当前位置: 仪器信息网 > 行业主题 > >

阀位置传感器

仪器信息网阀位置传感器专题为您提供2024年最新阀位置传感器价格报价、厂家品牌的相关信息, 包括阀位置传感器参数、型号等,不管是国产,还是进口品牌的阀位置传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合阀位置传感器相关的耗材配件、试剂标物,还有阀位置传感器相关的最新资讯、资料,以及阀位置传感器相关的解决方案。

阀位置传感器相关的资讯

  • 中国传感器之殇——褪色的智能
    p style=" text-indent: 2em " strong 智能少不了传感器 /strong /p p style=" text-indent: 2em " 传感器是数据采集的源头,它无处不在。智能最前端所需要的态势感知,基本都是要从传感器开始。无论是智能制造、智慧城市、智慧医疗等,还是智能设备和大数据分析,再庞大的智能系统,都要从传感器的针尖上开始。 /p p style=" text-indent: 2em " 医疗器械界的奇兵——达芬奇手术机器人有四百多个传感器;鼎鼎有名的波士顿机器人大狗,能够自如地翻跳腾跃,则需要1300个传感器。 /p p style=" text-indent: 2em " 日本著名的马桶品牌骊住Lixil,正在推出的智能马桶,马桶盖背面安装了图像传感器,可以自动识别粪便形状,整个马桶通过70多个传感器,自动检测并与云端相连,可以实现慢病大健康管理。而博世公司推出的工厂协作机器人助手APAS,内置了上百个传感器,以便可以迅速感知人的状态。 /p p style=" text-indent: 2em " 这些令人叹为观止的智能产品,其实都是有共性的。 /p p style=" text-indent: 2em " 这个世界的数字化步伐,半步都不能离开小小的传感器。 /p p style=" text-indent: 2em text-align: center " img style=" max-width: 100% max-height: 100% width: 540px height: 277px " src=" https://img1.17img.cn/17img/images/202010/uepic/bdfb750d-86ef-4930-b040-13c9f2f48f33.jpg" title=" 1000.jpg" alt=" 1000.jpg" width=" 540" height=" 277" / /p p /p p style=" text-indent: 2em " 图1 传感器的数量 /p p style=" text-indent: 2em " 然而在中国战略性、支撑性的产业版图上,却几乎找不到传感器的位置。当新基建如火如荼建设的时候,传感器——这一至关重要的支撑,却几乎被人忘在脑后。这个画面大概如此,当所有光鲜的客人要步入大厅的时候,脚后跟却都被夹在门外。这种尴尬的局面,迟早是要痛得大声喊出来的。 /p p style=" text-indent: 2em " strong 两栖物种 传感器六大怪 /strong /p p style=" text-indent: 2em " 广泛使用的传感器,它属于以小搏大的工业门类,是通向其他产业的基础。但传感器也是一个很独特的行业。很多传感器都具有两栖属性:一方面,传感器的核心是芯片,会追随摩尔定律,有着快速进化的大脑;另一方面,它同时也与敏感材料、机械器件在一起,受到机械定理的许多制约。这是种独具特色的产业,使得传感器必须经过细心呵护,才能发展得很好。然而在中国,传感器却成为一个令人惊讶的“六大怪”行业。 /p p style=" text-indent: 2em " 传感器的第一怪:容量不小,而国内头部玩家却很小。2019年中国传感器市场规模达到1700亿元,估计有1700多家企业。除了歌尔、瑞声靠着苹果手机强大的出货量,体量达到百亿级,在声学传感器领域已经占住地盘。而其他领域,如手机、汽车、工控、可穿戴、物联网等,基本上都是国外品牌的市场。在消费电子、安防之外的领域,产值超过1个亿的企业并不多,只有郑州汉威、宝鸡麦克、南京高华等跑在前面,其他国内传感器企业,基本都属于土豆俱乐部。 /p p style=" text-indent: 2em " 传感器的第二怪:种类繁多,但这个市场很隐蔽。国外成型产品及在研种类有3万多种,我国有2万多种。这些数量未必精确,但传感器无疑是一个庞大类别的产品。而这种产品,却很少为业界之外的人所知晓。其实手机、汽车、工业测量、智能装备等都是应用传感器的大户。而这几年风生水起的智能制造、工业互联网,都离不开小小的传感器。当然人工智能也不例外。可以说人工智能跑得再快,脚上穿着还是传感器的鞋。 /p p style=" text-indent: 2em " 传感器的第三怪:民品最怕断供,军工不怕价高。军用传感器已经高度自主化,主要是由于军品采购可以不计成本。而如果要到民用市场来竞争,那是既要拼规模,也要有高性价比。如果功耗小一点,成本小一点,那就可赢者通吃。因此民用市场的突破还很艰难,也无法从军工市场获得支撑。两条隧道,各通一边,没有打通。而民用仪表传感器高度依赖国外。日本横河跟重庆川仪有一家合资公司,生产横河川仪的仪表。日本横河提供的谐振式压力传感器,这是最高精度的压力传感器。国内攻关一直未能攻克。这家合资厂也只能依赖日本的传感器。 /p p style=" text-indent: 2em " 传感器的第四怪:中国制造虽以成本著称,但传感器的成本优势还没有国外明显。中国目前生产大部分都是低端传感器。而我国中高端传感器进口占比达80%,传感器芯片进口更是达90%以上。中国生产成本也很高,收入才几千万,如何舍得投入几千万建生产线?现在很多传感器厂家,还都是单干,手工装配很多。因为产量上不去,有的1个月的产量也就5000只,根本谈不上规模效益。而博世、欧姆龙等早就把工厂设立在中国,成本优势同样巨大。 /p p style=" text-indent: 2em " 而且,美德日品牌企业对中国传感器市场虎视眈眈,对市场份额看得很紧。中国一有进步,就会被国外品牌降价挤压。2010年日本欧姆龙一个开关要接近400元,而现在随着中国品牌的逐渐崛起,现在只需要60元。灵活降价,坚决保卫市场份额,是国外厂商常见的营销手段。这种方法,一直将国产品牌压制在面黄肌瘦线附近,很难翻身。 /p p style=" text-indent: 2em " 传感器的第五怪:市场巨大,融资最难。本来智能制造、人工智能大热,传感器终于应该迎来咸鱼翻身。但是,没有。这是一个投资人不待见的市场。由于国内对这个产业的重要性的认识不足,导致投资界一直处于冷淡期。这跟产品隐蔽,做大做强比较难,是有关系的。而国家对这个产业的“冷处理”的态度,自然也影响了投资基金的判断。 /p p style=" text-indent: 2em " 传感器的第六怪:本是国之重器,奈何落地沦为小萝卜头。传感器作为感知的第一道防线,是人类社会走向智能的关键源头。然而这个行业一直得不到重视。上世纪80年代初,国家科委主持的课题研究中,在讨论信息技术包括哪些技术的过程中,“传感器技术”引起了巨大的分歧。但因为体量太小,最终还是被切掉。这一晃,四十年都过去了,情况几乎没有变化。虽然最近两三年有些鼓励发展传感器的政策陆续出台,但一无力度二无资金,基本也就是草草地走了过场。 /p p style=" text-indent: 2em " 传感器其实就是互联万物的五官,是眼睛,是耳朵,是各种触觉。尽管如此重要,却无人重视。传感器六大怪,本身就是一大怪事。这可真是一根扎心的刺。 /p p style=" text-indent: 2em " strong 惊人的利润 /strong /p p style=" text-indent: 2em " 在国内,传感器并不容易挣钱。由于芯片不能自主,工艺研发投入巨大,再加上红海竞争激烈,中国传感器的利润一直被压得很低。根据国内40家传感器企业上市公司的财报,将近40%的企业利润率低于5%;而利润为负就有6家。 /p p style=" text-indent: 2em " 都说制造业利润低,传感器看来也是其中的一种。不过,不挣钱,并不是这个行业的真实情况。 /p p style=" text-indent: 2em " 日本基恩士传感器公司,可以说是日本最挣钱的公司。2019年营业额接近360亿人民币,而利润,则达到了惊人的180亿。利润率居然超过50%,而且常年如此。传感器这种在中国几乎无法建树的行业,被日本做成了真正的摇钱树。 /p p style=" text-indent: 2em " 这家以纯设计(Fabless)起家的传感器公司,主要是设计和销售传感器、测量系统、激光刻印机等。从产品开发策略来看,它从来不定制产品,坚持完全“以我为主”的标准化产品研发。这种策略,维持了产品研发的规律性,而定制产品则会有很大的周期不确定性,经常导致企业失去灵活性。为了不断开发新品,基恩士采用了广泛的研发信息源,促使产品的多样化。而从产品系列而言,则采用了深度嵌套的产品组合。既有传感器产品,更有在传感器基础上做好的测量系统,成为测量领域的领头羊。 /p p style=" text-indent: 2em " 国内像海康威视、大华等领头羊,都是走大型工程。虽然也挣钱不少,但其实跟传感器也没有太大关系。即使是以气体传感器起家的郑州汉威,这几年也是重点聚焦在水务、环保等总包工程。传感器事业板块,不过只是这家上市公司的高科技之名而已,从体量而言则基本就是无足轻重。 /p p style=" text-indent: 2em " 传感器主要用在电子产品、工控与测量、设备等几个板块。而传感器的发展,最早是来自工业自动化的推动。但在中国最黯淡的,也就是工控与测量这个分支了。最典型的可以算是上海威尔泰仪表公司了。这家企业以核电为入手点,进入到传感与仪表领域的,属于纯正的工业自动化产品。从上市公司财务报表来看,这家公司上市已经14年,但最近一年收入大约在六千万元。不得不说,经营惨淡。要知道,另外一家巨头公司霍尼韦尔公司,其传感与物联部门在全球的营收将近60亿元。 /p p style=" text-indent: 2em " strong 设计软件没人管 /strong /p p style=" text-indent: 2em " 工业软件是中国制造的软肋,传感器更是如此。而传感器的设计软件,也是非常隐蔽的匕首。这几年MEMS传感器非常火爆,每个手机中都有几个,如感知加速度的。而一般的汽车至少也有十多个。德国博世、美国博通、荷兰恩智浦等都是业界巨头。中国只在麦克风的MEMS传感器扳回一个角,做得很好。 /p p style=" text-indent: 2em " 然而MEMS传感器的设计,需要两款很专业的CAD软件。一个是 IntelliSuite,这是美国1991年创立的,这也是最早的MEMS专用CAD设计画图软件。 /p p style=" text-indent: 2em " 另外一家ConventorWare也是美国公司。中国很多传感器企业几乎都在用,能占据中国80%的市场。当年在国内承担863计划MEMS研究项目的30个研究小组,全部都使用这种软件。它在MEMS传感器的位置,跟6月份哈工大被断供的Matlab软件在科学计算中的地位,基本一样。而在中国,几乎没有这种软件。不幸的是,这款软件在2017年被泛林LAM收购;而LAM是美国第二大半导体设备制造商。这都是美国政府最容易动刀子的断供之地。 /p p style=" text-indent: 2em " 工业软件,非常的细分了。如果不深入到行业中去,很多软件都是隐藏而不可见。这种处境,倒是跟传感器一模一样。传感器和工业软件,似乎都穿着隐身衣。而正是这些看不见的工业软件,其实暗地封锁着中国制造的诸多命脉。传感器设计软件,就是其中一道令人紧张的暗穴。没有软件,这些传感器很难被设计出来。 /p p style=" text-indent: 2em " strong 几乎全是卡脖子 /strong /p p style=" text-indent: 2em " 在中国,消费类电子的传感器,由于市场的拉动,近十年已经有了很大的进步。然而在工业级的传感器,卡脖子情况比芯片还厉害。围绕着控制与测量,尤其是仪器仪表传感器,几乎100%进口。 /p p style=" text-indent: 2em " 中国仪表的变送器两大巨头,都是“国外芯”。重庆横河川仪年产归谐振变送器30万台,传感器用的是日本横河的;北京远东罗斯蒙特,每年30万台金属电容变送器,用的是美国罗斯蒙特的传感器。可以说,这两家占据中国70%以上市场的龙头企业,基本就是给日本和美国打工。其他企业情况也一样,苏州恩德斯豪斯E+H一年大约5万台,用的是德国E+H;而国内品牌的龙头企业 ,用的基本都是德国FirstSensor。要命的是,这家公司,在今年3月被美国传感器巨头泰克连接公司所收购 。这对于中国的仪表,实际上非常的凶险。今后是否还能买到德国传感器芯片,存在着极大的不确定性。 /p p style=" text-indent: 2em " 这意味着,石化、医药等流程行业广泛使用的变送器,其中的传感器除了用日本横河和美国罗斯蒙特的芯片,原本用德国的公司的现在也要依赖美国公司了。 /p p style=" text-indent: 2em " 其他行业也基本是类似的状况。根据传感器国家工程研究中心《中国传感器发展蓝皮书》的统计,汽车传感器、高端化学类气体传感器、光纤传感器、环境检测传感器,对国外进口依赖度都是在95%以上。至于海洋传感器,用于移动观测平台的自动浮标、水下滑翔机,以及海上浮标等,则是100%进口。 /p p style=" text-indent: 2em " 国人非常关心的PM2.5值,其测量仪基本都是采用仪表巨头美国热电公司的产品。它内部所使用的微量振荡天平,通过测量滤膜上微小颗粒的质量而引起振荡管的频率变化,来测试空气颗粒物的浓度。以精密测量的传感器作为基础,热电公司的一台PM2.5测量仪,动辄几十万元,甚至上百万元。也只有国家级测量站,才用真正用得起这种仪表。而直到最近,这种技术才被天津大学精仪学院毕业博士所创立的天津同阳公司,基本攻克。