当前位置: 仪器信息网 > 行业主题 > >

望远镜测距仪

仪器信息网望远镜测距仪专题为您提供2024年最新望远镜测距仪价格报价、厂家品牌的相关信息, 包括望远镜测距仪参数、型号等,不管是国产,还是进口品牌的望远镜测距仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合望远镜测距仪相关的耗材配件、试剂标物,还有望远镜测距仪相关的最新资讯、资料,以及望远镜测距仪相关的解决方案。

望远镜测距仪相关的论坛

  • 《望远镜式测距仪校准规范》发布

    近日,浙江省计量科学研究院作为第一起草单位编制的国家规程《望远镜式测距仪校准规范》,经国家市场监管总局批准正式实施。本规范为国内首次发布。  望远镜式测距仪是一种将望远镜光学瞄准与激光脉冲测距技术相结合来测定空间远距离的测量仪器。最远测距达3000米。主要应用于地质勘测、近海航行、电力电信部门测量、工程规划、气象研究、消防系统、高尔夫球场等众多民用领域。  规范的发布实施将有效指导望远镜式测距仪校准工作,为该类仪器的日常校准提供技术依据,为相关领域行政监管、社会发展提供有效的计量基础支撑。

  • 最新技术将哈勃望远镜测距能力提升10倍

    http://i0.sinaimg.cn/IT/2014/0421/U5385P2DT20140421093802.jpg示意图:利用三角视差法测量恒星的距离  新浪科技讯 北京时间4月19日消息,据美国宇航局网站报道,借助美国宇航局哈勃空间望远镜,天文学家们现在已经可以精确地测定远在1万光年之外的恒星距离,从而将这一距离范围提升了10倍。  天文学家们在这台已经有24年历史的空间望远镜上采用了一种名为“空间扫描”的新技术,其可以极大地提升哈勃望远镜的观测角分辨率。当这项技术被应用于测量天体视差,它就能将哈勃进行这种精确测量的天体距离提升10倍之多。  诺贝尔奖得主,马里兰州巴尔的摩空间望远镜研究所的亚当·里斯(Adam Riess )表示:“这项新的技术将有望加深我们对暗能量的理解,这是空间的一种神秘组成部分,它让我们的宇宙不断加速膨胀。”  天体视差则是一种用于天体距离测量的三角测量法,这也是测量天体距离最可靠的方法,在过去的将近100年里一直被全球各地的天文学家们广泛采用。这种方法将地球的轨道直径作为一个巨大三角形的底边,而将与目标天体的连线作为两条侧边构成一个极其狭长的三角形。通过精确测量这个三角形的角度,便能计算出目标天体的距离。  然而这种方法只能在一定的距离范围内适用,这个范围大约是数百光年。比如说测量半人马座α的距离,这已经是除了太阳之外距离我们最近的恒星系统了,而三角测量法得到的角度值只有大约1角秒。这几乎相当于从两英里外看一枚一角钱硬币宽度的大小。  可以想象,对于那些距离更远的天体,我们采用三角视差法对它们进行距离测量将会是巨大的挑战。多年以来,天文学家们一直致力于通过不断改进观测角分辨率来延伸三角视差法测距的适用范围。  这项新的技术改进在天文学家们尝试对一类特殊变星进行观测时得到了验证。天文学家们使用哈勃空间望远镜对一颗距离大约7500光年,位于御夫座的造父变星进行了测距。测量的结果非常理想,因此天文学家们正计划采用这种方法对那些遥远的其他造父变星进行这样的测量。  这一成果更加坚实地奠定了天文学家们口中所说的“三级阶梯”。这种阶梯最底层的一级正是基于对造父变星的测量构建的,这种变星的特殊之处在于,由于其亮度和亮度变化周期之间存在一定的关联,因此可以被用来估算距离。利用造父变星测量天体距离的方法已经被运用了超过100年的时间。它们也被广泛应用于校正更遥远距离上的“量天尺”,如Ia型超新星。  里斯和约翰霍普金斯大学的科学家们开发的这项新技术能够让哈勃观测的角分辨率达到惊人的10亿分之五度。  为了进行测距,研究组间隔6个月对这颗造父变星进行了观测,这样做是因为地球在这两个时间点正好位于其轨道上的两端。两次测量的结果上可以发现这颗恒星的位置发生了大约相当于哈勃广角相机3上1680万像素的相机上单个像素千分之一大小的变化。随后又过了6个月之后研究组进行了第三次观测,这次观测的目的是进行校正,从而从数据中剔除由于恒星自身的运动和其他潜在因素可能对结果产生的细微影响。  由于在1998年领导一个科学组发现了宇宙加速膨胀的事实,里斯在2011年与他人一起分享了诺贝尔物理学奖。宇宙加速膨胀的事实违反常理,让很多人感到吃惊。科学家们认为其原因与神秘的,充斥宇宙空间的暗能量有关。此次最新改进的,更高精度的测量技术能让里斯的团队更好地了解宇宙的膨胀程度。他的目标是改进对宇宙膨胀率测量的精度,以便能更好地加深对暗能量本质的理解。  哈勃空间望远镜是一个美国宇航局与欧洲空间局之间的国际合作项目。整个项目由美国宇航局戈达德空间飞行中心管理,并由空间望远镜研究所负责具体的运行操作。(晨风)

