当前位置: 仪器信息网 > 行业主题 > >

上转换光谱仪

仪器信息网上转换光谱仪专题为您提供2024年最新上转换光谱仪价格报价、厂家品牌的相关信息, 包括上转换光谱仪参数、型号等,不管是国产,还是进口品牌的上转换光谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合上转换光谱仪相关的耗材配件、试剂标物,还有上转换光谱仪相关的最新资讯、资料,以及上转换光谱仪相关的解决方案。

上转换光谱仪相关的论坛

  • 基于上转换复合材料的光引发组织粘合剂研究

    [align=center][size=18px]基于上转换复合材料的光引发组织粘合剂研究[/size][/align][size=16px]以研究适用于应急组织伤口处理的光引发组织粘合剂为目标,以设计[/size][size=16px]基于功能化凝胶上转换纳米复合材料的光引发组织粘合剂为研究重点,以制备合[/size][size=16px]成多色可调的上转换纳米材料光导平台和设计功能化光交联凝胶修复剂为突破[/size][size=16px]口。采用纳米技术、表面化学修饰、生物技术、光化学技术、细胞实验和统计分[/size][size=16px]析等手段相结合,深化上转换纳米材料和功能化凝胶的设计开发,探究复合材料[/size][size=16px]的修复作用机理和抗菌性能,实现创面组织缺损光诱导原位修复,提高表面和深层损伤组织修复效率,减少疤痕形成和继发性炎症,开发出可替代传统缝合术的[/size][size=16px]新型功能化凝胶上转换纳米复合材料组织粘合剂,为突发事件中受损组织的快速整合和创面修复提供理论与技术支撑[/size][size=16px]。[/size][size=16px]主要研究内容[/size][font='宋体'][size=16px](1)功能化凝胶上转换纳米复合材料的设计与制备:上转换纳米材料[/size][/font][font='宋体'][size=16px]具有独特的光学特性,能够使生物光子在深层组织中的应用。光引发组织粘接是创面组织[/size][/font][font='宋体'][size=16px]修复的新型无创技术,依赖于光敏剂的光激活释放活性物质在组织表面和基质材料之间产[/size][/font][font='宋体'][size=16px]生有效的交联。以凝胶材料壳聚糖作为基质,光敏基团邻硝基苯作为光敏剂并引入胍基抗[/size][/font][font='宋体'][size=16px]菌基团,通过化学修饰改性方法制备功能化凝胶。光反应性材料在创伤组织缝合时诱导受[/size][/font][font='宋体'][size=16px]损皮肤组织中的胶原基质交联,以上转换纳米材料为载体结合功能化凝胶通过表面修饰制[/size][/font][font='宋体'][size=16px]备合成功能化凝胶上转换纳米复合材料作为光引发组织粘合剂,近红外光照将光传输到深部组织中,激活光敏剂诱导组织黏结修复。(2)光引发组织粘合剂的优化筛选:优化筛[/size][/font][font='宋体'][size=16px]选功能化凝胶上转换纳米复合材料光引发组织粘合剂,考察荧光发射光谱与紫外吸收光谱[/size][/font][font='宋体'][size=16px]相互匹配度以及功能化凝胶上转换纳米复合材料的组织损伤修复能力。考察所选复合材料[/size][/font][font='宋体'][size=16px]的荧光、紫外性能以及元素组成、形貌特征、晶型结构、热稳定性和表面基团及电荷分布情况等以及复合材料的粘附机理、抗菌性能、抗拉强度及使用条件等参数。(3)光引发[/size][/font][font='宋体'][size=16px]组织粘合剂的应用潜力评价。考察复合材料的生物相容性、细胞毒性、凝血效果、整合凝[/size][/font][font='宋体'][size=16px]胶与组织粘连能力。进一步考察复合材料对各种动物组织[/size][/font][font='宋体'][size=16px]([/size][/font][font='宋体'][size=16px]皮肤、肌肉、肝脏、胃和心脏等)损伤修复能力。[/size][/font][align=right][/align][font='宋体'][size=16px]研究方法和技术路线[/size][/font][font='宋体'][size=16px]图 [/size][/font][font='宋体'][size=16px]1. [/size][/font][font='宋体'][size=16px]总体研究技术路线示意图[/size][/font][font='宋体'][size=16px]研究方法和实验手段如下:[/size][/font][font='宋体'][size=16px](1)[/size][/font][font='宋体'][size=16px]功能化凝胶上转换纳米复合材料的设计与制备。采用热共沉淀法以 [/size][/font][font='宋体'][size=16px]β[/size][/font][font='宋体'][size=16px]-NaYF4 [/size][/font][font='宋体'][size=16px]作为基质,调节镧系元素掺杂剂量比例,制备具有不同发射光谱的上转换纳米材料;采用[/size][/font][font='宋体'][size=16px]酸处理法除去上转换纳米材料表面的油酸配体得到白色固体颗粒,聚丙烯酰胺配体交换修[/size][/font][font='宋体'][size=16px]饰后备用;以凝胶材料壳聚糖为基质,采用碳二亚胺盐酸盐化学法将邻硝基苯和抗菌基团修饰到基质上制备出功能化凝胶。[/size][/font][font='宋体'][size=16px](2)光引发组织粘合剂的优化筛选。检测功能化凝胶上转换纳米复合材料及相应组[/size][/font][font='宋体'][size=16px]成单体的荧光光谱与紫外光谱,筛选能够相互匹配的复合材料;以猪的皮肤或肌肉为组织[/size][/font][font='宋体'][size=16px]基质制作组织切口,注入复合材料并在近红外激光照射下,检测切口均粘接情况测试组织粘合强度以及组织基质的粘合后的最大拉伸力。[/size][/font][font='宋体'][size=16px](3)[/size][/font][font='宋体'][size=16px]光引发组织粘合剂的表征及机理性能考察。通过电镜分析、傅立叶红外光谱、[/size][/font][font='宋体'][size=16px]X [/size][/font][font='宋体'][size=16px]射线衍射、热重分析和 [/size][/font][font='宋体'][size=16px]Zeta[/size][/font][font='宋体'][size=16px] 电位分析等表征合成复合材料性能;利用光电子能谱仪进行[/size][/font][font='宋体'][size=16px]粘附机理分析;考察功能化凝胶上转换纳米复合材料的抑菌作用;比对商品化纤维蛋白胶和氰基丙烯酸酯胶粘剂粘接的抗拉强度试验;考察功能化凝胶上转换纳米复合材料。[/size][/font][font='宋体'][size=16px](4)光引发组织粘合剂的应用潜力评价。对所合成材料的体内生物相容性、体外细胞毒性试验、全血凝血试验、体内透皮给药试验以及胶原纤维形成试验等评价方法。[/size][/font]

