当前位置: 仪器信息网 > 行业主题 > >

法界面张定仪

仪器信息网法界面张定仪专题为您提供2024年最新法界面张定仪价格报价、厂家品牌的相关信息, 包括法界面张定仪参数、型号等,不管是国产,还是进口品牌的法界面张定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合法界面张定仪相关的耗材配件、试剂标物,还有法界面张定仪相关的最新资讯、资料,以及法界面张定仪相关的解决方案。

法界面张定仪相关的资讯

  • 东方德菲--旋转滴方法研究界面扩张流变性质
    北京东方德菲仪器有限公司SVT20N视频旋转滴张力仪使用 &ldquo 旋转滴方法研究界面扩张流变性质&rdquo 的文章 在物理化学学报上发表 我公司代理的德国Dataphysics公司生产的SVT20N视频旋转滴张力仪是使用旋转滴方法研究界面扩张流变性质的仪器,相对于普遍应用的Langmuir槽法和悬挂滴方法,它增加了转速振荡的功能,可以更精确地测量超低界面张力体系的扩张流变性质。 中国科学院理化技术研究所利用我公司SVT20N视频旋转滴张力仪,采用旋转滴方法,研究2-丙基-4,5-二庚烷基苯磺酸钠(DHPBS)在癸烷-水界面上的扩张流变性质的文章在物理化学学报上发表。有关文章的信息如下: 旋转滴方法研究界面扩张流变性质 张磊1 宫清涛1 周朝辉1 王武宁2 张路1 赵濉1 余稼镛1 (1中国科学院理化技术研究所,北京 100080;2 北京东方德菲仪器有限公司,北京 100089) 摘要:采用旋转滴方法,对2-丙基-4,5-二庚烷基苯磺酸钠(DHPBS)在癸烷-水界面上的扩张流变性质进行了研究,较为详细地介绍了SVT20N视频旋转滴张力仪的装置和实验方法,考察了油滴注入体积、基础转速及振荡振幅等试验条件对扩张模量的影响。研究结果表明,旋转滴方法是一种研究扩张流变性质的新型手段,在涉及低界面张力现象的领域具有良好的应用前景. 关键词:旋转滴方法; 烷基苯磺酸盐; 界面扩张性质; 扩张模量 Study of Interfacial Dilational Properties by the Spinning Drop Technique ZHANG Lei1 GONG Qing-Tao1 ZHOU Zhao-Hui1 WANG Wu-Ning2 ZHANG Lu1 ZHAO Sui1 YU Jia-Yong1 (1 Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing 100080, p.R.China 2 Beijing Eastern-Dataphy Instruments Co.,Ltd.,Beijing 100089, p.R.China) Abstract: The dilational viscoelastic properties of 4,5-dihepty-2-propylbenzene sulfonate (DHPBS) at the decane/water interface were investigated with a spinning drop tensiometer. The instrument of the spinning drop tensiometer SVT20N and the corrrlative experimental method were discussed in detail. The influence of oil drop volume, rotational speed, and oscillating amplitude on the interfacial dilational modulus were expounded. Experimental results show that spinning drop analysis is a novel method for probing interfacial dilational properties and has good prospects for application in the measurement of low interfacial tension phenomena. Key word: Spinning drop analysis Sodium alkyl benzene sulfonate Interfacial dilational property Dilational modilus
  • 上海交大:通过3D打印实现刚柔复合超疏水界面的制备
    近日,上海交大机械与动力工程学院胡松涛副教授课题组提出了刚柔微结构复合的超疏水界面设计思想,解决了冲击定位要求苛刻的难题,相关研究成果在机械装备抗液防冰等领域具有重要的应用前景。瑞士苏黎世联邦理工学院Andrew J. deMello教授课题组和英国帝国理工学院Daniele Dini教授课题组为合作单位。该成果以“Flexibility-Patterned Liquid-Repelling Surfaces”为题作为封面论文发表于ACS Applied Materials & Interfaces期刊。原文链接:https://pubs.acs.org/doi/10.1021/acsami.1c05243。刚柔复合界面设计与制备(杆径10μm的柔性网格结构及刚性支柱)面向低温冲击液滴的超疏水界面需要递进满足两个条件:1)基于微纳几何结构和低能化学修饰的抗刺穿性以反弹冲击液滴;2)极短的固液接触时间以避免液滴在界面成核结冰。现有的相关界面设计工作遵循刚性和柔性两类策略,可有效缩短固液接触时间,但受限于苛刻的固液冲击定位要求。研究团队借鉴蹦床公园,提出了刚柔微结构相结合的超疏水界面设计,通过融合刚性和柔性设计策略,期望消除界面润湿性能对固液冲击定位的依赖。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述刚柔复合界面设计的样机制备。液滴冲击行为 研究团队利用高速相机记录液滴在冲击不同界面以及界面内不同局部区域的动力学行为,证明可以利用刚柔复合界面设计来调整液滴冲击行为。固液接触时间液滴冲击实验进一步表明,当液滴冲击柔性界面区域时,将触发结构振动来缩短固液接触时间;而当液滴冲击刚性界面区域时,将触发液滴的非对称再分布来缩短固液接触时间。
  • 上海交大:通过3D打印实现刚柔复合超疏水界面的制备
    近日,上海交大机械与动力工程学院胡松涛副教授课题组提出了刚柔微结构复合的超疏水界面设计思想,解决了冲击定位要求苛刻的难题,相关研究成果在机械装备抗液防冰等领域具有重要的应用前景。瑞士苏黎世联邦理工学院Andrew J. deMello教授课题组和英国帝国理工学院Daniele Dini教授课题组为合作单位。该成果以“Flexibility-Patterned Liquid-Repelling Surfaces”为题作为封面论文发表于ACS Applied Materials & Interfaces期刊。原文链接:https://pubs.acs.org/doi/10.1021/acsami.1c05243。刚柔复合界面设计与制备(杆径10μm的柔性网格结构及刚性支柱)面向低温冲击液滴的超疏水界面需要递进满足两个条件:1)基于微纳几何结构和低能化学修饰的抗刺穿性以反弹冲击液滴;2)极短的固液接触时间以避免液滴在界面成核结冰。现有的相关界面设计工作遵循刚性和柔性两类策略,可有效缩短固液接触时间,但受限于苛刻的固液冲击定位要求。研究团队借鉴蹦床公园,提出了刚柔微结构相结合的超疏水界面设计,通过融合刚性和柔性设计策略,期望消除界面润湿性能对固液冲击定位的依赖。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述刚柔复合界面设计的样机制备。液滴冲击行为 研究团队利用高速相机记录液滴在冲击不同界面以及界面内不同局部区域的动力学行为,证明可以利用刚柔复合界面设计来调整液滴冲击行为。固液接触时间液滴冲击实验进一步表明,当液滴冲击柔性界面区域时,将触发结构振动来缩短固液接触时间;而当液滴冲击刚性界面区域时,将触发液滴的非对称再分布来缩短固液接触时间。官网:https://www.bmftec.cn/links/10
  • 上海交大:通过3D打印实现刚柔复合超疏水界面的制备
    近日,上海交大机械与动力工程学院胡松涛副教授课题组提出了刚柔微结构复合的超疏水界面设计思想,解决了冲击定位要求苛刻的难题,相关研究成果在机械装备抗液防冰等领域具有重要的应用前景。瑞士苏黎世联邦理工学院Andrew J. deMello教授课题组和英国帝国理工学院Daniele Dini教授课题组为合作单位。该成果以“Flexibility-Patterned Liquid-Repelling Surfaces”为题作为封面论文发表于ACS Applied Materials & Interfaces期刊。刚柔复合界面设计与制备(杆径10μm的柔性网格结构及刚性支柱)面向低温冲击液滴的超疏水界面需要递进满足两个条件:1)基于微纳几何结构和低能化学修饰的抗刺穿性以反弹冲击液滴;2)极短的固液接触时间以避免液滴在界面成核结冰。现有的相关界面设计工作遵循刚性和柔性两类策略,可有效缩短固液接触时间,但受限于苛刻的固液冲击定位要求。研究团队借鉴蹦床公园,提出了刚柔微结构相结合的超疏水界面设计,通过融合刚性和柔性设计策略,期望消除界面润湿性能对固液冲击定位的依赖。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述刚柔复合界面设计的样机制备。液滴冲击行为 研究团队利用高速相机记录液滴在冲击不同界面以及界面内不同局部区域的动力学行为,证明可以利用刚柔复合界面设计来调整液滴冲击行为。固液接触时间液滴冲击实验进一步表明,当液滴冲击柔性界面区域时,将触发结构振动来缩短固液接触时间;而当液滴冲击刚性界面区域时,将触发液滴的非对称再分布来缩短固液接触时间。官网:https://www.bmftec.cn/links/10
  • 上海交大《ACS Applied Materials & Interfaces》:通过3D打印实现刚柔复合超疏水界面的制备
    近日,上海交大机械与动力工程学院胡松涛副教授课题组提出了刚柔微结构复合的超疏水界面设计思想,解决了冲击定位要求苛刻的难题,相关研究成果在机械装备抗液防冰等领域具有重要的应用前景。瑞士苏黎世联邦理工学院Andrew J. deMello教授课题组和英国帝国理工学院Daniele Dini教授课题组为合作单位。该成果以“Flexibility-Patterned Liquid-Repelling Surfaces”为题作为封面论文发表于ACS Applied Materials & Interfaces期刊。原文链接:https://pubs.acs.org/doi/10.1021/acsami.1c05243。刚柔复合界面设计与制备(杆径10μm的柔性网格结构及刚性支柱)面向低温冲击液滴的超疏水界面需要递进满足两个条件:1)基于微纳几何结构和低能化学修饰的抗刺穿性以反弹冲击液滴;2)极短的固液接触时间以避免液滴在界面成核结冰。现有的相关界面设计工作遵循刚性和柔性两类策略,可有效缩短固液接触时间,但受限于苛刻的固液冲击定位要求。研究团队借鉴蹦床公园,提出了刚柔微结构相结合的超疏水界面设计,通过融合刚性和柔性设计策略,期望消除界面润湿性能对固液冲击定位的依赖。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述刚柔复合界面设计的样机制备。液滴冲击行为 研究团队利用高速相机记录液滴在冲击不同界面以及界面内不同局部区域的动力学行为,证明可以利用刚柔复合界面设计来调整液滴冲击行为。固液接触时间液滴冲击实验进一步表明,当液滴冲击柔性界面区域时,将触发结构振动来缩短固液接触时间;而当液滴冲击刚性界面区域时,将触发液滴的非对称再分布来缩短固液接触时间。
  • 动态可逆粘附的高分子复合材料助力长期稳定的跨界面热传导
