当前位置: 仪器信息网 > 行业主题 > >

土壤层分析仪

仪器信息网土壤层分析仪专题为您提供2024年最新土壤层分析仪价格报价、厂家品牌的相关信息, 包括土壤层分析仪参数、型号等,不管是国产,还是进口品牌的土壤层分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合土壤层分析仪相关的耗材配件、试剂标物,还有土壤层分析仪相关的最新资讯、资料,以及土壤层分析仪相关的解决方案。

土壤层分析仪相关的资讯

  • 土壤养分分析仪器-土壤养分分析仪器-土壤养分分析仪器
    土壤养分分析仪器【选择山东霍尔德电子科技】Soil testing instrument manufacturers为山东霍尔德电子科技新一代仪器生产厂家研发,性能可靠,具有强大的售后保障,为仪器生产优势厂家,能够满足各种检测需求【点击上方进入公司主页可电话咨询】土壤养分分析仪器是在合理施用农家肥的基础上进行的,在开展测土配方工作中,各级农业部门积极引导农民积存农家肥,实施秸秆还田等技术,提高有机肥的利用水平,使土壤养分结构得到改善,耕地质量明显提高。土壤检测仪器技术指标:  1.电源:交流 220±22V 直流 12V+5V(仪器标配内置锂电池也可用车载电源)  2.功率: ≤5W  3.量程及分辨率:0.001-9999  4.重复性误差: ≤0.02%(0.0002,重铬酸钾溶液)  5.仪器稳定性:一个小时内漂移小于0.3%(0.003,透光度测量)。仪器开机预热5分钟后,三十分钟内显示数字无漂移(透光度测量) 一个小时内数字漂移不超过0.3%(透光度测量)、0.001(吸光度测量) 两个小时内数字漂移不超过0.5%(0.005,透光度测量)。  6.线性误差: ≤0.1%(0.001,硫酸铜检测)  7.灵敏度:红光≥4.5 ×10-5 蓝光≥3.17×10-3 绿光≥2.35×10-3 橙光≥2.13×10-3  8.波长范围 :红光:680±2nm 蓝光:420±2nm 绿光:510±2nm 橙光:590±4nm  9.PH值(酸碱度): (1)测试范围:1~14 (2)精度:0.01 (3)误差:±0.1  10.含盐量(电导):(1)测试范围:0.01%~1.00% (2)相对误差:±5%  11.土壤水分技术参数水分单位:﹪(g/100g) 含水率测试范围:0-100﹪ 误差小于0.5%  12.土壤中速效N、P、K三种养分一次性同时浸提测定、科学推荐施肥量(农业部速测行业标准起草者)  13.肥料中氮(N)、磷(P)、钾(K)等养分同时、快速、准确检测  14.测试速度:测一个土样(N、P、K)≤30分钟(含前处理时间,不需用户提供任何附件)  15.同时测8个土样≤1小时(含前处理时间)  16.仪器尺寸:43×34.5×19cm, 主机净重:5.1kg
  • 土壤分析仪器家用-土壤分析仪器家用
    土壤分析仪器家用-土壤分析仪器家用【YT-TR03】Soil analysis instrument household仪器整机质保五年,终身免费维修服务,免费邮寄仪器、免费培训。终身免费提供土肥等农业相关技术支持! 厂家实力承诺:15天超长试用不满意退货退款,1年内非人为故障只换不修,2年内软件升级费用全免,3年内非人为质量免费维修,终身故障维修免人工费,7*24小时在线技术支持!家用土壤养分快速检测仪的主要功能是对土壤养分进行测量,以便农业生产汇总实现的施肥。在农业领域的施肥可以提升作物的产量和品质,有效的避免由于大量施肥导致的土壤污染及环境污染等问题。土壤检测仪器的种类繁多,仪器的功能及检测的项目也有所把不同,对于家用土壤检测仪什么品牌的好,好的土壤检测仪品牌可以快速的检测出土壤、植株、肥料等样品中的氮磷钾、有机质含量,检测项目齐全,检测结果准确。土壤分析仪器家用特点:1、可检测土壤及化肥、有机肥(含叶面肥、水溶肥、喷施肥等)、植株中的速效氮、速效磷、有效钾、全氮、全磷、全钾、有机质、酸碱度、含盐量,钙、镁、硫、铁、锰、硼、锌、铜、氯、硅等各种中微量元素含量。2、安卓智能操作系统,采用更加高效和人性化操作,仪器标配wifi联网上传、4G联网传输、GPRS无线远传,快速上传数据。3、内置作物专家施肥系统,可对百余种全国农业、果树、经济作物的目标产量计算推荐施肥量,依据施肥配方科学指导农业生产。