  • 【求助】如何区分下转换荧光&斯托克斯线;上转换荧光&反斯托克斯

    我是光谱方面的新手,请教下面三个问题。下转换荧光,波长要大于激发光,斯托克斯线也是波长大于激发光,如何区分?上转换荧光,波长要小于激发光,而反斯托克斯线也是波长小于激发光,如何区分这两者?700纳米激发光测上转换荧光的时候,总是在350纳米出一个尖峰,350-600纳米有一宽峰。350-600我认为是上转换荧光,但是350纳米的半频峰是怎么形成的,也是上转换荧光吗?

  • 检测器–光电转换件

    检测器——光电转换器件光电转换器件是光电光谱仪接收系统的核心部 分,主要是利用光电效应将不同波长的辐射能转化成光电流的信号。光电转换器件主要有两大类:一类是光电发射器件,例如光电管与光电倍 增管,当辐射作用于器件中的光敏材料上,使发射的电子进入真空或气体中,并产生电流,这种效应称光电效应;另一类是半导体光电器件, 包括固体成像器件,当辐射能作用于器件中光敏材料时,所产生的电子通常不脱离光敏材料,而是依靠吸收光子后所产生的电子—空穴对在半 导体材料中自由运动的光电导(即吸收光子后半导体的电阻减小,而电导增加)产生电流的,这种效应称内光电效应。光电转换元件种类很多,但在光电光谱仪中的 光电转换元件要求在紫外至可见光谱区域(160-800nm)很宽的波长范围内有很高的灵敏度和信噪比,很宽的线性响应范围,以及快的响应时间。目前可应用于光电光谱仪的光电转换元件有以 下两类:即光电倍增管及固体成像器件。

  • 安捷伦的cary eclipse能进行上转换发光测试吗?

    安捷伦的cary eclipse能进行上转换发光测试吗?比如我设置激发点为600nm,扫发射范围300-500nm。软件设置的时候会有提醒“激发波长大于发射波长”,但是图谱仍可以扫,不知这样做是否有问题?