    四川大学傅强教授和吴凯副研究员报道了一种基于聚合物分子结构和填料表面设计的新型软物质热界面材料。研究团队通过力化学作用将液态金属(LM)包裹在球形氧化铝(Al2O3)表面形成核壳结构的填料,并将其嵌入具有动态粘附性的弹性体(PUPDM)中制备了三元复合材料。巧妙的PUPDM分子设计使得材料与各种热源/冷槽之间形成动态可逆的氢键相互作用,实现了零压状态下的低接触热阻和耐多次热循环的长期稳定性。而液态金属改性填料不仅可以作为导热桥梁,同时有利于聚合物链段在室温下的松弛,平衡了传统功能复合材料中导热性能与表面黏附可逆性的矛盾。这种在导热界面材料上构筑动态可逆键的概念在新型热管理材料和技术领域有广阔的应用前景。相关成果以“A Thermal Conductive Interface Material with Tremendous and Reversible Surface Adhesion Promises Durable Cross-Interface Heat Conduction”为题发表于《Materials Horizons》期刊(Mater. Horiz., 2022, DOI: 10.1039/D2MH00276K)。图1 具有可逆粘附能力的高导热/电绝缘/柔性软材料的分子设计和复合结构示意图随着现代电子设备朝着高度集成化和小型化发展,器件内部指数式增长的热严重影响到电子设备的工作性能、可靠性和使用寿命。因此,导热材料和先进的热管理技术引起广泛的关注。典型的热界面材料已经被大量应用去促进电子设备内部的界面热传导,并且评价其热管理效率的有两个重要的指标:材料本身的热导率和材料与接触基板的接触热阻。近年来,大量的研究人员致力于开发高导热的材料,然而随着电子设备尺寸的日益减小,解决接触热阻的问题变得同样重要。现有的一些降低接触热阻的方法有制备具备触变性和顺应性的材料或者施加外界应用压力。这些方法的目的都是增加接触界面的实际接触面积去实现更好的界面几何匹配。一些微纳尺度界面热传导的研究也表明界面相互作用有助于提高界面热导率,但在宏观热界面领域还缺乏系统的研究。更值得关注的是,由于热界面材料与接触基板的热膨胀系数不匹配,因此在经历长期热循环后,界面几何失配或者界面脱粘仍然会发生,阻碍着热管理的长期稳定性。图2 复合材料的导热和可逆粘附能力展示 为了解决上述问题,本工作采用的策略主要分为三个步骤:1)制备出具有可逆黏附能力的柔性弹性基体,提高热界面材料与基板的相互作用,并通过动态界面热管理实现跨界面热传导的长期稳定性。2)加工得到具有优异导热性能并且不影响柔性基体动态键的可逆性和活动性的导热填料。3)复合加工得到所需复合材料。基于独特结构的LM/Al2O3二元核壳填料结构设计, 结合具有动态可逆粘附弹性基体的合成,该工作中得到的复合材料完美地平衡了导热、柔性和粘附力的可逆性之间的矛盾。随着LM/Al2O3二元填料的加入,聚合物复合材料表现出出色的热导率(6.23 Wm-1K-1),允许材料内部的各向同性的热传导。同时,受益于二元填料的独特结构,绝缘的LM/Al2O3能有效地隔绝液态金属之间的电渗透网络,保证了复合材料的电绝缘性。此外,由于合成的PUPDM基体展现出超高的适用于多种基板的可逆粘附力(4.48 MPa, Al板,80℃),以及LM在基体和刚性填料的界面处为聚合物分子链链段的运动提供更多的自由度,有利于动态氢键的可逆解离与缔合,因此所得到的PUPDM/LM/Al2O3复合材料同样表现出出色的可逆黏附力(1.50 MPa, Al板,80℃),可以承担起一个10.66 kg的水桶。图3 PUPDM/LM/Al2O3复合材料的界面热管理展示 复合材料与基板之间出色的氢键结合作用实现了零压状态下的低接触热阻(18.28 mm2K W-1)。此外,这种动态可逆的氢键作用保证接触界面拥有良好的长期稳定性,即使复合材料与铝板的热膨胀系数不匹配,但是经过7500次热循环,接触热阻仍然没有明显上升。这种在高导热热界面材料上构筑动态可逆的界面相互作用的概念在微电子冷却技术、热电装置、大功率可穿戴设备等先进电子设备中具有广阔的应用前景。
  • 基于树蛙脚掌的多级微纳界面功能化专题,专访北京航空航天大学陈华伟教授课题组
    北京航空航天大学陈华伟教授课题组近期在《Advanced Science》发布最新研究成果“Micro–Nano Hierarchical Structure EnhancedStrong Wet Friction Surface Inspired by Tree Frogs”,其研究工作中涉及的高精密微尺度3D打印技术由深圳摩方材料科技有限公司提供,因此摩方公司就这一创新型成果进行更进一步的访谈,访谈对象为北京航空航天大学陈华伟教授,内容如下:Q1、请问你们课题组主要在做哪方面的科研工作?对高精密3D打印的需求有哪些?陈华伟教授:我们实验室来自北京航空航天大学机械工程及自动化学院,长期从事微纳表界面科学、医工交叉等方面的研究工作。随着现阶段微纳技术和生物科学的快速推进,对功能表面的制备提出了更高的要求,包括材质的多样化、多材质的复合加工、微纳结构的高精度化、多级复杂结构,以及大面积快速制备成型等。3D打印技术作为一种高精度结构成型技术,相比于半导体微纳制备工艺在材料多样性和复杂结构制备上有着更多的选择。AQ2、能概述一下近期发布在《AdvancedScience》的仿生相关研究所取得的突破和进展吗?(开发过程、应用情况、行业影响等)陈华伟教授:长久以来,树蛙脚掌的强湿摩擦特性获得了大量研究者的关注。与壁虎脚掌通过刚毛的范德华力产生粘附摩擦相比,树蛙脚掌受到环境液体或自分泌粘液影响而无法形成范德华力,揭示其界面的强湿粘附机制,对探索微纳流体和界面固-液微纳耦合作用有着重大意义,也为精准医疗器械和可穿戴传感等新兴领域的界面接触研究提供了基础。树蛙常见的湿摩擦解释为,其脚掌在外压力作用下,通过表面沟槽挤排出界面液体,提高固-固接触,增大摩擦,与车轮表面的纹路作用类似,但该原理与树蛙脚掌无外力作用下的强摩擦相矛盾。另一种解释是树蛙脚掌分泌出粘性粘液,能够将脚掌和基底粘合在一起,但通过测量脚掌粘液的粘度,发现其与纯水几乎无差异。树蛙脚掌强湿摩擦之所以难以得到合理的解释,主要原因在于粘液膜处于固-固界面之间,难以直接被观察表征,其尺度又处于微纳米级别,进一步加剧了表征难度。本实验室与清华大学雒院士团队合作,通过薄膜干涉原理,建立了界面纳米液膜原位表征方法,通过实时动态观测薄膜干涉条纹运动,观察到了纳米尺度的界面液膜变化和液膜毛细力对棱柱的变形作用。经过估算,在棱柱和液膜间的固-液相互作用下,棱柱界面可以产生低于200 nm厚度的液膜,可形成7倍大气压吸附力使棱柱紧紧贴合基底表面。这就可说明树蛙脚垫即使在没有外压力作用下,仍能够产生极强湿摩擦。进一步在江雷院士的指导下,揭示了微纳特征结构对界面液膜的调控规律,建立了纳米液膜增强机制。张力文博士为本文第一作者。本研究通过揭示树蛙脚掌利用其微纳多级结构形成的独特界面液膜调控作用,发展出液膜自碎化增效和凹坑自吸附增强效应,通过在界面间形成的纳米液膜的强毛细吸附作用,达到了无外压力下产生强湿边界摩擦的效果。为湿粘附增强提供了一种新的方案,为实现精准医疗、可穿戴传感等领域的接触增强提供了新思路和新方法。AQ3、请问,在该研究过程中,深圳摩方公司的高精密微尺度3D打印技术发挥了什么样的作用?其带来的效果或影响如何?陈华伟教授:传统三维加工工艺,如SU-8光刻或者半导体硅工艺等,适合加工投影类的三维结构,进一步复杂的三维结构也必须限制于能够通过多次投影形状复合,而对球、梯台等非投影类三维结构,则难以通过以上方式制备,限制了微纳理论的推进和仿生科学的研究。3D打印作为一种Bottom-up的制造工艺,不受结构本身形状特征限制,能够有效的解决球、梯台等非投影类三维结构的制备问题。本项研究为了验证粗糙对界面液膜影响,需要将粗糙基底表面放大、简化成微米尺度的密排凸包阵列,3D打印制备方法为此提供了一种有效快速的解决途径。相比于普通3D打印的低精度,BMF提供了2 μm精度的3D打印技术,能够为本实验提供更小尺度、更高精度的实验样品,从而更准确的验证了研究理论的正确性。A论文信息:Micro–Nano Hierarchical Structure Enhanced Strong WetFriction SurfaceInspired by Tree FrogsLiwen Zhang, Huawei Chen*,Yurun Guo, Yan Wang, Yonggang Jiang, Deyuan Zhang, Liran Ma,Jianbin Luo, LeiJiang论文链接:http://dx.doi.org/10.1002/advs.202001125北京航空航天大学陈华伟教授课题组课题组来自北京航空航天大学机械工程及自动化学院,长期从事微纳表界面科学、医工交叉等方面的研究工作,师法自然,从自然中汲取创新灵感,在揭示生/机界面效应规律中首次发现了超湿滑、强湿摩擦及微纳界面流体新现象与新机制,提出了生/机界面创新设计新方法,研制出仿生医疗器械及表面功能化制造设备,成功应用精准医疗器械防粘防滑,发表了国内机械工程学科首篇 Nature;在植/介入、可穿戴传感技术领域,提出了微纳结构仿生增效设计方法,研制出基于微结构信号增强的柔性生物信号传感器。实验室承担30余项科研项目,包括国家自然科学基金重大、重点项目、国家重点研发计划等,获得国家自然科学基金杰出青年基金、“万人计划”创新领军人才和日本 JSPS学者支持。发表研究论文 80 余篇,其中近五年发表 SCI 论文 30 篇包括Nature、Nature Materials、Advanced Materials 等,获批专利 20 项,合著专著 4 部。深圳摩方材料科技有限公司(BMF Material Technology Inc.)专注于高精密微尺度3D打印领域,是全球微尺度3D打印技术及精密加工能力解决方案提供商。目前,摩方拥有全球领先的超高打印精度(2μm/10μm/25μm),高精密的加工公差控制能力(±10μm/ ±25μm/±50μm),配置韧性树脂、硬性树脂、耐高温树脂、生物树脂等打印材料,提供制造复杂三维微纳结构技术解决方案,同时,可结合不同材料和工艺,实现终端产品高效、低成本批量化生产及销售。
  • “油品界面智能检测仪”产品通过鉴定
    2023年4月7日,中国通用机械工业协会和中国仪器仪表行业协会联合在西安组织召开了“油品界面智能检测仪(YZCKJMY)”产品鉴定会,该产品由国家石油天然气管网集团有限公司华南分公司和西安航天动力研究所联合自主研制。鉴定会由中国通用机械工业协会会长黄鹂主持。油品界面智能检测仪鉴定会会议现场中国机械工业联合会原总工程师隋永滨担任鉴定委员会专家组组长、原机械工业部仪表司副司长朱明凯担任副组长,专家组成员由来自南阳防爆电气公司、西北工业大学、国家管网北方管道公司、中石化石油工程设计公司、中科院西安光机所、国家管网东部原油储运等单位的共9位专家组成。鉴定委员会专家听取了研制单位的技术总结报告,审查了相关文件资料,现场查看了样机并见证了产品的部分性能测试试验。经质询讨论,专家委员会一致同意通过鉴定,研制的油品界面智能检测仪具有自主知识产权,性能指标达到国际同类产品先进水平,建议推广应用。油品界面智能检测仪产品实物油品界面智能检测仪为国内首台自主研发的油品界面智能检测仪,具有100%自主知识产权,已经在国家管网华南分公司、北方管道公司及国家管网华中公司等单位进行了近百台产品的配套,已经安装投用的产品经用户反馈,工作状态稳定,界面分辨明显,可完全替代进口产品,受到了广泛好评。
  • 界面张力测定仪的行业应用
    首先,在石油化工行业中,界面张力测定仪发挥着至关重要的作用。石油化工企业需要了解油水界面的张力,以此来判断油藏的开采难度和原油的采收率。界面张力测定仪能够快速准确地测量油水界面的张力,为石油化工企业提供重要的数据支持。其次,在医药行业中,界面张力测定仪也有着广泛的应用。医药企业需要研究药物对生物体的作用机制,其中药物的溶解性和渗透性是关键因素。界面张力测定仪可以用来研究药物溶液的表面张力,从而帮助医药企业了解药物的渗透性和生物利用度,为新药的研发提供重要的技术支持。此外,在环保行业中,界面张力测定仪也扮演着重要的角色。环保企业需要监测水体的污染情况,包括油污和有机污水的处理。界面张力测定仪可以用来监测水体的表面张力,帮助环保企业了解水体的污染程度和扩散趋势,为污染治理提供重要的参考依据。最后,在食品行业中,界面张力测定仪也有着不可忽视的作用。食品企业需要了解食品的表面张力和润湿性等性质,以此来判断食品的质量和口感。界面张力测定仪可以用来快速准确地测量食品的表面张力,为食品企业提供重要的质量检测手段。综上所述,界面张力测定仪在各个行业中都有着广泛的应用价值。通过了解界面张力测定仪的应用,我们可以更好地认识到其在各个行业中的重要作用,并为未来的科技创新和发展提供重要的参考依据。
  • 超快速表面处理,秒取高质量界面【GDS微课堂-7】