  • 激光测距仪应用介绍

    激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。脉冲法测量距离的精度是一般是在+/- 1米左右。另外,此类测距仪的测量盲区一般是15米左右。 激光测距仪是用激光做为主要工作物质来进行工作的。目前,市场上的手持式激光测距仪的工作物质主要有以下几种:工作波长为905纳米和1540纳米的半导体激光,工作波长为1064纳米的YAG激光。1064纳米的波长对人体皮肤和眼睛是害的,特别是如果眼睛不小心接触到了1064纳米波长的激光,对眼睛的伤害可能将是永久性的。所以,在国外,手持激光测距仪中,完全取缔了1064纳米的激光。在国内,某些厂家还有生产1064纳米的激光测距仪。 对于905纳米和1540纳米的激光测距仪,我们就称之为“安全”的。对于1064纳米的激光测距仪,由于它对人体具有潜在的危害性,所以我们就称之为“不安全”的。 激光测距仪已经被广泛应用于以下领域:电力,水利,通讯,环境,建筑,地质,警务,消防,爆破,航海,铁路,反恐/军事,农业,林业,房地产,休闲/户外运动等。

  • 激光测距仪的应用与使用

    激光测距仪是利用激光对目标的距离进行准确测定的仪器。激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一。激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一,因而被广泛用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。它是提高高坦克、飞机、舰艇和火炮精度的重要技术装备。激光测距仪利用红外线测距或激光测距的原理测距原理基本可以归结为测量光往返目标所需要时间,然后通过光速c =299792458m/s 和大气折射系数n 计算出距离D。由于直接测量时间比较困难,通常是测定连续波的相位,称为测相式测距仪。当然,也有脉冲式测距仪,需要注意,测相并不是测量红外或者激光的相位,而是测量调制在红外或者激光上面的信号相位。建筑行业有一种手持式的激光测距仪,用于房屋测量,其工作原理与此相同。激光测距仪使用时需要注意的问题:激光测距仪不能对准人眼直接测量,防止对人体的伤害。同时,振动仪一般激光测距仪不具防水功能,所以需要注意防水。最新的美国里奥波特激光测距仪,由于在美国当地主要适用于户外狩猎爱好者,所以制作之处的优势即是可以防水防雾,配有丛林树木枝叶涂彩。激光器不具备防摔的功能,数字风速仪所以激光测距仪很容易摔坏发光器。    激光测距仪维护:   ① 经常检查仪器外观及时清除表面的灰尘脏污、油脂、霉斑等。   ② 清洁目镜、物镜或激光发射窗时应使用柔软的干布。严禁用硬物刻划,以免损坏光学性能。  ③ 本机为光、机、电一体化高精密仪器,使用中应小心轻放,严禁挤压或从高处跌落,以免损坏仪器。

  • 介绍激光测距仪

    激光测距仪是用激光做为主要工作物质来进行工作的。目前,市场上的手持式激光测距仪的工作物质主要有以下几种:工作波长为905纳米和1540纳米的半导体激光,工作波长为1064纳米的YAG激光。1064纳米的波长对人体皮肤和眼睛是害的,特别是如果眼睛不小心接触到了1064纳米波长的激光,对眼睛的伤害可能将是永久性的。所以,在国外,手持激光测距仪中,完全取缔了1064纳米的激光。在国内,某些厂家还有生产1064纳米的激光测距仪。

