当前位置: 仪器信息网 > 行业主题 > >

非原子荧光仪

仪器信息网非原子荧光仪专题为您提供2024年最新非原子荧光仪价格报价、厂家品牌的相关信息, 包括非原子荧光仪参数、型号等,不管是国产,还是进口品牌的非原子荧光仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合非原子荧光仪相关的耗材配件、试剂标物,还有非原子荧光仪相关的最新资讯、资料,以及非原子荧光仪相关的解决方案。

非原子荧光仪相关的论坛

  • 原子荧光光谱仪构造图解

    原子荧光光谱仪构造图解

    原子荧光光谱仪分非色散型原子荧光分析仪与色散型原子荧光光度计。这两类仪器的结构基本相似,差别在于单色器部分。两类仪器的光路如图:http://ng1.17img.cn/bbsfiles/images/2015/09/201509281136_568248_3041458_3.png 1 激发光源 可用连续光源或锐线光源。常用的连续光源是氙弧等,常用的锐线光源是高强度空心阴极灯、无极放电灯、激光等。 2 原子化器 原子荧光光谱仪对原子化器的要求与原子吸收光谱仪基本相同。 3 光学系统 光学系统的作用是充分利用激发光源的能量与接收有用的荧光信号,减少和除去杂散光。 4 检测器 常用的是光电倍增管,在多元素原子荧光光谱仪中,也用光导摄像管、析像管做检测器。检测器与激发光束成直角配置,以避免激发光源对检测器原子荧光信号的影响。

  • 【讨论】原子荧光的废液是如何处理的?

    原子荧光废液中处理可能残存的载流或者还原剂,还有一些重金属你的废液瓶是什么样的?是否是定期处理呢?废液桶中是否会有长期积存废液的情况呢?废液桶是否密封?大量的废液是否会在里面发生二次反应,导致对实验室环境的污染?你的废液最终的流向又是哪里呢?是直接进下水道还是有专门的处理方式呢?欢迎大家参与讨论!!说说你们的做法,谈谈你对此的看法!

  • 普析PF6非色散原子荧光测汞

    普析PF6非色散原子荧光测汞,标准系列在线稀释0 0.1 0.2 0.4 0.8 1ug/L,最近前面低浓度的荧光值为负且标准系列不成线性关系,一般时候第一点荧光值在50到100多不等,有可能0.4和0.8浓度的荧光值相近,并且光谱上看到的峰不成抛物线形,呈前几秒升高后面成直线(延迟读数3s,读数时间9s),反复测量标准系列某个点,很多时候的值都不一样,差个几至近百都有可能。样品取10ml加0.3ml硝酸测定,直接上机测定,荧光值突然升高至光谱峰无法检测,然后又突然掉下来,荧光值显示可能有1W多。所用硝酸北京试剂厂BV III,硝酸载液浓度3%,硼氢化钾2%,氢氧化钾0.5%,负高压280 灯电流24。这样的情况出现好几次了,砷硒测量标准系列和样品均正常!

  • 原子荧光的类型

    气态自由原子吸收光源的特征辐射后,原子的外层电子跃迁到较高能级,然后又跃迁返回基态或较低能级,同时发射出与原激发波长相同或不同的发射即为原子荧光。原子荧光是光致发光,也是二次发光。当激发光源停止照射之后,再发射过程立即停止。原子荧光可分共振荧光、非共振荧光与敏化荧光等三种类型。图为原子荧光产生的过程。   A 起源于基态的共振荧光 起源于基态 正常阶跃荧光 起源于亚稳态  B 热助共振荧光 起源于亚稳态 热助阶跃荧光 起源于基态

  • 【转帖】原子荧光分类!

