当前位置: 仪器信息网 > 行业主题 > >

电压击穿检测

仪器信息网电压击穿检测专题为您提供2024年最新电压击穿检测价格报价、厂家品牌的相关信息, 包括电压击穿检测参数、型号等,不管是国产,还是进口品牌的电压击穿检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电压击穿检测相关的耗材配件、试剂标物,还有电压击穿检测相关的最新资讯、资料,以及电压击穿检测相关的解决方案。

电压击穿检测相关的方案

  • 电压击穿试验仪选型常识
    2、如何选择合适量程的电压击穿试验仪:在材料的标准要求里或者测试报告中,对材料的耐压等级通常用介电强度来表示,即KV/mm,击穿电压和介电强度的关系可以用如下公式表示: 击穿电压值(KV) 介电强度(KV/mm)=------------------------------------------ 试样厚度(mm)由如上公式可以得出结论,选择多大量程的测试仪器,取决于试样的厚度,即: 击穿电压值(KV)=介电强度(KV/mm)* 试样厚度(mm) 由此公式所得出的击穿电压值是按照试样厚度测试时的有效电压值,所以得出击穿电压值后,在此电压值得基础上适当加宽些量程范围比较合理,建议计算出击穿电压值后增加10KV—20KV
  • 介电强度和击穿电压的区别
    1、介电强度和击穿电压的区别:介电强度:是一种材料作为绝缘体时的电强度的量度. 它定义为试样被击穿时, 单位厚度承受的最大电压,单位是:KV/mm或MV/m,. 介电强度越大, 它作为绝缘体的质量越好.介电强度也可称为电气强度。击穿电压是一种材料作为绝缘体时所能承受的最大电压值,也就是击穿破坏时的最大电压值,单位是:KV
  • 如何选择合适量程的电压击穿试验仪
    2、如何选择合适量程的电压击穿试验仪:在材料的标准要求里或者测试报告中,对材料的耐压等级通常用介电强度来表示,即KV/mm,击穿电压和介电强度的关系可以用如下公式表示: 击穿电压值(KV) 介电强度(KV/mm)=------------------------------------------ 试样厚度(mm)由如上公式可以得出结论,选择多大量程的测试仪器,取决于试样的厚度,即: 击穿电压值(KV)=介电强度(KV/mm)* 试样厚度(mm) 由此公式所得出的击穿电压值是按照试样厚度测试时的有效电压值,所以得出击穿电压值后,在此电压值得基础上适当加宽些量程范围比较合理,建议计算出击穿电压值后增加10KV—20KV
  • 介电强度和耐电压击穿解决方案
    本方法是用连续均匀升压或者逐级升压的方法,对试样施加交流或直流电压,直至击穿,测出击穿电压值,自动计算试样的介电强度,用迅速升压的方法,将电压升到规定值,保持一定的时间试样不击穿,记录电压值和时间,即为此试样的耐电压值,以千伏和分表示。
  • 同等电压量程不同功率的电压击穿试验仪的区别
    3、同等电压量程不同功率的电压击穿试验仪的区别:A:在测试规程和测试标准中,最常用的测试数据是击穿电压值,而对仪器的输出电流没有要求时,可以不用考虑设备的容量值,只关注设备的量程即可,对测试数据没有影响B:在有些测试标准或测试要求中,必须要求仪器满足最大输出电流是多少,对此在选择仪器量程的同时,需要关注变压器的容量值(即功率KVA)C:输出电流、电压值及功率之间的关系用如下公式表示: 变压器容量(KVA) 输出电流(MA)=---------------------------------------------- 电压量程(KV)
  • 电压击穿试验仪选什么传感器精度最高
    电压击穿试验仪选什么传感器精度最高1、高压设备电压采集对采集系统的要求比较高,我公司电压击穿试验仪控制部分采用 德国西门子PLC控制,具有很强的抗干扰能力,采用光电隔离数据线和电脑通讯,使得在击穿的瞬间保证设备和电脑的安全运行2、德国西门子PLC采集速率为1MS,击穿响应判定时间为1MS,响应时间快。3、电压采集采用日本松野的电压传感器,数据准确,安全可靠4、电流采集采用日本松野的电流传感器,数据准确,安全可靠5、本设备的判停方式有两种:电压判停、电流判停6、升压速率不分档,可以由用户自由设定。
