基因芯片分析

仪器信息网基因芯片分析专题为您提供2024年最新基因芯片分析价格报价、厂家品牌的相关信息, 包括基因芯片分析参数、型号等,不管是国产,还是进口品牌的基因芯片分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合基因芯片分析相关的耗材配件、试剂标物,还有基因芯片分析相关的最新资讯、资料,以及基因芯片分析相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

基因芯片分析相关的厂商

  • 苏州汶颢芯片科技有限公司是一家留学人员回国创业的高新科技企业,集研发、生产、销售为一体,技术力量雄厚,生产设备先进,检测手段齐全,产品质量过硬。公司建立了完备的微流控芯片研发与生产中心,配置了三条微流控芯片生产线,包括数控CNC微加工仪器,软刻蚀有机芯片加工系统,光刻-掩模无机芯片加工系统,可以加工生产所有材质的芯片,如玻璃、石英、硅、PDMS和PMMA等。产品涵盖集成式通用医疗诊断芯片、集成式通用环境保护分析监测芯片、集成式通用食品安全分析检测芯片和基于微流控芯片的新能源体系四大系列数十个品种,以及各类科研类芯片,并在生物芯片和化学芯片领域一直保持技术和研发的领先地位,拥有81项知识产权,其中:已申请发明**65件、实用新型**7件,注册商标2件,登记软件著作权7件。
    留言咨询
  • 浙江扬清芯片技术有限公司(YoungChip)是一家专注于微流控芯片实验室整体解决方案的企业,技术力量雄厚,生产设备先进,检测手段齐全,产品质量过硬。公司可提供整套微流控芯片生产线, 包括CNC 数控微加工仪器、精密激光加工系统、光刻加工系统、塑料芯片注塑系统和微流控芯片热压键合系统, 可以加工生产所有材质的芯片, 如玻璃、石英、硅、PDMS 和PMMA 等。主营产品包括: ① 微流控芯片的设计、开发与加工服务; ②微流控芯片实验室组建及芯片技术培训; ③ 微流控芯片的耗材、配件及相关设备; ④ 模块化的芯片温度控制系统、流体操控系统和检测系统; ⑤ 基于微流控技术平台的POCT 快速检测系统。产品涵盖医疗生化诊断、环境监测、食品安全分析检测、化学合成等几大应用领域。目前,扬清芯片(YoungChip)已和中科院大连化学物理研究所、中国科学院苏州纳米技术与纳米仿生研究所、生物芯片北京国家工程研究中心(博奥生物有限公司)、中国石油勘探开发研究院、浙江省检验检疫局、广东产品质量监督检验研究院、深圳出入境检验检疫局、广州迪澳生物科技有限公司等多家单位建立了长期紧密的项目合作。
    留言咨询
  • 主要生产基因芯片及配套的检测试剂耗材。
    留言咨询