这是一种很幸运的进展了。 /p p style=" text-indent: 2em " 传感器的卡脖子方式,与绝大部分其他工业产品都不一样。它就像一个漫山遍野的地雷阵,分散而隐蔽。要逐项对这一类卡脖子短板进行突破,必将是一个漫长的过程。而且要逐个突破,也基本不现实。 /p p style=" text-indent: 2em " strong 历史上的动摇 /strong /p p style=" text-indent: 2em " 传感器与通信、计算机被称为现代信息技术的三大支柱。但本来处于战略要冲的传感器,在中国的产业位置,基本一直被边缘化。 /p p style=" text-indent: 2em " 这在中国,是有过历史上的动摇。据国内信息化老前辈介绍,上世纪80年代初,一些专家参与了国家科委主持的“信息技术发展政策”课题的研究与起草相关政策。当时第一个要解决的问题是: 信息技术包括哪些技术?计算机、集成电路、通信技术和软件四大技术得到专家们一致的同意。问题出在“传感器技术”,大家意见不一致。 /p p style=" text-indent: 2em " 图2 中国信息技术的构成 /p p style=" text-indent: 2em " 从理论上说,大家都同意,传感器技术是信息技术的一个重要组成部分。如果缺少传感器,信息技术就不完整了,体系上无法自洽。但是,从行业营业额来看,当时的传感器产业太小了,不要说与通信产业这样的大产业比,就是和当时的软件这样的“小产业”比,也不在一个量级上。如果并列在文件中,非常难以落笔。讨论了很长一段时间,最后还是“忍痛割爱”了。 /p p style=" text-indent: 2em " 可以说,信息技术刚刚起步,作为支点之一的传感器,从一开始就被边缘化。这种偏差,意味着中国的信息化,一直就是瘸腿的信息化。而进入数字化时代,工业互联网成为国家战略,这种瘸腿就更加明显。然而,这种历史上的动摇所形成的隐形偏差,历经四十年,越发畸形,而且直到至今,也未能得到纠正。 /p p style=" text-indent: 2em " 现在,应该是回到原点,重塑根基的时候了。 /p p style=" text-indent: 2em " br/ /p p style=" text-indent: 2em " 小记 /p p style=" text-indent: 2em " 芯片卡脖子,举国上下群情激愤,到处都是大投资。但中国的卡脖子,其实是一个系统性工程,不是只出现在某一个节点上。要说卡脖子,中国制造几乎就是长颈鹿的脖子,到处都是卡点。许多不同的卡脖子技术,底层有着更为隐蔽的交错关系。传感器的芯片,并不需要太高的纳米制程,像当前最热的传感器的微机电系统MEMS,它需要的制程甚至可以用微米级完成。以举国之力,狂热的投资,都要去解决华为手机芯片,或者中芯国际的先进制程问题,既不科学,也不理性,更忽视了其他同样重要的产业市场。 /p p style=" text-indent: 2em " 跟芯片卡脖子是卡在明处完全不同,传感器在中国的产业地位,基本就是一个黑户口,无人关注。这才是传感器产业最令人担心的地方。 /p p style=" text-indent: 2em " 中国数字经济已经是庞然大物,目前占GDP的比重约为35%,总量超过30万亿元。传感器正是数字经济的最基本的支点。然而在这座庞大宫殿的入口处,守门的哨兵,却依然在昏睡中。 /p p style=" text-indent: 2em " 这是智能大门的缺失。传感器就像无处不在的小伤口,随时都可能作痛。传感器之殇,中国不可承挡。 /p p br/ /p
  • 生物传感器监测植物生长
    日前,德国拜罗伊特大学和图宾根马克斯普朗克发育生物学研究所科学家开发出一种新型传感器,可以实时显示植物细胞中生长素的空间分布,并可快速检测环境变化对植物生长的影响。这种传感器为研究人员打开了观察植物内部运作的全新视角。相关研究成果发表在最近的《自然》杂志上。  无论是种子的胚胎发育、根系生长,还是植物对阳光方向的反应,生长素都具有协调植物对外界刺激反应的功能。为了触发对外部刺激的反应,它必须存在于所需的细胞组织中。迄今为止,人们还无法在细胞分辨率上直接确定生长素的时空分布。  此次,研究人员开发出一种新型基因编码的生物传感器,可将植物体内生长素的分布定量可视化。其特殊之处在于,它是一种植物经改造后可自己产生的人造蛋白质,而不必经由外部引入。他们利用这种传感器实时观察了细胞组织需要生长素的时空间分布动态过程。  在开发这种生物传感器时,研究人员发现大肠杆菌中有一种蛋白质可与两种荧光蛋白偶联,并在这些配对蛋白非常接近时发生荧光共振能量转移(FRET)。这种蛋白可与氨基酸色氨酸结合,但与生长素的结合要差得多。他们希望通过基因改造,使其能更好地与生长素结合,并使其FRET效应只在蛋白质与生长素结合时发生。  研究人员对植物进行了基因改造,使其在某种刺激下可在细胞组织中产生满足这些要求的蛋白质。于是,新型生物传感器诞生了:强烈的荧光信号表明了细胞组织中生长素的位置,提供了细胞内生长素分布的精确“快照”,且不会对生长素控制过程造成永久影响。  “传感器的发展是一个漫长的过程,在这个过程中,我们已经获得了关于蛋白质如何被选择性地改变以结合特定小分子的基本见解。”拜罗伊特大学蛋白质设计学教授比尔特哈克说,“预计在未来几年,新的生物传感器将发现更多关于植物内部运作以及它们对外界刺激反应的新见解。”
  • 美国发明可探测致癌物质的纳米传感器
    美国科研人员发明了一种微型传感器,可以检测少量有毒的致癌物质或追踪活细胞内部抗癌药物的效用。   “我们制作了一个非常小的纳米传感器,可以检测致癌分子或单一细胞内的重要治疗药物”,麻省理工学院的研究人员Michael Strano表示。   “传感器比一个活细胞还小得多,因为它的体积小巧,可以放置在不适宜放较大传感器的地方”,他说。   Strano称,传感器是由被称为碳纳米管的薄丝碳分子制成。   研究团队在碳纳米管里小心加入DNA,传感器能发出可被近红外光谱探测出的荧光,因人体组织不能在这个光谱下发光,所以可以辨别出纳米管的位置。   当传感器与细胞内的DNA发生作用时,光信号就会改变,从而帮助研究人员辨识出一些特定分子。   从1991年被发现以来,纳米碳管(carbon nanotube,CNT) 日益令人瞩目。这些卷曲状的石磨虽然微小到肉眼不可见,但是硬度比钻石还高,由有机物构成,可以呈现出多种形式,具有金属或者半导体的特性,有望发展为纳米电子学(nanoelectronic)、医学的首选材料,成为新型传感器光传感器和合成原料的加固成分。
  • 新-麻工院科研中心研发出新型传感器
    新加坡&mdash 麻省理工学院科研中心近期研发出一种形似海豹胡须的新型传感器,这种传感器有助于提升海上石油开采和船只航行的安全性。   海豹的胡须可探测出其他水中物体的位置与移动速度,能够感应到鱼类游动所产生的细微水流变化,从而更有效地游动并捕捉猎物。研究人员利用上述原理,以海豹胡须的形状与毛囊为原型,研发出此类传感器。   这种传感器即使在污浊与昏暗的水域中仍能探测出物体,因此相较于依赖视觉与听觉的传统水下传感器,更适用于深海石油开采。   例如,石油开采企业需要定期检查水下油管,但程序过于复杂,至今仍不能通过水下机器人完成,须派遣潜水人员深入海里,极为危险。随着胡须型传感器的研发,水下机器人只要装上这类传感器,便可通过水流的变化感应到周围物体,以此绕过障碍物来获取数据。   除此以外,这类传感器可通过感应物体在海中移动对于水流所造成的轻微扰动,降低船只相撞的可能性。
  • 科技引领!植入光纤传感器为电池做“体检”
    手机爆炸、电动汽车行驶或充电过程中的火灾事故在生活中经常可见,让人们在享受锂电池带来的便利的同时,也担心其在安全方面的重大问题。如何降低这一风险?近日,中国科学技术大学教授孙金华、研究员王青松团队与暨南大学教授郭团团队研制出一款可植入电池内部的高精度光纤传感器。相关研究成果日前在线发表于《自然-通讯》。“这款高精度光纤传感器可以在1000摄氏度的高温、高压环境下正常工作,同步测量出电池热失控全过程内部温度和压力,为快速切断电池热失控链式反应提供预警手段。”王青松向《中国科学报》介绍。破解国际性科学难题手机、笔记本电脑、电动自行车、电动汽车中都有一个关键部件——锂离子电池。随着全球范围内能源危机的出现、“双碳”目标的驱动,锂离子电池产业迅速发展。然而,锂离子电池常常会发生爆炸,也就是热失控,这是威胁电池安全的“癌症”,是制约电动汽车与新型储能规模化发展的瓶颈。研究表明,电池热失控源于电池内部一系列复杂且相互关联的“链式反应”。“这可以从电池内部和外部两方面讨论。从内部来看,电池由正负极、电解液、隔膜等组成,其中电解液和隔膜都是易燃物,正负极和电解液在一定温度下又会产生化学反应,进而产生热量和可燃气体。也就是说,电池内部本身就是一个热不稳定的体系。”王青松说。从外部来看,电池在使用过程中容易出现各种外部滥用:电滥用,如过充、过放等;热滥用,如高温、局部发热等;机械滥用,如撞击、挤压等。这些外部滥用会造成电池内部材料发生一系列连锁化学反应,电池内部温度快速提升,最高可达800摄氏度,导致电池起火或爆炸。如何科学、及时、准确地预判电池安全隐患,是当前电池安全领域的国际性科学难题。为攻克这一难题,研究团队提出一种可植入电池内部的高精度光纤传感器,在国际上率先实现对商业化锂电池热失控全过程的精准分析与提早预警。《自然-通讯》的一位审稿专家评价道,“该研究有助于电池健康状态监测,并在不可逆损害前发出预警信号。”小巧光纤实时监测电池健康状态将光纤植入电池,并非王青松等人首创。因光纤传感器具备体积小、重量轻、耐受高温高压、耐受电解液腐蚀等优势,前人将其植入电池。但他们主要测量的是电池循环过程中的内部参数,从未涉足电池热失控监测领域。于是,王青松等人想将光纤植入电池内部,以监测电池热失控过程,并探索电池内部参数能否为电池热失控预警提供新思路。研究思路有了,做起来却非常难,因为现有的大多数光纤传感器无法在热失控过程中“幸存”。王青松解释说,电池热失控过程中,内部压力高达2MPa、温度高达500至800摄氏度,在这种高温高压的冲击下,光纤信号会中断,无法测得电池内部温度和压力数据。研究的关键是开发一款“健壮”的光纤传感器。他们与郭团团队联合攻关,多次改进光纤结构,开展热失控实验,反复修改和验证,最终通过对光纤进行套管保护,在保证内部信号传输的同时解决了光纤容易断的难题。“这款高精度光纤传感器总长度12毫米、直径125毫米,能够植入商业18650电池,实时监测电池热失控期间的内部温度和压力影响。”王青松向《中国科学报》介绍了光纤传感器的结构。相比现有的外部监测技术,内部光纤传感技术更具有及时性、灵活性。“就好比人们患病,当感知到疼痛时,往往为时已晚。这就像电池外部特征的变化一般都是滞后的。”王青松解释道,“而去医院体检,可以通过CT等看到内部器官变化,从而预知疾病的发生,并通过治疗手段阻止疾病进一步发展。但这种大型设备体积庞大,无法随时随地监测内部状态变化。如果在人体内植入芯片,就可以做到实时跟踪预警。就像在电池内部植入光纤传感器,可以做到实时监测预警。”值得一提的是,该研究通过解析压力和温度变化速率,首次发现温度和压力变化速率的转变点可作为电池热失控早期预警区间。该发现适用于不同电量的电池,能够在电池内部发生“不可逆反应”之前发出预警信号,保证了电池后续的安全使用。用于同时监测电池内温度和压力的FBG/FPI传感器工作原理适合大规模推行量产在王青松看来,光纤传感器尺寸小、形状灵活,具有抗电干扰性和远程操作的能力和适合大规模生产的标准制造技术,并且可以实现一根光纤在电池的多个位置同时监测温度、压力、气体组分、离子浓度等多种关键参数。光纤传感技术与电池的结合将在新能源汽车、储能电站安全监测等领域发挥重要作用。为此,研究团队将探索光纤传感器在大容量储能电池中的应用。“大容量储能电池热失控相比此次研究中的18650电池更加剧烈,并且其热失控特性和机理与小电池有所差异,这将是对我们研究的进一步考验。”王青松说。另一方面,团队将与电池制造商合作,希望在电池制作过程中植入光纤传感器,避免对电池二次破坏,加快光纤传感在储能和新能源汽车电池管理系统中的应用进程。相关论文信息:https://www.nature.com/articles/s41467-023-40995-3
  • 环境监测将成为MEMS传感器的发展新方向
    p   自1990年至今,MEMS传感器的应用有三波演进 一开始内建在汽车的安全气囊中,而后则是用于消费性电子内部,第三波演进便是物联网崛起。而环境感测将是下一波MEMS传感器趋势。近年来消费者对于生活周遭的环境品质要求上升,因此带动一波环境传感器的需求上涨。 /p p   在智慧型手机以及穿戴式装置应用中,陀螺仪、加速度传感器和磁力计等动作传感器已发展成熟。制造商们开始找寻创新应用,意法半导体与博世公司都认为,环境传感器将是接下来微机电系统传感器一大重要发展方向。 /p p   意法半导体技术行销经理苏振隆表示,环境感测将是下一波MEMS传感器趋势。近年来消费者对于生活周遭的环境品质要求上升,因此带动一波环境传感器的需求上涨 无论是湿度、海拔高度、大气气压、紫外线,以及温度都可由环境传感器测得。 /p p   博世公司亚太区总裁百里博表示,未来内建于智慧型手机的环境传感器功能,将包括计算使用者消耗的卡路里数、显示位置的海拔标高、空气中的湿度、当下气温,以及感测环境中的光线等。 /p p   同时,百里博表示,未来内建于智慧型手机的环境传感器功能,将包括计算使用者消耗的卡路里数、显示位置的海拔标高、空气中的湿度、当下气温,以及感测环境中的光线等 为了满足物联网往后的应用需求,该公司会将物联网的传感器发展主力放在动作及环境监测上。 /p p   由于现在生活环境中空气污染严重,所以在环境传感器的应用中,与气体传感器相关的应用将会是环境传感器未来的关注目标。由于消费者希望借由此类传感器得知生活中空气污染物、有毒气体及细悬浮微粒的含量是否已达到危害人体的界线。 /p
  • 打造智能传感产业大平台、大中心、大生态,2021世界传感器大会展会盛况直击!