  • 电感耦合等离子体发射光谱仪的检测器——光电转换器件

    [url=http://www.huaketiancheng.com/][b][font=宋体]ICP光谱仪[/font][/b][/url][font=宋体]的光电转换器件是光电光谱仪接收系统的核心部分,也是[b]光谱仪检测分析[/b]的准要部件。主要是利用光电效应将不同波长的辐射能转化成光电流的信号。光电转换器件主要有两大类:一类是光电发射器件,例如光电管与光电倍增管,当辐射作用于器件中的光敏材料上,使发射的电子进入真空或气体中,并产生电流,这种效应称光电效应;另一类是半导体光电器件,包括固体成像器件,当辐射能作用于器件中光敏材料时,所产生的电子通常不脱离光敏材料,而是依靠吸收光子后所产生的电子[/font][font=&]-[/font][font=宋体]空穴对在半导体材料中自由运动的光电导(即吸收光子后半导体的电阻减小,而电导增加)产生电流的,这种效应称内光电效应。[/font][font=宋体]光电转换元件种类很多,但在光电光谱仪中的光电转换元件要求在紫外至可见光谱区域([/font][font=&]160-800nm[/font][font=宋体])很宽的波长范围内有很高的灵敏度和信噪比,很宽的线性响应范围,以及快的响应时间。[/font][font=宋体]目前可应用于光电光谱仪的光电转换元件有以下两类:即光电倍增管及固体成像器件。[b][font=宋体] 光电倍增管[/font][/b][font=&] [/font][font=宋体]外光电效应所释放的电子打在物体上能释放出更多的电子的现象称为二次电子倍增。光电倍增管就是根据二次电子倍增现象制造的。它由一个光阴极、多个打拿极和一个阳极所组成,见图,每一个电极保持比前一个电极高得多的电压(如[/font][font=&]100V[/font][font=宋体])。当入射光照射到光阴极而释放出电子时,电子在高真空中被电场加速,打到第一打拿极上。一个入射电子的能量给予打拿极中的多个电子,从而每一个入射电子平均使打拿极表面发射几个电子。二次发射的电子又被加速打到第二打拿极上,电子数目再度被二次发射过程倍增,如此逐级进一步倍增,直到电子聚集到管子阳极为止。通常光电倍增管约有十二个打拿极,电子放大系数(或称增益)可达[/font][font=&]10[sup]8[/sup][/font][font=宋体],特别适合于对微弱光强的测量,普遍为光电直读光谱仪所采用。[/font][font=&][size=14px] [/size][/font][font=宋体][size=14px]光电倍增管的窗口可分为侧窗式和端窗式两种[/size][/font][b][font=宋体] [/font][/b][font=宋体] 光电倍增管的基本特性[/font][font=&]1)[size=9px] [/size][/font][font=宋体]灵敏度和工作光谱区[/font][font=&] [/font][font=宋体]光电倍增管的灵敏度和工作光谱区主要取决于光电倍增管阴极和打拿极的光电发射材料。当入射到阴极表面的光子能量足以使电子脱离该表面时才发生电子的光电发射,即[/font][font=&]1/2mv[sup]2[/sup]=h[/font][font=Symbol]n[/font][font=&]-[/font][font=宋体]ф,([/font][font=&] h[/font][font=Symbol]n[/font][font=宋体]为光子能量,ф为电子的表面功函数,[/font][font=&]1/2mv[sup]2[/sup][/font][font=宋体]为电子动能[/font][font=&])[/font][font=宋体]。当[/font][font=&]h[/font][font=Symbol]n[/font][font=宋体][/font][font=宋体]ф时,不会有[/font][font=宋体]表面光电发射,而当[/font][font=&]h[/font][font=Symbol]n[/font][font=宋体]=[/font][font=宋体]ф时,才有可能发生光电发射,这时所对应的光的波长λ=C/[/font][font=Symbol]n[/font][font=宋体]称为这种材料表面的阈波长。随着入射光子波长的减小,产生光电子发射的效率将增大,但光电倍增管窗材料对光的吸收也随之增大。显然,光电倍增管的短波响应的极限主要取决于窗材料,而长波响应的极限主要取决于阴极和打拿极材料的性能。一般用于可见-红外光谱区的光电倍增管用玻璃窗,而用于紫外光谱区的用石英窗。光阴极一般选用表面功函数低的碱金属材料,如红外谱区选用银-氧-铯阴极,可见光谱区用锑-铯阴极或铋-银-氧-铯阴极,而紫外谱区则采用多碱光电阴极或梯-碲阴极。[/font][font=宋体]光电倍增管的灵敏度S是指在1lm的光通量照射下所输出的光电流强度,即S=i/F,单位为[/font][font=宋体]μ[/font][font=宋体]A/lm[/font][font=宋体]。显然,灵敏度随入射光的波长而变化,这种灵敏度称为光谱灵敏度,而描述光谱灵敏度随波长而变化的曲线称为光谱响应曲线(见[/font][font=宋体]右[/font][font=宋体]图),由此可确定光电倍增管的工作光谱区和最灵敏波长。例如我们常用的R427光电倍增管,其曲线偏码为250S,光谱响应范围为160-320nm,峰值波长200nm,光阴极材料Cs-Te,窗口材料为熔炼石英,典型电流放大率3.3×10[sup]6[/sup]。[/font][font=宋体]2)[font=&] [/font][/font][font=宋体]暗电流与线性响应范围[/font][size=14px][font=宋体]光电倍增管在全暗条件下工作时,阳极所收集到的电流称为暗电流。对某种波长的入射光,光电倍增管输出的光电流为: i= KI[sub]i[/sub]+i[sub]0 [/sub],式中,I[sub]i[/sub]对应于产生光电流i的入射光强度,k为比例系数,i[sub]0[/sub]为暗电流。由此可见,在一定的范围内,光电流与入射光强度呈线性关系,即为光电倍增管的线性响应范围。当入射光强度过大时,输出的光电流随光强的增大而趋向于饱和(见右图)。线性响应范围的大小与光阴极的材料有关。[/font][/size][font=宋体]暗电流的来源主要是由于极间的欧姆漏阻、阴极或其他部件的热电子发射以及残余气体的离子发射、场致发射和玻璃闪烁等引起。[/font][font=宋体]当光电倍增管在很低电压下工作时,玻璃芯柱和管座绝缘不良引起的欧姆漏阻是暗电流的主要成分,暗电流随工作电压的升高成正比增加;当工作电压较高时,暗电流主要来源于热电子发射,由于光电阴极和倍增极材料的电子溢出功很低,甚至在室温也可能有热电子发射,这种热电子发射随电压升高暗电流成指数倍增;当工作电压较高时,光电倍增管内的残余气体可被光电离,产生带正电荷的分子离子,当与阴极或[/font][font=宋体]打拿极碰撞时可产生二次电子,引起很大的输出噪声脉冲,[/font][font=宋体]另外高压时在强电场作用下也可产生场致发射电子引起[/font][font=宋体]噪声,[/font][font=宋体]另外当电子偏离正常轨迹打到玻壳上会出现闪烁现象引起暗电流脉冲,这一些暗电流均随工作电压升高而急剧增加,使光电倍增管工作不稳定,因此为了减少暗电流,对光电倍增管的最高工作电压均加以限制。[/font][font=宋体]3)[font=&] [/font][/font][font=宋体]噪声和信噪比[/font][size=14px][font=宋体]在入射光强度不变的情况下,暗电流和信号电流两者的统计起伏叫做噪声。这是由光子和电子的量子性质而带来的统计起伏以及负载电阻在光电流经过时其电子的热骚动引起的。输出光电流强度与噪声电流强度之比值,称为信噪比。显然,降低噪声,提高信噪比,将能检测到更微弱的入射光强度,从而大大有利于降低相应元素的检出限。[/font][/size][font=宋体]4)[font=&] [/font][/font][font=宋体]工作电压和工作温度[/font][font=宋体]光电倍增管的工作电压对光电流的强度有很大的影响,尤其是光阴极与第一打拿极间的电压差对增益(放大倍数)、噪声的影响更大。因此,要求电压的波动不得超过0.05%,应采用高性能的稳压电源供电,但工作电压不许超过最大值(一般为-900v-1000v),否则会引起自发放电而损坏管子,工作环境要求恒温和低温,以减小噪声。[/font][font=宋体]5)[font=&] [/font][/font][font=宋体]疲劳和老化[/font][font=宋体]在入射光强度过大或照射时间过长时,光电倍增管会出现光电流衰减、灵敏度骤降的疲劳现象,这是由于过大的光电流使电极升温而使光电发射材料蒸发过多所引起。在停歇一段时间后还可全部或部分得到恢复。光电倍增管由于疲劳效应而灵敏度逐步下降,称为老化,最后不能工作而损坏。过强的入射光会加速光电倍增管的老化损坏,因此,不能在工作状态下(光电倍增管加上高压时)打开光电直读光谱仪的外罩,在日光照射下,光电倍增管很快便损坏。[/font][font=宋体] 光电测量原理[/font][font=宋体]光电检测的原理一般是通过光电接受元件将待测谱线的光强转换为光电流,而光电流由积分电容累积,其电压与入射光的光强成正比,测量积分电容器上的电压,便获得相应的谱线强度的信息。不同的仪器其检测装置具有不同的类型,但其测量原理是一样的。其光电检测系统主要有以下四个部分组成:[/font][font=&]1.[/font][font=宋体]光电转换装置,[/font][font=&]2.[/font][font=宋体]积分放大电路及其开关逻辑检测,[/font][font=&]3.A/D[/font][font=宋体]转换电路,[/font][font=&]4.[/font][font=宋体]计算机系统。[/font][/font]

  • spc格式的拉曼光谱数据如何转换为jdx格式?

