时控制、监测并显示PEM(AEM)电解池运行过程中的各种参数和工作状态,包括水的温度、压力、流量,电压、电流,冷却水温度、产生氢气的温度、压力、露点、纯度等参数,来实现PEM(AEM)电解池在各种不同的工况下的工作。产品功能:数据采集、存储功能:能够实时采集并存储电解槽的水流量、气体流量、温度、压力、电流、电压等信号;背压功能:氢气/氧气自动(手动)背压控制,满足常压到高压范围阴阳极均压、差压的控制功能;气体干燥功能:具备气液分离、气体冷却/干燥/过滤、气体流量精确测量;氮气自动吹扫功能:出现故障或停机时,自动氮气(高压/低压)吹扫,置换氢气管路中氢气;去离子水路控制功能:温度/流量精确调节、电解液回收、电导率在线监测、自动补水等功能;安全连锁及保护功能:软硬件多级安全保护策略和功能;电解池的性能测试(伏安特性曲线)、敏感性测试、部件选型、寿命评估功能;设备稳定性及可靠性:满足7×24小时无人值守全自动运行。四、NBT拜特NBT拜特创立于2005年,是国内新能源测试领域的开拓者,也是国内领先的新能源行业测试设备和技术服务提供商。公司主要业务涵盖锂电和氢电测试设备两大板块,凭借敏锐的市场触觉,优秀的产品品质,持续创新和迭代开发能力,为新能源行业用户提供丰富的产品组合和测试技术解决方案。产品:PE-1K/50K/500K/1MW电解制氢测试系统等。PE-1K/50K/500K/1MW电解制氢测试系统旨在为PEM电解槽制氢提供稳定测试系统,本系统由循环水系统模块、背压模块、降温除湿模块、氮气吹扫模块、PLC采集与控制模块、人机操作和安全监控模块等组成。用于检验电解槽的极化曲线、单池一致性、产氢能耗效率,产氢质量测试和产品寿命测试。产品特点:高效的水汽分离器设计,确保气体流量的精确测量具备安全自动防护操作,可选择执行降载、卸载、断路、降压、中断反应水供应等防护措施具备CV、CC、CP等多种运行模式,单池电压检测及防护,电源输出电压、电流、功率检测及防护功能全自动化无人值守操作完整的软硬件安全运行保护机制及定制化服务生成气精确流量测量,氢中氧,氧中氢在线质量分析,高压低压控制模式五、律致新能源律致是一家致力于为氢能装备、燃料电池系统及核心零部件提供开发测试和智能制造解决方案的创新型技术企业。公司目前为国家级高新技术企业、上海市“专精特新”企业、嘉定区“小巨人”企业,并荣获2021年度中国机械工业科技进步一等奖。公司在汽车、新能源及自动化领域拥有专业的能力和丰富的经验,依托上海交通大学坚实的“产学研”平台,律己达人、锐意创新、笃行致远、共赢未来,力争成为中国氢能和燃料电池领域的技术领跑者。产品:EC系列PEM电解水测试台。EC系列PEM电解水测试台是用于对PEM电解槽进行详细评估和表征的全功能设备。包括集成电源,电化学工作站,EIS阳抗测试仪,以及用于温度,压力,流速监视的实时传感器,是对电解槽进行测试,诊断和分析的理想实验室选择。产品特点高达10Mpa的背压控制解决方案可选的手动/自动背压模块电解电源最大高达1000V的电压,10000A的电解电流可靠的安全互锁装置,强制通风监测模块,使测试更安全有效选配气相色谱仪模块气体纯化模块,纯度99.999%标配阻抗测试模块,10mHz-10kHz的频率范围单节电解槽可选电化学工作站标配阴极水回收单元定制化防爆仓,使用氢更合规高效的远程监控软件,使测试效率更高六、宇科创新大连宇科创新科技有限公司(简称“宇科创新”)成立于2018年,是国家级高新技术企业、省级“专精特新”企业。目前,宇科创新已在电解水制氢测试设备方向展现出了明显优势,在主流的PEM、ALK、AEM等几种类型电解水制氢测试产品均有案例。产品功能氢气流量:PEM电解槽测试设备为500~1000Nm3/h。系统额定压力最大可达6MPa,防爆设计。电解电压及电流可个性化调整,可模拟风电或光伏发电场景。根据型号的不同,巡检节数最大支持1080节。具备氢、氧纯度检测能力。系统工作温度范围RT~90℃。内循环温度通过加热电解液升温,系统和外循环冷却系统可随时调整。对系统压力、温度、工作电流、循环水量电解液流量、气体浓度等参数进行实时监控,有异常立即报警或者停机。全流程压差自动控制。安全保护参数设置可防止用户错误输入造成该保护未保护。安全故障分级报警处理机制,每级报警值列表。具有实际产氢量质量流量在线测能力,测量精度≤1%F.S。除了上述公司外,还有一些其他企业和研究机构也在积极研发相关的测试技术和设备,为PEM制氢电解槽的性能优化和质量控制提供支持。随着氢能行业的迅速发展,专用检测设备的应用领域也在不断扩大。仪器信息网特别设立了氢能行业专用仪器的专题展示区,旨在为这些专业仪器提供一个展示平台,并希望通过此举为提升氢能使用的安全性贡献力量。
  • Nature子刊:原位拉曼光谱用于电解质演化捕捉