    上图是瑞士摄影师马丁-奥格里利 ( Martin Oeggerli ) 通过扫描电子显微镜SEM拍摄的花粉照片,是不是很炫酷?但并非所有样品通过SEM,都能得到上图中直观惊艳的照片,更多样品需要经过预处理后方可充分展示。GDS就是对样品进行预处理,将观测的界面更好展示出来的利器。通过氩气等离子体持续轰击样品表面、溅射出样品离子后再进行分析的方法,GDS可以轻松替SEM剥蚀样品,供SEM进行观测。那与其他可用的剥蚀方法相比,GDS在样品制备与表征上有哪些优势呢?让我们一起来看看。GDS通过控制溅射时间,能精确地获得不同深度和清晰度的界面,将任意深度的包埋层完美地展现出来,供SEM分析。上图是铜表面的元素深度剖析图。铜的表面覆盖一层硫脲,硫脲分子通过硫端吸附到铜表面,C-S键垂直于金属表面。这个吸附层在深度剖面上以窄峰的形式清晰地显示在铜基体上方,包括碳、氢、氮和硫。从右图我们还可以看到,峰的位置按照吸附在铜基体上的硫脲分子的方向顺序被分离和定位。在扫描电镜中,必须精确控制溅射深度,GDS这种在原子尺度深度的分辨率,使这种精细的分析得以实现。GDS使用的是能力很低(低于50eV)但电流密度很高(~100mA cm-2)的氩气等离子体。氩离子的高电流密度能确保高速溅射,溅射速率每分钟达到1-10μm,整个样品的处理时间短,包括溅射在内往往几秒至几分钟就能搞定,相比于以往费时费力的机械抛光、化学抛光、电化学抛光、超薄切片等制备方法,不知道快了多少倍。比如为了获得高质量的表面,通常会用胶态二氧化硅悬浮液对样品进行抛光,来去除受损的表面区域。但是这种方法的抛光率非常低(仅为每分钟几纳米),因此对于延伸几百纳米的区域来说,需要数小时甚至一天的时间。而通过GDS溅射,可以在几十秒内去除大多数材料的受损表面区域。另外,GDS还有一个特点就是它是靠氩离子去撞击样品,通过溅射方法移除样品表面的材料,是对样品粒子一层层的剥蚀。此外,由于差动溅射效应,GDS能够在不同材料的分界处产生清晰的界面,这对于观测样品的表面形貌非常重要。而传统的机械抛光,靠的是细小的抛光粉的磨削、滚压,在对样品表面磨削的过程中势必会将凸起的花纹也一并磨掉,只留下光秃秃的平滑面。Show一个简单的比较图,让大家更直观的感受一下:(a)是机械抛光获得的结果,(b)是GDS剥蚀3S后获得的结果(a)图中是机械抛光获得的结果,我们看到样品表面的纹理被磨掉了;(b)图是GDS剥蚀处理后的结果,样品表面的花纹和结构保存的很好,我们可以看到表面的精细结构。我们再来看一个例子:通过超薄切片处理过的镀锌钢的横截面(a)图是通过超薄切片技术制备的整个镀锌钢样品的SEM图像;(b)图是通过超薄切片技术制备的镀锌钢样品中,锌/钢界面的SEM图,可以看到表面有严重的刮痕;(c)图是对(b)进行GDS溅射10秒后,锌/钢界面的SEM图片,可以看到而GDS制备的样品消除了刮痕,完美保留了样品的形貌。GDS除了可以为扫描电镜制备样品外,还可以联合SEM全面表征样品。下面是同一个样品:AlCrN/TiN/AlCrN/TiN/Fe使用SEM和GDS分别测试的结果。SEM提供了样品横截面的结构:根据颜色的深浅,可以了解到样品包含4个镀层,图中详细标注了不同镀层的厚度;GDS则展示了样品中各元素从表面到铁基体,不同深度处的含量分布。两个结果有交叠的信息也有截然不同的信息,更加全面立体地展示了样品的结构信息和含量分布。往期回顾【GDS微课堂-1】随Dr.JY掀起GDS神秘面纱【GDS微课堂-2】七问七答,掌握GDS常用概念【GDS微课堂-3】GDS解密:如何打造钢铁侠的战衣盔甲?【GDS微课堂-4】锂电池研发的“秘密武器”【GDS微课堂-5】“钢铁侠”背后的清洁能源之梦【GDS微课堂-6】看GDS如何助力“灯厂”奥迪独领风骚? HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的JobinYvon更有着200年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 藉由以GDA和SnO2形成的分子桥接触的材料介面达成高效且稳定的太阳能电池
    █ 重点摘要最近,陕西师范大学向万春团队利用光焱科技公司的测试设备,开发出以甘蓝胺(GDA)埋入SnO2/钙钛矿界面上分子桥优化钙钛矿太阳电池。该研究结合先进的测试设备与材料开发策略,实现了电池转换效率从22.6%提升到24.7%,并显著改善了稳定性。1. 使用分子改性剂甘蓝胺(GDA)在SnO2/钙钛矿的埋底界面上构建分子桥,从而产生优异的界面接触。2. 通过GDA和SnO2之间的强烈相互作用实现的,明显调节能级。此外,GDA可以调节钙钛矿晶体的生长,产生晶粒尺寸增大且无针孔的钙钛矿薄膜,缺陷密度显着降低。3. 经过 GDA 修改的钙钛矿太阳电池表现出开路电压(接近1.2V)和填充因子的显着改善,从而使功率转换效率从 22.6% 提高到 24.7%。此外,GDA 器件在最大功率点和 85°C 热量下的稳定性均优于对照器件。█ 研究背景钙钛矿太阳能电池因具理论上可达25%的高转换效率,受到广泛关注,但钙钛矿材料易受温湿度影响降解,SnO2与钙钛矿界面难以实现有效电荷传输,使实际效率较预期低,制约了商业化进程。如何提升钙钛矿太阳电池转换效率和长期稳定性是当前研究热点。充分发挥精密量测设备的优势,开发高性能钙钛矿材料与界面工程技术,实现电池效率和稳定性的同步提升,是目前的研究方向。█ 研究成果陕西师范大学向万春团队设计开发出甘蓝胺(GDA)分子材料,优化SnO2与钙钛矿界面。X射线衍射分析表明,GDA调控钙钛矿晶粒生长,生成高质量钙钛矿薄膜,增加晶粒尺寸,降低缺陷密度。此外,GDA 可以调节钙钛矿的生长以形成高质量的薄膜,从而减少缺陷和相关的非辐射电荷复合。因此,经过GDA修饰的 PSC 表现出接近1.2 V的令人印象深刻的VOC和 24.70%的效率,高于对照器件的22.60%和离子类似物醋酸胍(GAAc)修饰的PSC的24.22%,同时迟滞现象减少最后,与对照和GAAc修改的器件相比,GDA 修改也大大提高了最大功率点 (MPP)跟踪和85 °C热量下的器件稳定性。该研究成果发表在《Angewandte Chemie International Edition》█ 研究方法采用设备本研究采用光焱科技AM1.5G太阳光模拟器(AAA class solar simulator)以及Si标准参考电池SRC2020(NREL-certified silicon cell ),量子效率量测设备 QE-R。█ 结果与讨论要点1:分子与SnO2和钙钛矿的桥接作用研究团队选择GDA作为钙钛矿界面改性剂的原因有两方面:其一,GDA具有高热稳定性和良好的溶解性,在界面形成和沉积过程中能够提供稳定的支撑。其二,GDA分子含有羧基和GA基团,可以与SnO2和钙钛矿形成强的配位作用,从而在两者之间建立桥梁,改善界面接触,有助于提高载流子传输效率和减少电荷复合。研究团队通过实验和密度泛函理论计算证明了GDA与SnO2之间的化学相互作用,主要源于GDA中的羧基与SnO2表面的欠配位Sn4+结合。傅里叶变换红外光谱(FTIR)测量也支持了这一观点,显示出GDA分子与SnO2层之间的相互作用。要点2:GDA对SnO2层的改性研究团队使用顶视扫描电子显微镜(SEM)和原子力显微镜(AFM)表征了GDA对SnO2层形貌和粗糙度的影响。GDA修饰导致SnO2表面的纳米粒子层变得更加均匀和连续,粗糙度减小,有利于钙钛矿薄膜的均匀成核和结晶,从而提高界面电荷转移效率。通过紫外光电子能谱(UPS)测量,研究团队观察到经过GDA修饰的SnO2能级发生改变,费米能级上升,有利于界面电荷传输。这些结果进一步表明,GDA修饰影响了SnO2的能级结构,从而改善了PSC界面性能。要点3:下界面改性对钙钛矿层的影响研究团队研究了经过GDA改性和未经GDA改性的SnO2层上钙钛矿层的性能。通过SEM和XRD表征,研究团队发现GDA修饰有助于形成更平坦和致密的钙钛矿薄膜,提高了结晶度。这对于减少电荷缺陷和提高电荷传输效率非常重要。要点4:下界面改性对钙钛矿薄膜结晶的影响通过原位XRD测量,研究团队研究了GDA修饰对钙钛矿薄膜结晶过程的影响。结果显示,GDA改性影响了中间相的形成,导致晶格膨胀。此外,研究团队发现GDA修饰还影响了钙钛矿薄膜的晶粒尺寸和结晶动力学,进一步改善了薄膜质量。要点5:器件性能与稳定性研究团队制备了经过GDA修饰和未经GDA修饰的PSC,并评估了它们的性能和稳定性。结果显示,经过GDA修饰的器件在光电转换效率(PCE)和稳定性方面都表现出优势。GDA改性有助于抑制非辐射电荷复合,提高载流子提取效率,并减少界面陷阱密度。这导致了更高的PCE和更好的稳定性。█ 结论该研究运用精密的光伏测试设备,开发出甘蓝胺分子材料修饰SnO2/钙钛矿界面,显著提升了钙钛矿太阳电池的转换效率和长期稳定性。研究证明先进测试设备的应用为材料开发提供了有力支撐,也为实现高效稳定钙钛矿太阳电池的低成本批量生产提出了新的设计思路。期待不同领域的产学研单位通力合作,加快高效钙钛矿太阳电池的实际应用进程。
  • 面向红外芯片的光谱与界面功能关系研究的多尺度表征系统项目启动
    2023年4月14日,国家重大科研仪器研制项目“面向红外芯片的光谱与界面功能关系研究的多尺度表征系统”启动会在上海技物所召开。咨询专家代表匡定波院士、祝世宁院士、龚新高院士、贾金锋院士,国家自然科学基金委员会数学物理学部常务副主任董国轩、中国科学院条件保障与财务局副局长曹凝、监理专家和上海市科委相关处室领导等出席启动会。上海技物所党委书记龚海梅、副所长陈建新、项目负责人陆卫等50余人参加 会议。   该项目由上海技物所牵头,联合中国科技大学和上海科技大学承担,旨在通过发展对界面态敏感的红外光谱与应用技术,为研究和理清复杂界面中具有光电作用功效的电子态如何决定高端红外芯片极限性能的核心问题提供先进方法和表征手段,具有显著的科学价值和应用前景。项目基于对红外芯片界面关系的深厚理解和实际应用需求,提出了“谱效”关系新思路,展示了技术方案的创新性。拟研制的装置包括4个核心子系统和2个辅助子系统。项目中的关键技术如红外调制光谱、红外成像光谱、纳米探针光电谱、界面电子态预测和数据驱动算法等已有研究积累,具有很好的实施基础。   会上成立了项目咨询专家组,并向受聘专家颁发了聘书。专家组和监理组认真听取了项目实施方案报告,并认为该项目研制目标明确,预期技术指标先进,整体设计路线清晰。针对核心科学问题以及研制过程中可能遇到的技术难点和其他困难,项目团队提出了合理的预案,有望为我国红外探测芯片技术基础研究领域发展做出贡献。   董国轩在讲话中要求项目牵头单位和项目组加强组织管理,确保项目按期高质量实现目标。项目推荐部门和地方科技主管部门分别表示将积极支持项目承担单位和项目团队开展相关科技攻关工作。
  • 日化专题 | 如何科学表征日化中的表面和界面行为?
    研究背景日化中的很多现象都跟表界面的作用有关系,比如化妆品中的乳化、分散、增溶、发泡和清洁等等。KRÜ SS作为表面科学仪器的全球领导品牌,此次从以下几个方面为大家介绍日用化学品中的表面科学表征方法:典型应用1.清洁类产品的泡沫行为分析在日常使用洗面奶,洗发水时,我们通过揉搓等各种方式将洗面奶和空气充分接触而产生泡沫。在揉搓出丰富泡沫的过程中,很容易产生幸福感和仪式感,一整天的油腻都被洗掉了。KRÜ SS DFA100动态泡沫分析可以对泡沫的起泡性,泡沫稳定性和泡沫结构进行科学的表征。选择了市售的几个洗面奶进行了测试,通过DFA100的搅拌模块,可以非常清晰的筛选出起泡性较好和泡沫丰富的产品。如上图所示,横坐标是时间,纵坐标是泡沫高度,从图上可以清晰地看到有的产品起泡性速度很快,且短时间内起泡高度就可以达到最大。一般来讲,样品起泡性越强,产生的泡沫越多,其泡沫高度也越高;反之,起泡性差的样品,其泡沫高度也相对较低。从泡沫高度上的衰减也能分析泡沫稳定性,泡沫高度降低越快,泡沫越不稳定。由于此次样品测试时间较短,泡沫比较稳定,没有观察到泡沫高度的衰减,故而不做泡沫稳定性的对比。挑了其中2个样品,对比泡沫的结构和尺寸大小,从而分析泡沫的细腻程度。从图中可以看到,2号样品刚开始产生泡沫后,就比较细腻,泡沫尺寸比较小。随着时间的变化,泡沫大小一直比较稳定,不发生特别大的增加。而1号样品产生了较大的泡沫,随时间延长, 泡泡大小急剧增加。2.通过接触角表征彩妆类产品的防水抗汗性能消费者使用底妆的痛点主要有卡粉、脱妆和浮粉,而通过水,人工汗液和人工皮脂在彩妆上的接触角,可以评估抗汗和抗皮脂性能。接触角是气、液、固三相交点处所作的气-液界面的切线,此切线在液体一方的与固-液交界线之间的夹角θ。通过接触角的大小,可以判断固体和液体的润湿性能。如果粉底液和汗液,皮脂,水等的接触角越大,说明产品的防水抗汗性能越好。 选择市售的几款口红,通过接触角评价产品的防水,抗汗性能。将口红涂抹在手臂内侧,干燥后测试接触角。通过接触角可以明显区别不同产品的防水,抗汗,抗皮脂的差异,1号样品性能更加优越,防水抗汗都优于其他产品。彩妆中除了口红,也可以通过接触角分析底妆产品中原料和基底的润湿性。大多数化妆品都含有粉末和颜料,以着色、保护皮肤或协助清洁。以表面活性剂形式存在的分散剂确保粉末的精细分布和混合物的稳定。粉末和液体的接触角可以帮助判断润湿和分散行为。3.护肤品的乳化行为分析:常见的护肤类化妆品是水包油或者油包水的乳液或者膏霜。水油原本不相容,通过添加表面活性剂,可以吸附于液液界面,降低体系的热力学不稳定性。表面张力仪可以精准的分析油水两相的界面张力,判断乳化效果;表面张力仪还可以测试表面活性剂的临界胶束浓度,判断表面活性剂的添加量。分析表面活性剂的动态表面张力行为,监控喷雾雾化效果等;除此之外,KRUSS的各类产品还可以分析头发的接触角。正常头发具有疏水性,受损后头发油脂层被破坏或部分缺损,接触角变小其亲水性越强。该方法广泛用于头发受损及修复后的情况。 KRÜ SS的表界面分析仪器可以帮助您从原料到成品,从生产到研发,多维度解决您的难题!
  • 东方德菲演示实验室新成员TRACKER界面流变仪,欢迎前来参观咨询!