  • 绝缘油耐压测定仪在变压器油击穿电压试验中的应用
    击穿是指在电场作用下,绝缘材料形成贯穿性桥路,进而发生破坏性放电,在一定程度上使电极间的电压降至零或接近零的现象。通常情况下,击穿对固体介质来说是永远失去介电强度,对液体、气体来说,失去介电强度只是暂时性的。在规定的试验条件下绝缘体或试样发生击穿时的电压叫做击穿电压。通常情况下,绝缘性能的好坏直接反应了变压器油的击穿电压的强弱,并且变压器使用的安全性和周期受到直接的影响和制约。同时击穿电压也是客户验收油品的重要测试项目,试验结果受到试验方法、测试仪器,以及环境等因素的影响和制约。TP572型绝缘油耐压试验仪是装置球盖形电极的3油杯试验仪,通过其对变压器油击穿电压的测定试验,分析了测定过程中出现的异常现象及测定值产生误差的原因。
  • 在空气中和在油中做电压击穿试验有什么区别
    5、在空气中和在油中做电压击穿试验有什么区别:A:测试介质空气—是指把被测试样和电极放置在空气中做耐压和击穿实验B;测试介质油----是指把被测试样和电极完全放置在油中做耐压和击穿实验,通常使用25#变压器油做试验介质C:无论在空气中还是在油中做实验对测试数据没有影响,如果被测样品没有特殊要求通常默认在空气中做实验,有两种情况需要在油中做实验,一是标准里有规定,必须在油中做实验,二是在空气中做实验时,被测试样出现爬电、释放电火花而导致无法击穿时必须放置在油中做实验
  • 击穿电压测试仪安全保护功能全解
    适用于固体绝缘材料(如:塑料、橡胶、薄膜、树脂、云母、陶瓷、玻璃、绝缘漆等介质)在工频电压或直流电压下击穿强度和耐电压的测试.
  • LJC-50KV电压击穿试验仪
    该仪器采用计算机控制,通过人机对话方式,完成对绝缘介质的工频电压击穿,工频耐压试验。主要适用于固体绝缘材料。如:绝缘漆、树脂和胶、浸渍纤维制品、层压制品、云母及其制品、塑料、薄膜复合制品、陶瓷和玻璃等在工频电压下击穿电压,击穿强度和耐电压的测试。并对实验过程中的各种数据快速、准确地进行采集、处理、存取、显示、打印。
  • 如何检测材料击穿值及薄弱点
    本仪器由电脑控制,是我公司自主研发的全新第二代介电击穿检测仪器,本仪器由数字集成电路系统与软件控制系统两大部分构成,使升压速率真正做到匀速、准确,并能够准确测出漏电电流的数据。可实时绘制试验曲线,显示试验数据,判断准确,并可保存,分析,打印试验数据。本系统能够自动判别试样击穿并采集击穿电压数据及泄露电流,同时能够在击穿的瞬间电压迅速降低自动归零。软件系统操作方便,性能稳定,安全可靠。
  • 安装电压击穿试验仪注意事项
    安装电压击穿试验仪注意事项:A:要求安装地点必须有良好的接地B:空气湿度不宜过大C:要求配备不小于16A的插排一个D:空气开关:DDJ-50KV以下不小于25A,DDJ-100KV以下不小于32A
  • 使用TSI台式激光诱导击穿光谱仪 (LIBS) 商业用煤样品中的元素Al进行了分析
    本案例中使用TSI台式激光诱导击穿光谱仪 (LIBS) 对来自北达科他州的8个商业用煤样品进行了分析。在检测前,样品已被粗糙的压碎(3mm),实验中没有对样品进行进一步的压碎或磨碎。
  • 使用TSI台式激光诱导击穿光谱仪 (LIBS) 商业用煤样品的元素Fe 进行了分析
    本案例中使用TSI台式激光诱导击穿光谱仪 (LIBS) 对来自北达科他州的8个商业用煤样品进行了分析。在检测前,样品已被粗糙的压碎(3mm),实验中没有对样品进行进一步的压碎或磨碎。
  • 激光诱导击穿光谱法分析CIGS太阳能电池的吸收层
    摘要采用激光诱导击穿光谱法(LIBS)对共蒸发法制备的涂Mo钠钙玻璃上的CuIn1-xGaxSe2 (CIGS)吸收层进行了元素分析。研究了LIBS检测1.23μ m厚的CIGS吸收层的最佳激光和检测参数。Ga/In比值与x射线荧光和电感耦合等离子体发射光谱测量的浓度比值的校准结果具有良好的线性关系。
  • 国际最新激光诱导击穿光谱技术(LIBS)及应用
