负氢离子检测

仪器信息网负氢离子检测专题为您提供2024年最新负氢离子检测价格报价、厂家品牌的相关信息, 包括负氢离子检测参数、型号等,不管是国产,还是进口品牌的负氢离子检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合负氢离子检测相关的耗材配件、试剂标物,还有负氢离子检测相关的最新资讯、资料,以及负氢离子检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

负氢离子检测相关的厂商

  • 大庆市汇通无损检测技术服务有限公司成立于1995年2月6日(其前身是1992年成立的大庆市萨尔图区汇通无损检测技术服务部)是东北地区无损检测领域里集开发、生产、销售、工程、维修为一体的综合性省级高新技术公司。公司生产技术部生产HT系列地下管道探测检漏仪、地下电缆探测检漏仪、电火花检漏仪、管线定位仪、燃气管道探测检漏仪,系列X射线探伤机、超声波探伤仪、工业电子内窥镜等仪器,2001年与大学合作开发了EMTP便携式油管/抽油杆井口检测仪、EMTP数字化油管/抽油杆/室内自动检测线、MTR管、杆罗纹自动探伤检测设备、EMTC智能钢丝绳探伤仪、声发射检测系统等,以及与哈尔滨理工大学合作研制了管线定位仪,目前公司是大庆油田有限责任公司、大庆石油管理局、吉林油田、辽河油田、中原油田、中国石油管道局入网企业。 已在全国各油田、石化、热力、电力、物业、市政等单位使用,用户反馈效果良好,公司所生产的产品1998年被黑龙江省机械工业厅评为省科技进步二等奖。 公司已取得防腐保温与管道检测技术的专业承包三级资质,主要承揽各种金属管线、容器的腐蚀调查、腐蚀控制和阴极保护等工程。利用三G技术(GIS:地理信息系统、GPS:卫星定位系统、GSM:移动通讯系统)建立数字管线平台,对地下管网进行准确的定位。 公司除以上业务外还经销和代理国内外几十家无损探伤、检测设备和无损检测消耗材料和维修无损检测设备等。 公司现是大庆市委、市政府、市科委重点保护企业,连年被市、区评为先进企业和企业三十强,黑龙江省级高新技术企业,企业通过ISO9001:2000版国际质量体系认证、ISO14001:2004环境管理体系认证、GB/T28001:2001职业健康安全管理体系认证,中国石油工程建设协会防腐保温技术专业委员会团体会员等.
    留言咨询
  • 湖南巴思夫检测技术有限公司(以下简称“巴思夫”)是一家实验室分析仪器研发、销售及技术维修服务。专业油品监测诊断技术服务,机械工业油质量评定检测服务,油品分析仪器制造。具有丰富的石油行业设备研发技术,工厂生产车间、独立质检实验室等,可为各企、事业单位量身提供油品实验室分析仪器销售、检验检测、咨询鉴定、质量控制、售后维修服务等一站式服务。湖南巴思夫检测技术有限公司运作模式理念:“为您提供精准、公正、高效、优质的检测服务,让我们成为您值得信任技术的顾问!”我公司主要研发油品检测设备有全自动运动粘度测定仪、润滑油高温高剪粘度测定仪、发动机油表观粘度测定仪、润滑油布氏粘度测定仪、石油产品蒸馏测定仪、全自动开口闪点、 闭口闪点仪,全自动倾点凝点仪,全自动蒸发损失仪等近十余种自动化程度高、性能先进、具有国内国际先进水平的全自动仪器。我们成为您值得信任的顾问,在环境要求和您的生产需求之间提供必要的服务天平。
    留言咨询
  • 400-860-5168转4588
    北京慧安清检测科技有限公司
    留言咨询