4、采用双联排多通道设计,一次性可快速检测12个样品,所有检测项目可实现所有通道同时检测,极大提升检测效率,降低检测成本。5、内置植物营养诊断标准图谱,根据各农作物营养缺失的图片,进行叶面对比,诊断丰缺。6、比色槽部分采用标准1cm比色皿,无机械位移及磨损,光路测试定位精确,有效屏蔽外光干扰,保证检测结果优于国标要求。7、仪器具有4G内存,可长期存储数据,并配有上传平台,无需数据线,数据可直接无线上传,方便进行数据管理和数据长期分析。8、仪器内置新一代高速热敏打印机,检测完成可自动打印检测报告和二维码。9、高灵敏7寸电容触摸屏,高清晰高交互显示,大程度降低传统仪器的繁琐操作和失误。10、每个通道均配置四波长冷光源,所有光源实现恒流稳压,保证波长稳定。 硅半导体作为信号接收系统,寿命长达10万小时级别。重现性好,准确度高。11、高强度PVC工程塑料手提箱设计,坚固耐用,便于携带,供电方式为交直流两用,可野外流动测试配套成品药剂。一、功能多、测试项目齐全:1、土壤养分:●铵态氮、硝态氮、速效磷、速效钾、有机质、全氮、pH值、含盐量、水分、碱解氮等十项;●中微量元素:钙、镁、硫、铁、锰、硼、锌、铜、氯、硅等。2、肥料养分:●单质化肥中的氮、磷、钾;●复(混)合肥及尿素中的铵态氮、硝态氮、磷、钾、缩二脲;●有机肥中速效氮、速效磷、速效钾、全氮、全磷、全钾、有机质,各种腐植酸、微量元素(钙、镁、硫、铁、锰、硼、锌、铜、氯、硅)等。3、植株养分:●植株中的氮素、磷素、钾素;硝酸盐、亚硝酸盐;钙、镁、硫、铁、锰、硼、锌、铜、氯、硅等项。4、烟叶养分:全氮、全磷、全钾、还原糖、水溶性总糖、硼、锰、铁、铜、钙、镁等20项。选择土壤养分快速检测仪首先要明确检测的项目种类是什么,对于测量结果的精度要求也比较高。品牌好的其质量测量精度都会有保证。土壤检测仪引进先进的科学技术,检测项目齐全,检测结果准确,YT-TR03土壤分析仪器家用是一款性价比较高的土壤检测仪器,为了能够满足市场上对检测的要求同时也在不断的研发生产,满足消费者的需求。
  • 土壤重金属有效态浅析
    p   土壤重金属污染风险不仅与重金属全量有关,更与其存在形态密切关联。重金属的生物有效性一般是指环境中重金属元素在生物体内的吸收、积累或毒性程度,从某种角度上讲,形态分析是生物有效性的基础,而生物有效性是形态分析的延伸。目前大多数生物有效性的研究方法都是通过确定污染物在环境中的形态和分布,再将这些形态分布与生物体中污染物的富集量通过单元回归或多元回归等进行统计分析。 /p p   根据IUPAC(国际纯粹与应用化学联合会)的定义,形态分析是指表征与测定一个元素在环境中存在的各种不同化学形态与物理形态的过程。广义上讲,重金属形态是指重金属的价态、化合态、结合态和结构态四个方面,即某一重金属元素在环境中以某种离子或分子存在的实际形式。狭义上的重金属形态是指用不同的化学提取剂对土壤中重金属进行连续的浸提,并根据所使用的浸提剂对重金属的形态进行分组。一般分为水溶及可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态以及残渣态。因浸提剂系列和浸提方法的不同,上述分组方法也有变化。 /p p    strong 水溶及可交换态 /strong :是指交换吸附在土壤粘土矿物及其它成分,如氢氧化铁、氢氧化锰和腐殖质上的重金属。该形态对土壤环境变化最敏感,最易被作物所吸收,对作物危害最大。 /p p    strong 碳酸盐结合态 /strong :是指与碳酸盐沉淀结合的重金属,该形态对土壤环境条件敏感,特别是对pH最敏感,随着土壤pH值的降低,离子态重金属可大幅度重新释放而被作物所吸收。 /p p    strong 铁锰氧化物结合态 /strong :是指与Fe2O3和MnO2等生成土壤结核的部分。土壤环境条件变化可使其中部分重金属重新释放,对农作物存在潜在危害。此形态的最大特点是在氧化还原条件下稳定性差。 /p p    strong 有机物结合态 /strong :是指以不同形态进入或包裹于有机质中,同有机质发生鳌合作用而形成鳌合态盐类或硫化物。该形态较为稳定,一般不易被生物所吸收利用 但当土壤氧化电位发生变化时,可使少量重金属溶出而对作物产生危害。 /p p    strong 残渣态 /strong :在连续提取法中,上述各形态重金属被提取后,剩余部分的重金属均可称为残渣态重金属。