基因芯片分析相关的仪器

  • SureScan 基因芯片微阵列扫描仪是紧凑式的新型系统,适于灵敏而准确的芯片应用。这款新型 SureScan 芯片扫描仪是安捷伦完整芯片解决方案的基石,代表了安捷伦扫描仪科技创新的最新成果。它具有极佳的检测限,凭借其卓越的灵敏度和分辨率,无论是从单个数据点或一次实验,用户都可以从中获得尽可能多的生物学信息。连续式芯片加载能力,可消除分批加载的限制;集成式的特征数据提取软件,可实现图像的自动转换;紧凑式的设计,可优化台面空间的利用率。技术参数:动态范围:104(16 位数据格式),105(20 位数据格式),106(XDR 扫描)分辨率:2、3、5、10 微米动态自动聚焦:连续调节扫描仪焦距,始终保持对焦自动装片机:24 片装芯片盒,无需用户干预集成的条形码识别器:可识别 128 码、39 码、93 码以及 CODABAR兼容的染料:Cyanine 3 和 Cyanine 5,以及 Alexa 647、555、660激光器信息:- 绿色固相激光器,532 nm- 红色固相激光器,640 nm- 功率:在 532 nm 和 633 nm 下为 20 mW,均控制到 13 mW最大扫描窗口:71 mm x 21.6 mmPMT 调节:每次运行前自动校准 PMT 增益;允许将信号水平从 100%(默认)调至 1%检测限:每平方微米 0.01 个发色团像素位置误差:在 5 微米的分辨率下小于 1 个像素均一性:5% CV 整体非均一性,平均局部非均一性通常为 1%(基于 100 微米的特征)扫描时间:双色同步数据采集:16 分钟(3 微米扫描),24 分钟(2 微米扫描)(扫描范围 61 mm x 21.6 mm)数据工作站和操作系统:安装了 Windows 7(64 位)的计算机;数据分析软件 — 包括 2 份安捷伦特征数据提取软件的永久性许可扫描仪近似尺寸:高:16.5 英寸(42 cm),宽:17 英寸(43 cm),深:26 英寸(67 cm)重量:125 磅(56.8 kg)
    留言咨询
  • Vitae SPOTTER生物芯片点样系统是一款高通量、高灵活性的微阵列芯片点样系统,以阵列方式快速、准确地在玻片或薄膜上点样,制备生物样品微阵列芯片。微阵列芯片在基因组学、蛋白组学、药物筛选、细菌鉴定、癌症早期筛查等生命科学研究、临床诊断及食品安全检测等领域已经得到广泛应用。值得强调的是:VitaeSPOTTER为生物样品的TOF-MS分析提供了高通量样品制备手段。 技术参数 应用领域■ 芯片研发生产■ 药物筛选■ 蛋白/抗体微阵列点样■ 酶、蛋白基因组文库构建■ 重复喷点制作3D生物芯片■ 微量样品的点样■ 纳米材料点样■ 高密度微阵列点样
    留言咨询
  • GenePix 4000B微阵列基因芯片扫描仪GenePix 4000B是Molecular Devices公司的推出一款高品质、可靠及易于操作微阵列基因芯片扫描仪。结合GenePix Pro的微阵列分析软件和Acuity信息学软件两者优势,GenePix基因芯片扫描仪可以支持所有类型的微阵列芯片的检测和分析。包括核酸、蛋白、组织和细胞。 主要特点:1,双激光同步扫描2,图像快速采集3,出色的重复性4,简洁、强大、易用的扫描仪5,可整合GenePix Pro图像分析软件 仪器优势:1,双激光同步扫描。与市面上大多数微阵列基因芯片扫描仪有所不同, GenePix4000B扫描仪可以同时利用双波长激发芯片后同时获取数据。这意味着可显著减少扫描时间, 从而简化工作流程, 提高效率。除了出众的速度外, 同时扫描时也实时显示出数据比值, 数据采集过程中实时评估图像质量。具有这种高性能可以确保获得精确的比值。2,可靠的结果。