    原子荧光光谱的产生  气态自由[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]光源的特征辐射后,原子的外层电子跃迁到较高能级,然后又跃迁返回基态或较低能级,同时发射出与原激发波长相同或不同的发射即为原子荧光。原子荧光是光致发光,也是二次发光。当激发光源停止照射之后,再发射过程立即停止。  原子荧光的类型  原子荧光可分共振荧光、非共振荧光与敏化荧光等三种类型。图为原子荧光产生的过程。  其中,对(a)~(d)的详解见下表。   (a) (b) (c) (d)   A 起源于基态的共振荧光 起源于基态 正常阶跃荧光 起源于亚稳态   B 热助共振荧光 起源于亚稳态 热助阶跃荧光 起源于基态  ⑴ 共振荧光   气态[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]共振线被激发后,再发射与[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]收线波长相同的荧光即是共振荧光。它的特点是激发线与荧光线的高低能级相同,其产生过程见图中之A。如锌[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]213.86nm的光,它发射荧光的波长也为213.861 nm。若原子受热激发处于亚稳态,再吸收辐射进一步激发,然后再发射相同波长的共振荧光,此种原子荧光称为热助共振荧光。见图(a)中之B。   ⑵ 非共振荧光  当荧光与激发光的波长不相同时,产生非共振荧光。非共振荧光又分为直跃线荧光、阶跃线荧光、anti-Stokes(反斯托克斯)荧光。  (i)直跃线荧光   激发态原子跃迁回至高于基态的亚稳态时所发射的荧光称为直跃线荧光,见图(b)。由于荧光的能级间隔小于激发线的能级间隔,所以荧光的波长大于激发线的波长。如铅[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]283.31nm的光,而发射405.78nm的荧光。它是激发线和荧光线具有相同的高能级,而低能级不同。如果荧光线激发能大于荧光能,即荧光线的波长大于激发线的波长称为Stokes荧光;反之,称为anti-Stokes荧光。直跃线荧光为Stokes荧光。   (ii)阶跃线荧光   有两种情况,正常阶跃荧光为被光照激发的原子,以非辐射形式去激发返回到较低能级,再以发射形式返回基态而发射的荧光。很显然,荧光波长大于激发线波长。例钠[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]330.30nm光,发射出588.99nm的荧光。非辐射形式为在原子化器中原子与其他粒子碰撞的去激发过程。热助阶跃荧光为被光照射激发的原子,跃迁至中间能级,又发生热激发至高能级,然后返回至低能级发射的荧光。例如铬原子被359.35nm的光激发后,会产生很强的357.87nm荧光。阶跃线荧光产生见图(c)。   (iii)anti-Stokes荧光   当自由原子跃迁至某一能级,其获得的能量一部分是由光源激发能供给,另一部分是热能供给,然后返回低能级所发射的荧光为anti-Stokes荧光。其荧光能大于激发能,荧光波长小于激发线波长。例如铟吸收热能后处于一较低的亚稳能级,再吸收451.13nm的光后,发射410.18nm的荧光,见图(d)。   (3) 敏化荧光   受光激发的原子与另一种原子碰撞时,把激发能传递给另一个原子使其激发,后者再以发射形式去激发而发射荧光即为敏化荧光。火焰原子化器中观察不到敏化荧光,在非火焰原子化器中才能观察到。 在以上各种类型的原子荧光中,共振荧光强度最大,最为常用。  量子效率与荧光猝灭  受光激发的原子,可能发射共振荧光,也可能发射非共振荧光,还可能无辐射跃迁至低能级,所以量子效率一般小于1。 受激原子和其他粒子碰撞,把一部分能量变成热运动与其他形式的能量,因而发生无辐射的去激发过程,这种现象称为荧光猝灭。荧光的猝灭会使荧光的量子效率降低,荧光强度减弱。许多元素在烃类火焰中要比用氩稀释的氢—氧火焰中荧光猝灭大得多,因此原子荧光光谱法,尽量不用烃类火焰,而用氩稀释的氢—氧火焰代替。

  • 原子荧光如何保证测定的特异性?

    最近刚开始学习原子荧光,期间遇到一些问题感到不解。这些问题可能比较初级幼稚,现就有一个,如题。据说原子荧光分为色散型和非色散型,色散系统对分辨能力要求不高,这点与原吸很不一样。既然如此,难道原子荧光就不怕非待测元素引起的干扰吗?

