当前位置: 仪器信息网 > 行业主题 > >

吸收透射检测

仪器信息网吸收透射检测专题为您提供2024年最新吸收透射检测价格报价、厂家品牌的相关信息, 包括吸收透射检测参数、型号等,不管是国产,还是进口品牌的吸收透射检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吸收透射检测相关的耗材配件、试剂标物,还有吸收透射检测相关的最新资讯、资料,以及吸收透射检测相关的解决方案。

吸收透射检测相关的资讯

  • 175nm-50000nm变角度透射反射光学性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用珀金埃尔默紫外/可见/近红外光谱仪和Spectrum 3红外傅里叶变换红外光谱仪,配置TAMS等可变角度测试附件,测试样品不同角度下绝对反射率、透射率数据,实现175nm-50000nm透射率、反射率等光学性能的精确表征。TAMS附件为变角度绝对反射、变角度透射测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。 Lambda系列分光光度计 TAMS变角度透射反射附件光路图图1 仪器外观图以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。01样品变角度透射测试采用TAMS附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,测试曲线如下图所示。 图2 样品不同角度和偏振态下透射率测试数据(点击查看大图)TAMS附件配套不同的偏振组件,可以自动测试样品不同波长下偏振信号,如下图测试石英样品在45度下偏振P光和S光反射数据: 图3 样品紫外波段P光和S光偏振测试(点击查看大图)02样品变角度透射/反射曲线测试通过软件设置,可一次性测试得到样品透射和反射率曲线,如下图,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。 图4 样品45度透射和反射曲线测试(点击查看大图)03NIST标准铝镜10度反射率曲线测试测试NIST标准铝镜10度下反射率数据,如下图所示,黑色曲线为TAMS测试曲线,红色为NIST标准值曲线,两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。 图5 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)04样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。 图6 样品全波段(200-2500nm)变角度反射率测试(点击查看大图)05不同膜系设计的镀膜样品性能验证测试样品600-1400nm下45度反射率曲线,该样品在1200nm以上属于高反射率,反射率大于99.5%,同时需要关注600-1200nm范围各个吸收峰情况,该波段下吸收峰非常尖锐,同时吸收峰较多,需要仪器具备高分辨率,从而准确测试出每一个尖锐吸收峰信号。 图7 膜系设计验证样品45度反射率测试(点击查看大图)06双向散射分布函数(BSDF)测试除了测试常规变角度透射和反射曲线外,TAMS附件可以自动测试样品不同角度下透射和反射率信号,可以得出样品不同角度下的透射分布函数(BTDF)和反射分布函数(BRDF)信号,最终得到双向散射分布函数(BSDF)。采用该附件可方便测试样品双向散射分布函数(BSDF)、双向反射分布函数(BRDF)、双向透射分布函数(BTDF)等光学参数测试,测试结果如下图所示: 图8 BRDF和BTDF测试(点击查看大图)如下图所示,测试样品不同波长下BSDF分布函数曲线(BRDF + BTDF),从而可以得出样品随不同角度下透射和反射信号变化情况。 图9 样品不同波长下BSDF(BRDF+BTDF)测试(点击查看大图)07窄带滤光片测试Lambda系列光谱仪为双样品仓设计,TAMS附件可与标准检测器、积分球检测器自由更换。对于窄带滤光片样品,即需要准确测设带通区域的透过率、半峰宽,也需要准确测试截止区吸光度值(OD值),可直接切换标准检测器进行检测。 图10 用于激光雷达的镀膜镜片透射和OD值测试数据(点击查看大图)08红外波段区变角透射反射测试珀金埃尔默傅里叶变换红外光谱仪,可广泛应用于上述红外材料光学性能测试,可测试样品在不同波段下红外透光率以及反射率,搭配变角透射及变角反射附件,可以实现不同角度下透射率及反射率测试,如下图为红外波段透射和反射测试曲线: 图11 用于Spectrum 3傅里叶红外的TAMS附件 图12 红外TAMS附件测试样品红外波段不同角度透射数据Summary综上,采用Lambda系列紫外/可见/近红外分光光度计以及傅里叶红外光谱仪,搭配TAMS、标准检测器、积分球等多种采样附件,可以组合出完备的材料光学性能测试平台,满足光学镀膜测试的多样化需求,更加准确便捷的得到样品的光学检测数据。 关注我们
  • 光伏材料的角度分辨反射/透射分析
    光学镀膜材料在太阳能行业应用广泛:由化学气相沉降法生成的氧化锌涂层,自然形成金字塔形表面质地,在薄膜太阳能电池领域被用于散射太阳光。将不同折射系数的高分子材料排列组成的全息滤光镜,将太阳光在空间上分成不同颜色的色带(棱镜一样),将不同响应波长的光伏电池调到每个波长的焦距处,从而形成一种新型的多结太阳能电池。位于硅太阳能电池前部的纳米圆柱形硅涂层起米氏散射的作用,因此增加了在更宽入射角范围和偏振情况下的光被太阳能电池的吸收。曲面型光电模块的渲染和原理图。3M可见镜膜能够使模块在可见光区表现为镜像,而在近红外光区变为黑色。对于所有的光学涂层——特别是那些非垂直角度接收阳光或者阳光入射的涂层,表征波长、角度和偏振测定的反射和入射就尤为关键。PerkinElmer公司的自动化反射/透射附件ARTA,可以测定任何入射角度、检测角度、S和P偏振光在250-2500nm的范围内的谱图,从而告诉我们:所有的入射光都去哪儿啦?装备了ARTA的LAMBDA紫外/可见/近红外分光光度计样品3M可见光镜膜:吸收紫外光,反射可见光,透过红外光。仪器PerkinElmer公司的LAMBDA 1050+紫外/可见/近红外分光光度计。150mm积分球,Spectralon涂层积分球包含硅和InGaAs检测器,检测样品200-2500nm的范围内的总透射谱和总反射谱。装备了150mm积分球的LAMBDA紫外/可见/近红外分光光度计ARTA,配备PMT和InGaAs检测器的积分球(60mm),能在水平面上围绕样品旋转340°,进行角度分辨测量。3M薄膜固定在ARTA样品支架上的照片实验结果用150mm积分球附件测量的3M薄膜的总反射和总透射谱图。薄膜在750nm附近具有预期的突变,在此处有将近100%的可见光反射率和约90%的红外光透射率。3M薄膜对于s(左图)和p(右图)偏振光的角度分辨反射谱图。对于所有的偏振情况,直至50˚的范围内反射到透射的转变都很急剧,但是有轻微的蓝移。对于入射角在约50˚以上的情况,s偏振光的转换终止,并且薄膜开始失去对光谱的分光功能。这种情况的一个明显后果就是在冬天或者纬度高于30˚的区域的夏季月份,曲面型光电镜片的工作效率都很低。更多详情,请扫描二维码下载完整应用报告。
  • 光学薄膜透射反射性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用PerkinElmer紫外可见近红外光谱仪配置可变角度测试附件,直接测试样品不同角度下绝对反射率、透射率曲线,无需参比镜校准,操作简单方便,测试结果更加准确。附件为变角度绝对反射、变角度透射率测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。PerkinElmer Lambda1050+ 光谱仪自动可变角附件光路图图1 仪器外观图固定布局 工具条上设置固定宽高背景可以设置被包含可以完美对齐背景图和文字以及制作自己的模板下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。样品变角度透射测试采用自动可变角附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,无需多次操作,测试曲线如下图所示。图2 样品不同角度和偏振态下透射率测试数据样品变角度透射/反射曲线测试同一个样品,可以通过软件设置一次性测试得到样品透射和反射率曲线,如下图所示,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。图3 样品45度透射和反射曲线测试NIST标准铝镜10度反射率曲线测试采用自动可变角附件测试NIST标准铝镜10度下反射率曲线,如下图所示,黑色曲线为自动可变角附件测试曲线,红色为NIST标准值曲线,发现两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。图4 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。图5 样品全波段(200-2500nm)变角度反射率测试不同膜系设计的镀膜样品性能验证
  • 纳米流式检测技术,粒径表征媲美透射电镜——访厦门大学颜晓梅教授
    仪器信息网讯 厦门大学颜晓梅教授团队于2014年9月研制成功第一台纳米流式检测仪原型机,2015年10月第四代原型机研制成功,2016年1月中旬在北京计量科学研究院进行第一次试用,2016年6月第一代科研级纳米流式检测仪完美亮相CYTO 2016国际流式学术大会,2016年10月专业版软件NF Profession 1.0研发成功。纳米流式技术发展处于什么阶段?纳米流式技术成果商业化过程有哪些故事?国产仪器自主创新存在哪些痛点和不足?近期,仪器信息网在ACCSI2021现场特别采访了厦门大学颜晓梅教授,请她就上述问题进行了分享。三年实现快速成果转化,粒径表征媲美透射电镜目前,流式细胞仪在生命科学、临床医学等领域是重要的分析检测工具之一。据颜晓梅教授介绍,纳米流式检测技术是基于流式细胞技术,将检测下限推进到纳米尺度。颜晓梅教授团队首创性地结合瑞利散射和鞘流单分子荧光检测技术,研发成功具有自主知识产权的纳米流式检测技术,实现单个纳米颗粒(7-500 nm)以及外泌体、病毒、细菌、亚细胞器等天然生物纳米颗粒的粒径及其分布、颗粒浓度、和生物化学性状的高通量多参数同时表征。该技术的粒径表征分辨率媲美透射电镜,检测速率高达每分钟上万个颗粒,同时兼备电子显微镜难以实现的生物化学性状分析功能,填补了国际空白。项目团队积极推进技术产业化,成立了厦门福流生物科技有限公司,仅用3年时间就将“纳米流式检测技术”研发成果转化为“中国智造”。 厦门福流生物 纳米流式检测仪点击查看参数详情科学仪器研发平台离不开交叉学科人才培养在采访中,颜晓梅教授强调了复合型科研人才的培养对于国产科学仪器的发展至关重要,科学仪器研制的过程通常是创新技术密集(光、声、电等技术)、管理复杂的活动,需要不同学科的交叉融合,尤其成果转化过程也需要金融、市场等背景支持。因此培养兼具科研、工程和管理能力的复合型人才对于国产科学仪器成果转化具有推动作用。提高纳米医药业核心竞争力,纳米流式未来可期据颜晓梅教授介绍,纳米流式检测技术不仅应用于传统的生命科学、临床医学领域,还在食品药品安全以及能源材料等领域发挥重要作用。并且纳米流式检测仪产业化项目技术密集、附加值高、成长空间大、带动作用强,是纳米医药业核心竞争力的集中体现。 据悉,厦门福流生物科技有限公司生产的纳米流式检测仪目前已经出口到全球顶尖的医疗机构、科研单位和高科技企业,如梅奥诊所(Mayo Clinic,2018年全美排名榜首的医院)、美国德州大学安德森癌症中心(MD Anderson Cancer Center,全球排名第一的肿瘤科研与临床研究机构)、约翰霍普金斯医学院、美国国立卫生研究院(NIH)、外泌体诊断和治疗应用开发领军企业Codiak Biosciences公司、瑞士联邦理工学院(欧陆第一理工大学)、诺和诺德(世界领先的生物制药公司)、瑞典哥德堡大学、德国马尔堡大学、悉尼大学、台湾大学、复旦大学等。
  • 蓝菲光学成功交付上海市质检院定制摄影镜头光谱透射率及色贡献指数检测系统
    2019年11月蓝菲光学成功交付上海质检定制摄影镜头光谱透射率及色贡献指数检测系统。光谱透射率及色贡献指数是衡量摄影镜头质量优劣的重要指标。摄影镜头的光谱透射比特性直接影响彩色摄影的色再现质量,ISO规定了以用对数透射比为基础的色贡献指数来描述照相镜头的色再现性(ISO 6728-1983)。我们知道照相镜头是由多片透镜组成的,其设计是由全世界多个厂商共同协作的,不同厂商根据其设计方案,则选用不同的透镜玻璃。照相机的色贡献指数是由整个镜头的综合光谱透过率决定的。从某种意义上讲,用于照相镜头的每一块透镜玻璃都应该测量其色贡献指数,并且测试值符合标准要求。上海市质量监督检验技术研究院,是国家市场监督管理总局批准设立的,经上海市人民政府依法设置的非营利性公益科研类政府实验室,是国家级产品质量监督检验研究院。是集产品质量检验检测、计量校准、体系与产品认证、标准化服务、培训与咨询为一体的全国最具有综合竞争力的检测院所之一。上海市质检院针对采购检测仪器具有很高的产品要求,在产品质量、性能、售后服务等一系列考察后,选定蓝菲光学定制生产镜头色贡献指数检测系统。蓝菲光学定制生产的镜头色贡献指数检测系统基于积分球的光谱透射率测试系统,来获取镜头的光谱透射比。待测镜头最大尺寸128mm(D)*366mm(L), 待测镜头重量5kg以内。镜头透过率范围一般在4%-98%。硬件系统由积分球,光谱仪,准直光源,夹具和暗室组成。系统符合JBT8248.1-1999 照相镜头光谱透射比的测量方法和JBT8251-1999 照相镜头的色贡献指数国标。蓝菲光学高漫反射涂料很受行业认可,该测试系统积分球内部使用Spectraflect® 涂料在紫外-可见光-近红外光谱区内漫反射率高达98%。积分球的开口处采用刀刃结构有助于收集大角度散射,挡板采用最小化设计,使得探测器能够最大程度地看到球内壁表面。探测器口位于球的顶部和底部,使用挡板遮挡防止样品和参考口光束直接照射。蓝菲光学的光谱仪光谱范围350-1100nm,该光谱仪内置的电制冷、薄型背照式CCD探测器可高效地抑制杂散光。所使用的准直光源均匀性>90%,光斑大小可调,配套软件显示光谱透射比和色贡献指数,光谱间隔为10nm,此外允许我们自定义光谱及对软件二次开发,方便实用。图1 上海质检定制摄影镜头光谱透射率及色贡献指数检测系统图图2 摄影镜头光谱透射率及色贡献指数检测系统软件界面蓝菲光学定制的摄影镜头光谱透射率及色贡献指数检测系统设计灵活,可依照标准定制,适用于各类镜头透过率和色贡献指数测试。
  • 电池电解液液体透射测量工具—台式色差仪
    随着科技的飞速发展,电池已经成为我们日常生活中不可或缺的能量储存好帮手!从我们的便携式电子设备,到那些酷炫的电动交通工具,都要靠电池的支持才能动起来。没错,电池可是真正的能量源头呢!然而,要说到电池的性能和稳定性,可真得多亏了电解液,它是电池的核心组件之一!电解液主要由溶剂、导电盐和添加剂组成。溶剂通常是有机溶剂,例如碳酸酯、碳酸酰、醚类等,导电盐则是决定电池电导率的关键因素。添加剂的加入可以调节电解液的性质,如粘度、化学稳定性等,以提高电池的性能。有了优秀的电解液,电池的表现就会更稳定、更强劲。这样一来,我们的电子设备就能续航更久,电动交通工具也能跑得更远。所以说,不管是充电还是输出电能,电解液功不可没啊!然而,电解液的透射性质有时候可能会遇到一些问题哦!比如,如果电解液的透明性不够好,光线就可能被挡住,影响电池内部的能量传输效率,让电池性能变差。另外,电解液对特定波长的光线吸收过多,可能引起化学反应,导致电池不稳定。而且,电解液中溶质的浓度变化也会影响光线透射的特性。那么,我们要如何解决这个透射相关的问题呢?这就需要依靠Ci7x00系列的Ci7800台式分光色差仪与Ci7860精密色差仪来帮忙!这两款仪器可谓是我们的得力助手!Ci7800台式分光色差仪,可以简单快速地测量电解液的透射率,看看它有没有足够的透明性,保证光线能顺利穿过,让电池能高效传导能量。Ci7800色彩色差仪支持多达5个反射孔径和4个透射孔径,可通过不同位置的端口来测量各种样品的色彩与外观。这项功能使得它在许多领域中都得到了广泛应用。此外,Ci7800还支持多达3个UV滤光镜来控制纺织品、塑料、油漆、涂料和纸张中的荧光增白剂。设备内置数码相机具有预览和主动目标定位功能,可保证测量区域的准确定位,并能捕获图像以备日后检索。同时,它还能检测样品上的污点、划痕或缺陷,并提供随附的测量数据以备审计,为质量控制提供了有效支持。如果我们想要更深入的了解电解液的光学特性,这时候Ci7860精密色差仪就派上用场了!它不仅可以测量透射率,还能给我们提供更多数据,包括吸收特性和反射率等等。这样一来,我们就能全方位地了解电解液的性质,发现其中的问题,进而针对性地优化电解液的配方。Ci7860精密色差仪广泛应用于多个工业领域,包括纸张、纺织物、塑料、颜料、汽车以及屏幕色彩校正等。它为这些行业提供了可靠的色彩测量和管理解决方案,帮助企业提高产品质量,降低生产成本,增强市场竞争力。有了这两款色差仪,我们可以轻松解决电解液透射相关的问题!通过优化电解液的性能,我们就能让电池表现得更稳定、更强劲,让我们的电子设备续航更久,电动交通工具跑得更远,让我们的生活更便利、更美好。同时,这些仪器的应用也推动着科技的不断发展,让能源领域取得了更大的进步。随着技术的不断创新和仪器的不断完善,相信电池的未来会变得更加出色!“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 关于举办“透射电镜分析技术”培训通知
    近年来电子显微领域的技术发展突飞猛进,硬件和软件的新技术和新功能不断的推出。透射电镜越来越受到科研人员的重视,用途日益广泛。现在透射电镜已广泛用于材料科学(金属材料、非金属材料、纳米材料)、化学化工、生命科学、转化医学、半导体材料与器件、地质勘探、工业生产中的产品质量鉴定及生产工艺控制等。为适应广大分析技术工作者的需求,进一步提高透射电镜用户的应用和研究水平,推动显微分析应用的进一步发展,上海交通大学分析测试中心特举办“ATP 004透射电镜分析技术”培训班,NTC授权单位培训机构上海交通大学分析测试中心承办并负责相关会务工作。 现将有关事项通知如下:一、 培训目标:了解透射电镜的基本结构与原理;了解透射电镜检测/校准项目及相关要求;掌握国家标准中透射电镜的检测方法。(一)通过学习理论知识,观摩实际操作,排查仪器故障,调谐最佳机器运转状态。(二)面对应急问题,学员可理论联系实际,查找故障原因,进行仪器自检及修复。二、 时间地点:培训时间:2023年10月16日-10月18日 上海(时间安排:授课2天,考核1天)三、 课程大纲:时间内容10月16日上午透射电镜的发展、成像原理、基本结构10月16日下午透射电镜的样品制备、像衬度、基本操作及维护10月17日全天透射电镜实操培训及答疑10月18日全天考核四、 主讲专家:主讲专家来自上海交通大学分析测试中心,熟悉NTC/ATP 004 透射电镜分析技术大纲要求,具有NTC教师资格,长期从事透射电镜技术研究的专家。五、 授课方式:(一) 讲座课程;(二) 仪器操作;六、 培训费用:(一)培训费及考核费:每人3000元(含报名费、培训费、资料费、考试认证费),食宿可统一安排费,费用自理。(二)本校费用:每人1500 元(含报名费、培训费、资料费、考试认证费;必须携带学生证)。七、 颁发证书: 本证书由国家科技部、国家认监委共同推动成立的全国分析检测人员能力培训委员会经过严格考核后统一发放,证书有以下作用:具备承担相关分析检测岗位工作的能力证明;各类认证认可活动中人员的技术能力证明、该能力证书可作为实验室资质认定、国际实验室认可的技术能力证明;大型仪器共用共享中人员的技术能力证明。 考核合格者将由发放相应技术或标准的《分析检测人员技术能力证书》。考核成绩可在全国分析检测人员能力培训委员会(NTC)网站上查询(https://www.cstmedu.com/)。八、 报名方式:(一)请详细填写报名回执表(附件1)和全国分析检测人员能力培训委员会分析检测人员考核申请表(附件2),邮件反馈。(二) 注:请学员带一寸彩照2张(背面注明姓名)、身份证复印件一张,有学生证的学员携带学生证复印件。(三) 报名截止时间是10月10日16:00前。(四) 如报名人数不足6人取消本次培训。 九、 联系方式联系人:吴霞(报名相关事宜)、郭新秋(技术咨询)电话:021-34208496-6102(吴霞)、021-34208496-6205(郭新秋)E-mail:iac_office@sjtu.edu.cn官方网址:iac.sjtu.edu.cn