GenePix 4000B 微阵列基因芯片扫描仪具有性能标准校正功能, 可使您在收到扫描仪时及未来任何时间来检查其性能是否符合要求。GenePix Pro 数据采集和分析软件包括一键式校准模式, 用于恢复 GenePix 扫描仪的基准性能。当前产生的信号与过去和未来的信号均相同, 以让您放心使用。,3,自动化工作流程。借助自动光电倍增管 (PMT) 进行均衡, 全面集成的 GenePix Pro 数据采集和分析软件可控制 GenePix 4000B 微阵列基因芯片扫描仪, 并可自动评估所需的 PMT 增益值, 以快速简捷地进行信号强度优化和不同通道的信号平衡。然后 GenePix 4000B 微阵列基因芯片扫描仪将以所选的分辨率(在 5-100 微米之间)采集数据, 从而可以根据每个实验随意调整图像的分辨率和文件的大小。4,更多论文成果:经过 10 多年的发展, 以及在发表近 6000 篇参考文献的支持下, GenePix 4000B 微阵列基因芯片扫描仪用户可自行调整设置焦距位置和激光功率高低, 从而扩大了其对不同样品的兼容性。这种方式能确保凸起表面(如具有膜涂覆的玻璃)或凹入表面(如嵌入式阵列中)的玻片进行扫描时获取正确成像。双激光同步扫描与市面上大多数微阵列基因芯片扫描仪有所不同,GenePix4000B扫描仪可以同时利用双波长激发芯片后同时获取数据。可大大的减少了扫描时间(双通道扫描10μm的分辨率,6.5分钟,扫描区域越小时间会更少),提高实验室效率。除了出众的速度,同时扫描时也实时显示出数据比值,数据采集过程中实时评估图像质量。具有这种高性能可以确保获得精确的比值(如图一)。 获取高分辨率图像,自动PMT平衡GenePix4000B基因芯片扫描仪支持5-100μm的分辨率下进行相应检测,可以针对每个实验的图像分辨率和文件大小进行优化。我们精确设计和严格的出厂检测确保每个GenePix4000B扫描仪分辨率都能小至5μm(如图二)。此外,GenePix4000B基因芯片扫描仪会自动调节光电倍增管的增益值,从而能够更快速、更轻松的优化信号强度和通道平衡值。 极强样本的兼容性GenePix4000B基因芯片扫描仪支持用户通过调节焦点位置和激光器能量的高低,可以提高针对不同类型样本的兼容性。焦距可调满足用户使用凹凸不平的芯片载体,如膜包被芯片或嵌入式芯片,可以获取更高的图像质量。激光器能量可调节,无论是强大稳定的信号或微弱不稳定的信号均可以完美呈现。内置所有激光器均具有自动校正功能,可以动态的监测激光器微小的波动,确保每个像素点均可获得稳定的、持续的信号。 采用非共聚焦光路采用非共聚焦光路的GenePix4000B基因芯片扫描仪可用于微阵列芯片成像分析。其他家扫描仪利用共聚焦技术成像特点,将厚样品进行薄切片后分析,例如组织样本。然而,微阵列芯片上大多数背景信号来源于非特异性的杂交反应,它们与样品位于同样的焦平面上,共聚焦成像优势并不能降低此类型检测背景信号。此外,绝大多数微阵列基因芯片表面为非均一平面。由于共聚焦成像系统具有非常窄的景深,会受到各种不同基质载体的焦平面的变化而产生波动。均匀性和重复性,验证和测试的数据可靠性为GenePix基因芯片扫描仪设计特殊的检测实验,证明其检测的重复性(如图三)和均一性(如图四)。我们采用的严格质控标准,确保每一个GenePix4000B基因芯片扫描仪都能获得稳定一致的检测结果,这样我们可以放心的比较所有实验多次扫描、不同日期扫描的结果。 软件和硬件的高度结合所有GenePix基因芯片扫描仪家族成员在设计之初就被要求能与GenePix Pro微阵列分析软件完美整合在一起。扫描仪和软件之间这种无缝式的通信方式确保了其科高效的获取和分析相应实验数据,也能够实时检测扫描仪工作状态。可选的Acuity微阵列信息分析软件,具有数据库储存能力、群集算法、高级统计学能力和可视化界面。
    留言咨询