    国际最新激光诱导击穿光谱(LIBS)技术及应用趋势,LIBS优势及特点:• 测量分析速度快• 轻元素测量成熟,无问题• 成分的含量及比例控制• 校正后可做定量测量……
  • 自动闪点测定仪中闪火火焰检测方法的实验研究
    1概述“闪点”是表征石油产品储运安全性的一项指标,单位是摄氏度。它表明石油产品处此温度时如遇到明火将会引起“爆鸣”危及设备,人身安全,是石油产品出厂,入库前都要进行测试的一项指标。我国现行的闪点测定标准测速较慢,测得的闪点值与按国际标准得到的数值不尽相同,不便于国际交往v为使我国早日推行较先进的国际标准﹐必须批量生产出能按国际标准进行测试的,性能上远较现有仪表为优的自动化仪表、闪火火馅的检测问题是开发此类仪表的技术关键之一,目前国际上常用以下几种方法来检测闪火火焰 1.1火焰离子检测法利用这一方法进行闪点检测始见于美国,国际上应用的也较多,这一方法的根据是火焰能使空气电离、并降低空气的击穿电压,因而可用检测击穿电压的方法来确定闪火点。实践表明:由于在检测过程中需要频率为三干赫、振幅为七百伏的高压、此电压会对仪表产生干扰,采取了抗干扰措施之后、火焰检测法可以满足电脑控制型闪点测定仪的设计要求。
  • 激光诱导击穿光谱技术助力再生铝行业发展
    最新的激光诱导击穿光谱技术(LIBS光谱法)则将再生铝的分拣能力提升了一大步,LIBS光谱技术为几乎所有固体样品中的几乎所有元素的鉴定和分析提供了一种简单直接的方法。这种化学分析解决方案相比传统的元素分析方法具有独特的优势,可以在一秒内快速直接的对合金材料进行牌号鉴定,应用在再生铝的分拣上,就是可以直接对铝合金的牌号进行区分
  • 电压击穿测试仪操作方法指南
    电子控制系统是通过西门子PLC控制,数据采集方式通过光电隔离,有效解决试验过程中的抗干扰问题,软件操作使用方便,能够实时显示动态曲线,同时升压速率无级可调,可以根据自己的需要进行升压速率调节,调节范围在10V-5000V/S,使升压速率真正做到匀速、准确,并能够准确测出漏电电流的数据。可实时绘制试验曲线,显示试验数据
  • 如何做好电性能检测设备的安全防护措施
    主要适用于固体绝缘材料(如:塑料、橡胶、层压材料、薄膜、树脂、云母、陶瓷、玻璃、绝缘漆等绝缘材料及绝缘件)在工频电压或直流电压下击穿强度和耐电压的测试。
  • 激光诱导击穿光谱法测定鲨鱼牙齿中氟的分布
    提出了激光诱导击穿光谱(LIBS)作为确定鲨鱼牙齿内F分布的替代和快速有效的测试方法。使用激光剥蚀样品池(T woVol3)和创新的LIBS嵌入式采集系统,研究了沙虎鲨(Carcharias Taurus)、虎鲨(Galeocerdo Cuvier)和锤头鲨(Spyrnidae)的鲨鱼牙齿。
  • 徕卡Leica DM6M LIBS激光诱导击穿光谱元素分析系统_样本、参数、价格、应用案例等
    2合1系统用于目视和化学分析目视和化学材料检验二合一,节省90%的时间。DM6MUBS解决方案的集成激光光谱功能可提供在显微镜图像中所观察到的化学指纹图谱。利用所有显微镜功能,通过化学分析检查样品和鉴定材料。1秒即可获得化学指纹图谱运用成熟的JBS(激光诱导击穿光谱)技术进行即时元素分析,可在数秒内获得轰击点的化学信息。将工作流程精简至只有一个步骤,以结果为重点!0- 无需样品制备找到感兴趣的位罟,随后只需单击一下,即可触发 LBS 分析。所见即所测!无需制备和传输样品一无需系统调节一无需重新定位感兴趣区
  • 激光诱导击穿光谱法(LIBS)鉴别油漆样品