    为方便客户进一步了解和熟悉我司东方德菲公司的产品,我司特建立了东方德菲演示实验室,直接为感兴趣的客户提供产品介绍、仪器演示、技术培训、免费样品测试等服务。继LAUDA Scientific品牌的视频光学接触角张力测量仪、光学粘滞力测量仪、光学粉末接触角测量仪、光学超润湿测量仪、界面扩张流变仪、便携式/手持式接触角测量仪等演示设备之后,近日,东方德菲演示实验室又迎来了新成员---法国泰克利斯/TECLIS品牌的TRACKER界面流变仪。 法国泰克利斯(TECLIS)公司生产的TRACKER界面流变仪专为测量表面界面流变特性而设计,能够轻松、精确地表征两种不相溶液体之间的界面特性,为测量与应用提供有价值的数据。 — 表征多数应用的表界面特性 — 界面流变、表面界面张力和接触角测量 — 上升或下悬滴状态 — 实时数据计算 — 智能模块化设计,可选重相转换模块、滴相转化模块、自动测量临界胶束浓度(CMC)模块等等。 — 实验温度高达200℃ — 实验压力高达700bar TECLIS界面流变仪通过对液体或气泡的轮廓进行数值分析来确定两种不相溶液体之间的动态表界面张力。TRACKER软件通过在特定的频率和振幅下控制液滴体积或面积的变化,来研究界面流变特性。 — 粘弹模量: 弹性模量 & 粘性模量 — 表面张力(液体/气体) — 界面张力(液体/液体 — 接触角(液体/固体) — 动态接触角 — 液滴体积/面积 — 界面膨胀流变学 — 刚性系数 — 邦德数 — 临界胶束浓度(CMC) 东方德菲演示实验室将一如既往地为客户提供专业的售前和售后技术服务,欢迎感兴趣的客户前来咨询与参观。
  • 岛津原子力显微镜-从表面到界面
    人类认识真理的过程就像剥洋葱,由表及里一层层递进。 反映到对化学反应过程的认识,一开始,人们通过物质的形、色等外在表象认识化学反应。正如现代化学之父拉瓦锡重复的经典“氧化汞加热”实验一样,氧化汞由红色粉末变为液态的金属汞,这个显著的变化意味着反应的发生。即使到了近现代,仪器分析手段越来越多样,我们做常用的分析手段也是通过物质外在状态的变化进行观察,或者利用各类显微镜及X射线衍射仪观察物质的结构变化。 拉瓦锡之匙拉瓦锡对化学反应中物质的质量、颜色、状态变化的观察,犹如在重重黑暗中,找到了打卡化学之门的那把钥匙。 元素周期表 到19世纪,道尔顿和阿伏加德罗的原子、分子理论确立,门捷列夫编列了元素周期表。原子、分子、元素概念的建立令化学豁然开朗 自从用原子-分子论来研究化学,化学才真正被确立为一门科学。正是随着对不同元素的各种微粒组合变化的认识发展,化学的大门终于被打开。伴随金属键、共价键、离子键、氢键等各种“键”概念的提出,人们逐渐认识到各种反应的本质是原子或分子等微粒间的力学变化。于是,对反应的观测需要微观下的力学测量工作。 作为专门利用极近距离下极小颗粒间作用力工作的原子力显微镜,此事展现了自身巨大优势。无论是直接测试不同分子间的作用力,还是利用力的测量完成表面形貌的表征,原子力显微镜以高分辨率出色地完成了任务。 对于一些生物样品,例如脂质膜,因为其是由磷脂分子构成的单层或双层结构,极其柔软,因此其表面作用力极其微弱。从测试曲线上可以看出,脂质膜对探针的力只有约1pN,但是原子力显微镜的测试曲线上可以很清晰地捕捉到这个变化。 有趣的是,人们对真理的发掘,是由表及里的。但是利用原子力显微镜对化学反应本质的发现,却是由内而外的。 原子力显微镜基本是被作为一种表面分析工具使用的。这使其只能用来观察反应前后固相表面的结构变化,或者通过固相表面的各种属性,如机械性能、电磁学性能等侧面论证反应的发生。而要真正观察到反应的过程,是要对界面层进行观测的。因为几乎所有的反应,都是发生在两相界面处的,表面只是最终反应结果的呈现。 在界面处,反应发生时,原有的原子/分子间的作用力——也就是各种“键”,因为电子的状态变化(得失或者偏移)无法维持原有的稳定性,从而导致了原子/分子的重新排列,直到形成了新的力学稳定态——也就是新的“键”形成后,反应结束。这个过程的核心就是原子/分子间的“力的变化”。 反应的本质——微粒间力的分分合合 当化学科学的车轮推进到纳米时代,当探索的前锋触摸了两相界面,当理论的深度深入到动力学的研究。原子力显微镜是否能够当此重任呢? 能。但是需要一番蜕变。 界面处的力梯度有两个特点。一是更为集中,一般在0.3nm-1nm左右的范围内会有2-4个梯度变化;二是更为微弱,现在的原子力显微镜可以有效捕捉皮牛级的力变化,但是在表征界面时依然分辨率不足,需要的分辨率要提高1-2个数量级。 新的需求引导了新的技术蜕变。调频模式的成熟化,几乎完美应对了界面处的力梯度特点。一方面,只有几个埃的振幅可以有效对整个界面区进行表征,另一方面,检测噪音压低到20 fm/√Hz以内,保证了极高的分辨率。 岛津调频型原子力显微镜SPM-8100FM 例如对固液界面的观察。我们都知道,因为在固液界面处,因为液体分子和固体表面分子的距离不同,会形成不同的作用力,如氢键、偶极矩、色散力等。因此形成的液体分子的堆积密度会有不同。这种液体分子的分层模型,是润滑、浸润、表面张力等领域的底层原理。但是长期以来,这些理论只存在于数理模型和宏观现象解释之中,没有一个合适的直观观测工具。 界面观测之牛刀小试 岛津的SPM-8100FM的出现,将固液界面的高效表征变成了现实。上图右侧就是云母和水的界面处,水分子的分层结构,在约0.6nm的范围内,可以清楚看到3个分层。 具体到现实应用中,对表面润滑的研究很适合采用这种分析工具进行定性定量化测试。使用SPM-8100FM对润滑油中氧化铁表面上所形成的磷酸酯吸附膜进行分析。 图示为4组对照实验,分别是仅使用PAO(聚α-烯烃)和添加了不同浓度的C18AP(正磷酸油酸酯)的润滑油。 在未添加C18AP的PAO中,观察到层间距离0.66 nm的层状结构。通过这一层次可以看出,PAO分子在氧化铁膜表面上形成了平行于表面的平坦的覆层。随着C18AP浓度不断增加,从0.2 ppm到2 ppm后,层状结构开始消失,最后在20 ppm和200 ppm时完全观察不到。层状结构消失表明PAO分子定向结构被C18AP取代,在基片上形成了吸附膜。随着C18AP浓度不断增加,氧化铁基片表面逐渐被吸附膜覆盖。 对照使用摆锤式摩擦力测试仪测量获得的钢-润滑油-钢界面的摩擦系数。在添加C18AP浓度到达20 ppm后,PAO的摩擦系数大大降低。和微观界面表征的结果非常吻合。 由此可见,使用SPM-8100FM对润滑油-氧化铁界面实施滑动表面摩擦特性分析评估,可有效加快润滑油开发进度。 技术的发展推动了科学的进步,科学的发展也渴求更多的技术发展。原子力显微镜表征技术由表面向界面的延伸,一定会有力地推动对化学由表象向本质的探索。岛津将一如既往地尽其所能,提供帮助。 本文内容非商业广告,仅供专业人士参考。
  • 全国胶体与界面化学奖学金颁奖仪式在北大举行
    第七届“东方胶化”杯全国胶体与界面化学奖学金颁奖仪式在北京大学举行 “东方胶化”杯全国胶体与界面化学奖学金是北京东方德菲仪器有限公司与全国胶体与界面化学专业委员会联合,由北京东方德菲仪器有限公司独资设立的。以资鼓励在胶体化学与材料科学领域孜孜不倦努力进取的博士生,研究生。该奖项的创立为胶体化学及材料科学领域搭建了良好的学术交流平台。 第七届“东方胶化”杯全国胶体与界面化学奖学金颁奖仪式于2009年3月26日在北京大学英杰交流中心第二会议室举行,本届“东方胶化”杯经专家组评审、复议后,来自中国科学院化学所、北京大学、扬州大学、清华大学、北京航空航天大学、山东大学等学校的9名在校研究生获得了此次奖励。具体名单如下: 一等奖:张轶群(中国科学院化学研究所) 李 澄(北京大学化学与分子工程学院) 二等奖:周传强(扬州大学化学化工学院) 王 朝(清华大学化学系) 陈洪艳(中国科学院化学研究所) 三等奖:周 苇(北京航空航天大学化学与环境学院) 赵玉荣(山东大学胶体与界面化学教育部重点实验室) 范海明(北京大学化学与分子工程学院) 沈玉文(山东大学胶体与界面化学教育部重点实验室) 在颁奖仪式上,受邀到场的嘉宾如下:张希院士 清华大学化学系系主任 吴凯教授 北京大学化学与分子工程学院副院长 刘鸣华研究员 全国胶体与界面化学专业委员会副主任 科学院基础局副局长 中国科学院化学所研究员 黄建滨教授 全国胶体与界面化学专业委员会副主任 北京大学化学与分子工程学院教授 表面活性剂与胶体研究开发中心主任 侯万国教授 全国胶体与界面化学专业委员会成员 山东大学化学化工学院教授王毅琳研究员 中国科学院化学所研究员 齐利民教授 全国胶体与界面化学专业委员会成员 北京大学化学与分子工程学院教授 徐宝财教授 北京工商大学化学与环境工程学院副书记王武宁经理 北京东方德菲仪器有限公司总经理 其中,张希院士、吴凯教授、刘鸣华研究员、黄建滨教授、侯万国教授、徐宝财教授、王武宁总经理等到场嘉宾亲自为获奖同学颁奖。 颁奖仪式过后,张希院士、刘鸣华研究员、黄建滨教授受邀做了非常精彩的学术报告。获奖同学中的张轶群、李澄、王朝、陈红艳四位同学也就自己的科研成果做了非常精彩报告,得到了各位老师和同学的一致好评。 此次活动由北京东方德菲仪器有限公司与全国胶体与界面化学专业委员会联合举办,并得到清华大学、北京大学等知名高校师生的大力支持。 北京东方德菲仪器有限公司 www.edcc.com.cn
  • 科研人员利用透射电镜破解氢致界面失效之谜
    当“安静”的铝制品遇见“淘气”的氢原子,为何“肌肤”表面就会冒出“痘痘”?  这一谜团已存在超过50年。  西安交通大学金属材料强度国家重点实验室微纳尺度材料行为研究中心的科研人员破解了这一难题。此项成果6月29日在线发表在世界著名期刊《自然-材料》上(原文链接http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4336.html)。  人们知道,生活中常见的铝制品通常稳定耐用,因为它的表面会自然形成一层致密而坚硬的氧化铝保护膜,俗称“刚玉”。但在含氢环境中,铝制品常常会在表面鼓出气泡,最终导致氧化膜保护层脱落,乃至材料失效。这一现象,被称为“氢鼓泡”。  西安交大科研人员发现,原来,对于“纤瘦”的氢原子而言,刚玉中的原子间隙如此之大,以至于它们可以在其中来去自如。氢原子的随性“游走”会破坏金属铝和刚玉之间“手拉手”的紧密联系,从而使一部分铝原子“重获自由”。这些铝原子也会在氧化物和金属铝的界面上自由运动,并在金属铝的一侧形成很多微小的坑。随着坑的不断长大,氢原子拥有足够的空间重新结合形成氢分子并对氧化膜产生压力。当坑的直径大到某一临界尺寸时,氧化膜就会被撑得发生塑性变形,并向外鼓出形成气泡。而气泡密度足够大时,氧化膜保护层便会脱落,最终导致材料失效。  这种氢致界面失效是在石化、海洋、核、航空航天及半导体等工业里常见的金属材料失效原因之一。尽管此前不同国度的研究人员进行了大量的研究,但对其原子尺度的机理一直不甚明了。传统的表面鼓泡理论只能解释气泡的生长,对于气泡的形核则缺乏理论及实验证据。西安交大微纳中心的这一研究发现填补了氢致界面失效现象起源的实验和理论空白,有助于人们找到防止氢致界面失效的方法,提高材料在含氢环境中的服役寿命。  “举一个激动人心的例子:太阳帆,”微纳中心博士生解德刚介绍说,宇宙中氢的质量分数在70%以上,人类造的任何飞行器在太空航行时都必须考虑氢对材料性能的影响。太阳帆的原理就是利用大面积镜面般光滑的薄膜反射太阳光以获得动力航行。目前最有可能的薄膜材料就是铝箔,科学家已经意识到太空环境中铝箔表面易发生鼓泡的现象,而太阳帆表面一旦发生鼓泡,其反射能力就会大打折扣,影响飞行器的动力性能。“希望我们的发现对于太阳帆的防氢设计有着积极的指导意义”,解德刚对此十分期待。  “这项发现对很多与氢有关的未解之谜都有着重要的启示,”微纳中心主任单智伟教授告诉记者,“比如半导体芯片中的导线基底界面劣化、电厂的汽轮机叶片的氧化皮脱落、核电站中有大量的质子辐射环境以及高温水汽环境等等。”  此项研究中,微纳中心的科研人员一改以往楔形的样品设计,采用微纳尺度的金属铝圆柱体,通过环境透射电子显微镜观察氢气氛围下金属和氧化界面的动态演化过程,以令人信服的证据无可争辩地证明了氢致表面氧化物鼓泡的晶向依赖性。  据了解,绝大多数金属制品在实际使用时表面都会有一层保护膜,有的是自然形成,有的是人为添加。这层保护膜通常起着防氧化、防腐蚀、耐磨损等作用。一旦被破坏,材料的氧化、腐蚀、磨损就会加速,发生到一定程度就会使材料彻底失效。单智伟教授指出,降低表面防护层的粗糙度,选择合适的金属基底取向,对界面进行有目的改性等可有效减缓甚至防止氢致界面失效的发生。接下来,研究小组将继续聚焦氢致材料失效机理研究,致力于进一步推动人们对氢影响的认知,以减少和避免由氢脆等材料失效所造成的巨额经济损失和重大安全事故。  该文章的作者依次为博士生解德刚、王章洁博士、孙军教授、马恩教授、李巨教授和单智伟教授。此项研究工作得到中国国家自然科学基金、973项目及111项目的资助。
  • 电镜大咖齐聚|材料界面/表面分析与表征会议在深圳召开