    2021年11月1-3日,由中国科学技术协会、河南省人民政府主办,中国仪器仪表学会、郑州市人民政府、河南省科学技术协会、河南省工业和信息化厅、河南省发展和改革委员会、河南省科学技术厅、中共河南省委外事工作委员会办公室承办的2021世界传感器大会-展览会在河南省郑州国际会展中心隆重举办!本次展览会近10000平展出面积,近200家国内外企业积极参展,展览会将以传感器研发创新为核心,以传感器系统集成与应用为切入点,涉及传感器应用、标准发展和相关元器件,产业链上下游的关联企业同台展示传感器产业生态圈。松下作为中国工业自动化生产的行业领军者,通过精研传感器科技、精化传感器生产进一步占领传感器产业发展高地,现场展示CMOS型微型激光位移传感器HG-C、接触式数字位移传感器HG-S、超高速・高精度激光位移传感器 HL-C2等最新成品和技术。西门子作为世界500强,这次参展的产品主要有压力、温度、流量,分析表等。在行业中应用广泛,比如石化、冶金、电力、水行业等。易福门展示的产品有位置类的:电感式接近开关,光电开关,激光测距传感器;过程类的:液位、压力、流量、温度传感器;以及R360移动控制器,安全光幕,安全继电器、振动传感器等新产品。万可现场展示了丰富的自动化控制技术产品、工业接口模块及采用笼式弹簧连接技术的轨装式接线端子等创新产品,可满足物流行业智能化发展对设备的自动化及电气连接提出的更高要求。作为电子测试测量行业的佼佼者,福禄克公司的6个事业部联合参展,将携众多重量级产品亮相此次展会。届时用户将有机会近距离的了解到福禄克高端产品,同时现场将会有专家为用户答疑解惑。作为大会东道主的汉威科技集团,本部坐落于河南郑州。本届大会上,汉威携各类优质高效的传感器及其检测方案、物联网解决方案及其行业垂直应用等在2021世界传感器大会 1003 展位上精彩亮相,吸引了众多嘉宾驻足。产品介绍,应用交流,使得这抹蓝色成为现场最具人气的展台。目前高通除了展示汉字库信息处理芯片以外,有6000多家应用案例,在这个应用案例的过程当中,接触到各行各业,高通并做了很多终端的产品和部件,如今物联网已经遍布全世界,而且物联网的应用会越来越广。现场直播逛展环节世界传感器大会已经连续成功举办三届,依托“一会、一赛、一展”等系列活动,吸引了一大批权威的院士专家和知名的企业关注郑州,聚集了智能传感器产业发展的郑州共识,促进了人才成果、项目研发机构、技术标准等创新资源的聚集共享,大会已经成为国内外传感器产业创新发展的知名盛会。
  • 智能化成分析仪器与传感器发展方向
    我国分析仪器和传感器产品,已经加大力度朝向智能化、信息化、网络化方向发展,以实现更灵敏、更准确、更快速、更可靠地实时检测。  分析仪器是我国科技、经济和社会持续发展的基础,无论在工业过程控制、设施农业、生物医学、环境控制、食品安全乃至航空航天、国防工程等领域,均迫切需要各类新型传感器作为信息摄取源的小型化、专用化、简用化、家庭化的新一代分析仪器,以迅速改变我国分析仪器的落后状况。  传感器作为现代科技的前沿技术,传感器产业也是国内外公认的具有发展前途的高技术产业,它以其技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人瞩目。  几十年来,以微电子技术为基础,促进了传感器技术的发展。多学科、多种高新技术的交叉融合,推动了新一代传感器的诞生与发展。例如:我国重点开发的MEMS、MOMES、智能传感器、生物化学传感器等以及今后将大力开发的网络化传感器、纳米传感器均是多学科、多种学科技术交叉融合的新一代传感器。  微型化是建立在微电子机械系统(MEMS)技术基础上的,目前已成功应用在硅器件上形成硅压力传感器(如上述EJX变送器)。微电子机械加工技术,包括体微机械加工技术、表面微机械加工技术、LIGA技术(X光深层光刻、微电铸和微复制技术)、激光微加工技术和微型封装技术等。  MEMS的发展,把传感器的微型化、智能化、多功能化和可靠性水平提高到了新的高度。传感器的检测仪表,在微电子技术基础上,内置微处理器,或把微传感器和微处理器及相关集成电路(运算放大器、A/D或D/A、存贮器、网络通讯接口电路)等封装在一起完成了数字化、智能化、网络化、系统化。(注:MEMS技术还完成了微电动机或执行器等产品,将另作文介绍)网络化方面,目前主要是指采用多种现场总线和以太网(互联网),这要按各行业的特点,选择其中的一种或多种,近年内最流行的有FF、Profibus、CAN、Lonworks、AS-Interbus、TCP/IP等。  除MEMS外,新型传感器的发展还有赖于新型敏感材料、敏感元件和纳米技术,如新一代光纤传感器、超导传感器、焦平面陈列红外探测器、生物传感器、纳米传感器、新型量子传感器、微型陀螺、网络化传感器、智能传感器、模糊传感器、多功能传感器等。  多传感器数据融合技术正在形成热点,不同于一般信号处理,也不同于单个或多个传感器的监测和测量,而是对基于多个传感器测量结果基础上的更高层次的综合决策过程。有鉴于传感器技术的微型化、智能化程度提高,在信息获取基础上,多种功能进一步集成以致于融合,这是必然的趋势,多传感器数据融合技术也促进了传感器技术的发展。  多传感器数据融合的定义概括:把分布在不同位置的多个同类或不同类传感器所提供的局部数据资源加以综合,采用计算机技术对其进行分析,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,降低其不确实性,获得被测对象的一致性解释与描述,从而提高系统决策、规划、反应的快速性和正确性,使系统获得更充分的信息。其信息融合在不同信息层次上出现,包括数据层(像素层)融合、特征层融合、决策层(证据层)融合。由于它比单一传感器信息有如下优点,即容错性、互补性、实时性、经济性,所以逐步得到推广应用。应用领域除军事外,已适用于自动化技术、机器人、海洋监视、地震观测、建筑、空中交通管制、医学诊断、遥感技术等方面。  近年来,传感器正处于传统型向新型传感器转型的发展阶段。新型传感器的特点是微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造,而且可导致建立新型工业,是21世纪新的经济增长点。
  • 透明电极指纹传感器问世
    p   让手机屏任何位置都能识别身份 /p p   科技日报北京7月8日电 (记者张梦然)英国《自然· 通讯》杂志近日发表了一项材料科学新突破:韩国科学家团队用超长银纳米纤维和纯银纳米线组成的随机混合网络纳米结构,创造出新型透明电极,进而产生一种透明的指纹传感器。在智能手机屏幕上的演示表明,这种传感器可以让用户将手指放在屏幕的任何位置进行身份识别,而不需要使用指纹激活按钮。 /p p   指纹传感器是电子设备实现指纹自动采集的关键器件。其需要在一颗不足0.5平方厘米的晶片表面集成10000个以上的半导体传感单元,因此尽管指纹采集现在已很常见,但指纹传感器的制造仍属于一项综合性强、技术复杂度高、制造工艺难的高新技术。 /p p   消费电子市场一直大力追求透明的指纹传感器。不过,现阶段的技术受限于关键性的设计限制,比如需要开发出具有光传输和电子导电功能高的透明电极。而此次,科学家终于推出了制造智能手机的指纹传感器阵列,这些阵列可以同步检测触觉压力和手指皮肤温度。 /p p   韩国蔚山国立科技研究所科学家团队设计了一种新方法,来制造柔性透明的多功能传感器阵列。该设计的秘诀在于根据由超长银纳米纤维和纯银纳米线组成的随机混合网络纳米结构,创造出新型透明电极。 /p p   这种混合网络表现出较高的光传输力和低电阻,极耐机械弯折。将其融入指纹传感器阵列后,就得到一个高分辨率装置,能够准确可靠地检测触摸条件下指纹的脊谷区域。 /p p   研究团队将指纹传感器阵列、压敏晶体管和温度传感器集成至智能手机显示屏,借此展示了这项新技术在移动设备上的可应用性。这也意味着,这种传感器有望在未来取代指纹激活按钮。 /p p   总编辑圈点 /p p   手机迭代升级的速度太快,快到让人难以记起几年前的它,更难以想象几年后的它。如今我们对手机指纹解锁、指纹支付习以为常,简直都忘了曾经每天输入密码千百遍。这种“进化”还在继续:新上市的全面屏手机,正在用屏下指纹识别替代指纹识别键,只是指纹采集的位置依然固定。也许再过几年,随意触摸手机任何位置都能解锁。但愿那时,你还记得它曾经有个指纹识别键。 /p p br/ /p
  • 石墨烯鼓有望制造出超高灵敏度传感器
    科技日报讯 荷兰代尔夫特理工大学的科学家发现用石墨烯薄片制成的&ldquo 鼓面&rdquo ,能够在光的作用下发生振动,根据这一原理能够检测到非常微小的位置和力度的变化,未来有望据此用石墨烯制造出具备超高灵敏度的传感器设备和量子计算机内存芯片。相关论文发表在近日出版的《自然· 纳米技术》杂志上。   石墨烯以其独特的机械和电气性能闻名于世,而最近荷兰的科学家们发现,这种神奇材料还具有一种独特功能。由于单层石墨烯只有一个原子厚,质量极低,因此研究人员设想能否用其制造出一面能够感受到微小振动的&ldquo 鼓&rdquo 。这面鼓的鼓面由石墨烯制成,敲击它的鼓槌则是以微波频率发射的光。   领导这项研究的荷兰代尔夫特理工大学的维伯· 辛格博士和他的同事用石墨烯在一个光力学空腔中对这一设想进行了验证。他们发现,在光力学空腔中,他们能够通过观察光干涉现象产生的图案,检测出物体位置及其微小的变化,精度能够达到17飞米(原子直径的一万分之一)。   物理学家组织网近日报道称,实验中的光不仅有利于检测到鼓的位置,同时也能够向鼓面施加压力。来自光的推力非常非常小,但足以推动质量极小的用石墨烯制成的鼓面,让其发生位移。这意味着科学家们可以用光敲击石墨烯制成的鼓。根据这一原理有望制造出具备超高灵敏度的传感器设备。   此外,科学家也可以用它来制造内存,这些微波光子能够将光转化为机械振动,并将其存储长达10毫秒的时间。虽然对人类而言10毫秒极其短暂,但对目前的计算机芯片而言这已经不少了。辛格称,他们的一个远期目标是通过这种二维晶体鼓来研究量子运动。   辛格说,如果敲击一个普通的鼓,鼓面只会发生上下振动。而如果敲击的对象是一个量子鼓,将不仅能够通过敲击让鼓面发生振动,还能使其形成一种量子叠加状态:鼓面将同时既在上面也在下面。这种奇怪的量子运动不仅具有科学相关性,还能够在量子记忆芯片上获得应用。在一台量子计算机中,量子比特同时既可以是0也可以是1,因此其运算速度远远超过目前传统的计算机。石墨烯制成的量子鼓就具备这种能力,它能够在用与普通RAM芯片相同的方式来存储数据的同时,接收和存储量子计算机的量子计算结果。
  • 精密位移传感器技术比较
    精密位移传感器技术比较PIEZOCONCEPT 在其压电级中使用什么类型的位移传感器?为什么它优于其他传感器技术?PIEZOCONCEPT 使用单晶硅传感器,称为Si-HR 传感器。尽管它是应变仪传感器大系列的一部分,但它的性能优于其他两种常用技术(电容式传感器和金属应变仪)。这两种位置传感技术有其自身的特定缺点。 电容式传感器与 PIEZOCONCEPT 公司Si-HR 传感器的比较电容式传感器非常常用。他们提供了不错的表现,但他们对以下情况很敏感:• 气压变化:空气的介电常数取决于气压。电容测量将受到任何压力变化的影响。• 温度变化:同样的,空气的介电常数会随温度变化• 污染物的存在以上所有都会导致一些纳米级的不稳定性,因此如果您想实现真正的亚纳米级稳定性,则需要将它们考虑在内。即使可以对气压和温度进行校正,也无法校正其他因素(污染物、脱气)的影响。这解释了电容式传感器在真空环境中性能不佳的原因。此外,电容式传感器非常昂贵且体积庞大。因此,带有电容传感器的位移台不可能做的有像的 BIO3/LT3 这样薄,即使设计的好也会在稳定性方面进一步牺牲性能。因为它是一种固态技术,所以Si-HR 传感器的电阻不依赖于气压或污染物的存在。其次,温度变化会对测量产生影响(主要是因为材料的热膨胀),但这可以通过使用传感器阵列来纠正。基本上,我们为每个轴平行使用 2 个硅传感器 - 一个用于测量,另一个用于考虑由于温度变化导致的材料膨胀。金属应变计与 PIEZOCONCEPT Silicon HR 技术的比较金属应变计与我们的 Silicon HR 技术(也是应变计)之间的差异更大。金属应变计和硅传感器应变计之间存在两个巨大差异。竞争对手试图说所有的应变仪都具有相同的性能,因为它们测量的是应变。这是不正确的。半导体应变计在稳定性方面与金属应变计有很大不同。金属应变计和Si-HR 传感器(PIEZOCONCEPT 使用)之间的第yi个区别是应变系数:半导体应变仪(Si-HR)的应变系数大约是金属应变仪的 100 倍。更高的规格因子导致更高的信噪比,最终导致更高的稳定性。 更重要的是,第二个区别是金属应变计不能直接安装在弯曲本身上(即实现运动的地方):金属应变计必须安装在某种“背衬”上。因此,它必须安装在执行器本身上,因为您没有足够的空间将其安装在挠性件上。仅在执行器上测量的问题是压电执行器有很多缺陷......存在蠕变或滞后等现象。因此,由于压电执行器的伸长不均匀,因此仅测量执行器的部分伸长率并不能精确地扣除其完全伸长率。通过对弯曲本身进行测量,我们不会遇到这种“不均匀”问题。由于上述原因,如果您比较应变计(金属)和 PIEZOCONCEPT 的Si-HR 传感器,在信噪比和稳定性方面存在巨大差异。 关于法国PIEZOCONCEPT公司 PIEZOCONCEPT 是压电纳米位移台领域的领宪供应商,其应用领域包括但不限于超分辨率显微镜、光阱、纳米工业和原子力显微镜。其产品已被国内外yi流大学和研究所从事前沿研究的知名科学家使用,在工业和科研领域受到广泛好评。 多年来,纳米定位传感器领域电容式传感器一直占据市场主导地位。但这项技术存在明显的局限性。PIEZOCONCEPT经过多年研究,开发出硅基高灵敏度位置传感器(Silicon HR)技术,Si-HR传感器可以实现更高的稳定性和线性度,以满足现代显微镜技术的更高分辨率要求。 PIEZOCONCEPT的目标是为客户提供一个物美价廉的纳米或亚纳米定位解决方案,让客户享受到市面上蕞高的定位准确性和稳定性的产品使用体验。我们开发了一系列超稳定的纳米定位器件,包含单轴、两轴、三轴、物镜扫描台、快反镜和配套器件,覆盖5-1500um行程,品类丰富,并提供各类定制化服务。与市场上已有的产品相比具有显着优势,Piezoconcept的硅传感器具有很好的稳定性、超本低噪声和超高的信号反馈,该技术优于市场上昂贵的高端电容传感器。因此,我们的舞台通过其简单而高效的柔性设计和超本低噪声电子器件提供皮米级稳定性和亚纳米(或亚纳米弧度)本底噪声。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 千亿传感器市场引角逐
    今年以来,全球几大消费电子巨头纷纷发力抢占以智能眼镜及智能手表为代表的可穿戴设备市场。而在本轮可穿戴设备的追逐热潮中,传感器已然成为可穿戴设备产业链中的点金石,是硬件产业链上机会确定性较强的一块领域。据美国《华尔街日报》的报道显示,苹果即将发布的iWatch智能手表就将整合至少10种传感器,这无疑将对传感器市场的大热进一步起到推波助澜的作用。此外,前瞻产业研究院在此前发布的《2013-2017年中国传感器制造行业发展前景与投资预测分析报告》中,曾预测2013-2017年中国传感器制造行业销售收入将保持快速增长,2017年行业销售收入将突破5000亿元。分析人士表示,苹果等巨头的示范效应叠加传感器市场规模超千亿,都将推动国内传感器市场加速发展,相关概念大概率将获得资金青睐。   iWatch将成传感器大热催化剂   据外媒报道,最近Sensoplex公司的首席执行官Hamid Farzaneh在采访中对iWatch中可能出现的传感器进行了推测。作为一家新型可穿戴产品设计和供应传感器模块公司,Sensoplex在此领域非常具有发言权。   据悉,Farzaneh专门对这10种传感器进行了分类,有五种可能性比较大,而另外五种则是较有可能。其认为,几乎肯定会被整合进iWatch的传感器,包括加速度传感器、陀螺仪、磁力计、晴雨表/气压传感器及环境温度传感器。   Farzaneh指出,加速度传感器似乎已经成为智能手机的标配,而iWatch将使用加速度传感器测量身体运动,并且可以记录用户步数以及睡眠习惯。而陀螺仪是一款不可缺少的组件,可以侦测转动。陀螺仪获得的数据可以与锻炼逻辑算法相互协作 而且陀螺仪还能让iWatch&ldquo 感知&rdquo 用户,比如举起手腕准备看表时,屏幕自动亮起。气压传感器则不仅仅可以向用户提供更准确的天气数据,还可感知海拔高度的变化,对于跑步爱好者和登山爱好者来说,海拔高度数据非常重要。   针对比较有可能被整合进iWatch的传感器,Farzaneh认为,包括心率监控仪、血氧传感器、皮肤电导传感器、皮肤温度传感器以及GPS。   除此之外,据《华尔街日报》报道称,台湾厂商广大电脑将成为iWatch的主要生产商。而LG将为苹果智能手表独家提供显示屏,这种屏幕拥有2.5英寸,为长方形设计,且呈拱形,支持触摸以及无线充电功能等特点。   iPhone 6或搭载气压计及   传感器装置   据科技博客9to5mac报道,当前业界关于苹果下一代iPhone的传闻正沸沸扬扬,似乎iPhone 6将采用更大的屏幕设计、重新启用金属面板等,已是板上钉钉的事情。近期又有知情人士爆料,iPhone 6可能将搭载运动气压计和大气传感器装置。   据介绍,在通常情况下,气压计是用来测量位置高度的一个装置,这一传感器已经普遍存在于常见的Android设备上,比如三星的Galaxy Nexus手机。对于徒步旅行者、登山者、骑行和一些希望能够获取自己当前位置精确高度的发烧友来说,气压计传感器装置很实用。当然,通过一些气压数据,气压计同时可以预测气温和天气状况。   业内人士表示,&ldquo iPhone 6可能将搭载运动气压计&rdquo 的传闻并非空穴来风,在苹果最新的软件开发工具包Xcode 6和iOS 8操作系统的代码上,可以找到相关信息。其中的CoreMotion APIs上,赫然显示有高度测量功能。   此外,在当前的苹果应用商店内,已有几款可以跟踪高度的应用存在,这些应用基于现有的GPS芯片和运动跟踪芯片。不过,据相关开发人员称,Xcode 6 和iOS 8中的高度测量基于新的技术框架,需要有新的苹果硬件支持。   上述开发人员称,iOS 8操作系统对新的测量高度的硬件支持,意味着苹果将在未来发布的iOS设备中嵌入这一新功能,这些设备不仅包括今年秋季推出的iPhone 6,还有可能覆盖新的ipad,甚至iWatch。   此外,开发人员在iOS 8上还找到了环境压力跟踪参数,根据这些参数,除了根据气压可以确定高度外,还可以分析周边降水或天气阴晴状况。开发人员称,未来iOS设备的这种天气预测功能。   5000亿市场引角逐   应该说,传感器已经成为可穿戴设备产业链中的点金石,是硬件产业链上机会确定性较强的一块领域。以谷歌眼镜为例,其内置了多达10余种的传感器,包括陀螺仪传感器、加速度传感器、磁力传感器、线性加速等传感器的应用,这让谷歌眼镜实现了一些传统终端无法实现的功能,如使用者仅需眨一眨眼睛就可以完成拍照。虽然谷歌没有透露具体的技术细节,但是业界专家都认为,这主要是因为谷歌眼镜内置了红外传感器和距离传感器,在两者的有机结合下,用户眼睛活动被识别,从而最终实现对应用的操作。   而在可穿戴设备智能化升级的过程中,MEMS传感器是传感器发展的必然趋势。MEMS被称为微机电系统,主要包括传感器和执行器两类,广泛应用于包括智能手机、平板电脑和可穿戴设备等在内的消费电子领域。分析人士表示,各类传感器功能性的全融合将成为传感器的研发方向,未来可穿戴产品终端前景的发展将取决于传感器等产业链上游技术的提升,其中,MEMS创新应用将是可穿戴设备发展的源泉。   另外,早在去年,前瞻产业研究院发布的《2013-2017年中国传感器制造行业发展前景与投资预测分析报告》就曾预测,2013-2017年传感器制造行业销售收入将保持快速增长,2017年行业销售收入将突破5000亿元。   具体而言,传感器制造行业研究小组认为,传感器制造行业的下游主要应用领域包括工业检测、汽车、医疗、环境保护、航空航天等。鉴于传感器制造行业下游市场给力,我国传感器制造行业的前景值得期待。其一,传感器在机械行业将会有广阔的应用前景。未来机械行业将会广泛全面地应用信息技术,加快产品更新换代,提高产品技术含量,缩短与国际先进水平的差距,在机械产品中融入传感器、单片机、微处理器、PLC、NC、数字通信接口以及激光等现代信息技术和高新技术,提高产品的机电一体化、数字化、智能化和网络化的程度,使产品的技术含量、知识含量、附加值得以提高。其二,随着传感器技术作为物联网的核心技术,家电物联网的发展必定会带动相关传感器技术的大规模应用,传感器在家电领域的发展前景也十分广阔。其三,在疾病的早期诊断、早期治疗、远距离诊断及人工器官的研制等广泛范围内发挥作用的大趋势之下,传感器在这些方面将会得到越来越多的应用。
  • 便携式明渠流量计比对装置采用磁致伸缩传感器的好处在哪里?