    在目前的电池研究工作中迫切需要改进的分析工具来识别锂离子电池的退化和失效机制。然而,了解并最终避免这些有害机制需要持续跟踪不同电池组件中的复杂电化学过程。为了达到这样的目的,剑桥大学Tijmen G. Euser教授团队报导了一种原位光谱方法,该方法能够在具有石墨阳极和LiNi0.8Mn0.1Co0.1O2阴极的锂离子电池的电化学循环过程中监测碳酸盐基液体电解质的化学性质。通过在实验室级别的软包电池内嵌入空心光纤探针,我们通过无背景拉曼光谱证明了液体电解质物质的演化。光谱测量的分析揭示了碳酸盐溶剂和电解质添加剂的比例随电池电压的变化,并在跟踪锂离子溶剂化动力学方面表现出极大的潜力。原位电解质监测可以促进研究复杂的化学途径和实际电池中化学物质之间的串扰现象。一个关键的例子是在没有初始碳酸亚乙烯酯(VC)的样品中出现了亚乙烯基拉曼谱带,这表明虽然亚乙烯基物质在阳极被消耗,但它们也在循环过程中通过碳酸亚乙酯(EC)氧化产生。本工作所提出的操作方法有助于更好地理解当前锂离子电池的局限性,并为研究不同电化学储能系统中的降解机制拓展了前景。原位拉曼如何表征电解质演化过程测试装置:图1. 具有空心光纤耦合拉曼分析设备的锂离子软包电池在拉曼装置中(图 1a),10-15 厘米长的空芯光纤的近端被封装在一个定制的微流体单元中,允许光线和流体进入光纤(图 1b, c)。纤维的远端安装并密封在软包电池的电极之间。使用两层单层PE聚合物隔膜(MTI)来避免纤维和电极之间的直接接触(图1d)。简化的空芯光纤(图 1c)经过优化,可在充满电解质时引导拉曼泵浦光和信号波长范围内的光。光纤的 36 µm 宽纤芯区域既可用作波导通道,又可用作微流体通道,其内部体积低至 30 nL/cm。自动注射泵用于根据需要从软包电池中取样和注入电解液。使用底部填充的 10x 0.3 NA 显微镜物镜将拉曼泵浦激光(785 nm 连续波,图1a)发射到填充电解质的光纤芯中。拉曼信号沿光纤的长度产生,一部分以反向传播的光纤模式被捕获,并被引导回邻近的光纤端面。产生的拉曼光的 CCD 图像(图 1c 中的右侧图像)显示大部分拉曼光是在中空光纤芯内产生和引导的。每次光学测量后,电解质样品被注入回软包电池中。由于需要避免任何电池扰动,需要 22 分钟的单次采样间隔(在 C/10 C 速率下大约是完全放电时间的 4%)。定期重复采样以达到在较长时间内监测电解质的目的(典型的充电-放电形成周期需要超过 10 小时)。测试结果分析:图2. 空心光纤中的在线拉曼测量。(a) 从光纤端面发出的拉曼光(左,图像比例尺为 50 µm)和光谱色散图像(右) (b) 在连续样品渗透期间跟踪的拉曼光谱。红色虚线表示泵何时开启;t1-a表示样品流体到达纤芯的时间。 白色虚线表示泵何时关闭,然后是样品注射器的开关。水平实线表示获取 c 中所示光谱的时间 (c) 得到不同溶剂混合物的光谱。与电池化学相关的突出显示的拉曼谱带是 893 cm-1处的碳酸亚乙酯呼吸模式(深红色虚线)、740 cm-1处的 PF6 阴离子模式(绿色虚线)和以 1628 cm-1为中心的碳酸亚乙烯酯 -HC = CH- 谱带(不存在于这些溶液和光谱中)。阴影区域表示与锂溶剂化机制相关的 1700-1850 cm-1处的 EC 和 EMC 带, 插图 i 展示了由 IPA 的拉曼强度(819 cm-1)监测的样品交换时间和 EMC 骨架(~900 cm-1)模式(c中的箭头)。插图 ii 显示了 1700-1850 cm-1处的 EC 和 EMC 波段。纤维芯内的动态交换和拉曼光谱首先在没有软包电池的情况下针对一系列电解质成分和典型溶剂进行了非原位测试(图 2)。光谱仪 CCD 记录近端面图像和光谱分散的光纤图像(图 2a)。在整个实验过程中,以每个光谱 20 秒的积分时间连续记录光谱。为了能够同时监测多个拉曼波段,我们在光谱范围、分辨率和信号强度之间进行了最佳权衡(图 2b)。最初,纤维填充有异丙醇 (IPA),其拉曼光谱如图 2b-c 所示。更换注射器以交换样品,泵流速设置为 5 µL/min (0.083 µL/s) 以渗入纤维芯。一旦拉曼信号稳定,注射泵就会关闭。 样品交换后系统的流体稳定时间目前约为 400 秒(对应于约 33 µL 的流量,图 2c)。此处依次渗透到纤维中的样品是 IPA、碳酸甲乙酯 (EMC)、碳酸亚乙酯 (EC) 和 EMC 的 3:7 混合物,以及商用电池级液体电解质溶液 LP57(即 EC 中的 1.0 M LiPF:EMC 3:7 v/v)。对于每个样品,在 410 和 2182 cm-1 之间获取相对宽带的拉曼光谱(图 2c)。拉曼光谱清晰显示了各种电解质成分特征。 首先,在 LP57 电解质中可以清楚地看到 PF6- 阴离子拉曼谱带在 740 cm-1 处的光谱位置。PF6- 峰在 ~720 cm-1 处与 EC 骨架模式部分重叠。检测 PF6- 很有意义,因为它的分解是基于一种发生在 NMC811 等富镍正极的表面的降解机制。此外,PF6- 很容易与电解质分解反应中产生的水发生反应。 其次,893 cm-1 处的 EC 呼吸模式与分子的环结构完整性有关。最后,1700-1850 cm-1 之间的阴影(宽紫色)带对应于 EMC 和 EC/VC 中羰基(C = O)键的拉曼峰,其光谱位置随锂离子溶剂化动力学而变化。此外,还标记了(弱)光谱带在 1628 cm-1(灰色虚线)处的预期位置,这是由于亚乙烯基 –HC = CH 添加剂 VC 的振动。因此,通过在装置中使用低密度衍射光栅,我们可以同时监测许多重要的电解质成分。