基因芯片分析相关的资讯

  • 安捷伦科技推出外显子基因芯片,扩展基因表达分析市场
    安捷伦科技推出外显子基因芯片,扩展基因表达分析市场 2010 年 11 月 3 日,北京&mdash &mdash 安捷伦科技公司(纽约证交所:A)今日宣布推出基于 SurePrint G3 外显子基因芯片的外显子分析解决方案。该解决方案大大扩展了安捷伦基因表达试剂、芯片和生物信息学软件产品的市场。这套全新的系统将于 11 月中旬面世,研究人员使用该系统将能够分析目前已知的选择性表达外显子,从而拥有对RNA 表达的全面认知。 &ldquo 我们不断推出性能强大且经济有效的工具来充实我们的基因表达工作流程,从 RNA 提取试剂盒到数据解析和验证工具一应俱全。&rdquo 安捷伦的基因表达产品经理 Sharoni Jacobs 博士说道,&ldquo 我们去年 12 月推出了低上样量快速扩增标记试剂盒,仅需 10 纳克总 RNA 的起始量。另外,今年 5 月我们推出了第三代 SurePrint G3 基因表达芯片,该产品将编码和非编码 RNA 探针整合在单个芯片上。&rdquo Agilent G3 外显子基因芯片 安捷伦正是利用性能强大、高密度的 SurePrint 平台开发全外显子解决方案,帮助研究人员发现大约 30000 个基因和 100000 多种蛋白质之间的关系。 借助安捷伦 SurePrint G3 外显子芯片,研究人员只需一次实验就可以鉴别出基因水平和外显子水平的表达改变,从而捕捉到微小但至关重要的生物变化。RNA样品使用安捷伦低上样量快速扩增全转录组标记试剂盒进行处理,实现全转录本标记,用于随后的杂交。安捷伦 GeneSpring GX 11.5 生物信息学系统帮助研究人员同时分析基因水平的表达数据和剪切标记,极大地提高了实验室的工作效率。 &ldquo 外显子级芯片的推出标志着我们分析能力的显著提升。与传统的依赖于 3&rsquo 端的芯片相比,我们现在可以更为详细地分析基因组,&rdquo 英国曼彻斯特大学帕特森癌症研究所分子生物学中心主任 Stuart Pepper(早期用户之一)说道,&ldquo 我们己尝试着将这些芯片用于研究项目,初步实验结果表明,得到的数据十分清晰;这些数据有助于对选择性转录本表达的检测和定量。&rdquo 安捷伦的人、小鼠和大鼠外显子芯片目录产品包括 4× 180K(每张玻片四个芯片,每个芯片 180000 种特征序列)和 2× 400K 两种格式,使用户能够在实验成本、通量和覆盖完整度间作出选择。与安捷伦的其他芯片类似,安捷伦也提供定制格式的人、小鼠和大鼠 SurePrint G3 外显子芯片。定制格式包括:8× 60K、4× 180K、2× 400K 和 1× 1M。 与所有安捷伦芯片一样,SurePrint G3 外显子解决方案能够在很宽的动态范围内检测低丰度和高丰度的表达产物,准确反应整体的表达水平,从而保证结果高度可信。 安捷伦提供业内最全面的基因表达解决方案;集高芯片灵敏度,成熟可靠的 qPCR 平台和综合分析软件于一身,有效简化工作流程,确保获得最高质量的结果。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,是化学分析、生命科学、电子和通信领域的技术领导者。公司的 18500 名员工在 100 多个国家为客户服务。2009 财政年度,安捷伦的业务净收入为 45 亿美元。要了解更多安捷伦科技的信息,请访问:www.agilent.com.cn
  • 首个H1N1病毒耐药分析基因芯片问世