  • 【转帖】激光测距仪基本知识

    激光测距仪基本知识激光测距仪的工作原理是怎样的?  激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。脉冲法测量距离的精度是一般是在+/- 1米左右。另外,此类测距仪的测量盲区一般是15米左右。激光测距仪的应用领域主要是那些方面?  激光测距仪已经被广泛应用于以下领域:电力,水利,通讯,环境,建筑,地质,警务,消防,爆破,航海,铁路,反恐/军事,农业,林业,房地产,休闲/户外运动等。为什么激光测距仪还有所谓“安全”和“不安全”的区别?  顾名思义,激光测距仪是用激光做为主要工作物质来进行工作的。目前,市场上的手持式激光测距仪的工作物质主要有以下几种:工作波长为905纳米和1540纳米的半导体激光,工作波长为1064纳米的YAG激光。1064纳米的波长对人体皮肤和眼睛是害的,特别是如果眼睛不小心接触到了1064纳米波长的激光,对眼睛的伤害可能将是永久性的。所以,在国外,手持激光测距仪中,完全取缔了1064纳米的激光。在国内,某些厂家还有生产1064纳米的激光测距仪。   对于905纳米和1540纳米的激光测距仪,我们就称之为“安全”的。对于1064纳米的激光测距仪,由于它对人体具有潜在的危害性,所以我们就称之为“不安全”的。

  • 【资料】激光测距仪在林业上的应用

    多功能激光测量仪较传统罗盘有精度高、免记录、免绘图、免拉测绳、免砍草、省时省工及电脑处理、绘图等优点,经实地测试及现场操作,均较以往仪器超出甚多,值得推广激光测距仪在林业上的应用 野外数据采集是一个长期困扰测量人员、制图员、GIS数据库管理人员、工程师和研究人员的问题。问题很简单:就是如何高效、准确地收集定位和物理特征数据,用于制图、编目、资源清查和存入数据库。 在某一给定情况下,找出这一问题的结果是令人烦恼的。因为: (1)可能有很多方法和技术可以使用; (2)在绝大多数情况下,没有一种方法能单独提供完整而令人满意的结果。 激光技术的应用,尤其是美国激光技术公司(LTI)研制的激光测距仪自1990年由美国农业部林业局作为野外测量样机并进行评估其未来发展应用以来,日趋完善,并可与数据采集器、GPS连接,而且可配置丰富的各种软件,使林业测量由手操罗盘、绳带、倾斜仪和旧式望远镜推进到单人操作、全站位、全面综合的多用途仪器时代。 资源辽阔的中国,有着丰富的林业资源。随着改革开放带来的大规模生产,林业在国民经济中的重要地位日渐显著,商用木材需求激增。如何规划林业的发展,对林业资源更高精度的测量,以木材销售为重点的更精确的林业资源清查和编目,成为林业部门重要的议题。我们把激光测量技术介绍进来,将有助于推动我国的林业测量技术迈进新时代。 多功能激光测量系统的用途 (一) 距离测量----距离测量为本仪器主要功能,可直接显示水平距离或倾斜距离。 (二) 方位角----可直接显示测量目标的磁方位角,或者相对方位角。 (三) 倾斜角----可以显示倾斜角度(垂直角)或倾斜百分率。 (四) 目标坐标程序----目标程序功能即测量上所谓定址或定桩(放样)的功能,即在已知点上将其坐标(X,Y,Z)输入仪器,对准测量目标量测可以立即显示测定位置的坐标。 (五) 高度测量----利用三角原理(俯、仰角及水平距离)来测量物体高度,包括树木高度、建筑物高度等。 (六) 测量功能----本仪器具有另一项特殊功能程序,可直接进入测量功能,进行测量工作并自动存储方位角、距离、倾斜角等资料,并可输入电脑,经PC软件计算处理。 (七) 导航功能----因具有磁通罗经仪,可以担任导航功能。 多功能激光测量系统在林业上的应用探讨 (一)多功能激光测量仪与GPS结合 引进多功能激光测量仪当初主要与GPS相结合,即GPS在地形受限制地区配合多功能激光测量仪进行测量。 具体应用: 1) 滥垦地取缔与清查 利用激光测量仪与GPS、GIS及其软件相结合,配合便携式电脑来进行环境监控为目前各学术机构最热门的研究工作项目。在林业上则为滥垦地取缔与清查应用,但由于GPS使用时可能会受到地形限制,尚需进一步研究与测试。此外也可结合数码相机,将违规情形拍摄,存档,以供取缔之证据。 2) 租地清查 多功能激光测量仪与GPS结合进行租地清查工作,不但速度快,且精确度亦较高。此外亦可将数字化图档预先输入便携式电脑,携带至现场进行清查对比工作。 3) 区外保安林清查 目前本局区外保安林清查,均采用电子平板仪进行清查及放桩工作。但由于三角点不足,常造成清查工作缓慢。如能利用公分级GPS进行布点,然后利用激光测量仪进行施测,并利用目标坐标程序功能进行放桩工作,应可加速清查工作,并减少事后图籍数据化工作。 (二)林地测量 由于多功能激光测量系统结合激光测距与电磁式数字罗经于一身,其测距、测角精度均较罗盘仪、测绳高出甚多,实为林地测量最佳新仪器。 根据测试多功能激光测量仪应用于林地测量之优点为: 1)操作简易,测量锁定甚快、精度高。仪器可以自动纪录数据,电脑传输,无人为笔误。 2)数字仪表板自动显示,无人为目视判读误差。 3)节省人力及时间。4 )附有处理软件,可做点、线、导线之处理及闭合差、面积等之计算,并可连接印表机或绘图仪,直接绘出测量图形。 数据采集用于林业资源清查,即树高、可作商业性用材的高度,植被绘制,野生特殊树种、优良树种定位,确定区域内树的等级及经济价值,或在进行栽培管理研究时如修枝,决定产生特定高度的地方的树位置,绘制伐木量剖面图,确定资源边界;在收成木材考虑捆堆木材方法时,用于捆堆木材通道的地形测定、绘制,以及用作通用目的的道路和崎岖小道施工前调查是很重要的。使用以往可使用的常规调查、航空摄影和GPS定位都可能遇到各种问题(例如:成本,准确度,障碍物等)。 LTI设计的测量系统适合基本植被资源和木材销售巡查和规划测定,伐木量分布图和道路调查测量等的需要。至1993年6月,美国林业局已购买这些仪器超过150台。在美国农业部林业局在野外规划使用中,该激光测距仪不但功能完备、精确和耐用,而且节省成本,特别是对目标不清楚的地方。从爱达荷北部的灌木地到阿拉斯加东南的大雨林都证明了这一点。