图3. 循环过程中的电池电解质拉曼光谱演变。(a) 在 LiNi0.8Co0.1Mn0.1O2(NMC811) - 石墨锂离子软包电池的形成周期期间操作拉曼光谱,其电解质包含 LP57 + 2 wt.% VC。将电池恒流充电至 4.3 V,恒电位保持在 4.3 V,然后放电 (b) 拉曼光谱演化显示电池电解质的一系列拉曼模式中空纤维嵌入由 LiNi0.8Co0.1Mn0.1O2 (NMC811) 阴极和石墨阳极组成的软包电池中,以监测其在循环期间电解质的化学变化。每个圆形电极的有效面积为 1.54 cm2(直径 14 mm),并被一层聚合物隔膜覆盖。HC 纤维放置在两个分隔层之间,以保护电极表面免受纤维的机械损伤(图 1d)。将电池密封并填充 100 µL LP57,并添加 2 wt.% VC。尽管 HC 纤维在两个隔膜之间产生了微小的间距,但总电极表面与电解质的体积比 (~15 cm2/mL) 仍然非常接近于研究环境中常规组装的软包电池。将电池恒流充电至 4.3 V,在 4.3 V 下恒电位保持 1 小时,最后以 C/10 (18.5 mA g-1NMC) 的循环速率放电至 3.5 V。为确保在纤维芯中进行完全的样品交换,每 22 分钟从电池中提取 24 µL 体积的微量样品(大约是内部纤维体积的 50 倍),通过纤维内拉曼光谱进行分析,然后重新注入软包电池。我们从EC分子从正极到负极的穿过隔膜的扩散时间(td)来监测电极过程。假设聚合物隔膜的曲折度为 2.5,液体扩散系数为 10-6 cm2/s,这导致分子从一个电极到另一个电极的扩散时间为 td = 445 s(~7 分钟)。与之前的实验一样,我们使用宽光谱窗口(640-2340 cm-1,粗光栅)同时跟踪一系列化学物质。在第一个电化学循环期间,拉曼光谱的演变被测量为电池电压(红色曲线)的函数,在此期间预计会由于 EEI 形成而发生许多化学变化(图 3a)。在 PF6-、EC 呼吸模式和 EMC 和 EC/VC 中的羰基 (C = O) 键的谱线中观察到清晰的特征,如图 2b 所示。此外,在~1628 cm-1 处检测到(弱)亚乙烯基-HC = CH-拉曼谱带。在整个循环过程中收集完整的拉曼光谱可以对电解质盐和溶剂及其相互作用进行详细分析。总结:循环过程中碳酸酯溶剂的C=O拉伸模式相关的拉曼光谱变化,以及亚乙烯基-(C=C)双键浓度的变化等信号都可以由原位拉曼装置检测得到。对这些信号的获取和分析有助于研究电解质中的溶剂和盐成分在电池循环中的变化,揭示电池性能降解的机理,对开发长寿命的电池系统具有非常重要的意义。参考文献:Ermanno Miele et al. Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes. Nat. Commun. 2022.DOI: 10.1038/s41467-022-29330-4
  • 高分辨质谱技术丨赋能锂电池电解液成分表征
    概述锂电池与我们生活密切相关,比如手机、ipad、电脑、充电宝、玩具、电动汽车、电动轻型车和新型储能等都有锂电池的身影,锂电池综合优势与下游领域对电池大容量、高功率、使用寿命和环境保护日益提升的需求相契合,存在广阔的市场应用前景。锂离子电池四大关键材料包括正极材料、负极材料、隔膜、电解液。锂电池的正极材料中,行业已经认可镍钴锂、磷酸铁锂等材料,不过也有许多企业逐渐转入了新型复合材料的研发中,液相色谱串联高分辨质谱仪在该研发过程中,可以在探究新型材料氧化还原反应机理研究、及活性基团位置不同对电化学性能的影响等方面贡献力量。金属锂的高化学活性使其易于与大多数电解质发生不可逆反应,从而在阳极表面形成固体电解质层(SEI)。液相色谱串联高分辨质谱仪可以对SEI膜成分进行结构解析,帮助研究其形成机制,减少其形成。电解液被誉为电池的“血液”,是实现锂离子在正负极迁移的媒介,对锂电容量、工作温度、循环效率以及安全性都有重要影响。所以对电解液体系中的特有成分的鉴定,杂质鉴定,其在不同电极作用,不同循环次数,不同放置时间,不同添加剂等等条件变化下电解液组成的变化,反应机理的研究,这对电池性能研究都具有重要作用。X500R QTOF 系统在锂电池电解液成分分析的应用研究本实验采用X500R QTOF系统的IDA+DBS采集技术对锂电池电解液成分进行快速准确鉴定,仪器标配的ESI源和APCI源可兼顾不同性质的化合物,IDA+DBS采集技术能够保证在有限的时间内采集到的有效信息,一针进样同时获得高分辨一级和二级质谱图,应用SCIEX OS软件对数据分析,为表征电解液提供解决方案。图 1 数据处理流程图流程一:SCIEX OS软件并结合SCIEX高分辨二级谱库的靶向流程SCIEX OS软件可以设定的条件,快速筛选出一级偏差准确,同位素分布合理,二级质谱图匹配得分高的结果,帮助我们快速鉴定化合物。图2 TOF MS和TOF MS/MS谱图流程二:统计学分析得到差异化合物鉴定流程对于不同品牌来源,不同放置时间,不同循环时间的电解液等样本的差异比较,可以采取组学的思路,使用SCIEX OS软件中MarkerView&trade 统计学分析模块进行PCA,T-test等统计学分析,MarkerView&trade 统计学分析模块和Explorer鉴定化合物模块互相链接,无需不同软件间转移,减少格式转化带来的数据丢失。