  • 透射与反射测量技术关键工具及颜色测量方法
    在现代科学研究和工业应用中,精确的物质性质测量是至关重要的。特别是在材料科学、光学工程以及生物医学领域,透射测量与反射测量技术的应用日益增多,它们在各自的领域内发挥着不可替代的作用。透射测量是指测量光线通过物质后的强度变化,以此来分析物质的特性;而反射测量则是基于光线打到物质表面后反射回来的光强变化进行分析。这两种测量技术虽然操作原理不同,但都旨在通过光与物质的相互作用来揭示物质的内在属性。一、透射测量与反射测量的比较分析透射式和反射式分光光度计均能利用光源的闪烁特性,覆盖360至750纳米范围内的全部波长光线进行照射。通过对透射光或反射光的测量,这些设备能够创建出色彩的量化图谱(即色彩“指纹”)。在反射光谱中,主要波长决定了颜色的属性。紫色、靛蓝及蓝色属于短波段,波长介于400至550纳米之间;绿色处于中波段,波长在550至600纳米;而黄色、橙色及红色表示长波段光。对于光亮增白剂(OBA)和荧光剂这类特殊物质,它们的反射率甚至可以超过100%。反射式分光光度仪通过照射光源至样本表面并记录以10纳米步长测得的反射光比例,以此来分析颜色。这种方法适用于完全不透明的物质,通过反射光的量化,可以准确测量其色彩。而配备透射功能的分光光度仪则是通过让光穿透样本,使用对面的探测器来捕获透过的光。这一过程中,探测器会测量透射光的波长及其强度,并把它们转换成平均透射率的百分比,以量化样本的特性。尽管反射模式能够用于分析半透明表面,但准确了解样本的透明度是必须的,因为这直接关系到最终数据的准确性。二、样品确实不允许光线穿透吗?测量透射率与评估不透明度并不总是等同的,因为不透明度涉及两个方面:是否能遮挡视线穿过的表面或基质,以及材料允许光线通过的程度。通常,您可能会认为您的手是不透光的,从某种角度来看,这是正确的。然而,当您把手电筒紧贴手掌并开启时,会发现光线能够从手的另一侧透射出来。半透明与透明材质的本质区别半透明材料允许光线穿透,却不允许清晰的视线通过。举个例子,经过蚀刻处理的浴室塑料门便是半透明的。相比之下,透明材料,如普通的玻璃板,可以让人从一侧清楚地观察到另一侧的物体。三、实际应用及解决方案考虑到涂料,当其涂布于墙面时,其不透明性足以覆盖下层材料,阻止透视效果。但要准确评估涂料的不透明度,我们需采用对比度分析法。一旦应用于基底,涂料通常表现出高不透明度,使得Ci7500台式色差仪成为其测量的理想工具。至于塑料,虽然肉眼看来我们可能无法通过塑料样本看穿,但它们可能具备一定的光透过性。比如,外观不透明的塑料瓶,在未经测试前其真实透光性难以判断。以过氧化氢瓶为例,其内容物若暴露于阳光下会迅速分解,因此这类瓶子通常呈棕色,以屏蔽阳光。然而,置于强烈光源下,这些瓶子是能透光的。鉴于成本考虑,过氧化氢瓶的制造尽量保持不透明。在纺织品的应用上,选择分光光度仪时需考虑具体的使用场景。美国纺织化学师与印染师协会(AATCC)推荐将样品折叠至四层以确保不透明度的测量。这一方法对于测量厚实的织物如灯芯绒裤或棉质卷料足够有效,但对于透明或薄的半透明尼龙材料,采用其他量化技术可能更为合适。请记住,在测量特定允许一定光线透过的纺织品时,按照ASTM的203%遮光测试标准,必须使用具备透射功能的分光光度仪进行测量。Ci7600台式分光光度仪、Ci7800台式分光色差仪和Ci7860台式色差仪均支持透射和反射模式测量,它们为需要同时评估不透明与半透明样本的应用场景提供了理想解决方案。这些设备能够执行三种主要测量方式:①直接透射测量:针对完全透明的样本设计,如塑料拉链袋和清晰的玻璃板。②全透射测量:适合那些允许光线穿透但视线模糊的半透明样本,比如橙汁、洗涤液以及2升容量的塑料瓶。③雾度测量:针对那些能够散射光线的半透明样本,如汽车尾灯的塑料覆盖件,这类样本散射红色光线,而不直接显露灯泡和灯丝。若您的需求仅限于测量完全不透明的表面,Ci7500台式色差仪或许更符合您的需求。然而,如果您的主要测量对象为不透明表面,偶尔也需测量一些允许光线透过的物体,那么具备透射测量功能的设备,如Ci7600台式测色仪或更高端的型号,将是更合适的选择。四、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 以“太行”之名,挺起透射电镜产业的中华脊梁——我国首台国产商业场发射透射电镜诞生
    1月20日,由生物岛实验室领衔研制,拥有自主知识产权的首台国产商业场发射透射电子显微镜TH-F120“太行”在广州发布。这标志着我国已掌握透射电镜用的电子枪等核心技术,并具备量产透射电镜整机产品的能力。  透射电镜技术跨越多个学科、工程技术复杂、攻关难度大。经过三年多努力,中国科学家们完成了我国首台100%自主知识产权的120千伏场发射透射电镜的整机研制,实现了0.2nm分辨率的成像能力,达到了产品化的水平。  “这对于我国摆脱进口依赖、实现高水平科技自立自强具有重大意义。”中国科学院院士、生物岛实验室主任徐涛介绍,这将打破国内透射电镜100%依赖进口的局面,场发射透射电子显微镜将为我国在材料科学、生命科学、半导体工业等前沿科学及工业领域的高质量发展提供有力支撑。  以“太行”之名,挺起透射电镜产业的中华脊梁  如果说光学显微镜揭开了细胞的秘密,那么透射电子显微镜则把纳米级的微观世界展示在人类眼前。1933年,世界上第一台透射电镜诞生,为科学研究提供更强有力的武器,也因此被誉为高端科学仪器皇冠上的“明珠”。  透射电镜具有极高的行业垄断性与技术门槛。行业数据显示,此前,我国透射电镜100%依赖进口,国产化尚属空白。2022年,我国进口透射电镜约300台,进口总额超30亿元,预计2022年至2028年期间,年复合增长率超5.8%。  生物岛实验室生物电子显微镜技术研发创新中心研究员孙飞早在2016年便带领团队联合中国科学院生物物理研究所启动了预研工作。  “我们通过广泛交流,集合了有志于从事国产电镜自主研制的科学家和工程师,涵盖了电子光学、机械、自动化控制、软件等相关领域。”孙飞介绍,其中既有来自国内外学界的科研人才,也有在产业界深耕扫描电子显微镜多年的领军人物,“大家都抱有同样的愿景,就是造出我们国家自己的透射电镜。”  2020年,这支来自全国各地甚至海外的队伍集结在广州的生物岛实验室组展开技术攻关。团队成立三年多以来,在国家自然科学基金委、科技部、广东省科技厅、广州市科技局的大力支持下,相关研发工作接连取得重大突破——先后成功研制120千伏场发射电子枪、120千伏低纹波高压电源、400万像素和1600万像素棱镜耦合CMOS电子探测相机、100万杂合像素直接电子探测相机等透射电镜核心关键部件。  据悉,电子枪是透射电镜的“光源”,其作用是发射高能电子束照射到样品上,是透射电镜最为核心的部件之一。“将原有的30千伏场发射电子枪提升为120千伏,要解决电子源发射稳定性、高压真空打火等问题。经过不断的摸索,我们突破国外相关技术壁垒,去年成功实现120kV场发射电子枪的稳定量产。”孙飞说到。如今,生物岛实验室是我国唯一有能力量产该透射电镜核心部件的单位。  孙飞直言,更大的困难在于如何将各个研制成功的部件组合起来实现联调,真正拿到高分辨率图像。“拿到分辨率优于0.2nm图像的那天,我们非常激动,我国终于突破这一关键技术。”  为了进一步推动透射电镜的产业化,生物岛实验室与国内领先的科学仪器公司国仪量子联合成立了广州慧炬科技有限公司,致力于将透射电镜技术商业化应用。  “我们成功走到今天,得益于生物岛实验室作为新型研发机构的特殊体制机制,保证了研发队伍的稳定。同体制内外并行发力,与产业界的紧密合作。同时,国家部委项目的支持,保证了项目研制的可持续性。”孙飞说。  此次广州慧炬科技有限公司推出的首款透射电镜新品TH-F120,取名源自中华名山“太行”,寓意TH-F120将如太行山一样成为中国透射电镜产业的脊梁。  向“珠穆朗玛”进发,将推出更高千伏电镜透视更厚材料  广州慧炬科技有限公司总经理曹峰正在推进“太行”的商业化应用。他介绍,场发射透射电镜在高端科研、产业发展应用广泛、意义重大。在生命科学研究领域,它可以看到蛋白质的生物结构;用在集成电路领域,可以实现半导体的缺陷检测;用在新材料领域,可开展锂电池的研发等等。  曹峰表示,“太行”是拥有原子级分辨率的显微放大设备,信息分辨率达0.2nm,可以呈现大多数晶体的排列结构。广州日报记者现场看到,“太行”能清晰呈现小鼠大脑中的髓鞘组织、小鼠肝脏细胞的里的线粒体。“它是多个技术的复合体。我们必须在每个环节都做到极致,才能保证设备整体达到超高分辨率。”曹峰说。  尽管“太行”是该公司推出的“入门级”产品,现已具备多项先进性能——一是自主研制的高亮度场发射电子枪,相比于同级进口产品的热发射电子枪,亮度更高,发射稳定性和相干性更优,匹配自主研制的电磁透镜系统,针对120kV成像平台特别优化电子光学设计,可为用户带来更佳的图像衬度和分辨率;二是自主研制的高稳定性低纹波高压电源,实现了高压自动控制,保证电子枪稳定发射;三是标配自主研制的高像素CMOS相机,在低电子剂量的工况下仍可呈现丰富的样品细节;四是以人机分离为设计理念,匹配高度自动化的控制系统,使图像采集工作更加舒适高效;五是预设充足的拓展接口和整机升级空间,满足用户需求迭代,有效延长整机使用年限。  曹峰透露,团队明年计划研制出200千伏场发射透射电镜。“电压虽然看起来只是增加了80千伏,但研制难度却是指数级增加,设备的稳定性、防护性都需要进一步探索。”  曹峰表示,电压越高意味着电子能量越高,就越能穿透更厚的样品。目前120千伏的电镜,可以穿透大约50纳米厚度的材料。但是对于常见的100纳米的材料,还需要200甚至300千伏的电镜。  在未来数年,该公司计划推出场发射透射电镜系列EM -F200“峨眉”、KL -F300“昆仑”,冷冻透射电镜系列YL -F100C“玉龙”、TGL -F200C“唐古拉”、 ZMLM -F300C“珠穆朗玛”,热发射透射电镜系列QL -T120“秦岭”、DX -LaB120“丹霞”。“我们的透射电镜产品取名均源自中华名山,代表慧炬立足中国、放眼世界,助力科研工作者勇攀高峰、不断突破。”曹峰说。  此次“太行”的发布,是生物岛实验室“二次创业”,向成果转化专业机构成功转型的缩影。作为广州市首批省实验室之一,生物岛实验室不断培养高价值专利,与本地头部企业共建联合实验室、技术产业转化中心,累计孵化企业12家,其中4家估值已经超亿元。通过技术作价、配比投入等方式撬动社会资本近1.5亿元,助力科研成果高效率转化,赋能产业科技创新,为广州高质量发展作出突出贡献。
  • 【拉曼分析技术的“黑科技”】【LOQ-0.1%晶型APIs】透射拉曼TRS——新型无损检测技术哪家强?不看广告看数据报告!
    透射拉曼TRS技术是一种新型的无损检测技术,可以快速、*地定量“低含量晶型”组分,其优势远远超过现有的行业标准检测技术。最近公开发表的两篇文章,描述了使用英国Cobalt公司TRS100透射拉曼仪器,快速定量片剂中晶型API(及辅料)的过程。其中,最新的一篇文章详细描述了使用TRS、X-ray和NMR检测技术在药物片剂检测的对比。透射拉曼TRS这种远超行业标准的检测技术,可以在几秒钟内完成对完整片剂的快速定量,这与X-ray和NMW技术相比,具有绝对的优势,使透射拉曼TRS这种秒级检测技术,成为剂型开发和最终剂型质量控制最适合的检测技术。 最新文章发表在 Journal ofPharmaceutical and Biomedical Analysis“Rapidquantification of low level polymorph content in a solid dose form usingtransmission Raman spectroscopy”Low levels(0.62-1.32% w/w) of an API’s polymorphic formsMeasurement times0.2 seconds不同晶型API往往涉及不同的专利,无论在研发阶段还是生产阶段,对晶型组分的精准、快速定量往往是制药公司最关注的问题之一。由于无定形的API具有较好的溶解度和临床疗效,越来越多的新型原料药都涉及到具有无定性的形式。为保护知识产权,完整片剂中低含量晶型的稳定性测试、定量分析和质量控制就显得尤为重要。 药物晶型定量现有技术包括X射线粉末衍射(pXRD)和固体核磁共振(ssNMR)。相比于透射拉曼光谱TRS,XRD和SSNMR都需要破坏样品剂型进行样品制备,这个过程可能会机械改变晶型形式,且需要较长的数据采集时间和很高测试成本。粉末XRD检测限和定量限较差,而ssNMR虽然比较敏感,但很可能需要一整天的测量时间,且价格昂贵。TRS、X-ray和NMR技术对比目前,越来越多地制药企业在使用透射拉曼TRS技术,将TRS100透射拉曼光谱仪放在研发实验室或直接放在生产线上,对片剂、胶囊、颗粒粉剂等进行定量分析。 英国Actavis制药已有两个品种的药物可使用TRS100代替HPLC进行含量均匀度CU分析,用于药物放行的测试方法,已通过英国药监机构MHRA的法规认可。 透射拉曼TRS技术具有强大的吸引力,是因为它提供了一种不需制备样品,即可快速、*测定药物含量的方法。透射拉曼TRS技术的创新性、高效性和颠覆性使各制药公司的成本大大降低,研发及生产效率大幅提高。 关于Cobalt TRS100 透射拉曼光谱仪用于片剂、胶囊和粉剂等样品的定量分析Cobalt的 TRS100透射拉曼系统是新一代的实时、非破坏性、成分均一性测试系统。操作简单,TRS100的自动分析技术代替了固体制剂费力的液相检测方法,可以快速、*的完成片剂、胶囊、粉剂和其它剂型的定量分析而无需样品制备。将完整的片剂或胶囊置于样品盘上,用透射拉曼系统扫描,每个样品的扫描可在1s或者更短时间内完成。特点 Features分析快速 1s定量精准 LOD/LOQ~0.1% APIs无需制样/耗材应用 Applications含量均匀度CU分析(法规认可,替代HPLC)生产过程控制,药品实时/在线检测晶型/多晶型分析R&D 药物发现/配方筛选【预约做样演示请联系上海凯来】上海凯来为英国Cobalt公司产品中国区总代理细分市场的隐形冠军——上海凯来实验设备有限公司上海凯来实验设备有限公司成立于2004年,专业代理国际先进分析仪器,聚焦细分市场。总部位于上海张江高科技园区,在北京,广州,成都,杭州,南京,青岛等地设有办事处。公司成立十多年来,一直保持着稳健的业务增长,目前已经成为多个细分市场的领导者。凯来定位明确,专注服务细分高端市场,提倡精英文化,“只有精英才能生存”是公司的基本理念。 目前公司立足于3个细分市场,并都已成为各细分市场的行业领导者。无机元素分析技术配套产品:& 美国NewWave/esi激光剥蚀系列固体直接分析技术产品& 美国TSI ChemReveal激光诱导击穿光谱仪& 美国Elemental Scientific ICP/ICPMS液体进样技术系列解决方案& 澳大利亚XRF Scientific X荧光分析前处理熔样分析技术解决方案 制药行业细分市场产品:& 英国Cobalt Light 空间位移拉曼及透射拉曼& 美国pion药物溶解/通透性分析解决方案& 德国Hosokawa Alpine气流喷射筛分仪 消费品行业细分市场产品:& 美国TSI PolyMax塑料专用分析仪& 美国Agilent 4500 增塑剂检测专用分析仪更多信息请登录凯来官方网站:www.chemlabcorp.com扫一扫,关注凯来官方微信:SHChemLab
  • 我国首台国产场发射透射电镜发布
    1月20日,由生物岛实验室领衔研制,拥有自主知识产权的首台国产场发射透射电子显微镜在广州发布。这标志着我国已掌握透射电镜用的场发射电子枪等核心技术,并具备量产透射电镜整机产品的能力,将为我国在材料科学、生命科学、半导体工业等前沿科学及工业领域的高质量发展提供有力支撑。中国科学院院士、生物岛实验室主任徐涛联合中国科学院生物物理研究所研究员孙飞在2016年启动透射电镜有关研究,并于2020年在生物岛实验室组建起一支体系完整的透射电镜研制工程技术团队。团队成立三年多以来,相关研发工作接连取得重大突破。研发团队介绍,此次推出的首款场发射透射电镜新品TH-F120,取名源自中华名山“太行”,寓意它将如太行山一样成为中国透射电镜产业的脊梁。该场发射透射电镜利用被加速到120千电子伏特的高能电子与被观测样品中的原子发生相互作用,检测透射电子携带的样品信号转化为显微放大的图像,可以用来观察材料样品中的原子排列结构、细胞组织样品的精细超微结构、病毒和生物大分子复合体的精细结构,是科学家研究微观世界的重要仪器。研发团队表示,该电镜拥有自主研制的高亮度场发射电子枪,相比于同级进口产品的热发射电子枪,亮度更高,发射稳定性和相干性更优,匹配自主研制的电磁透镜系统,针对120kV成像平台特别优化电子光学设计,可带来更佳的图像衬度和分辨率。生物岛实验室是广东省首批省实验室之一。自成立至今,生物岛实验室优化整合力量,加快成果转化、产业孵化和创新体系建设,不断培养高价值专利,与本地头部企业共建联合实验室、技术产业转化中心,累计孵化企业12家。发布会现场详细信息,请关注仪器信息网后续报道。
  • 110万!农检中心采购原子吸收、微波消解