  • 【转帖】原子荧光光谱的产生

    原子荧光光谱的产生  气态自由原子吸收光源的特征辐射后,原子的外层电子跃迁到较高能级,然后又跃迁返回基态或较低能级,同时发射出与原激发波长相同或不同的发射即为原子荧光。原子荧光是光致发光,也是二次发光。当激发光源停止照射之后,再发射过程立即停止。  原子荧光的类型  原子荧光可分共振荧光、非共振荧光与敏化荧光等三种类型。图为原子荧光产生的过程。  其中,对(a)~(d)的详解见下表。  (a) (b) (c) (d)  A 起源于基态的共振荧光 起源于基态 正常阶跃荧光 起源于亚稳态  B 热助共振荧光 起源于亚稳态 热助阶跃荧光 起源于基态  ⑴ 共振荧光   气态原子吸收共振线被激发后,再发射与原吸收线波长相同的荧光即是共振荧光。它的特点是激发线与荧光线的高低能级相同,其产生过程见图中之A。如锌原子吸收213.86nm的光,它发射荧光的波长也为213.861 nm。若原子受热激发处于亚稳态,再吸收辐射进一步激发,然后再发射相同波长的共振荧光,此种原子荧光称为热助共振荧光。见图(a)中之B。  ⑵ 非共振荧光  当荧光与激发光的波长不相同时,产生非共振荧光。非共振荧光又分为直跃线荧光、阶跃线荧光、anti-Stokes(反斯托克斯)荧光。  (i)直跃线荧光   激发态原子跃迁回至高于基态的亚稳态时所发射的荧光称为直跃线荧光,见图(b)。由于荧光的能级间隔小于激发线的能级间隔,所以荧光的波长大于激发线的波长。如铅原子吸收283.31nm的光,而发射405.78nm的荧光。它是激发线和荧光线具有相同的高能级,而低能级不同。如果荧光线激发能大于荧光能,即荧光线的波长大于激发线的波长称为Stokes荧光;反之,称为anti-Stokes荧光。直跃线荧光为Stokes荧光。  (ii)阶跃线荧光   有两种情况,正常阶跃荧光为被光照激发的原子,以非辐射形式去激发返回到较低能级,再以发射形式返回基态而发射的荧光。很显然,荧光波长大于激发线波长。例钠原子吸收330.30nm光,发射出588.99nm的荧光。非辐射形式为在原子化器中原子与其他粒子碰撞的去激发过程。热助阶跃荧光为被光照射激发的原子,跃迁至中间能级,又发生热激发至高能级,然后返回至低能级发射的荧光。例如铬原子被359.35nm的光激发后,会产生很强的 357.87nm荧光。阶跃线荧光产生见图(c)。  (iii)anti-Stokes荧光   当自由原子跃迁至某一能级,其获得的能量一部分是由光源激发能供给,另一部分是热能供给,然后返回低能级所发射的荧光为anti-Stokes荧光。其荧光能大于激发能,荧光波长小于激发线波长。例如铟吸收热能后处于一较低的亚稳能级,再吸收451.13nm的光后,发射410.18nm的荧光,见图(d)。  (3) 敏化荧光   受光激发的原子与另一种原子碰撞时,把激发能传递给另一个原子使其激发,后者再以发射形式去激发而发射荧光即为敏化荧光。火焰原子化器中观察不到敏化荧光,在非火焰原子化器中才能观察到。 在以上各种类型的原子荧光中,共振荧光强度最大,最为常用。  量子效率与荧光猝灭  受光激发的原子,可能发射共振荧光,也可能发射非共振荧光,还可能无辐射跃迁至低能级,所以量子效率一般小于1。 受激原子和其他粒子碰撞,把一部分能量变成热运动与其他形式的能量,因而发生无辐射的去激发过程,这种现象称为荧光猝灭。荧光的猝灭会使荧光的量子效率降低,荧光强度减弱。许多元素在烃类火焰中要比用氩稀释的氢—氧火焰中荧光猝灭大得多,因此原子荧光光谱法,尽量不用烃类火焰,而用氩稀释的氢—氧火焰代替。