对这部分重金属的结合方式很难给出明确的概念。大部分学者认为,稳定存在于石英和粘土矿物等晶格里的重金属即为残渣态重金属。残渣态的重金属很稳定,对土壤重金属迁移和生物可利用性影响不大。 /p p   就提取剂而言,有多种类型,美国、欧洲和日本等国家标准中的提取剂包括:王水、NH4NO3、HCl、HNO3、NaNO3、HCl-HNO3-HF和水等。我国当前土壤重金属有效态的标准方法主要有:《土壤有效态锌、锰、铁、铜的测定》(NY/T 890-2004)、《土壤质量有效态铅和镉的测定》(GB/T 23739-2009)、《土壤检测 第9部分 土壤有效钼的测定》(NY/T 1121.9-2012)、《森林土壤有效锌的测定》(LY/T 1261-1999)、《森林土壤有效钼的测定》(LY/T 1259-1999)、《森林土壤有效铜的测定》(LY/t 1260-1999)和《土壤 8种有效态元素的测定 二乙烯三胺五乙酸浸提-电感耦合等离子体发射光谱法》(HJ 804-2016)等,基本都采用二乙基三胺五乙酸(DTPA)或0.1M盐酸浸提剂,也有部分采用硝酸-高氯酸-硫酸、草酸-草酸铵或EDTA浸提剂。 /p p   DTPA分子结构为: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201704/insimg/e7a061cf-0596-44cc-85b9-9fc8ae5c57b3.jpg" title=" 8be6fee55d73b8c347db15cdec21b8a5.jpg" /    /p p   DTPA能迅速与钙、镁、铁、铅、铜和锰等离子生成水溶性配合物,尤其对高价态显色金属配合能力强,因此能浸提出土壤中水溶及可交换态、碳酸盐结合态和部分铁锰氧化物结合态的重金属,相对于其全量而言,这些被认为是高度生物有效的形态。 /p p   表征农田重金属生物有效性的方法包括: /p p   (1 strong )实验模拟法 /strong :根据重金属在土壤—水相互作用过程中的释放速率和释放机理,预测自然风化条件下土壤中重金属的潜在环境效应。 /p p   (2) strong 植物指示法 /strong :生活在重金属污染土壤中的植物都能够不同程度地吸收一些重金属。通过分析这些植物体内重金属的含量,可以判断污染土壤中重金属的生物可利用性,从而判断土壤受重金属污染的程度。 /p p   (3) strong 化学浸提法 /strong :即采用一种适当组成与组成量度的试验溶液(一种或几种试剂) 按照一定的土液比与浸提方法进行浸提, 然后测定浸提液中重金属的含量。如前所述的DTPA,虽然能在一定程度上表征重金属的生物有效性,但由于多种因素(土壤类型、酸度、多金属间的作用、金属在不同植物不同部分的迁移)对生物提取剂的影响,使其很难对多种金属的生物有效性准确表征。 /p p   影响重金属生物有效性的因素包括: /p p   (1) strong 土壤pH值 /strong :土壤pH值对土壤中的重金属的形态有很大的影响,其发生变化时,土壤重金属的形态也会动态波动。 /p p   (2) strong 重金属之间综合作用 /strong :土壤中重金属之间及与其他大量元素之间的复合污染也会影响其生物有效性,即重金属元素间的拮抗作用和协同作用影响重金属形态分布。 /p p   (3) strong 植物根际环境 /strong :植物根的生长改变了土壤的某些物理、化学和生物性质 根际( rhizosphere) 是距离根毛大约0.22 mm 厚的土壤层,根际环境是一个复杂的、动态的微型生态系统。土壤中的微生物能够改变重金属生物有效性,从而影响他们在土壤-植物系统中的迁移和转化。 /p
  • 土壤温室气体分析仪-一款测定土壤呼吸速率的仪器2024实时更新