    一、项目基本情况项目编号:JF2022(NH)WZ0107项目名称:农检中心设备购置(原子吸收光谱仪、微波消解仪)采购方式:公开招标预算金额:1,100,000.00元采购需求:品目号品目名称采购标的数量(单位)技术规格、参数及要求最高限价(元)1-1农林牧渔专用仪器原子吸收光谱仪1(套)详见(二)700,000.001-2农林牧渔专用仪器微波消解仪1(套)详见(二)400,000.00本合同包不接受联合体投标二、采购仪器技术参数要求A(原子吸收光谱仪):1、仪器名称:石墨炉原子吸收光谱仪2、数量:1套3、用途:测定食品、材料、环境等样品中痕量元素的含量。4、工作条件:4.1 环境温度:5--35ºC4.2 相对湿度:8--80%4.3 电源:220V±10%,交流50Hz5、仪器性能及技术要求基本描述:原子吸收光谱仪采用石墨炉原子化,背景采用可变磁场强度塞曼扣背景方式,含自动进样器、仪器工作站、循环冷却水仪等配套附件(提供产品彩页证明材料)。5.1 光学系统:5.1.1 波长范围:190-900nm;波长示值误差:≤±0.2nm,波长重复性:≤±0.15nm;(提供彩页证明材料)▲5.1.2 单色仪:C-T型全息平面衍射光栅或消像差的C-T型单色器(提供彩页证明材料)▲5.1.3 光栅刻线密度1800条/mm(提供彩页证明材料)5.1.4 狭缝:有四挡或以上的狭缝宽度,并可自动选择。(提供彩页证明材料)▲5.1.5 焦距≥330mm。(需提供彩页证明材料)▲5.1.6 检测器:光电倍增管检测器(提供彩页证明材料)5.1.7 光学室:光学系统全部采用石英涂层的反射性光学元件,无透射、折射光学元件,提高光通量。▲5.1.8 元素灯灯位:8灯位(提供彩页证明材料)5.1.9 元素灯座:固定灯座,自动准直,无须移动,自动选灯。▲5.1.10 背景扣正:石墨炉采用横向塞曼背景校正,可校正2.5A以上的背景。(需提供彩页证明材料)5.2 石墨炉部分5.2.1 温度范围:室温-3000ºC;温差小于±10°C;最大升温速率:≥2000度/秒。(需提供彩页证明材料)5.2.2 气体控制:二进制气体控制,保护气内外独立自动控制,有节气功能,延长石墨管寿命。▲5.2.3 石墨炉加热方式:带多段程序及温度区域稳定控制技术的纵向加热方式。(提供彩页证明材料)5.2.4 石墨炉加热电源:交流式加热(提供彩页证明材料)5.2.5 温度传感器:采用高频快速光纤或CCD色度温控测温,结合动态反馈温度控制系统。5.2.6 配备石墨炉进样可视系统,对石墨炉进样、原子化状态进行实时观测监控。(提供软件界面截图)5.2.7 保护功能:能够对气体的压力和流量等自动监控。石墨炉温度、冷却水、废液排放等进行监控。在意外情况下能自动切断气路、加热电源,停止工作并指示出故障产生的可能原因。5.2.8 具有自动样品方法开发功能,对每一元素的测量参数自动优化并推荐最佳值,提高效率。5.2.9 石墨炉典型检出限(验收指标):Pb 0.2ug/L;Cd 0.02ug/L;5.3 石墨炉自动进样器:50位以上样品瓶位,进样量:1-50ul,进样精度:±0.1ul,进样重复性:RSD≤1%,具有自动加入基体改进剂,样品稀释功能,含防尘设计。(提供产品彩页证明材料)5.4 软件:支持中文WINDOWS,在分析样品的同时,能同时进行数据处理。附有全汉化版本及中文在线帮助,及全套中文操作手册,有远程诊断功能。(提供软件截图)5.5 详细配置,包括以下部分:5.5.1 石墨炉主机(含仪器控制操作系统软件)1台5.5.2 原子吸收控制操作系统软件(中文版)1套5.5.3 冷却循环水机1台5.5.4 可视系统1套5.5.5 与原子吸收主机同品牌热解涂层石墨管100根5.5.6 工作站电脑1套5.5.7 图文输出设备1台5.5.8 石墨炉自动进样器毛细管1套5.5.9 与原子吸收主机同品牌原装空心阴极灯:元素灯Pb、Cd、Ni、Cr各1支5.5.10 自动进样器备件:2ml样品杯1000个,基体改进杯/试剂杯5个B(微波消解仪):1、用途:用于各种样品的消解和萃取2、工作条件2.1 环境温度0-40℃2.2 适用电源220V(AC),50HZ2.3 微波发射频率2450MHz3、技术指标:3.1 硬件部分▲3.1.1 采用双磁控管微波控制技术,微波输出功率≥1800W;3.1.2 微波发射方式脉冲和非脉冲可选,并有微波功率曲线以于证实。磁控管终身保修。(提供彩页证明材料)3.1.3 满功率工作时,微波泄漏量≤0.05mW/cm2.(提供国际认可的标准检测方法及数据证明材料),以保证操作人员健康。3.1.3 多维微波能量输出或双向波导输出技术,以保证腔体内能量分布均匀和微波能量最优化。▲3.1.4 大微波消解腔体,容积≥66L。3.1.5 腔体内具有多层防腐耐高温聚四氟乙烯或特氟龙涂层,具有≥5年的防腐质量保证3.1.6 不锈钢门体可自吸式关闭,有效防爆、防微波泄露作用,具有自动平移泻压功能,遇到意外事故可自动迅速向外平移,解除隐患后能自动恢复原状。(提供腔内爆炸平移泄压功能的演示视频)3.1.7 系统运行时自动落锁,门体打开后自动切断微波,确保操作人员安全。3.2 温度/压力控制系统▲3.2.1 传感器要求配置≥2套非接触式的红外温度传感器,测温点必须为内管底,不受液位影响且为内管管壁的实际温度,以保证测温准确性.且温度传感器需提供大于3年的免费质保。(底部测温技术提供彩页证明材料)3.3 控制终端3.3.1 触摸式一体/分体两用防腐智能控制终端,高分辨率彩色显示,支持中文界面,大屏幕直观易操作,可远距离在线控制微波消解系统的所有操作,避免微波辐射。(提供彩色图片证明)。3.3.2 控制终端至少有5个USB、1个LAN接口、1个扩展接口,用于连接无线鼠标、键盘打印机、电脑等设备(提供彩页证明材料)▲3.3.3 全自动消解罐识别系统,根据用户消解样品的数量和消解罐类型,全自动调节微波输出功率大小,确保每次试验的重现性。(提供彩页证明材料)3.3.4 全自动过温保护系统,当消解罐内温度高于设定温度时,全自动识别并自动切断微波输出,确保操作安全。当消解温度回归正常时,自动识别并启动,全自动消解罐识别系统。保证样品消解不会中断重做。3.3.5 微波消解过程中能自动记录工作数据,有平均功率计算功能,为新方法的建立提供足够依据▲3.4 仪器反应状态灯功能,仪器可通过≧3种颜色变换,显示仪器运行状态(提供图片证明材料)。3.5 高压高通量样品罐转子3.5.1 高温/高压样品消解罐,每个消解罐均有“弹性泄压阀”主动泻压保护技术,泄压后不影响样品继续消解,泄压过程无任何消耗件3.5.2 样品消解罐最高耐压:≥1500psi3.5.3 样品消解罐最高耐温:≥330℃。▲3.5.4 样品消解罐体积:≥55ml,且批处理量:≥40位3.5.5 样品消解罐和盖子的材料:TFM或PTFE-TFM▲3.5.6 保护外罐材质:复合纤维或复合石英纤维PEEKK材料,不吸收任何溶剂和气体,永远不会发生形变。(提供产品彩页证明材料)3.5.7 外罐如非认为损坏,提供5年免费质保,如有损坏,免费更换新外罐。4. 仪器配置4.1 含安全装置的微波消解主机1套4.2 高精度红外温度控制系统2套4.3 自动落锁系统1套4.4 ≧3种颜色变换状态灯光系统1套4.5 ≥40位超高压样品罐转子1套4.6 一体/分离式两用控制终端1套4.7 高压消解反应罐(含外罐、内罐、弹片、盖子)≥40套(数量≥超高压样品罐转子孔数)4.8 消解罐专用支架(可装所有配套消解罐)4.9 国内配套赶酸器(赶酸器孔数≥转子位数)1台三、售后服务及培训若投标人所投货物为进口产品,则需提供制造商或国内总代理商出具盖章的售后服务承诺函,需涵盖以下内容:1. 原子吸收光谱仪1.1、仪器设备安装、操作手册、工作站软件说明书、维修保养手册等技术文件中、英文各一份。1.2、制造商的售后服务体系通过了ISO认证。1.3、制造商在广东省内有独立的应用实验室和技术服务中心,能提供快捷优质的技术服务及备用零件、易耗品的供应,同时帮助用户进行方法开发;提供800免费热线咨询电话,以保证用户能以最快、最低成本的得到技术支持,需提供实验室照片及联系方式。1.4、保修:3年免费保修服务,提供终身维修维护。1.5、初级培训:提供现场安装培训服务,至少教会3名以上用户人员熟练掌握仪器操作及维护保养。1.6、技术进阶培训班:提供3个或以上技术培训班(中级班或提高班等以上课程)培训名额,到广东省内的制造商的应用实验室或技术服务中心进行3-5天的技术培训,含培训期间的食宿费用,培训名额有效期为到货后的三年。1.7、响应时间:在接到用户的技术/维修电话要求后,工程师在4小时内进行响应,提供技术咨询及解答;如需更换配件,工程师在2个工作日内到现场进行维修服务。2. 微波消解仪2.1 整机提供3年保修;2.2 仪器至安装之日起3年内,制造商工程师须提供1次/年的现场操作培训,每次至少保证4小时,培训人员为采购方技术人员,人数不限,采购方无须支付任何费用。2.3 温度监控系统(包括温度传感器、监测探头等)提供至少5年免费质保,期间如有损坏制造商或总代理商负责免费更换;2.4 消解罐转盘提供至少5年免费质保,期间如有损坏制造商或总代理商负责免费更换;2.5 消解罐外罐、消解罐盖子均提供至少8年免费质保,期间如有损坏制造商或总代理商负责免费更换;
  • 低电压透射电镜LVEM 5助力“生物导弹”载体复合物纳米颗粒的相关研究
    癌症的治疗一直是医学科学家研究的前沿方向,靶向治疗作为一种定向杀灭癌/肿瘤细胞的治疗方法,俨然成为癌症治疗的研究热点。简单来说,靶向治疗就是在细胞分子水平上,针对已明确的致癌位点来设计相应的治疗药物,药物进入体内会特定选择致癌位点相结合,杀死特定的肿瘤细胞,但不会波及肿瘤周围的正常组织细胞,因此又被称为“生物导弹”。 在这种“生物导弹”研究中,生物可降解聚合物纳米粒子经常作为药物的载体应用于靶向治疗。纳米颗粒的一个优势是,他们利用肿瘤发生过程中,肿瘤区域的血管和淋巴具有增强的渗透和截留(EPR)特性,允许纳米的颗粒通过血管壁。进入肿瘤区后,通过溢出,这些粒子可以实现封装药物释放,并杀灭肿瘤细胞。安德烈斯贝罗大学(Santiago, 智利),Luis A.Velasquez教授在《Biomaterials》杂志上发表文章,结合物理化学特性和生物分析对可生物降解的聚羟基丁酸戊酯(PHBV)-紫杉醇(paclitaxel)复合物纳米颗粒癌症细胞株的吸收、释放和细胞毒性进行了详细研究。分子模拟显示复合物纳米颗粒具有高水亲和力的界面和多孔纳米结构,具有48小时窗口期的毒性保护,228~264nm颗粒尺寸范围让它们具有适当的EPR被动靶向的效果,其-6~8.9 mV的负电性也适合生物环境允许的颗粒细胞的内吞作用,并完成癌症细胞内的药物释放,对IIIc浆液性卵巢癌细胞有很好的治疗效果。Time-dependence of the NP-Taxel size and surface-polymer structuresduring Taxel liberation processes observed using LVEM. 0 (A), 1 (B), 2 (C), 3(D), 4 (E) and 5 (F) days 该研究过程中,低电压透射电子显微镜LVEM 5起到了非常关键的作用。Velasquez教授应用的纳米颗粒为有机聚合物,组成为C,H,O,N等轻质原子的分子,这些分子对电子的散射能力较弱。常规透射电子显微镜的加速电压通常为80~300kV,有机分子在不通过重金属染色的情况下,电子束大部分透过了样品到达荧光屏,无法呈现高对比度的形貌图像。然而,重金属染色后的样品由于和重金属的络合作用造成有机分子的畸变,以至于观察到的形貌不是天然状态,影响研究结果的后续分析和结论的准确判断。Velasquez教授借助低电压显微镜LVEM 5对样品进行观察,由于加速电压小(约5kV),未经染色的样品可以得到高对比度清晰的TEM图像,实现生物有机分子纳米结构的天然状态下的检测。低电压显微镜LVEM 5呈现的图像有效帮助Velasquez教授完成聚羟基丁酸戊酯(PHBV)-紫杉醇(paclitaxel)复合物纳米颗粒针对卵巢癌细胞治疗过程的机理及动力学问题的分析和研究。 相关产品:LVEM5 超小型透射电子显微镜: http://www.instrument.com.cn/netshow/SH100980/C157727.htmLVEM25小型低电压透射电子显微镜:http://www.instrument.com.cn/netshow/SH100980/C234215.htm
  • 【标准解读】透射电镜图像法测量多相体系中纳米颗粒粒径
    透射电子显微镜(TEM)具有原子水平的分辨能力,它不仅可以在观察样品微观形态,还可以对所观察区域的内部结构进行表征,成为纳米技术研究与发展不可或缺的工具。特别是TEM配合图像分析技术对多相体系中纳米颗粒粒度进行分析具有一定的优势。本文将对已实施的GB/T 42208-2022 《纳米技术 多相体系中纳米颗粒粒径测量透射电镜图像法》进行解读。多相体系是指体系内部不均匀的体系,在物理化学中也称为非均相体系、混相体系或者复相体系。而纳米颗粒受尺寸限制往往存在于材料基体中,形成多相体系来增加整个材料特性,这可能关系到后续产品的性能和安全性,因此对多相体系中纳米颗粒的评价尤为重要。透射电镜能作为最直观、准确的设备能够对样品内部进行评价,在多相体系中的纳米颗粒粒径表征中不可或缺。本标准从很大程度上完善和补充国内现有标准的不足,给出较为完整的多相体系中纳米颗粒粒径分析评价方法,不仅对于多相体系中纳米颗粒的粒径这种需要探讨体系内部的颗粒测量给出了方案,而且对于不同TEM的颗粒测量结果一致性评判具有重要的参考价值。本文件适用于固相多相体系中的粒径测量。考虑到多相体系的多样性,胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件.一、背景纳米材料由于表面效应、量子尺寸效应、体积效应和量子隧道效应等,使材料表现出传统固体不具有的化学、电学、磁学、光学等特异性能。同时,受到尺寸的限制,纳米材料单独使用的场合有限,往往存在于材料基体中,形成多相体系来增加整个材料特性。但是由于纳米颗粒粒径较小、比表面积较大、表面能较大,极易团聚,致使其在多相体系中很难表征和评价。研究多相体系中纳米颗粒的粒度测量,对优化材料结构,改善材料的性能有着极大的促进作用,对推动纳米材料的应用和发展具有重要的意义。多相体系中纳米颗粒不同于单一的纳米颗粒,它对检测方法、样品处理及样品制备都有较高的要求。扫描电子显微镜和原子力显微镜由于成像原理的问题,不利于多相体系中纳米颗粒的测量。因此在本标准发布之前,国内该内容处于空白,本标准聚焦透射电镜的成像原理,对样品制备、图像获取、图像分析、结果表示、测量不确定度等技术内容给出了充分的、系统的说明。二、规范性引用文件和参考资料本标准在制定过程中,在符合GB/T1.1-2020《标准化工作导则 第1部分:标准的结构和编写》国家标准编写要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括颗粒系统术语、纳米材料术语、微束分析、粒度分析、纳米技术等各个专业领域;同时,在规范表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。 三、制定过程本标准涉及的领域较为专业,因此集合了国内相关领域的一批权威代表性机构合作完成。牵头单位为国家纳米科学中心,主要参加单位包括国标(北京)检验认证有限公司、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)、深圳市德方纳米科技股份有限公司、中国计量大学、北京粉体技术协会等。对于标准中的重要技术内容,如实验步骤、不同多相体系样品的制备方法、图像获取方式、图像分析、数据处理等均进行了实验验证,确定了标准中相关技术的操作可行性。四、适用范围本文件适用于固相多相体系中纳米颗粒的粒径测量和粒径分布。胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件。 五、主要内容本标准描述了利用透射电子显微镜图像处理和分析技术进行纳米颗粒在多相体系中分散的粒径测量方法的全流程,包含了标准所涉及的术语和定义,TEM的成像原理,不同类型样品的制备方法,详尽的实验步骤,结果表示以及测量不确定度的来源,并在附录中针对不同的样品类型给出了实用案例。术语及定义:即包括了纳米颗粒、分散的术语定义,还包括了TEM中明场相、暗场像、扫描透射电子显微图像和高角环形暗场像等几种成像方式的定义。一般原理:利用透射电镜图像评估纳米颗粒在多相体系中的粒径测量,主要基于透射电子显微镜中电子束穿透样品成像的原理,并对图像进行处理,通常需要借助粒径分析软件进行粒径测量,以避免人为因素的干扰。样品制备:纳米颗粒在多相体系中的分散,由于多相体系材料不同,样品制备方法不同,系统的介绍了纳米复合材料的制备、多相固态金属材料的制备以及多相生物材料的制备方法,这包含了超薄切片技术、离子减薄技术、生物染色技术等。实验步骤:包含了装样、仪器准备、图像获取的全过程。需要注意的是根据多相体系材料及其中纳米颗粒的种类和状态的不同,在测试过程中要明确选用明场、暗场、高角环形暗场等合适的成像技术,并保证有足够清晰度和对比度的透射图像,能够准确识别到图像中的纳米颗粒。除此之外,为了使拍摄所得的图像中包含有足够的样品数量进行粒径测量,需要在不同的位置多次拍摄。具体的过程,本标准在附录A中以镍基高温合金多相体系中纳米颗粒为例,给出了详细过程。粒径测量:多相体系中的纳米颗粒的透射电子显微镜图像通常存在背景亮度不均匀、分散相边界与图像背景灰度差小的特点,因此需要图像处理将样品图像从背景中区分出来。总体目标是将数字显微照片从灰度图像转化为由离散颗粒和背景组成的二值化图像。重点采用阈值算法进行单个颗粒的测量。同时,颗粒粒径测量时测量颗粒数量对测量不确定的影响较大,因此需要确认最少测量颗粒数,这也取决于实际的测量需求。在结果表示方面,实验室可以根据实际需求,只评价纳米颗粒粒径的大小,也可以以纳米颗粒的分布范围为评价目标。在标准的附录中给出了两种分布范围方式。不确定度:对多相体系中纳米颗粒的粒径测量的测量不确定度主要来源包含了样品均匀性、样品制备、图像处理和测量所需的颗粒数不足等。在上述基础上,给出了测量报告的信息及内容。本文作者:常怀秋 高级工程师;国家纳米科学中心 技术发展部Email:changhq@nanoctr.c
  • 蓝菲光学推出UV-2000S紫外线透射率分析仪
    蓝菲光学 (Labsphere) 作为 UV-2000S紫外线透射率分析仪的制造商,开发出一套新的软件规范,使防晒产品能够根据最新的全球体外测试标准而形成自身特色。这项功能比美国食品药物管理局(FDA)发布体外防晒产品测试最终条例还抢先了一步。   蓝菲光学的 UV-2000S 紫外线透射率分析仪是专为快速测量防晒产品的光谱透射率而设计,特别适合SPF50及以上高防护指数、以及 UVA/UVB 防护指数的产品。其系统应用软件能自动将检测数据转换为防晒系数(SPF)、UVA 与 UVB 的比率、临界波长(欧洲化妆品协会 COLIPA 2009)、Boot 星等标示、UVA I/UV 比率 (FDA 推荐的规则) 和 UVA-PF (COLIPA 方法)。   无论是裸基材还是产品基片,用户都能基于这一平台对测试数据进行浏览、存档、重新打开和导出操作,并支持不断发展的地区性方法。蓝菲光学还计划将提议的修改整合到欧盟委员会(COLIPA)指导方针、FDA 专著中,并随着相关监管部门发布测试结果,蓝菲光学也计划在发布的软件中增加新的 ISO 标准。用户近期购买的 UV-2000S提供了最新发布的软件,当前用户可以订购更新内容对软件升级。   FDA 建议的规则和新推出的 ISO 及 COLIPA 标准也将要求使用设备将防晒产品进行特定日光辐射耐光性测试。蓝菲光学已经与美国 Q-Lab 公司 (www.q-lab.com)结为市场合作伙伴,该公司是风化和日光老化测试设备方面世界级的领先企业。所有在六个月内购买蓝菲光学 UV2000S和 Q-Lab 公司 Q-Sun 氙灯稳定性测试仪的客户将可以同时享受两种产品的特价。
  • 玻璃行业中的透射与反射色彩质量测量—色差仪