    仪器信息网讯 2023年7月8日,中国材料大会2022-2023在深圳国际会展中心开幕。本届中国材料大会系首次在深圳举办,大会聚焦前沿新材料科学与技术,设置77个关键战略材料及相关领域分会场,三天会期预计超1.9万名全国新材料行业产学研企代表将齐聚鹏城,出席大会。作为分会场之一,材料界面/表面分析与表征分会于7月8日下午开启两天半的专家报告日程。中国材料大会2022-2023开幕式暨大会报现场材料界面/表面分析与表征分会由香港城市大学陈福荣教授、太原理工大学许并社教授、北京工业大学/南方科技大学韩晓东教授、中科院金属研究所马秀良研究员、北京工业大学隋曼龄教授、太原理工大学郭俊杰教授等担任分会主席。分会采用主题报告、邀请报告、口头报告、快闪报告等形式,围绕材料界面/表面先进表征方法、功能材料调控与表征、结构材料界面/相变/位错与变形、纳米催化材料、半导体材料、能源电池材料、铁电功能材料等七大主题专场邀请60余位业界专家进行了逐一分享。以下是“材料界面/表面先进表征方法”主题专场报告花絮与摘要简介,以飨读者。“材料界面/表面先进表征方法”主题专场现场报告人:香港城市大学 陈福荣报告题目:脉冲电子显微镜对螺旋材料三维原子动态的研究 像差校正电子光学和数据采集方案的进步使TEM能够提供亚埃分辨率和单原子灵敏度的图像。然而, 辐射损伤、静态成像和二维几何投影三个瓶颈仍然挑战者原子级软材料的TEM成像。对于辐射损伤,电子束不仅可以在原子水平上改变形状和表面结构,而且还可以在纳米尺度的 化学反应中诱发辐射分解伪影。陈福荣在报告中分享了如何由脉冲电子控制低剂量到量子电子显微镜的零作用。并介绍了脉冲电子光源提供可控制的低剂量电子光源, 在高时间分辨率下探测3D原子分辨率动力学 方面的研究进展。报告人:南方科技大学 林君浩报告题目:新型二维材料的原子尺度精细缺陷表征与物性关联研究二维材料是目前研究的热点。由于层间耦合效应和量子效应的减弱,大量新奇的物理现象在二维材料中被发现。其中,二维材料中的缺陷对其性能有直接的影响。理解缺陷的原子结构和动态其演变过程对二维材料功能器件的改进与性能提供具有重要意义。然而,只有少数几种二维材料在单层极限下在大气环境中是稳定,大部分新型二维材料,如铁电性,铁磁性或超导的单层材料在大气环境下会迅速劣化,无法表征其缺陷的精细结构。林君浩分享了定量衬度分析技术在二维材料缺陷表征中的应用,以及其课题组在克服二维材料水氧敏感性的一些尝试。报告人:北京大学 赵晓续报告题目:旋转低维材料的原子结构解析与皮米尺度应力场分析理论预测旋转二维材料的超导机制及其他物理学特性与层间电子强关联效应息息相关,然而迄今为止旋转二维材料的摩尔原子结构及其应力场至今未被实验在原子尺度精确测量。鉴于此,赵晓续团队利用低压球差扫描透射电子显微镜对一系列旋转二维材料的原子摩尔结构及其应力场做了深入研究和分析,通过大量实验对比和验证,系统解析出了由于层间滑移所产生的五种不同相。相关工作第一次系统分析了旋转二维材料的精细结构及应力场,对进一步探索和挖 掘旋转材料体系奇异物性有着重要指导意义。 报告人:香港理工大学 朱叶报告题目:Resolving exotic superstructure ordering in emerging materials using advanced STEM新型功能材料的特点通常是在传统晶胞之外呈现有序性。这种复杂的排序,即使是集体发生的,通常也会遭受纳米级的波动,破坏传统的基于衍射的结构分析所需的长期周期性,对精确的结构确定提出了巨大的挑战。另一方面,成熟的像差校正TEM/STEM提供了一种替代的实空间方法,通过直接成像原子结构以皮米级精度来探测局部复杂有序。报告中,朱叶通过系列案例展示了先进的STEM在解决钙钛矿氧化物和二维材料中复杂的原子有序方面的能力。STEM中的iDPC技术帮助课题组能够解开复杂钙钛矿中与调制八面体倾斜相关的奇异极性结构。工作中的表征策略和能力为在原子尺度上探索新兴功能材料的结构-性能相互作用提供了有力的工具。报告人:中国科学院物理研究所 王立芬报告题目:晶体合成的原位电镜研究发展原位表征手段对决定晶核形成的初期进行高分辨探测表征是研究材料形核结晶微观动力学的关键。王立芬在报告中,分享了利用原位透射电子显微学方法,通过设计原位电镜液态池,实时观察了氯化钠这一经典成核结晶理论模型在石墨烯囊泡中的原子级分辨动力学结晶行为,实验发现了有别于传统认知的氯化钠以新型六角结构为暂稳相的非经典成核结晶路径,该原位实验数据为异相成核结晶理论的发展提供了新思路,也为通过衬底调控寻找新结构相提供了新的启发。通过发展原位冷冻电镜技术,研究了水在不同衬底表面的异质结晶过程,发现了单晶纯相的立方冰相较于六角冰的形核生长,展示水的气象异质形核的动力学特性。通过观察到的一系列新现象、新材料和新机制,展示了原位透射电子显微学技术在材料合成研究中的重要应用,因而为材料物理化学领域的研究和发展提供新的实验技术支持和储备。 报告人:北京工业大学材料与制造学部 隋曼龄报告题目:锂/钠离子电池层状正极材料的构效关系和抑制衰退策略 层状结构的碱金属过渡金属氧化物是多种二次电池中重要的一族正极材料体系,具有相近的晶体结构,且普遍具有能量密度高和可开发潜力大的优点,其在锂离子电池中已有广泛的应用,在钠离子电池等新兴储能领域也占据了重要地位。开发层状正极材料需要深入理解材料的构效关系和演变规律,以实现更精准的材料调控和性能优化。从原子角度去解析材料的性能结构关系、演变规律以及表界面物理化学过程,是透射电子显微学的突出优势,并且随着成像技术的发展以及越来越多的新原位表征技术的开发应用,已经实现了对电池材料进行高时空分辨的原子动态表征。隋曼龄报告中,研究内容以电子显微学的表征技术为特色,以锂 /钠离子电池材料层状正极材料为研究对象,揭示正极材料在循环过程中发生的体相衰退机制和表界面演变机理,并在此基础上提出抑制正极材料循环性能衰退的应对策略,展示先进电子显微学技术在电池材料的 基础科学研究和应用开发中可以发挥的重要作用。 报告人:浙江大学 王勇报告题目:环境电子显微学助力催化活性位点的原位设计多相催化剂被广泛用于能源、环境、化工等重要的工业领域。在实际应用中,催化剂上起到关键作用的通常是催化剂表/界面上的小部分位点,即催化剂的活性位点。自从上世纪20年代Hugh Taylor提出"活 性位点"的概念以来,在原子水平确定催化剂活性位点以及理解发生在活性位点上的分子反应机制已成为催化研究的重中之重;研究人员尝试用不同的方法来获取与表界面活性位点有关的各种信息,以实现从原 子水平上对催化剂进行合理设计。然而到目前为止,由于缺乏真实反应环境下活性位点原子尺度的直接信 息以及对其原子水平调控有效的手段,对表界面活性位点的原子水平原位设计仍然具有很大挑战。王勇报告介绍了其课题组利用环境透射电子显微学对催化剂表界面活性位点原位设计的初步探索进展。报告人:吉林大学 张伟报告题目:基于优化Fe-N交互作用的超稳定储能的探索 具有高安全性、低成本和环境友好性的水系电池是先进储能技术未来发展方向之一。然而,在电极材料中进行可逆嵌入/脱出,引发较大的体积膨胀仍然是一个严峻的挑战。六氰化铁(FeHCF)具 有制备简单,成本低,环境友好等特点,是水系电池中常用的正极材料之一。对于传统金属离子,嵌入晶格时引Fe离子价态降低,金属离子向Fe离子方向移动,两者相互排斥,引发晶体内氰键进一步弯曲, 长期循环中造成晶格坍塌。有别于传统的形貌和结构的控制,受工业合成氨和金属铁渗氮中前期Fe-N弱 相互作用的启发,基于电荷载体(NH4+)和电极材料间的相互作用。张伟报告中研究设计了一种与电荷载体相反作用力的Fe-N弱的交互作用,有效解决了体积膨胀问题。报告人:香港城市大学 薛又峻报告题目:高时空分辨零作用电子显微镜设计透射电镜能够以亚埃级的空间分辨率提供单原子灵敏度的图像,原子级的观测需要强烈的电子照射,这通常会造成材料的纳米结构产生改变,辐射损伤仍然是最重要的瓶颈问题。目前主要的手段是利用冷冻电镜在低温环境下降低电子辐射损伤,但样品在急速冷冻的过程中可能会发生形貌结构的改变,冷冻后无法观察到反应过程的动态信息。制造可实现探测电子和材料间无作用量测的量子电子显微镜,可以用来克服辐射损伤的瓶颈问题。薛又峻报告表示,香港城市大学深圳福田研究院在深圳市福田区的支持下,已开发了具有脉冲电子光源的紧凑型电子显微镜的关键零部件。团队在这个基础上,设计了搭配脉冲电子光源使用的量子谐振器,作为达成量子电子显微镜的关键部件。也设计了基于多极子场的电子谐振腔、配合量子谐振腔的其他关键部件等。基于脉冲电子光源的量子电子显微镜设计开发,可望解决辐射损伤的关键问题,成为纳米尺度下 研究软物质材料的新一代利器。 报告人:南京航空航天大学分析测试中心 王毅报告题目:基于直接电子探测成像的4D-STEM在功能材料的应用传统的扫描透射(STEM)成像,采用环形探头在每一个扫描点,记录一个单一数值/信号强度,构成 2维的强度信号。直接电子探测相机的高帧率使得在每一个扫描点,完整记录电子束斑穿透样品后的衍射 花样(CBED)成为可能,由此构成四维数据 (2维实空间和2维倒易空间),被称为4D-STEM (亦被称为扫描电子衍射成像)。通过四维数据的后期处理,不仅可以实现任意常规STEM图像的重构,比如明场像,环形明场像,环形暗场像等,不再受限于一次试验中可使用的STEM探头和相对收集角度的限制;而且也可以提取更多材料的信息,比如材料的结构、晶体的取向、应力、电场或磁场分布等, 而随着4D-STEM而产生的电子叠层衍射成像技术已被证明可进一步提高电镜的分辩率,能更有效利用电子束剂量,在对电子束敏感材料有着广大的应用空间。王毅在报告中以几种典型的功能材料为例,介绍了基于直接电子探测成像的4D-STEM和电子能量损失谱在实现原子分辨像和原子分辨元素分布研究方面的进展。 报告人:南方科技大学 王戊报告题目:DPC-STEM成像技术研究轻元素原子占位和电荷分布 新兴成像技术的发展和应用促进着材料微观结构的表征和解析,差分相位衬度-扫描透射电子显微成像技术(DPC-STEM)不仅能实现轻重原子同时成像,也能获取材料的电场和电荷分布信息。王戊分享了使用DPC-STEM成像技术,在低电子束剂量下,研究有机半导体氮化碳材料的轻元素原子占位。实现三嗪基氮化碳晶体的原子结构清晰成像,揭示三嗪基氮化碳晶体的蜂窝状结构、三嗪环的六元特征及插层Cl离子的位置所在,并发现框架腔内的三种Li/H构 型。进一步通过实验和模拟DPC-STEM图像相互印证,明确氮化碳材料中轻元素Li和H原子的占位。基于DPC-STEM的分段探头,计算由样品势场引起的电子束偏移,获得材料的本征电场和电荷信息。 基于DPC-STEM技术获得的原子尺度电场和电荷分布信息,进一步揭示原子之间电场的解耦效应,以及电子的转移和重新分布。报告人:上海微纳国际贸易有限公司 赵颉报告题目:Dectris混合像素直接电子探测器及其在4D-STEM中的应用由于提供了从样品中获取信息的新方式,4D-STEM技术在电子显微镜表征方法中越来越受到重视。在混合像素直接电子探测技术不断发展的情况下,混合像素直接电子探测器能够实现与传统STEM成像类似的采集速率进行4D-STEM数据采集,特别是能够事现驻留时间小于10µs。除了在给定的实验时间内扩展4D-STEM表征视场和数据收集,使用混合像素直接电子探测器可以更全面地记录相同电子剂量下的散射花样信息。赵颉介绍了Dectris混合像素直接电子探测器技术的最新发展,该技术现在允许4D-STEM实验,其设置与传统STEM成像类似,同时单像素采集时间低于10µs。同时介绍了虚拟STEM探测器成像和晶体相取向面分布分析的应用实例。
  • 南开张新星质谱团队成果:打破化学常识,揭示异戊二烯气液界面氧化化学
    人类活动或自然释放到大气中的有机物经过复杂的氧化后,进一步和大气其他物种(如无机盐)结合并聚集,生成大气颗粒物,如雾霾的重要成分PM2.5。因此,有机物在大气中氧化反应过程的研究对理解大气气溶胶的生成有着重要的意义。  大气中含量最高的碳氢化合物是甲烷,第二高的碳氢化合物是异戊二烯。由于异戊二烯有两个双键,导致其化学反应十分丰富,吸引了很多的研究目光。然而高中化学常识告诉我们,异戊二烯是一种挥发性极强的碳氢化合物,极性很小,难以想象异戊二烯会吸附在水的表面(即气液界面)并发生反应。【异戊二烯(Isoprene)是一种由5个碳原子和8个氢原子组成的有机化合物,属于烯烃类烃化合物。从分子结构上看,由于其分子中只有C-C和C-H键,而没有C-O或C-N等偏极性较强的键,因此认为异戊二烯分子整体上是非极性的】  鉴于此,近期南开大学的张新星研究员团队使用独特的气液界面质谱技术FIDI-MS(图1a),发现了违反常识的实验现象,即异戊二烯不但可以吸附在气液界面上,还可以以极高的速率被氧化成上百种产物(图1b),开辟了气液界面这一异戊二烯氧化化学的新赛道。理论计算表明,异戊二烯在气液界面上的吸附能力主要来自于其双键和水中质子的相互作用(图1c) 而极高的氧化反应速率主要是由于气液界面提供了一个部分溶剂化的化学环境,从而降低了化学反应的势垒。该工作发表在近期的Journal of the American Chemical Society 杂志上。  图1.(a)独特的FIDI-MS技术。(b)异戊二烯在气液界面被氧化成上百种氧化产物。(c)异戊二烯吸附在气液界面的理论计算。  南开大学研究生张冬梅、汪杰为本文的并列第一作者。南开大学张新星研究员为本文实验部分通讯作者。宾夕法尼亚大学J. S. Francisco教授为本文理论部分通讯作者。  原文(https://pubs.acs.org/doi/full/10.1021/jacs.3c00300)Fast hydroxyl radical generation at the air-water interface of aerosols mediated by water-soluble PM2.5 under UVA radiation Dongmei Zhang (张冬梅) +, Jie Wang (汪杰) +, Huan Chen (陈欢), Chu Gong (宫矗), Dong Xing (邢栋), Ziao Liu, Ivan Gladich, Joseph S. Francisco*, and Xinxing Zhang (张新星)*J. Am. Chem. Soc., 2023, DOI: 10.1021/jacs.3c00300
  • 苏州医工所生物分子界面分析仪通过欧盟CE认证
    p   近日,中国科学院苏州生物医学工程技术研究所传感创新中心周连群研究员及其团队,研发的生物分子界面分析仪(Mole-Q),通过权威实验室CE(EMC\LVD)\FCC(EMC)等相关测试,获得相关认证证书及报告。 /p p   分子界面分析仪主要应用在生物生命分析领域中,实现对生物分子的分子相互作用、动力学研究、细胞吸附、迁移变化、药物作用与药物筛选、生物相容性、聚电解质膜层的组装等高灵敏度检测和分析,也可应用于石油、化工、航天等领域。采用薄膜压电技术,利用薄膜压电晶片实现生物分子界面分析。当物质在压电薄膜表面发生吸脱附反应或表面的液体性质发生变化时,均引起频率的变化。芯片共振频率的变化,与芯片表面吸附的物质的质量相关。通过分析频率的变化可以获得吸附层相应的质量、吸附层厚度、粘弹性(剪切模量)等信息。 /p p   该款迷你型生物分子界面分析仪(Mole-Q)是面向国内外科研院所、高校、企业以及个体研究人员的测试需求定向开发的便携式产品。产品外形采用象牙白和透明材质曲面设计,总体重量不超过500g,便携性强,“即插即用”,仪器通过USB数据线连接分析终端如PC电脑即可实现数据实时采集和分析。液体流路易于观察,传感器易于清洗更换。芯片上方测试样品为10μL,频率分辨率0.1Hz,在空气中10分钟内频率漂移小于2Hz。该产品和芯片的部分参数性能优于目前市场上动辄百万元的同类进口产品,综合性能达到国际先进水平。 /p p   周连群研发团队攻克高灵敏度压电薄膜核心技术,优化微纳加工工艺实现薄膜化压电晶片(Lamb波器件、高频QCM器件)的批量化制备,完善质量控制和工序管理,提高生物分子分析仪核心传感单元工程化的效率。研发出厚度信号强度大于60dB的薄膜压电传感器,将对生物分子检测灵敏度提升至皮克量级。独创的芯感& reg MEMS技术、结合一体式微流控进样和高频信号采集等模块,实现芯片和系统的低成本、高性能、高兼容性。突破国外垄断产品的专业壁垒,获得20余项相关发明专利的授权,申请的国际PCT专利已进入日本和美国。 /p p   在苏州医工所“创新”“转化”双轮驱动政策的大力支持下,“分子界面分析仪(Mole-Q)”产品和芯片已落地在苏州国科芯感医疗科技有限公司(简称“国科芯感”)进行研产转化。新型成果转化模式的拓展,有效弥补传统技术研发与市场需求脱节、开发速度慢、周期长、权属模糊等弊端,促进科研和产业优势互补,实现研产双赢。此次Mole-Q产品通过欧盟CE认证及美国的FCC认证,证实苏州医工所科研能力和成果有效转化的实力,促进后续系列产品的研发和推广,也为产品出口欧盟等国际市场提供强有力的保障。 /p p /p p & nbsp /p p style=" TEXT-ALIGN: center" img title=" W020171206585288196153.jpg" src=" http://img1.17img.cn/17img/images/201712/noimg/0df49df2-5d14-4f84-9300-856809703341.jpg" / /p p style=" TEXT-ALIGN: center" 分子界面分析仪(Mole-Q)产品 /p