    软件现在支持导入jdx格式的拉曼光谱数据文件,但现有数据是spc格式的,请教如何把spc格式的拉曼光谱数据转换为jdx格式,有没有什么可以转换的软件?如有麻烦提供一下下载链接,谢谢各位了

  • 检测器——光电转换器件

    光电转换器件是光电光谱仪接收系统的核心部分,主要是利用光电效应将不同波长的辐射能转化成光电流的信号。光电转换器件主要有两大类:一类是光电发射器件,例如光电管与光电倍增管,当辐射作用于器件中的光敏材料上,使发射的电子进入真空或气体中,并产生电流,这种效应称光电效应;另一类是半导体光电器件,包括固体成像器件,当辐射能作用于器件中光敏材料时,所产生的电子通常不脱离光敏材料,而是依靠吸收光子后所产生的电子—空穴对在半导体材料中自由运动的光电导(即吸收光子后半导体的电阻减小,而电导增加)产生电流的,这种效应称内光电效应。光电转换元件种类很多,但在光电光谱仪中的光电转换元件要求在紫外至可见光谱区域(160-800nm)很宽的波长范围内有很高的灵敏度和信噪比,很宽的线性响应范围,以及快的响应时间。目前可应用于光电光谱仪的光电转换元件有以下两类:即光电倍增管及固体成像器件。[b]光电倍增管[/b] 外光电效应所释放的电子打在物体上能释放出更多的电子的现象称为二次电子倍增。光电倍增管就是根据二次电子倍增现象制造的。它由一个光阴极、多个打拿极和一个阳极所组成(见下图),每一个电极保持比前一个电极高得多的电压(如100V)。当入射光照射到光阴极而释放出电子时,电子在高真空中被电场加速,打到第一打拿极上。一个入射电子的能量给予打拿极中的多个电子,从而每一个入射电子平均使打拿极表面发射几个电子。二次发射的电子又被加速打到第二打拿极上,电子数目再度被二次发射过程倍增,如此逐级进一步倍增,直到电子聚集到管子阳极为止。通常光电倍增管约有十二个打拿极,电子放大系数(或称增益)可达10[sup]8[/sup],特别适合于对微弱光强的测量,普遍为光电直读光谱仪所采用。光电倍增管的窗口可分为侧窗式和端窗式两种[b]1.光电倍增管的基本特性[/b]1.1 灵敏度和工作光谱区 光电倍增管的灵敏度和工作光谱区主要取决于光电倍增管阴极和打拿极的光电发射材料。当入射到阴极表面的光子能量足以使电子脱离该表面时才发生电子的光电发射,即1/2mv[sup]2[/sup]=hn-ф,( hn为光子能量,ф为电子的表面功函数,1/2mv[sup]2[/sup]为电子动能)。当hnф时,不会有表面光电发射,而当hn=ф时,才有可能发生光电发射,这时所对应的光的波长λ=C/n称为这种材料表面的阈波长。随着入射光子波长的减小,产生光电子发射的效率将增大,但光电倍增管窗材料对光的吸收也随之增大。显然,光电倍增管的短波响应的极限主要取决于窗材料,而长波响应的极限主要取决于阴极和打拿极材料的性能。一般用于可见-红外光谱区的光电倍增管用玻璃窗,而用于紫外光谱区的用石英窗。光阴极一般选用表面功函数低的碱金属材料,如红外谱区选用银-氧-铯阴极,可见光谱区用锑-铯阴极或铋-银-氧-铯阴极,而紫外谱区则采用多碱光电阴极或锑-碲阴极。光电倍增管的灵敏度S是指在1lm的光通量照射下所输出的光电流强度,即S=i/F,单位为µ A/lm。显然,灵敏度随入射光的波长而变化,这种灵敏度称为光谱灵敏度,而描述光谱灵敏度随波长而变化的曲线称为光谱响应曲线(见右图),由此可确定光电倍增管的工作光谱区和最灵敏波长。例如我们常用的R427光电倍增管,其曲线偏码为250S,光谱响应范围为160-320nm,峰值波长200nm,光阴极材料Cs-Te,窗口材料为熔炼石英,典型电流放大率3.3×10[sup]6[/sup]。1.2 暗电流与线性响应范围光电倍增管在全暗条件下工作时,阳极所收集到的电流称为暗电流。对某种波长的入射光,光电倍增管输出的光电流为: i= KI[sub]i[/sub]+i[sub]0 [/sub],式中,I[sub]i[/sub]对应于产生光电流i的入射光强度,k为比例系数,i[sub]0[/sub]为暗电流。由此可见,在一定的范围内,光电流与入射光强度呈线性关系,即为光电倍增管的线性响应范围。当入射光强度过大时,输出的光电流随光强的增大而趋向于饱和(见上图)。线性响应范围的大小与光阴极的材料有关。暗电流的来源主要是由于极间的欧姆漏阻、阴极或其他部件的热电子发射以及残余气体的离子发射、场致发射和玻璃闪烁等引起。当光电倍增管在很低电压下工作时,玻璃芯柱和管座绝缘不良引起的欧姆漏阻是暗电流的主要成分,暗电流随工作电压的升高成正比增加;当工作电压较高时,暗电流主要来源于热电子发射,由于光电阴极和倍增极材料的电子溢出功很低,甚至在室温也可能有热电子发射,这种热电子发射随电压升高暗电流成指数倍增;当工作电压较高时,光电倍增管内的残余气体可被光电离,产生带正电荷的分子离子,当与阴极或打拿极碰撞时可产生二次电子,引起很大的输出噪声脉冲,另外高压时在强电场作用下也可产生场致发射电子引起噪声,另外当电子偏离正常轨迹打到玻壳上会出现闪烁现象引起暗电流脉冲,这一些暗电流均随工作电压升高而急剧增加,使光电倍增管工作不稳定,因此为了减少暗电流,对光电倍增管的最高工作电压均加以限制。

  • 请教FTS光谱仪波数分辨率如何转换为波长nm表示分辨率

    我们所用的光纤光谱仪、还有光栅式单色仪等,其分辩率常用nm做单位,如分辩率为0.5nm(FWHM)。付里叶变换光谱仪常用的分辩率单位为波数cm-1,如果要把其分辩率转换为nm表示,好象并不是直接取倒数那样简单。如下面的介绍:“.....using Fourier-transform spectroscopy, at spectral resolutions of 0.5 cm− 1 above 435 nm and 1.0 cm− 1 below 435 nm (corresponding to about 8 and 16 pm at this wavelength).....”,  上面的相当于8pm和16pm的分辩率是如何转换而来的?   请不吝赐教,谢谢!