    玻璃作为一种常见的材料,广泛应用于建筑、汽车、家具等领域。在玻璃行业中,透射和反射是两个重要的性质。透射涉及玻璃对可见光的透明程度和色彩表现,而反射关乎玻璃表面镀膜的效果。本文将介绍如何使用在线ERX55分光光度仪和ColorXRAG3色度分析仪来监控色彩质量和测量玻璃镀膜的反射率。透射是玻璃行业中最重要的光学性质之一,它决定了玻璃对可见光的透明程度和色彩表现。当光穿过玻璃时,会受到折射现象的影响。折射是光在从一种介质传播到另一种介质时改变方向的现象。这种折射现象使得玻璃能够将光有效地传播到玻璃的另一侧,使我们能够透过玻璃看到外面的世界。在玻璃行业中,透射率是一个重要的参数。透射率定义为通过玻璃的光强与入射光强的比值。透射率越高,玻璃对光的透明度就越好。而对于特定波长的光,其透过玻璃的能量与光谱分布有关,因此,不同类型的玻璃可能对不同波长的光具有不同的透射率。透射率的测量通常使用分光光度计来完成。在线ERX55分光光度仪是高精度的测量仪器,可以用于测量透明薄膜的色彩、可见光透射和雾度,持续监控色彩质量。通过持续监控透明薄膜的色彩质量,生产厂家可以确保产品的一致性和稳定性。反射是另一个在玻璃行业中需要关注的光学现象。反射率是一个指标,用于衡量光线在物体表面反射的程度。在玻璃制造过程中,常常会在玻璃表面进行涂层处理,这些涂层能够改变玻璃的反射性能。通过合理设计涂层,可以实现特定的反射率,使玻璃在特定波长范围内表现出所需的特殊光学效果,如防紫外线、隐私保护等。玻璃作为非散射性物体,在传统的直接照明测量设备中无法准确提供色彩数据。为解决这一问题,ColorXRAG3色度分析仪成为了一种重要工具。该设备具备宽波长范围(330nm到1,000nm)和高光学分辨率(1nm),可在实验室中安装在支架上,对放置在样品支架上的玻璃板进行测量。同时,它也可用于在线测量,安装在玻璃板上方的横梁用于测量低辐射玻璃,或安装在玻璃板下方用于测量遮阳镀膜。ColorXRAG3色度分析仪具有紧凑型设计,可从距离玻璃板10mm处捕获非散射性样品的光谱数据和色彩反射值,甚至能鉴定多银层镀膜。该仪器采用氙气闪光灯,同时采用+15°:-15°、+45°:-45°和+60°:-60°三种光学结构,每秒进行一次测量,以实现全方位的色彩数据获取。其中,±15°的测量值与传统实验室测量的积分球光学结构结果相同,而±45°和±60°的测量值则可以显示不同观察角度下的色彩变化。ColorXRAG3色度分析仪的应用为玻璃行业提供了一种高效、准确的色彩测量解决方案,使生产厂家能够更好地控制透射与反射性能,提高产品质量,并满足不同市场需求,推动玻璃行业的持续发展。透射和反射是玻璃行业中非常重要的光学现象。透射性能决定了玻璃的透明度和色彩表现,而反射率则与玻璃表面的涂层处理密切相关。使用在线ERX55分光光度仪和ColorXRAG3色度分析仪,可以对玻璃产品的透射性能和反射性能进行精确测量和监控,从而保证玻璃产品的质量和性能达到预期要求。“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 透射电镜主流厂商大揭秘
    p   作者:汪玉玲 /p p   本文仅代表作者个人观点 /p p   如今的透射电子显微镜市场主流厂商包括日本电子,日立和FEI。除了上述三家之外,德国的蔡司(Zeiss)公司也在电子光学仪器领域占有一席之地。本文带你全面了解透射电镜厂商的前世今生。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 1 你不知道的日本电子株式会社JEOL /strong /span /p p   首先介绍一下老大哥日本电子株式会社JEOL。 /p p   提起日本电子,大家应该都不陌生,目前在我国各大科研院所都不难看到JEOL电镜的影子。日本电子株式会社是一家世界顶级的科学仪器生产制造商。能在这么多的仪器制造商中鹤立鸡群室有原因的,日本电子有着非常丰富且高端的产品线,生产的都是技术含量非常高的科技产品,电子显微镜,核磁共振,质谱仪,X射线光电子能谱,俄歇电子能谱等。是世界上有且仅有的一家企业可以同时生产这些高端仪器产品的企业。 /p p    strong 透射电子显微镜 /strong /p p   日本电子生产透射电子显微镜的历史算得上是非常悠久,它的前身是1949年5月在东京成立的日本电子光学实验室有限公司,成立同年就推出了第一代透射电子显微镜—JEM-1透射电子显微镜,见下图。 /p center p style=" text-align:center" img style=" width: 500px height: 334px " title=" " alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/65d5174298474dea9d7f6baf29abeb8c.jpeg" height=" 334" hspace=" 0" border=" 0" vspace=" 0" width=" 500" / /p /center p style=" text-align: center " strong JEM-1透射电子显微镜 /strong /p p    strong 你知道吗? /strong /p p   其实,我们国家也在同时期开始了透射电镜的研发工作,算起来起步并不算晚,但是由于之后一些年的各种历史原因,不得不中断了。现在,日本已经是毫无疑问的电镜生产大国,而我们国家的电镜发展却只有个别在国家资助下的小规模研究(之后的文章会有专项介绍),这么重要的科研设备掌握在别人的手里,为长远考虑,国产电镜的发展必须跟上才行。 /p p   1961年该公司正式改名为日本电子株式会社(JEOL Ltd.),日本电子是在二战后开始透射电镜研发,并且是以电子显微镜起家的。六十余年的技术沉淀让它的电镜产品不断的发展壮大,逐渐得形成了它的品牌影响力,成为了全球市场市场上的领头羊。 /p p   2009年,日本电子成立六十周年庆,推出了当时世界上分辨率最高的商业化球差校正透射电镜JEM-ARM200F,透射模式分辨率达0.19nm,STEM-HAADF的分辨率可达0.078nm,这款产品大获成功,开启了球差校正的新时代。如下图, /p p    /p center img alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/1a4762c278d74239aa3a94f4b48213bc.jpeg" height=" 287" width=" 249" / /center p   第一台JEM- ARM200F安装在德州大学圣安东尼奥分校University of Texas at San Antonio,2010年1月安装结束,二月初就获得了惊人的实验结果。该仪器展示了JEOL实打实的超级稳定性和超高分辨率。2010年,西安交通大学也购入了中国首台该型号的电镜,也是中国大陆第一台STEM球差校正透射电镜。之后,上海交通大学,武汉大学,东北大学,中国科技大学,中科院大连化物所,中科院物理所,神华集团低碳清洁能源研究所等也陆续上马。目前,中国大陆已经有十几台该型号电镜,相信前方大批的高能科研成果也正在路上…… /p p   2014年,日本电子再次引领潮流,发布了终极分辨率的大杀器——新一代球差校正透射电镜JEM-ARM300F,也称为GRAND ARM,这是一款300kV原子分辨级透射电子显微镜,是JEM-ARM200F的升级版,采用了日本电子独自研发的十二级像差校正器,分布率达到 0.05nm,STEM-HAADF的分辨率可达0.063nm,日本电子再一次把商业化的透射电镜推向了一个新的极限,巩固了自己在电子显微镜领域的世界领先地位。 /p p    strong 日本电子的成功的原因 /strong /p p   1. 研发与制造技术的长期积累。一台JEM-ARM300F有三万多个零配件,最佳的电子显微镜表现能力要求每一个零件都能做到百分之百。 /p p   2. 销售和售后服务保障。日本电子有较为成熟的销售和售后服务渠道,可以保证高品质的维修配件的流通速度和高素质的产品服务工程师。 /p p   3. 电镜专业人才培养。日本电子虽然是一家仪器制造商,但是却在一直通过各种活动对青年科研人员提供资助,例如,风户研究基金会,早在1969年就成立了,目的就是鼓励和推广电子显微镜领域的学习和研究。 /p p   随着我国科技的逐步发展,中国的电镜市场已经越来越大,成为了全球第一大市场,但是中国所使用的透射电子显微镜却全部都是进口的,这种现象应该引起我们所有电镜小工匠们的深思。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 2 关于FEI的那些“小事儿” /strong /span /p p   接下来介绍JEOL在透射电镜领域最有力的竞争者——FEI。FEI是一家美国的高科技公司,是为全球纳米技术团体提供解决方案的创新者和领先供应商, “TOOLS FOR NANOTECH”,生产的产品主要面向半导体、数据存储、结构生物学、材料和工业领域。 /p p    strong FEI的透射电镜历史 /strong /p p   1971 /p p   FEI公司成立于1971年,仅从年份上上看,似乎它起步要比JEOL要晚很多,但是FEI生产透射电子显微镜的历史可不是从1971年开始的。要知道美国的FEI公司开始并不是做透射电子显微镜的,最初它只致力于提供高纯,单一取向晶体作为场发射材料。 /p p   1997 /p p   事情发生在1997年,香港回归了,这一年,除了这件大事还发生了一件小事:FEI和荷兰的飞利浦电子集团电子光学公司(PEO)宣布合并其全球业务,飞利浦电子集团成为了FEI的最大股东。由此FEI开始了电镜产业领袖之路。 /p p   1949 /p p   在透射电镜的商业化历史上,1949年有着重要的意义。飞利浦电子光学公司在这一年向世界推出了全球第一台商用透射电子显微镜 “EM100”,要知道JEOL的第一台JEM-1也是在1949年推出的。可以说,飞利浦电子光学公司一直是举世公认的电镜产业领袖之一。 /p p   2009 /p p   FEI公司最新发布第二代球差校正电镜Titan G2 60-300透射电镜,这是Titan系列电镜中一项革命性产品。FEI Titan系列产品是FEI的明星系列,自2005年推出,包括有Titan G2 60-300,Titan3 G2 60-300,Titan Krios和Titan ETEM (环境透射电镜)。该系列产品以其具有突破性的稳定优异的性能获得了商业上的巨大成功。 /p p   Titan G2 60-300它的STEM分辨率可达0.08nm,Titan3 G2 60-300可达0.07nm,它是世界上唯一能够同时实现亚埃分辨率及分析型机靴(S-TWIN)的透射电镜,而且是世界上唯一的300kV Cs球差校正透射电镜。 /p p   在我国,该系列的电镜普及率也是相当高的,清华大学,浙江大学,中科院金属所,重庆大学,西安交通大学,中南大学,东南大学,深圳大学,广西大学等科研院所及高校,都装备了该系列的球差校正透射电镜,随着国内科学技术的进一步发展,相信越来越多的镜子会在这片土地上生根发芽,开花结果。 /p p    strong 你知道吗? /strong /p p   美国总统奥巴马曾经在西海岸技术巡视时去Intel,在他们的TEM实验室里亲自经历了一把,他说:“我看到了一些原子。”从图片上就可以看到,他使用的就是正是FEI Titan系列的球差透射电镜。 /p p   2016:FEI出嫁了! /p p   与JEOL不同,FEI公司的发展历经多次的收购与合并,通过这样的强强联合,使自己的实力越来越强大。 /p p   1996年:收购美国ElectronScan公司及其“环境扫描(ESEM)”技术 收购位于捷克布尔诺的Delmi公司 /p p   1997年:FEI和飞利浦电子光学合并其全球业务 /p p   1999年:新的FEI购并美国Micrion公司 /p p   2002年:FEI收购Atomika (SIMS二次离子质谱仪) /p p   2003年:FEI收购Emispec (ESVision) /p p   2016年:FEI 正式出嫁。在2016年5月27日,赛默飞以交易最终金额为42亿美元的聘礼迎娶了电镜制造商FEI公司,这笔交易应该会在2017年年初完成,完成后,FEI将成为赛默飞旗下分析仪器业务中的一员。赛默飞是生命科学领域的领导者,FEI的电子分析技术的加入将与赛默飞的质谱技术结合。相信赛默飞也将利用公司的全球规模和商业化运作进一步推广FEI的产品。 /p p   未来的透射电子显微镜领域,可以预见FEI将在生物领域大放异彩,只是不知道那时候它家的产品该姓什么?赛默飞还是FEI?毕竟都是嫁出去的人了嘛!*(^_^)/* /p p    strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 3 无所不能的HITACHI——日立 /span /strong /p p   接下来主要来谈一下三家主要的透射电镜供应商的最后一家——日立HITACHI。如果说JEOL和FEI算是比较专一型的企业的话,那么Hitachi就是比较博爱了。 /p p   HITACHI /p p   日立是日本的一家超级大国企,可以说它本身就是一个完整的工业体系,涉及的产业从核电站,铁路,军工,到家电,医疗,物流,通信,金融以及各种黑科技(^_?)☆,可以说是无所不做。他的总员工数约32万人,在日本是继丰田汽车之后的第二大的企业。 /p p    strong 日立的历史 /strong /p p   日立的前身是久原矿业日立矿山附属的机械修理厂,1910日立制作所正式成立。在1920年,改组成名为日立制作所株式会社。同样,在之后的第一次世界大战及二次世界大战,给日立提供了很好的发展机会,生产各种军舰,坦克,发了战争财。到1944年,日立已经发展起来了,拥有了11家工厂。 /p center img alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/fa3c45af7ced427d93e998728a129f11.jpeg" height=" 300" width=" 444" / /center p style=" text-align: center " strong 日立树—日立集团的统一品牌形象 /strong /p p    strong 你知道吗? /strong /p p   日立树位于夏威夷瓦胡岛,树龄120年,属于雨树,日立每年支付40万美元用于维持该树的摄影资格。日立树含义有几种说法,一般认为是日立有像大树一样广阔的事业群,不过,现在也有人解读为日立把非营利业务放置在巨大的树荫下藏起来。 /p p    strong 日立高新技术 /strong /p p   如上所说,日立的产业和产品十分丰富,子公司也非常多。而日立的电子显微镜部门属于日立高新技术公司。 /p p   2001 /p p   日立高新于2001 年由日立制作所旗下的测量仪器集团、半导体制造设备集团及贸易集团Nissei Sangyo公司合并而成,日立制作所持有日立高新52%的股份。虽说“日立高新”只有十几年的历史,但是其实体则于1947年就已经存在了。现在的日立高新主要提供电子显微镜、全自动生化分析仪、通用分析仪器、半导体元器件检测设备等尖端技术产品,从近两年的市场表现来看,可以说日立高新还是相当成功的。 /p p   2012 /p p   从FEI的发展历史可以看到,并购是一个扩充核心业务、增强企业竞争力的重要策略。然而对于日本企业来说,并购并不多见。但是2012年日立高新的一个并购项目相当成功,2012年5月日立高新收购精工电子旗下全资子公司精工电子纳米科技,成立了日立高新技术科学。精工电子以光、电子线、X射线、热分析为核心技术,特别是它的聚焦离子束技术有很好的历史和评价。同年,日立高新就推出了实时三维结构分析聚焦离子束扫描电镜(FIB-SEM)新品NX9000。 /p p    strong 你知道吗? /strong /p p   日立高新科学仪器营业本部本部长Okada Tsutomu曾说过,尽管日立高新的分析产品有很多,其他仪器的销售台数比电镜多很多,但是销售额却远赶不上电镜业务!可以看出,电镜业务的利润有多大,但是没办法,我们做不出来嘛!!! /p p   日立透射电子显微镜 /p p   目前,日立高新在扫描电镜技术方面积累颇丰,成果也十分显著,但相比较来说,日立在透射电镜尤其是高端透射电镜技术方面却稍逊一筹。 /p p   2015:球差校正透射电镜 /p p   日立推出了一款球差校正透射电镜HF5000,虽然比其他两家企业稍晚一点,但是,这也标志着日立在电镜方面的水平和实力。这台球差校正电镜采用了日立高新经过考验而被认可的冷场发射电子枪技术,达到了亚埃级的空间分辨率(0.1 nm或更低)。另外,它的镜筒和样品台经过了重新的设计。该产品的推出使得日立高新形成了120kV、200kV、300kV全系列的透射电镜产品。 /p center img alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/f71329b25fb3443482c4b6a5adba9477.jpeg" height=" 465" width=" 574" / /center p   环境透射电镜 /p p   另一台比较成熟的商用电镜是日立原位环境透射电镜,可以通过特制样品台施加外场刺激,同时进行实时观察。三款环境透射平台分别为H-9500ETEM、HF- 3300ETEM/STEM/SEM,以及HF-3300S Cs-corrected ETEM / STEM / SEM。在我国,浙江大学、西安交通大学、北京化工大学都安装了该系列电镜。 /p p    /p center img alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/cd78ef2556b24502beb2733bb5af5d2a.jpeg" height=" 359" width=" 505" / /center p   有人说:中国工业想要比过日本要先比过日立!确实,作为一个有完整工业体系的超级大公司,确实有很多值得学习的地方,中国工业还有很长的路要走。 /p p    strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 4 光学“大咖”——卡尔 蔡司 /span /strong /p p   世界上能生产透射电子显微镜的厂家并不多,除了上述三家之外,德国的蔡司(Zeiss)公司也在电子光学仪器领域占有一席之地。 /p p   蔡司公司是一家老牌光学仪器公司,蔡司的历史相比于其他几家公司的历史都来得悠久。公司名称起源于创始人,德国光学家卡尔· 蔡司(Carl Zaiss),上图为蔡司商标的演变。最后一个大家一定很熟悉,在各种镜头,金相显微镜,扫描电镜上面你会经常见到。 /p p    strong 蔡司的历史 /strong /p p   1846年,卡尔· 蔡司创立了一家精密机械及光学仪器车间,自此开始了蔡司的创奇时代。蔡司凭借其在光学领域的卓越品质,成功的经营了一个世纪,到二战以后,由于政治原因,德国被迫分裂,蔡司公司也被迫一分为二,之后,东德的产品冠名为Carl Zeiss Jena,西德产品冠名为Carl Zeiss,但东、西蔡在设计上都秉承了蔡司的优质传统。正所谓分久必合,到1990年,两个公司又重新重组成一个公司,总部设在奥伯考亨,东西合璧一直到今天,蔡司公司仍然是光学领域的执牛耳者。 /p p    strong 你知道吗? /strong /p p   蔡司公司还是一个非知名的军工企业。二战中德国的狙击枪,最先进的主站坦克 “豹”2A6,德国214型潜艇,性能超凡,他们都装备了蔡司公司的光学设备。因此,在战争年代,各国把光学工业列为战略工业,制造光学玻璃的原材料石英矿成为了战略物资,光学玻璃产业在军事领域的意义不亚于航天技术。 /p p    strong 蔡司——光学领域 /strong /p p   在光学领域,蔡司是毫无疑问的独孤求败。一百多年来,蔡司光学显微镜在各行各业都展现了其强大的魅力。十九世纪末,Robert Koch博士利用蔡司显微镜发现杆菌是导致结核病的原因。1911年,挪威探险家首次踏上南极大陆,他当时用的就是蔡司的望远镜。可以说在医学,生理学,物理学,化学,军事,天文学等多个领域,都不难找到蔡司显微镜的影子。 /p p   strong  蔡司——电子光学领域 /strong /p p   蔡司公司在电子光学领域却并不像它在光学领域如此出色。虽然蔡司公司有很悠久的历史,但是其在电子光学领域要晚于其他几家制造商,蔡司电子光学的前身为LEO(里奥),在透射电镜领域有60多年的经验。蔡司的光学技术是有口皆碑的,它的电子束技术也并不差。在1949年,就制成了世界上第一台静电式透射电镜,1992年制成了第一台带有成像滤波器的透射电镜,2003年制成了第一台具有Loehler照明的200KV场发射透射电镜及第一台具有镜筒内校正Omega能量滤波器的场发射透射电镜。 /p p   目前,蔡司主要的一款透射电镜为LIBRA能量过滤式透射电子显微镜,(libra是天秤座的意思,不知道蔡司为什么以星座来命名他的产品,知道的可以留言给小编哦!)该电镜配备了独特的OMEGA二阶校正能量过滤器和Koehler库勒照明系统。该款电镜有两种配置:LIBRA 200 CS TEM以能量过滤型200KV LIBRA TEM为基础,做了物镜透镜的球差校正。通过使用校正器,可以采集分辨率0.7A的图像。 LIBRA 200 STEM具有为聚光镜配备的校正器,可以用于在扫描模式下对分辨率远远低于1A和极高分辨率下样品化学分析的成像,尤其是EELS。校正后聚光镜允许探针尺寸减小到1A,同时增大强度。此外,独特的单色仪把能量扩散减小到0.15eV。这对于材料科学的基础研究尤其有利(尤其是纳米颗粒的化学分析)。 /p p   蔡司的透射电镜普及率比另外几家较少,国外哈佛大学,德国马普研究所,国内的重庆大学等也装备了该系列蔡司透射电子显微镜。 /p p   透射电镜自发明之日起已经有八十多年的历史了,它的发明对人类的科技工作的贡献不容小觑,但是能成功的进行商业化生产的公司却不多,电镜生产之繁琐复杂可见一斑。除了上述四家公司之外,国内外还有许多企业在朝着这个方向努力,我们也期待电镜国产化的那一天。 /p