    型号推荐:土壤温室气体分析仪-一款测定土壤呼吸速率的仪器2024实时更新,土壤呼吸作为土壤生态系统碳素循环的关键环节,其速率的测定对于理解土壤健康状态、评估生态系统功能具有重要意义。土壤温室气体分析仪,以其高精度、多功能的特性,为土壤呼吸速率的测定提供了重要帮助。 一、准确监测多种温室气体 土壤温室气体分析仪能够同时显示呼吸室内部的CO₂ 、H₂ O、N₂ O、CH₄ 等多种温室气体的含量,以及温度和湿度的变化。这些数据的准确监测,为土壤呼吸速率的全面评估提供了可靠基础。 二、非破坏性测量与高精度 该仪器采用非破坏性测量方法,避免了对土壤生态系统的干扰。同时,其高精度和重复性高的特点,确保了土壤呼吸速率测量的准确性。通过实时监测和数据处理,研究人员可以迅速获取土壤呼吸速率的动态变化。 三、自动化操作与广泛应用 土壤温室气体分析仪具有自动化程度高、操作简便的特点,大大提高了工作效率。广泛应用于农业生态科研、碳源碳汇研究、全球气候变化等多个领域,为土壤呼吸速率的测定提供了强有力的技术支持。 四、仪器特点1、Android安卓操作系统,更便捷的人机交互操作 2、7寸高清触摸屏,操作简单、界面清晰 3、气体流量可通过仪器设定,可以进行不同流量下土壤呼吸强度的试验 4、专用动态分析软件,可在安卓显示屏上实时显示实验过程,省去往电脑端拷贝数据,整理分析; 5、支持wifi、4G联网;数据可无线上传至云平台 6、存储空间16G,可存储100000+条数据 7、数据可直接通过USB接口导出到U盘 8、检测完成可直接打印并上传检测数据结果 9、支持GPS定位; 土壤温室气体分析仪作为土壤呼吸速率测定的重要工具,其精确监测、非破坏性测量和自动化操作的特点,为土壤健康状态的评估和生态系统功能的理解提供了有力保障。未来,随着技术的不断进步,其在土壤科学研究中的应用将更加广泛和深入。
  • 关于土壤团粒结构分析仪使用时的土壤量建议【莱恩德仪器】
    土壤团粒结构分析仪所需放置的土壤量并没有一个固定的数值,它取决于多种因素,如分析仪的型号、土壤样品的准备方法以及测试的具体需求等。以下是一些关于土壤团粒结构分析仪使用时的土壤量建议:  一、根据土壤团粒结构分析仪型号确定  不同型号的土壤团粒结构分析仪可能对土壤样本量有不同的要求。例如,某些型号的分析仪可能需要较多的土壤样本以确保测试的准确性,而另一些型号则可能只需要较少的土壤样本。因此,在使用土壤团粒结构分析仪之前,应仔细阅读分析仪的使用说明书,了解其对土壤样本量的具体要求。  二、根据土壤团粒结构分析仪测试需求确定  测试需求也是影响土壤样本量的重要因素。例如,如果测试需要分析不同粒径的土壤颗粒,那么可能需要更多的土壤样本以确保每个粒径范围内的颗粒都能得到充分的代表。此外,如果测试需要多次重复以获取更可靠的结果,那么同样需要增加土壤样本量。  三、一般建议  虽然无法给出一个具体的土壤量数值,但根据一些常见的土壤团粒结构分析仪的使用经验,可以大致估算出一个合适的土壤样本量范围。一般来说,土壤样本量通常在几十克到几百克之间。具体数值应根据分析仪的型号、测试需求以及土壤样品的性质来确定。  四、使用土壤团粒结构分析仪的注意事项  1.样品采集:在进行土壤团粒结构分析之前,需要采集土壤样品。样品采集应该具有代表性,选择多个点位进行采集,并混合成一个代表性样品。注意避免样品的污染和混杂。  2.样品预处理:根据仪器的要求,对采集的土壤样品进行预处理。这可能包括去除杂质、过筛、干燥等步骤。确保样品处理的一致性和准确性。  3.遵循说明书:严格按照仪器说明书的要求进行操作,避免错误操作影响检测结果。  综上所述,土壤团粒结构分析仪所需放置的土壤量应根据分析仪的型号、测试需求以及土壤样品的性质来确定。在实际操作中,用户应参考分析仪的使用说明书和相关的土壤测试标准来确定所需的土壤量。点击此处可了解更多产品详情:土壤团粒结构分析仪
  • XOS发布新品——土壤镉分析仪
    p   XOS在全球范围内发布了一种新的镉分析仪Cadence& #8482 , 此仪器用于检测土壤中镉,检出限低于中国农业部规定的0.3ppm最低限值。除此之外,Cadence& #8482 还可以同时测量土壤和水稻、小麦等农产品中的其他重金属,如铅、铜、镍、铬等。这款分析仪是农业检查和环境评估的理想解决方案。 /p p   XOS负责销售的副总裁迈克?帕尔默(Mike Palmer)认为,这款仪器将给环境修复行业带来重大改变。“现有的仪器无法对土壤和食品中的镉和其他重金属进行定量分析。Cadence是一台便携式仪器,可以让用户在更短的时间内检测更多的样品,以更好的支持场地修复和土地使用决策。 /p p   在工业和经济快速发展的地区,土壤重金属污染已成为一个关键问题。镉(Cd)作为一种潜在的致癌物具有特殊的意义,因为它在有水的土壤中具有高度的移动性,并会被大米和小麦等重要的主食谷物所吸收。