可以将原始数据导入MarkerView&trade 统计分析后得到样本间具有统计学差异的离子后,可以直接查看一级和二级质谱图,进行鉴定分析。图3 MarkerView&trade 统计学界面展示流程三:非靶向流程软件可以设置空白样本,根据设定的峰面积比扣除空白样本中的离子,软件自动将不同加和离子形式和不同电荷数进行分组,增加鉴定准确度并减少重复鉴定的工作量。提取出来的离子会自动给出分子式,链接SCIEX本地数据库或者在线数据库进行检索,根据和二级质谱图匹配的情况,给出得分,同时也可以根据软件自动给出的二级偏差判断碎片归属,二级碎片可以和结构一一对应,有助于我们进行结构解析,分析合理性图4 非靶向流程中部分界面展示小结本实验采用X500R QTOF系统的IDA+DBS采集技术对锂电池电解液成分进行快速准确鉴定,分别使用ESI源和APCI源对样本进行采集,兼顾不同性质的化合物,可以更全面的表征化学成分。IDA+DBS采集技术能够保证在有限的时间内采集到的有效信息,一针进样同时获得高分辨一级和二级质谱图,应用SCIEX OS软件并结合SCIEX高分辨二级谱库的靶向流程简便且准确。对于不同品牌来源,不同放置时间,不同循环时间的电解液等样本的差异比较,可以使用统计学软件找到统计学差异的离子,进行鉴定分析。也可以采用软件自动扣除空白,自动识别离子的不同加和离子形式,电荷形式,结合SCIEX本地数据库或者在线数据库的非靶向流程,是结构鉴定和解析的有力工具,为表征电解液提供了的解决方案。 参考文献 [1]冯东,郝思语,谢于辉,等.锂离子电池电解质研究进展[J].化工新型材料,2023,51(2):35-41.[2]付文婧,汪熙媛,柯伟,等.汽车电动化的重要发展方向——锂电池技术[Z].时代汽车,2023(7):123-125.[3]Ma, Ting, et al. "Functional Polymer Materials for Advanced Lithium Metal Batteries: A Review and Perspective." Polymers 14.17 (2022): 3452.
  • 中科院宁波材料所等在海水电解制氢技术领域获进展
    发展可再生能源电解水制氢技术是实现“碳达峰碳中和”目标的重要路径之一。海上可再生能源,如风能、光伏、潮汐能等由于波动性强、环境苛刻使得其利用效率低,而“就地取材”,通过海上可再生能源进行电解海水制氢,一方面是“绿氢”的廉价高效制取手段,另一方面也是海上可再生能源的高效利用手段。然而,海水中存在的大量氯离子会造成阳极材料的严重腐蚀,进而导致电极损坏、电压过高。如何延缓氯离子对阳极材料的腐蚀是海水电解制氢过程中需要解决的重点问题。  中国科学院宁波材料技术与工程研究所氢能材料与应用系统技术实验室针对海水电解中阳极易受电解液腐蚀的关键科学问题,通过对电解液的调控,将海水电解制氢稳定性提升了5倍。研究发现在电解液中加入硫酸盐可以有效延缓氯离子对阳极的腐蚀,提升海水电解制氢过程中阳极的稳定时长。研究人员以泡沫镍作为阳极,用不同盐浓度的电解液进行测试,观察到硫酸根的加入可以有效提高其耐腐蚀性,延长其在海水电解中的稳定时长。通过对腐蚀电位、电流、电阻的分析,该研究确认了硫酸根在防氯腐蚀方面的优势。在此基础上,理论模拟和原位红外、原位拉曼实验均证明,在反应电位下,硫酸根作为强酸阴离子可以优先吸附在阳极表面形成负电荷层,进而通过静电斥力排斥氯离子远离阳极表面,从而达到了延缓氯离子腐蚀阳极的效果。进一步,以常规催化剂电极-镍铁水滑石阵列(NiFe-LDH/NF)作为阳极进行海水电解制氢反应,发现硫酸根依然能大幅度提升其稳定性。在添加硫酸根的电解质中,NiFe-LDH/NF阳极在模拟海水和真实海水中400 mA cm-2电流下的稳定时长分别为1000小时和500小时,是其在未添加硫酸根的传统电解质中稳定时长的近6倍。  研究团队为解决海水电解制氢过程中氯离子对阳极的腐蚀问题提供了一种普适性的新策略,通过在电解液中添加硫酸根,扰乱电极表面的离子吸附量,使硫酸根优先吸附在阳极表面,形成排斥氯离子的负电荷层,达到排斥氯离子及延缓氯离子对阳极腐蚀的效果。该工作以The Critical Role of Additive Sulfate for Stable Alkaline Seawater Oxidation on Ni-based Electrode为题发表在Angewandte Chemie International Edition上。  该研究得到了宁波市“科技创新2025”重大专项、中科院“0~1”创新项目、博新计划、宁波市自然科学基金项目、中国博士后科学基金、国家自然科学基金、上海市青年科技英才扬帆计划、上海交通大学海洋跨学科项目等的支持。
  • 二氧化碳电解技术助力实现碳中和