  • 2021年度中国市场电镜新品盘点(18款): 场发射、扫描透射成主流
    经历2020年疫情笼罩,2021年全球电镜市场规模回暖,规模再次以个位数速率增长,作为最大需求单一市场国家,中国则实现20%以上增长。电镜新品发布也迎来活跃一年,发布新品不仅低、中、高端产品基本覆盖,大部分主流品牌皆有输出,国产方面也多点开花。以下对2021年在电镜新品进行盘点,数据主要统计自本网报道或公开信息,如有遗漏、错误欢迎在留言区补充或邮件(yanglz@instrument.com.cn )。2021年电镜发布新品速览(按发布时间顺序)类型品牌产品名称型号描述SEM蔡司新一代Gemini场发射扫描电镜系列GeminiSEM 360GeminiSEM 460GeminiSEM 560高分辨,不挑样日本电子肖特基场发射电镜JSM-IT800(i)/(is)适用观测半导体器件聚束科技高通量(场发射)扫描电镜Navigator-100B PLUS国产高通量场发射升级款祺跃科技原位高温扫描电镜-国产原位高温日本电子新型扫描电子显微镜JSM-IT510钨灯丝电镜升级飞纳台式场发射扫描电镜Phenom Pharos G2分辨率提至1.8nm日立两款场发射扫描电子显微镜SU8600SU8700聚焦自动获取大量数据功能国仪量子场发射扫描电镜SEM5000国产场发射扫描电镜TEM日本电子新一代冷冻电镜CRYO ARMTM 300II (JEM-3300)速度、操作、通量全面升级赛默飞球差校正透射电镜Spectra Ultra适合电子束敏感材料的球差电镜赛默飞扫描透射电镜Talos F200E为半导体行业设计纳镜鼎新高通量生物扫透电镜智眸365(Smart View 365)国产高通量生物扫描透射电镜聚焦离子束显微镜赛默飞聚焦离子束扫描电子显微镜 (FIB-SEM)Helios 5 PXL Wafer DualBeam聚焦半导体领域其他日本电子超微电子衍射平台Synergy-ED电镜-x射线衍射平台赛默飞定制球差校正电镜Spectra φ定制球差电镜扫描电镜:11款齐发,9款场发射!扫描电镜方面,场发射产品成为新品主流,蔡司和日立分别发布3款、2款场发射电镜,日本电子发布场发射和钨灯丝升级产品,飞纳台式场发射电镜分辨率提升至1.8nm。国产方面,国仪量子也加入场发射产品行列,聚束科技发布高通量场发射升级产品,祺跃科技则基于其原位力学技术,发布原位高温扫描电镜。蔡司|新一代Gemini场发射扫描电镜系列【3款】Gemini系列新品,左至右:GeminiSEM 360,GeminiSEM 460,GeminiSEM 560【发布会专题】 发布时间:3月24日参考价格:300-600万元蔡司此次发布的GeminiSEM 360,GeminiSEM 460,GeminiSEM 560是Gemini电子光学系统针对不同的应用场景衍生出的三款新型号。GeminiSEM 360搭载1型Gemini镜筒,是一款高通用性成像工具。其物镜为静电透镜+磁透镜复合透镜,在提高其电子光学性能的同时将它们对样品的影响降至更低。即使对极具挑战的样品也能进行高品质成像。Beam booster技术具有镜筒内的电子加减速功能,可确保获得小束斑和高信噪比;Gemini镜筒内带有平行设计的镜筒内二次电子和背散射电子探测器,可实现信号的高效采集,同步获取形貌衬度和成分衬度像。GeminiSEM 460搭载2型Gemini镜筒,专为应对复杂的分析工作而设计。它除了复合透镜和镜筒内加减速设计以外,利用双聚光镜设计实现更加灵活的束流调节。用户可以在小束流的高分辨成像模式与大束流的分析模式之间进行无缝切换,对称设计的EDS接口可让您获得无阴影的成分分布图,而物镜无漏磁设计可以让您获得无畸变的大面积EBSD花样。您还可以通过加装各种原位实验附件将Gemini 460升级为一个自动化原位实验平台。GeminiSEM 560搭载3型Gemini镜筒,带给用户极致的高分辨成像体验。该款镜筒拥有两个可协同工作的电子光学系统:Nano-twin透镜和新型电子光学引擎Smart Autopilot,可通过聚光镜优化所有工作条件下的电子束会聚角,进一步提升分辨力;还可实现1倍到200万倍的无缝过渡,大视野导航和亚纳米成像一镜到底。日本电子|场发射电镜JSM-IT800半透镜版本(i)/(is)新型肖特基场发射扫描电子显微镜JSM-IT800【产品链接 】 发布时间:8月31日参考价格:200-400万元JSM-IT800 集成了用于高分辨率成像的透镜内肖特基 Plus 场发射电子枪、创新的电子光学控制系统“Neo Engine”, 以及追求易用性的GUI“ SEM中心”可以完全整合JEOL 的x射线能谱仪。JSM-IT800 有五种不同物镜版本:混合镜头版本 (HL),这是一种通用 FE-SEM;超级混合镜头版本(SHLs/SHL,功能不同的两个版本),可实现更高分辨率的观察和分析;以及新开发的半透镜版本(i/is,两个不同功能的版本),适用于半导体器件的观察。半透镜通过在物镜下方形成的强磁场透镜会聚电子束来实现超高分辨率。此外,该系统有效地收集从样品发射的低能量二次电子,并使用上部透镜内检测器 (UID) 检测电子。因此,它可以对倾斜样品和横截面样品进行高分辨率观察和分析,这正是半导体器件故障分析所需的。此外,它对于电压对比度观察也非常有用。聚束科技|高通量(场发射)扫描电子显微镜 Navigator-100B PLUS高通量(场发射)扫描电子显微镜 Navigator-100B PLUS【 产品链接】 发布时间:8月参考价格:500-700万元成像速度在同等条件下是同类机型的10倍以上,可在72小时内以4nm 像素完成对10x10 mm2 区域的无遗漏采集。 新机型在硬件部分模组提升较大,配备新型电子枪,电子束落点能量范围可达30keV,涵盖绝大多数扫描电镜落点能量需求范围。分辨率可达1.0nm (15keV下), 且在1-3kV低加速电压下即可获得1.5nm高分辨率的同时,仍能保持1‰以下的低图像畸变。具备高度智能化,包括简单快捷全景光学导航、一键全自动换样、全景光学导航、实时聚焦追踪,可以实现全自动超大区域(100mm×100mm)全息地图集式拍摄,并绘制成全景地图式信息浏览。祺跃科技|原位高温扫描电镜祺跃科技原位高温扫描电镜新品【发布详情】 发布时间:10月14日新开发的扫描电镜设计理念包括样品室空间从紧凑到合理,样品台承载能力较大、成像探测器承温能力提升、保证高真空足够的抽气能力等,达到追求时序信息的目标。本次新品实现整机国产化的核心部件包括高温二次电子探测器、三维移动平台与大载荷拉伸平台、1400度原位加热器、超大结构样品腔室和超高真空系统等。保障电镜极端环境长时间稳定运行的相关模块包括冷阱、等离子清洗、极靴屏蔽、红外测温等。同时兼容EDX和EBSD等,还预留设置了多种通讯接口,为今后拓展更多原位技术留有余地。 日本电子|钨灯丝扫描电镜升级产品JSM-IT510钨灯丝扫描电子显微镜JSM-IT510【产品链接】 发布时间:11月8日参考价格:130-200万元为了满足基础研究、工业现场对更快获取结果数据等, JSM-IT510系列进一步提升了InTouchScope™ 的可操作性。借助新增的Simple SEM功能,现在可以将日常工作 “交给”仪器。主要特点包括:新型“Simple SEM”功能、最新型低真空二次电子探头 (LHSED)、 扫描电镜图像和能谱的一体化、实时立体三维图像、实时分析功能、新的导航放大功能、0 倍放大、显示X射线产生区域、SMILE VIEW™ Lab管理软件等。飞纳|第二代肖特基场发射台式扫描电镜Phenom Pharos G2飞纳台式场发射扫描电镜 Phenom Pharos G2【 产品链接 】 发布时间:11月24日参考价格:200-300万元Phenom Pharos G2, 集背散射电子成像、二次电子成像和能谱分析功能于一体。高亮度肖特基场发射电子源,使用户可以轻松获得高分辨率图像,且低电压性能优异。Pharos G2分辨率提升至1.8nm,采用热场发射电子源,信噪比高,使用寿命长,保证长期稳定的性能。飞纳台式场发射扫描电镜能谱一体机标配背散射电子成像、二次电子电子成像和能谱分析功能,可对各种样品进行高分辨成像及元素分析。日立|全新场发射扫描电镜SU8600和SU8700全新冷场发射扫描电镜SU8600(左)和热场发射扫描电镜SU8700(右)【发布会专题】 发布时间:12月9日全新一代冷场发射扫描电镜SU8600不光保留了日立传统冷场电镜的优点,还采用了新型冷场电子枪,可选择更多种类的探测器,而且具有全新的自动数据获取功能,这些技术的加入使得SU8600的成像、分析能力以及自动化性能都有了质的飞跃。具体特点包括:强大自动化功能、成熟的电子光学系统、强大的图像显示和存储、简便的操作等。全新一代热场发射扫描电镜SU8700是一款集高分辨观察、高效率分析、自动化操作等特点于一身的扫描电镜。全新的自动数据获取功能,电子光学系统,多探头检测系统等技术的加入使得SU8700的成像和分析能力有了质的飞跃。具体特点包括:强大的自动化功能、全新的电子光学系统、高效的分析能力、丰富的样品适用性、简便的操作等。国仪量子|场发射扫描电子显微镜SEM5000场发射扫描电镜SEM5000【 发布信息 】 参考价格:200-300万元新品场发射扫描电子显微镜SEM5000,是一款高分辨的多功能扫描电镜,分辨率优于1 nm,放大倍数超过一百万倍。SEM5000的新型镜筒,优化了电子光路设计,采用高压隧道技术,在高电压和低电压下均能实现高质量成像;系统配置了无漏磁物镜,实现了无漏磁高分辨成像,适用于磁性样品分析;可选配多种探测器及其它分析仪器,能够满足用户的各种需求。将广泛应用于锂电池材料、新型纳米材料、半导体材料、矿物冶金、地质勘探、生物等领域。透射电镜:冷冻电镜、球差电镜,国产扫描透射透射电镜方面,面向高端市场的扫描透射电镜成为新品主流。日本电子新一代冷冻电镜JEM-3300年初上市。赛默飞球差电镜新品Spectra Ultra、扫描透射电镜新品Talos F200E更加关注半导体领域。国产方面,基于生物到实验室和生物物理所合作,针对病理组织样本高通量成像需求的专用扫描透射电子显微镜SmartView发布。日本电子|新型冷冻电镜JEM-3300新型冷场发射低温电子显微镜(cryo-EM)——CRYO ARM™ 300 II (JEM-3300)【 产品链接 】 发布时间:1月22日参考价格:3000-5000万元JEM-3300新型冷冻电镜基于“快速、易于操作、获得高对比度和高分辨率图像”的理念而开发。与之前的CRYO ARM™ 300相比,JEM-3300可进行高质量数据的快速采集、操作简便,并在通量方面有大幅提升。主要特点:通过最佳电子束控制实现高速成像,独特的“Koehler mode”照射模式允许均匀电子束照射到样品的特定位置,JEM-3300吞吐量相比上一代提升两倍或更高;提高了高质量图像采集的硬件稳定性,配备了一种新型冷场发射枪(cold FEG)、新的柱内 Omega 能量过滤器;系统升级后可操作性更高等。赛默飞| 球差校正透射电镜Spectra Ultra 新一代扫描透射电镜Spectra Ultra S/TEM【产品详情】 发布时间:3月3日参考价格:2500-5000万元全新Spectra Ultra在数分钟内即可灵活优化高级成像和分析条件。出于加快材料研究进程以及高通量需求,用户现在可以以非常快的速度稳定地调节加速电压。这极大扩展了研究的样品范围,最大程度地减少了电子束损伤,并显著降低了工具的优化耗时。“配置了Ultra-X的Spectra Ultra改变了材料科学研究人员和半导体从业者的游戏规则。它可以通过迅速施加不同的加速电压来显著减少电子束损伤,并且用户将能够检测极低浓度的轻元素。”赛默飞世尔材料科学副总裁Rosy Lee表示,“此外,与其他商业化解决方案相比,用户可以以更高的分辨率快速成像快速分析,以研究新材料和改进现有材料。”赛默飞| Talos F200E扫描透射电镜Talos F200E扫描透射电镜发布时间:3月17日参考价格:600-1500万元Talos F200E (S)TEM提供原子级分辨率成像、快速EDS)分析和增强的数据可靠性,专为满足半导体行业日益增长的需求而设计。且具有成本效益,易用性高,帮助半导体实验室实现快速的样品表征,加快可以量产的速度,提高制程良率。“随着创新的步伐不断加快,半导体企业要求其分析实验室加快周转时间,并在各种设备和工艺技术上提供更可靠和可复现的(S)TEM数据,以支持他们的业务,”赛默飞半导体事业部副总裁Glyn Davies表示,“Talos F200E通过提供高质量的图像数据、快速的化学分析和行业领先的缺陷表征等特质,可以为客户提供高性价比、易用的解决方案。”纳镜鼎新|高通量生物扫描透射电子显微镜SmartView高通量生物扫透电子显微镜智眸365(Smart View 365)【产品详情】 发布时间:7月28日智眸365(Smart View 365)以其高通量、全自动、超高清图像的优越特性在降低人员工作强度的同时为专家分析和诊断病理提供更多的信息,有效提高诊断的效率与正确率。满足专业用户对超微病理诊断的需求。主要特点包括:高通量高效率,插入病理切片样品仓,选定工作模式,一次性自动连续完成多至500个样品成像等;高分辨,分辨率高达0.9nm STEM图像;高稳定运行,长寿命、超稳定的场发射电子源;使用简单等。聚焦离子束显微镜赛默飞|Helios 5 EXL晶圆聚焦离子束扫描电子显微镜Helios 5 EXL晶圆聚焦离子束扫描电子显微镜【产品详情】 发布时间:4月21日参考价格:700-1500万元Helios 5 EXL旨在满足半导体厂商随着规模化经营而不断增加的样品量以及相应的分析需求。这款产品拥有的机器学习和先进的自动化能力,可提供精确的样品制备,以支持5纳米以下节点技术和全环绕栅极半导体制程以及良率提高。赛默飞半导体事业部副总裁Glyn Davies 表示:“半导体实验室正面临着巨大的压力,在不增加成本的情况下,他们需要更快地提供TEM分析数据,以支持制程监控并提升学习曲线,Helios 5 EXL可以通过可扩展的、可复现的和高精度的TEM样品制备来应对这一挑战。”其他新品:扩展技术与定制产品日本电子|超微电子衍射平台Synergy-ED超微电子衍射平台Synergy-ED发布时间:5月31日日本电子与Rigaku公司联合开发出Synergy-ED,一个超微电子衍射平台(ED),通过将日本理学的结构分析技术和设备(如其高灵敏度检测器)与日本电子的透射电子显微镜相结合,将两者的核心技术结合起来,希望新品的技术能够应用于材料研究、化学和药物开发等领域,并为利用电子衍射进行单晶结构分析提供新的解决方案。在以前困难的亚微米范围内,结构分析成为可能。赛默飞|定制球差校正电镜Spectra φ定制的高分辨率扫描透射电子显微镜Spectra φ发布时间:5月20日定制的高分辨率扫描透射电镜Spectra φ,用以支持莫纳什大学在先进材料方面的研究。该仪器安装在澳大利亚莫纳什电子显微镜中心(MCEM)。Spectra φ提供增强的电子束灵活性,以优化复杂材料系统的高速多维成像。Spectra φ 的设计和制造符合由MCEM 和澳大利亚科学院院士Joanne Etheridge教授领导的团队的规格。通过将 Spectra φ 纳入其仪器阵容,莫纳什大学将继续推动对重要能源相关的开创性研究,包括高效光伏设备、电池、材料轻量化、低功耗电子产品和清洁发电等。
  • iCEM 2016特邀报告:透射电镜低温样品制备技术
    p style=" TEXT-ALIGN: center" strong 第二届电镜网络会议(iCEM 2016)特邀报告 /strong /p p style=" TEXT-ALIGN: center" strong 透射电镜低温样品制备技术 /strong /p p style=" TEXT-ALIGN: center" strong img title=" 祝建.jpg" src=" http://img1.17img.cn/17img/images/201609/insimg/b666ec1a-e107-4a24-8192-3c9f104bf9ba.jpg" / /strong /p p style=" TEXT-ALIGN: center" strong 祝建 教授 /strong /p p style=" TEXT-ALIGN: center" strong 同济大学生命科学与技术学院 /strong /p p strong 报告摘要: /strong /p p   透射电镜低温样品制备的目的除了与常规样品制备一样,既要符合电镜观察、分析的需要(样品足够薄,而又有足够的强度,不被电子束破坏),而又不会在制样过程中破坏样品的原始状态。使得该样品的分析结果足够真实。通常包括冷冻固定(冷冻、喷射冷冻、高压冷冻固定)、低温脱水(冷冻替代、冷冻干燥)和冷冻超薄切片技术等。这些透射电镜的样品制备技术逐渐成为电镜样品制备的发展趋势,更真实地反映样品的结构和生命现象。 /p p strong 报告人简介: /strong /p p   祝建,同济大学生命科学与技术学院教授,博士生导师。主要研究方向:植物细胞的全能性及其超微结构。1982年毕业于宁夏农学院,后留校任教。1982—1992年宁夏农学院生物系,教师。1992-1995年在苏黎世瑞士联邦理工学院学习并作博士论文(中瑞联合培养博士生),1996年获西北大学博士学位。1996年上海铁道大学医学院,2000年至今,任职于同济大学生命科学与技术学院。 /p p   现任中国植物学会第十四届理事会植物结构与生殖生物学专业委员会委员,中国电子显微学会低温电镜技术专业委员会委员,上海市显微学学会理事。 /p p strong 报告时间: /strong 2016年10月26日上午 /p p a title=" " href=" http://www.instrument.com.cn/webinar/icem2016/index2016.html" target=" _self" img src=" http://www.instrument.com.cn/edm/pic/wljt2220161009174035342.gif" width=" 600" height=" 152" / /a & nbsp /p