以前测量污染土壤中Cd采用湿化学方法,如ICP-MS或AAS,以满足法规要求的定量检出限。但是,采用湿化学方法需要一个昂贵的分析实验室和高素质人员,而且由于样品运输、前处理和分析都需要时间,故需要花费很长甚至一周的时间才能得到分析结果。与湿化学方法相比,Cadence是有一个可行的选择方案。 /p p   Cadence 采用高精度X射线荧光技术(HDXRF),与传统的能量色散X射线荧光光谱技术相比,此技术在元素分析方面有更高的检测性能。HDXRF采用最先进的单色和聚焦光学技术,大大提高了信噪比。 /p p    strong 关于XOS: /strong XOS是专用型x射线分析仪的领先制造商,为石油、消费品和环境领域提供元素分析解决方案。对于环境应用,XOS提供高精度XRF (HDXRF)分析仪,用于检测食品、土壤和水中的有毒元素。 /p
  • 综述|或将成为“下一代的土壤分析仪”——LIBS在土壤分析中的进展及潜力
    p style=" text-align: justify text-indent: 2em " 近年来,激光诱导击穿光谱(LIBS)回收、采矿和金属分析等不同领域蓬勃发展,LIBS具有不需要样品制备、便携性、检测速度快等优势。与电感耦合等离子体-质谱法(ICP-MS)和其他一些元素分析方法不同,LIBS存在一种巨大的& quot 矩阵效应& quot 。 strong 本文将讨论为什么土壤分析会成为LIBS一项引人注目的应用? /strong /p h1 label=" 标题居左" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: left margin: 0px 0px 10px " strong 为什么选择土壤分析? /strong /h1 p style=" text-align: justify text-indent: 2em " 土壤分析已经经历了一个多世纪的发展,安德森在1960年的文章《土壤试验的历史与发展》中记录了这一时期技术的进步,其主要侧重于磷的监测,也考虑到了钾和氮。他详细介绍了不同土壤类型如何提取相关物质的方法,以及土壤养分与作物产量关系的早期证据(早在1890年)。大约在同一时间(1957年),大卫· 赖斯· 加德纳向哈佛大学提交了题为& quot 美国全国合作土壤调查& quot 的博士论文,这是农业研究人员首次广泛进行的土壤科学综合调查。二战后的美国经济使得联邦和州一级的农业推广服务急剧扩大,土壤科学、除草剂、杀虫剂、抗病作物等研究大爆发,这使得从1950年代中期到今天农业生产力的显著提高。图 1 展示了农业生产率的发展。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/238e798e-7154-4b16-94da-6fafe6ebdd2c.jpg" title=" fig1_s.jpg" alt=" fig1_s.jpg" / /p p style=" text-align: center " strong style=" text-indent: 0em " 图 1:1866-2014年,美国每公顷玉米平均产量,来自数据世界,未经修改。 /strong span style=" text-indent: 2em " & nbsp /span /p p style=" text-align: justify text-indent: 2em " 自然土壤分析自1960年以来发展至今,以经历数个阶段,过去十年来常见方法是收集一个田地不同地点的样本,在不到20英亩的田地中,随机地点采集了15到20个单独的样本。将采集的土壤混合,测试土壤中的pH水平、植物可用的N、P、K、Mg、Ca等物质的浓度。在某些情况下,还需要检测土壤中的有机质的百分比和微量金属,土壤检测实验室会采用多种方法检测,从滴定测量方法到ICP-MS。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(23, 54, 93) " strong 如今,精准农业已成为最新的趋势,其对植物和土壤健康的测量越来越精确,需要更频繁的获取土壤信息,以便于更加精准的进行灌溉、虫害控制和施肥。 