当前位置: 仪器信息网 > 行业主题 > >

土壤液嗍定仪

仪器信息网土壤液嗍定仪专题为您提供2024年最新土壤液嗍定仪价格报价、厂家品牌的相关信息, 包括土壤液嗍定仪参数、型号等,不管是国产,还是进口品牌的土壤液嗍定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合土壤液嗍定仪相关的耗材配件、试剂标物,还有土壤液嗍定仪相关的最新资讯、资料,以及土壤液嗍定仪相关的解决方案。

土壤液嗍定仪相关的方案

  • 全自动电位滴定仪测定土壤中的氯含量
    一、土壤问题是近来环境问题中的热点,土壤氯含量是其中检测的常规指标,是导致土壤盐渍化主要因素之一。本实验采用硝酸银滴定法,通过JH-T7全自动电位滴定仪测定土壤样品中的氯含量。
  • 全自动索氏提取-气相色谱法检测土壤中六六六农药残留量
    本摘要:建立了全白动索氏提取一气相色谱法检测土壤中六六六农药残留量的新方法:以丙酮与石油醚的混合溶剂(体积比l:1)为提取溶剂,提取温度110℃.热浸提20rain.淋洗40min。浓缩定容后用浓硫酸磺化。离心取上清液,外标法校正定量,气相色谱法检测目标农药残留含量。8种六六六在O.01—1.00斗咖L浓度范围内具有良好的线性关系.相关系数不低于0.997,回收率为89.8%。99.0%,变异系数为0.7%,10.3%,方法检出限为0.00017—0JD0322 mg/kg。实际检测土壤样品l批,检出Ot一666、8—666、p.p'-DDE等5种,残留量为0.074—0.62mg/kg。该方法定量准确、灵敏度高、操作简便,适用于土壤中六六六的残留检测。
  • AT-1电位滴定仪分析土壤中的氯含量
    本实验采用硝酸银滴定法,通过AT-1自动电位滴定仪测定土壤样品中的氯含量。 经测定土样样品中的氯含量分别为35.64 mg/kg、65.77 mg/kg,符合土壤相关含量标准。
  • 解决方案|液相色谱法测定土壤中多环芳烃
    本文参照HJ 784-2016《土壤和沉积物 多环芳烃的测定 高效液相色谱法》标准方法,采用索氏提取法对土壤和沉积物中的多环芳烃进行提取,用旋转蒸发仪浓缩,再用乙腈定容至所需体积;摇匀后直接上机分析。
  • 海能仪器:前处理土壤中农药残留的产品配置单(索氏提取仪)
    土壤中农药残留含量测定需采用有机溶剂对土壤样品进行提取,再结合气相色谱进行定性和定量分析所得。溶剂萃取这一步前处理可采用索氏提取仪进行提取,省时,省力,有利于提高工作效率。
  • 海能仪器:山地土壤含氮量的测定(凯氏定氮法)
    样品在加速剂(硫酸铜(催化剂);硫酸钾(提高沸点))的参与下,加入浓硫酸进行消解时,各种含氮有机化合物,经过复杂的高温分解反应,转化为铵态氮,碱化后蒸馏出来的氨用硼酸吸收,以酸标准溶液滴定,计算土壤的含氮量(不含硝态氮)。
  • 土壤中乙草胺/丁草胺残留量测定的解决方案
    本文参考《DB21T 1546-2007 土壤中乙草胺和丁草胺残留量的测定 气相色谱法》,建立了利用全自动固相萃取仪(Fotector Plus)结合气相色谱检测沉积物中乙草胺和丁草胺残留量的方法。在40mL丙酮-正己烷(4+1)提取后过滤,再用30mL丙酮-正己烷(4+1)复提2次,合并提取液。使用Auto EVA-08IR浓缩至2mL后 Fotector Plus全自动固相萃取仪净化,自动完成 SPE 柱活化、样品上样、淋洗、收集等步骤,收集液再氮吹浓缩、溶剂转换、定容后,用GC检测。1.Auto EVA-08IR可自动对样品进行定容,提高实验室样品前处理的效率,针的液面追随系统能够让你的浓缩过程省时、省气;2.Fotector Plus能够自动的完成整个固相萃取流程,从活化到上样,清洗样品瓶,洗脱一步到位,省时省事;3.Fotector Plus采用全自动操作,固相萃取过程中可以排除操作带来的误差,能够获得手动固相萃取无法达到的RSD水平;4.Fotector Plus 能够实现高通量处理,最多一天能够处理180个样品,真正为批量检测提供帮助;5.利用Reeko Fotector Plus全自动固相萃取系统能够很好的重现《DB21T 1546-2007 土壤中乙草胺和丁草胺残留量的测定 气相色谱法》,回收率与RSD符合DB21T 1546-2007的允许差要求,符合DB21T 1546-2007中对分析结果的质量控制的要求。