  • 【求助】稀土上转换发光值得投入研究吗?

    我们想在无机盐中做稀土的上转换研究,由于以前实验室全是搞电学方面的,光学测试很缺乏。就连必须的激光器还是国产980nm的小激光器,才3000块。同时有感觉上转换没有下转换发光应用广泛。我们搞下转换目前有些仪器可用(FLS920)。不知道国内还有多少人专门搞上转换。有那些牛的课题组?我们想测上转换的寿命,可是一直没找到可借用的仪器.希望大家多多指教啊?

  • 【原创大赛】如何成为验钞老司机?学会测上转换荧光量子产率就好了!

    【原创大赛】如何成为验钞老司机?学会测上转换荧光量子产率就好了!

    话说某天,某工程师同事报销拿到热乎乎的软妹币后,由于过于兴奋,一时间感天地召唤,灵感涓涓。于是……http://ng1.17img.cn/bbsfiles/images/2017/01/201701191700_668360_2194_3.jpg就地进行了一个不走寻常路的,你见所未见的,华丽丽的验钞实验!左图是使用便携式980nm激光器照射某种“神秘”的材料。右图是使用980nm激光器照射人民币防伪部分(绿色亮点)。http://ng1.17img.cn/bbsfiles/images/2016/07/201607201130_601247_2194_3.jpg我的天呐,这么神奇吗?这包看上去辣么普通的小东西,居然和软妹币发出了同样的炫目光芒!然后呢,同事眼镜一推,开始讲了:其实,秘密在于这个“神秘”材料就是软妹币中所掺杂稀土的上转换荧光材料。什么是上转换发光?上转换发光是指吸收两个或两个以上低能光子而辐射一个高能光子的发光现象,通常是指将近红外光转换成可见光信号,其发光机理是基于双光子或多光子过程。由于上转换发光所吸收的光子能量低于所发射的光子能量,这种现象违背了Stokes定律,因而又称为反Stokes发光。上转换这一概念是Auzel、Ovsyankin和Feofilov在上世纪60年代中期提出并建立的。目前,稀土离子的上转换发光几乎覆盖了可见光的各个波段,其在近红外量子计数器、激光器、三维立体显示、荧光粉、医学成像及生物传感器等方面己经获得了广泛的应用。上转换材料的前世今生稀土离子上转换发光机的研究一直受到人们的重视,经过几十年的探索,人们对上转换发光机理已有了深入的了解。其机制主要分为三大类:即激发态吸收(ESA,Excited State Absorption)、能量转移(ET,Energy Transfer)和“光子雪崩”过程(PA,Photon Avalanche)。对于稀土上转换发光而言,不同离子具有不同的上转换发光方式,即使同一离子在不同的泵浦方式下也有不同的发光机制。上转换材料一般包括激活剂、敏化剂和基质。稀土元素Ho3+、Nd3+、Er3+、Tm3+具有丰富的能级,由于4f 能级的电子屏蔽作用,能级寿命较长,因此有很高的上转换效率,是目前研究较多的上转换材料的激活剂。Er3+、Tm3+、Ho3+在单个的纳米晶中,影响上转换效率的因素有两个:激活离子的吸收截面和相邻激活离子间的距离。相邻激活离子间的距离可以通过掺杂量来控制,当掺杂量过高时,相邻激活离子间发生有害的交叉驰豫而导致浓度淬灭效应。而激活离子的吸收截面可以通过掺入共激活剂,即敏化剂来增强上转换发光效率。稀土元素Yb3+的激发光谱为980 nm,与Er3+第一激发态的吸收能量相一致,而且吸收截面远远大于Er3+,能量吸收后可传递给Er3+,因而是一种很有效的上转换材料敏化剂,加入Yb3+后Er3+的上转换效率可提高1~3个数量级。基质材料需要声子能量低、稀土离子掺杂浓度高、稳定性好的特性。纳米上转换发光的基质材料主要有氟化物和氧化物基质。其中,以氟化物为基质的上转换材料效率最高。氟化物具有很多优点:(1)透光范围很宽;(2)稀土离子能很容易地掺杂到氟化物材料中;(3)声子能量低(~500 cm-1),荧光效率明显高于其他材料。目前,研究较多的激活剂是发绿光的铒,发蓝光的铥和发红光的钬,为提高其发光效率,经常使用Yb3+进行共掺杂。基质材料主要采用钇的各种化合物,NaYF4和LaF3已经被发现是一类较好的基质材料。为了解上转换发光机制,以NaYF4:Yb3+/Er3+ 为例进行测试,在980nm连续激光激发下,发现了样品中Er3+离子覆盖近红外到可见波段的上转换发光, 动力学分析的结果证明了共掺杂体系中Yb3+到Er3+离子的能量传递过程。Yb3+到Er3+离子的持续的能量传递是布居高能态Er3+离子的关键。在能量密度为4.6W/cm2时,测得上转换量子产率为0.04;下转换量子产率为0.09。http://ng1.17img.cn/bbsfiles/images/2016/07/201607201132_601248_2194_3.jpg稀土上转换发光纳米材料(upconversion nanoparticles,UCNPs)具有一系列突出的优点,如化学稳定性高、发光强度高而稳定(无闪烁)、Stokes位移大等,不仅能够克服有机类发光标记物质稳定性差的缺点,还能有效解决量子点的细胞毒性和光闪烁问题。此外,它还具有独特的上转换发光性能,因此在生物标记领域具有非常大的应用潜力。UCNPs的激发光源通常为近红外连续激光器(典型的是980 nm,808nm),当它们应用在生物标记领域时,会出现许多优点,例如较深的光穿透深度,对生物组织无损伤、生物组织无背景荧光等,这些优点使UCNPs拥有很好的生物应用前景。因为上转换材料和器件较为稀少,除了如上文所说的,应用在人民币防伪以外,在激光、通信、能源、医疗和军事等领域都有着十分重要的应用前景。利用稀土离子具有的丰富能级,理论上人们可以通过上转换的方式将不同低能频域的光转换为所需要的高能量光子,以满足实际应用中的需要。目前红外光激发下的上转换发光主要集中在以NaYF4和LaF3为基质的材料上,其他上转换发光的研究相对较少,主要原因是上转换材料量子产率过低,严重地限制了它在很多领域中的应用。也是因为上转换材料的以上特性,它的测试一般的量子效率系统也比较难满足,覆盖近红外波段的测量系统才能达到要求。1)WangF,BanerjeeD,LiuYS,ChenXY,LiuXG.Analyst,2010,135:1839—18542)W. Wang, M. Wu, G. Liu. Analysis of Upconversion Fluorescence Dynamics in NaYF4codoped with Er3+ and Yb3+ . Spect.Lett., 2007, 40(2):259-2693)F. Auzel. Upconversion and Anti-Stockes Processes with f and d Ions inSoild. Chem.Rev, 2004,104(1):139-173.