    本报北京5月17日讯(通讯员郝成涛 何玉玺 记者王学健)近日有媒体称,甲型H1N1流感病毒对“达菲”产生了抵抗能力。如何判断病毒对“达菲”类药物存在抗药性,5月16日,一种专门针对甲型H1N1流感病毒抗药性的基因确证和耐药性分析的基因芯片,在军事医学科学院放射与辐射医学研究所研制成功。这项成果的问世,对药物治疗甲型H1N1流感病人具有重要指导意义。   耐药分析基因芯片早一天面世,就会为治疗赢得宝贵的时间。据专家分析,甲型H1N1流感病毒容易变异,而且变异速度较快,随着“达菲”类药物在治疗人感染甲型H1N1流感病毒中的广泛使用,不排除病毒出现耐药的可能。因此,判断其对抗病毒药物的耐药性是指导临床用药和疫情防控的关键。军事医学科学院放射与辐射医学研究所成功研制的甲型H1N1流感病毒耐药分析基因芯片,是他们继成功研制复合探针实时荧光核酸检测试剂盒之后,又一项应对甲型H1N1流感疫情的重要科技成果。   据主持这项研究的放射与辐射医学研究所研究员王升启介绍,该芯片采用了具有自主知识产权的纳米标记信号放大技术,在准确检测到甲型H1N1流感病毒的同时,可对普通季节性毒株和新流行毒株进行甄别,并能准确检测病毒的耐药性突变位点,从而判断出病毒是否对“达菲”类药物产生耐药性。该芯片的灵敏度是传统方法的10倍以上,在获取样本后3至4小时内可完成检测过程,肉眼可以直接观察结果,不需要借助昂贵的荧光扫描设备,便于实际操作和使用。   据了解,放射与辐射医学研究所是国内最早从事生物芯片研究的单位之一,曾获得国际上第一个基于硅基材料的生物芯片新药证书、第一个乙型肝炎病毒耐药检测基因芯片和第一个HLA分型基因芯片新药证书。
  • 博奥生物晶芯® 基因芯片分析系统等产品亮相“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,博奥生物有限公司的晶芯® ArrayCompassTM基因芯片分析系统、晶芯® LuxScanTMDx/HT24高通量微阵列芯片扫描仪、晶芯® ExtractorTM36 核酸快速提取仪及博奥生物晶芯® 医学产品亮相国家“十一五”重大科技成就展。 晶芯® ArrayCompassTM基因芯片分析系统   该产品是博奥生物有限公司与Affymetrix公司经过3年的合作,共同推出的基于PEG Strip芯片(原位合成技术)的超高密度微阵列芯片反应与检测一体化系统,可用于高密度、中低通量的表达谱芯片、重测序芯片的分析,为进行此类研究的用户提供了一个高性价比的技术平台。其工业造型更是在2010年获得了具有工业设计“奥斯卡”之称的德国“红点奖”。 晶芯® LuxScanTMDx/HT24高通量微阵列芯片扫描仪   晶芯® LuxScanTMDx/24高通量微阵列芯片扫描仪是一款具有高通量、高自动化、高灵敏度和高分辨率的芯片扫描仪,可应用于临床检验、食品安全检测和生命科学研究等多个领域。此产品在晶芯® LuxScanTM10K微阵列芯片扫描仪优质性能基础上,提高了产品自动化和扫描通量,进一步提高了产品的性价比。 晶芯® ExtractorTM36 核酸快速提取仪   晶芯® ExtractorTM36核酸快速提取仪适用于批量快速核酸提取,可方便快速地一次性提取36份细菌核酸样品。与配套的晶芯® 核酸快速提取试剂盒一起使用,可使核酸提取操作稳定可靠、简单快捷。简单两步操作即可完成核酸提取,操作时间在10min左右。 博奥生物晶芯® 医学产品   左为晶芯® 九项遗传性耳聋基因检测试剂盒(微阵列芯片法),右为晶芯® 分枝杆菌菌种鉴定试剂盒(DNA微阵列芯片法)。   关于博奥生物有限公司:   博奥生物有限公司暨生物芯片北京国家工程研究中心成立于2000年9月30日,注册资金现为3.765亿元人民币。目前,公司拥有数十项具有自主知识产权,已研制开发出生物芯片(包括基因、蛋白、细胞芯片和芯片实验室等)及相关仪器设备、试剂耗材、软件数据库等四个系列的产品,可以为广大客户和合作伙伴提供先进的高通量生物芯片技术服务和行业应用整体解决方案。