  • 电热消解仪消解土壤
    目前消解土壤、淤泥和沉积物的样品预处理方法比较多。在这些方法中,由美国环保总局(EPA)制定的3050B 方法被用作方法升级或仲裁【1】,其声望逐渐提高。本文介绍的方法符合美国EPA3050B 方法,所进行的步骤遵循样品酸消解要求,使用labtech 公司的ED36 电热消解仪和一次性消解管很好地消解了土壤样品。————————————————[1] EPA 3050B: 沉积物、淤泥和土壤的酸消解
  • 索氏提取与直接超声技术在农业和城市土壤中多环芳烃PAHs含量测定的比较
    索氏提取与直接超声技术在巴基斯坦农业和城市土壤中多环芳烃PAHs含量测定的比较Comparison of Soxhlet and Direct Ultrasonic Techniques for Determination of Polycyclic Aromatic Hydrocarbons in Agricultural and Urban Soils of Pakistan
  • 土壤中吡虫啉的检测
    传统的土壤中吡虫啉萃取方法为液液萃取方法,费时费力,本文使用莱伯泰科Flex-HPSE全自动高效快速溶剂萃取系统对土壤中的吡虫啉进行萃取,M64高通量平行浓缩系统浓缩,SPE 1000全自动固相萃取系统净化,最后经液相检测,建立了一套高效快捷的土壤中吡虫啉萃取检测方法。经过实验,使用本方法土壤中吡虫啉回收率为93.02%~98.32%,RSD为2.31%,实验得到较高的回收率和良好的重现性。莱伯泰科Flex-HPSE、M64、SPE 1000都在实验中表现出了其快速稳定的特点,连续可靠的优异性能,适用于土壤样品分析的自动化前处理实验。
  • 中国格哈特:全自动索氏提取-气相色谱法检测土壤中滴滴涕农药残留量(转载《广东农业科学》2012年第11期)
    本摘要:建立了全白动索氏提取一气相色谱法检测土壤中滴滴涕农药残留量的新方法:以丙酮与石油醚的混合溶剂(体积比l:1)为提取溶剂,提取温度110℃.热浸提20rain.淋洗40min。浓缩定容后用浓硫酸磺化。离心取上清液,外标法校正定量,气相色谱法检测目标农药残留含量。8种滴滴涕在O.01—1.00斗咖L浓度范围内具有良好的线性关系.相关系数不低于0.997,回收率为89.8%。99.0%,变异系数为0.7%,10.3%,方法检出限为0.00017—0JD0322 mg/kg。实际检测土壤样品l批,检出Ot一666、8—666、p.p'-DDE等5种,残留量为0.074—0.62mg/kg。该方法定量准确、灵敏度高、操作简便,适用于土壤中滴滴涕的残留检测。
  • 全自动索氏提取-气相色谱法检测土壤中六六六和滴滴涕农药残留量(转载《广东农业科学》2012年第11期)
    本摘要:建立了全白动索氏提取一气相色谱法检测土壤中六六六和滴滴涕农药残留量的新方法:以丙酮与石油醚的混合溶剂(体积比l:1)为提取溶剂,提取温度110℃.热浸提20rain.淋洗40min。浓缩定容后用浓硫酸磺化。离心取上清液,外标法校正定量,气相色谱法检测目标农药残留含量。8种六六六和滴滴涕在O.01—1.00斗咖L浓度范围内具有良好的线性关系.相关系数不低于0.997,回收率为89.8%。99.0%,变异系数为0.7%,10.3%,方法检出限为0.00017—0JD0322 mg/kg。实际检测土壤样品l批,检出Ot一666、8—666、p.p'-DDE等5种,残留量为0.074—0.62mg/kg。该方法定量准确、灵敏度高、操作简便,适用于土壤中六六六和滴滴涕的残留检测。