负氢离子检测相关的仪器

  • ALT皂化液氢离子浓度在线分析仪是一款由禾工科仪自主研发的无人值守的工业过程在线分析滴定仪,取代人工分析,可实现自动取样、上样、信号测量、滴定分析、自动清洗、自动分析、在获取分析结果后根据生产工艺控制加药泵对槽液进行精确配比加药,将槽液指标维持在生产工艺的预设范围内,还可将分析结果和加药量发送给服务器的数据库进行存储和统计,满足现代化生产过程控制的要求。ALT皂化液氢离子浓度在线分析仪采用A8处理器,模块化设计, 七英寸中文人机对话全彩触摸屏,高精度滴定管、电磁切换阀、长寿命溶剂泵,高分辨率的颜色采集模块和多样的检测模块,可通过测量电极的电位变化和颜色变化的自动判断,来指示滴定的终点,根据样品性质,仪器选用不同电极和检测器进行自动颜色滴定、pH滴定、氧化还原滴定、络合滴定、非水滴定和沉淀滴定等多种滴定,适用于化工、环保、食品、制药、造纸、纺织、冶金、金属表面处理、水质处理等领域。ALT皂化液氢离子浓度在线分析仪 功能示意图在线设备的开发标准:结果准确,控制精确,可靠稳定,智能可控。禾工科仪目前具备下列行业及生产控制领域的样品在线检测及现场药水添加系统开发经验:工业涂装工艺流程生产线、印染工艺生产线、PCB印刷生产流水线、冶金治炼流水线、各类化工过程槽液浓度参数控制等领域的酸值、碱值、水质硬度、钙镁等金属与氯氟等非金属离子的在线浓度监测与药水添加系统。ALT皂化液氢离子浓度在线分析仪 产线应用示意图* 根据行业生产线专业定制研发,在线分析,无人值守,可完全替代人工;* 在线分析模块可进行分析自动化进程的编辑、修改和存储;包括在线自动取样,自动上样,自动分析,自动清洗,自动数据存储;计算公式可进行编辑和存储,分析完成后自动计算最终结果并发送给服务器;* 过程控制模块可监控多台在线分析仪的状态,并可根据客户需要开发配合自动化生产控制功能,本设备具有监控报警功能,可设置,液体,电源及分析结果等异常报警功能;★配置清单(基本配置):数量1、主机控制单元 1套2、高精度滴定馈液单元2套3、搅拌滴定台(通用)1个4、电位滴定(PH滴定)模块1套5、双铂针测量电极1支6、精密辅助泵(含控制系统)2个7、通讯模块(RS232,TCP/IP,MODBUS)1套8、滴定控制软件(在线滴定,自动计算,自动输出)1套9、整机安装及机箱与包装1套10、新机安装培训服务及12个月有限保修服务1台
    留言咨询
  • VOCs 便携式检测仪是一款通过防爆认证的 VOCs 总量检测仪,很好的满足客户对于多种现场快速准确检测 VOCs 总量的需求。是专 为无组织排放 VOCs 检测而开发的, 能够针对各类管阀件、排泄口和设施密闭系统的泄漏点进行快速和精准识别, 帮助企业及时发现和 修复泄漏点,保证设备和相关生产活动的顺利进行,同时协助相关环保部门更好的进行企业无组织排放的管理。VOCs 便携式检测仪很好的满足 GB37822-2019《挥发性有机物无组织排放控制标准》、HJ733-2014《泄漏和敞开液面排放的挥发 性有机物检测技术导则的要求》、GB20952-2020《加油站大气污染物排放标准》和防爆标准(GB3836.(1,2,4,9)-2010)。该仪器采用氢火焰离子化检测器(FID),是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级离子,在高压电场的定向作用下,形成离子流,微弱的离子流经过高阻放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。氢火焰检测器的特点:结构简单、检测性能高、稳定性高、秒级响应、准确度高和线性范围广。 技术指标氢气瓶容量:100ml,最大工作压力 20Mpa氢气使用时间满气使用 12h 以上响应时间≤ 3.5s检出限0.5ppm量程范围0~50000ppm准确度读数的 ±3%防护等级IP65防爆标志Ex d ib mb Ⅱ C T4 Gb 工作条件电源7.4v/0.6A使用环境温度-10~+45℃电池工作时间8h 以上主机重量4.0kg 现场应用● 石化、化工、制药、化肥等行业● LDAR(泄漏检测与修复)检测● 工厂车间环境 VOCs 检测● 加油站和油库油气回收泄漏检测● 无组织现场应急检测● VOCs 溯源排查及 VOCs 治理入口
    留言咨询
  • HORIBA 碳氢化合物 分析仪 FIA-510 产品详情:规格参数测量原理 /测量对象半减压氢火焰电离化检测法/THC量程(THC)0-50ppmC(最小)、0-30000ppmC (最大)环境条件温度0到40C° 湿度相对湿度90%或更少重复性± 0.5%FS(± 1%FS 高灵敏度的范围)漂移± 1%FS/天(± 2%FS/天 高灵敏度的范围)响应时间10秒机体规格尺寸(mm)430(W)550(D)132(H) (长W 宽D 高H)重量(kg)20特点:(1):适于连续监测烟道气体排放中的THC。(2):采用半减压氢火焰离子化检测法,具有优良的响应性和稳定性。 检测精度和灵敏度高。(3):分析部单元装置、采样装置分别形成了部件化。作为台式类型,且作为19英寸机柜存放系统,可以自由地排列。(4):内置CPU、直接读取浓度的数字显示、零点、跨度的单触式校正、自我诊断等操作性得到了大幅提高。(5):实现了动态量程。标准为4段量程、量程比10倍,作为可选项,能达到量程比20倍。(6):根据用途,响应速度(电气系列)T90利用DIP开关可以很容易地进行变更。(7)实现了再现性± 0.5%FS以内(标准量程)、零点、跨度漂移± 1.0%以内/日(标准量程),能够获得选择性良好的检测值。 测量原理(检测对象气体) FIA-510分析仪集HORIBA公司在分析领域多年的经验积累和独特的技术优势为一体,最新开发的气体分析仪.FIA-510采用氢离子火焰原理(FID)测量总碳氢(THC),具有极高的精度和快速响应特征,而且安定性非常好,可以实现高精度和高灵敏度的连续测量。FIA-510分析仪可以在0-10/30000ppmC的范围内设定7个量程,可以满足各个领域客户的不同测量需要。FIA-510分析仪操作简单,轻便易于维护,可以用于车载,也可以配备移动式机柜,方便在实验室之间移动使用。此分析仪可以广泛应用于汽车尾气测试、燃气锅炉的排放尾气、实验室研究等方面。
    留言咨询