  • 经验分享:透射电子显微镜应用领域及样品制备方法
    透射电子显微镜是使用较为广泛的一类电镜,具有分辨率高、可与其他技术联用的优点。已广泛应用于医学、生物学等各个研究领域,成为组织学、病理学、解剖学以及临床病理诊断的重要工具之一。常规电镜样品制备包括常温化学双固定、常温脱水包埋、常规超薄切片、普通电镜观察几个步骤。样品制备过程历时约一周,超薄切片经醋酸双氧铀和柠檬酸铅染色后,电镜观察。所有操作均按照以下流程进行。一、试剂0.2 mol/ L磷酸盐缓冲液Na 2 HPO 4 2H 2 O 35.61 g 或Na 2 HPO 4 7H 2 O 53.65 g / Na 2 HPO 4 12H 2 O 71.64 gNaH 2 PO 2 H 2 O 27.60 g 或NaH 2 PO 4 2H 2 O 31.21 g加双蒸水(ddH2O)到1000 mL0.1 mol/ L磷酸盐缓冲液(PBS)0.2 mol/ L磷酸盐缓冲液 250 mL加双蒸水到500 mL2 % 低温琼脂低温琼脂 1.0 g加双蒸水到 50 mL加热到沸腾,溶液均匀后备用1 % 戊二醛固定液25 %(m/v)戊二醛水溶液 2 mL0.2 mol/ L磷酸盐缓冲液 25 mL加双蒸水到50 mL1 % 锇酸固定液2 %(m/v)锇酸水溶液 10 mL0.2 mol/ L磷酸盐缓冲液 10 mL包埋剂A液Epon 812 树脂 50 mL十二烷基琥珀酸酐(modecenyl succinic anhydride, DDSA) 80 mL包埋剂B液Epon 812 树脂 50 mL六甲酸酐(methyl nadic anhydride, MNA) 44.5 mL2 , 4 , 6 - 三甲氨基甲基苯酚( 2, 4, 6 - tridimethylamino methyl phenol, DMP-30 )甲苯胺蓝染液甲苯胺蓝 1 g1 mol/ L NaOH 10 mL加双蒸水到50 mL混匀过滤后使用1 % 醋酸双氧铀染液醋酸双氧铀 0.2 g加双蒸水到10 mL封口膜封口,4℃避光保存1 % 柠檬酸铅染液硝酸铅 0.265 g柠檬酸钠(含2分子结晶水) 0.352 g加双蒸水到10 mL①① 配制铅染液时,要先加水6 mL,超声震荡30 min,使乳白色柠檬酸铅悬液充分混匀。然后滴加1 mol/L NaOH,并不是晃动,直至溶液变清亮。最后定容至10 mL。② 细胞样品处理和藻类及其他游离样品处理流程可相互参照,即细胞样品可以酌情使用琼脂铸模法取材固定,藻类及其他游离样品也可以使用血清预包埋法取材固定,总体视样品密度及其对于温度的耐受等条件而定。封口膜封口,4℃保存仪器修块机 Leica EM TRIM切片机 Leica EM UC6光学显微镜 Nikon 80i 及配套拍照系统DS-L1透射电子显微镜 JEOL-1230Gatan Bioscan Camera 792低电压透射电子显微镜 JEM-1230二、实验流程一、 取材与固定A. 植物样品1. 自来水冲洗表面泥尘后,使用灭菌水清洗2-3次,置于铺有预湿滤纸的培养皿中。2. 使用干净锋利的刀片切取目标材料,所取材料体积不大于3 mm3。切取样品时应注意动作迅速、减小损伤,避免来回切拉;使用的灭菌水及器具应4℃预冷,并在操作中尽量保持低温以降低组织细胞活性。3. 将切下材料放入装有预冷的戊二醛固定液的青霉素小瓶中后抽气,抽几次后轻摇小瓶,并打开瓶盖。重复2-3次,直到样品沉入瓶底。4. 室温静置1h,或摇床轻摇1h。5. PBS清洗3次,10min/次。6. 1%锇酸固定液固定1h。7. PBS清洗3次,10min/次。B. 动物样品1. 4℃预冷生理盐水冲洗组织块,迅速切取组织块,体积不大于3 mm32. 将切取的组织块投入装有预冷戊二醛固定液的青霉素小瓶中,并抽气直至样品沉底。3. 室温静置1h,或摇床轻摇1h。4. PBS清洗3次,10 min/次。5. 1%锇酸固定液固定1 h。6. PBS清洗3次,10 min/次。C. 单层培养细胞或悬浮培养细胞样品②1. 3000 rpm离心5 min,收集细胞样品,尽量多的吸弃培养液上清。2. 加入4℃预冷PBS液,充分吹吸混匀,静置4 min,3000 rpm离心5 min,吸弃上清。① 配制铅染液时,要先加水6 mL,超声震荡30 min,使乳白色柠檬酸铅悬液充分混匀。然后滴加1 mol/L NaOH,并不是晃动,直至溶液变清亮。最后定容至10 mL。② 细胞样品处理和藻类及其他游离样品处理流程可相互参照,即细胞样品可以酌情使用琼脂铸模法取材固定,藻类及其他游离样品也可以使用血清预包埋法取材固定,总体视样品密度及其对于温度的耐受等条件而定。3. 重复步骤2一次。4. 加入预冷的血清或蛋清,充分吹吸混匀,3000 rpm离心10 min,吸弃大部分上清,留少部分,吹吸悬浮沉淀细胞。(或离心后吸弃上清,留少部分上清,不悬浮沉淀细胞,视样品浓度而定)5. 缓慢加入戊二醛固定液,小心放入4℃冰箱,固定过夜。6. 吸弃上清,刀片小心划开离心管壁,用钳子拉开离心管,小心取出已凝成固体的血清包埋块。7. 使用干净的单面刀片或手术刀,将血清包埋块切成2 mm3左右的小块,取3-5个富集细胞样品效果较好的包埋小块继续下面实验。8. PBS清洗3次,10 min/次。9. 1%锇酸固定液固定1 h。10. PBS清洗3次,10 min/次。D. 藻类及其他游离培养样品1. 吸取2%低温琼脂液200μL到0.2mL离心管,并将离线管置于冰上,取10μL枪头迅速插入琼脂中并保持离心管竖直,且枪头竖直靠中的包裹在琼脂中。2. 静置1 min,待琼脂凝固后,小心拔出枪头,形成琼脂空腔,待用。3. 3000 rpm离心5 min,收集样品,尽量多的吸弃培养液上清。4. 加入4℃预冷PBS液,充分吹吸混匀,静置4min,3000 rpm离心5min,吸弃上清。5. 重复步骤2清洗,吸弃大部分上清,留极少部分上清液,吹吸悬浮样品。6. 使用10μL 移液器小心将样品加入已经制备好的琼脂空腔中,使样品充满空腔大部分,添加过程中尽量避免气泡出现。7. 吸取50μL溶化的琼脂,快速滴加到空腔琼脂上封口,冰浴5 min,待琼脂完全凝固。8. 使用单面刀片小心划开离心管壁,用钳子拉开离心管,小心取出已凝成固体的琼脂包埋块,稍作修葺。9. PBS清洗3次,10 min/次。10. 1%锇酸固定液固定1 h。11. PBS清洗3次,10 min/次。二、 脱水1. 按丙酮与灭菌水体积比3:7配制30%脱水剂。吸弃样品管/瓶中的PBS,快速加入现配的脱水剂(脱水换液过程禁止出现样品暴露空气中现象,可不全部吸完,略有剩余,使样品浸润;动作应迅速准确),室温放置或摇床轻摇45 min。加入按30%、50%、70%、90%、100%(v/v)的浓度梯度进行脱水。2. 配制50%脱水剂,快速换液,室温轻摇45 min。3. 配制70%脱水剂,快速换液,室温轻摇45 min。4. 配制90%脱水剂,快速换液,室温轻摇45 min。5. 使用纯丙酮快速换液,室温轻摇30 min③。6. 重复步骤5一次。三、 渗透包埋在此步脱水操作完成后即可开始配制渗透用包埋剂,以免安排不周。样品浸泡在纯丙酮中时间不宜过久,以免造成样品较脆,不利于超薄切片。1. 配制渗透用树脂包埋剂1) 取干净的10 mL注射器,拔去活塞,用封闭针头堵住注射口,放于通风橱中。2) 小心倾倒B液9 mL到注射器中;然后再小心倾倒A液1 mL。3) 插入活塞,堵住注射器后,颠倒摇匀至液体颜色均匀,无丝状液体。4) 小心拔去活塞,通风橱中操作,缓慢滴加14滴DMP-30。5) 插入活塞,堵住注射器后,颠倒摇匀至液体颜色完全均匀,无丝絮状分色,竖直放置待用。2. 按照包埋剂与丙酮体积比3:7配制30%渗透剂,快速吸弃样品管中纯丙酮并加入渗透剂,轻摇渗透3 h。3. 按照包埋剂与丙酮体积比7:3配制70%渗透剂,快速换液,轻摇渗透过夜。4. 重新配制包埋剂,并小心推按注射器,将包埋剂挤到包埋模具中至液面略凸。5. 解剖针挑取样品到纯包埋剂中,渗透3 h。6. 小心挑取样品,滤纸上稍微沾下吸弃部分粘附的包埋剂,轻轻放置到未渗透过样品的包埋孔中,小心将样品按到底,摆放好位置。记录各样品对应包埋块编号。7. 梯度温度聚合包埋1) 37℃烘箱中12 h,期间定时观察样品有无漂移现象,如有,则再次小心摆放样品位置。2) 45℃烘箱中12 h。3) 60℃烘箱中24 h。四、 修块与切片1. 拿到包埋块后检查样品位置是否得当,选取位置好的包埋块优先进行修块、切片。2. 粗修包埋块1) 使用六角扳手将包埋块固定在样品头上,露出长度合适。2) 将样品头固定在修块机上,体视镜观察修块,分四个方向将包埋块头部多余的包埋剂修去,暴露出组织块。3) 使用锋利的单面刀片修去组织块周围毛刺的包埋剂,使其四边光滑清晰。4) 卸下样品头装至切片机上,使用玻璃刀修片,直至样品表面光滑清晰。3. 半薄切片1) 将粘有水槽的玻璃刀装至切片机刀台上,体视镜下小心对刀,不时转动手轮,使样品上下移动,调整刀台左右角度及样品上下角度,直至包埋块整个表面与刀刃的距离相等。2) 转动手轮,使整个样品高于刀刃,点控制面板Start,设置切片区域上边界;转动手轮,使整个样品低于刀刃,点控制面板End,设置切片区域下边界。3) 手动步进刀台靠近样品,至出现彩色干涉光,继续步进刀台,并通过体视镜观察干涉光谱变化,直至干涉光消失。4) 转动手轮,使样品离开刀刃区域,使用滴管将干净的去离子水加到玻璃刀水槽中,体视镜观察直至液面略低于刀刃。5) 调整切片厚度与速度,按控制面板Run/Stop键,开始切片。体视镜观察可见900nm厚度切片反光为亮绿色。6) 待有切片下来形成4-6片的切片带,按Run/Stop键停止切片,体视镜观察下,使用睫毛笔将所需薄片拨离刀刃,并将所需切片聚拢一起。7) 用干净捞片环轻轻沾取切片所在区域,根据水膜表面张力捞取切片,放到干净载玻片上,酒精灯略微加热,使水蒸干,并对着光亮用记号笔标示切片所在位置。4. 半薄切片染色1) 吸取20μL甲苯胺蓝染液,滴加到载玻片放有切片的位置,室温静置30 s 。2) 去离子水冲洗玻片,直至不再有蓝色。吸水纸上沥干,酒精灯略微加热,加速切片上的水分蒸发。3) 显微镜观察切片质量和样品位置。5. 精修包埋块1) 移去装有水槽的玻璃刀,取下装有包埋块的样品头,装至修块机上。2) 根据半薄切片结果,使用新的锋利刀口,小心修理包埋块四边,使其尽可能的光滑、平整。6. 超薄切片1) 将钻石刀装至切片机刀台上,体视镜下小心对刀,不时转动手轮,使样品上下移动,调整刀台左右角度及样品上下角度,直至包埋块整个表面与刀刃的距离相等。2) 转动手轮,使整个样品高于刀刃,点控制面板Start,设置切片区域上边界;转动手轮,使整个样品低于刀刃,点控制面板End,设置切片区域下边界。3) 手动步进刀台靠近样品,至出现彩色干涉光,转动手轮,使样品上下移动,调整刀台左右角度及样品上下角度,直至包埋块整个表面与刀刃的干涉光谱颜色一致;继续步进刀台,并通过体视镜观察干涉光谱变化,直至干涉光消失。4) 转动手轮,使样品离开刀刃区域,使用滴管将干净的去离子水加到玻璃刀水槽中,体视镜观察直至液面略低于刀刃。5) 调整切片厚度与速度,按控制面板Run/Stop键,开始切片。体视镜观察可见70nm厚度切片反光为亮灰色及浅灰色。6) 待有切片下来形成10-20片的切片带,按Run/Stop键停止切片,体视镜观察下,使用睫毛笔将所需薄片拨离刀刃,并将所需切片聚拢一起。7) 用干净捞片环轻轻沾取切片所在区域,根据水膜表面张力捞取切片,轻轻放到干净载膜铜网上,用尖角滤纸靠近铜网边缘缓慢吸干水分。8) 轻轻移去捞片环,将载有切片的铜网放到铺有滤纸的平皿中,晾干待染色观察。五、 染色1. 醋酸双氧铀染色1) 按每片载网20μL染液的量吸取醋酸双氧铀染液,13 200 rpm离心5 min。2) 将放有切片的载网小心放到染色盘上,有切片面靠上,并稍微用镊子按载网边缘,使其与染色盘接触粘附牢固。3) 吸取20μL染液滴加到载网上面,盖上平皿防尘,室温染色30 min。4) 将染色盘整个放到装有去离子水的清洗缸中,轻摇清洗1 min。5) 小心取出染色盘,更换水洗液,轻摇清洗5min。6) 重复清洗2次。2. 柠檬酸铅染色1) 按每片载网20μL染液的量吸取醋酸双氧铀染液,13 200 rpm离心5 min。④2) 在放置染色盘的平皿中放入2片固体NaOH,用以吸收平皿中CO2气体。3) 吸取20μL染液滴加到载网上面,盖上平皿防尘,室温染色8 min。4) 将染色盘整个放到装有去离子水的清洗缸中,轻摇清洗1 min。5) 小心取出染色盘,更换水洗液,轻摇清洗5min。连续染色时,载网不需要从染色盘上拿下,清洗后直接进行铅染即可,但是铅染液要现用现取。6) 重复清洗2次。7) 小心夹取载网,放置到铺有滤纸的干净平皿中,晾干待电镜观察。六、 电镜观察1. 取出样品杆,打开样品夹,小心放入载网,合上样品夹,并转动样品杆,轻敲确保样品夹已准确固定载网。2. 将样品杆插入透射电镜样品室,开始抽气。3. 打开灯丝开关,等待检测电流出现后,打开观察窗开始观察。4. 先在低倍下找到切片,再高倍观察切片,寻找待看目标,仔细对焦。5. 将切片目标区域遇到观察窗中间后,调整灯丝电流密度为3.8 pA/cm2。6. 插入拍照CCD,Start View,微调焦距,Start Acquire 拍照。7. 拍照完毕,按格式需求保存照片到指定文件夹。8. 使用专用写保护闪存盘拷贝数据到公共电脑观察、使用。三、应用领域1、材料领域材料的微观结构对材料的力学、光学、电学等物理化学性质起着决定性作用。透射电子显微镜作为材料表征的重要手段,不仅可以用衍射模式来研究晶体的结 构,还可以在成像模式下得到实空间的高分辨像,即对材料中的原子进行直接成像,直接观察材料的微观结构。
  • 小尺度,察纹理!实验室软X射线显微和吸收光谱探索微观结构的奥秘
    众所周知,光学显微镜的分辨率即使达到波动光学理论的极限也只不过 200nm,对材料微观结构的认识还存在一定的局限。电子显微镜的点分辨率虽然可以达到 0.1nm,但考虑到电子的穿透深度较低,同时与结构原子相互作用可能引起结构的改变,难以实现蛋白质、DNA 等生物大分子的原位无损观测。近年来,基于水窗波段(2.3nm-4.4nm)的软 X 射线显微和光谱学技术的发展为土壤和生物细胞的原位分析提供了新的途径,避免了化学提取或样品处理过程产生的人为干扰。基于透射 X 射线吸收成像原理的软 X 射线显微成像技术,能够在纳米尺度的空间分辨率上获得材料的三维图像信息,实现样品的无损观测。软 X 射线吸收精细结构光谱分析能够获取样品内在元素价态及分子结构的变化信息。两种技术相结合的软 X 射线原位成像和光谱分析已成功在同步辐射光源上得以验证,并在纳米尺度上观测到土壤有机质和生物体细胞内碳元素种类的异质性分布。但同步辐射测试机时紧张,往往跟不上科研需求,极大地限制了这类表征技术在各领域的应用。鉴于此,德国 HP Spectroscopy 公司推出了实验室软 X 射线吸收精细结构光谱仪和显微成像系统。该系统采用双光路设计,核心是激光驱动气体等离子体产生的 XUV 光源,能够同时满足水窗波段的软 X 射线显微和高分辨率的 NEXAFS 表征。图1. 激光驱动等离子体 XUV 光源系统得益于水分子对水窗波段的软 X 射线的高透性,利用该系统可以原位观测一种耐辐照球菌和囊裸藻类生物的活体显微结构,如图2 所示。从显微图像可以看出,受限于生物样品的厚度,虽然这些生物体内部更详细的结构信息难以被观测到,但生物体的边界轮廓非常清晰。图2.一种耐辐照球菌(DSM no. 20539)(左)和囊裸藻类生物(SAG 1283-11)(右)的软 X 射线显微成像图,曝光时间分别为 5 min 和 60 min与此同时,利用软 X 射线吸收精细结构光谱的元素的特异性及局域环境的敏感性,通过原位探测土壤有机质的分子结构变化,能够让我们从生命活动的产物在土壤中的滞留状态及这种状态与土壤中生命的关系重新审视土壤有机质的本质。例如,NEXAFS 光谱中脂肪族 C 峰强度的增加可能与根系沉积物的滞留有关等。图3 聚酰亚胺、腐植酸、富里酸和淋溶土的碳 K 边 NEXAFS 谱图(左)和几类有机质的碳 K 边 NEXAFS 谱图,单个光谱采集时间为2.5 min软 X 射线吸收精细结构光谱和显微成像系统——proXAS德国 HP Spectroscopy 公司采用的激光驱动等离子体产生 XUV 光,无固体碎屑产生,可满足 1-6nm 波长范围内的光谱分析及多个特征波长的单色 XUV 光发射。像差校平场光栅结构能够实现最高 400 eV 带宽的摄谱范围,元素吸收边覆盖 C、N、O 等轻元素的 K 边及 Ti、V、Mn 等过渡金属元素的 L 边。目前得到的 1-6nm 波长范围内的 NEXAFS 光谱分辨率 ≥1500。系统主要参数描述如下激光驱动XUV光源波长/能量范围1-6 nm/200-1200 eV重频20 Hz像差校正平场光栅谱仪光源光通量1E15 photons/s/sr @ 200-800 eV光谱分辨率λ/∆ λ≥1500 @ 200-1200 eV摄谱能量带宽∆ E=250-400 eV @ 200-1200 eV光谱采集时间≤5 min (100 nm有机薄膜)分析元素浓度≥0.2 wt%腔室真空度≥1E-5 mbar控制及光谱分析系统探测器类型CCD探测器探测器像素尺寸≤13.5 μm×13.5μm控制及光谱分析软件集成光谱系统控制、光谱分析及校正功能软X射线显微系统单色波长λ=2.88 nm(其他波长可定制)空间分辨率≤50 nm相关阅读利用实验室XANES改进电解催化剂使用实验室XANES优化合成气转化催化剂“足不出户,走进XAFS” proXAS高分辨实验室桌面NEXAFS谱仪助力材料化学结构表征分析太强了!看最新非扫描式桌面XAFS谱仪在催化领域出神入化的应用非扫描台式X射线吸收精细结构谱仪,加速非晶材料结构及其演化过程探索的步伐关于HP Spectroscopy德国 HPSpectroscopy 公司成立于 2012 年,致力于为全球科研及工业领域的客户定制最佳 X 射线解决方案,是全球领先的科研仪器供应商。现可提供 5-12keV 的非扫描式桌面 X 射线吸收精细结构谱仪 hiXAS,以及200-1200eV 的平场光栅软 X 射线吸收精细结构谱仪 proXAS,产品线还包括 XUV/VUV/X-ray 光谱仪,beamline 产品等。主要团队由 x 射线、光谱、光栅设计、等离子体物理、beamline 等领域的专家组成。长期与全球领先的研究机构的科学家维持紧密合作,关注前沿技术,保持产品的迭代与创新。众星联恒作为 HP Spectroscopy 中国区 XAS 系统授权总代理商,为中国客户提供所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供专业的 EUV、X 射线产品及解决方案。如果您有任何问题,欢迎联系我们进行交流和探讨。参考文献:[1] Zhe (Han) Weng, Johannes Lehmann, et al. Probing the nature of soil organic matter, Critical Reviews in Environmental Science and Technology, 52(22), 4072-4093 (2022). DOI: 10.1080/10643389.2021.1980346.[2] Jonathan Holburg, Matthias Müller, et al. High-Resolution Table-Top NEXAFS Spectroscopy, Analytical Chemistry 94 (8), 3510-3516 (2022). DOI: 10.1021/acs.analchem.1c04374.[3] Matthias Müller, Tobias Mey, et al. Table-top soft x-ray microscope using laser-induced plasma from a pulsed gas jet, Opt. Express, 22, 23489-23495 (2014). DOI: 10.1364/OE.22.023489.[4] Matthias Müller, Tobias Mey, et al. Table-top soft X-ray microscopy with a laser-induced plasma source based on a pulsed gas-jet, AIP Conf. Proc., 1764, 030003-03008 (2016). DOI: 10.1063/1.4961137.免责声明:此篇文章内容(含图片)部分来源于网络。文章引用部分版权及观点归原作者所有,北京众星联恒科技有限公司发布及转载目的在于传递更多行业资讯与网络分享。若您认为本文存在侵权之处,请联系我们,我们会在第一时间处理。如有任何疑问,欢迎您随时与我们联系。