  • 杜马斯燃烧定氮法快速测定土壤中全氮的方法研究
    杜马斯燃烧定氮法快速测定土壤中全氮的方法研究杜马斯燃烧定氮法测定土壤全氮含量结果与凯氏定氮法的测定结果无显著差异。杜马斯燃烧定氮法操作简便、快速高效,精密度和准确度均较好,而且环保无污染,尤其快速、高效的特点特别适合土壤健康状况及等级普查时报告时间紧的批量大样品,为杜马斯燃烧定氮法应用于测定土壤全氮含量的科研及检测工作提供了必要的技术支持。
  • 睿科仪器:土壤中荧蒽解决方案
    本文参考《HJ 784-2016 土壤和沉积物 多环芳烃的测定 高效液相色谱》,建立了利用全自动固相萃取仪(Fotector Plus)结合高效液相色谱检测沉积物中多环芳烃残留量的方法。在100mL丙酮-正己烷(1+1)提取后,使用Auto EVA-08IR浓缩至1mL后 Fotector Plus全自动固相萃取仪净化,自动完成 SPE 柱活化、样品上样、淋洗、收集等步骤,收集液再氮吹浓缩、溶剂转换、定容后,用UPLC检测。1.AutoEVA-08IR能够自动浓缩并红外定容,针的液面追随系统能够让你的浓缩过程省时、省气;2.Fotector Plus能够自动的完成整个固相萃取流程,从活化到上样,清洗样品瓶,洗脱一步到位,省时省事;3.Fotector Plus采用全自动操作,固相萃取过程中可以排除操作带来的误差,能够获得手动固相萃取无法达到的RSD水平;4.Fotector Plus 能够实现高通量处理,最多一天能够处理180个样品,真正为批量检测提供帮助;5.利用Reeko Fotector Plus全自动固相萃取系统能够很好的重现《HJ 784-2016 土壤和沉积物 多环芳烃的测定 高效液相色谱》,回收率与RSD符合HJ 784-2016的允许差要求,符合HJ 784-2016中对分析结果的质量控制的要求。
  • 睿科仪器:土壤中苯并(b)荧蒽解决方案
    本文参考《HJ 784-2016 土壤和沉积物 多环芳烃的测定 高效液相色谱》,建立了利用全自动固相萃取仪(Fotector Plus)结合高效液相色谱检测沉积物中多环芳烃残留量的方法。在100mL丙酮-正己烷(1+1)提取后,使用Auto EVA-08IR浓缩至1mL后 Fotector Plus全自动固相萃取仪净化,自动完成 SPE 柱活化、样品上样、淋洗、收集等步骤,收集液再氮吹浓缩、溶剂转换、定容后,用UPLC检测。1.AutoEVA-08IR能够自动浓缩并红外定容,针的液面追随系统能够让你的浓缩过程省时、省气;2.Fotector Plus能够自动的完成整个固相萃取流程,从活化到上样,清洗样品瓶,洗脱一步到位,省时省事;3.Fotector Plus采用全自动操作,固相萃取过程中可以排除操作带来的误差,能够获得手动固相萃取无法达到的RSD水平;4.Fotector Plus 能够实现高通量处理,最多一天能够处理180个样品,真正为批量检测提供帮助;5.利用Reeko Fotector Plus全自动固相萃取系统能够很好的重现《HJ 784-2016 土壤和沉积物 多环芳烃的测定 高效液相色谱》,回收率与RSD符合HJ 784-2016的允许差要求,符合HJ 784-2016中对分析结果的质量控制的要求。
  • 自动电位滴定仪检测土壤中碳酸钙含量
    根据土壤中碳酸钙的含量,能了解土壤的一般特性,也能判断土壤中矿物营养元素的存在情况。对于盐渍土壤,了解碳酸钙的碱化程度,可以对其他检测项目提供必要的参考资料。本文讲述电位滴定法测定土壤中的碳酸钙的含量,采用盐酸返滴的方法,复合国家标准,结果更准确,操作更快捷。