负氢离子检测相关的资讯

  • 青岛能源所开发出稳定制氢离子传导膜的新型制备技术
    与可再生能源电解水制氢技术相比,通过提纯工业副产氢获取燃料氢气是现阶段更廉价的制氢方式。金属氧化物构成的氧离子传导膜具有对氧100%的选择性,将高温水分解反应和工业副产氢燃烧反应耦合在致密氧离子传导膜的两侧,可实现低纯氢气燃烧反应,进而驱动膜另一侧水分解,直接获得不含一氧化碳的氢气,用于氢燃料电池。   然而,氧离子传导膜通常暴露在含H2、CO2、H2S、H2O、CH4等气氛中,因而常见含钴或铁的膜材料面临抗还原腐蚀性能差的问题。因此,亟需开发适用于副产氢提纯的氧离子传导膜,为分布式氢能的发展提供技术支撑。   在前期氧离子传导膜材料开发基础的上(Angew.Chem.Int.Ed. 2021,60,5204-5208;Chem.Mater. 2019,31,7487-7492;AIChE J. 2019,65,e16740),近日,中国科学院青岛生物能源与过程研究所膜分离与催化研究组研究员江河清提出界面反应-自组装技术在陶瓷氧化物膜表面构筑一层超薄氧离子传导致密膜,形成多层结构陶瓷膜,用于稳定高效地提纯工业副产氢,制取不含CO的氢气。   与传统制膜工艺对比,研究利用该技术原位构筑的氧离子传导膜非常薄(~1 μm),致密并且牢固地粘附在支撑层上,从而既可显著降低氧离子传输阻力,又能避免薄膜分层或剥离,保持多层结构陶瓷膜的完整性。另外,该过程只需一步热处理,有望降低多层结构陶瓷膜的制备成本。该方法适用于十余种不同的陶瓷体系,具有较好的普适性,其中氧离子传导薄膜包含Ce0.9Gd0.1O2-δ、Y0.08Zr0.92O2-δ、Ce0.9Pr0.1O2-δ、Ce0.9Sm0.1O2-δ等。科研人员将开发的具超薄氧离子传导膜的多层结构陶瓷膜作为膜反应器进行工业副产氢提纯,在H2、CH4、CO2、H2S、H2O气氛下连续稳定运行超过1000个小时,展现出优异的稳定性和制氢性能。   该研究开发出的高性能氧离子传导膜有望为工业副产氢提纯、固体氧化物燃料电池/电解池及氧传感器等提供技术支撑,并为制备其他具功能薄层的高性能多层结构陶瓷提供新策略。近期,相关研究成果发表在《德国应用化学》上,并已申请一项中国发明专利和一项国际专利。   研究工作得到国家重点研发计划、国家自然科学基金、中科院国际合作局对外合作重点项目、中科院青年创新促进会等的支持。界面反应-自组装技术制备多层结构氧离子传导膜
  • 华质检测公布净水壶效果检测数据 净水壶是必备还是鸡肋?
    近日,华质检测针对市场占有率较高的三大净水壶品牌净水效果的检测,终于揭开了庐山真面目。  本次检测所抽取净水壶品牌为:碧然德、莱卡、飞利浦,采购渠道均为京东商城。不同于其他依靠pH试纸及染色剂的测试方法,华质检测依据 GB5749-2006《生活饮用水卫生标准》及GB5750-2006《生活饮用水标准检验方法》,对微生物指标、毒理指标以及一般化学指标等36个饮用水水质常规指标进行了专业、权威检测。我们对自来水原水(北京市朝阳区水样)及三个净水壶过滤后的水进行了水质检测,检测对比结果如下所示:  从检测结果中可以看出,三大品牌净水壶过滤后的水质,硬度、PH值、耗氧量、铁离子含量有明显的变化。现在,我们就将有差距的几项检测数据拿出来,为大家做一简单概述。首先,从总硬度、pH值和耗氧量方面来看。1.总硬度  水的硬度是指溶解在水中的盐类物质的含量,即钙盐与镁盐含量的多少。含量多的硬度大,反之则小。与其直接相关且消费者能直观感受到的,便是水在被加热过程中,因为蒸发浓缩所形成的水垢。水硬度并不会对健康造成直接危害,但是会给生活带来很多麻烦,比如水垢难清理,硬度高的水洗涤效果差等。生活饮用水卫生标准规定,自来水硬度不得超过450毫克/升。通过数据对比不难发现,经过碧然德、莱卡净水壶过滤的水硬度明显降低,飞利浦除去的硬度较小。也就是说,用碧然德、莱卡净水壶过滤后的水,煮沸后热水壶不易起水垢。2.pH值  pH 值,亦称氢离子浓度指数、酸碱值,是体现溶液中氢离子活度的一种标度。当水的pH值在6.5-9.5的范围内时,并不会对人的生活饮用与健康造成影响。世界卫生组织(WTO)也未提出过有关pH基于健康的准则值。