    为了应对全球气候变化和环境问题,越来越多的国家将“碳中和”上升为国家战略。负碳技术通过捕集、贮存和利用二氧化碳以此抵消难减排的碳排放而成为了实现碳中和的重要途径,其中近年来快速发展、极具应用前景的二氧化碳电解技术受到广泛关注。研究人员正在进行二氧化碳/一氧化碳电解性能测试近日,中国科学院大连化学物理研究所(以下简称“大连化物所”)包信和院士、研究员汪国雄、研究员高敦峰团队在二氧化碳/一氧化碳电解制备燃料和化学品研究中取得新进展。团队揭示了碱性膜电解器中二氧化碳/一氧化碳电催化还原反应覆盖度驱动的选择性变化机制,并组装出千瓦级电堆,其电解性能是目前文献报道最高值。该成果可以实现钢厂尾气或者化工尾气的高值化利用,为二氧化碳/一氧化碳电解技术从实验室到实际应用提供了技术基础。相关成果发表在国际顶级学术期刊《自然—纳米技术》上。通过利用可再生能源产生的电能,二氧化碳电解反应可以将二氧化碳转化为高附加值燃料和化学品。乙烯、乙酸和乙醇等多碳产物具有较高的能量密度和市场需求,是理想的电解产物。然而,在工业级电流密度下高选择性生成多碳产物仍然存在很大挑战。本工作中,团队基于钢铁工业排放出大量的二氧化碳/一氧化碳混合尾气这一现状,通过改变进料气组成来调变碱性膜电解器阴极氧化铜催化剂的微环境,实现了在工业级电流密度下高效二氧化碳/一氧化碳电解制备多碳产物。随着进料气中一氧化碳压力的增加,电解主产物逐渐由乙烯转变为乙酸,且电流密度显著增加。为进一步验证电解过程的可行性,团队组装了4节100 cm2的碱性膜电堆,其电解功率最高达到2.85 kW,在总电流为150 A时,乙烯的生成速率为457.5 mL min?1;在总电流为250 A时,乙酸的生成速率为2.97 g min?1。团队研制的碱性膜电解器和电堆“团队在电化学器件上进行了创新,研制了高性能碱性膜电解器件来电解二氧化碳/一氧化碳。”汪国雄介绍,“同时,我们通过改变反应气中一氧化碳分压来调控电极催化剂微环境,揭示了反应覆盖度驱动的选择性转变机制。”该项研究不仅为单一多碳产物的定向生成提供了重要参考,而且为二氧化碳/一氧化碳电解从实验室走向实际应用提供了技术基础。提及下一步研究方向,汪国雄说:“我们将进一步开展放大研究,研制大规模的碱性膜电堆和系统,提高在实际工况下的稳定性,实现在工业领域的示范运行。”
  • 登上国际顶刊!解决电解水制氢重大问题
    南开大学电子信息与光学工程学院罗景山教授团队联合西班牙巴斯克大学科研团队,在电催化水分解制氢研究中取得重要进展。据了解,该联合团队利用金属载体相互作用构筑了碱性条件高活性析氢催化剂,能够在每平方厘米5安培的大电流密度下稳定运行超过1000小时,满足了阴离子交换膜电解水制氢技术商业化应用的需求,相关研究成果在国际学术期刊《自然通讯》发表。氢能作为一种低碳高效的清洁能源,在全球能源转型和应对气候变化方面扮演重要角色。以可再生能源电解水制氢为代表的绿氢在生产过程中不产生温室气体,被广泛视为实现碳中和目标的重要路径之一。Ru NPs/TiN的合成示意图目前,碱性电解水(ALK)和质子交换膜电解水(PEM)两种电解水制氢技术占比较高。其中,ALK制氢技术生产成本低、工业化成熟,但产生的氢气纯度不高且能量效率低。PEM制氢技术能量效率高,产生的氢气纯度较高,但成本较高。而阴离子交换膜(AEM)制氢技术被认为是集两者优势于一体的第三代电解水制氢技术,具有高效率、低成本、快速启停等优势,但在大电流密度下电解槽系统稳定性不足限制了其产业化应用。罗景山介绍,开发大电流密度下寿命长、性能稳定的催化剂是AEM制氢技术亟待解决的核心问题之一。“我们使用氮化钛负载的钌纳米颗粒催化剂组装了AEM电解槽,能在每平方厘米1安培、2安培和5安培的电流密度下稳定运行超过1000小时,性能几乎没有衰减。”论文第一作者、南开大学电子信息与光学工程学院2021级博士生赵佳说。“在每平方厘米5安培的工业级电流密度下,我们的研究成果能够在AEM电解槽中高效稳定运行,克服了催化剂容易不稳定的问题,满足了AEM制氢大规模商业化应用的需求。”罗景山说,“未来,团队将继续投入到绿氢制备技术的自主研发之中,促进科技成果尽快转化落地,为构建零碳、低成本、安全可靠的绿氢能源供给体系贡献力量。”
  • 方案:气相色谱 - 质谱法测定锂电池电解液组分
    目前针对电解液成分组成的测定方法或文献非常稀少,本文的目的是建立 简单,高效的气相色谱质谱检测方法,灵敏、快速测定锂电池电解液成分及 含量。 锂电池电解液是电池中离子传输的载体。一般由锂盐和 有机溶剂组成。有机溶剂主要是酯类化合物,这些酯类 化合物种类和含量对锂电池的性能起关键性作用。 本方法是将锂电池电解液样品直接稀释,用气相色谱 - 质谱进行定性、定量。方法操作简单,9 种酯类化合物检 出限在 3.0 μg/L-30.0 μg/L 之间。结论样品中的 9 种酯类化合物用乙酸乙酯稀释至合适浓度后 直接进样,采用赛默飞世尔新型的气相色谱质谱仪检测 和确证,外标法定量。结果表明,9 种酯类化合物的回 收率为 92.4.3-105.3%,6 次平行测定的 RSD 值≤ 4.16%。此 法操作简单,科学准确,灵敏度高,能够满足锂电池电 解液组成成分分析要求。 点击气相色谱 - 质谱法测定锂电池电解液组分 下载方案