    便携式明渠流量计比对装置采用磁致伸缩传感器的好处在哪里?HJ355-2019水污染源在线监测系统中明确指出。每季度至少使用便携式明渠流量计比对装置对现场安装的超声波明渠流量计进行至少1次的比对测试,比对结果不符合要求的,按要求多现场的超声波明渠流量计进行校准,校准完成后再进行比对。同时要求便携式明渠流量计采用磁致伸缩传感器加标注流量计算公式的方法进行比对。、其中液位比对中要求,比对装置的液位精度≤1mm,每2min读取一次数据,连续读取6次,安装公式完成比对误差计算。液位比对误差=|第n次明渠流量比对装置测试液位值-第n次超声波明渠流量计测量液位值|其次流量比对要求明渠流量比对装置与现场流量计测量统一水位观测断面处的瞬间流量,进行比对。且在数值稳定后,10min内读取该时间段的累计流量,按公式计算误差.流量比对误差=(明渠流量比对装置累积流量-超声波明渠流量计累积流量)/明渠流量比对装置累积流量一般以月为段位,明渠流量比对装置对某一时间点进行流量测试,明渠超声波流量计的比对。如何快速准确地对明渠污水流量计进行验收?这是现今遇到的一大难题。解决这个难题就需要考虑以下几方面:1.比对时间,比对工具与现场的明渠流量计是否是实时比对,同一时刻,统一数据。否则不同时间节点的数据是没有对比性的。2.XY-6800R比对工具测试的数据是否准确。比对数据的数据可靠性及精度是衡量计量仪器的一个重要指标。不应该受到环境影响测量精度,如雾霾,沙城爆,强光,泡沫,结露等。常规的超声波流量计测试不能避免这些因素。目前采取磁致伸缩传感器能有效避免这些困扰。测试时,电路单元产生电流脉冲,该脉冲沿着磁致伸缩线向下传输,并产生一个环形的磁场。在探测杆外配有浮子,浮子沿探测杆随着液位的变化从上而下移动。由于浮子内装有一组永磁铁,所以浮子同时产生一个磁场。当磁场与浮子磁场相遇时,产生一个扭曲脉冲,或称“返回”脉冲,将“返回”脉冲与电流脉冲的时间转换成脉冲信号 ,从而计算出浮子的实际位置,测得液位 通过无线模块将液位传到计算机。利用内置堰槽参数计算出流量。为什么XY-6800R明渠流量比对系统要选择磁致伸缩传感器?主要原因:1.测量精度高2.抗干扰性强3.寿命长4.性能可靠5.可进行多点,多参数的液位测试,免校准,免维护。磁致伸缩液位传感器输出的液面和界面信号主要分为模拟量和串口两种形式,串口为RS485/232形式,模拟量为4~20mA电流模拟信号,对应量程为0~1m。输出的串口或者模拟信号通过屏蔽电缆传送至主板,主板通过内集成电路将接收到的串口信号或者模拟信号转换成为数字量在文本显示器上显示,由于在线监控过程中存在电机或泵等执行设备运行产生的干扰信号,且现场信号的采集点与控制柜之间存在距离问题,为减少信号在传输过程中受到干扰,故要使用优质的屏蔽电缆线。青岛新业环保科技有限公司是一家集环保科研,设计,生产,维护,销售为一体的综合性实地厂家。青岛凌恒环境科技有限公司属于江苏凌恒环境科技有限公司青岛分公司,主要业务范围:在线水质监测仪销售服务。服务承诺:客户的需求放在首位,“今天的质量、明天的市场、服务到永远”是我们新业环保公司为客户服务的准则,并将其贯穿到研发、生产、安装、销售及售后服务的各个环节中。公司郑重承诺:完善沟通协调机制:通过加强沟通交流,提高信息传递的及时性,准确性,深入市场,倾听用户心声了解客户仪器设备的需求。我公司承 诺:按质、按量、按时完成所供产品的生产任务,并及时将产品运到用户需求现场,确保正常运转。全过程监控:客户只需一个电 话,售后服务部采用一站式模式、全面负责制、全程监控实施并跟踪处理结果,确保客户满意。
  • 盘点手机搭载的传感器
    现在只要有智能手机在手,除基本地理位置外,还可以根据机种的不同取得周边环境的紫外线、温度、湿度等资讯。智能手机内建的传感器,可以正确测量出人体也难以察觉到的多元讯息,扮演&ldquo 第六感&rdquo 的角色。   据ETNews报导,过去智能手机制造厂多将规格重点放在相机画素、显示器、手机厚度、传感器等核心性能上,做为产品差别化的焦点。每每有高阶新机种公开,大多会以规格比较为主,并强调设计的创新和技术力的提升。   然近来手机硬件规格竞争已达上限,可以赋予智能手机各种新功能的传感器成为新焦点。三星电子(SamsungElectronics)的Galaxy系列机种和苹果(Apple)iPhone搭载指纹辨识传感器等,触发智能手机传感器的竞争。   报导引用市调机构IHSTechnology资料指出,智能手机和平板电脑等移动设备传感器全球市场规模,在2018年将较2012年的23亿美元成长约3倍,达65亿美元。   其中有20亿美元以上将来自生物辨识、紫外线、气体等新兴传感器产业。从动作辨识、光照度、距离传感器等智能手机登场初期开始,手机搭载的既有传感器和新传感器将带动传感器市场成长。   新兴传感器的代表性产品为指纹辨识传感器。苹果2013年推出的iPhone5S首度搭载指纹辨识系统,2014年更应用该系统推出移动付费服务Pay,引领传感器热潮。华为和Oppo等大陆手机业者,也陆续在最新产品上搭载指纹辨识传感器,让指纹辨识成为高阶智能手机的必备条件。   韩指纹辨识模组专门企业CrucialTec内部人员表示,近来以大陆智能手机製造厂为中心,展现出对指纹辨识模组的关心。除华为和Oppo外,许多业者也前来询问相关产品。      三星的Galaxy机种也搭载指纹辨识传感器,但三星的重心较偏向于健康管理的特殊传感器。日前推出的GalaxyNote4和NoteEdge因搭载紫外线传感器和心脉传感器受到瞩目。   原本三星计划还要搭载氧气饱和度测量传感器,但因受限韩国医疗设备登记规范等问题,只有部分海外地区的机种有搭载。内建应用程式SHealth原可利用温度及湿度传感器显示舒适度,但经过消费者调查,使用度相当低。新增传感器会导致製造成本升高,三星将先考虑活用度等再决定调整搭载的传感器。      继指纹辨识和UV等传感器后,各种健康管理、环境相关传感器可望接棒带动传感器市场成长。Partron传感器事业组长金泰元(音译)表示,正持续进行心电图传感器和体脂肪传感器等健康相关传感器模组的研发。此外,也将研发相关演算法,努力提升附加价值。   可辨识使用者情绪的传感器,也陆续有厂商进行研发。2013年微软(Microsoft)北京研究所发表MoodScope相关报告,成为热门话题。虽然与收集消费者的智能手机使用型态和生活形态等资讯,并以此为基础做运用的一般传感器有所差异,仍是一种情感辨识传感器概念。   韩国Shinyang证券研究员表示,智能手机开始搭载多元传感器,但受限于製造成本和手机外观设计等问题,未来可能只会再增加2~3颗传感器。能够配合零组件成本、使用者的接受度、生产力等三个条件的传感器,才会被应用到智能手机中。
  • 制药行业温度校准方案(一) | 安装于工艺设备卫生型温度传感器校准
    应用背景温度数据的监测在制药行业里有相当重要的地位,不论是产品质量保障、节能降耗还是合规要求,再或者药品研发-生产-包装-运输-存储的各个环节,都与温度息息相关,而且对温度参数的准确可靠有较高要求。温度监测大都由温度传感器和显示设备组成,随着时间的推移,温度传感器会受到诸多因素的影响,例如震动,盈利变化,化学腐蚀等,其性能参数也会产生变化,因此需要对其进行校准以确定其误差的大小,确保其在允许误差范围内工作。而新版GMP规范第五章第五节对校准也做了明确规定:对于生产和检验用的仪表要定期校准,保存校准记录,未经校准的仪表不得使用。AMETEK校准仪器具有40年的温度校准经验,深入了解用户需求,为制药行业用户设计了有综合性的专业解决方案:✔ 卫生型温度传感器✔ 超短支温度传感器✔ 无法拆卸狭小空间温度传感器✔ 超低温冰箱、冻干设备温度传感器✔ 湿热灭菌器温度传感器✔ 隧道灭菌温度传感器✔ 表面安装温度开关制药行业温度校准方案(一)安装于工艺设备卫生型温度传感器校准解决方案:RTC-156B 超级标准体炉配短支校准套件✔ 专业套件:定制套管保证与卫生型卡盘传感器充分热平衡,补偿热损失,外接参考传感器与被检传感器位置保持一致,精准控温。✔ 洁净 无液体介质,不易污染探头,尤其适用于对探头洁净度有严格标准的企业 。✔ 性能: 双区加热配合 DLC 动态负载补偿 ,保证垂直温场均匀稳定,不受被检传感器 插入深度影响 。✔ 便携 干体炉 便于携带至 现场 ,可以 进行 全回路校准,减少分离回路校准的附加误差 。✔ 安全: 无液体挥发,不会对操作人员健康产生危害,也不会污染实验室工作空间✔ 快捷: 升降温速度远快于 液槽,成倍提高 工作效率关于Ametek Jofra 干体炉Ametek校准仪器是全球主要的温度、压力及电信号校准仪生产厂商之一,干体炉的发明者,能提供快速精准的温度校准方案。AMETEK干体炉有5大系列共50多个型号,温度覆盖-100~1205℃,满足各个行业的温度校准需求。根据应用情况提供多样的解决方案,实现实验室及现场的快速精准温度校准。
  • 光致发光和可穿戴传感器研究获进展
    人们对电子设备的便携性、多功能性和集成性的期待推动了可穿戴电子设备的快速发展。最近,摩擦电纳米发电机(TENGs)在能力收集、人机交互、医疗监测和自供电传感等方面引起了关注。遗憾的是,这类交互设备多由分隔的传感器和显示单元组成,因而总是需要一些笨重的设备或有线连接来将输出信号转换为人类易读出的形式。色彩提供了简单的传输信息的方法,其可调的颜色属性有望与传感器集成,为交互式信号的可视化开辟了新途径。金属卤化物钙钛矿具有特殊的光物理性质,为未来的可穿戴电子产品提供了新机会。然而,构建自供能、应变传感和显示等多功能特性一体化的光致发光传感系统是巨大的挑战。中国科学院苏州纳米技术与纳米仿生研究所轻量化实验室研究员李清文与项目研究员张其冲等,提出了高效窄光致发光金属卤化物固体的水合成策略,进一步将其应用于自供电的可穿戴式光致发光传感器。科研人员利用这一策略,仅使用水作为溶剂便制备了盐壳金属卤化物固体(具有高效和狭窄的绿色排放,PLQY为87.3%)。其中,KBr盐提供了一个富溴的环境来钝化钙钛矿的表面缺陷,且作为基质来提高其稳定性。该绿色环保的制备策略可用于制备无色水性油墨和柔性光致发光薄膜。另外,该固态化合物可作为聚乙烯醇(PVA)的填料,用于TENG中的高性能正摩擦材料,所制备的TENG的输出性能是原始TENG的2.3倍。研究进一步构建了电压响应范围为0-100kPa、响应时间为125ms的可穿戴光致发光传感器,以检测人体的各种运动。研究显示,运用简单的水蒸发结晶策略即可制备高发射窄半高峰宽的金属卤化物固体,巧妙地引入溴化钾盐使得难溶于水的溴化铅完全溶解在水中,不仅赋予了材料高量子产率,而且提升了产物光和热稳定性。得益于水蒸发结晶策略,前驱体水溶液可制备成水性墨水,通过与水性聚合物混合可以制备出柔性荧光薄膜,并可以通过喷墨打印技术打印相关的图案。作为概念验证,研究还构建了电压响应范围为0-100kPa,响应时间为125ms的可穿戴光致发光压力传感器,未来有望构建同时具有显示-传感一体化自供电集成器件,检测人体的各种运动。该研究为高发射的金属卤化物固体的合理设计提供了指导,并为扩展其在多功能可穿戴荧光传感器中的应用提供了参考。相关研究成果以Robust Salt-Shelled Metal Halide for Highly Efficient Photoluminescence and Wearable Real-Time Human Motion Perception为题,发表在Nano Energy上。研究工作得到中科院和江苏省青年基金项目的支持。该研究由苏州纳米所、华东理工大学、新加坡南洋理工大学、上海交通大学的科研人员合作完成。图1.固态盐壳金属卤化物的制备图2.固态金属卤化物的稳定性及其柔性应用图3.固态金属卤化物在传感领域的应用
  • 美研制出增强拉曼散射传感器 灵敏度提高10亿倍
    据美国物理学家组织网3月22日(北京时间)报道,美国科学家研制出一种超灵敏传感器,可使用其增强的拉曼散射来探测包括癌症信号、炸药等物质,其灵敏度比普通拉曼散射传感器增强了10亿倍。   拉曼散射是指光通过介质时由于入射光与分子运动相互作用而引起光的频率变化,1928年由印度物理学家钱德拉塞卡拉拉曼发现。在拉曼散射中,一束单色光照射到一个物体后,其反射光会包含另外两种频率的光,这两种光的频率仅与该物体的分子组成相关,这就潜在地提供了一种有效识别物质的方法。但由于这种额外的光太微弱,科学家几十年来很难将拉曼散射付诸于实践。   上世纪70年代,科学家研制出表面增强拉曼散射(SERS)技术,可以通过将所鉴别物质放在粗糙的金属表面或金、银小粒子之上来增强拉曼信号。但科学家随后发现,这种增强的拉曼信号仅出现在传感器表面的几个随机点上,很难预测其具体位置,仍然非常微弱。   而普林斯顿大学电子工程系教授斯蒂芬周领导的团队摒弃了以往设计和制造拉曼传感器的方法,研发出一种全新的SERS结构:一块芯片上布满一行行由金属和半导体组成的小柱子。   新传感器获胜的“秘密武器”就是这些小柱子的排列方式:每个柱子上部和底部各有一个由金属制成的中空部分 柱壁上布满直径约为20纳米的金属粒子(等离子体纳米点),金属粒子之间有2纳米左右的空隙。金属粒子和空隙能显著增强拉曼信号 中空部分能捕捉光信号,让光多次而不是仅一次地通过等离子体纳米点,从而也能增强拉曼信号。迄今为止,该芯片的灵敏度比不经过拉曼增强而研制出的传感器高10亿倍,而且其灵敏度非常稳定,能可靠地应用于感应设备中。   除灵敏度大增之外,借助纳米压印技术和纳米粒子自组装技术,新芯片能实现高质量、规模化制造,研究人员已经在4英尺的晶片上制造出这些传感器。   美国海军研究实验室的科学家也在进行相关实验,希望军队也能使用该技术探测化学物质、生物试剂和炸药。
  • 美开发出能使大脑直接控制义肢的光学传感器