  • 【分享】激光测距仪测量原理

    【分享】激光测距仪测量原理

    激光测距是光波测距中的一种测距方式,如果光以速度c在空气中传播在A、B两点间往返一次所需时间为t,则A、B两点间距离D可用下列表示。 D=ct/2 式中:D——测站点A、B两点间距离; c——光在大气中传播的速度; t——光往返A、B一次所需的时间。 由上式可知,要测量A、B距离实际上是要测量光传播的时间t,根据测量时间方法的不同,激光测距仪通常可分为脉冲式和相位式两种测量形式。 相位式激光测距仪相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。即用间接方法测定出光经往返测线所需的时间,如图所示。相位式激光测距仪一般应用在精密测距中。由于其精度高,一般为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。若调制光角频率为ω,在待测量距离D上往返一次产生的相位延迟为φ,则对应时间t 可表示为:t=φ/ω将此关系代入(3-6)式距离D可表示为 D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ) =c/4f (N+ΔN)=U(N+) 式中:φ——信号往返测线一次产生的总的相位延迟。 ω——调制信号的角频率,ω=2πf。 U——单位长度,数值等于1/4调制波长 N——测线所包含调制半波长个数。 Δφ——信号往返测线一次产生相位延迟不足π部分。 ΔN——测线所包含调制波不足半波长的小数部分。 ΔN=φ/ω 在给定调制和标准大气条件下,频率c/(4πf)是一个常数,此时距离的测量变成了测线所包含半波长个数的测量和不足半波长的小数部分的测量即测N或φ,由于近代精密机械加工技术和无线电测相技术的发展,已使φ的测量达到很高的精度。 为了测得不足π的相角φ,可以通过不同的方法来进行测量,通常应用最多的是延迟测相和数字测相,目前短程激光测距仪均采用数字测相原理来求得φ。 由上所述一般情况下相位式激光测距仪使用连续发射带调制信号的激光束,为了获得测距高精度还需配置合作目标,而目前推出的手持式激光测距仪是脉冲式激光测距仪中又一新型测距仪,它不仅体积小、重量轻,还采用数字测相脉冲展宽细分技术,无需合作目标即可达到毫米级精度,测程已经超过100m,且能快速准确地直接显示距离。是短程精度精密工程测量、房屋建筑面积测量中最新型的长度计量标准器具,宏诚科技的CEM手持式激光测距仪LDM-100就是测量的最佳助手。 手持式激光测距仪使用注意事项 [font=Times New Rom

  • 目前最精准的测距仪

    激光测距仪,是利用激光对目标的距离进行准确测定的仪器。激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一。具体功能:1.面积体积的计算功能;2.运用勾股定理间接测量;3.加减功能;4.连续测量功能;5.最大与最小距离跟踪;6.照明显示与多行显示;7.蜂鸣提示;8.精度±1.5mm;9.外观小巧,双注塑防滑软胶超舒适手感。 激光测距仪是利用激光对目标的距离进行准确测定的仪器。激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。  若激光是连续发射的,测程可达40公里左右,并可昼夜进行作业。若激光是脉冲发射的,一般绝对精度较低,但用于远距离测量,可以达到很好的相对精度。

  • 【分享】激光测距仪的操作特点!