  • 土壤中多环芳烃的测定解决方案
    本文参考《HJ 784-2016土壤和沉积物多环芳烃的测定高效液相色谱法》及土壤详查中的技术规定,建立了利用Fotector Plus高通量全自动固相萃取仪结合GC-MS检测土壤沉积物中多环芳烃残留量的方法。用HPFE高通量加压流体萃取仪萃取后,使用MPE全自动真空平行浓缩仪浓缩并转溶至正己烷为1 mL后,使用Fotector Plus高通量全自动固相萃取仪净化,自动完成SPE柱活化、样品上样、淋洗、收集等步骤,收集液再用AutoEVA-20 Plus氮吹浓缩、溶剂转换、定容后,用气相色谱质谱联用进行检测的一套解决方案。
  • 北京超越未来:顶空-GCMS 法测定土壤中1,1,2-三氯乙烷
    随着化学工业和石油开采业的快速发展,废气和废水对周围土壤都会造成污染,在全国土壤污染状况普查中要求对污水灌溉区域和重点污染企业周边的挥发性有机物的污染状况必须进行监测。但多年来,国内外对大气和水体中的 VOCs 研究报道较多,而对土壤中的 VOCs 研究较少。因此建立高效灵敏分析土壤中的 VOCs 的检测方法尤为重要。 本文提出了一种简便快捷的检测方法,在土壤样品中加入基质修正液,经顶空处理后,用气相色谱质谱联用法对土壤样品中的挥发性卤代烃有机污染物进行定性定量分析。方法操作简便、准确灵敏、干扰少,从而有效地对土壤污染状况进行风险评估。 了解详情,敬请点击链接:http://pmo42817f.pic34.websiteonline.cn/upload/1icq.pdf
  • 睿科仪器:土壤中菲解决方案
    本文参考《HJ 784-2016 土壤和沉积物 多环芳烃的测定 高效液相色谱》,建立了利用全自动固相萃取仪(Fotector Plus)结合高效液相色谱检测沉积物中多环芳烃残留量的方法。在100mL丙酮-正己烷(1+1)提取后,使用Auto EVA-08IR浓缩至1mL后 Fotector Plus全自动固相萃取仪净化,自动完成 SPE 柱活化、样品上样、淋洗、收集等步骤,收集液再氮吹浓缩、溶剂转换、定容后,用UPLC检测。1.AutoEVA-08IR能够自动浓缩并红外定容,针的液面追随系统能够让你的浓缩过程省时、省气;2.Fotector Plus能够自动的完成整个固相萃取流程,从活化到上样,清洗样品瓶,洗脱一步到位,省时省事;3.Fotector Plus采用全自动操作,固相萃取过程中可以排除操作带来的误差,能够获得手动固相萃取无法达到的RSD水平;4.Fotector Plus 能够实现高通量处理,最多一天能够处理180个样品,真正为批量检测提供帮助;5.利用Reeko Fotector Plus全自动固相萃取系统能够很好的重现《HJ 784-2016 土壤和沉积物 多环芳烃的测定 高效液相色谱》,回收率与RSD符合HJ 784-2016的允许差要求,符合HJ 784-2016中对分析结果的质量控制的要求。
  • 海能仪器:土壤阳离子交换量测定的产品配置单(凯氏定氮仪)
    依据《森林土壤阳离子交换量的测定》(LYT 1243-1999)。用1mol/L的乙酸铵溶液反复处理土壤,使土壤成为铵离子饱和土,过量的乙酸铵用95%乙醇洗去,然后加氧化镁,用定氮蒸馏的方法进行蒸馏。蒸馏出的氨用硼酸溶液吸收,以标准酸液滴定,根据铵离子的量计算土壤阳离子交换量。
  • 《FJA-1型常规分析仪器工作站》测定土壤有机质