  • 透射电镜原位样品杆加热芯片设计原理解析
    透射电镜原位样品杆加热芯片设计原理解析 引言在上一篇文章《透射电镜原位样品杆加热功能 4 大特性解析》里,我们以 Wildfire 原位加热杆为例,为大家详细介绍了 DENS 样品杆加热功能在控温精准、图像稳定、高温能谱、加热均匀四个方面的具体表现。通过这篇文章,相信大家对 MEMS 芯片的优良性能有更进一步的了解。 本文将以透射电镜原位样品杆加热芯片的改变为例,与大家深入探讨芯片加热设计具体的变化细节。 01. 加热线圈的变化 1.1 线圈尺寸缩小,“鼓胀”现象得到明显抑制 图 1:新款芯片 图 2:旧款芯片 仔细观察上图中两款芯片的加热区,可以发现新款芯片的加热线圈要明显比旧款小很多。再观察下面的特写视频我们可以看到,加热线圈的形状也有明显变化。新款的是圆形螺旋,旧款的是方形螺旋。 线圈尺寸缩小后,加热功率减小,由加热所导致的“鼓胀”现象也会得到抑制。所谓“鼓胀”是指芯片受热时,支撑膜在 Z 轴方向上的突起。在透射电镜中原位观察样品时,支撑膜的突起会使得样品脱离电子束焦点,导致图像模糊,不得不重新调焦;甚至有时会漂出视野,再也找不到样品。这样一来,就会错失原位变温过程中那些瞬息即逝的实验现象。 1.2 加热时红外辐射减少 尺寸缩小、加热功率减小,所带来的另一个好处就是加热时红外辐射减少,从而对能谱分析的干扰就会降低。这意味着即便在更高温度下,依然能够进行稳定可靠的能谱分析。 图 3:使用新款芯片时,铂/钯纳米颗粒在高温下的能谱结果。 1.3 温度均匀性提升 此外,形状从方形变为圆形,优化了加热区域的温度分布情况,温度均匀性更好,可以达到 99.5% 的温度均匀度。图 4:新款芯片加热时的温度分布情况 02. 电子透明窗口的变化 2.1 电子透明窗口种类多样化 除了线圈尺寸、形状不同之外,新旧两款芯片所用来承载样品的电子透明窗口也明显不同。旧款设计中,窗口都是形状相同的长条,分布在方形螺旋之间。而在新款设计中,窗口种类则更加多样化,根据形状和位置不同可分为三类窗口,适用于不同的制样需求。 图 5:新款芯片中透明窗口分三类,可以适用于不同的样品需求。 红色窗口:圆形窗口,周围宽敞,没有遮挡,适合以各种角度放置 FIB 薄片。蓝色窗口:位于线圈最中心,加热均匀性最好,周围的金属也可以抑制荷电,适合对温度均匀性要求很高的原位实验,也适合放置易荷电的样品。绿色窗口:长条形窗口,和 α 轴垂直,在高倾角时照样可以观察样品,适合 3D 重构。 总结通过以上图文,我们为大家介绍了采用创新设计之后新款芯片的四大优势,全文小结如下:1. “鼓胀”更小,原位加热时图像更稳定,便于追踪瞬间变化过程。 2. 红外辐射更少,在 1000 ℃ 时,依旧可以进行可靠的能谱分析。 3. 优化线圈形状,抵消了温度梯度,提升了加热区域的温度均匀性。 4. 加热区有三种观察孔,分别适用于 FIB 薄片、超高均匀性受热、大倾角 3D 重构等不同需求。此外,优化后的窗口几何不仅便于薄膜沉积,还可消除滴涂时的毛细效应。这些针对不同需求的细节设计都使得制样更加便捷、高效。
  • 专题推荐|低压透射电子显微镜LVEM在病毒学研究中的应用
    病毒作为一种病原体一直受到学术界的广泛关注。然而由于病毒通常尺寸较小,传统的光学显微镜往往难以满足其形态观测的需求,这使得高分辨率的透射电子显微镜成为了当前病毒学研究的一个重要手段(图1),可以用来研究病毒的结构和成分。目前使用的透射电子显微镜进行病毒颗粒的检测和识别仍面临着巨大的挑战。这是因为病毒的主要组成部分多为含碳的轻元素有机物,这类样品很容易被高能电子束穿过,造成其光学衬度较低,且由于共价键化合物的低稳定性使得其在传统电子显微镜的高加速电压 (一般为80-200 kV) 下非常不稳定,不适合直接进行观察。因此病毒的形态学观察一般采用负染色成像技术,需要在观测前对样品进行复杂的负染操作,占有大量的时间,且可能会掩盖掉一些病毒的形貌特征,造成使用透射电子显微镜观测病毒的门槛较高。图1. (A)80 kV 和 (B)5 kV加速电压下透射电子显微镜下观测到的SV40感染的小鼠胰腺切片(Microscopy Research and Technology, DOI:10.1002/jemt.20603)为了解决这一难题,低压透射电子显微镜(Low Voltage Electron Microscope, LVEM)应运而生。LVEM突破了传统透射电子显微镜的80 kV加速电压的低限,研究人员可在低压下观察轻质生物样品,无需染色,简化了样品制备流程;同时该设备可在保证高图像对比度的前提下,使用温和的加速电压进行病毒形态学的检测和识别,能够识别以往可能被污渍和负染的瑕疵所掩盖的病毒特征。Delong Instruments公司的LVEM 5&25是一类专门针对低电压设计研发出的透射电子显微镜。LVEM使用特殊设计的倒置式肖特基(Schottky)场发射电子枪,提供高亮度高相干性的电子束,这种低能电子束与样品的相互作用比传统透射电子显微镜中的高能电子要强得多,使得电子被轻质有机材料强烈散射,导致了特征的异常分化(Microscopy Research and Technology, DOI: 10.1002/jemt.22428)。在病毒学研究方面,该设备大放大倍数高于通常观测病毒所需要的大约50,000倍的放大率,且依然保持不错的分辨率(2 nm),可满足病毒形态和结构研究的需求。相比于高电压,5kV 的加速电压提供的电子束与样品的作用更强,对密度和原子序数有更高的灵敏度,对低至0.005 g/cm3的密度差别仍能得到很好的样品图像对比度,有效提高了轻元素样品的成像质量,适合针对病毒学的研究。需要指出的是,LVEM 25与LVEM 5建立在相同的平台之上,前者在一个稍高的加速电压下工作,在满足轻元素样品观测的要求下可进一步提高终的图像分辨率。图2. LVEM 5的结构示意图(A)和小鼠心脏超微结构成像 (B) 。(Microscopy Research and Technology, DOI:10.1002/jemt.22659)LVEM 5&25显微镜可用于检测腺病毒(图3A)、HIV(图3B)、轮状病毒(图3C)、球状病毒(图3F)、棒状病毒(图3 G-H)、星形病毒、杯状病毒、诺瓦克样病毒、疱疹病毒和乳头瘤病毒等。另外对于类病毒载体的研究,LVEM 5&25也是一项利器。它能够在不负染的情况下直接观测类病毒载体的形态,帮助研究者快速筛选载体,解决传统电镜制样难,机时紧张等问题(Journal of Nanobiotechnology, DOI: 10.1186/s12951-016-0241-6)。图3. (A-C) LVEM 5观察多种非负染的病毒样品 (D-E) LVEM 5&25 实物图 (F-H) LVEM 25观察多种负染后的病毒样品。 (图片来源于Delong Instruments官网)LVEM的高对比度成像技术匹配快速的时间-图像周期、高通量研究,可作为一种快速诊断方法,用于识别病毒感染源和辅助病理研究,是快速检测具有公共卫生重要性病原体的有力工具。LVEM 5&25 更是一台多种功能集成的电子显微镜,具有四种不同的成像模式——透射电镜(TEM)、扫描电镜(SEM)、扫描透射电镜(STEM)和电子衍射(ED),能够为病毒学研究工作者同时提供多种表征所需的成像模式,全面的对病毒样品的结构和成分进行分析(图4)。图4. 使用LVEM 5 对HIV膜蛋白结构同时进行(A)TEM和(B)ED分析。(Journal of Virology,DOI:10.1128/JVI.01526-19.)除了拥有高质量成像和多功能集成的特点外,LVEM 5&25的体积小 (无需专业实验室),维护费用低廉(无需冷却水和专用电源),在使用期间基本不会产生任何额外的费用,大大降低了研究所需的成本。另外它采用了真空自闭锁技术,换样仅需3分钟,降低了仪器操作难度,对广大的非专业用户变得更加友善。我们相信随着低压透射电镜的不断发展,LVEM 5&25将成为一个强有力的工具,使得病毒形态的观测变得越来越简单,更多以往被传统电镜所忽略的细节结构信息将被挖掘出来,大的提高研究人员对病毒结构和成分的认知,为人们的科研和生活服务。
  • 助力半导体检测,赛默飞将发布全新Helios 6 HD 双束电镜和Metrios 6透射电镜
    “赛默飞材料与结构分析中国”公众号显示,赛默飞将于11月23日发布全新Helios 6 HD 双束电镜和Metrios 6透射电镜。公众号截图据了解,Helios 6 HD 双束电镜(FIB-SEM)利用新型数字偏转装置实现快速、精确的终点监控;采用浸没式FIB提高精准终点控制能力,提高样品制备的可重复性;搭载最新的AutoTEM 6提升了TEM样品制备产能、效率和易用性;配套新型设计的EasyLift纳米机械手提高了样品制备的可用性和效率。Helios 6 HD 双束电镜可以为用户带来更高效的TEM样品制备工作流,更卓越的TEM样品质量、更优秀的产能,更一致的产出,解决各种TEM样品制备挑战。Metrios 6(S) TEM是新一代全自动计量解决方案,可提高生产率和数据质量,用于大容量TEM计量。Metrios 6(S)TEM具有新设计的基于硬件和机器学习的功能,与上一代解决方案相比,生产率平均提高了20%。Metrios 6(S) TEM包括新的Smart Stage、Ultra-X EDS探测器、高亮度X-CFEG源选项和Smart Automation软件。这种组合通过数据完整性、快速元素分析和无配方自动化提高了生产力,实现了可扩展的实验室操作和资源优化。
  • 1209万!首都医学科学创新中心冷冻透射电镜和天津医科大学总医院毒物检测实验室设备采购项目
    一、项目一(一)项目基本情况项目编号:ZTXY-2024-H41565项目名称:首都医学科学创新中心冷冻透射电镜采购项目预算金额:670.000000 万元(人民币)最高限价(如有):670.000000 万元(人民币)采购需求:设备序号设备名称主要用途采购数量是否接受进口产品投标1冷冻透射电镜透射电镜用于观察蛋白、细菌、细胞组织等生物医学的超微结构,通过观察和分析生物大分子的结构和形态,从而了解它们在生物体内的功能和作用,配置的冷冻功能可以用冷冻方法观察蛋白的二维和三维结构。1套是详细采购货物技术参数详见第五章《采购需求》。用途:科研。 合同履行期限:国产货物及进口含税货物,合同签订后5个月内完成供货;进口免税货物,合同签订后5个月内完成供货。本项目( 不接受 )联合体投标。(二)获取招标文件时间:2024年08月02日 至 2024年08月09日,每天上午8:30至12:00,下午12:00至16:30。(北京时间,法定节假日除外)地点:北京市朝阳区南磨房路37号华腾北搪商务大厦11层1109室方式:现场获取,无需携带材料售价:¥300.0 元,本公告包含的招标文件售价总和(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:首都医学科学创新中心     地址:北京市丰台区右安门外西头条10号        联系方式:010-83950090      2.采购代理机构信息名 称:中天信远国际招投标咨询(北京)有限公司            地 址:北京市朝阳区南磨房路37号华腾北搪商务大厦11层1109室            联系方式:周姗、成志凯、王师安、张静、于海龙、鲁智慧,010-51909015            3.项目联系方式项目联系人:周姗、成志凯、王师安、张静、于海龙、鲁智慧电 话:  010-51909015二、项目二(一)项目基本情况项目编号:TJYL-ZFCG-20240014项目名称:天津医科大学总医院毒物检测实验室设备采购项目预算金额:539.0万元最高限价:539.0万元采购需求:包号是否设置最高限价预算(万元)最高限价(万元)采购目录采购需求第1包否425425其他医疗设备液相色谱串联质谱仪采购1台(详见技术规格书)第2包否110110其他医疗设备电感耦合等离子质谱仪采购1台(详见技术规格书)第3包否44其他医疗设备组织研磨仪采购1台(详见技术规格书)合同履行期限:货到时间:签订合同之日起45日内(特殊情况以合同为准)。安装(调试)完成:货到之日起15日内(特殊情况以合同为准)。本项目不接受联合体参与 ,本项目不接受进口产品(二)获取招标文件时间:2024年08月02日到 2024年08月09日,每天上午09:00至12:00,下午13:30至17:00(北京时间,法定节假日除外)地点:天津银隆工程管理咨询有限公司(天津市西青区华科三路华鼎智地4号楼2门601室)方式:现场领取或以邮件方式获取,获取招标文件时可携带或以邮件形式提供供应商营业执照复印件,以现金或电汇形式支付。以邮件形式获取的,可以在办理汇款手续后到现场领取或以快递方式获得纸质文件。注:(1)选择电汇形式缴纳标书费的须在获取招标文件时间内汇至采购代理机构的银行账号(须使用对公账户),【电汇过程中请标注“标书费TJYL-ZFCG-20240014(拟投包号)”】。(2)代理机构邮箱地址tjyinlong@163.com。友情提示:参与本项目的供应商需在《天津市政府采购网》上完成注册并成为合格供应商(注册网址:http://tjgp.cz.tj.gov.cn/gys_login.jsp)。招标文件一经售出,概不退还。售价:400元(三)对本次招标提出询问,请按以下方式联系。1.采购人信息 名称:天津医科大学总医院 地址: 天津市和平区鞍山道154号 联系方式:022-603617772.采购代理机构信息 名称:天津银隆工程管理咨询有限公司 地址:天津市西青区华科三路华鼎智地四号楼2门601 联系方式:022-879307663.项目联系方式 项目联系人:韩晴 李娜 电 话:022-87930766
  • 天美生物透射电镜学术交流会成功举办
    “生物透射电镜的应用与研究”学术交流会议在京成功举办   北京纳米科学大型仪器区域中心“生物透射电镜的应用与研究”学术交流会议于2012年11月23日在国家纳米科学中心召开。   本次会议由北京纳米科学大型仪器区域中心联合天美(中国)科学仪器有限公司共同举办。会议旨在促进区域中心各所之间的学术交流与区域中心开放设备应用水平的提高,为不同学科间的交叉与交流提供桥梁。参会人员包括国家纳米科学中心、中科院物理所、中科院化学所、中科院高能所、中科学理化所、中科院过程所、中科院电工所等单位的老师和学生近百人。     学术交流会议现场国家纳米科学中心熊玉峰老师在做报告   国家纳米科学中心熊玉峰老师首先对国家纳米科学中心的生物成像平台进行了简要介绍,对平台所购进的系列仪器设备及其主要用途进行了概括说明。之后,会议特别邀请了北京市神经外科研究所孙异临教授与大家分享生物透射电镜样品的制备方法和经验,详尽丰富的讲座赢得了与会者的强烈响应。资深电镜专家中科院生物物理所徐伟研究员应邀出席本次会议,并为大家作了题为“衬度成像在生物技术上的应用”的主题报告,从理论角度解析生物电镜的成像因素。天美(中国)科学仪器有限公司张龙改工程师对日立新一代全数字化透射电镜HT7700作了简单介绍,这款是市场上同类产品中的最新型号,设计采用高灵敏度的荧光屏CCD取代传统的荧光屏,将TEM操作统一于显示器 可在同一台电镜上实现高反差、高分辨两种观察模式,适合观察生物医学、纳米材料、软材料等多领域的样品。领先的设计理念和大集成一体化功能,更加简便地操作,是HT7700的最大特点。     北京市神经外科研究所孙异临教授     中科院生物物理所徐伟老师     天美公司应用工程师张龙改   天美公司特邀请日立全球应用中心工程师仲野靖孝先生,为大家在仪器现场演示日立透射电镜HT7700的操作与应用。 与会者对透射电镜HT7700进行了参观和做样测试,仲野先生对大家提出的问题进行了详尽的解答。与会者对HT7700独特的荧光屏CCD设计表现出浓厚的兴趣,快速准确的自动拼图功能,给各位老师和同学留下了深刻的印象,与会者对仪器的性能给予了很高的评价。     仲野靖孝先生在现场为用户做演示   公司介绍:   天美(中国)科学仪器有限公司(“天美(中国)”)是天美(控股)有限公司(“天美(控股)”)的全资子公司,从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。天美(中国)在北京、上海、等全国15个城市均设立办事处,为各地的客户提供便捷优质的服务。   天美(控股)是一家从事设计、研发、生产和分销的科学仪器综合解决方案的供应商。 继2004年於新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司 和美国IXRF等多家海外知名生产企业,加强了公司产品的多样化。   更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 付学文、朱溢眉团队合作:超快透射电镜实现等离激元纳米飞秒尺度可视化