基因芯片分析相关的方案

基因芯片分析相关的资料

基因芯片分析相关的试剂

基因芯片分析相关的论坛

  • 【转帖】基因芯片技术进展!

    基因芯片技术进展及应用 作者:刘炎 [关键词] 基因芯片;核酸探针序列;杂交 1 基因芯片概述  随着人类基因组计划( Human Genome Project)即全部核苷酸测序的即将完成,人类基因组研究的重心逐渐进入后基因组时代( Postgenome Era)向基因的功能及基因的多样性倾斜[1,2]。通过对个体在不同生长发育阶段或不同生理状态下大量基因表达的平行分析,研究相应基因在生物体内的功能,阐明不同层次多基因协同作用的机理,进而在人类重大疾病如癌症、心血管疾病的发病机理、诊断治疗、药物开发等方面的研究发挥巨大的作用。它将大大推动人类结构基因组及功能基因组的各项基因组研究计划。  基因芯片的工作原理与经典的核酸分子杂交方法(southern 、northern)是一致的,都是应用已知核酸序列作为探针与互补的靶核苷酸序列杂交,通过随后的信号检测进行定性与定量分析,基因芯片在一微小的基片(硅片、玻片、塑料片等)表面集成了大量的分子识别探针,能够在同一时间内平行分析大量的基因,进行大信息量的筛选与检测分析[3,4]。基因芯片主要技术流程包括:芯片的设计与制备;靶基因的标记;芯片杂交与杂交信号检测。  基因芯片的设计实际上是指芯片上核酸探针序列的选择以及排布,设计方法取决于其应用目的,目前的应用范围主要包括基因表达和转录图谱分析及靶序列中单碱基多态位点(single nucleotide polymorphism,SNP)或突变点的检测,表达型芯片的目的是在杂交实验中对多个不同状态样品(不同组织或不同发育阶段、不同药物刺激)中数千基因的表达差异进行定量检测,探针序列一般来自于已知基因的cDNA 或EST库,设计时序列的特异性应放在首要位置,以保证与待测目的基因的特异结合,对于同一目的基因可设计多个序列不相重复的探针,使最终的数据更为可靠。基因单碱基多态检测的芯片一般采用等长移位设计法[5],即按靶序列从头到尾依次取一定长度的互补的核苷酸序列形成一探针组合,这组探针是与靶序列完全匹配的野生型探针,然后对于每一野生型探针,将其中间位置的某一碱基分别用其它三种碱基替换,形成三种不同的单碱基变化的核苷酸探针,这种设计可以对某一段核酸序列所有可能的SNPs位点进行扫描。  芯片制备方法主要包括两种类型:(1)点样法:首先是探针库的制备, 根据基因芯片的分析目标从相关的基因数据库中选取特异的序列进行PCR扩增或直接人工合成寡核苷酸序列[6],然后通过计算机控制的三坐标工作平台用特殊的针头和微喷头分别把不同的探针溶液逐点分配在玻璃、尼龙以及其它固相基片表面的不同位点上,通过物理和化学的方法使之固定,该方法各技术环节均较成熟,且灵活性大,适合于研究单位根据需要自行制备点阵规模适中的基因芯片。(2)原位合成法[7~10]:该法是在玻璃等硬质表面上直接合成寡核苷酸探针阵列,目前应用的主要有光去保护并行合成法,压电打印合成法等,其关键是高空间分辨率的模板定位技术和高合成产率的DNA化学合成技术,适合制作大规模DNA探针芯片,实现高密度芯片的标准化和规模化生产。待分析样品的制备是基因芯片实验流程的一个重要环节, 靶基因在与芯片探针结合杂交之前必需进行分离、扩增及标记。标记方法根据样品来源、芯片类型和研究目的的不同而有所差异。通常是在待测样品的PCR扩增、逆转录或体外转录过程中实现对靶基因的标记。对于检测细胞内mRNA表达水平的芯片,一般需要从细胞和组织中提取RNA,进行逆转录,并加入偶联有标记物的dNTP,从而完成对靶基因的标记过程[11],对于阵列密度较小的芯片可以用同位素,所需仪器均为实验室常规使用设备,易于开展相关工作,但是在信号检测时,一些杂交信号强的点阵容易产生光晕,干扰周围信号的分析。高密度芯片的分析一般采用荧光素标记靶基因,通过适当内参的设置及对荧光信号强度的标化可对细胞内mRNA的表达进行定量检测。近年来运用的多色荧光标记技术可更直观地比较不同来源样品的基因表达差异,即把不同来源的靶基因用不同激发波长的荧光素标记,并使它们同时与基因芯片杂交,通过比较芯片上不同波长荧光的分布图获得不同样品间差异表达基因的图谱[12,13],常用的双色荧光试剂有Cy3- dNTP和Cy5- dNTP。对多态性和突变检测型基因芯片采用多色荧光技术可以大大提高芯片的准确性和检测范围,例如用不同的荧光素分别标记靶序列及单碱基失配的参考序列,使它们同时与芯片杂交,通过不同荧光强弱的比较得出靶序列中碱基失配的信息[14]。  基因芯片与靶基因的杂交过程与一般的分子杂交过程基本相同,杂交反应的条件要根据探针的长度、GC碱基含量及芯片的类型来优化,如用于基因表达检测,杂交的严格性较低,而用于突变检测的芯片的杂交温度高,杂交时间短,条件相对严格。如果是用同位素标记靶基因,其后的信号检测即是放射自显影,若用荧光标记,则需要一套荧光扫描及分析系统,对相应探针阵列上的荧光强度进行分析比较,从而得到待测样品的相应信息。由于基因芯片获取的信息量大,对于基因芯片杂交数据的分析、处理、查询、比较等需要一个标准的数据格式,目前,一个大型的基因芯片的数据库正在构建中,将各实验室获得的基因芯片的结果集中起来,以利于数据的交流及结果的评估与分析。