    一、测定的方法原理 先测定有机碳,然后再计算机质的方法[1]。用H2SO4—K2Cr2O7溶液氧化有机碳,再用FeSO4标准溶液滴定过量的K2Cr2O7。根据标准溶液FeSO4的耗用量求出有机质的含量。有机质的百分含量用下式计算: 有机质%=c*(V0-V)*0.003*1.724*1.1*100/m式中,c为FeSO4标准溶液的摩尔浓度; V0为10mL重铬酸钾硫酸溶液消耗的硫酸亚铁的毫升数;V为滴定等当点时滴定剂硫酸亚铁的耗用量(Ml);0.003为1/4C摩尔质量(g);1.724为土壤有机碳换算成有机质的换算系数;1.1为校正常数;100为换算成百分含量;m为样品重量(g)。采用电位滴定法测定有机质含量,以白金电极作为指示电极,甘汞电极作为参比电极。使分析速度和精度得到很大的提高。 二、试剂及仪器设备 1.试剂(1)K2Cr2O7—H2SO4溶液:39.225克 K2Cr2O7(GB642—77)溶于1升水中,再缓缓加入1升浓H2SO4(GB625—77)。边加边搅拌,必要时用水冷却。溶液浓度为c(1/6K2Cr2O7) = 0.4mol/L。(2)FeSO4溶液:56克FeSO4 • 7H2O(GB664—77)溶于600mL水中,加H2SO4(GB625—77)5 mL。加水至1升,用标准K2Cr2O7标定浓度。2 仪器设备(1)微波消解或油浴锅、试管等消化有机质的设备;(2)FJA-1型常规分析仪器工作站;(中科院南京土壤所技术服务中心研制与生产)(3)微机滴定应用程序(中科院南京土壤所技术服务中心提供)[2]。三、分析过程1.样品前处理称土0.1—0.5克于硬质试管中,准确加入K2Cr2O7—H2SO4溶液10mL,摇匀,在油浴上170—180℃消化5分钟,冷却后用水洗入100 mL烧杯中,体积约为50mL。2. 微机滴定操作将准备好的溶液放在滴定台上,以白金电极为指示电极,饱和甘汞电极为参比电极,在机械搅拌的情况下,以FeSO4为滴定剂,进行微机控制的电位自动滴定。四、结果与讨论1. 用FJA-1型常规分析仪器工作站(永停终点法)和手工滴定法以FeSO4标准溶液对K2Cr2O7进行六次平行滴定,其结果如表1所示。表1 用FeSO4滴定K2Cr2O7的结果次数 1 2 3 4 5 6 平均值 标准差 变异系数项目 (mL) Sx (%)工作站滴定17.20 17.12 17.12 17.12 17.12 17.14 17.14 0.032 0.19 手工滴定 17.20 17.15 17.10 17.10 17.20 17.15 17.15 0.045 0.26用微机电位自动滴定系统和手工滴定的方法对土壤有机质样品进行了对照分析,分析结果如表2所示。表2 工作站(永停终点法)和手工滴定法测定土壤有机质结果比较标本号 工作站滴定法 手工显色滴定法 (有机质%) (有机质%)1 0.57 0.572 0.47 0.453 0.51 0.48根据实验结果,表明微机控制的电位滴定具有较高的测定精度和好的重现性。在滴定剂的耗用量在17mL左右时,变异系数小于0.2%。两种滴定方法对样品的对比测定其结果完全符合要求。2.微机控制的电位自动滴定不但能打印出滴定结果,同时还能绘出滴定曲线和等当点在曲线上的位置,可以进一步判断结果的可靠性。 3.整个滴定过程全部自动化,不需要操作者参与。因此在滴定时,操作者可以做其他工作,提高工作效率和分析速度。 参考文献[1]、中国科学院南京土壤所,土壤理化分析,上海科学技术出版社,1978。[2]、方建安、王敖生、杨坤玺、分析仪器,(2),(26)1989。
  • 【解决方案】东西分顶空/气相色谱-质谱法测定土壤中顺-1,2-二氯乙烯
    土壤中的挥发性有机物污染主要来自工业和生活污水的排放、石油和化工溶剂的泄露、大气和颗粒物中的VOCs通过干湿沉降最终也进入到土壤中。土壤对VOCs有较强的吸附能力,所以对土壤中VOCs进行定性定量的检测分析,对了解被测地区土壤的污染状况具有重要的意义。本文参考环境标准HJ642-2013建立了顶空/GC-MS法同时检测土壤中36种挥发性有机物的分析方法。通过与标准物质保留时间和标准质谱图或特征离子相比较进行定性,内标法定量。
  • 【解决方案】东西分顶空/气相色谱-质谱法测定土壤中1,1,1-三氯乙烷