但pH值是水质净化处理过程中最重要的水质参数,可以体现水质在净化过程中的变化效果。在净水壶过滤过程中会产生pH值降低的情况,这属于正常现象,间接体现了过滤过程中对阴离子的去除率。当然,如图可知,在经过飞利浦净水壶过滤后,饮用水的pH 值非但没有降低反而出现了升高的现象。不过,因其最终数值依然在健康饮用水标准之内,所以不能单凭这一点便对飞利浦净水效果的好坏盖棺定论,毕竟只要饮用水pH值在安全范围内便不会对人类的健康造成影响。3.耗氧量  耗氧量是指水样在规定的氧化剂和氧化条件下的可氧化物质总量。包括可氧化的有机物与无机物,但因为水中可氧化的无机物一般较少,所以有关耗氧量的测定结果,反映的是水体中有机污染物的总量。生活饮用水卫生标准中规定耗氧量的限值为3mg/L,目前尚无实验数据证明超过此限值会对健康造成什么风险。不过,在已有的相关调查,如全国饮用水水质调查及全国肿瘤死亡回顾调查中已经表明,饮用水耗氧量与肝癌、胃癌死亡率之间有着非常显著的关系。如图可知,三款净水壶在过滤耗氧量方面,都有不同程度的降低,过滤效果并无明显差别,且均在限值之内。其次,从少量金属元素来看  关于铁离子等金属杂质的去除,对于人体而言,铁具有固定氧和输送氧的功能。当然,任何超剂量的元素都会对人体造成危害。根据GB 5749-2006《生活饮用水卫生标准》,每升水中铁的含量不得大于0.3mg/L,通过数据对比不难发现,无论是自来水还是过滤后的水,铁的含量都在标准之内,并不会对人体造成伤害。第三,关于氯酸盐和三氯甲烷的过滤  加氯杀菌是世界各国的通用手段,根据GB 5749-2006《生活饮用水卫生标准》,消毒副产物三氯甲烷和氯酸盐的含量不得大于0.06(mg/L)和0.7(mg/L)。居于标准之内的消毒副产物并不会对人体健康造成伤害。如图可知,自来水和过滤后的水中三氯甲烷、氯酸盐的含量都在标准之内,并且在过滤后数值都有所下降。所以,无论过滤前还是过滤后,这个含量都不会对人体健康造成影响。第四,在氟化物和硝酸盐方面  氟广泛存在于自然水体中,人体各组织中都含有氟,但主要积聚在牙齿和骨筋中,适当的氟是人体所必需的,过量的氟对人体有危害。根据GB 5749-2006《生活饮用水卫生标准》的要求,自来水中氟化物的含量不得超过1.0mg/L,而硝酸盐的含量,日常饮用水不得超过10mg/L,在地下水源水质较差,同时水处理条件无法达到相应指标的情况下,其含量可以是20 mg/L。如果水中含有高水平的硝酸盐,那么在煮沸加热条件下,可能部分转成亚硝酸盐。饮水中的亚硝酸盐的确存在致癌性及毒性,并且随着反复加热而增加,但由于饮水中亚硝酸盐含量极少,对人的影响有限。如图可知,经过三款净水壶过滤后,饮用水中氟化物和硝酸盐的含量都有不同程度的降低。最后,在过滤硫酸盐和氯化物方面  当硫酸盐和氯化物的含量超标时,人们在饮用时可以直观感受到水的异常,影响口感。当水中硫酸钙和硫酸镁的质量浓度分别达到1000mg/L和850mg/L 时,大多数人会察觉到水中有异味,难以接受。而自来水中含有的氯超过0.8mg/L时,鼻子可以闻到很重的氯味。根据规定,自来水中氯化物和硫酸盐的含量不得高于250mg/L。如图可知,自来水中氯化物和硫酸盐的含量在经过过滤后数值各有起伏,所以,在过滤硫酸盐和氯化物方面,三款净水壶效果不一。  综上,三大净水壶品牌在过滤饮用水方面或多或少都起着相应的作用,鉴于水样本身就符合国家相关标准,因而,对于消费者而言,对于水硬度(关乎水垢)的过滤或许是净水壶存在的最大意义。
  • 国产离子源技术新进展在美国质谱年会受到关注
    浙江好创生物技术有限公司董事长朱一心在2015年美国质谱年会(ASMS 2015)上发布了有关电喷雾离子源(ESI)带电机理,相关的论文在ASMS上作为墙报展示。由于这套理论与传统ESI带电理论有所不同,引起了强烈的反响。仪器信息网编辑将发布的内容整理,供国内感兴趣的专家学者参阅。  当前,蛋白质组学研究中最大的技术瓶颈之一就是生物质谱的离子源技术,因为现有离子源对离子的利用效率极低。  事实上,自从80年代中期John B. Fenn 将电喷雾离子源应用于大分子质谱分析以来,全世界成千上万的科学家涌入了这一研究领域。