    近日,南开大学物理科学学院超快电子显微镜实验室付学文教授团队与美国布鲁克海文国家实验室Yimei Zhu教授团队等开展合作,基于自主开发的4D超快透射电镜,观测到了银膜上飞秒激光诱导表面等离激元的分布及动力学过程,为等离激元器件的设计和应用提供了指导。该研究于近日以“Nanoscale-Femtosecond Imaging of Evanescent Surface Plasmons on Silver Film by Photon-Induced Near-Field Electron Microscopy”为题,发表在国际重要学术期刊《Nano Letters》。近年来,付学文教授研究团队与合作者在4D超快透射电镜中发展了基于自由电子-光子强相互作用的光子诱导近场电子显微镜(PINEM)技术,并提出了一种新型双色光子超快泵浦-探测方案,将四维超快电镜的时间分辨提升了一个数量级(达到50飞秒),在飞秒与纳米时空尺度揭示了单个Mott绝缘体VO2纳米线的绝缘体-金属相变动力学过程(Nat. Commun. 2020, 11, 5770)。在本工作中,研究团队进一步用PINEM成像技术研究了银膜上表面等离激元的分布及超快动力学过程。表面等离激元是金属表面自由电子的集体共振振荡,可以将光限制在非常小的尺寸,实现在纳米尺度操纵光场。这些独特的优点使得表面等离激元在表面增强拉曼光谱、传感器、光伏器件和量子通信等领域具有广阔的应用前景。由于银纳米结构具有从可见光到近红外光范围内可调谐的表面等离激元共振特性,因此被认为是最重要的表面等离激元材料之一。银纳米结构表面等离激元的共振特性可以通过改变其形态、大小和其他参数来调节。为了更好地设计和使用等离激元器件,理解表面等离激元的产生、传播和衰减过程是至关重要的。然而,所有这些过程都发生在飞秒的时间尺度和纳米的空间尺度上。因此,以合适的时空分辨率直接表征和捕获不同银纳米结构的表面等离激元具有重要的意义。研究团队利用配备了电子能量损失谱仪的4D超快透射电子显微镜,通过PINEM技术研究了银膜上飞秒激光(波长515 nm)诱导的表面等离激元。实验得到的电子与表面等离激元近场相互作用后的能谱呈现出典型的PINEM能谱特征:电子能谱零损失峰(ZLP)两侧出现一系列离散的峰,其间隔为入射光子能量的整数倍,意味着电子在与表面等离激元近场相互作用中吸收或放出了多个光子(图1a)。通过改变泵浦激光的能量密度并对电子能量谱中的PINEM部分积分, 他们发现PINEM强度首先随激光能量密度线性增长,在15mJ/cm2达到饱和(图1a、b)。在15mJ/cm2的入射激光能量密度下,通过改变激光的偏振研究了PINEM强度的偏振依赖性。发现与纳米线、纳米棒等结构的偏振依赖性不同,激光偏振方向的改变不会影响银膜上的PINEM强度(图1c)。图1:a、不同入射激光能量密度下的电子能谱;b、相对PINEM强度与入射激光能量密度的关系;c、PINEM强度与入射激光偏振方向的关系。通过只选择吸收光子能量的电子进行能量过滤成像,他们直接观测到了表面等离激元的空间分布,并通过改变入射激光的偏振方向揭示了激光偏振方向对表面等离激元分布的影响(图2a)。表面等离激元在产生后首先沿着激光的偏振方向传播,然后在垂直于偏振方向的晶界处发生散射,在能量过滤图像中表现为偏振依赖的条纹。通过改变激光脉冲和电子脉冲之间的时间延迟,他们跟踪了光激发表面等离激元随时间的演化,实现了在纳米飞秒尺度对表面等离激元的直接可视化(图2b)。图2:a、t=-1.2 ps(左)和t=0 ps(中、右)时的能量过滤图像,激光偏振方向如绿色箭头所示;b、不同时间延迟下的能量过滤图像,其中激光脉冲的偏振方向与a(中)的偏振方向相同。棒状纳米结构的PINEM效应被广泛用于识别4D超快电镜中泵浦激光脉冲和探测电子脉冲的时空重叠。但是在这些实验中激光脉冲的偏振应该垂直于纳米结构的纵向轴,以最大限度地提高近场激发,这就使得这种方法在实际使用中受到一定限制。相比之下,银膜的PINEM信号不存在偏振依赖性,即入射飞秒激光的偏振可以是任意方向的,这使得银膜成为识别4D超快电镜时间零点的更好平台。此外,能量过滤PINEM图像上观察到的条纹也可能与光诱导周期表面结构(LIPSS)的机理有关,而LIPSS的形成过程是一个复杂的非平衡过程,其物理机制尚不清楚。鉴于PINEM成像的高时空分辨率,未来可进一步用PINEM技术从实验上探索LIPSS的物理机制。该研究工作不仅为各种微纳结构与超材料的表面等离激元分布及动力学研究提供了高时空分辨手段,同时对于银膜表面等离激元的激光能量密度和偏振依赖性,以及超快动力学过程的研究结果对微纳尺度表面等离激元器件的设计和应用具有重要指导意义。南开大学物理科学学院付学文教授为论文第一作者兼通讯作者,Yimei Zhu教授为共同通讯作者,南开大学2020级硕士生孙泽鹏为共同一作,南开大学为论文第一单位。该研究得到了国家自然科学基金委、国家科技部、天津市科技局、中央高校基础研究经费等的大力支持。(戴建芳)视频S1:通过 PINEM 成像 ( AVI )获得的飞秒激光激发下银膜上消逝表面等离激元的时间演化视频 S2:通过 PINEM 成像 ( AVI ) 获得的飞秒激光激发下银膜上消逝表面等离激元的时间演化,其中激光偏振与视频S1 中的偏振正交。文章链接:https://pubs.acs.org/doi/10.1021/acs.nanolett.1c04774付学文,南开大学物理科学学院教授,博士生导师,南开大学超快电镜实验室负责人,国家“四青”人才,天津市杰出青年基金获得者,担任国家重点研发计划青年首席科学家,入选2021强国青年科学家提名。2014年博士毕业于北京大学凝聚态物理专业(导师:俞大鹏教授),曾先后在美国加州理工学院和美国布鲁克海文国家实验室从事研究工作。2019年受聘于南开大学物理科学学院,建立了南开大学超快电子显微镜实验室和超快动力学研究团队,长期从事4D超快电子显微镜、超快阴极荧光等超高时空分辨电子成像与探测技术开发及其在低维量子功能材料的结构、载流子及自旋等动力学中的应用研究,在国际上率先发展了液相4D超快电镜技术、双色近场光学超快电镜技术和基于微波脉冲电子发生器的新型4D超快电镜技术。在Science、Science Advances、Nature Communications、Advanced Materials、ACS Nano、Nano Letters、PNAS等具有影响力的国际期刊发表学术论文近50篇,其中第一/通讯作者论文26篇,申请发明专利5项。
  • 赛默飞透射电镜助力超导理论研究
    2023年2月22日,清华大学朱静院士团队联合复旦大学车仁超教授和北京大学李源副教授在《自然》杂志上发表了题为” Topological spin texture in the pseudogap phase of a high-Tc superconductor” [1] 的文章。该研究工作采用赛默飞透射电子显微镜(TEM)首次在赝能隙态YBa2Cu3O6.5材料中发现了拓扑磁涡旋结构的存在。该拓扑磁涡旋结构的发现在实空间微观尺度上给赝能隙态下的时间反演对称性破缺提供了的直接图像证据,并且发现该拓扑磁涡旋结构在电荷密度波态时被破坏,进入到超导态时又重新出现,这一发现对揭示高温超导的微观机理具有重大的意义,而先进的透射电子显微镜在这一发现上更是功不可没。朱静院士,车仁超教授等人深耕于超导材料研究领域,洛伦兹低温原位透射电镜研究领域,电子显微学研究领域多年,取得了一系列重要研究成果。在本研究中,研究团队利用复旦大学电子显微镜实验室新安装的Spectra 300透射电子显微镜开展低温洛伦兹样品测试,获得了此次重大发现。2021年,赛默飞上海纳米港(Shanghai NanoPort, Thermo Fisher Scientific)有幸参与其中部分实验工作,在创建冷冻实验环境和原位数据采集方面积极地配合支持。本文将主要介绍两种电子显微学技术——洛伦兹透射电镜(LTEM)和积分差分相位衬度(iDPC)在该工作中起到的关键作用。洛伦兹透射电镜(LTEM)正常TEM光路下,物镜处于开启状态,样品在物镜上下极靴中间处于~2T的强磁场中,样品本征的磁结构会被物镜的强磁场破坏。为了在无磁环境下观察样品本征的磁结构,赛默飞场发射透射电镜Talos和球差校正透射电镜Spectra都可以通过关闭物镜电流使样品处于零磁场环境,再由位于物镜下极靴内部的洛伦兹磁透镜实现对样品微观本征磁结构的观察。LTEM成像模式主要有两种:Fresnel成像模式和Foucault成像模式。Fresnel成像模式是通过改变图像的离焦量实现对磁畴或畴壁的观察。其图像主要特点是欠焦和过焦条件下磁畴畴壁的衬度是相反的,而正焦图像则没有磁衬度。Foucault成像是通过遮挡或者保留后焦面上与磁畴相关的衍射信号来实现(类似于暗场像), 适用于观测不同磁化取向的磁畴。图1a-c分别为该文章中赝能隙态YBa2Cu3O6.5样品的正焦、过焦以及欠焦下的Fresnel图像,离焦量为±1.08 mm。其反转的衬度特点,切实证明了该样品中存在拓扑学特征的畴结构。此外,赛默飞透射电镜上的洛伦兹功能不仅可以实现无磁环境,还可以很方便地通过改变物镜电流来改变磁场,用于原位研究磁结构随磁场强度的变化。在本研究中,作者通过改变物镜电流对样品施加外磁场影响,拓扑学特征消失,进一步证明了该效应是由磁学特性引起的。作者通过使用强度传递方程(Transport of Intensity Equation, TIE)的相位重构技术[2],对LTEM图像进行数据处理得到拓扑磁涡旋结构的磁场方向和相对强度分布(图1d-e, i-l)。图1m-n是由LTEM结果推测出来的两种可能的磁涡旋结构示意图。该文章中LTEM实验分别在赛默飞Spectra300,Themis和Titan机台进行了重复验证,均观察到拓扑磁涡旋结构。图1 (a-c)LTEM Fresnel模式下赝能隙态YBa2Cu3O6.5样品的正焦、过焦、欠焦图像(离焦量为±1.08 mm),样品处于300 K,零磁场环境,标尺为500 nm;(d-e)为通过TIE算法得到的磁场和磁场强度图像;(f-j)为红色方框对应的剪裁放大图像;(k-l)为单个磁涡旋结构的磁场和磁场强度图;(m-n)为两种可能的拓扑磁涡旋结构示意图[1]除了常规的LTEM成像外,赛默飞球差校正透射电镜Spectra系列可以通过物镜球差校正器对LTEM光轴进行像差校正。像差校正洛伦兹模式下可以得到优于1nm的信息分辨率,从而帮助科研工作者观察到更小的磁结构。积分差分相位衬度(iDPC)球差校正透射电镜的超高空间分辨率提供了关于拓扑自旋结构的出现与局域晶体结构之间关系的更多信息。铜基超导材料中氧原子的掺杂或缺失对材料性能具有重要的影响,直接观察到氧原子的占位对深入揭示材料微观结构与性能之间的关系具有重大的意义。然而,广泛使用的扫描透射电镜(STEM)的高角环形暗场(HAADF)图像,因其主要接收高角卢瑟福散射信号,导致轻重元素无法同时成像,C、N、O等轻原子无法观察到。STEM环形明场(ABF)像虽然能观察到轻元素,但ABF图像无法直接解读,而且存在对样品厚度要求高、图像信噪比不佳等问题。为了解决以上问题,赛默飞提出并发展了积分差分相位衬度(iDPC)技术。iDPC这一全新STEM成像模式的出现,大大提高了透射电子显微镜捕获原子的能力。iDPC技术具有能实现轻重原子同时成像,能实现低电子剂量,高分辨和高信噪比成像,图像衬度易解读等优点[3]。目前,iDPC技术已成为材料表征领域技术热点,在表征轻元素占位、二维材料、电子束敏感材料、超导体等领域具有重要的应用。iDPC成像技术现已完全集成在赛默飞球差校正电镜Spectra和场发射电镜Talos上,能实现iDPC图像的在线采集和显示。图2 (a) YBa2Cu3O6.0, (b) YBa2Cu3O6.5和(c) YBa2Cu3O6.9的原子分辨率iDPC图像[1]图2为YBa2Cu3O6.0、YBa2Cu3O6.5和YBa2Cu3O6.9的高分辨iDPC图像,可以清楚的观察到氧原子的位置,随着氧掺杂含量的不同,Cu-O链上的氧占位逐渐增加。值得注意的是赝能隙态YBa2Cu3O6.5的Cu-O链上出现了氧富集和氧缺失的有序排列。作者认为这种氧的有序排列有利于拓扑磁涡旋结构沿c轴自由排列,是观察磁涡旋结构的最佳区域。作者认为现阶段不能完全排除氧填充链激发磁性的可能。赛默飞将致力于相关电子显微学技术的研发与应用,为材料的电、磁学性能研究提供更强大的助力。作者:刘建参考文献[1] Zechao Wang, Ke Pei, Liting Yang, Chendi Yang, Guanyu Chen, Xuebing Zhao, Chao Wang, Zhengwang Liu, Yuan Li, Renchao Che & Jing Zhu. Topological spin texture in the pseudogap phase of a high-Tc superconductor. Nature (2023). https://doi.org/10.1038/s41586-023-05731-3[2] M. Beleggia, M.A. Schofield, V.V. Volkov, Y. Zhu. On the transport of intensity technique for phase retrieval. Ultramicroscopy 102 (2004) 37–49.[3] Ivan Lazi&cacute , Eric G.T. Bosch and Sorin Lazar. Phase contrast STEM for thin samples: Integrated differential phase contrast. Ultramicroscopy 160, 265-280 (2016).
  • 【TRS100隆重登陆中国上海】透射拉曼翻开制药行业新篇章!
    近日,英国Cobalt公司TRS100透射拉曼光谱仪首次隆重登陆中国上海,上海凯来作为英国Cobalt公司TRS100产品中国区总代理,为国内制药业界朋友准备了一场绝无仅有的透射拉曼光谱盛宴。英国Cobalt公司TRS100透射拉曼光谱应用工程师Julia Griffen也首次来访中国,就TRS100透射拉曼的技术及应用,与业界朋友进行了为期一周的透射拉曼技术及应用交流。Julia GriffenChemistry PhD, Application Scientist, Raman Spectroscopy, Multivariate Data Analysis.Specialist areas include organic synthesis, green-sustainable technologies, spectroscopy, multivariate data analysis with specific application to pharmaceutical industries.拉曼光谱技术是一种非接触,无损的快速检测技术,能方便地给出物质的结构、组分等指纹信息,并且能从分子层面上识别各类物质及晶型结构,非常适合用于制药过程及药品检测。透射拉曼光谱,由于其卓越的穿透性、样品代表性和重复性等特点,现已在制药行业某些特定领域拥有很成熟的应用。TRS100透射拉曼光谱仪,由于其高通量、快速、灵敏度高、重复性及稳定性好、可实现真正的“无需准备样品”等特点,在拉曼技术的应用中先拔头筹,是目前全球最成熟的透射拉曼光谱技术分析仪器。TRS100在含量均匀度CU/混合均匀度BU分析方面的应用,近几年来,引起全球瞩目。TRS100透射拉曼结合化学计量学的运用,其在CU/BU分析方面的应用已经非常成熟,可以精准定量不同剂型中的活性成分,在晶型药物的分析与定量方面,表现更为突出。LOD/LOQ 可达 0.1 ~1%。英国Actavis制药公司已有两个品种使用TRS100透射拉曼做含量均匀度分析,用于药品的放行(替代HPLC),并已通过英国药监机构MHRA认可。全球知名Top20的制药企业中,已有80%以上都在使用TRS100。对于全球销售型的Global制药企业和专注出口销售的本地制药企业来讲,TRS100具有非常高的投资回报率。由于其可以替代液相的卓越表现,TRS100透射拉曼光谱仪,在CU/BU分析的过程中,大大缩减了时间、人力、试剂耗材等成本,在各个环节减少了由于人为因素而带来的安全风险。不少制药企业纷纷闻讯而来,来到位于上海浦东高科技园区的上海凯来总部实验室,来深入了解这一项神器的技术。经过Dr Julia应用工程师深入浅出的介绍,透射拉曼这种貌似神秘,但却十分简单而强大的技术,现已深入人心,着实可以为制药企业解决现实的问题,特别是在微量多组分活性成分精准定量方面,TRS100透射拉曼具有压倒性的优势,令人称赞!随着人们对透射拉曼技术的深入了解和国外成熟技术的引进,相信透射拉曼技术将会为“制药人”开启一页新的篇章,以助制药行业一臂之力!【预约做样演示请联系上海凯来 400-033-5217】上海凯来为英国Cobalt产品中国总代理【TRS100透射拉曼光谱仪】TRS100透射拉曼是新一代实时、非破坏性的药物拉曼测试系统。操作简单,TRS100的自动分析技术代替了固体制剂费力的液相检测方法,可以快速、*的完成片剂、胶囊、粉剂和其它剂型的定量分析而无需样品制备。将完整的片剂或胶囊置于样品盘上,每个样品的扫描可在1s或者更短时间内完成。特点 Features分析快速 1s定量精准 LOD/LOQ~0.1% APIs无需制样/耗材 应用 Applications含量均匀度CU分析(法规认可,替代HPLC)生产过程控制,药品实时/在线检测晶型/多晶型分析R&D 药物发现/高通量筛选细分市场的隐形冠军——上海凯来实验设备有限公司上海凯来实验设备有限公司成立于2004年,专业代理国际先进分析仪器,聚焦细分市场。总部位于上海张江高科技园区,在北京,广州,成都,杭州,南京,青岛等地设有办事处。公司成立十多年来,一直保持着稳健的业务增长,目前已经成为多个细分市场的领导者。凯来定位明确,专注服务细分高端市场,提倡精英文化,“只有精英才能生存”是公司的基本理念。 目前公司立足于3个细分市场,并都已成为各细分市场的行业领导者。无机元素分析技术配套产品:& 美国NewWave/esi激光剥蚀系列固体直接分析技术产品& 美国TSI ChemReveal激光诱导击穿光谱仪& 美国Elemental Scientific ICP/ICPMS液体进样技术系列解决方案& 澳大利亚XRF Scientific X荧光分析前处理熔样分析技术解决方案 制药行业细分市场产品:& 英国Cobalt Light 空间位移拉曼及透射拉曼& 美国pion药物溶解/通透性分析解决方案& 德国Hosokawa Alpine气流喷射筛分仪 消费品行业细分市场产品:& 美国TSI PolyMax塑料专用分析仪& 美国Agilent 4500 增塑剂检测专用分析仪更多信息请登录凯来官方网站:www.chemlabcorp.com扫一扫,关注凯来官方微信:SHChemLab
  • 天美中国获得“日立120kV透射HT7700”全球最佳销售业绩殊荣
    2011年日立公司隆重推出了具有划时代意义的全数字化120kV透射电镜HT7700,设计采用高灵敏度的荧光屏CCD取代传统的荧光屏,将TEM操作统一于显示器,领先的设计理念得到了全球用户的广泛赞誉,取得了良好的销售业绩。HT7700推出市场短短三年时间,在中国包括香港澳门地区超过八十个用户单位,拥有了相当规模的用户群。  在过去的2014年,天美中国科学仪器公司是日立高新在全球范围内销售HT7700台数最多的代理商,为了表彰天美中国科学仪器公司的贡献,日立高新渡部先生于2015年5月12日前来天美中国北京总部,为天美中国颁发全球最佳销售业绩奖。  日立高新渡部先生(左一)为天美中国科学仪器有限公司副总裁赵薇女士(右一)以及电镜市场部张龙改女士(中间)颁奖  2015年3月,天美中国科学仪器有限公司在上海新成立了最新的Demo实验室,里面将摆放最新高智能型热场扫描电镜SU5000,值此之际,日立高新渡部先生为天美中国赵薇女士颁发纪念品。日立102kV透射电子显微镜HT7700HT7700主要特点:1. 将TEM操作统一于显示器上,无需直视荧光板,实现了无胶片化,可以在明亮的室内进行观察,以往在荧光板上发暗而难于识别的图像在显示器上也能够实现清晰地显示,,使得操作者有了舒适健康的工作环境。 2. 直接继承了日立120KV-TEM的基本理念,即低倍率与宽视野观察、高对比度与高分辨率观察和低剂量观察等。 3. 标配涡轮分子泵(TMP)真空系统,实现真空系统清洁化,比传统的油扩散泵节约电力30%,是一款低碳环保产品。。 4. 采用操作台、显示器与TEM主机相分离的新式设计,相比以往的设计节省了安装空间,采用了省电、轻量化等环保设计。日立高新全数字化透射电镜HT7700的设计理念必将引起中国用户的广泛关注,天美(中国)科学仪器有限公司会继续奉行“以质量求生存,以信誉求发展”的营销理念,为中国的科研工作者提供最一流的电镜产品和最优质的售后服务。公司简介:   天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。  更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制