    犯罪现场可以为调查所发生的事情提供有价值的信息。尽管DNA分析盛行,但痕量证据可以为破案奠定坚实的基础。痕量证据包括玻璃、头发、纤维、油漆和聚合物等物品。痕量证据可以帮助建立人、物和地点之间的联系。这里提到的案例将着眼于确定从嫌疑人的车辆中找到的油漆的元素特征是否与从犯罪现场找到的油漆样品进行区分的能力。研究人员从护栏、交通标志和嫌疑人的汽车上提取了蓝色油漆样本。 可以使用光学显微镜、扫描电子显微镜/能量色散x射线光谱(SEM/EDS)、XRF或XRD来比较油漆样品。光学显微镜用于视觉比较,但不是决定性的。SEM/EDS可以区分不同的油漆样品,但油漆是不导电的,所以需要进行样品制备。X射线荧光光谱(XRF)或X射线衍射光谱(XRD)可以分析单层油漆,多层油漆样品可能存在问题,且其元素覆盖范围有限。激光诱导击穿光谱(LIBS)为样品中的每一个元素提供了快速微区分析。LIBS光谱数据丰富,提供了独特的类指纹数据,用于提供良好的识别能力。另外,LIBS比XRF具有分析多层油漆样品的能力。深度分析是很重要的,因为许多汽车OEM涂层(如BASF)通常由4层组成,包括电泳层、中涂层、色漆层和清漆层。最近,LIBS深度分析报告指出,彩色油漆和白色油漆的分辨率分别为99.6%和85.6%。
  • 激光诱导击穿光谱(LIBS)对固态锂离子电池的深度剖析
    在当今社会,智能手机和平板电脑等电子设备正成为人类日常活动的重要组成部分。这些电子产品不断发展,使其结构更紧凑、重量更轻,这也就对电池的功率输出和寿命提出了越来越高的要求。为了应对这些技术挑战,锂离子电池技术也在不断进步,在保持紧凑和轻便特性的同时,还能够产生更高的能量输出和更强的循环性能。本文介绍了激光诱导击穿光谱(LIBS)对锂离子电池重要元件化学组成的关键元素进行深度分析的能力。这些组件包括正极、负极和固态电解质。典型的基于解决方案的元素分析技术,如电感耦合等离子体发射光谱(ICP-OES)和电感耦合等离子体发射质谱(ICP-MS),不能揭示这些部件的结构信息。另一种流行的元素分析技术X射线荧光光谱(XRF)无法为锂离子电池电极的重要元素提供元素覆盖,例如Li、B、C、O、F、N。其它表面和深度分析技术,需要复杂的真空仪器,如二次离子质谱(SIMS)、辉光放电质谱(GD-MS)、俄歇电子能谱(AES)和X射线光电子能谱(XPS),检测速度慢或者价格昂贵。LIBS提供锂离子电池组件在实验室或工厂的深度分析能力,具有很出色的分析速度。LIBS还具有从H - Pu到大含量范围(ppm - wt. %)的基本覆盖。
  • 使用TSI台式激光诱导击穿光谱仪 LIBS分析仪对煅烧氧化铝中的钠元素进行分析
    钠是一种轻元素,可以通过激光诱导击穿光谱(LIBS)技术轻松测定到ppm级别。对于测定耐火材料如氧化铝中的钠元素,传统方法是酸消解,再通过电感耦合等离子体发射光谱 (ICP-AES) 进行测定,或者通过XRF (X射线荧光) 进行测定。酸消解费时费力,因此总的分析时间也相当长。即使是使用复杂的X射线荧光光谱仪,因为荧光相对较弱,要获取可靠的钠读数通常也需要花费20分钟或更长。相反,使用TSI 台式LIBS分析仪,仅需要几秒钟,即可完成材料中多种成分(包括钠)进行定性及定量分析
  • 川大彭强最小化界面能量损失策略实现电压损失0.36V
    为减少钙钛矿太阳能电池(PSCs)能量损失,优化界面接触和能带对齐至关重要。四川大学彭强团队于Energy & Environmental Science八月发表将氟取代琥珀酸衍生物引入钙钛矿底部界面,其中四氟琥珀酸(TFSA)因其对称结构和强电负性成为最佳界面调节剂。TFSA通过多位点氢键稳定FA阳离子,配位效应失活未配位Pb2+缺陷,并调节MeO-2PACz形貌和表面电位,形成高质量钙钛矿膜。结果,0.09 cm2倒置器件效率达25.92%(认证25.77%),电压损失仅0.36 V,长期稳定性出色。12.96 cm2微模块效率达22.78%,展示扩展潜力。本研究为调控埋藏界面能量损失提供有效途径,实现高效稳定的倒置钙钛矿太阳能电池。有机-无机混合卤化物钙钛矿太阳能电池(PSCs)因高效率、简便制备和经济性在太阳能转换领域崭露头角。倒置PSCs已达26.15%认证效率,展现巨大应用潜力。然而,PSCs效率仍未达理论极限,主要受钙钛矿膜电压损失和界面缺陷影响。界面能量损失是提高效率的关键障碍,尤其在底部界面。高性能倒置PSCs多基于自组装单分子层(SAMs)空穴传输层,但实现缺陷封闭仍具挑战。SAMs分子聚集阻碍高密度单分子层形成,不利于界面接触和钙钛矿结晶。埋藏界面影响膜形态、缺陷和稳定性,组分异质性导致缺陷积累和非辐射复合,降低开路电压。光不稳定PbI2降解进一步影响稳定性。