  • 锂离子充电电池电解液以及正极材料的安全性评价
    锂电池的应用十分广泛,如手机、笔记本、电动汽车等已成为生活中不可或缺的产品。随着其在汽车以及电力储藏等领域大型化的应用、对其高性能和安全性要求也越来越高。锂离子电池具有极高的能量密度,这是因为电池中封装了更多活性材料,且电极和隔膜越来越薄、越来越轻。这些均需要电池组成材料之间的完美搭配、若设计不足或者滥用,就会出现热失控现象,导致冒烟、起火甚至爆炸等事故。 因此对锂电池的生产和使用过程中的安全性评价非常重要,下面就让我们用日立DSC7000系列对锂离子充电电池电解液以及正极材料进行安全性评价。 样品处理和容器■ 样品处理的气氛LIB的构成中包含很多反应性高的材料。实际产品被封装在惰性气氛中,因此DSC测定也必须将其密封在惰性气体中进行。(为了避免大气中的水分、氧气、二氧化碳等气氛对样品的影响、样品处理在手套箱中进行。)■ 容器样品分解产生的气体、会污染DSC传感器、可能造成仪器功能损坏,因此需选择密封形的容器。另外测试时容器内部压力增大,故需要选择高耐压值的SUS密封容器。电解液正极材料的热特性的研究■ 电解液电解液的DSC结果如上图所示:样品中溶剂为高介电常数溶剂碳酸乙烯酯(EC)和低粘度溶剂碳酸甲基乙基酯(EMC),电解质为六氟磷酸锂(LiPF6)。在升温过程中,该电解液先熔融再分解,在244℃开始熔融,分解放热峰温度278℃,同时还可以得到其分解放热量。■ 电解液+正极材料这里显示把电解液和正极材料混合密封在容器中的样品的DSC测定结果。正极材料是充电状态的锰酸锂(LixMn2O4、X=0(充电状态))。183℃附近有一个放热反应,随后有一个放热峰,放热峰峰值约为290℃,与上述的电解液相比、在低温测得(183℃)开始放热,这是正极材料的热分解,释放氧气、使得电解液氧化分解。从上述DSC测定中,可观察到热分解的起始温度、可以评价LIB的热稳定性、起始温度越高热稳定性越高。本资料显示的是完全充电状态的结果、也有充电越多,Li脱离量越多、热稳定性也会越降低的报告。综上所述,通过差示扫描量热仪DSC对电解液以及正极材料进行热特性的评价,我们可以了解电解液以及正极材料在程序升温过程中的吸放热现象,为锂电池安全生产、加工和使用过程作参考。关于日立TA7000系列热分析仪详情,请见:日立 DSC7020/DSC7000X差示扫描热量仪https://www.instrument.com.cn/netshow/SH102446/C313721.htm日立 STA7000Series 热重-差热同步分析仪https://www.instrument.com.cn/netshow/SH102446/C313727.htm日立 TMA7000Series 热机械分析仪https://www.instrument.com.cn/netshow/SH102446/C313737.htm日立 DMA7100 动态机械分析仪https://www.instrument.com.cn/netshow/SH102446/C313739.htm 关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 可令锂电池更安全的新型聚合物电解质
    p style=" text-align: center " /p p style=" text-align: center " strong img src=" http://img1.17img.cn/17img/images/201806/insimg/a9849a7c-1457-4d49-ab26-81b4bbc2cb08.jpg" title=" A solid polymer electrolyte film that’s being utilized in lithium batteries.jpg" width=" 300" height=" 161" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 161px " / /strong /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 由Zhu博士领导的研究中锂电池上正在使用的固体聚合物电解质薄膜。 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 图片来源:阿克伦大学。 /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 嵌入式医疗设备、无人驾驶飞行器、电动汽车 /strong /span strong 和 span style=" color: rgb(255, 0, 0) " 其他类似产品 /span 的电源,对它们的性能至关重要。 /strong /p p   那么,如果像锂电池这种能量储存装置没有如预期工作,会发生什么呢?一辆电动或混合动力汽车将无法使用,急需的生物医学器具会耽误病人的健康。 /p p   这些都是聚合物科学教授Yu Zhu博士和其他科学家共同努力避免的后果。 /p p   Zhu的研究小组的论文题目为 strong i “一种超离子导体导电的,电化学稳定的双盐聚合物电解质” /i /strong ,可以在《焦耳》,细胞出版社的前瞻性期刊上浏览,该刊物涵盖各个领域的能源研究。 /p p   Zhu和他的研究团队发明了一种固体聚合物电解质,可用于锂离子电池,以替代现有的液体电解质,可提高锂电池的安全性和性能。 /p p   Zhu谈到, strong 由于电极的高界面电阻和低离子导电性,固体电解质并未在锂电池领域进行市场推广 /strong 。然而,Zhu和他的团队发现, span style=" color: rgb(255, 0, 0) " 室温条件下,一种双盐基聚合物固体电解质在锂电池电极材料和超离子导体导电性方面表现出优异的电化学稳定性 /span 。 /p p    span style=" color: rgb(31, 73, 125) " i “长期以来,人们一直考虑将固体电解质用于锂离子电池,因为它的阻燃性,高机械强度,可能会减轻电池故障造成的灾难。电池的安全性和能量密度是锂电池新兴应用领域的主要问题,比如在电动汽车中的使用。 /i /span /p p span style=" color: rgb(31, 73, 125) " i   如果固态聚合物电解质得到成功开发,电池的能量密度将会翻倍,锂电池的安全问题也会被消除。这项研究为开发具有前景的锂电池用固体电解质奠定了强有力的基础。” /i /span /p p style=" text-align: right " span style=" color: rgb(31, 73, 125) " 本文主要作者,Yu Zhu博士 /span /p p   该研究团队已建立了一家名为 span style=" color: rgb(255, 0, 0) " Akron PolyEnergy /span 的公司,该公司将进一步开发这种方法,并为未来的商业化目标制备一个大型原型样品。 /p p   Zhu的研究生, span style=" color: rgb(255, 0, 0) " Si Li /span 和 span style=" color: rgb(255, 0, 0) " Yu-Ming Chen /span ,是这项研究的主要作者。其他科学家还有研究生 span style=" color: rgb(255, 0, 0) " Wenfeng Liang,Yunfan Shao span style=" color: rgb(0, 0, 0) " 和 /span Kewei Liu /span ,以及位于校内的国家高分子创新中心仪器科学家 span style=" color: rgb(255, 0, 0) " Zhorro Nikolov /span 博士。 /p
  • 聚焦铝业 共商铝事 ——瑞士万通出席2012国际电解铝及原材料峰会
    2012国际电解铝及原材料峰会在太原万狮京华大酒店举行,200多位电解铝行业专家及企业人士齐聚一堂,共同探讨过去一年国内外铝业形势,展望未来发展趋势。此次峰会由亚洲金属网主办,中国有色金属工业协会铝部副主任郎大展、国际铝业协会秘书长罗恩耐普等多位业内资深专家都在大会上做了精彩发言。瑞士万通作为行业设备生产商参加了此次会议,并由产品经理龚雁女士在峰会上为大家介绍了859温度滴定系统在电解铝行业的最新研究成果及应用方案。 59 Tiamo温度滴定系统荣获2012优秀科学仪器新品 目前电解铝企业大多采用拜耳法生产氧化铝,拜耳铝溶液中总碱、苛性碱和铝氧是影响氧化铝转化效率和产品品质的关键因素,这些项目的指标在氧化铝行业至关重要。传统的手工滴定方法不仅操作费时,而且依靠指示剂判断终点不可避免的会带来测试误差。859温度滴定系统是由瑞士万通公司最新专利技术,利用化学反应中吸热放热引起的温度变化检测体系中物质含量,拥有检测时间短、灵敏度、测试范围广谱、电极免维护等诸多优势,是传统滴定的有效补充,并荣获了2012优秀科学仪器新品。 最近,瑞士万通和和加拿大铝企业共同研发出使用859温度滴定系统检测拜耳率溶液中的总碱、苛性碱和铝氧的最新方法,最新的温度滴定方法操作便捷,无需人工操作,整个测试过程由软件自动完成,终点自动判断,安全准确,相信在未来的中国铝业市场会拥有广阔的应用前景。
  • 仪表不凡,智测未来--WVTR系列电解法水蒸气透过率测试仪
    WVTR系列电解法水蒸气透过率测试仪测试原理薄膜:将待测试样装夹在恒温的干、湿腔之间,使试样两侧存在一定的湿度差,由于试样两侧湿度差的存在,水蒸气会从高湿侧向低湿侧扩散渗透,在低湿侧,水蒸气被干燥载气携带至水分析传感器,通过对传感器电信号的分析计算,从而得到试样的水蒸气透过率和透湿系数。容器:容器的外侧是高湿气体,内侧则是流动的干燥气体,由于容器内外湿度差的存在,水蒸气将穿透容器壁进入容器内部,进入容器内部的水蒸气将由流动的干燥载气携带至水分析传感器,通过对传感器电信号的分析计算,可得到容器的水蒸气透过率等结果。注:产品技术规格如有变更,恕不另行通知,SYSTESTER思克保留修改权与解释权!