  • 北京理工大学陈棋/朱城AM:ZrNx阻挡层的非晶-结晶界面工程用于稳定的反式钙钛矿太阳能电池
    金属卤化物钙钛矿太阳能电池为下一代光伏技术开辟了一条新的途径,它制造成本低且具有高光电转化效率。然而,长期稳定性仍是阻碍商业化的关键问题。在目前的钙钛矿太阳能电池中,原子/离子/分子间相互扩散(如卤化物侵蚀、阳离子偏析等)和化学反应(如电化学反应、光化学反应等)常常导致器件在运行条件下出现严重的退化,特别是光照和热产生的化学腐蚀和材料分解在金属/钙钛矿界面尤为突出,这限制了高效电池的长期稳定性。阻挡层已被证明是抑制电极腐蚀和提高器件稳定性的有效策略。作为离子迁移的屏障材料,其应具有本征的不渗透性和化学稳定性,这一点已经得到了广泛的研究。目前大多数阻挡层材料都是基于材料本征稳定性和制备工艺展开研究和筛选,从而优化器件性能和稳定性。然而,纳米尺度非晶薄膜微结构异质性和离子迁移的阻挡能力之间的固有规律尚未有系统研究。非晶态半导体由于其致密的形态和化学均匀性,具有良好的化学抗腐蚀性和抗渗透性,在太阳能转换、微电子学、催化和光电子学中具有多种应用。与晶体薄膜相比,非晶薄膜没有典型的晶体缺陷,这有三个优点:(1)少的能量异质位点减少化学腐蚀程度;(2)缺乏高维缺陷(如晶界)作为离子/原子迁移通道;(3)局部表面电荷的波动降低,表面电位更平滑,接触良好。因此,非晶阻挡层为防止器件发生腐蚀反应和扩散途径提供了一个有效的方案。但是,目前对器件中的非晶阻挡层的关注有限,其阻挡作用需要进一步探索。因此,来自北京理工大学的朱城副研究员和陈棋教授,在Advanced Materials上发表了“Engineering amorphous-crystallized interface of ZrN x barriers for Stable Inverted Perovskite Solar Cells”的文章,第一作者为肖梦琪。文章开发了非晶态ZrNx薄膜作为屏障,以抑制金属腐蚀并提高反式电池的稳定性。通过借助模式识别技术对a-c界面密度进行了量化,研究了非晶-结晶(a-c)界面对ZrN x阻挡层性能的影响。此外进一步通过电化学方法揭示了a-c界面防腐蚀特性和非晶薄膜的化学稳定性。最终调控制备了具有非晶ZrN x阻挡薄膜的高效率器件(23.1 %),并显示出良好的稳定性。在室温下最大功率点跟踪连续1500小时后,仍保持88%的初始效率。本文要点要点一:非晶ZrNx阻挡层的a-c界面量化及其阻挡特性非晶-多晶阻挡层中通常包含不同程度的结晶区域,由此产生的非晶-结晶(a-c)界面容易成为离子渗透的通道。通过收集不同结晶程度ZrN x阻挡层的高分辨率透射电子显微镜(HRTEM)数据,采用模式识别技术来分析和评估短程异质性和长程无序性。通过调控工艺参数,实现了ZrN x薄膜中结晶区域和非晶区域的比例调控,从而导致a-c界面密度的降低。并通过Tof-SIMS证明了非晶程度高的ZrN x薄膜具有更好的阻挡特性。要点二:非晶ZrNx的防腐性能和化学稳定性提升作者通过电化学方法证明了,ZrN x非晶态薄膜中a-c界面的减少有助于薄膜的防腐性能提高。通过DFT理论计算和不同结晶程度的ZrN x薄膜的表面电势的结果,作者认为防腐性能的提高归因于非晶材料活化能提高和化学势的均匀分布,从而在动力学上抑制了离子或者原子的迁移。因此,非晶程度高的ZrN x薄膜具有更好的抗腐蚀能力和化学稳定性。要点三:非晶ZrNx抑制电极腐蚀和钙钛矿退化作者验证了非晶ZrN x在没有传输层器件中的阻挡效果。在85 ˚C黑暗和N 2条件下老化500小时后,通过SEM图像发现具有非晶ZrN x阻挡层器件的Cu电极表面没有明显变化,而标件Cu电极表面出现针孔和形貌变化。进一步通过XRD和XPS确认标件电极中出现CuI,但是非晶ZrN x阻挡的器件中电极没有出现CuI,说明非晶ZrN x能够抑制电极的腐蚀。此外,剥离Cu电极后,通过光致发光图像和隧道式原子力显微镜得到非晶ZrN x减缓了钙钛矿的退化过程,提高了钙钛矿薄膜的稳定性。要点四:器件稳定性提升通过在传输层和电极之间插入非晶ZrN x阻挡层,明显提高了反式钙钛矿太阳能电池的运行稳定性,在一个太阳光照下,连续的最大功率点跟踪超过1500小时后,保持初始效率的88%。此外,还表现出良好的光热稳定性,在85 ˚C下超过1000小时后仍保持90%的初始效率,在N 2气中一个太阳光照下超过1300小时后仍保持90%的初始效率。从老化后PSCs的Tof-SIMS和截面的SEM图像中,均发现非晶ZrN x有效抑制PSCs中的Cu和I的迁移。
  • Kruss表界面科学应用技术高级研讨班
    Kruss表界面科学应用技术高级研讨班 邀 请 函 尊敬的 女士/先生,您好: 兹真诚邀请您参加瑞士华嘉公司于2011年4月12日至13日在北京中科院过程工程研究所的过程大厦,举办为期两天的&ldquo Kruss表界面科学应用技术高级研讨班&rdquo 。此次交流会邀请德国Kruss公司的资深专家Dr. Udo Ohlerich和Dr. Tobias Winkler,对新的表界面相关研究技术进行介绍,现场演示多种类型表界面仪器的操作,并对特殊功能和应用进行高级技能培训。本次交流会致力成为一个互动的平台,特邀请相关领域的专家和研究人员届时参加,通过此次培训,进一步开发仪器的功能,提升仪器使用者的能力,让表界面仪器在相关行业的科研工作中发挥更大的作用。 谢谢! 华嘉(香港)有限公司 2011年3月24日 备注: 1 费用:单人收费1200元,包括资料费和餐费,住宿统一安排但费用自理。 2 请您准备简单的自我介绍,包括您的应用。也欢迎您带来需要解决的问题。 附件1: 日程安排(届时可能略有调整) 四月十二日 09:00 大昌华嘉介绍 09:30 表面化学研究技术&mdash 课题待定 10:00 表面化学常用的研究技术介绍 Dr. Udo Ohlerich 12:00 午餐 13:30 表界面常用的应用 I (详见附件1) Dr. Tobias Winkler 15:30 各位客户依次介绍自己的工作领域,相互交流 16:30 分组仪器功能培训和应用展示 (详见附件2) 17: 30 会议结束 四月十三日 09:00 表界面常用的应用 II (详见附件1) Dr. Tobias Winkler 10:30 泡沫与界面流变性能介绍 Dr. Tobias Winkler 12:00 会议介绍,午餐 13:30 分组仪器功能培训和应用展示 ( K100,DSA100,Pocketdyne,Mobiledrop, DFA100,)(详见附件2) 15:00 问题小结和讨论 17:00 会议结束。 附件2: 主要应用类型 - Everything related to adhesion, including coatings on various material like metal, wood, plastic, glass .... - Fuel cells. This should be a very interesting application all over the world and we received several inquiries from customers for this application. - Biocompatibility including surface treatment - Enhanced Oil Recovery - Antifouling coatings 附件3:培训内容:(届时可能会有适当调整) K100 : 铂金环板的测量特点和配件保养、界面张力测定技巧、单纤维和粉末样品测量技巧、固体粉末测量及技巧、CMC自动测量展示、药物单分子表面积测量和应用等 DSA100:动态接触角测量技巧和应用、固体表面能分析和粘附功评价的应用、悬滴法表面张力测量、补泡法测量无纺布样品、温湿度对接触角测量影响 Pocketdyn:软件控制的动态表面张力连续测量 DFA100:动态泡沫分析技术介绍 TVA100:利用顶视法测量凹型样品光学接触角 附件4:详细地址 北京市海淀区中关村北二条 中国科学院过程工程研究所 新楼过程大厦三层会议室 邮编:100190 (城府路文津国际酒店对面) 附: 回执单 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 1.您希望通过本次交流会,能够解决您的什么问题? 2.您使用过哪款Kruss的仪器,使用情况如何? 3.对本次交流会大致的日程安排您有什么意见? 备注:请尽快E-mail或传真(010-65610278)确认
  • 2010年上半年上市仪器新产品:表界面仪器类
    表界面物性分析仪器是测量、分析物体的比表面积、接触角、孔隙度、表面自由能、表面张力等物理参数的仪器,这类仪器种类较多,比较常见的有表面张力计、比表面仪、接触角测定仪、压汞仪、孔径/隙度分析仪等。表界面物性分析仪器广泛应用于石油、印染、医药、喷涂、选矿等行业。   2010年上半年共有4家厂商在仪器信息网发布了5款新品,从这些新品的特点可以看出:表界面物性分析仪器正朝着自动化、智能化、功能可扩展的方向发展。   美国康塔仪器公司推出了Autosorb-iQ全自动比表面和孔径分布分析仪,该仪器具有分析能力强大、能够连续分析90小时以上等特点。   美国麦克仪器公推出了DVS Advantage重量法全自动蒸汽吸附仪,该仪器具有很高的灵敏度与精确度,仪器软件用户界面友好,其安全装置设计非常实用。   半年中,贝士德仪器科技(北京)有限公司推出了两台类似的比表面及孔结构分析仪:3H-2000PS2和3H-2000PS4。两台仪器具有高精度、全自动、智能化等诸多共同点,两者最主要的差别在于样品分析站和样品脱气站的数目不同,前者只有2个样品分析站,2个样品脱气站,而后者有4个样品分析站,4个样品脱气站。   上海中晨数字技术设备有限公司新推出的JK99D界面张力仪采用了日本进口的优质传感器,测试数据精确,且该仪器具有多项可拓展功能,方便使用。   北京精微高博科学技术有限公司的JW系列氮吸附仪在2010年4月通过了中国分析测试协会专家组的鉴定,鉴定结果表示:该产品已达到国内领先水平,部分指标达到了国际先进水平。   Autosorb-iQ全自动比表面和孔径分布分析仪——美国康塔仪器公司 Autosorb-iQ全自动比表面和孔径分布分析仪   Autosorb-iQ有三种类型:基本型、微孔型、化学吸附型,其创新点:   (1)分析通量与压力测量精度更高:可同时分析2 个微孔样品,月分析能力可提高到20 个样品以上 精确的微孔分析能力,极限高真空达10-10 mmHg 压力传感器的个数增加到了8 个,可分辨2.5x10-7mmHg的压力变化   (2)分析时间更长:3升的大容量杜瓦瓶选件,可在一次装填液氮的情况下连续测试90小时以上   (3)更多路的吸附气体链接:可以实现12 路分析气体的计算机自动切换分析   (4)更多的扩展模块接口设计:实现程序升温实验、反应生成气体成分分析、吸附热研究等多种功能。   DVS Advantage重量法全自动蒸汽吸附仪——美国麦克仪器公司 DVS Advantage重量法全自动蒸汽吸附仪   该仪器的创新点为:   (1)具有极高的灵敏度和精确度,仅需少量的样品(通常1-30mg),因而可快速达到平衡   (2)全自动惰气吹扫装置和有机泄露检测器可在发生有机蒸气泄漏时关闭联锁装置,保证安全   (3)仪器软件可程序控制仪器,用户界面友好,满足数据完整性和安全性的最高标准。Excel® 环境下运行的整套数据分析模块,一键式计算生成报告。   3H-2000PS2静态容量法比表面及孔结构分析仪   3H-2000PS4静态容量法大型比表面及孔径分析仪   ——贝士德仪器科技(北京)有限公司   3H-2000PS2 3H-2000PS4   两台仪器的主要差别在于:3H-2000PS2具有2个样品分析站,1个P0测试站,2个样品脱气站,而3H-2000PS4有4个样品分析站,1个P0测试站,4个样品脱气站。作为同一家公司几乎同时推出的两台仪器,它们有许多的共同点:   (1)独立的高精度饱和蒸汽压(P0)测试站国内领先,样品预处理具有国内唯一的普通模式和分子置换模式两种模式,精确的分压点控制机制,可按设定要求对重点孔径段进行精细分析   (2)能提供BET比表面、外比表面、孔容孔径、孔面积、微孔分析等完备的数据报告 测试精度高、重现性好。重复性误差小于±2%   (3)具有精确的全自动液氮面伺服保持系统   (4)智能化:能智能判断样品管是否安装,试管夹套是否拧紧 国内外领先的液氮杯防意外“安全下降”智能控制机制 全程自动化智能化运行。   JK99D界面张力仪——上海中晨数字技术设备有限公司 JK99D界面张力仪   该仪器的创新点为:   (1)传感器采用日本进口优质系统,测试数据精确,精度很高,重复性好   (2)铂金环法/铂金板法测定随时间及浓度变化时相应的表面及界面张力   (3)可增加多种外接恒温水浴等可选功能,实现一机多用。   JW系列氮吸附仪——北京精微高博科学技术有限公司 JW系列氮吸附仪   JW系列氮吸附仪,包括动态和静态两个系列,经过国家计量部门采用比表面在8m2/g-80m2/g的标准样品的检测时,比表面的测试重复性精度±1%,总孔体积和平均孔径的测试重复性精度±1.5% ,达到了国际先进水平,且测试速度优于国内外同类仪器的水平。   该仪器于2010年4月20日,通过了中国分析测试协会专家组的鉴定,专家们认为:JW系列氮吸附仪是自主创新与现代技术的结合,是具有我们自己的特色和自主知识产权的产品。该产品总体上达到了国内领先水平,部分指标达到了国际先进水平。   了解更多表界面仪器产品请访问仪器信息网表界面专场  了解更多新品请访问仪器信息网新品栏目
  • 岛津原子力显微镜-铅酸电池界面研究