  • 基因芯片相关软件介绍

    1、基因芯片综合分析软件ArrayVision 7.0 一种功能强大的商业版基因芯片分析软件,不仅可以进行图像分析,还可以进行数据处理,方便protocol的管理功能强大,商业版正式版:6900美元。 Arraypro 4.0 Media Cybernetics公司的产品,该公司的gelpro, imagepro一直以精确成为同类产品中的佼佼者,相信arraypro也不会差。phoretix™ Array Nonlinear Dynamics公司的基因片综合分析软件。J-express 挪威Bergen大学编写,是一个用JAVA语言写的应用程序,界面清晰漂亮,用来分析微矩阵(microarray)实验获得的基因表达数据,需要下载安装JAVA运行环境JRE1.2后(5.1M)后,才能运行。2、 基因芯片阅读图像分析软件 ScanAlyze 2.44 斯坦福的基因芯片基因芯片阅读软件,进行微矩阵荧光图像分析,包括半自动定义格栅与像素点分析。输出为分隔的文本格式,可很容易地转化为任何数据库。 3、 基因芯片数据分析软件 Cluster 斯坦福的对大量微矩阵数据组进行各种簇(Cluster)分析与其它各种处理的软件。 SAM Significance Analysis of Microarrays 的缩写,微矩阵显著性分析软件,EXCEL软件的插件,由Stanford大学编制。4.基因芯片聚类图形显示 TreeView 1.5 斯坦福开发的用来显示Cluster软件分析的图形化结果。现已和Cluster成为了基因芯片处理的标准软件。FreeView 是基于JAVA语言的系统树生成软件,接收Cluster生成的数据,比Treeview增强了某些功能。 5.基因芯片引物设计 Array Designer 2.00 DNA微矩阵(microarray)软件,批量设计DNA和寡核苷酸引物工具。

  • 各个领域的“基因芯片”

    基因芯片及其在病原微生物检测中的应用基因芯片是近年来迅速发展的一门生物高新技术,它以其能够快速、高效、大规模地同步检测生物遗传信息的卓越功能而得到发展。在基因测序、基因表达分析、药物筛选、基因诊断等领域显示出重要的理论和实用价值。基因芯片是指应用大规模集成电路的微阵列技术。在固相支持物表面(常用的固相支持物有玻璃、硅片、尼龙膜等载体)有规律地合成数万个代表不同基因的寡核苷酸“探针”或液相合成探针后由点样器有规律地点样于固相支持物表面;然后将要研究的目的材料中的DNA、RNA或用cDNA同位素或荧光物标记后,与固相支持物表面的探针进行杂交,通过放射自显影或荧光共聚焦显微镜扫描,对这些杂交图谱进行检测;再利用计算机对每一个探针上的杂交信号作分析处理,便可得到目的材料中有关基因表达信息。该技术可将大量的探针同时固定于支持物上,所以一次可对大量核酸分子进行检测分析。基因芯片分类基因芯片按其片基不同可分为无机片基芯片和有机合成片基芯片:如果按其应用不同,可分为表达谱芯片、诊断芯片、检测芯片;如果按其结构不同可分为DNA阵列和寡核苷酸芯片;如果按其制备方法不同可分为原位合成芯片和合成后交联芯片。目前,常用于基因芯片制作的固相支持物主要包括半导体硅片、普通玻璃片、尼龙膜等基质。它们各有优缺点,可根据不同的用途和目的选择使用。用硅片制作的芯片,其DNA探针排列的密度高,在1.28cm芯片上,可达40万点阵。检测灵敏度高但专一性差。用玻璃制作的芯片,可用于双色荧光标记杂交,便于杂交信号的检测,但其灵敏度低,而且对玻璃片的处理要求高。尼龙膜主要用于制作eDNA芯片,即将不同的eDNA片断点阵于尼龙膜上,它可用同位素标记检测,灵敏度高,专一性好,但是DNA阵列的密度低。DNA探针的制备及固化探针的制备及固化有2种方法:①在片基上原位合成寡核苷酸;②在片基以外制备DNA探针,并以显微打印等手段将其固化于片基上。作者介绍了待测DNA样品的制备、标记样品与基因芯片杂交、杂交信息的检测与分析、操作过程中存在的问题及解决办法。基因芯片可以对病原细菌检测、病毒的检测及其他方面如支原体检测等。问题和展望基因芯片在病原微生物检测中具有快速、灵敏、高通量、自动化等特点。但目前仍面临一些问题有待解决,这些问题主要体现在硬件和软件2个方面。在硬件方面,DNA芯片技术需要昂贵的尖端仪器,如生产原位合成芯片需要光刻机器和寡核苷酸合成仪;构建DNA微集阵列的自动仪器约需8万美元以上,而检测芯片则要激光共聚焦显微镜、落射荧光显微镜等设备,费用较高。在软件(即技术)上也存在一些问题。首先,探针制备的环节上,原位合成寡核苷酸技术复杂,且有专利保护,合成过程中有可能插入错误核苷酸或混入杂质,降低了特异性和信噪比;显微打印技术较灵活,易实现,但需收集或合成大量探针,且阵列的集成度不高。其次,在样品和芯片杂交的环节上 ,因为杂交在固相上进行,空间因素会对杂交造成不利影响;还有,在一个芯片上存在多种探针,这对杂交条件是个挑战,因为这种探针的最适条件未必适合另一种探针;而且,复杂的探针如长寡核苷酸容易自身形成二 、三级结构,影响与靶序列的杂交或给出错误的阴性信号,当然在其它技术环节上也存在着一些难题,如样品准备复杂、检测的灵敏度低等。虽然基因芯片技术在多个环节上有待提高,但它在生命科学及相关领域中已呈现出广阔的应用前景,相信随着研究的不断深入和技术的更加完善,基因芯片会成为基础研究和临床应用的强有力工具。