  • 大连化物所等实现高效稳定二氧化碳电解
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室研究员汪国雄和中科院院士、大连化物所研究员包信和团队,与日本科研人员合作,在高温CO2电解研究方面取得新进展。研究通过氧化还原循环处理,构建了高密度金属/钙钛矿界面,显著提高了固体氧化物电解池CO2电解性能和稳定性。  固体氧化物电解池可在阴极将CO2和H2O转化为合成气、烃类燃料,并在阳极产生高纯O2,具有反应速率快、能量效率高、成本低等优点,在CO2转化和可再生清洁电能存储方面具有应用潜力。  钙钛矿型氧化物因其优异的可掺杂能力、抗积碳能力、氧化还原稳定性等,在催化和能源领域受到广泛关注。然而,与传统镍基阴极相比,钙钛矿电极因电催化活性不足导致其应用受到限制。将活性组分掺杂到钙钛矿体相,进而在还原气氛下原位溶出金属纳米颗粒,构建金属/钙钛矿界面,是一种提高CO2电解性能的有效途径。但金属纳米颗粒溶出仍存在颗粒密度低和颗粒尺寸大等缺点。此外,金属/钙钛矿界面形成机制以及催化机理缺乏直观的原位动态认识。  该工作中,科研人员制备了Ru掺杂的Sr2Fe1.4Ru0.1Mo0.5O6-δ(SFRuM)双钙钛矿,通过氧化还原循环处理使RuFe合金纳米颗粒密度从5900个μm-2(R1)增加到22680个μm-2(R6),平均粒径在2.2~2.9nm之间,有效调控了RuFe@SFRuM界面密度。科研人员结合原位气氛电子显微镜及元素分布和电子能量损失谱表征,揭示出在还原和氧化气氛下RuFe@SFRuM界面的形成和再生机制,阐明了表面Ru元素富集促进溶出高密度RuFe@SFRuM界面的内在本质。原位气氛电镜、电化学交流阻抗谱结合密度泛函理论计算证实,RuFe@SFRuM界面促进了CO2吸附活化。与SFRuM阴极相比,RuFe@SFRuM阴极在1.2V时,CO2电解电流密度提高了74.6%,在1000小时,CO2电解测试中表现出高稳定性。该研究为固体氧化物电解池高效稳定电解CO2提供了新策略。  相关工作以Promoting Exsolution of RuFe Alloy Nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6-δ via Repeated Redox Manipulations for CO2 Electrolysis为题,于近日发表在《自然-通讯》(Nature Communications)上。研究工作得到国家自然科学基金、国家重点研发计划、中科院青年创新促进会等的支持。  论文链接
  • 电源净化器——最先进的用电解决方案
    电源净化器——最先进的用电解决方案 你是否遇到过这样的问题并使用同样的解决方法?停电/限电 -- 安装UPS骤降/电涌 -- 安装稳压电源02但你听说过高频噪声吗?你知道半导体行业为什么要求火零噪声高频噪声在您处理实验时最重要的危害是什么?!芯片分辨率从以前的4-5V,降低到现在的1-1.5V,且摩尔定律揭示每18个月其脉冲速度和数据密度就会持续翻倍。任何大于0.5V的噪声都会导致逻辑0/1的误读使芯片做出错误判断,影响仪器运行和实验结果。珀金埃尔默电源净化器——一步解决包括高频噪声的所有用电问题,避免不必要的费用支出和设备的停机时间。珀金埃尔默一直密切关注仪器可靠性;清洁电源能有效减少停机时间和报修率;即插即用且三年保修,三年内的故障免费更换新机。珀金埃尔默电源净化器的特点和优势:可提供120, 208, 240VAC 的62AMPS 的无噪音电源;双输出型号可同时满足高压系统负载和低压周边设备的要求,以避免重复购买而降低成本;性能可靠,兼容性强;可预防高压激增、共模电压、电噪音、电压的脉冲和压降,以及不稳定的交流电频率和接地回路。我们在中国抽样了200个实验室,发现95%零地噪声0.5V, 15%火零噪声10V,安装电源净化器后,仪器报修率降低了49.26%。查询或购买请登录珀金埃尔默耗材报价平台:关注“珀金埃尔默”微信公众号点击自定义菜单"耗材订购平台"进入珀金埃尔默耗材订购平台页面促销货号及折扣8.5折!N9307522-产品描述:3.6 kVA Power ConditionerN9307523-产品描述:6.0 kVA Power ConditionerN9306755-产品描述:2.0 kVA Power Conditioner 关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 大连化物所研制出固体氧化物电解池制氢样机
    近日,大连化物所燃料电池研究部燃料电池系统科学与工程研究中心(DNL0301组)研制出固体氧化物电解池制氢样机,额定产氢量为2Nm3/h。固体氧化物电解池(Solid Oxide Electrolysis Cell,SOEC)是固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)的逆过程,可在中高温(700至900℃)下将电能和热能转化为燃料化学能,具有能量转化效率高、不使用贵金属催化剂等优点。SOEC利用富余的可再生能源电力,以及核电、化工、钢铁等行业伴生的工业余热实现电解制氢,效率有望达到90%以上,是未来大规模制取氢气的重要技术之一。与国外相比,我国SOEC技术起步较晚,在电堆和系统制备等方面差距较为明显。近年来,该团队围绕SOEC关键材料、电堆与系统集成等方面,取得系列进展。团队发展了对称密封技术,展现出优异的密封性能,实现多次重启后电堆开路电位未见明显降低;研究开发了大功率电堆的气体分配技术,单堆功率达到10kW级;自主设计了高集成度的供水单元、供气单元和热管理单元,集成出额定产氢量2Nm3/h的SOEC制氢系统,直流能耗约3.30kWh/Nm3,水蒸气转化率达到70%以上。相关成果有望为进一步开发大规模固体氧化物电解池制氢系统奠定技术基础。上述工作得到大连化物所创新基金的支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制