  • 【讨论】悬赏贴的转换

    能将版面分悬赏的贴子转换成个人出分的悬赏贴吗?或反过来操作。我试了下,可以将悬赏贴改成普通贴,再改悬赏贴时,就没有个人出分和版面出分的选择了。能不能技术上改进一下。或是有此功能我还不知道,请知情者告知一下,不胜感激!

  • 直读光谱仪之原子发射光谱仪的由来

    直读光谱仪 的原名叫原子发射光谱仪,叫直读的原因是相对于摄谱仪和早期的发射光谱仪而言,由于在70年代以前还无电脑采用,所有的光电转换出来的电流信号都用数码管读数,然后在对数转换纸上绘出曲线并求出含量值,电脑技术在光谱仪应用后,所有的数据处理全部由电脑完成,可直接换算出含量,所以比较形象的管它叫直接可读出结果,简称就叫直读了,在国外是没有这个概念的。直读光谱仪 和 ICP 都属于发射光谱分析仪器,区别在于激发方式不同,ICP中文名字是 电感耦合等离子体 ,是通过线圈磁场达到高温使样本的状态呈等离子态然后进行测量的,而普通的直读光谱仪一般采用电火花,电弧或者辉光放电的方式把样本打成蒸汽进行激发的,在效果上ICP要比普通直读光谱仪器的检出限小,精度高,但是在进样系统上要求非常严格,无好的进样系统就只能做溶液样本.国外先进ICP可做固体样本。直读光谱仪在什么情况下必须做标准化?直读光谱仪做标准化其实也要是看用的什么品牌的机器,仪器正常使用的情况下,需要定期(一般为一周)做标准化。若测试数据精确稳定,可适当延长标准化周期。但有如下情况之一,仪器必须做标准化,否则可能会影响测试精密度。(如果是用的美国热电的ARL3460或者ARL4460,标准化时间可以适当放长,像在上海宝钢,一般是一个月标准化一次),在以下几项变动后,建议都要做一下标准化。(1)仪器移动后。因实验室或厂址更改,可能需要对直读光谱仪进行转移,为保证测试的精密度,转移后需要重新进行标准化操作。(2)清洗透镜后。长时间使用会导致透镜变脏,在清洗透镜后需要对仪器重新做标准化。(3)清理激发台或更换电极后,建议客户重新做标准化。(4)光谱校正后。