    岛津原子力显微镜铅酸电池 以铅酸电池和锂离子电池为代表的二次电池,为了提高充放电特性、耐久性等性能,一般会向电解液中添加添加剂。到目前为止,已有种类繁多而且性能优异的添加剂被广泛使用到各类二次电池中。然而,迄今为止,这些添加剂如何提高电池性能的原理仍不甚明了。观察电解质中负极附近的界面状态对于阐明添加剂的贡献很重要。 铅酸电池是一种具有多种优点的二次电池,包括出色的安全性、宽工作温度范围和大电流放电。由于这些原因,它们被广泛应用于不间断电源(UPS)设备、公共设施应急电源设备以及汽车发动机启停系统的启动电池,成为社会基础设施不可或缺的一部分。然而,铅酸电池在使用过程中会发生负极的硫酸盐化,并因此导致电池性能劣化。在电解液中增加添加剂可以缓解这一问题。磺化木质素是一种具有代表性的添加剂。然而,但木质素如何促进电化学反应和硫酸化的缓解直到现在仍未阐明。 SPM-8100FM使用调频(FM)方法可以检测到比传统原子力显微镜(AFM)更小的力。因此使用SPM-8100FM高分辨率原子力显微镜和电化学溶液电池,观察稀硫酸环境下铅的固液界面状态,有助于理解添加剂的作用原理。 以上两张图显示了在初始还原反应后对垂直于铅表面的截面进行成像得到的负极(铅)固液界面处的图像。图像的上半部分是电解液,图像下半部分变暗的位置是铅表面。探针检测到力(排斥力)的部分看起来很亮。 在左图仅有稀硫酸的情况下,在铅表面上方没有观察到明显的特异变化。但在右图中,使用“稀硫酸+木质素”的情况下,可以在铅表面上方看到明显的不同亮度分层,如图中红色箭头所示区域。判断该层为木质素-铅络合物,该层的存在有助于铅表面硫酸化程度降低,从而有效抑制了硫酸铅的结晶形成。木质素-铅层的与铅表面、液体部分的不同亮度对比表明探针已经深入到该层中,同时也表明木质素-铅层以柔软的状态吸附在铅表面。这是使用原子力显微镜第一次在铅表面上看到厚度为50nm至100nm的木质素-铅层。 该实验证明了用高分辨原子力显微镜对电化学表面进行观察的可能性,有助于获得更多的电催化过程中界面处的信息,从而提高我们对反应过程的理解。因此可以期待利用SPM-8100FM进行电解质的界面成像来分析其他类型的二次电池充放电过程固液界面处的状态变化。请点击查看视频:https://mp.weixin.qq.com/s/G-1nBKLAxmwPW3FUHYbouASPM-8100FM 本文内容非商业广告,仅供专业人士参考。
  • 金属所在非共格界面的结构与物性研究方面取得进展
    功能材料界面由于经常表现出不同于体材料的新颖物理、化学现象与性质而备受关注。比如,人们在材料界面上发现了二维电子气、界面超导、界面发光和界面磁性等。这些有趣的界面现象与性质通常归因于界面上强烈的物理与化学交互作用,因此它们大多数出现在共格界面和半共格界面上。从共格界面到半共格界面、再到非共格界面,界面上的晶格失配不断增大,从而导致了材料界面上存在不同的晶格失配调节机制和界面结构。共格界面的晶格失配小,界面失配由两相邻晶格的弹性变形来调节,界面上形成了原子间完美匹配的界面结构;半共格界面的晶格失配适中,通过形成周期性排列的界面失配位错来补偿晶格失配。非共格界面的晶格失配非常大,界面两侧相邻晶体将保持各自原有的晶格而刚性堆叠在一起,不容易形成界面失配位错。虽然非共格界面比其他两类界面更常见,但由于它的晶格匹配度差并且界面键合强度弱,导致界面上的交互作用非常弱,因此非共格界面上很少表现出独特的界面现象与性质,这极大地限制了非共格界面的相关研究与应用。为了探索非共格界面上的新颖界面现象与物性,中国科学院金属研究所研究团队围绕非共格界面的原子与电子结构及界面交互作用开展了系统地研究工作,发现大晶格失配(~ 12 %)的AlN/Al2O3(0001)非共格界面上存在不寻常的强界面交互作用。强烈的界面交互作用显著调控了AlN/Al2O3界面的原子与电子结构及发光特性。透射电镜显微结构表征的研究结果表明,在AlN/Al2O3非共格界面上形成了界面失配位错网络和堆垛层错,这在其他非共格界面上是很少见的。原子层分辨的价电子能量损失谱表明,AlN/Al2O3非共格界面的带隙降低为~ 3.9 eV,显著小于AlN和Al2O3体材料的带隙(分别为5.4eV和8.0eV)。第一性原理计算表明,界面上带隙的减少主要由于在界面处形成了畸变的AlN3O四面体和AlN3O3八面体,从而导致了界面上存在Al-N键和Al-O键的竞争及键长的增大。阴极荧光光谱分析表明,该非共格界面具有界面发光特性,可发射波长为320 nm的紫外光,发光强度比AlN薄膜的本征发光高得多。该研究表明具有大晶格失配的非共格界面可表现出强烈的界面交互作用和独特的界面性质,深化和拓展了人们关于非共格界面的认识,可为开发基于非共格界面的先进异质结材料和器件提供借鉴与参考。相关研究工作得到国家杰出青年科学基金、中国科学院前沿研究重点项目和广东省基础与应用基础研究重大项目等的资助。相关研究成果以Interfacial interaction and intense interfacial ultraviolet light emission at an incoherent interface为题于5月15日在《自然-通讯》(Nature Communications)上在线发表。
  • 得利特自动界面张力测定仪助力医疗合成血液检测
    分子间的作用力形成液体的界面张力或表面张力,张力值的大小能够反映液体的物理化学性质及其物质构成。 合成血液用于医用口罩合成血液穿透性的测定。口罩的生产需进行表面张力、界面张力的测定。 A1200自动界面张力测定仪适用标准:GB/T6541,分子间的作用力形成液体的界面张力或表面张力,张力值的大小能够反映液体的物理化学性质及其物质构成,是相关行业考察产品质量的重要指标之一。 A1200基于圆环法(白金环法),测量各种液体的表面张力(液-气相界面)及液体的界面张力(液-液相界面)。此方法具有操作简单,精确度高的优点而被广泛应用。仪器特点 1、 采用独创的快响应电磁力平衡传感器,提高了测量精度与线性度2、 仪器校准只需标定一点,解决了前一代传感器需要多点标定的问题。免去了调零电位器及调满量程电位器3、 实时显示等效张力值、当前重量(可作为电子天平称重)4、 集成温度探测电路,对测试结果自动温度补偿5、 240×128点阵液晶显示屏,无标识按键, 具有屏幕保护功能6、 带时间标记的历史记录,最多存储255个7、 内置高速热敏式微型打印机,打印美观、快捷,具有脱机打印功能8、 配有标准RS232接口,可与计算机连接,便于处理试验数据9、 可实现全中文/全英文界面显示
  • 工欲善其事,必先利其器——从重大科学仪器基金看表界面化学表征方法的发展
    ■ 高飞雪,吴凯,伊晓东本文总结了国家自然科学基金委员会化学科学部催化与表界面化学学科相关的国家重大科研仪器研制项目的资助概况及已批准项目的研制目标、仪器构成与应用领域,在此基础上,提出了项目申请与管理的一些建议与思考。前言 “创新科学仪器”是科学发展的原动力。运用科学仪器进行实验可以判定科学理论的正确性和准确性,发现新的现象,提出新问题,从而促进技术进步,推动相关领域的发展。国家自然科学基金委员会(以下简称“基金委”)于2011年设立国家重大科研仪器研制项目,面向科学前沿和国家需求,以科学目标为导向,资助对促进科学发展、探索自然规律和开拓研究领域具有重要作用的原创性科研仪器与核心部件的研制,以提升我国的原始创新能力【1】。我国“催化与表界面化学”近十年来得到了快速发展,某些领域的研究成果得到了国际上的肯定和关注,特别是在创新仪器研制方面瞄准国际前沿,超前部署,为今后做出原创性工作提供有力的技术支撑。希望这些与“催化与表界面化学”相关的创新仪器的成功研制将进一步推动“催化与表界面化学”的发展。一、重大科学仪器基金项目资助概况国家重大科研仪器研制项目包括部门推荐和自由申请两个亚类。自重大科学仪器研制项目设立以来,化学科学部共资助6项部门推荐的重大科研仪器项目,其中与“催化与表界面化学”相关的有4项,具体的重大仪器项目(部门推荐和自由申请)资助情况见表1和表2。表1 “催化与表界面化学”相关重大仪器研制项目(部门推荐)信息表表2 “催化与表界面化学”相关重大仪器研制项目(自由申请)信息表二、部门推荐类重大仪器研制项目在这里,我们重点介绍部门推荐类重大仪器研制项目的研制目标、仪器构成以及应用领域。1、高分辨多功能化学成像系统问题的提出:化学成像是近年来兴起的新型表征技术,它将光学成像与谱学测量相结合,可同时获得化学成份的含量和空间分布信息。由于时间和空间分辨率的限制,现有化学成像技术大多难以实现分子水平的原位检测;而且基本上是单一模式成像,难以进行分子结构和分子间相互作用的多组分/多参数分析和验证。研制目标:复杂体系中表界面分子结构和性能变化的原位、实时研究,突破材料化学、生命化学等前沿交叉领域研究的技术瓶颈。仪器构成与功能:高分辨多功能化学成像系统,以超分辨受激辐射耗尽STED光学成像为基础,将具有超高空间分辨的光学成像和质谱、光谱等谱学技术及扫描探针显微成像技术相结合,在对物质的形貌进行成像的同时,对其化学组成、表界面分子结构、分子间相互作用及其动态变化等进行分子水平的原位、实时、多参数表征。在此基础上,发展了纳米尺度和分子水平的化学成像新技术和新原理。仪器构成示意图见图1。应用领域:该仪器的建成和使用促进纳米化学、能源化学和生命化学等领域的研究取得新突破,为绿色化学、生物医药、电子工业、环境治理、能源资源等高新技术产业的发展提供高水平的综合实验平台。图1 高分辨多功能化学成像系统示意图2、基于可调极紫外相干光源的综合实验研究装置问题的提出:绝大部分现有能源和新洁净能源都涉及原子分子的物理化学过程,因此研究原子分子在气相和表面的化学物理过程一直是能源基础研究极其重要的方向。极紫外波段光源在气相原子分子和表面物种的探测中发挥着不可替代的作用。但是, 现有光源亮度较弱大大限制了在这一方向的研究能力。研制目标:研制一套基于高增益谐波产生模式的、超高亮度且具有超快时间特性的可调极紫外相干光源的综合实验装置,将先进相干光源的发展和原子分子和自由基的高灵敏度探测方法发展紧密结合起来, 将先进相干光源装置的研制与能源相关的基础物理化学研究装置的研制紧密结合起来, 希望在较短的时间内使该综合实验研究装置成为世界上独特的的基础物理化学实验研究平台。仪器构成与功能:该大型综合实验装置主要由高品质的电子直线加速器、极紫外激光高增益谐波产生放大器、极紫外光束线和实验站(含基元反应实验装置、表面光化学反应实验装置、分子束表面散射化学反应实验装置、生物质谱实验装置、中性团簇实验装置等)组成,产生的极紫外激光脉冲能量超过100 uJ,重复频率可达50 Hz,波长在极紫外区域(50-150 nm)完全连续可调,脉冲长度可实现30 fs/100 fs/1 ps切换。结合传统激光技术、离子成像技术、原子分子和自由基高灵敏度电离技术、高分辨质谱技术以及独特的UV-EUV泵浦-探测技术,该装置可以被广泛地用于研究光化学动力学、团簇结构及动力学、表面化学动力学、燃烧化学动力学、生物分子结构等能源化学相关过程的重要基础科学问题。仪器构成示意图见图2。图2 基于可调极紫外相干光源的综合实验研究装置结构图应用领域:该大型综合实验装置可用于燃烧、能源催化、大气化学、星际化学、表面科学和生物质谱分析等领域的研究。3、基于可调谐红外激光的能源化学研究大型实验装置问题的提出:化石能源的高效利用、能量转换与储存中的多相催化反应和电化学反应都是发生在表面和界面上的物理化学过程。研制基于可调谐红外激光的能源化学研究大型实验装置,从微观的原子分子尺度检测上述物理化学过程涉及的多种表面反应关键中间物种、自由基和激发态,对化石能源的优化利用和洁净能源的开发起着非常关键的作用。研制目标:国内第一个红外自由电子激光用户装置,同时也是国际上第一个面向能源化学研究的红外自由电子激光装置,使我国在低增益FEL振荡器装置研究方面达到国际先进水平,解决能源化学前沿科学问题。仪器构成与功能:结合当前自由电子激光等技术领域最新成果,该仪器由中红外到远红外波段连续可调的红外自由电子激光,和以其为光源的表界面反射吸收红外光谱、纳米红外光谱(空间分辨光谱)、和频光谱(时间分辨光谱)、光解离光谱和光激发光谱五条实验线站组成。该大型实验装置显著提升了从原子分子水平研究多相表界面过程(如(电)催化剂活性中心位本质、(电)催化剂作用机理和(电)催化反应机理)、团簇结构及其反应动力学和红外振动态激发分子反应动力学的能力。实现了原位/在线/工况探测过去只能间接推测而无法直接从实验上获知的能源化学反应关键中间体(如氧物种、表面-吸附分子成键振动等)的结构、解析相关的团簇结构及其动力学、获取分子振动激发对化学反应影响等全新的信息。发现新现象、揭示新规律,取得实验和理论的突破。仪器构成示意图见图3。应用领域:该仪器的建成将为解决能源化学的瓶颈问题的提供研究平台,使能源化学和材料化学相关领域研究取得突破性进展。图3 基于可调谐红外激光的能源化学研究大型实验装置结构图4、超高时-空分辨的离子化学研究系统问题的提出:离子是物质科学中的基本粒子之一,是稀土分离、核废料处理、离子电池、分子磁体、发光、相转移催化、土壤污染修复和离子通道等领域中重点研究对象。溶剂介质中离子化学的核心科学问题是离子溶剂化效应。溶剂化离子的结构复杂而动态,造成研究手段匮乏,理论处理棘手。研制目标:建造一套具有超高时-空分辨能力的离子化学研究系统,探索与发现离子化学中的新现象和新性质。仪器构成与功能:该系统的建成将为相对稳定的金属正离子和非金属负离子的制备提供普适的方法;所产生离子束通过电化学系统的加速、抽取、偏转、漂移和减速,软着陆到介质表界面或其它指定位置;综合利用软着陆离子束、分子束、低温和超高真空技术,实现原位制备单离子、溶剂化离子、离子对、离子配合物和聚集体等;结合超高空间分辨成像技术和超高时间分辨的超快多维光谱技术、测量单个离子的本征结构,研究受控的离子溶剂化过程,探究溶剂化离子的大小、结构、电荷和能量转移等;监控单一离子在多相表界面的迁移动力学,研究离子迁移与介质表界面结构、离子种类、离子大小和溶剂化效应等之间的内在关系;对具有特殊功能性质的稀土发光和磁学配合物,测量单个裸露离子或配位(或溶剂化)离子的光学及磁学性质等。整套仪器的主要参数指标包括:在空间分辨上约为0.01 ~ 0.1 Å;时间分辨上为fs ~ ns(不同能量测量范围);在能量分辨上能达到0.1 ~ 1 meV;为达到软着陆目的,离子束的能量小于1 eV。仪器构成示意图见图4。应用领域:该仪器将在我国超纯稀土萃取、高端稀土功能材料开发、土壤污染中重金属处理、核废料处理中的放射性离子提取与转化、磁性分子材料的设计与制备、离子电池和储能材料的研制等重大应用过程提供技术平台。图4 超高时-空分辨离子化学研究装置的主要系统功能划分上述四项仪器研制项目(部门推荐)从可调谐极紫外自由电子激光到中远红外自由电子激光,使原可探测的光谱段扩展和增强。利用其对表界面活性中间物种等进行探测,特别是对很难探测到的甲烷等的关键中间物种、自由基和激发态进行有效探测及其随时间演化的动力学过程,以及中间体物种与催化剂表面成键的探测(大多在远红外区)等,为催化及能源化学领域反应路径和机理的理解提供了重要的直接实验证据。同时,成像与光谱和质谱结合,可同时获取表界面反应的物种定量和定性以及化学组成信息,为反应机制提供可视化证据。特别是结合超高空间分辨的成像技术和超快时间分辨的多维光谱技术,研究离子的本征性质和行为,是离子化学研究的前沿,将为能源、材料和环境等领域提供重要的技术平台。上述仪器的成功研制和发展的实验方法将进一步推动“催化与表界面化学”的发展,加速创新性原创成果的产生,为“催化与表界面化学”未来发展提供了重要技术储备,同时也反映了表界面化学表证方法的发展趋势。