    据英国《新科学家》网站10月18日(北京时间)报道,美国科学家研发出一种能接收神经脉冲等光学信号的传感器,可进一步改进人体神经系统与义肢之间的连接,使通过大脑神经直接控制义肢的梦想朝现实迈进了一大步。未来,通过该传感器,大脑能够直接控制义肢的运动,被植入者也可通过义肢感受到压力和热度。   目前,义肢中的神经接口都是电子的,其中的金属零件可能会被身体排斥。而美国南卫理公会大学的马克克里斯滕森和同事正在研发一些可以捕捉神经信号的光学传感器。他们使用的材料——光纤和聚合物与金属相比,不仅不太可能诱发身体的免疫反应,而且也不会被腐蚀。   这种传感器建立在一个聚合物的球壳上,这些球壳同一束光纤偶联在一起,光纤将发送一束光,经过球壳内部。光在这些球壳内“旅行”的方式被称为“回音壁模式”,其灵感源于英国伦敦圣保罗大教堂的回音壁。在圣保罗大教堂,声音可以通过凹形墙壁的不断反射而持续传播,因此传播得更远。   该传感器的设计理念是,与神经脉冲相连的电场会影响聚合物球壳的形状,球壳内部光线的共振也随之改变,因此,神经系统会变为光子电路的一部分。从理论上讲,光线的共振变化能够向仿生手发送指令,比如告诉仿生手,大脑想要移动一根手指等。通过在光纤顶端放置一个反射器,引导一束红外线照射并刺激神经系统,其发出的神经信号也能够被带往其他方向。   研究人员表示,这种传感器目前还处于原型研制阶段,而且尺寸太大,暂时无法安装在人体内,不过,随着尺寸不断缩小,这种传感器将可以在生物体内发挥作用。该科研项目获得了美国国防部高级研究计划局(DARPA)560万美元的资助。研究人员计划2年内将工程样品在猫或狗身上进行试验。在此之前,研究人员需要将这种传感器的大小从几百微米缩小到50微米。   该传感器工程样品在使用前,研究人员还需要将神经连接具体地绘制出来。例如,要求病人试着举起他残缺的手臂,以便将相关的神经连接到义肢上。   克里斯滕森表示,总有一天,这些传感器和光纤可以像“跳线”一样,形成从大脑直到腿部的神经回路,绕开受损的身体组织,最终让脊髓受损患者重新恢复运动能力和知觉。   不过,也有专家认为,这种传感器所使用的材料虽然都具有很大的生物相容性,但它们是否能够完全避免人体的排异反应依然存疑。
  • 非侵入性微型传感器可测人体pH值,或有助于诊断癌症
    据最新一期《化学科学》杂志报道,加拿大研究人员开发出一种可更准确测量pH值的微型传感器,或有助更好地理解和诊断包括癌症在内的一系列疾病。 多伦多大学士嘉堡分校化学系助理教授张晓安称,在活生物系统中实时检测pH值,对于探测和理解pH值失衡导致的相关疾病至关重要。如低pH值与囊性纤维化、局部缺血以及癌症的病理状况密切相关。pH值信号可用于诊断疾病及监测治疗效果,了解人体组织内的pH值在何时何地发生显著变化是非常重要的。因此,迫切需要找到一种可进行深入、精确的探查,同时又确保不入侵组织的新方法。 张晓安团队使用核磁共振光谱技术开发的微型传感器,可以非侵入方式在原子水平对分子进行非常详细的观察。研究人员将大肠杆菌细胞作为实验对象,完成了对卵母细胞(鱼卵细胞)的传感器测试。 pH值是对质子(附着于其他分子的微小带电粒子)活性的测定。质子活性很难在组织中测量,因为质子移动迅速,难以用常规核磁共振的时间尺度来捕获分子位置。利用核磁共振测量pH值的主要挑战在于,在不同的质子化状态(附着或不附着)对分子进行精细成像。既有核磁共振技术无法对不同质子态的实时测量提供足够的精度。 张晓安团队研发的传感器,则通过一种缓慢的质子交换机制,提供了独特的解决方案。该探测器可减缓质子运动,并观察不同状态下的质子,从而使测量变得更为灵敏和精确。该传感器虽为医疗成像设计,但亦可扩展到环境科学、生物学乃至食品生产和质量控制等其他应用领域。
  • 传感器国家工程研究中心常务副主任刘沁:工业基础传感器需破解核心器件产业化难题
    为适应国家工业发展需要,特别是能源、化工、交通、航空航天等特殊领域针对传感器的需求,从上世纪50年代起,国家先后组织一批国家级研究机构、专业生产企业及部分重点高校共同针对工业传感器进行攻关和生产。在经历了几代人、近半个多世纪的努力后,至今为止基本建成了具有中国特色的覆盖全工业领域的工业传感器体系。很多传感器从无到有,相当程度满足了国家工业发展的需求。传感器行业进入快速发展阶段“十二五”以来,密集的传感器相关政策推动了我国传感器行业飞跃发展。“十三五”期间,政府支持力度进一步加大,2017年工信部出台《智能传感器产业三年(2017—2019)行动指南》及《促进新一代人工智能产业发展三年(2018——2020)行动计划》,从而直接催生了重大科学仪器及设备开发、制造基础技术与关键部件研究两大专项。2020年8月国务院发布《新时期促进集成电路产业和软件产业高质量发展的若干政策》,针对我国集成电路产业发展从财税政策、投融资政策、研究开发政策、进出口政策、人才政策、知识产权政策、市场应用政策、国际合作政策等全方位多方面提出部署,直接将当前新时期新阶段的集成电路产业和软件产业发展推进到一个全新的发展阶段,为其他相关基础产业发展起到了引领示范作用。在一系列政策持续出台的背景下,我国传感器行业进入快速发展阶段,形成了基本全覆盖的产业布局,工业需求传感器从自主到引进全产业链覆盖。中低档产品在满足自给自足的前提下实现出口,设计、研发、应用一条龙配套建设和水平普遍提升。在快速发展的中国工业市场,针对传感器的需求已经从原始的配套变成刚性需求,巨大的中国制造转型升级带来的市场吸引力不仅对国内企业,对国外工业传感器龙头企业也是巨大的吸引,美国艾默生、德国E+H、日本横河等工业传感器巨头在中国市场的份额已经成为其公司业务重要组成部分。在政府支持和行业需求的双层推动下,我国工业传感器已形成由材料、器件、系统、网络等全方面构成的产业链模式,产业链规模、质量也不断得到完善和提高。据统计,国内具有一定规模的应用于工业制造业的各类传感器生产厂家约2000余家,产品基本覆盖工业制造各领域。生产的各类工业用传感器品种、规格约1.6万种。已经显现出有区域特点的传感器产业集群,重点集中在长三角,并逐渐形成以北京、上海、南京、深圳、沈阳和西安等中心城市为辐射的区域布局。这些集群各有侧重优势,形成了我国较为完备的传感器产业链。诸多瓶颈亟待突破尽管取得不俗成绩,但我国工业基础传感器仍存在许多问题需要破解,主要表现在:一是顶层设计仍缺乏统筹设计,规范引导。工业传感器在仪表行业是小行业,在中国制造中更是小小行业,但工业传感器在制造强国战略中却有举足轻重的地位。由于传感器具有的专业分散和行业分属的特点,长期以来传感器行业始终缺乏统一的行业认知。虽然国家投资逐年加大、政策力度逐年增强,但传感器产业需要长期不断地培育养成的特点在地方政府、企业急于求成的作用下,想取得传感器产业化的标志性成果,往往事与愿违。二是产业规模小,盈利能力低,核心技术缺乏。以压力传感器行业为例,国内具有一定规模的生产厂商大约有千余家,其中民企数量约占企业总数的90%,已经成为了中国工业压力传感器、变送器行业的与国外厂商争夺国内工业用压力传感器、变送器市场的主力军。但这些企业年销售额大于2000万元的企业不足三成,七成以上的传感器生产厂商为中小微企业,产业规模很小,自身盈利能力也不强。因此企业核心技术、企业研发能力、企业核心竞争力严重不足或缺乏。统计国内主要传感器厂商的产品分析也可以发现,目前国内厂商生产的压力传感器,70%以上是常规应变式、溅射薄膜式等传感器产品,30%左右为陶瓷材料为主的低端产品,产品结构相对单一。三是共性化问题多,产业化问题多。共性关键技术,如可靠性技术研究尚待突破。国外典型流程工业高端典型传感器在上世纪末已实现五年免调校,但国内相关产品免调校功能还在推广验证中。工业传感器共性技术如材料、设备、方法、可靠性验证分析等基础理论的研究与发展同国外发达国家的差距仍然巨大。四是工业传感器核心敏感技术产业化缺“芯”严重。尽管传统的工业传感器如应变、电感、电容、光栅、称重、位移量、位置量、金属弹性器件等年产量居世界领先地位,有些甚至已经实现出口。但是对于高端工业传感器,尤其是高端制造的重点领域、重点行业、重大工程用配套工业传感器基本上100%依靠进口。即使国内生产,也仅仅停留在研究、样机、小批量中试阶段,相关传感器核心技术(器件)的产业化仍然“路漫漫”,严重制约我国工业的快速发展及工业制造的“自主可控”。如:国内硅基MEMS压力传感器全产业基本处于封装代工阶段,从普通硅基压力传感器、OEM硅基压力传感器到流程工业高端设备控制用变送器,核心硅基敏感芯片基本上全部进口,国内自主配套不足1%;高端智能制造、CNC数控机床、大型工程机械等配套需求的位置、压力、图像、惯性器件等传感器以欧美日或欧美日在国内的合资企业垄断;国内工业基础气体传感器主要集中在中低端的催化燃烧式、电化学式、红外式,以及MOS气体传感器阶段,仅有少量高端的激光红外气体传感器及光离子化PID气体传感器在工业制造领域使用。新产品、新技术的工业气体传感器产业化落后国际先进水平至少五年左右。MEMS硅基压力传感器核心敏感元器件、高端气体传感器敏感芯片等虽然完成技术攻关,但产业化配套基本为零,国内产业化生产敏感核心器件及传感器高端市场基本上全部依赖进口。国内工业传感器主要集中在中低端制造业市场。高端应用的产业化发展空“芯”化问题已经成为制约中国制造由大到强的关键阻碍。努力完善工业基础传感器生态第一,以德国X-Fab的精、专、特标准化核心器件产业基地为对标,建成力、热、磁、气核心器件专业定点产线,实现国内工业基础传感器基础核心器件成果产业化转移,配套快速发展的中国制造业对传感器的需求特别是核心器件的需求。工业基础传感器是制造工业的基础,首先解决当前产业急需的核心器件产业化问题,完善从材料、制造、销售、使用的一条龙产业生态,彻底解决国内工业基础传感器有“器”无“芯”的尴尬局面,真正实现工业基础传感器对国家工业基础的基石和支撑作用,形成分工明确、配套清晰的产业化发展链条。建成中国的X-Fab专业产线。标准化定点专业产线不仅要求有良好洁净的工作环境,更需要清晰的产品(不可唯利是图)、清晰的工艺管控、素质技能稳定的管理管控团队。做到环境、产品、工艺、管控四“净”。第二,集中开展传感器跨学科培养,在人才评价、人才团队建设中树立领军人物,培养高端扛旗帜的企业;在标准、可靠性、专利等多方面加大奖励制度,推动人才队伍快速成长。第三,从材料、制造、销售龙头抓起,建成工业传感器“一条龙”生态。健全分工清晰明确的工业传感器生态链,实现传感器工业“基石”的支撑作用。加大流程工业用力、热、磁、流量、环境气体安全检测传感器和离散传感器产业基地建设,形成流程工业、离散工业传感器精、专、特、新的产业布局,培养一批各自产业领域的隐形冠军。针对隐形冠军培养在市场、技术、团队方面从不同角度给予政策支持,设立专项资金对技术创新型企业进行扶持,在功能工业传感器生态链上培养领军企业。第四,加大对传感器中、小微企业知识成果及科研成果保护,鼓励企业技术创新,积极开展共性关键技术、基础工艺技术的研究,降低企业科研成果转化风险,开展新型一体化智能工业传感器研究,提倡建设工业传感器小微企业的技术隐形冠军。加大国家对于传感器产业化的投入,鼓励建设产业集聚园区和公共创新平台,加速新设计、新工艺导入。加强对共性关键技术、基础工艺技术研究的投入,在政策、制度、资金等方面给予倾斜,缩短技术向产品转化的周期。强化市场应用对产业的需求牵引作用,鼓励应用厂商通过商业合作、投资入股等方式参与智能传感器的研发与制造,整合产业链上下游。支持科研院所和高等院校开展智能传感器关键技术和基础理论研究、关键芯片开发,提升产品的集成化、智能化水平,加强知识产权保护,鼓励科研成果转化。鼓励开展新型工业传感器一体化及技术及应用研究,在感知、控制、通信、算法、智能化、网络化应用方面开展工作,满足新一代工业传感器需求。第五,以市场需求为引领,产品质量为准入门槛,企业对自身产品的质量责任保障为前提,从政策面给予工业传感器在国家重点行业、重点领域、重大工程中的配套使用力度,给予国货配套更优惠条件,在工业传感器应用领域落实并加大力度实施国家“政府采购法”和“国货优先”政策。保障工业传感器在中国制造的发展过程中同步快速成长。
  • 传感器进化让监测仪器数据更加准确
    据了解,得益于传感器的进化,有利于实现更精准的身体数据监测,让运动监测设备们变得更好用。在未来,传感器配合更先进的软件算法,有可能帮助我们获得更准确的监测数据。   几年前,运动手环还仅仅是一个简单的计步器,但现在它们已经完全不同,可以监测心率甚至是紫外线指数。可以肯定的是,大量传感器的植入让运动监测设备们越来越全面、智能,那么这些传感器都是什么呢?   加速度计   加速度计是运动监测设备普遍具备的基本传感器,通常被用来记录行进步数。通过测量方向和加速度力量,加速度计能够判断设备处于水平或是垂直位置,来判断设备是否移动,从而达到计步操作。   当然,并不是所有的加速度计都是准确的。基本的款式仅有两轴,相对来说不够准确 而三轴传感器则可更好地检测设备在三维空间中的位置,实现更精准的记录。   全球定位系统(GPS)   GPS虽然已经是非常普及的技术,通过使用29颗地球总轨道卫星中的四颗进行定位,便能够获得误差较小的精确位置。不过,由于耗电量偏大,所以尚未在运动手环中普及,只有一些定位专业运动监测的运动手表才具备GPS芯片,用于记录用户的地理位置、跑步路线等等。   光学心率监测器   光学心率传感器是目前运动监测设备逐渐流行的配置,使用LED发光照射皮肤、血液吸收光线产生的波动来判断心率水平,实现更精准的运动水平分析。   不过,目前对于光学心率传感器的准确性也存在较大争议,因为每种设备都会添加一些肤色弥补技术,来适应更广泛的人群,所以不同设备的差异也较大。   皮电反应传感器   皮电反应传感器是一种更高级的生物传感器,通常配备在一些可以监测汗水水平的设备上。简单来说,人类的皮肤是一种导电体,当我们开始出汗,皮电反应传感器便可以检测出汗水率,配合加速度计及先进的软件算法,有利于更准确地监测用户的运动水平。   环境光及紫外线传感器   环境光传感器模拟人类眼镜对光线的敏感度,可以根据周围光线的明暗来判断时间,并有效节省运动监测设备的电力消耗。而紫外线传感器则可监测到光线中的紫外线指数,实现防晒提醒操作。   生物电阻抗传感器   Jawbone的新款UP3运动手环,配备了更先进的生物电阻抗传感器,可通过生物肌体自身阻抗来实现血液流动监测,并转化为具体的心率、呼吸率及皮电反应指数,是一种更先进的综合生物传感器,准确性也相对更高。   总结   显然,得益于传感器的进化,有利于实现更精准的身体数据监测,让运动监测设备们变得更好用。在未来,这些传感器配合更先进的软件算法,有可能帮助我们获得更准确的监测数据,甚至能够分享到医疗机构,帮助我们预防疾病。
  • 中科院拉曼技术助力针灸机理探究 AC发文论可插入式SERS传感器