  • 【第二届网络原创作品大赛】周小样的色谱之路——正相和反相流动相体系在Agilent1100上的转换

    [center][flash]http://ng1.17img.cn/bbsfiles/images/2017/10/200984225825_01_0_3.swf[/flash][/center][B][center]《第二届网络原创作品赛》正相和反相流动相体系在Agilent1100上的转换[/center][/B] 小样做色谱已经有四年多了,从接触色谱一直混迹于各个色谱论坛,上的最多的是中国色谱网,那里面液相讲的比较多,最近在查[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]方面的资料才转战到仪器信息网,没想到碰上网络大赛,看到那么多的专家,很惭愧小样只能算一个新手了,不过还是把我的一些经历写出来和大家分享一下。 话说事情发生在两年多前,那时候小样刚接触Agilent1100没多久,一天公司要做一个手性化合物的检测,本来任务是交给我们领导的,可是因为要周六加班,他就安排我来做这个事情了。小样的心理真是又紧张又激动,即担心做不好又有点跃跃欲试。原谅我一直对自己倍儿有信心,罗嗦一大堆我们还是赶紧进入正题吧。 这是一个手性化合物,还是没紫外吸收的,不过没关系有文献可以做衍生化,这个自然由合成的人来完成,不用我操心。关键是方法,我查到的资料是用正己烷和异丙醇走梯度,梯度可以随时调整,但是平时这台机器都是做的反相色谱,正相色谱我根本没换过。好在平时论坛混得多,知道可以用异丙醇做过度溶剂。我先把柱子下掉,接了个瓶子,然后把原来水相和乙腈的管路都插到异丙醇里,开始purge,天啊压力都开始升高,还好在允许的范围内,没有停泵,持续了十几分钟,我又把水相的管路拿出来放到正己烷里,还是压力很高,时间怎么那么漫长啊,等啊等啊,都不记得用了多长时间了,总算压力开始下降,直到平稳。额的个神呀,Agilent的管路怎么那么长啊??至此反相色谱到正相色谱的转换完成。然后接上柱子平衡,做样的过程倒是很顺利,优化了几个条件,就搞定了,时间过得真快居然到了下班的时间,原来我光溶剂转换就用了一个多小时。 第二天领导来了又做了几个样品的检测以后,又开始换回反相色谱。可怜我们只有这一台液相。大概是他没经历昨天漫长的转换过程,走了没几分钟就换到水相和乙腈了,结果压力骤然升高,停泵了。找到原因以后总算顺利解决了。至此第一次正相和反相流动相体系的转换顺利完成。经过这次以后小样做了总结,随后又进行了n次这样的转换,都异常顺利,而且缩短时间四十分钟就可以完成一次转换。在这个过程中小样学到了很多东西,稍后我会把简化的程序写下来大家分享。首先,反相到正相的转换。1.把水相的管路放到乙腈溶剂瓶中,purge这个通道,大概用时7,8分钟。2.把水相的管路和乙腈的管路都放到异丙醇溶剂中,分别继续purge,用时大概16,7分钟,这个时候注意压力的变化。3.把水相的管路放到正己烷的溶剂中,继续purge7,8分钟。直到转换完成。其次,正相到反相的转换。1.把正己烷的管路放到异丙醇溶剂中,purge这个通道,用时7,8分钟。2.把正己烷和异丙醇的管路都放到乙腈溶剂中,分别purge 7,8分钟。3.把原来水相的管路放回水相中,purge 7,8分钟。我们来做个讨论1.什么样算purge好了。在每一次的purge过程中都要注意压力的变化,溶剂的转换,即使是互溶的溶剂也会有个压力变化,这一个过程压力都是从低开始升高,持续一段时间再逐渐降低,到平稳。所以我一般都是观察压力的变化来判断流动相的转换是否完成。2.这里面用到异丙醇溶剂,可以用来冲洗一下管路,一举两得。不接柱子接上个两通阀,能看到检测器检测出好多乱七八糟的峰,说明管路真的很脏。当然这个时候应该用正常流速的。3.这里说一下手性的检测,用手性柱一般测的是ee值,首先需要一个混旋物定一下位置,这样才好知道你所检测的左旋和右旋的化合物分别在哪儿 ,算ee值的时候是(e1-e2)/(e1+e2)*100%,其实我们每次测ee值都合格,但是测旋光度就不一定合格了,为什么呢,因为我们的样品含水分比较大。 同样的操作我也在Shimazu2010上做过,神啊,那个要复杂的多,岛津的工作站确实比安捷伦复杂好几倍,不太熟练的同学一定要慢慢来,千万不能贸然接柱子,有的手性柱是不能进水的,一万多一根呢,金贵着呢。 小样的色谱之路还算不错,最开始用的的岛津的等度洗脱,手动进样,后来又用了Agilent1100和Shimadzu LC-2010,不久还能学到[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]。说不定大赛活动结速之前还能写一篇关于采购[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]的呢。 本来很想能帖一张色谱图给大家看看的,可惜已经离开上一家单位了,只好手动画一张压力示意图,大家凑合看看吧。[em09501][em09501]

  • 【原创大赛】离子转换色谱紫外光谱法测定有机无机阴离子的研究

    特别说明:本论文表面上是讨论离子色谱的一种特殊类型-离子转换色谱。但本质上是对传统抑制器理念的全新认识,如何认识膜抑制和柱抑制的各自优缺点。也许这是本论文的最大价值所在。------恐龙注。离子转换色谱是一种特殊类型的离子色谱,虽然离子转换色谱早在1983年,Downey和Hieftje和等首次提出离子转换色谱(Replacement-IonChromatography, RIC)概念——基于传统离子色谱基础上的一种色谱分离方式。其基本原理是在传统的双柱型离子色谱(分离柱+抑制柱)中引入第三根“转换柱”(ReplacementColumn),目的是将从抑制器中洗脱出来的被分析离子在其中实现定量替换,成为以目标离子形式存在的洗脱产物,然后进入检测器实现检测。但这方面国内外罕有人研究,国外有关文献仅仅只有十来篇,国内类似文献仅仅有一篇。据相关文献报道,目前离子转换色谱的分离模式主要有:阴离子-阳离子-原子发射光谱检测;阳离子-阴离子-紫外-可见分光光度检测;阴离子-阳离子-大气阴极辉光放电光度检测器,阳(阴)离子-阳(阴)离子-电化学选择性电极检测。上述研究大多仅仅只有一篇文章,这种探讨理论的可能性研究,实验的结果差强人意,跟传统方法没有任何优势,充其量只实现了一个idea。而且大多研究在上个世纪进行。我们实验室对离子转换色谱的原理进行重新研究分析,发现大多数研究中,其替换是采用抑制器的方式,而dionex膜抑制器是公认的最佳抑制模式。但是采用膜抑制器的最大问题,离子渗漏造成背景高,灵敏度低,操作稳定性差,因此研究取得的进展缓慢,在实验室遇到难以克服的一些困难。采用膜抑制器转换的方式,其实存在众多弊端,如果从其原理上看,柱抑制器同样可行,虽然柱抑制器的抑制容量有限无法长期使用。但是在实际分析过程中,经过第一个抑制器抑制后,再通过抑制柱的转换,其实其所含离子已经大大减少,与淋洗液有着本质的区别,连续使用数天是没问题的。抑制柱的最大优点是解决了膜抑制器的渗漏问题,在柱形式中是不存在的。因此,一般柱抑制器的抑制容量足够连续分析数天。其带来的无渗漏、可梯度洗脱,无需额外的部件,使用简单的有点是膜转换器无法替代的。为什么长期以来,所有的科研工作者一直采用膜转换器而不用柱转换器,其本质在于对柱抑制器和膜抑制器的错误认识。在通常的抑制分析中,膜抑制器有其独特的优势。但是在离子转换这个特殊的离子色谱模式中,老式的柱抑制器模式,更具有优势。只有对离子色谱抑制原理的充分认识,柱膜抑制器各有特点和优势,才能充分发挥各自的优势。因此,当我们将抑制柱的模式应用到研究中,克服了原有模式的众多弊端,同时在通常的一根抑制柱的模式上,首次提出了“二次转换”的新概念,也就是被测离子通过二次转换,变成了自己同类的离子。首次实现了紫外检测器间接测定无紫外吸收的阴离子。下面举例来说明:1 仪器与试剂 ICS3000离子色谱仪(Dionex,美国),包括泵(SP/DP)模块、检测器/色谱(DC)模块、淋洗液自动发生器(EG)模块,AS-AP自动进样器。色谱工作站(变色龙6.8 SR7),超纯水机(MilliPore A10)。2 色谱条件色谱柱:DionexIonPacTM AS11-HC(4 mmx 50mm Guard +4 mm x 250mmAnalytical)。Li+转换柱(3cm x 3 mm i.d.);IO3- 转换柱(3cm x 3 mm i.d.),均为自制柱。淋洗条件:KOH(淋洗液自动发生器),梯度程序:0~12min, 0.8 mmol/L;12~50 min,0.8~14.10 mmol/L;50~70 min 14.10~34.10 mmol/L;70~75.00min 34.10 mol/L;75.01~85.00 min 0.8 m