快30年过去了,对于电喷雾离子源机理,还是停留在两个模式:Ion Evaporation Model (IEM) 离子蒸发,与Charged Residue Model (CRM) 电荷残留机理。这两个模式所描述的都是带电液滴离开Taylor Cone 以后的单分子气相电荷的形成过程(如图1所示),至今也无法解释以下两个问题:  1、为什么电喷雾离子源中存在多电荷离子?  2、为什么电喷雾离子源存在离子抑制现象?图1 电喷雾离子源机理  有些学者认为多余的电荷是来自于液滴(Droplets that contain an excess of positive and negative charge detach from its tip.)  根据电磁场理论,介质在电场中,正负电荷是以成对的形式存在的,不可能形成正、负分离。在电极的同一端更不可能产生正、负离子分离的现象。图2 离子源机理实验图  下面是朱一心研究团队的实验过程。首先将离子源全封闭起来。图2中,瓶子 1、2、3 可以加上不同的液体或气体,作为辅助液气,控制泰勒锥周围的离子化气氛。图3 离子源离子化室内充满空气和氮气时的离子图  当离子源离子化室(Chamber)充满空气时,肽段离子信号如图3左所示,肽段离子信号非常强。  将离子源离子化室(Chamber)充满氮气,并且控制其质谱仪的真空度与离子源离子化室暴露大气时一样,如图3右所示,质谱仪无法检测到肽段离子信号。  这样我们可以直观的推断(M+H)+ 中的正氢离子并非来自于 Tip 中的液体(流动相)。图4 Air气氛状态下,咖啡因的溶剂为D2O和H2O的谱图  还有实验也能说明氢离子不是来自于流动相。分别用水(H2O)和氘水(D2O)溶解咖啡因,在没有辅助液体的时候,离子化室充满空气时,得到如图4所示的图谱,图中可见,上下图谱完全一致,这就说明了氢离子不是来自于流动相(Solvent)。如果是自于流动相,那么在用氘水(D2O)溶解咖啡因的质谱图中的主峰应该是(M+2)=196.17,而不应该与用水(H2O)溶解样品时得到的主峰一样(M+1)=195.17。咖啡因的结构如下图,它没有OH键,所以无法产生氢氘交换,最适合我们的实验。咖啡因(Caffeine),分 子 式:C8H10N4O2, 分 子 量:194.19  那氢离子到底来自于哪里呢?看了下面实验就知道了。  在上面的实验中的辅助气中加以D2O为辅助液体以后,得到了完全一致的谱图,主峰均为(M+2)=196.26如图5所示。图5 Air+D2O 气氛状态下,咖啡因的溶剂为D2O和H2O的谱图  从咖啡因的分子式可以判断,它100%无法进行氢氘交换。所以用氘水溶解样品,咖啡因的分子式不发生变化,在高电场中被电场极化的分子式与水溶解的咖啡因一致,分子量没有发生变化,还是M,吸附上一个氢离子以后形成(M+H)+ 正离子。加以氘水(D2O)辅助蒸汽以后,在泰勒锥(Taylor Cone)周围产生氘离子(D+),所以极化后的分子吸附一个氘离子(D+),形成(M+D)+ 正离子。这一实验就证明了氘离子((D+),是来自于泰勒锥以外的。  如果用传统的电喷雾理论,在这一实验中,用水(H2O)溶解咖啡因时,是永远见不到(M+2)+ =196.26的离子峰的。  这三个实验可以说明,电喷雾离子源使分子带电的过程其实是场致水分子电离后产生氢离子,极性分子在高电场中的极化,极化后的分子与氢离子又产生了静电吸附,从而形成多电荷分子离子。  图6 电喷雾离子源机理  如图6所示,电喷雾发射针处于正电压,在尖端表面形成一个稳定的Taylor Cone,因为Taylor cone 的曲率半径很小,在纳米数量级,尖端表面的电场很强,将刚刚离开Taylor Cone 的极性分子极化,形成长条形的不稳定极性分子 同时将尖端表面的水分子场蒸发,形成氢离子,氢离子被长条形的极性分子的负端吸附,从而形成了多电荷离子。  同时可见,当两个极性分子同时出现在Taylor Cone 附近,氢离子被极性大的分子吸附,从而出现了离子抑制现象。  美国康奈尔大学化学与化学生物学荣誉教授Fred Mclafferty(右)与朱一心先生探讨技术问题  赛默飞世尔R&D Director Jean-Jacques(右),与朱一心先生探讨技术问题