    !激光测距基本知识    激光测距仪是利用激光对目标的距离进行准确测定的仪器。激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。    激光测距仪的特点    激光测距仪重量轻、体积小、单人操作!操作简单,速度快,准确性高!其误差仅为其它光学测距仪的五分之一到数百分之一,因而被广泛用于地形测量。

  • 【分享】激光测距仪的诞生

    世界上第一台激光器,是由美国休斯飞机公司的科学家梅曼于1960年,首先研制成功的。美国军方很快就在此基础上开展了对军用激光装置的研究。1961年,第一台军用激光测距仪通过了美国军方论证试验,对此后激光测距仪很快就进入了实用联合体。  激光是六十年代发展起来的一项新技术。它是一种颜色很纯、能量高度集中、方向性很好的光。激光测距仪是利用激光进行测距的一种仪器。它的作用原理很简单:通过测定激光开始发射到激光从目标反射回来的时间来测定距离。例如用激光测距仪来测量月球的距离,如果激光从开始发射到从月球反射回来的时间被测定为2.56秒,激光发射到月球的单程时间就等于1.28秒,而激光的速度是光速,等于每秒三十万公里。因此,测得的月球离地球的距离为单程时间和光速的乘积,即三十八万四千公里。为了发射和接收激光,并进行计时,激光测距仪由激光发射器、接收器、钟频振荡器及距离计数器等组成。激光测距仪还能用来对人造卫星跟踪测距,测量飞机飞行高度,对目标进行瞄准测距,以及进行地形测绘,勘察等。  激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一,因而被广泛用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。它是提高高坦克、飞机、舰艇和火炮精度的重要技术装备。  由于激光测距仪价格不断下调,工业上也逐渐开始使用激光测距仪。国内外出现了一批新型的具有测距快、体积小、性能可靠等优点的微型测距仪,可以广泛应用于工业测控、矿山、港口等领域。

  • 如何选择一具好的天文望远镜?

    一要了解望远镜的基本知识天文望远镜分折射式、反射式和折反射式三点,了解其优缺点折射式使用起来比较方便,视野较大,星相明亮,但是有色差,从而降低了分辨率。优质折射镜的物镜是2片双分离消色差物镜或3片复消色差物镜。不过,消色差或复消色差并不能完全消除色差。反射镜的优点是没有色差,但是,反射镜慧差和象散较大,使得视野边缘像质变差。常用的反射镜有牛顿式,光学系统简单、价值便宜。球面反射镜在后端,目镜在前端侧面。折反射兼顾了折射镜和反射镜的优点:视野大、像质好、镜筒短、方便携带。二要合理选择望远镜的焦距选择望远镜的焦距,与你想要观测的天体有关。如果你想观测星云、寻找彗星,要选择短焦距镜;如果你想观测月亮和行星,要选择长焦距镜;如果你想观双星、聚星、变星和星团,最好选择中焦距镜。中焦距镜可以两头兼顾,比较受欢迎。短焦距=焦距/口径15, 中焦距在之间。三放大倍数越大越好?错根据天文学家长期观测的经验,最大放大倍数不得超过1.5倍物镜的口径(以毫米数表示),用口径100毫米物镜的望远镜,在大气条件为中等宁静度的情况下观测,不得大于125倍;最佳宁静度时,可达190倍。口径200毫米时,在大气条件为中等宁静度的情况下观测,不得大于170倍;最佳宁静度时,可达340倍。实际上对于爱好者观测明亮的天体,最大倍率可达2倍,甚至2.5倍物镜的口径(以毫米表示)。不过,过大的倍数使影像更大、更暗,同时大气抖动也放大了,使影像更模糊。四根据个人的经济能力,尽可能选择口径大的望远镜1.口径大,接收到的光能量就多,可以观测到更暗的天体;2.口径大,最大有效放大倍数V就大,因为V=主镜口径D(以毫米表示)3.口径大,分辨率高,可以观测到行星更多细节,可以分辨双星,还有可能发现更暗的小行星和彗星。