  • 【求助】色差仪的光谱测量值与Lab值转换

    据我了解现在大多数印刷厂都会购置高配版的[url=http://www.xrite.cn/][color=#000000]色差仪[/color][/url],因为它可以进行光谱数据的采集,然后通过软件导入测量仪器中便可以转换为Lab值。但印刷中常见一个问题就是覆膜后对颜色影响过大,无法预知影响效果,因此可否借助于覆膜前后光谱数据的批量精确采集实现对覆膜后色差的预测分析呢?是否有专家对此做过研究呢?

  • 【分享】直读光谱仪的原理

    [size=4]采用原子发射光谱学的分析原理,样品经过电弧或火花放电激发成原子蒸汽,蒸汽中原子或离子被激发后产生发射光谱,发射光谱经光导纤维进入光谱仪分光室色散成各光谱波段,根据每个元素发射波长范围,通过光电管测量每个元素的最佳谱线,每种元素发射光谱谱线强度正比于样品中该元素含量,通过内部预制校正曲线可以测定含量,直接以百分比浓度显示。其实大家不用跟一个名词叫劲,[color=#DC143C]直读光谱仪它的正规名字叫原子发射光谱仪,管他叫直读的原因是相对于摄谱仪和早期的发射光谱仪而言,由于在70年代以前还没有计算机采用,所有的光电转换出来的电流信号都用数码管读数,然后在对数转换纸上绘出曲线并求出含量值,计算机技术在光谱仪应用后,所有的数据处理全部由计算机完成,可以直接换算出含量,所以比较形象的管它叫直接可以读出结果,简称就叫直读了,在国外没有这个概念。[/color]直读光谱是火花光谱,奥秋仪器推荐主要用于分析块状或条状金属样品,ICP用液体进样,使用范围很广,分光装置也差别很大.直读光谱仪只要平时清理维护的好,曲线做的没什么问题,用起来很方便的,做一个样很快的,磨好样后在上面一激发就出结果了。ICP-AES做一次应该挺慢,他们区别应该就是制样进样方式不同,原理都差不多,直读用的是发射光谱,ICP是吸收光谱![/size]

  • 光散射式粉尘仪如何求出质量转换系数

    购置了一台光散射快速侧尘仪然后需要用滤膜称重法 求出质量浓度转换系数我现在的问题是,已经知道 颗粒物的重量,流量,采样时间,那个采样体积是在哪里看的呀,知道采样体积后,如何混算成标准状况下的体积我真是两眼一抹黑,完全不知道如何是好,

  • 【原创】新型“迷你”电池的理论光电转换效率接近100%

    新型“迷你”电池的理论光电转换效率接近100% 美国研究人员使用从植物中提取出的蛋白质以及磷酸酯、碳纳米管等化合物,研发出了能够模拟植物光合作用机制进行自我组装的太阳能电池,新电池还具有良好的自我修复能力,有望大幅延长太阳能电池的使用寿命。此项研究成果发表在9月5日出版的《自然化学》杂志上。  无数科学家试图完善太阳能电池的设计,改善太阳能电池的性能,他们为制造出光电转换效率最高的电池而前赴后继,然而,鲜有人关心太阳能电池的使用寿命。  美国麻省理工学院的化学工程师迈克尔斯特拉诺解释道,阳光和氧气混合在一起会产生一定的破坏,比如,人体接触太多阳光容易衰老等,这也意味着,在实验室中表现很好的太阳能电池,离开实验室走上“工作岗位”后可能会“罢工”。  另外,现在一些新式的非硅基太阳能电池虽然成本低、转化效率高、性能优异,但是,却经不起时间的考验,超过60个小时后,其转化效率仅为最初的10%。  有鉴于此,斯特拉诺教授和同事研制出了这款大小仅为几纳米、能够自我组装和自我修复的“迷你”型太阳能电池。  在制备这种新式太阳能电池时,研究人员使用了从植物中提取出来的、可进行光合作用的蛋白质、具有黏附性的磷酸脂和具有良好电学性能的碳纳米管以及表面活性剂。表面活性剂会打散某些分子,并且让它们保持隔离状态。

  • 【讨论】普通帖转换为悬赏贴,积分提前扣除么?

    积分 经验 声望 时长 加分原因 加分时间 2 2 0 0 您前一天的在线时长为76,为您加上相应的积分、经验、声望 2009-11-25 7:11:19 2 2 0 0 您前一天的在线时长为115,为您加上相应的积分、经验、声望 2009-11-24 7:11:09 [color=#DC143C][size=4]-100 0 0 0 普通帖转换悬赏帖所扣积分 2009-11-23 11:42:28 [/size][/color]4 4 1 0 您前一天的在线时长为282,为您加上相应的积分、经验、声望 2009-11-23 7:10:43 10 0 5 0 为登上“今日十大热帖”的用户,每人加上10分,5声望 2009-11-23 0:15:00 1 1 0 0 您前一天的在线时长为12,为您加上相应的积分、经验、声望 2009-11-22 7:10:14 -10 0 0 0 发悬赏贴扣除的积分 2009-11-21 23:48:31 有些疑问,没结贴就把积分给扣了,也不能更改了。目前的悬赏体系太死板了吧。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制