负氢离子检测相关的方案

负氢离子检测相关的资料

负氢离子检测相关的论坛

  • 【求助】氢离子火焰检测器积碳现象

    我们的气谱仪器,用着用着基线就不平了,呈现巨齿状的小小峰,但整体看还是直线,工程师说这是氢离子火焰检测器处燃烧物质后的积碳形成的。这种情况怎么清理呢?怎么用个两三次就成这样了呢?大家有碰到这种情况吗?谢谢!

  • 氢离子火焰测有机物浓度

    [color=#444444]通过加热单一的有机物(例如多环芳烃)得到[url=https://insevent.instrument.com.cn/t/Mp]气相[/url],利用氮气作为载气通过检测设备,想用氢离子火焰检测浓度,假如只测一种有机物的浓度,是不是就不用色谱柱分离呢? 谢谢![/color]

负氢离子检测相关的耗材

  • 氢火焰离子化检测器配件
    磐诺色谱为气相分析工作者提供各类高品质GC专用零配件,为您的日常分析工作保驾护航——氢火焰离子化检测器配件系列No.DISC.1点火器点活塞组件(1个/包装)2FID收集极组件(1个/包装)3专用毛细柱喷嘴(0.29mm内径)4喷嘴用于毛细管柱(0.29mm喷嘴内径)5喷嘴用于填充柱(0.46mm喷嘴内径)6FID清洁工具包(1个/包装)
  • FID氢火焰离子检测器接口板 安捷伦 Agilent 气相色谱仪配件
    安捷伦 Agilent 6890 FID检测器 氢火焰离子检测器 接口板(G1531-60020)气相色谱仪 6890FID检测器接口板(G1531-60020)FID Interface Board (G1531-60020)图例:下图中第18项为6890FID检测器接口板(G1531-60020)
  • 岛津 GC-14C 氢火焰离子化检测器 FID
    岛津 GC-14C 氢火焰离子化检测器 FID岛津 GC-14C 氢火焰离子化检测器 FIDNo.产品编号描 述数 量1221-21906-92收集器,W/Cable/FID12221-21925-91H.V. 电极/ FID13221-21920-91喷嘴组件/ FID1221-37304-03喷嘴组件/ FID - SP221-32361-91FID 池(包括安装部分)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制