  • 【求助】采购激光测距仪

    需要采购激光测距仪一台,要求:最大测距距离1000米,也需要测高。烦请高人帮忙介绍一下品牌、价格、供应商。hdqinla@yahoo.com.cn

  • 激光测距仪出手

    我有一部激光测距仪A5要出手,全新。如有朋友需要的话就可以省不少噢。

  • 百年一遇超新星爆发开始 可用望远镜观看

    百年一遇超新星爆发开始 可用望远镜观看http://www.people.com.cn/mediafile/pic/20110908/54/4486030386094517586.jpg专家称,百年一遇的超新星爆发即将开始,天文爱好者们仅用普通望远镜就可看到。  据外媒报道,8日夜晚,天文爱好者们就能观测到百年一遇的超新星爆炸过程,这是1954年以来能用肉眼看到的最明亮的一次超新星爆炸。如果天气晴朗,人们可用双目望远镜在远离灯光的地方直接观测到这一震撼人心的天体活动。据专家称,观测的方位应该是北斗七星“勺柄”的东方。  超新星爆发就是一颗大质量恒星的“暴死”过程。在恒星演化的后期,星核和星壳彻底分离的时候,往往要伴随着一次超级规模的大爆炸,这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见。  由于即将爆炸的恒星据银河系仅有2100万光年的距离,所以爱好者们才能观赏到这一奇景。牛津大学的教授表示,根据哈勃望远镜8月底抓拍到的景象,这颗恒星如今应该到了超新星爆发的临界点。爆炸结束后直到10月中旬光芒才会渐渐消失。天体学家马克萨利文教授说:“任何人都能只用一个双目望远镜看到,对于很多人来说,这或许是一辈子也看不到的震撼场景。下一次或许要等到100年以后了。”

  • IBM将投3290万欧元建多姆项目,运算SKA望远镜海量数据

    想要近一步探测宇宙大爆炸之谜?想要更加了解暗物质?那么还在规划中的世界上最大的望远镜——〝平方千米阵〞(SKA:The Square Kilometer Array)将可能会给世人更多答案。SKA望远镜将被用来探索宇宙大爆炸之谜,并探测暗能量产生的效应。尽管世界上最大、最灵敏的望远镜能够带领我们在宇宙探索中进入新的篇章。但目前SKA望远镜却面临着一个巨大的难题需要解决。这个庞大的望远镜投入工作后,将会产生海量的信息,每天10亿个GB,相当于正常全球互联网数据流通总量的两倍。如此庞大的数据量,如何解决?近日,IBM宣布将在未来5年与荷兰无线天文研究所(Astron)共同完成一个项目——〝多姆〞(Dome)项目。IBM将为该项目投资投资3290万欧元,而该项目的主要任务就是对SKA望远镜的庞大数据进行运算。IBM也在考虑数据转移问题,毕竟SKA望远镜产生的数据量过于庞大。目前,备选方案为采用光缆与光电子技术直接传输,或者用超大容量的数据储存器转存。尽管该项目听起来十分艰巨,但IBM十分有信心,希望借鉴相关经验完成该项目

  • 射电望远镜可向太空发送地球文明信息

    射电望远镜是观测和研究来自天体的射电波的基本设备,可以测量天体射电的强度、频谱及偏振等量。包括收集射电波的定向天线,放大射电信号的高灵敏度接收机,信息记录﹑处理和显示系统等。在波多黎各的阿雷西沃山谷中,科学家在这里建造了世界上最大单面口径的射电望远镜,其被命名为阿雷西沃射电望远镜。在此之前,科学家已经通过该射电望远镜向遥远的M13球状星团发射过二进制文明信息,该球状星团距离我们大约2.5万光年。阿塔卡马大型毫米波/亚毫米波阵列望远镜在不久前刚建成,至今已经取得了令人惊讶的科学成果,其建造在海拔超过5000米的智利查南托高原上,这里的环境被认为是世界上最后干旱的地区之一。这种建造在世界之巅的望远镜阵是令人印象深刻的景点。到目前为止,阿塔卡马毫米波射电阵列是最为敏感的陆基天文台之一,可观测到早期宇宙中的星系等不可思议的天体。由于阿塔卡马毫米波射电阵列地处高原,可以削弱大气对射电望远镜的部分干扰,先进的驱动器可精确定位射电望远镜的精度,保证指向上的准确性。望远镜阵列拥有庞大的碟形天线阵列,因此其处理数据的能力也非同一般,相当于300万台笔记本电脑。2012年10月28日,亚洲最大的全方位可转动射电望远镜在上海天文台正式落成。这台射电望远镜的综合性能排名亚洲第一、世界第四,能够观测100多亿光年以外的天体,将参与我国探月工程及各项深空探测。位于美国新墨西哥州圣阿古斯丁平原上的甚大阵也是著名的射电望远镜,其海拔高度为2000米左右,拥有27座巨大的碟形天线,科学家希望通过该射电望远镜阵观测到银河系中神秘的类星体,以及伽马射线暴等极端天文现象。