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(23, 54, 93) " strong LIBS土壤分析的早期研究主要侧重于土壤中的微量重金属的检测,但由于检测限达不到要求,分析精度不足,这个应用实施较为困难。 /strong /span 对于大多数有毒金属,LIBS 在土壤基质中的检测限大概为1到20ppm之间,这比检测土壤中所需的元素检测限高出一个数量级。每个地点土壤的变化以及土壤的粒状大小也是测量的潜在问题。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(23, 54, 93) " 随着时间的推移,LIBS在土壤分析方面的应用已转向对高浓度元素的分析,如总碳、氮、磷和钾(称为NPK)、镁和钙。这些元素在土壤中的浓度水平远高于微量有毒金属,并可广泛应用于农学中进行测量土壤的健康。 /span /strong /p p style=" text-align: justify text-indent: 2em " 使用LIBS的分析土壤健康的工作首先要做的是对土壤类型进行分类,然后应用适合的矩阵进行校准。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/d2e07909-a5cf-4218-be2f-0b7e11f3c683.jpg" title=" fig2_s.jpg" alt=" fig2_s.jpg" / /p p style=" text-align: center " strong style=" text-indent: 0em " 图2:三个主要成分的分数图应用于中国不同地区的8个未知土壤样本。 /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(23, 54, 93) " strong 这项工作由中国科学院南京土壤研究所的一个研究小组完成,他们使用LIBS并通过少量的计算,分析并预测了土壤的pH、阳离子交换能力(CEC)、土壤有机质(SOM)、以及总氮、总磷、总钾、可用磷和可用钾的浓度等特性。这项研究表明LIBS不仅仅能检测元素的浓度,更能预测整体土壤的状况。 /strong /span /p p style=" text-align: justify text-indent: 2em " 上文的研究证实了使用LIBS确定土壤类型以及确定土壤状况(如pH)的可行性。 span style=" color: rgb(23, 54, 93) " strong 最近的一项研究结合了这些特征,将土壤状况的信息与光谱信息串联,通过在调校和验证方法,来预测不同土壤情况的微量金属元素。 /strong /span 在调校期间,他们不断更改模型中的可调参数,直到校准的相对误差低于他们设定的固定阈值。通过随机交换不同土壤状况和相同浓度的光谱数据点,建立了一个可以应对数据波动、坚固耐用的模型。他们还想将这个模型应用到所有类型的土壤,创造一款通用的模型。 /p p style=" text-align: justify text-indent: 2em " 作者将这种模型应用于LIBS的数据,其中涵盖4种不同的土壤类型,6种不同的元素浓度,每次检测重复6次。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/cf1dba16-83ca-4203-b978-5336dbf4abbc.jpg" title=" fig4_s.jpg" alt=" fig4_s.jpg" / /p p style=" text-align: center " strong style=" text-indent: 0em " 图3:Ag浓度在四种不同类型的土壤中,测量(a)通过单变量峰集成,而(b)使用所有四个类型的通用模型 /strong /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(23, 54, 93) " 图 3 显示,右侧使用模型的预测浓度与测量到的参考浓度之间近乎完美的一致,证明了模型的可行性。 /span /strong /p h1 label=" 标题居左" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: left margin: 0px 0px 10px " strong 基于LIBS的土壤分析前景 /strong /h1 p style=" text-align: justify text-indent: 2em " span style=" color: rgb(23, 54, 93) " strong 一些企业努力已经开始研究相关应用。一家名为LogiAg的公司已经推出了一种名为 LaserAg的解决方案,该解决方案使用LIBS测量土壤和树叶的关键参数。 /strong /span 他们在加拿大与本地的实验室合作开发LIBS的解决方案,这些实验室具有区域特性,可根据情况进行修正,以适应当地土壤类型。修正需要从该区域采集500个样本,包括各种土壤类型和营养值等信息。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(23, 54, 93) " SciAps还推出了Z300 LIBS手持设备,用于测量土壤中的总有机碳。 /span /strong 他们使用了来自美国和加拿大的87个土壤样本对总有机碳测定进行校准,所呈现的校准曲线的R2值为0.8825,平均误差为0-7%,有机碳误差范围0.44%, strong span style=" color: rgb(23, 54, 93) " 表明便携式 LIBS 系统可用于以中等精度对碳含量进行局部测定。 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(23, 54, 93) " strong 迄今为止的研究和企业成果清楚的表明了基于LIBS的土壤分析解决方案的希望。其他便携式分析方法,如X射线荧光(XRF),不能测量轻元素,如氮或碳(XRF在土壤分析的某些方面也十分重要), /strong /span XRF还需要更多的样品制备和与土壤的物理接触进行测量。LIBS系统的独特优势,使它作为下一代土壤分析仪成为可能性,并有助于精准农业的进一步发展。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(23, 54, 93) " 由于需要弥补的矩阵效应,以及构建综合数据库所需的大量土壤样本,可能成为使用LIBS进行土壤分析的最大障碍。然而,基于LIBS的土壤分析似乎只是时间问题。敬请期待! /span /strong /p
  • SciAps发布SciAps土壤分析仪新品
    一、概述SciAps手持式重金属分析仪是一款用于对土壤和其它材料进行筛查以探测出污染重金属的重要工具。嵌入式GPS功能可以将检测结果与其相应的GPS坐标结合在一起,从而使分析仪具有追溯样本到野外的性能。SciAps分析仪可以方便地将GPS数据和样本数据以Wireless LAN方式传输到GIS,以绘制出污染金属的映射图。这款分析仪可在场地定性、环境评估、房产评估及污染物跟踪方面快速得到具有决策性的结果。SciAps分析仪在数秒钟之内可检测出RCRA(《资源保护及恢复法案》)中所规定的危险性高含量元素、需优先考虑的污染物质,以及危险金属。二、特点及应用美国Don Sackett博士带领的团队在产品的设计过程中,围绕产品小巧,重量轻,方便携带,速度快,精度高,好用耐用等6大设计理念。具体体现如下:小巧重量轻SciAps手持式XRF分析仪重约1.5kg,尺寸(长*宽*高)184 x 267 x 114 mm,是目前市面上功能正常小巧最轻的手持式XRF分析仪,是现场检验理想的分析工具。好用省力仪器采用独特的对称式设计,帮助使用者轻易的平衡好仪器,节省体力。手柄部分小巧,与手掌虎口形状贴合的流线型设计理念,使得哪怕是手比较小的女性使用者在抓握仪器时也会有很舒服的使用体验。底部四方形的设计理念使得仪器能轻易稳当立于桌面上,便于使用者抓握仪器,保护使用者手指不被样品伤到。仪器底部和主体尾部在一条直线上,测小样品时可以直接将仪器测试窗口朝上,将样品直接放在测试窗口测试,不需要单独购买测试支架。耐用仪器设计符合IP54三防要求,密封性好,独特的散热理念使得仪器在极端高温环境下也可以正常工作。所有SciAps手持式XRF分析仪都标配探测器快门保护装置,大限度降低仪器在测试过程中被不规则样品损伤重要元器件的几率。