三、创新仪器和表征方法的发展态势表界面结构与性质的演变是表界面化学的研究核心,必须借助于先进的实验技术和表征方法,既要注重挖掘和综合利用现有的实验技术,又要注重利用新的科学原理来建立新的表征方法【2】。在材料结构表征技术中,原子分辨电子三维/四维技术、基于X射线、自由电子激光和同步辐射光源的三维相干衍射成像技术、4D扫描透射显微技术(4D-STEM)和电子叠层成像术(Electron ptychography)在原子水平上研究材料体系的组成、分布、结构与性质的时空变化,对于表界面物理化学至关重要。在真实催化反应条件下与同一时间尺度下,综合使用原位X射线吸收谱学(XAS, X-ray adsorption spectroscopy)、原位X射线掠入式衍射(GID, grazing incidence X-ray diffraction)、原位傅立叶变换红外光谱(IR,infrared Fourier transform spectroscopy)、引入外加扰动(如同位素切换)的瞬变动力学分析(TKA,transient kinetic analysis)、原位光电子能谱、原位固体核磁、光催化电荷转移过程全时空域成像、球差校正扫描透射电镜二次电子成像等多种表征技术,可以同时获得多种信息,有助于人们深入理解真实催化过程和催化作用机制,总结催化活性与催化剂的内在规律,为新型高效催化剂的研制提供科学依据。通过反应器的创新设计,在电极材料与电化学表界面(固液两相及气液固三相界面)工作条件下,协同联用和同步耦合原位X光吸收光谱、表面增强振动(红外和拉曼)光谱、扫描探针显微技术(SPM)与微分电化学质谱等原位表征技术是电化学前沿研究的强大工具。原位界面和频振动光谱(SFG)、液体环境中的电化学STM、引入光、电、力、温度等外场和液体、气氛等化学环境的透射电镜(TEM)、液固界面AFM、介质环境下的X射线吸收精细结构谱(XAFS)、液相体系中的圆二色谱法等是目前介质环境下表征技术的重点与难点。基于石英音叉轻敲模式的非接触原子力显微镜(Qplus NC-AFM)技术、非弹性电子隧道谱(IETS)、针尖增强拉曼光谱(TERS)、二维飞秒红外光谱、秒X射线激光脉冲、时间,空间与能量分辨的超快超宽频多维光谱、将皮秒级太赫兹脉冲耦合到STM针尖的太赫兹(THz)STM等技术是化学键与能量迁移表征技术发展的方向。四、建议与思考我国表界面化学的研究起步较晚,作为跨度宽广、应用普遍和意义重大的一门交叉学科,表界面化学在我国经过几十年的艰苦发展,其触角已经深入到物理、化学和其他相关学科的诸多研究方向,受到人们越来越多的重视。得益于我国经济的快速发展以及国家对基础科学研究的大量投入,近十几年来一批高端精密设备被引进、改造、创制并投入到实际研究之中,在解决催化及相关方向的关键科学问题取得了重要进展。但是,目前我国高端精密仪器的制造和创制能力还不足。一方面,重要的表面分析仪器和设备都是国外垄断,制约我国表面化学乃至基础科学的发展。另一方面,我国表界面化学的研究也在一定程度上依然存在着“跟风”和急于求成现象,导致研究创新性相对缺乏,在一些需要啃硬骨头和相对冷门的方向和领域的研究动力不足。例如,人们更多关注表面反应的静态表征,但对于表面反应的动态过程研究十分有限,理论研究也比较薄弱。再如,表面扩散动力学以及低维结构的生长动力学研究等缺乏足够的重视和深入的探讨,在表面量子态调控等方面也几乎是空白。重大科学仪器研制项目是科学基金资助体系中环境支撑的重要部分,是推动科学问题导向的创新仪器研制和原创成果产生的重要平台。科学基金在持续资助创新仪器的同时,不断完善仪器基金的后续管理和支撑条件。2018年化学部学科重组后,设立了仪器创制与大科学装置应用的申请代码(B0407)。表界面化学(B02)仪器项目的申请可选择任一代码。仪器基金的会评是在学科或学部函评的基础上,学部推荐后统一由计划局组织评审。近三年来,表界面化学相关仪器项目(自由申请)的申请数不多,结题项目的优秀率也不高。对于已经结题的仪器(部门推荐)项目,结题两年后还要开展后评估工作。主要考察仪器的科学目标和应用目标完成情况、依托仪器取得的重大科研成果情况、关键核心技术的掌握和推广应用情况、仪器核心器件自主可控情况和仪器运行及其稳定性,另外还考察组织管理情况,例如:依托单位履行职责情况(包括基础设施和配套设施建设、人员配备、运行经费保障、国有资产管理等)。同时注重考察仪器研制技术团队建设和人才培养情况,成果转化及对经济社会的影响。建议依托大科学装置和基金委资助的仪器研制项目,充分发挥研制仪器在解决相关科学问题中的重要作用。针对表界面的关键科学问题,鼓励高端精密仪器的制造和基于新原理的原创性仪器研制,注重挖掘和提升现有仪器的综合有效利用,发展基于大数据和AI技术的表界面研究新方法和新范式,注重培养仪器研制、设计加工和维护专业技术人才队伍,提升我国表界面化学创新仪器的研制能力,促进学科的全面快速发展。【参考文献】[1] 2021年度国家自然科学基金项目指南[2] 高飞雪, 伊晓东. 催化与表界面化学“十四五”发展规划概述, 中国科学: 化学, 2021, 51(7): 932. doi: 10.1360/SSC-2021-0121
  • “材料表面与界面分析”网络主题研讨会 成功召开
    p & nbsp & nbsp 材料科学、信息科学和生命科学是当前新技术革命中的三大前沿科学,材料的表界面在材料科学中占有重要的地位。材料的表界面对材料整体性能具有决定性的影响,材料的腐蚀、老化、硬化、破坏、印刷、涂膜、粘结、复合等等,无不与材料的表界面密切有关。因此研究材料的表界面现象具有重要的意义。 /p p & nbsp & nbsp 如何更有效地测量材料的表界面情况,对其进行更深入地研究,成为颇具潜力的一个研究领域。2016年8月24日,仪器信息网邀请清华大学朱永法老师、国家纳米科学中心程志海老师、赛默飞孙文彬老师从不同角度分享表界面分析研究进展。 /p p & nbsp & nbsp 本次会议报告如下:(视频近期上线,请提前收藏地址) /p p img src=" http://img1.17img.cn/17img/images/201608/insimg/905de170-4040-41d0-8f2d-2daabe1bae7e.jpg" title=" QQ截图20160824152509.jpg" / /p p & nbsp & nbsp 视频上线地址,上线时间9月2日: /p p a href=" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2091" target=" _blank" title=" “材料表面与界面分析”网络主题研讨会" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2091 /a /p p br/ /p p & nbsp 近期更多精彩会议预告: /p p “热分析技术在多领域应用及进展”网络主题研讨会 & nbsp br/ /p p 中国科学技术大学丁延伟老师和北京化工大学刘玲老师主讲。 /p p a href=" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2094" target=" _blank" title=" “热分析技术在多领域应用及进展”网络主题研讨会" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2094 /a /p p br/ /p p “动物源食品安全性评价及检测”网络主题研讨会 & nbsp /p p 中国水产科学研究院李晋成老师和上海出入境检验检疫局朱坚老师主讲。 /p p a href=" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2119" target=" _blank" title=" " http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2119 /a /p p br/ /p p “土壤环境调查评估技术”网络主题研讨会 & nbsp /p p 南京环境科学研究所赵欣老师和中国科学院生态环境研究中心张莘老师主讲。 /p p a href=" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2132" target=" _self" title=" " http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/2132 /a /p
  • 大昌华嘉仪器部举办Kruss表界面科学应用技术高级研讨班
    大昌华嘉商业(中国)有限公司科学仪器部将于2011年4月7日至8日在上海,4月12日至13日在北京,分别举办的为期两天的“Kruss表界面科学应用技术高级研讨班”。此次交流会特邀德国Kruss公司的资深专家Dr. Udo Ohlerich和Dr. Tobias Winkler对表界面相关新的研究技术进行介绍,并现场演示各种类型的表界面仪器的操作和高级技能培训。欢迎您届时光临!   本次仪器培训内容大概有:   K100 : 铂金环板的测量特点和配件保养、界面张力测定技巧、单纤维和粉末样品测量技巧、固体粉末测量及技巧、CMC自动测量展示、药物单分子表面积测量和应用等   DSA100:动态接触角测量技巧和应用、固体表面能分析和粘附功评价的应用、悬滴法表面张力测量、补泡法测量无纺布样品   Pocketdyn:软件控制的动态表面张力连续测量   DFA100:动态泡沫分析技术介绍   TVA100:利用顶视法测量凹型样品光学接触角   德国Kruss公司:1796年成立,是研究表面和界面技术的开创者,表面张力仪的发明者,现拥有15种不同类型的产品线,在全球占有率60%以上,是当之无愧的第一品牌。   华嘉(香港)有限公司:具有200年历史的瑞士国际贸易公司,作为Kruss产品、Microtrac产品在国内的总代理,负责其所有产品、技术的推广销售和服务。   附:上海会议日程安排 (届时可能会有适当调整)   四月七日   09:00 大昌华嘉介绍   09:30 表面化学研究技术—课题待定 上海交通大学教授   10:30 表面化学常用的研究技术介绍(表面张力、接触角测量技术) Dr. Udo Ohlerich   10:50 表界面常用的应用 Dr. Tobias Winkler   12:00 午餐   13: 00 表界面常用的应用 Dr. Tobias Winkler   14: 00 各位客户依次介绍自己的工作领域,相互交流   14: 30 分组仪器功能培训和应用展示 ( K100,DSA100,Pocketdyne,Mobiledrop, DFA100,)   17: 30 会议结束   四月八日   9:00 泡沫与界面流变性能介绍 Dr. Tobias Winkler   11:00 分组仪器功能培训和应用展示 ( K100,DSA100,Pocketdyne,Mobiledrop, DFA100,)   12:00 会议介绍,午餐   13:00 问题小结和讨论   14:00 全体研讨会介绍   17:00 会议结束   时间:2011年4月7日至 4月8日   地点: 上海交通大学   附:   回执单 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 1.您希望通过本次交流会,能够解决您的什么问题? 2.您使用过哪款Kruss的仪器,使用情况如何? 3.对本次交流会大致的日程安排您有什么意见? 备注:请尽快拨打4008210778或传真(021-33678466)确认
  • 汪福意团队:表界面分析的原位液相二次离子质谱技术新进展
    表界面化学是能源、环境和生命等前沿科学领域的核心。在分子水平上表征表界面化学,对阐明上述领域关键科学问题的化学本质具有重要意义。然而,表界面层极薄、其物种复杂性及高度动态性,对化学测量学提出了挑战。飞行时间二次离子质谱(ToF-SIMS)是迅速发展的先进表界面分析技术。而作为基于高真空环境的分析技术,SIMS难以直接分析涉及到液体的表界面。  近年来,中国科学院化学研究所活体分析化学实验室研究员汪福意课题组,针对动态表界面分析问题以及诸多重要表界面过程处于“黑箱”状态的研究现状,基于高化学稳定、高真空兼容的微流控装置,将一系列液体表面以及固液界面引入超高真空的SIMS分析系统中,发展了多场景适用的具有高界面敏感(ppm)、高时间分辨(μs)、超薄信息深度(nm)和“软”电离等特性的原位液相ToF-SIMS新技术,以直接分子证据可视化追踪液体表面/固液界面的微观弱相互作用,并原位实时监测界面电化学双电层结构、反应中间体、鉴定电催化活性位点等。迄今为止,原位液相ToF-SIMS是唯一已知可原位探测固液界面的质谱分析技术,为揭示电化学、能源、环境、生命等领域重要表界面微观结构的时空演化机理及界面构效关系提供了高效、独特的研究平台。  汪福意课题组与中国科学院生态环境研究中心曲久辉院士/胡承志研究员团队合作,将原位液相SIMS技术拓展至纳米孔道膜分离过程中的固液界面分析,原位捕获了离子水簇在纳滤膜孔道传输过程的水合形态变化,提供了基于水簇结构转化与其膜孔传输适配的纳滤膜分离技术原理,为高性能纳滤膜材料开发与膜分离系统优化提供了实验依据。相关成果发表在《科学进展》(Science Advances 2023, 9, eadf8412)和《美国化学学会纳米杂志》(ACS Nano 2023, 17, 12629)上。  汪福意课题组与南昌大学教授陈义旺/胡笑添团队合作,发展了原位液相SIMS技术,研究了钙钛矿太阳能电池领域饱受困扰的前驱体溶液老化问题,以直接分子证据揭示了三阳离子混合卤化物钙钛矿前驱体溶液在长期存储过程中的老化反应机制。进而,该团队针对前驱体离子老化机制提出了Lewis酸/碱添加剂减缓钙钛矿溶液老化的策略,并阐释了添加剂化学结构与添加剂抑制老化效果之间的构效关系。研究表明,原位液相ToF-SIMS新技术可作为“分子眼”促进对钙钛矿溶液化学的认知,推动了钙钛矿器件产业化策略的设计和开发。相关成果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2023, 62, e202215799)上。进一步,该团队以低维钙钛矿前驱体溶液中的胶体粒子作为研究对象,应用原位液相ToF-SIMS可视化间隔阳离子参与的胶体组装行为,揭示了氢键作用与量子阱结构优化的新机制,为实现高效低维钙钛矿太阳电池印刷提供了实验依据。相关成果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2023, 62, e202303177)上。  研究工作得到国家自然科学基金委员会、科学技术部和中国科学院的支持。  液相ToF-SIMS原位剖析钙钛矿溶液老化化学及抑制老化作用机制
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制