基因芯片分析相关的耗材

  • 人类基因组芯片配件
    人类基因组芯片配件是全球第一个完全基于人类基因组顺序的基因芯片微阵列,这种基因芯片的设计和制造使用了完整注解的25 509组人类基因。 这种新一代人类基因组芯片配件相对于其它产品有重要优势,其它产品往往从来源源注释不清的基因数据库组成ESTs序列。 这 种ArrayIt人类基因组芯片H25K/BT是一种多用途微阵列,含有26304长的寡核苷酸,设计用来优化在一个单一的生化反应中的对整个人类基因组 的研究。用户可以利用从基因组DNA,mRNA和蛋白质中的样品。可以研究许多问题,从核型分析和基因表达分析,到以染色质结构和蛋白质-DNA相互作用 的问题都可以研究。基因表达的革命性的学说是,一个位点上基因的单个杂交反应中可以定量测量超过300 000个基因转录。研究人员可能在H25K/ BT芯片买到一个或多个寡核苷酸。 关于生物信息学,寡核苷酸生产的最先进的技术,芯片印刷和表面化学带来前所未有的特异性和敏感性,从而优化结果的分析和利用。 编号 名称 H25K:BT 人类整个基因组(25 509 基因 - 26 304 长寡核苷酸)
  • 人类基因组芯片
    人类基因组是全球第一个完全基于人类基因组顺序的基因芯片微阵列,这种基因芯片的设计和制造使用了完整注解的25 509组人类基因。 这种新一代人类基因组芯片相对于其它产品有重要优势,其它产品往往从来源源注释不清的基因数据库组成ESTs序列。 这 种ArrayIt人类基因组芯片H25K/BT是一种多用途微阵列,含有26304长的寡核苷酸,设计用来优化在一个单一的生化反应中的对整个人类基因组 的研究。用户可以利用从基因组DNA,mRNA和蛋白质中的样品。可以研究许多问题,从核型分析和基因表达分析,到以染色质结构和蛋白质-DNA相互作用 的问题都可以研究。基因表达的革命性的学说是,一个位点上基因的单个杂交反应中可以定量测量超过300 000个基因转录。研究人员可能在H25K/ BT芯片买到一个或多个寡核苷酸。 关于生物信息学,寡核苷酸生产的最先进的技术,芯片印刷和表面化学带来前所未有的特异性和敏感性,从而优化结果的分析和利用。 编号 名称 H25K:BT 人类整个基因组(25 509 基因 - 26 304 长寡核苷酸)
  • 基因发现芯片
    基因发现芯片Discover Chip™ 可帮助用户研究380个基因,包括几种常用重要基因:拟南芥基因,人类基因,小鼠基因,大白鼠基因。这些基因发现芯片是寡核苷酸微阵列芯片,包含选自最重要的细胞功能中380个基因,可以获得转录和生理信息。70-mer的寡核苷酸在芯片(第100级微阵列洁净室)上双份合成,净化和打印。基因发现芯片芯片上有4种被动控制。寡核苷酸被认为是独一无二的,通过BLAST的被计算分析,以公共数据库序列为目标,避免“交叉杂交”。允许Cy3和Cy5信号正常化以及微阵列实验的控制和正常化。 编号 名称 DCA 发现芯片™ -拟南芥 DCH 发现芯片™ -人类 DCM -发现芯片™ - -小鼠 DCR -发现芯片™ --大白鼠
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制