过量FAI可补偿缺陷,抑制离子迁移和相分离,但陷阱仍集中于界面附近。界面修改策略旨在重新分布不良组分,减少缺陷。预嵌FAI层有效消除PbI2残留,但热退火导致有机阳离子流失,均匀分布仍具挑战。因此,需要新策略同时解决SAM HTLs排列、钙钛矿结晶和界面接触问题。本研究提出埋藏界面能量损失调控策略,通过多功能界面桥调节SAMs性质和钙钛矿生长。引入氟化琥珀酸衍生物,其中TFSA通过多重作用机制优化界面。TFSA抑制碘空位缺陷,稳定FA阳离子,调控MeO-2PACz排列和表面电位。结果获得高质量钙钛矿膜,小面积器件效率达25.92%,填充因子85.06%,创RbCsFAMA基倒置PSCs新高。未封装器件在高温和光照下展现优异稳定性。12.96 cm2微模块效率达22.78%,显示良好扩展性。
  • 使用电压敏感探针检测细胞膜电位变化-Molecular Devices FLIPR
    FLIPRTETRA? 系统配置了390–420nm波长激发光LED以及440–480nm和565–625nm波长的滤光片,使用电压敏感探针(Voltage Sensor Probe,VSP)染料用于基于FRET原理的高通量筛选(HTS)实验,提供了一种新型的细胞基础的膜电位变化检测方法。
  • 上海凯来:使用TSI台式激光诱导击穿光谱仪 LIBS分析仪对煅烧氧化铝中的钠元素进行分析
    钠是一种轻元素,可以通过激光诱导击穿光谱(LIBS)技术轻松测定到ppm级别。对于测定耐火材料如氧化铝中的钠元素,传统方法是酸消解,再通过电感耦合等离子体发射光谱 (ICP-AES) 进行测定,或者通过XRF (X射线荧光) 进行测定。酸消解费时费力,因此总的分析时间也相当长。即使是使用复杂的X射线荧光光谱仪,因为荧光相对较弱,要获取可靠的钠读数通常也需要花费20分钟或更长。相反,使用TSI 台式LIBS分析仪,仅需要几秒钟,即可完成材料中多种成分(包括钠)进行定性及定量分析
  • 高低温湿热试验箱对电源适配器安全性能的检测方案
    电源适配器在常规使用中,其内部电子元件如电阻、电力电容器、绕阻(变电器、电感线圈)将体元器件(特别是大电力电子器件)都需要耗费电磁能,在其中-一部分以热量的方式往外释放,使机器设备每个一部分温度一定程度的上升,热量的传递方法主要有三种:导热、热对流和辐射热。全部气温高的那一部分会对周边气温低的那一部分产生辐射热,当温度较大时,辐射热不显眼,机器设备热量不容易释放,也会导致设备上电子器件的温度上升;而且机器设备温度超出绝缘层材料所能接受的环境温度时,可能造成绝缘层材料变软、形变,可能会导致击穿电压和电气间隙的减少,机器设备的安全性绝缘性能能降低或无效,以到引起电风险等。此外,太高的环境温度还会造成烧灼、点燃、起火等危险。
  • 钙钛矿开路电压推至理论极限的95%,25.11%的高转换效率
    华中科技大学王鸣魁团队于 Advanced Energy Materials 第30期发表了一项创新的方法,通过使用具有推拉电子结构配置的π共轭分子来调节埋藏界面,从而提高三阳离子钙钛矿太阳能电池的开路电压(Voc)。研究人员在钙钛矿太阳能电池中使用了氧化锡纳米晶作为电子传输层,并发现新型化学材料能够显著降低界面能障并钝化埋藏界面的缺陷。这种方法将Cs0.05(FA 0.85 MA0.15)0.95Pb(I 0.85 Br 0.15)3(带隙约为1.60 eV)钙钛矿太阳能电池的开路电压提高到1.241 V,并且在标准测试条件下的转换效率达到24.16%。当使用Cs 0.05 MA0.05 FA0.9 PbI 3(带隙约为1.54 eV)钙钛矿太阳能电池时,甚至可以达到更高的效率25.11%。这个开路电压是三阳离子钙钛矿太阳能电池中最高的,达到了肖克利-奎瑟极限的95%。此外,研究人员还制作了能量转换装置,通过将两个钙钛矿微模块串联起来驱动二氧化碳电解槽,实现了11.76%的太阳能到CO的转换效率,这在整合钙钛矿光伏进行太阳能驱动的CO2转换方面树立了一个新的基准。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制