    p   近日,中国科学院合肥智能机械研究所杨良保研究员等人基于针灸针构筑了一种“可插入式”表面增强拉曼光谱(SERS)传感器,实现了多相体系的原位检测,该传感器有望用于针灸机理的研究。相关成果发表在美国化学会《分析化学》(Analytical Chemistry)杂志上。 /p p   传统针灸学源远流长,是我国医学科学的特色和优势,并对世界医学发展产生了积极的影响。然而,针灸并没有给出明确的现代科学依据,针灸作用机理不明确,这很大程度上限制着针灸的发展和推广,也是针灸在国内外并没有受到广泛认可和接纳的最主要原因。 /p p   近年来,SERS技术由于可以进行无损、高灵敏的指纹识别检测而一直备受关注,已经广泛应用于各大基础研究领域。杨良保团队一直在思考,能否利用SERS技术研究传统针灸机理。 /p p   受到传统针灸银针的启发,研究人员将PVP(聚乙烯吡咯烷酮)包裹的金纳米颗粒修饰在针灸银针表面,构筑了一种“可插入式”的SERS传感器。作为黏结剂,PVP可以直接将金纳米颗粒修饰在银针上面,而且由于金纳米颗粒表面PVP空间位阻的存在,银针表面的金纳米颗粒更倾向于密集排布,有助于形成更多的 “热点”,以提高“可插入式”SERS传感器的灵敏性。 /p p   杨良保告诉《中国科学报》记者:“和传统的SERS传感器相比,‘可插入式’SERS传感器更容易达到样品内部,通过针体表面不同位置的取点检测,可以获得样品不同深度的信息。” /p p   研究人员将“可插入式”SERS传感器置于水—油双相体系中,分别从水相和油相中取点检测,可以获得不同相中的分子信息。杨良保说:“这种‘可插入式’SERS传感器有望用于生物活体样本,特别是对于传统针灸机理的研究。” /p
  • 传感器:智能时代的“慧眼”
    如果把智能系统比作“人”,那么传感器就是“人”的感觉器官。不同类型的传感器,感知周围环境并把数据传递给系统进行计算,对情况进行实时分析、判断和应对。随着数字化智能化不断深入,各式各样传感器的用武之地大为拓宽,为人类创造美好生活发挥着巨大作用。一部智能手机里有上百个传感器:有用于摄像的CMOS图像传感器,有用于检查环境明暗的环境光传感器,还有用于导航的地磁传感器、陀螺仪,等等。正是基于这些传感器,手机里的各种应用软件才能流畅工作,手机才能成为集工作、生活、娱乐于一体的便携式智能设备,带来人们生活方式的巨大变化。风云卫星上的可见和红外光电传感器,能够不分昼夜地获取大气信息,精准预测天气,甚至在月球上、火星上都有传感器工作,帮助人类探索宇宙奥秘。比人的感官更敏锐、更强大传感器是信息系统的“慧眼”。它就像人类的眼睛、耳朵、皮肤等器官一样,感知周围环境,帮助我们认识多姿多彩的世界。不同之处在于,传感器比人的感官更敏锐、更强大。客观世界所包含的信息多样程度,远远超出我们感官的能力范围。人的眼睛无法观察红外辐射和紫外辐射,耳朵听不见次声波和超声波,对于“不见踪影”却时刻产生影响的磁场也无法感知。这些超出感官范围的信息,传感器都能“感受”到。随着生产力发展,人类越来越需要全方位地感知世界。1821年,科学家利用材料因温差产生电压的原理,研制出世界上第一个传感器——温度传感器。最初,人们直接利用光、热、电、力、磁等物理效应制备各种传感器,这些传感器尺寸大、灵敏度低、使用不方便。上世纪70年代,出现了将敏感元件与信号电路进行一体化设计的集成传感器,如热电偶传感器、霍尔传感器、光敏传感器等。这类传感器由半导体、电介质、磁性材料等固体元件构成,输出模拟信号。上世纪末开始,数字化传感器快速发展,通过“模拟/数字”转换模块,实现数字信号输出。数字化传感器集成智能化处理单元,可以自动采集、处理数据,并能根据环境自动调整工作参数,数码相机中的光敏元件就是其代表产品。总的来说,传感器的工作原理是某些物质的电学特性会随环境因素变化。例如铂在不同温度下电阻率不同,硅在可见光照射下电阻会减小,石英受到压力后表面会产生电荷,等等。利用电阻与温度的对应关系,可以制成温度传感器,进一步给敏感元件添加隔热结构,依据敏感元件温度变化与红外辐射能量之间的关系,可以制成红外传感器。在此基础上,还可以根据目标温度与红外辐射能量之间的关系,制造出非接触测温传感器。人们熟悉的用来测量体温的额温枪就利用了这一原理。借助丰富的物理和化学效应,人们制备出灵敏度比狗鼻子高1000倍、可以“闻到”气体分子的“电子鼻”,以及可以在黑夜中观察物体的红外相机等种类丰富、功能强大的传感器。没有传感器就没有数字化、智能化数字化是对事物属性的量化,并用数字将其表达为抽象结果。借助现代信息技术,人们可以存储、处理、传播各种数字化信息。传感器可以将事物蕴含的各种信息转换成电信号,并利用数模转换电路将电信号用数字表达,是数字化的有效工具。当你拿出手机拍照片或视频时,光敏传感器会将接收的光强度信号转换成电信号,再按一定的规则用数字表达、存储,最终形成手机屏幕上的影像。数字化基于传感器获取信息。数字化系统需要处理的信息量非常庞大,仅靠人工或者传统设备无法获取,凭借传感器则能够实时、高效、精准、快速地获取,于是有了城市大数据、天气大数据、医疗大数据、农业大数据等。利用各类传感器,人们可以召开远程会议、学习网络课程、扫码支付甚至直播带货,由此发展出数字经济业态。数字经济涉及的云计算、物联网、人工智能、5G通信等各类技术,都与传感器息息相关。没有传感器就没有数字化和智能化。传感器是智能化系统的第一关,它的水平决定了智能化系统及其仪器设备的水平。传感器技术已经成为国际上信息高端器件领域的研究前沿,在人工智能、智慧城市、5G通信、航空航天、生命健康等领域均发挥着不可替代的作用。比如一辆汽车会安装压力、温度、位置、声音、光、电等超过100种传感器,由车载电脑进行处理,帮助驾驶员作出判断。对数据的智能化分析降低了驾驶汽车的难度,让汽车变得更安全、更好开。更进一步,无人驾驶汽车通过传感器实时获取道路信息,一旦发现障碍物,便通过智慧分析及时避让。城市中高楼大厦、桥梁、隧道等建筑,也需要通过视频、温度、压力和烟雾等传感器实时监控安全状况,当数据汇总到一起,智能化系统便会及时分析,凝练出少量关键信息供使用者作出决策。甚至在未来,人类的感官也可以借助传感器变得更加强大,构建起智能化系统。智能传感器开拓新应用场景当前,各类传感器都处在进一步提升性能、降低成本,向数字化、智能化、小型化微型化、绿色低碳、可穿戴等方向进化,呈现出蓬勃发展态势。其中,智能传感器、柔性传感器、新原理传感器的研发具有代表性意义,有望塑造新的工作生活方式。发展智能传感器是重要趋势。借助智能传感技术,人们设计制造出具备获取、存储、分析信息功能的各种传感单元及微系统,实现低成本、高精度信息采集。智能传感器广泛应用在机器人、无人驾驶、智能制造、运动定量监测等方面,还可用于开发无创或微创健康监测器件等。近年来流行的动态血糖仪是个很好的例子。糖尿病患者将柔性传感器无痛置入身体,传感器每5分钟测一次血糖值,并传送到手机应用中。患者可以观察血糖曲线变化,及时通过饮食和运动等方法调节血糖,有的患者甚至由此告别了药物和胰岛素治疗。此外,人们还在研发可降解电子器件,让智能传感器更好助力低碳环保生活。发展柔性传感器是另一趋势。许多应用场景要求传感器制备在柔性基质材料上,并具有透明、柔韧、延展、可自由弯曲甚至折叠、便于携带、可穿戴等特点。目前制备柔性传感器的常用传感材料有碳基材料(炭黑、碳纳米管和石墨烯等)、金属纳米材料(金属纳米线、金属纳米颗粒等)、高分子聚合物和蛋白纤维等。例如一种具有可拉伸、抗撕裂和自我修复能力的交联超分子聚合物薄膜电极材料,可用于制造下一代可穿戴和植入式柔性电子器件。将集成多功能的柔性传感器与柔性印制电路结合,可以制成“智能带”,把它穿戴在身体的不同部位,可实时监测与分析生理信息,帮助人们特别是感官退化的群体了解自身健康状况。新原理传感器也在不断出现。在基础研究领域,新的规律陆续被发现,人们正利用这些科学新认知制备传感器。同时,技术进步也对基础研究提出新要求。在生活中,人们希望提高相机的像素、灵敏度、速度等性能参数;在高速实验中,需要可以记录飞秒尺度信息的条纹相机;在量子通信中,需要灵敏度达到单光子的光电探测器;在空天科技中,需要实现对高速运动物体和冷目标的探测,等等。这就要求科学家们进一步探索物理世界,发现新现象新规律,提升传感器性能。随着科技快速发展,新材料新工艺不断投入应用,性能更强、种类更丰富、智能化水平更高的传感器将创造更多工作生活新场景,帮助人们“感受”美好生活。(作者:褚君浩,系中国科学院院士、中国科学院上海技术物理研究所研究员)
  • 交通事故频发?FLIR ThermiCam传感器助力保障新西兰骑行安全
    近年来,随着鼓励绿色出行政策的实施和共享单车的兴起,自行车出行比例显著提高。在机动车与非机动车共用道路的混合交通状况下,对骑车者来说,常常面临着严峻的挑战。今天,小菲就给大家讲述新西兰奥克兰市成功解决骑行安全的案例,我们可以从中获得哪些启示呢?安全事故频发,交通混乱亟待解决新西兰奥克兰市塔马基大道是一项标志性的城市便利设施,也是奥克兰市具吸引力和知名的公路之一。塔马基大道是出入市区的主要通道,也是当地社区和城市的游憩资源,对毛利人具有重要的文化意义。汽车驾驶员、骑车人、公共交通运营者、行人和游客共用该区域,因此,对行人、公共交通和停车设施等提出较高要求。在过去几年,交通繁忙的塔马基大道曾发生数起自行车事故,导致骑车人受伤严重甚至死亡。为了应对塔马基大道持续升级的自行车安全问题,奥克兰交通局决定采取一系列广泛的自行车安全措施,其中包括集成基于FLIR热成像技术的自行车报警系统,旨在降低车速和让驾驶员更容易察觉到接近的骑车人。传统自行车检测存在漏洞应该如何收集自行车检测信息仍是一个亟待解决的问题。奥克兰交通局并刚开始采用FLIR公司的ITS技术。该机构使用FLIR技术历史悠久,比如,奥克兰维多利亚隧道和惠灵顿隧道采用交通事件检测技术,奥克兰哈斯里/甘特部署的车辆检测传感器,和在13个交叉口的部署行人检测传感器。但是,奥克兰交通局利用FLIR传感器检测自行车还是首次,而且FLIR传感器是在调查其它方案不够理想之后才引起他们注意的。奥克兰交通局调查的一个方案是利用可见光视频检测技术(非FLIR品牌)。Michael Deruytter 评论道:“传统视频检测技术在自行车和汽车检测方面效果不错,但是在昏暗或黑夜条件下区分自行车和机动车很困难,因为骑车人不一定使用自行车上安装的照明灯。”调查的第二个方案是集成到自行车道的地感线圈检测器。这些地感线圈分析自行车轮的电磁特征信号,因为这样能提供自行车存在的信息。奥克兰交通局道路安全与干路运营经理Karen Hay称:“这项技术不够理想,因为骑车人不总下意识地在自行车道骑行,这使他们完全脱离地感线圈检测器,此外,由于碳纤维自行车缺乏能触发地感线圈传感器的金属材料,导致地感线圈检测器无法总能收集到碳纤维自行车的存在信息。”闪烁警示灯,效果较低塔马基大道上的一个重点位置是汽车驾驶员能从塔马基大道主干道右拐驶入Ngapipi路的岔口。经证实,该位置是汽车与自行车发生碰撞的高风险区域。Karen Hay评论道:“我们需要一种能提高塔马基大道骑车人安全性并增强他们对右转弯汽车可见性的解决方案,我们曾一度在寻找这样一款系统:能使汽车驾驶员更清晰地意识到他们正与即将到来的骑车人共用道路,同时也要让骑车人知道他们的安全性得到了重视。我们需要一款能够直观验证和快速检测骑车人且可以区分自行车与车辆的系统。最终,我们从FLIR公司找到了答案。”FLIR公司业务拓展经理Michael Deruytter表示:“警告灯确实很有效,能增强司机意识并以能降低撞到骑车人风险的方式影响司机的行为,但是,传统做法是连续不断地闪烁警示灯,这样会降低效果,因为驾车人接收不到任何有助于改变驾驶行为的真正刺激。而基于检测的警告信号则不同,因为这种警告信号能根据检测到的骑车人而激活。”ThermiCam自行车检测传感器幸运的是,在FLIR关于ITS技术新进展的培训课上,奥克兰交通局了解到一种能克服上述问题的新型解决方案:FLIR ThermiCam车辆和自行车检测传感器。Michael Deruytter解释道:“FLIR ThermiCam是一款集热像仪和探测器于一体的车辆和自行车存在检测与计数解决方案,可用于控制交通信号灯以及交通警示信号,FLIR ThermiCam基于这些道路使用者发出的热信息检测车辆和自行车,然后将其检测到的信息,通过触点闭合或IP传输到交通灯控制机。这使得基于自行车实际信息动态控制警告信号成为可能。”基于热信号检测24/7全天候自行车检测FLIR ThermiCam交通热传感器的一大优势是它能利用自行车和车辆始终存在的热能在两者之间做出明确区分。此外,FLIR ThermiCam能够在漆黑的夜晚从远距离处检测自行车。因此,它使交通管理者能够24小时不间断检测骑车人,无论光照度如何。最重要的是,FLIR ThermiCam能在传统可见光相机难以检测的各种条件下(如眩光、湿滑路面、汽车头灯、阴影、雪或雾等)提供可靠的车辆和自行车存在检测信息。Karen Hay表示:“经证实,安装在塔马基大道上的ThermiCam传感器非常有效,它能快捷又精确地检测自行车,无论检测的是否是碳纤维自行车,这是我们最喜欢的工具,我们将在众多技术中考虑它”。ThermiCam使交通管理者能够24小时不间断检测骑车人,无论光照度如何,无论骑车人处于自行车道还是主车辆车道FLIR ThermiCam系列产品改变了世界各地的道路交通管理方式随着FLIR ITS技术的进步创新出了针对不同需求的新产品:ThermiCam AI、ThermiCam2、ThermiCam V2X等
  • 新型有机薄膜传感器或可替代外部光谱仪?
    德国科学家研制出一种新型有机薄膜传感器,它能以全新的方式识别光的波长,分辨率低于1纳米。研究人员称,作为一款集成组件,这种新型薄膜传感器未来可替代外部光谱仪,用于表征光源。这一技术已经申请专利,相关论文刊发于最新一期《先进材料》杂志。  光谱学被认为是研究领域和工业领域最重要的分析方法之一。光谱仪可以确定光源的颜色(波长),并在医学、工程、食品工业等各种应用领域用作传感器。目前的商用光谱仪通常“体型”较大且非常昂贵。  现在,德累斯顿工业大学应用物理研究所(IAP)和德累斯顿应用物理与光子材料综合中心(IAPP)的研究人员与该校物理化学研究所合作,开发出了一种新型薄膜传感器,能以一种全新的方法识别光的波长,而且,由于其尺寸小、成本低,与商用光谱仪相比具有明显优势,未来或可成功替代后者。  新型传感器的工作原理如下:未知波长的光激发薄膜内的发光材料。该薄膜由长时间发光(磷光)和短时间发光(荧光)的器件组成,它们能以不同方式吸收未知波长的光,研究人员根据余辉的强度推断未知输入光的波长。  该研究负责人、IAP博士生安东基奇解释说:“我们利用了发光材料中激发态的基本物理特性,在这样的系统内,不同波长的光激发出一定比例的长寿命三重和短寿命单重自旋态,使用光电探测器识别自旋比例,就可以识别出光的波长。”  利用这一策略,研究人员实现了亚纳米光谱分辨率,并成功跟踪了光源的微小波长变化。除了表征光源,新型传感器还可用于防伪。基奇说:“小型且廉价的传感器可用于快速可靠地确定钞票或文件的真实性,而无需任何昂贵的实验室技术。”  IAP有机传感器和太阳能电池小组负责人约翰内斯本顿博士说:“一个简单的光活性膜与光电探测器结合,形成一个高分辨率设备,令人印象深刻。”
  • 一篇文章看懂:什么是SENIS集成3轴磁传感器?