  • 冰立方”望远镜探寻8000英尺下的中微子

    中微子是不带电的静止质量为零或很小的基本粒子。据国外媒体报道,科学家在南极深处打造巨型望远镜搜寻神秘的中微子,深度达到了冰层下8000英尺,耗时近十年。建成该巨型望远镜有助于研究人员揭开中微子的奥秘,该粒子可以帮助科学家了解宇宙的起源之谜。目前,科学家正在使用这台堪称世界上最大的望远镜,虽然它“深埋”在南极冰层下,但这项研究却可以发现“微小的电中性粒子”的踪迹。这座巨型望远镜被科学家们称为“冰立方”(IceCube),意喻为该望远镜阵列覆盖了南极大陆将近一立方千米的冰层,并处于冰层下数千英尺深处。根据在“冰立方”中微子探测望远镜阵列工作的科学家新西兰坎特伯雷大学物理学家珍妮·亚当斯(Jenni Adams)介绍:“如果你举起手指,每秒将有数千亿个来自太阳的中微子穿过你的手指。”由于中微子可产生蓝色切伦科夫辐射,数字化光模块传感器可探测到中微子的运行轨迹。研究人员之所以将巨型望远镜阵列部署在南极冰层下方,是因为大型冰川可增加中微子与原子的撞击发生率,而且插入深孔中的柱形探测器形成了阵列分布,数千英尺的冰层下可避免光线干扰,保护中微子望远镜阵列。物理学家珍妮·亚当斯在墨尔本举行的高能物理国际会议上提出,如果我们星系中的一颗超新星现在被观测到爆发,“冰立方”中微子探测望远镜阵列就能捕捉到数百个中微子。科学界对中微子了解极晚。仅知它是轻子的一种,不带电,但质量未知,推算其轻到小于电子质量的百万分之一,并能以接近光速的运动穿透像地球直径那么厚的物质。在100亿个中微子中只有一个会与物质发生反应,因此中微子的检测非常困难。然而因大爆炸的残留,宇宙射线中却充斥着大量的中微子,大约为每立方厘米100个。这使它不仅在微观世界的基本规律中起着重要作用,且与宇宙的起源、演化及如今正反物质存在状态有着非比寻常的联系。中微子还大量地产生于超新星爆发时和宇宙中其它物理过程中。早先在日本的一个矿井和美国的俄亥俄用一个巨大的水容器来探测切连可夫辐射,从而探测到了来自超新星SN 1987A的中微子辐射。欧洲共同体的GALLEX和俄国的一个装置利用中微子和镓的相互作用来探测中微子。a