  • 【转帖】原子荧光分类

    原子荧光光谱的产生  气态自由[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]光源的特征辐射后,原子的外层电子跃迁到较高能级,然后又跃迁返回基态或较低能级,同时发射出与原激发波长相同或不同的发射即为原子荧光。原子荧光是光致发光,也是二次发光。当激发光源停止照射之后,再发射过程立即停止。  原子荧光的类型  原子荧光可分共振荧光、非共振荧光与敏化荧光等三种类型。图为原子荧光产生的过程。  其中,对(a)~(d)的详解见下表。   (a) (b) (c) (d)   A 起源于基态的共振荧光 起源于基态 正常阶跃荧光 起源于亚稳态   B 热助共振荧光 起源于亚稳态 热助阶跃荧光 起源于基态  ⑴ 共振荧光   气态[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]共振线被激发后,再发射与[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]收线波长相同的荧光即是共振荧光。它的特点是激发线与荧光线的高低能级相同,其产生过程见图中之A。如锌[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]213.86nm的光,它发射荧光的波长也为213.861 nm。若原子受热激发处于亚稳态,再吸收辐射进一步激发,然后再发射相同波长的共振荧光,此种原子荧光称为热助共振荧光。见图(a)中之B。   ⑵ 非共振荧光  当荧光与激发光的波长不相同时,产生非共振荧光。非共振荧光又分为直跃线荧光、阶跃线荧光、anti-Stokes(反斯托克斯)荧光。  (i)直跃线荧光   激发态原子跃迁回至高于基态的亚稳态时所发射的荧光称为直跃线荧光,见图(b)。由于荧光的能级间隔小于激发线的能级间隔,所以荧光的波长大于激发线的波长。如铅[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]283.31nm的光,而发射405.78nm的荧光。它是激发线和荧光线具有相同的高能级,而低能级不同。如果荧光线激发能大于荧光能,即荧光线的波长大于激发线的波长称为Stokes荧光;反之,称为anti-Stokes荧光。直跃线荧光为Stokes荧光。   (ii)阶跃线荧光   有两种情况,正常阶跃荧光为被光照激发的原子,以非辐射形式去激发返回到较低能级,再以发射形式返回基态而发射的荧光。很显然,荧光波长大于激发线波长。例钠[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]330.30nm光,发射出588.99nm的荧光。非辐射形式为在原子化器中原子与其他粒子碰撞的去激发过程。热助阶跃荧光为被光照射激发的原子,跃迁至中间能级,又发生热激发至高能级,然后返回至低能级发射的荧光。例如铬原子被359.35nm的光激发后,会产生很强的357.87nm荧光。阶跃线荧光产生见图(c)。   (iii)anti-Stokes荧光   当自由原子跃迁至某一能级,其获得的能量一部分是由光源激发能供给,另一部分是热能供给,然后返回低能级所发射的荧光为anti-Stokes荧光。其荧光能大于激发能,荧光波长小于激发线波长。例如铟吸收热能后处于一较低的亚稳能级,再吸收451.13nm的光后,发射410.18nm的荧光,见图(d)。   (3) 敏化荧光   受光激发的原子与另一种原子碰撞时,把激发能传递给另一个原子使其激发,后者再以发射形式去激发而发射荧光即为敏化荧光。火焰原子化器中观察不到敏化荧光,在非火焰原子化器中才能观察到。 在以上各种类型的原子荧光中,共振荧光强度最大,最为常用。  量子效率与荧光猝灭  受光激发的原子,可能发射共振荧光,也可能发射非共振荧光,还可能无辐射跃迁至低能级,所以量子效率一般小于1。 受激原子和其他粒子碰撞,把一部分能量变成热运动与其他形式的能量,因而发生无辐射的去激发过程,这种现象称为荧光猝灭。荧光的猝灭会使荧光的量子效率降低,荧光强度减弱。许多元素在烃类火焰中要比用氩稀释的氢—氧火焰中荧光猝灭大得多,因此原子荧光光谱法,尽量不用烃类火焰,而用氩稀释的氢—氧火焰代替。

  • 原子荧光的这些人,那些事......(真相在此)

    原子荧光光度计那些事儿--------(真相已揭晓,请看44楼)http://bbs.instrument.com.cn/shtml/20131202/5087153/珍贵的原子荧光史料-中国第一台双道氢化物非色散原子荧光技术鉴定证书http://bbs.instrument.com.cn/shtml/20140114/5155992/用原子荧光的大佬们,有知道“顾根桃”这个人的吗?http://bbs.instrument.com.cn/shtml/20140113/5154231/当初我转载的那篇“原子荧光光度计那些事”,本着让大家多了解原子荧光发展史的本意,不料却引发了版友们对郭小伟、张锦茂、顾根桃及刘明钟四位老前辈在原子荧光商品化的贡献产生了热烈的争论。现在经过版友们提供的原始图片表明“原子荧光光度计那些事”确实存在失实的内容。感谢Hullen版友、zidongxunfeng版友、shishiruyi_220(张任-分析)版友提供的珍贵原始资料,以及其他版友们的热情支持!