    一篇文章看懂:什么是SENIS集成3轴磁传感器?为了测量电磁铁和永 jiu磁铁产生的从 10-6 到 102 T 的非均匀磁通密度,通常使用带霍尔探头的特斯拉计。为了同时测量磁通密度的三个正交分量,需要使用三轴霍尔探头。根据目前传统的的技术水平,三轴霍尔探头由三个霍尔板组成,这三个霍尔板分别位于一个小立方体的三个相互正交的面上。单个霍尔板的尺寸及其定位公差严重限制了可实现的空间分辨率和测量磁通密度矢量的角度精度。此外,连接霍尔装置的导线中的电磁感应也限制了这种霍尔探头的有用带宽。此外,平面霍尔效应通常会产生额外的误差。在基于量子阱的霍尔板中,平面霍尔效应很弱,但问题依然存在。 为了解决这个问题,在一个点上检测三个方向的磁性。SENIS开发了一种划时代的“集成3轴磁传感器",使之成为可能。这就是“集成的三轴磁传感器"。 该传感器可以在所有情况下测量精确的3D矢量,例如永磁体的邻近磁场、小线圈产生的磁场和时间变化,这在过去是不可能的。图1. 传统的霍尔片3轴探头(左)和SENIS集成3轴磁传感器(右)3轴磁性探头的配置传统的霍尔片3轴探头SENIS集成3轴磁传感器磁化位置3个位置一个位置(单点)磁感应位置的错位量取决于传感器位置(约0.5mm~10mm)无错位传感器的相对角度误差通常不标注(过大)±0.1°以内温度传感器无安装在传感器芯片中探头形状约1~2种8种类型+定制自由一、 专li技术的SENIS集成3轴磁传感器二、 SENIS集成三轴磁传感器的功能除了磁传感器外,集成的3轴磁传感器还集成了偏置电路和放大器,以提高频率特性和抗噪性,甚至在宽度仅为 0.64 m 的单个芯片上集成了温度传感器,用于因温度变化而进行灵敏度校正。1.敏感区域仅为0.15mm × 0.1mm × 0.15mm2.3个方向相对角度误差在±0.1以内3.频率响应:高达25Khz(-3db)4.温度特性±100ppm/°C三、 SENIS集成三轴磁传感器放大图四.SENIS集成三轴磁传感器详细信息图2. 磁性传感器内部有5个感磁区域。通过取BZ1和BZ2的平均值,虚拟地求出By传感器位置的Bz磁场。同样地,通过取Bx1和Bx2平均值来求出By传感器位置的Bx磁场,可在同一点上收集Bx、By、Bz。五.搭配SENIS集成三轴磁传感器的霍尔探头类型:六.搭配SENIS集成三轴磁传感器的高斯计/特斯拉计汇总类型: SENIS数字特斯拉计/高斯计基于SENIS® 的模拟磁场传感器电子设备,其顶部添加了数字模块,具有显示器,通信端口,数字数据校正等。SENTIS提供不同类型的特斯拉计,具有不同的磁性分辨率,精度,f带宽,噪声水平和功能和处理选项(手持式,台式,机架式)3MH3特斯拉计,适用于工业和实验室应用,具有良好的精度,分辨率和f带宽3MH6台式特斯拉计,用于实验室应用,具有非常高的分辨率和精度以及良好的f带宽3MTS 手持式特斯拉计,探头支架坚固,精度高1 轴、2 轴或 3 轴 Nanoteslameter 3NTA1,用于极低磁场SENIS® 已通过ISO 9001和ISO 22301(业务连续性管理)认证。我们的校准实验室已通过ISO17025:2017认证。上海昊量光电作为SENIS公司在中国大陆地区主要的代理商,为您提供专业的选型以及技术服务。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 传感器的科普知识来啦!
    传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。传感器的动态特性则指的是对于输入量随着时间变化的响应特性。动态特性通常采用传递函数等自动控制的模型来描述。通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。  物理传感器  物理传感器是检测物理量的传感器。它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式的信号的装置。其输出的信号和输入的信号有确定的关系。主要的物理传感器有光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。作为例子,让我们看看比较常用的光电式传感器。这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。其主要的原理是光电效应:当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电导率和电位电流等。显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。这样,我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。这里的输出电信号和原始的光信号有一定的关系,通常是接近线性的关系,这样计算原始的光信号就不是很复杂了。其它的物理传感器的原理都可以类比于光电式传感器。  物理传感器的应用范围是非常广泛的,我们仅仅就生物医学的角度来看看物理传感器的应用情况,之后不难推测物理传感器在其他的方面也有重要的应用。  比如血压测量是医学测量中的最为常规的一种。我们通常的血压测量都是间接测量,通过体表检测出来的血流和压力之间的关系,从而测出脉管里的血压值。测量血压所需要的传感器通常都包括一个弹性膜片,它将压力信号转变成为膜片的变形,然后再根据膜片的应变或位移转换成为相应的电信号。在电信号的峰值处我们可以检测出来收缩压,在通过反相器和峰值检测器后,种传感器外形我们可以得到舒张压,通过积分器就可以得到平均压。  让我们再看看呼吸测量技术。呼吸测量是临床诊断肺功能的重要依据,在外科手术和病人监护中都是必不可少的。比如在使用用于测量呼吸频率的热敏电阻式传感器时,把传感器的电阻安装在一个夹子前端的外侧,把夹子夹在鼻翼上,当呼吸气流从热敏电阻表面流过时,就可以通过热敏电阻来测量呼吸的频率以及热气的状态。  再比如最常见的体表温度测量过程,虽然看起来很容易,但是却有着复杂的测量机理。体表温度是由局部的血流量、下层组织的导热情况和表皮的散热情况等多种因素决定的,因此测量皮肤温度要考虑到多方面的影响。热电偶式传感器被较多的应用到温度的测量中,通常有杆状热电偶传感器和薄膜热电偶传感器。由于热电偶的尺寸非常小,精度比较高的可做到微米的级别,所以能够比较精确地测量出某一点处的温度,加上后期的分析统计,能够得出比较全面的分析结果。这是传统的水银温度计所不能比拟的,也展示了应用新的技术给科学发展带来的广阔前景。  从以上的介绍可以看出,仅仅在生物医学方面,物理传感器就有着多种多样的应用。传感器的发展方向是多功能、有图像的、有智能的传感器。传感器测量作为数据获得的重要手段,是工业生产乃至家庭生活所必不可少的器件,而物理传感器又是最普通的传感器家族,灵活运用物理传感器必然能够创造出更多的产品,更好的效益。  光纤传感器  近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤的传感器。  所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位(或振幅)发生变化,根据这个变化就可检测出被测量的变化。光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。  光纤声传感器就是一种利用光纤自身的传感器。当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。如图就是光纤传感器涡轮流量计的原理。  另外一个大类的光纤传感器是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。  光纤在传感器家族中是后期之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。  仿生传感器  仿生传感器,是一种采用新的检测原理的新型传感器,它采用固定化的细胞、酶或者其他生物活性物质与换能器相配合组成传感器。这种传感器是近年来生物医学和电子学、工程学相互渗透而发展起来的一种新型的信息技术。这种传感器的特点是机能高、寿命长。在仿生传感器中,比较常用的是生体模拟的传感器。  仿生传感器按照使用的介质可以分为:酶传感器、微生物传感器、细胞器传感器、组织传感器等。在图中我们可以看到,仿生传感器和生物学理论的方方面面都有密切的联系,是生物学理论发展的直接成果。在生体模拟的传感器中,尿素传感器是最近开发出来的一种传感器。下面就以尿素传感器为例子介绍仿生传感器的应用。  尿素传感器,主要是由生体膜及其离子通道两部分构成。生体膜能够感受外部刺激影响,离子通道能够接收生体膜的信息,并进行放大和传送。当膜内的感受部位受到外部刺激物质的影响时,膜的透过性将产生变化,使大量的离子流入细胞内,形成信息的传送。其中起重要作用的是生体膜的组成成分膜蛋白质,它能产生保形网络变化,使膜的透过性发生变化,进行信息的传送及放大。生体膜的离子通道,由氨基酸的聚合体构成,可以用有机化学中容易合成的聚氨酸的聚合物(L一谷氨酸,PLG)为替代物质,它比酶的化学稳定性好。PLG是水溶性的,本不适合电机的修饰,但PLG和聚合物可以合成嵌段共聚物,形成传感器使用的感应膜。  生体膜的离子通道的原理基本上与生体膜一样,在电极上将嵌段共聚膜固定后,如果加感应PLG保性网络变化的物质,就会使膜的透过性发生变化,从而产生电流的变化,由电流的变化,便可以进行对刺激性物质的检测。  尿素传感器经试验证明是稳定性好的一种生体模拟传感器,检测下限为10的负3次方的数量级,还可以检测刺激性物质,但是暂时还不适合生体的计测。  目前,虽然已经发展成功了许多仿生传感器,但仿生传感器的稳定性、再现性和可批量生产性明显不足,所以仿生传感技术尚处于幼年期,因此,以后除继续开发出新系列的仿生传感器和完善现有的系列之外,生物活性膜的固定化技术和仿生传感器的固态化值得进一步研究。  在不久的将来,模拟生体功能的嗅觉、味觉、听觉、触觉仿生传感器将出现,有可能超过人类五官的敏感能力,完善目前机器人的视觉、味觉、触觉和对目的物进行操作的能力。我们能够看到仿生传感器应用的广泛前景,但这些都需要生物技术的进一步发展,我们拭目以待这一天的到来。  红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量 (2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪 (3)热成像系统,可产生整个目标红外辐射的分布图象 (4)红外测距和通信系统 (5)混合系统,是指以上各类系统中的两个或者多个的组合。  红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。下面以热探测器为例子来分析探测器的原理。  热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。  电磁传感器  磁传感器是最古老的传感器,指南针是磁传感器的最早的一种应用。但是作为现代的传感器,为了便于信号处理,需要磁传感器能将磁信号转化成为电信号输出。应用最早的是根据电磁感应原理制造的磁电式的传感器。这种磁电式传感器曾在工业控制领域作出了杰出的贡献,但是到今天已经被以高性能磁敏感材料为主的新型磁传感器所替代。  在今天所用的电磁效应的传感器中,磁旋转传感器是重要的一种。磁旋转传感器主要由半导体磁阻元件、永久磁铁、固定器、外壳等几个部分组成。典型结构是将一对磁阻元件安装在一个永磁体的刺激上,元件的输入输出端子接到固定器上,然后安装在金属盒中,再用工程塑料密封,形成密闭结构,这个结构就具有良好的可靠性。磁旋转传感器有许多半导体磁阻元件无法比拟一款电磁传感器的外形的优点。除了具备很高的灵敏度和很大的输出信号外,而且有很强的转速检测范围,这是由于电子技术发展的结果。另外,这种传感器还能够应用在很大的温度范围中,有很长的工作寿命、抗灰尘、水和油污的能力强,因此耐受各种环境条件及外部噪声。所以,这种传感器在工业应用中受到广泛的重视。  磁旋转传感器在工厂自动化系统中有广泛的应用,因为这种传感器有着令人满意的特性,同时不需要维护。其主要应用在机床伺服电机的转动检测、工厂自动化的机器人臂的定位、液压冲程的检测、工厂自动化相关设备的位置检测、旋转编码器的检测单元和各种旋转的检测单元等。  现代的磁旋转传感器主要包括有四相传感器和单相传感器。在工作过程中,四相差动旋转传感器用一对检测单元实现差动检测,另一对实现倒差动检测。这样,四相传感器的检测能力是单元件的四倍。而二元件的单相旋转传感器也有自己的优点,也就是小巧可靠的特点,并且输出信号大,能检测低速运动,抗环境影响和抗噪声能力强,成本低。因此单相传感器也将有很好的市场。  磁旋转传感器在家用电器中也有大的应用潜力。在盒式录音机的换向机构中,可用磁阻元件来检测磁带的终点。家用录像机中大多数有变速与高速重放功能,这也可用磁旋转传感器检测主轴速度并进行控制,获得高画面的质量。洗衣机中的电机的正反转和高低速旋转功能都可以通过伺服旋转传感器来实现检测和控制。  这种开关可以感应到进入自己检验区域的金属物体,控制自己内部电路的开或关。开关自己产生磁场,当有金属物体进入到磁场会引起磁场的变化。这种变化通过开关内部电路可以变成电信号。  更加突出电磁传感器是一门应用很广的高新技术,国内、国外都投入了一定的科研力量在进行研究,这种传感器的应用正在渗透入国民经济、国防建设和人们日常生活的各个领域,随着信息社会的到来,其地位和作用必将。  磁光效应传感器  现代电测技术日趋成熟,由于具有精度高、便于微机相连实现自动实时处理等优点,已经广泛应用在电气量和非电气量的测量中。然而电测法容易受到干扰,在交流测量时,频响不够宽及对耐压、绝缘方面有一定要求,在激光技术迅速发展的今天,已经能够解决上述的问题。  磁光效应传感器就是利用激光技术发展而成的高性能传感器。激光,是本世纪六十年代初迅速发展起来的又一新技术,它的出现标志着人们掌握和利用光波进入了一个新的阶段。由于以往普通光源单色度低,故很多重要的应用受到限制,而激光的出现,使无线电技术和光学技术突飞猛进、相互渗透、相互补充。现在,利用激光已经制成了许多传感器,解决了许多以前不能解决的技术难题,使它适用于煤矿、石油、天然气贮存等危险、易燃的场所。  比如说用激光制成的光导纤维传感器,能测量原油喷射、石油大罐龟裂的情况参数。在实测地点,不必电源供电,这对于安全防爆措施要求很严格的石油化工设备群尤为适用,也可用来在大型钢铁厂的某些环节实现光学方法的遥测化学技术。  磁光效应传感器的原理主要是利用光的偏振状态来实现传感器的功能。当一束偏振光通过介质时,若在光束传播方向存在着一个外磁场,那么光通过偏振面将旋转一个角度,这就是磁光效应。也就是可以通过旋转的角度来测量外加的磁场。在特定的试验装置下,偏转的角度和输出的光强成正比,通过输出光照射激光二极管LD,就可以获得数字化的光强,用来测量特定的物理量。  自六十年代末开始,RC Lecraw提出有关磁光效应的研究报告后,引起大家的重视。日本,苏联等国家均开展了研究,国内也有学者进行探索。磁光效应的传感器具有优良的电绝缘性能和抗干扰、频响宽、响应快、安全防爆等特性,因此对一些特殊场合电磁参数的测量,有独特的功效,尤其在电力系统中高压大电流的测量方面、更显示它潜在的优势。同时通过开发处理系统的软件和硬件,也可以实现电焊机和机器人控制系统的自动实时测量。在磁光效应传感器的使用中,最重要的是选择磁光介质和激光器,不同的器件在灵敏度、工作范围方面都有不同的能力。随着近几十年来的高性能激光器和新型的磁光介质的出现,磁光效应传感器的性能越来越强,应用也越来越广泛。  磁光效应传感器做为一种特定用途的传感器,能够在特定的环境中发挥自己的功能,也是一种非常重要的工业传感器。  压力传感器  压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。  我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应 当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。  压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。  在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。  压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。  压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别压电传感器的外形是航空和宇航领域中更有它的特殊地位。压电式传感器心乂  也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。  除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。  相关控制系统  继电器控制  继电器是我们生活中常用的一种控制设备,通俗的意义上来说就是开关,在条件满足的情况下关闭或者开启。继电器的开关特性在很多的控制系统尤其是离散的控制系统中得到广泛的应用。从另一个角度来说,由于为某一个用途设计使用的电子电路,最终或多或少都需要和某一些机械设备相交互,所以继电器也起到电子设备和机械设备的接口作用。  最常见的继电器要数热继电器,通常使用的热继电器适用于交流50Hz、60Hz、额定电压至660V、额定电流至80A的电路中,供交流电动机的过载保护用。它具有差动机构和温度补偿环节,可与特定的交流接触器插接安装。  时间继电器也是很常用的一种继电器,它的作用是作延时元件,通常它可在交流50Hz、60Hz、电压至380V、直流至220V的控制电路中作延时元件,按预定的时间接通或分断电路。可广泛应用于电力拖动系统,自动程序控制系统及在各种生产工艺过程的自动控制系统中起时间控制作用。  在控制中常用的中间继电器通常用作继电控制,信号传输和隔离放大等用途。此外还有电流继电器用来限制电流、电压继电器用来控制电压、静态电压继电器、相序电压继电器、相序电压差继电器、频率继电器、功率方向继电器、差动继电器、接地继电器、电动机保护继电器等等。正是有了这些不同类型的继电器,我们才有可能对不同的物理量作出控制,完成一个完整的控制系统。  除了传统的继电器之外,继电器的技术还应用在其他的方面,比如说电机智能保护器是根据三相交流电动机的工作原理,分析导致电动机损坏的主要原因研制的,它是一种设计独特,工作可靠的多功能保护器,在故障出现时,能及时切断电源,便于实现电机的检修与维护,该产品具有缺相保护,短路、过载保护功能,适用于各类交流电动机,开关柜,配电箱等电器设备的安全保护和限电控制,是各类电器设备设计安装的优选配套产品。该技术安装尺寸、接线方式、电流调整与同型号的双金属片式热继电器相同。是直接代替双金属片式热继电器的更新换代的先进电子产品。继电器技术发展到现在,已经和计算机技术结合起来,产生了可编程控制器的技术。可编程控制器简称作PLC。它是将微电脑技术直接用于自动控制的先进装置。它具有可靠性高,抗干扰性强,功能齐全,体积小,灵活可扩,软件直接、简单,维护方便,外形美观等优点 以往继电器控制的电梯有几百个触点控制电梯的运行。  而PLC控制器内部有几百个固态继电器,几十个定时器/计数器,具备停电记忆功能,输入输出采用光电隔离,控制系统故障仅为继电器控制方式的10%。正因为如此,国家有关部门已明文规定从97年起新产电梯不得使用继电器控制电梯,改用PLC微电脑控制电梯。  可以看出,继电器技术在日常生活中无所不在,而且和电脑的紧密结合更加增强了它的活力,使得继电器为我们的生活更好地服务。  液压传动控制系统  液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。  从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。  液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。  液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。  液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分成人力操纵阀、机械操纵法、电动操纵阀等。  除了上述的元件以外,液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。  根据液压传动的结构及其特点,在液压系统的设计中,首先要进行系统分析,然后拟定系统的原理图,其中这个原理图是用液压机械符号来表示的。之后通过计算选择液压器件,进而再完成系统的设计和调试。这个过程中,原理图的绘制是最关键的。它决定了一个设计系统的优劣。  液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。也可以应用在万能外圆磨床液压系统等生产实践中。这些系统的特点是功率比较大,生产的效率比较高,平稳性比较好。  液压作为一个广泛应用的技术,在未来更是有广阔的前景。随着计算机的深入发展,液压控制系统可以和智能控制的技术、计算机控制的技术等技术结合起来,这样就能够在更多的场合中发挥作用,也可以更加精巧的、更加灵活地完成预期的控制任务。