  • 世界最大射电望远镜落成:包含66台天线

    2013年03月14日 来源: 新浪科技 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130314/c0cb380a6d6112ab529b3d.jpg 沐浴在星光下的ALMA望远镜阵列。头顶上方是南半球的银河,可以看到麦哲伦星系  新浪科技讯 北京时间3月13日消息,据美国太空网报道,世界上最强大的射电天文观测设备即将亮相,揭开遮蔽我们视野的宇宙大幕。  在过去的两年间,科学家们一直在为ALMA——“阿塔卡玛毫米/亚毫米波阵列望远镜”建造新的望远镜天线,也同时不断提升其观测分辨率。现在,这一最新设备即将正式投入使用。  尽管这一大型观测阵列目前还尚未投入全面观测活动,然而其已经开始取得一些突破性的科学进展。就在去年,这一设备的观测结果确认在一颗褐矮星,即所谓“失败的恒星”周围存在一个原行星尘埃盘。ALMA同时还对围绕北落师门(南鱼座α)运行的行星进行了观测,并确认这些行星比原先认为的更小。  当全部66台望远镜全部建成之后,天文学家们预计将会有更多更大的发现。这台设备在毫米波段工作,这是一种波长比无线电波更短但是比可见光更长的电磁波。在这一波段科学家们将可以窥见围绕年轻恒星的低温尘埃带,并观察原始行星的形成。  美国国家科学基金会天文学分部主管詹姆斯·列维斯塔德(James Ulvestad)在本月5日的一次新闻发布会上表示,利用这一设备,天文学家们将可以探测到地球大小的行星。他表示:“ALMA已经观测到在恒星周围存在尘埃环,这些尘埃环非常窄,模型显示这些狭窄的尘埃环间隙中存在行星体。”他说:“尽管你看不到这些行星本身,但是你可以看到这些行星造成的影响。而这也将是ALMA设备进行系外行星观测的主要方式。”  被遮蔽的恒星新生景象  望远镜一般通过两种方式进行系外行星的搜寻:当行星围绕恒星运行时导致的恒星轻微晃动,以及当行星在恒星面前经过时造成的恒星亮度微小变动。  自从1995年发现第一颗系外行星以来,科学家们已经找到了数千颗可能是系外行星的疑似目标。仅仅是美国宇航局一家,其发射的专用于搜寻系外行星的开普勒空间望远镜迄今已经发现2740颗这类疑似目标。在搜寻活动的早期,科学家们最先发现的是那些木星大小的系外行星体,而随着技术的进步以及观测时间的积累,科学家们逐渐开始发现地球大小的系外行星。  而在这其中所缺失的环节便是行星形成的早期阶段。现有科学理论认为太阳系是在早期的原始太阳星云中形成的。随着这些尘埃颗粒之间的相互碰撞,积聚,成长,原始的行星开始形成。然而年轻的恒星系统周围往往“云遮雾绕”,在光学或可见光波段难以窥见其全貌。而这便是ALMA设备的施展其能力的舞台。  这一设备在归属上由欧洲南方天文台管理。欧南台ALMA项目主管沃尔夫冈·怀尔德(Wolfgang Wild)表示:“我们将会目睹闻所未闻的宇宙场景。”他表示,ALMA将目睹低温气体逐渐形成原行星,并了解行星从恒星周围的尘埃盘中逐渐形成的过程。  瑰丽山景  这一超级观测设备耗资13亿美元,其惊人分辨率的奥秘在于两大因素:高海拔以及远离人烟的位置。ALMA的台址海拔大约16500英尺(约合5000米)。这样的高度已经高出了绝大部分的大气层和水汽层,地球厚厚的大气层和大气中的水汽会对观测构成干扰。在位于海拔约2900米高处的ALMA办公设施内工作的天文学家们需要吸氧以适应高海拔的工作环境。  目前这里已经建成的天线有50台左右。当所有天线全部建成之后一共将会有66台天线,两两之间的距离可以相互移动,最远间隔可以达到9.9英里(约合16公里)。这些天线将会独立接收天空中的信号,随后将这些信号通过超级计算机进行综合并判断这个信号来自哪个位置。这样做的原理就有点像是我们通过两个耳朵接收声音并判断声音的来源一样,所不同的只是我们是判断我们身边声音的方向,而这个观测阵列所观测的则是整个宇宙。  ALMA阵列的高分辨率不仅可以让它观测年轻的行星系统,还能让其检测出气体云中的氢和其它构成生命体必须的原始物质。该阵列还能追踪星系的演化。怀尔德表示,尽管目前世界其他地方也建有相类似的毫米波及亚毫米波望远镜,但那些设备的分辨率是完全无法与ALMA相比的。他说:“ALMA的出现几乎就像是裸眼观测时代突然出现了望远镜一样,这是我们在观测能力上的巨大飞跃。”(晨风)

  • 如何科学看日食?可用望远镜投影法

    每当有天文景观出现时,人们都会激动不已,当然也不会错过观赏的好时机。但是,如果你观赏不当,很可能会自己的眼睛造成伤害,尤其是在看日食等天文景观时。就在今天,中国东部的人观赏到一场日环食的奇观。现在就来讲讲如何观测日环食吧! 很多人对于如何正确观测日食,并不了解,往往利用望远镜直接观看或者仅戴着普通墨镜就观看日食。日本国立天文台专家表示,戴普通墨镜观看日食,可能会让,不可见的有害光线进入眼睛,引发日食网膜症等疾病。而用望远镜裸眼观看日食,则更加危险,甚至会导致失明。同时,儿童观看日食更需保护自己的眼睛,因为儿童眼睛透光率更高。 那如何正确观看日食呢?专家推荐了一种望远镜投影方法。这种方法无需直接仰望太阳,而是让部分日食光线通过开有小孔的厚纸,使日食影像投射在墙壁或其他平面上。如果要采用天文望远镜观测,也最好在专业指导下进行。日食虽好看,可要记得保护自己的眼睛哦。

  • 【分享】斯皮策空间望远镜

    【分享】斯皮策空间望远镜

    2009年5月15日,美国宇航局的主力红外空间望远镜“斯皮策”终于耗尽了它最后一滴用于制冷的液氦,结束了为期五年的“低温”使命。让我们跟随它一起去探访那些宇宙隐藏的角落……http://ng1.17img.cn/bbsfiles/images/2011/05/201105091231_293240_2185349_3.jpg图片说明]:斯皮策空间望远镜拍摄的反射星云NGC7129中的恒星形成区。版权:NASA/JPL-Caltech/T. Megeath (Harvard-Smithsonian CfA)。[/size]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制