  • 原子荧光光谱法的优点剖析

    采用原子荧光光谱法进行测定时具有如下优点:1 使用原子荧光光谱仪进行检测,有较低的检出限,灵敏度高。特别是对Cd、Zn等元素有相当低的检出限,Cd可达0.001ng/cm?、Zn为0.04ng/cm?。现已有20多种元素低于原子吸收光谱法的检出限。由于原子荧光的辐射强度与激发光源成比例,采用新的高强度光源可进一步降低其检出限。2 干扰较少,谱线比较简单,采用一些装置,可以制成非色散原子荧光光谱仪。这种仪器结构简单,价格相对便宜。3 谱线简单,分析校正曲线线性范围宽,可达3~5个数量级,特别是用激光做激发光源时更佳。4 由于原子荧光是向空间各个方向发射的,比较容易制作多道仪器,因而能实现多元素同时测定。这些优点使得原子荧光光度计在冶金、地质、石油、农行、地球化学、材料科学、环境科学、高纯物质、水质监控、生物制品和医学分析等各个领域内获得了相当广泛的应用。

  • 冷原子荧光测汞仪

    我们最近要准备扩[font=Tahoma, Verdana, Geneva, Arial, Helvetica, sans-serif]HJ 542-2009 环境空气 汞的测定 巯基棉富集-冷原子荧光分光光度法,里面提到了冷原子荧光测汞仪,但了解到有公司是原子荧光不点火来做的,还有冷原子荧光测汞仪和冷[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测汞仪的区别是什么?是否一定要上冷原子荧光测汞仪?[/font]

  • 【第五届原创】原子荧光光谱仪行业概述

    最近需要去兰州大学进行重金属痕量分析方面的讲座,于是顺便写了荧光和吸收方面的行业背景,技术方面的问题涉及的不多。 1、 综述 原子荧光光谱仪是一种光谱类痕量分析仪器,其中的原子荧光指的是将被测样品液体经过原子化成为气态基态自由原子后,使其吸收外部光源一定频率的辐射能量跃迁至高能态,这些高能态的电子一般在小于10-8秒即返回基态,并以特征光谱形式放出能量,即原子荧光。 原子荧光光谱仪主要作用是用来检测重金属含量,检出限可达PPT级别,也可联用液相等进行元素形态分析,是一种国内普及的实验室设备。 通常我们所说的重金属,主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如锑、铋、锗、锡、锌、硒、碲、铜、锌、镍、钴、金、银、铁等。 它们主要从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对人们生活造成重要影响,有些已经到了非检不可的地步。 值得一提的是,原子荧光光谱仪是少数具有中国自主知识产权的分析仪器,填补了国际空白,受到了国家有关部门的重视。 2、产生用原子荧光来测量元素含量,最早在1964年国际上首次提出,先后由美国和英国的研究小组进行基础理论研究,后由美国公司进行先期的生产,直至1995年左右,国外才生产出来商品化原子荧光。相比较国外,国内原子荧光技术的发展则较为迅猛,1975年开始研究,1979年西北有色地质研究所的郭小伟教授研究成功氢化法原子荧光光谱仪(HG-AFS),80年代初第一台原子荧光的诞生。那么国内为什么要研究这个课题呢? 七十年代末期,我国地矿部要进行大范围的地质普查,大量测量砷、锑、铋、汞,以前使用的化学法测量不但慢,工作量大,也无法保证重复性。因此国家有色地质总局给西北有色地质研究院的郭小伟研究小组下达了课题,研究一种仪器来进行这些元素的测量。 1979年郭小伟成功研制出用溴化物无极放电灯做激发光源的光谱仪,然后于80年代初期,研究小组用技术无偿支援且回购所有成品的方式,与北京地质仪器厂合作,共同研制生产出第一台原子荧光光谱仪(也曾和西安无线电八厂、浙江温州分析仪器厂、江苏宝应分析仪器厂等进行过合作和试生产)。自此,中国的原子荧光行业飞速发展: 1985年北京地质仪器厂开始批量生产原子荧光光谱仪 1987年空心阴极灯及其供电方法替代了无极放电灯 1989年由手动仪器变成微机控制的半自动型设备 1990年产生了流动注射进样方式 1994年郭小伟发明了断续流动进样装置 1995年张锦茂等研制了氩氢火焰低温点燃装置 1998年郭小伟教授研究成功火焰法原子荧光,可测金银等 2002年刘明钟、方肇伦等将顺序注射装置用于进样系统 2002年,郭小伟教授提出了连续流动进样技术,并投入研发,直至2005年才成功投产,于2006年获得专利。3、性能如何去一台原子荧光的优劣好坏?从消费者的角度来说,无外乎:A、首先,看这产品能否用的住,耐用B、其次,看主要性能指标C、然后,看用起来顺不顺手,这包括使用习惯、培训情况、软件界面、分析速度等多方面D、接着,再看价位、售后服务等E、 最后,还需看备品配件是否易坏,配件的价格是否合理,等F、 由以上可确定厂家,然后挑选符合自己使用要求(如测量元素、价态等)的产品型号 说到这里,简要说一下什么是原子荧光光谱仪的主要性能指标。《中华人民共和国国家标准》GB/T 21191-2007号文件原子荧光光谱仪国家标准,以及《中华人民共和国国家计量检定规程》JJG 939-2009 原子荧光光度计计量规程,两个文件中规定的,属于原子荧光光谱仪(也称原子荧光光度计)必须检测的指标共计5个,下面是这5大指标及其便于理解的诠释:

  • 原子荧光的分类,我们平时用的是哪个呢??