    土壤中的挥发性有机物污染主要来自工业和生活污水的排放、石油和化工溶剂的泄露、大气和颗粒物中的VOCs通过干湿沉降最终也进入到土壤中。土壤对VOCs有较强的吸附能力,所以对土壤中VOCs进行定性定量的检测分析,对了解被测地区土壤的污染状况具有重要的意义。本文参考环境标准HJ642-2013建立了顶空/GC-MS法同时检测土壤中36种挥发性有机物的分析方法。通过与标准物质保留时间和标准质谱图或特征离子相比较进行定性,内标法定量。
  • 【解决方案】东西分顶空/气相色谱-质谱法测定土壤中1,2-二氯乙烷
    土壤中的挥发性有机物污染主要来自工业和生活污水的排放、石油和化工溶剂的泄露、大气和颗粒物中的VOCs通过干湿沉降最终也进入到土壤中。土壤对VOCs有较强的吸附能力,所以对土壤中VOCs进行定性定量的检测分析,对了解被测地区土壤的污染状况具有重要的意义。本文参考环境标准HJ642-2013建立了顶空/GC-MS法同时检测土壤中36种挥发性有机物的分析方法。通过与标准物质保留时间和标准质谱图或特征离子相比较进行定性,内标法定量。
  • 【解决方案】东西分顶空/气相色谱-质谱法测定土壤中1,1-二氯乙烯
    土壤中的挥发性有机物污染主要来自工业和生活污水的排放、石油和化工溶剂的泄露、大气和颗粒物中的VOCs通过干湿沉降最终也进入到土壤中。土壤对VOCs有较强的吸附能力,所以对土壤中VOCs进行定性定量的检测分析,对了解被测地区土壤的污染状况具有重要的意义。本文参考环境标准HJ642-2013建立了顶空/GC-MS法同时检测土壤中36种挥发性有机物的分析方法。通过与标准物质保留时间和标准质谱图或特征离子相比较进行定性,内标法定量。
  • 【解决方案】东西分顶空/气相色谱-质谱法测定土壤中氯乙烯
    土壤中的挥发性有机物污染主要来自工业和生活污水的排放、石油和化工溶剂的泄露、大气和颗粒物中的VOCs通过干湿沉降最终也进入到土壤中。土壤对VOCs有较强的吸附能力,所以对土壤中VOCs进行定性定量的检测分析,对了解被测地区土壤的污染状况具有重要的意义。本文参考环境标准HJ642-2013建立了顶空/GC-MS法同时检测土壤中36种挥发性有机物的分析方法。通过与标准物质保留时间和标准质谱图或特征离子相比较进行定性,内标法定量。
  • 车载式土壤电导率测量系统在精准农业中的应用
    精准农业是近年来国际农业科学研究的热点领域,也是当今世界农业发展的新潮流。研究人员希望通过精准农业技术体系的使用降低生产成本, 提高和稳定农产品产量和质量, 增加经济收入, 减少环境污染。 土壤中的盐分、水分、有机质含量、土壤压实度、质地结构等,均不同程度影响土壤电导率变化。通过测定土壤电导率,可为分析产量、评价土壤生产能力、制定精准施肥处方提供重要依据。传统的样方抽样调查不仅费时费力,还由于抽样密度过低不能真实反应其时空变化,对于大尺度调查而言车载式土壤电导率测量系统无疑是最佳选择。
  • 被重油污染的农业土壤中总石油烃的测定
    石油烃污染对原生土壤微生物群落的影响Impact of petroleum hydrocarbon contamination on the indigenous soil microbial community以己烷和二氯甲烷(1:1,各100毫升)为溶剂,采用格哈特全自动快速索氏萃取仪基于索氏法进行10克污染土壤和农业土壤总石油烃(TPH)的萃取
  • 工作站测定土壤中的氮