  • 博伦气象发布HPV 植物茎流传感器/植物液流计新品
    HPV 茎流量传感器/Sap Flow SensorHPV茎流量传感器是一款校准型、低成本的热脉冲液流传感器,输出校准液流量、热速、茎水含量、茎温等数据,功耗低,内置加热控制,同时改善了传统的加热方式,其原理采用双方法(DMA)热脉冲法,测量范围:-200~+1000cm/hr(热流速度)或-100~+2000cm3/cm2/hr (茎流通量密度),可广泛用于于茎流量监测、植物茎流蒸发计算、植物茎流蒸腾量、植物灌溉等植物茎流是树木内部的“水”运动,而蒸腾是从叶片通过光合作用蒸发流出的水分。树液流量和蒸腾量之间有很强的关联性,通常理解是同一回事。但是,严格地说,它们是不同的,这体现在它们是如何被测量的。SAP流量以L/hr(或每天、每周等)为单位进行测量。蒸腾量以每小时、每天、每星期等毫米(mm)为单位测量。 蒸散量=蒸腾量+蒸发量 蒸腾量以毫米为测量单位,可与降雨量以毫米计作比较。随着时间的推移,降雨量(水输入)应与蒸腾量(输出)相匹配。如果蒸腾作用更高,通常是树木作物的蒸腾作用,那么这种差异必须通过灌溉来弥补。 蒸发量(evaporation),蒸发量是指在一定时段内,由土壤或水中的水分经蒸发而散布到空中的量。1mm(降雨量)=1㎡地面1kg水1mm(蒸腾量)=1㎡叶面积的1升树液流量(水) 例如:在果园和葡萄园等有管理的树木作物系统中,蒸发量与蒸腾量相比非常小。因此,为了简化测量,通常忽略蒸发量,将蒸腾量取为平均蒸散量(ETo)。 技术指标测量范围:-200~+1000cm/hr(热流速度)分辨率:0.001cm/hr准确度:±0.1cm/hr探针尺寸:φ1.3mm*L30mm温度位置:外10mm,内20mm针距:6mm探针材质:316不锈钢温度范围:-30~+70℃响应时间:200ms加热电阻:39Ω,400J/m电源:12V DC电流:空闲5mA, 测量茎流量传感器参考文献:1. Kim, H.K. Park, J. Hwang, I. Investigating water transport through the xylem network in vascular plants.J. Exp. Bot. 2014, 65, 1895–1904. [CrossRef] [PubMed]2. Steppe, K. Vandegehuchte, M.W. Tognetti, R. Mencuccini, M. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiol. 2015, 35, 341–345. [CrossRef] [PubMed]3. Vandegehuchte, M.W. Steppe, K. Sap-flux density measurement methods: Working principles andapplicability. Funct. Plant Biol. 2013, 40, 213–223. [CrossRef]4. Marshall, D.C. Measurement of sap flow in conifers by heat transport. Plant Physiol. 1958 , 33, 385–396.[CrossRef] [PubMed]5. Cohen, Y. Fuchs, M. Green, G.C. Improvement of the heat pulse method for determining sap flow in trees. Plant Cell Environ. 1981, 4, 391–397.[CrossRef]6. Green, S.R. Clothier, B. Jardine, B. Theory and practical application of heat pulse to measure sap flow.Agron. J. 2003, 95, 1371–1379. [CrossRef]7. Burgess, S.S.O. Adams, M.A. Turner, N.C. Beverly, C.R. Ong, C.K. Khan, A.A.H. Bleby, T.M. An improved heat-pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 2001 , 21, 589–598. [CrossRef]8. Forster, M.A. How reliable are heat pulse velocity methods for estimating tree transpiration? Forests 2017 , 8, 350. [CrossRef]9. Bleby, T.M. McElrone, A.J. Burgess, S.S.O. Limitations of the HRM: Great at low flow rates, but no yet up to speed? In Proceedings of the 7th International Workshop on Sap Flow: Book of Abstracts, Seville, Spain, 22–24 October 2008.10. Pearsall, K.R. Williams, L.E. Castorani, S. Bleby, T.M. McElrone, A.J. Evaluating the potential of a novel dual heat-pulse sensor to measure volumetric water use in grapevines under a range of flow conditions. Funct. Plant Biol. 2014, 41, 874–883. [CrossRef]11. Clearwater, M.J. Luo, Z. Mazzeo, M. Dichio, B. An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems. Plant Cell Environ. 2009 , 32, 1652–1663.[CrossRef]12. Green, S.R. Romero, R. Can we improve heat-pulse to measure low and reverse flows? Acta Hortic. 2012 , 951, 19–29. [CrossRef]13. Green, S. Clothier, B. Perie, E. A re-analysis of heat pulse theory across a wide range of sap flows. Acta Hortic. 2009, 846, 95–104. [CrossRef]14. Ferreira, M.I. Green, S. Concei??o, N. Fernández, J. Assessing hydraulic redistribution with thecompensated average gradient heat-pulse method on rain-fed olive trees. Plant Soil 2018 , 425, 21–41.[CrossRef]15. Romero, R. Muriel, J.L. Garcia, I. Green, S.R. Clothier, B.E. Improving heat-pulse methods to extend the measurement range including reverse flows. Acta Hortic. 2012, 951, 31–38. [CrossRef]16. Testi, L. Villalobos, F. New approach for measuring low sap velocities in trees. Agric. Meteorol. 2009 , 149, 730–734. [CrossRef]17. Vandegehuchte, M.W. Steppe, K. Sapflow+: A four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements. New Phytol. 2012, 196, 306–317. [CrossRef] [PubMed]18. Kluitenberg, G.J. Ham, J.M. Improved theory for calculating sap flow with the heat pulse method.Agric. For. Meteorol. 2004, 126, 169–173. [CrossRef]19. Vandegehuchte, M.W. Steppe, K. Improving sap-flux density measurements by correctly determiningthermal diffusivity, differentiating between bound and unbound water. Tree Physiol. 2012 , 32, 930–942.[CrossRef]20. Looker, N. Martin, J. Jencso, K. Hu, J. Contribution of sapwood traits to uncertainty in conifer sap flow as estimated with the heat-ratio method. Agric. For. Meteorol. 2016, 223, 60–71. [CrossRef]21. Edwards, W.R.N. Warwick, N.W.M. Transpiration from a kiwifruit vine as estimated by the heat pulsetechnique and the Penman-Monteith equation. N. Z. J. Agric. Res. 1984, 27, 537–543. [CrossRef]22. Becker, P. Edwards, W.R.N. Corrected heat capacity of wood for sap flow calculations. Tree Physiol 1999 , 19, 767–768. [CrossRef]23. Hogg, E.H. Black, T.A. den Hartog, G. Neumann, H.H. Zimmermann, R. Hurdle, P.A. Blanken, P.D. Nesic, Z. Yang, P.C. Staebler, R.M. et al. A comparison of sap flow and eddy fluxes of water vapor from aboreal deciduous forest. J. Geophys. Res. 1997, 102, 28929–28937. [CrossRef]24. Barkas, W.W. Fibre saturation point of wood. Nature 1935, 135, 545. [CrossRef]25. Kollmann, F.F.P. Cote, W.A., Jr. Principles of Wood Science and Technology: Solid Wood Springer: Berlin Heidelberg, Germany, 1968.26. Swanson, R.H. Whitfield, D.W.A. A numerical analysis of heat pulse velocity and theory. J. Exp. Bot. 1981 ,32, 221–239. [CrossRef]27. Barrett, D.J. Hatton, T.J. Ash, J.E. Ball, M.C. Evaluation of the heat pulse velocity technique for measurement of sap flow in rainforest and eucalypt forest species of south-eastern Australia. Plant Cell Environ. 1995 , 18, 463–469. [CrossRef]28. Biosecurity Queensland. Environmental Weeds of Australia for Biosecurity Queensland Edition Queensland Government: Brisbane, Australia, 2016.29. Steppe,K. de Pauw, D.J.W. Doody, T.M. Teskey, R.O. A comparison of sap flux density using thermaldissipation, heat pulse velocity and heat field deformation methods. Agric. For. Meteorol. 2010 , 150, 1046–1056. [CrossRef]30. López-Bernal, A. Testi, L. Villalobos, F.J. A single-probe heat pulse method for estimating sap velocity in trees. New Phytol. 2017, 216, 321–329. [CrossRef] [PubMed]31. Forster, M.A. How significant is nocturnal sap flow? Tree Physiol. 2014, 34, 757–765. [CrossRef] [PubMed]32. Cohen, Y. Fuchs, M. Falkenflug, V. Moreshet, S. Calibrated heat pulse method for determining water uptake in cotton. Agron. J. 1988, 80, 398–402. [CrossRef]33. Cohen, Y. Takeuchi, S. Nozaka, J. Yano, T. Accuracy of sap flow measurement using heat balance and heat pulse methods. Agron. J. 1993, 85, 1080–1086. [CrossRef]34. Lassoie, J.P. Scott, D.R.M. Fritschen, L.J. Transpiration studies in Douglas-fir using the heat pulse technique. For. Sci. 1977, 23, 377–390.35. Wang, S. Fan, J. Wang, Q. Determining evapotranspiration of a Chinese Willow stand with three-needleheat-pulse probes. Soil Sci. Soc. Am. J. 2015, 79, 1545–1555. [CrossRef]36. Bleby, T.M. Burgess, S.S.O. Adams, M.A. A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Funct. Plant Biol. 2004 , 31, 645–658.[CrossRef]37. Madurapperuma, W.S. Bleby, T.M. Burgess, S.S.O. Evaluation of sap flow methods to determine water use by cultivated palms. Environ. Exp. Bot. 2009, 66, 372–380. [CrossRef]38. Green, S.R. Measurement and modelling the transpiration of fruit trees and grapevines for irrigationscheduling. Acta Hortic. 2008, 792, 321–332. [CrossRef]39. Intrigliolo, D.S. Lakso, A.N. Piccioni, R.M. Grapevine cv. ‘Riesling’ water use in the northeastern UnitedStates. Irrig.Sci. 2009, 27, 253–262. [CrossRef]40. Eliades, M. Bruggeman, A. Djuma, H. Lubczynski, M. Tree water dynamics in a semi-arid, Pinus brutiaforest. Water 2018, 10, 1039. [CrossRef]
  • 小小传感器 助力城市环境监测
    生态环境治理精细化是新时代生态文明建设的新要求、新考验,道路作为城市的血管,密集处往往是人口聚居地、各类污染排放聚集区。近年来我国科技工作者开展大气传感器的相关研发,为城市大气污染监测与溯源提供更精细的技术工具和数据支撑,助力提升大气污染防治精细化水平。在济南,技术人员将传感器“藏”在出租车中,实现对道路PM2.5、PM10等空气污染物浓度的实时移动监测,传感器定位精度小于20米,每3秒上传一组数据。300辆装有传感器的出租车每天合计行程超过 6.9万公里,数据超过360万组,平均每天可覆盖95%以上的主城区机动车道路,依托传感器的有力支撑,完美弥补了定点大气网格化监测的不足,能以最快速度掌握城市环境的具体情况。环境污染较为严重的区域还包括施工场地。土石方填挖、建筑材料装卸、建筑拆除及建筑垃圾消纳等施工工序中均会产生扬尘,想要实现城市治理精准化、精细化,借助物联网、传感器等数字化技术进行实时监测尤为关键。传感器接入扬尘监测云平台,则能够对施工场地的黄土覆盖、监控设施与扬尘监测设备PM2.5和PM10数值等方面进行监控,有利于及时落实防控措施情况,并对施工项目的扬尘治理工作进行有序推进,足以可见小小传感器可以针对施工场地起到日常监督管理的作用。资料图片:工作人员操作的智能无人监测船在对河道进行水质快速监测分析在水质监测方面,想要及时发现水生态环境问题,从而实现视觉感知、数据采集、图像分析、信息处理等数字化服务,监测平台可采取给摄像头增加滤光镜和布设水下传感器的方式,这项技术利用水质监测、视频监控等不同类型来源的水质数据进行算法模型分析,从而快速锁定污染源,将可能出现的水质污染情况、位置等数据及时传送到监管部门。相信在未来,数据准确、参数齐全的新型传感器会陆续登上舞台,通过多参数、全方位和更加精确的数据支撑进行环境监测,提升我们对城市污染的科学认识,助力城市生态环境一路向好。
  • 我国发明创新传感器电极制备新方法
    近日,中科院长春应用化学研究所研制的“全氟磺酸离子交换膜电极的制备方法”获国家专利授权。这一发明创新了一种改进的传感器电极制备方法,是研发具有自主知识产权的电化学气体传感器核心技术的一项新突破。   据悉,化学气体传感器以其体积小、检测速度快、准确、便携、可现场直接检测和连续检测等优点,越来越引起国内外专家学者的普遍关注,并成为竞相研发的热点项目之一。而我国电化学气体传感器研发起步较晚,一些核心技术还受制于国外,所需传感器几乎依赖进口。为此,不断强化电化学传感器核心技术的突破,尽快研发出具有我国自主知识产权的电化学气体传感器,成为我国经济建设急需解决的重要课题之一。   长春应化所绿色化学与工程实验室化学传感器组的王玉江研究员等发明设计的“全氟磺酸离子交换膜电极的制备方法”,包括活性物质的涂载、洗涤、全氟磺酸离子交换膜的复合成型三个步骤。其在二氧化硫、一氧化碳等电化学气体传感器的组装上得以实施,证明该方法通过增强敏感电极层催化剂与电解质之间的离子传输速率,从而提高了传感器对目标气体的响应灵敏度 此外,全氟磺酸离子交换膜的复合,克服了传统电极制备过程中因为层与层间物质不相溶而使得结构松散,长时间工作易剥离脱落等缺陷,大大提高了传感器的稳定性和寿命。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制