    原子荧光可分共振荧光、非共振荧光与敏化荧光等三种类型。   ⑴ 共振荧光  气态原子吸收共振线被激发后,再发射与原吸收线波长相同的荧光即是共振荧光。它的特点是激发线与荧光线的高低能级相同,其产生过程见图中之A。如锌原子吸收213.86nm的光,它发射荧光的波长也为213.861 nm。若原子受热激发处于亚稳态,再吸收辐射进一步激发,然后再发射相同波长的共振荧光,此种原子荧光称为热助共振荧光。⑵ 非共振荧光  当荧光与激发光的波长不相同时,产生非共振荧光。非共振荧光又分为直跃线荧光、阶跃线荧光、anti-Stokes(反斯托克斯)荧光。(i)直跃线荧光    激发态原子跃迁回至高于基态的亚稳态时所发射的荧光称为直跃线荧光。由于荧光的能级间隔小于激发线的能级间隔,所以荧光的波长大于激发线的波长。如铅原子吸收283.31nm的光,而发射405.78nm的荧光。它是激发线和荧光线具有相同的高能级,而低能级不同。如果荧光线激发能大于荧光能,即荧光线的波长大于激发线的波长称为Stokes荧光;反之,称为anti-Stokes荧光。直跃线荧光为Stokes荧光。(ii)阶跃线荧光 有两种情况,正常阶跃荧光为被光照激发的原子,以非辐射形式去激发返回到较低能级,再以发射形式返回基态而发射的荧光。很显然,荧光波长大于激发线波长。例钠原子吸收330.30nm光,发射出588.99nm的荧光。非辐射形式为在原子化器中原子与其他粒子碰撞的去激发过程。热助阶跃荧光为被光照射激发的原子,跃迁至中间能级,又发生热激发至高能级,然后返回至低能级发射的荧光。例如铬原子被359.35nm的光激发后,会产生很强的357.87nm荧光。(iii)anti-Stokes荧光,当自由原子跃迁至某一能级,其获得的能量一部分是由光源激发能供给,另一部分是热能供给,然后返回低能级所发射的荧光为anti-Stokes荧光。其荧光能大于激发能,荧光波长小于激发线波长。例如铟吸收热能后处于一较低的亚稳能级,再吸收451.13nm的光后,发射410.18nm的荧光。(3) 敏化荧光  受光激发的原子与另一种原子碰撞时,把激发能传递给另一个原子使其激发,后者再以发射形式去激发而发射荧光即为敏化荧光。火焰原子化器中观察不到敏化荧光,在非火焰原子化器中才能观察到。 在以上各种类型的原子荧光中,共振荧光强度最大,最为常用。

  • 原子荧光室安全使用制度

    原子荧光室安全使用制度一、原子荧光室工作人员必须从思想上树立高度安全责任感和科学认真的工作态度,严格执行操作规程。二、检测室内禁止堆放与检测工作无关的物品,检测室要经常保持整洁,非工作人员严禁入内。三、原子荧光操作人员必须熟练的掌握仪器的性能和操作使用规程,严禁违规操作。四、检测人员必须在在运转良好的通风条件下进行仪器的操作和检测工作。五、室内严禁存放有机溶剂和各种酸试剂药品,以防止对仪器腐蚀。六、样品测试完后必须对仪器进行清洗防止对仪器的污染。七、检测工作结束后,必须做到立即清理产生的废液,使用的器具、器皿不得在仪器室随意堆放。八、检测工作完毕后,应将仪器整理。关闭气源,电源。

  • 冷原子荧光测汞?

    汞有+1和+2价的,我想问一下:用冷原子荧光测定废水中的汞时,测定的是几价汞?是+2价的吗?原理是什么?

  • 空气与废气第四版中原子荧光测定汞

    最近用空气与废气第四版的原子荧光方法测固定污染源的汞 关于这个质控的方式有些不明白,书上给的准确度范围是用土的质控做的,感觉不是很合适,有没有其他的方式来保证实验的准确性呢

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制