    一、测定的意义与方法原理氮素是植物生长三要素之首,土壤中的氮素含量与植物生长直接相关,是土壤肥力的重要指标之一。测定土壤全氮一般采用土壤学会推荐的常规分析方法,即用硫酸和混合催化剂消化,使N转化成NH4+,加碱蒸馏,用H3BO3吸收蒸出的NH3,然后用标准酸溶液滴定(1)。根据滴定剂的耗用量求出氮的百分含量。 通常都采用普通玻璃滴定管和化学指示剂进行手工滴定测定土壤全氮,它不但费时,劳动强度大,而且终点不易判断准确。在现代分析中采用电位滴定法测定全氮,以pH玻璃电极作为指示电极,饱和甘汞电极作为参比电极,克服了由于终点变色不清晰等造成的测量误差。尤其采用微机控制的电位自动滴定系统测定全氮时,使分析速度和精度得到很大的提高,同时减轻了劳动强度,向分析仪器微机化、自动化迈进了一步。 二、试剂及仪器设备1. 试剂(1)浓硫酸(GB625—77)(2)混合加速剂:100克硫酸钾(HG3—920—76),10克硫酸铜(GB665—78)和1克硒粉研细混匀。(3)氢氧化钠溶液:取400克NaOH(GB629—76)加水至一升。(4)盐酸标准溶液:取浓HCl(GB622—76)1.66mL加水至一升,准确标定其浓度。(5)硼酸溶液:20g硼酸(GB628-78)加水至一升。2. 仪器设备(1)定氮的消化及蒸馏装置;(2)FJA-1型常规分析仪器工作站(中科院南京土壤所技术服务中心研制)(3)微机电位滴定应用程序(中科院南京土壤所技术服务中心提供)[2]。三、分析过程1.样品前处理称土0.5—1克,放入50mL开氐瓶中,加入1.8克混合催化剂和5mL浓H2SO4,在可调节温度的电沪上消化1.5—2小时,取下冷却,洗入微量定氮蒸馏器中,加氢氧化钠溶液20—25mL蒸馏,用硼酸溶液在100mL烧杯中吸收蒸出的NH3,蒸好后的溶液将用于滴定。2. 微机滴定操作将上面蒸馏好的溶液放在滴定台上,以pH玻璃电极为指示电极,饱和甘汞电极为参比电极,在机械搅拌的情况下,以盐酸标准溶液为滴定剂,进行微机控制的电位自动滴定。四、结果与讨论1. 用FJA-1型工作站(自动控制终点滴定法)首先用盐酸标准溶液对硼砂溶液进行了5次与手工对比滴定,其结果如表1所示。表1 工作站滴定与人工滴定比较 表2 工作站滴定与人工滴定法测定全氮比较序 号 工作站滴定 人工滴定 样品号 工作站滴定 人工滴定 mL mL N% N%1 5.752 5.75 31 0.097 0.0942 5.755 5.80 32 0.034 0.0343 5.739 5.70 33 0.040 0.0384 5.733 5.65 ASA-3 0.098 0.1005 5.742 5.75平均值X 5.744 5.73标准差SX 0.009 0.057变异系数 0.16 0.99(CV%)用FJA-1型工作站(自动控制终点滴定法)和手工滴定的方法对土壤样品的全氮进行了对照分析,分析结果如表2所示。根据实验结果,表明微机控制的电位滴定具有较高的测定精度和好的重现性。在滴定剂的耗用量在5mL左右时变异系数小于0.16%,小于人工滴定的变异系数0.99%。两种滴定方法对样品的对比测定,其结果完全符合要求。2. 微机控制的电位自动滴定不但能打印出滴定结果,同时还能绘出滴定曲线可以进一步判断结果的可靠性。如果由于某种原因,不能自动判别终点时,可用人工生成终点功能产生终点。3. 整个滴定过程全部自动化,不需要操作者参与。因此在滴定时,操作者可以做其他工作,提高工作效率和分析速度。
  • 睿科仪器:全自动固相萃取-气相色谱法串联质谱测定土壤中15种多环芳烃
    本文参考《HJ 784-2016土壤和沉积物多环芳烃的测定高效液相色谱》及土壤详查中的技术规定,建立了利用全自动固相萃取仪(睿科,型号:Fotector Plus)结合GC-MS检测土壤沉积物中多环芳烃残留量的方法。在100 mL丙酮-正己烷(1+1)提取后,使用Auto EVA-08IR全自动定量浓缩仪浓缩至1 mL后Fotector Plus全自动固相萃取仪净化,自动完成SPE柱活化、样品上样、淋洗、收集等步骤,收集液再氮吹浓缩、溶剂转换、定容后,用GC-MS检测。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制