更合理的散热理念所有的手持XRF仪器工作原理相同,结构相似,运行一段时间后都会产生热量,有的仪器采用下面预留空间或安装风扇的方式来帮助散热;有的仪器采用顶部散热槽的方式帮助仪器散热;因为仪器外壳材料不同及散热原理不同,采用塑料外壳及顶部散热或下部散热的仪器,内部热量不会马上传导至外壳上,开机一段时间后不会明显觉得仪器烫。但是在工作相同时间后,同时关掉仪器,采用金属材料导热,将仪器内部热量散发至空气中的SciAps 仪器降温明显比其它仪器要快,这说明SciAps XRF 仪器的散热效率要比较其它仪器的散热效率高得多。仪器内部热量都传导至仪器外壳上,可以更好的保护仪器内部的电子元器件,延长电子元器件的寿命。SciAps 所有的XRF仪器在出厂前都有放入高温仓测试,模拟极端高温工作环境,只有通过测试的仪器才会发给客户。领先技术确保精确结果SciAps 所有的XRF仪器为18年最新的研发成果,采用的都是市面上技术先进的元器件。X-200 Si-pin 探测器 LOD值相当于2010年SDD 探测器的值。更先进灵活的分析法SciAps XRF 研发团队在20多年的技术和经验基础上,集Fundamental parameters, “Compton Normalization” method, empirically derived calibrations 三类分析法优点于一台仪器,客户可以根据分析情况选择适合自家企业的方法,具体应用请咨询我们的销售工程师。更快的检测速度极大的提高工作效率,更长的使用寿命领先的设计理念结合市面上技术最先进的元器件,使SciAps 所有的XRF仪器拥有无与伦比的检测速度。样品量相当的情况下,会拥有更长的使用寿命;单位时间内,可以分析更多的样品,进一步降低拥有成本。远程操作可选配远程操作应用程序,通过手机控制仪器,同时通过手机共享测试结果(目前限于土壤重金分析应用)安全密码保护:使用(用户级)和内部设置(admin)功能都有密码保护操作简单SciAps 所有的XRF仪器运行用户熟悉的安卓操作系统结合SciAps简单直观的用户界面,使仪器的操作变得非常简单。可以通过蓝牙或无线与电脑及打印机连接,分享与打印测试结果 通过USB闪存驱动盘、Wireless LAN或蓝牙完成的数据导出操作非常简单。 在任何光线条件下,触摸显示屏都具有清晰、明亮、可读的特性。 嵌入式GPS功能可以将精确的GPS坐标与结果一起存储,以便建立文档并绘制元素位置的映射图。 标配高清摄像头;将带有XRF数据的图像与GPS坐标综合在一起使用。 简洁的报告制作和归档操作,具有极佳的追溯数据到野外的性能。 用户可以轻易添加客户独特的元素和牌号应用便携皮实,用于完成野外大面积高密度采样,大程度地提高在野外进行分析的效率SciAps分析仪是测量需优先探测的污染金属以及《资源保护及恢复法案》(RCRA)所限制金属的理想工具。需优先探测的污染金属包括银(Ag)、砷(As)、镉(Cd)、铬(Cr)、铜(Cu)、汞(Hg)、镍(Ni)、铅(Pb)、硒(Se)、铊(Tl)、锌(Zn);《资源保护及恢复法案》(RCRA)中限制的金属包括银(Ag)、砷(As)、钡(Ba)、镉(Cd)、铬(Cr)、Hg(汞)、铅(Pb)和硒(Se)。由于SciAps分析仪在样件准备方面几乎没有什么要求,因此成为一款用于筛查大面积场地和分析袋装土壤、沉积物、岩芯、流体、尘扫物质、表面与过滤器等样品的理想工具。SciAps手持式XRF:通过优化,可完成环境评估应用SciAps分析仪可为场地定性、房产评估、污染物跟踪、危险废料筛查、治理监控及合规检测等应用快速得到所需的检测结果。快速轻松地辨别各种污染物,其中包括: 铅(Pb) 砷(As) 汞(Hg) 铬(Cr)有效完成土壤筛查工作,节约经费在场地定性应用中,SciAps分析仪可以测量土壤和沉积物中的元素含量,从而有利于高效完成作为EPA方法6200的一个环节的土壤筛查工作。SciAps手持式XRF分析仪可以检测各种类型的样本,包括原地土壤、袋中土壤及完全准备好的土壤样本。SciAps分析仪是一款用于快速完成场地定性应用的性价比极高的强大工具。其在现场辨别土壤化学成份的能力意味着可使用户对场地获得更深的了解,对样本进行预筛选,可以为在实验室进行的分析选择优先样本,减少了向现场以外的实验室运送样本的工作,从而可更合理地预算分析经费同时进一步提高效率。使用嵌入式GPS功能,可以即时绘制金属分布的映射图SciAps分析仪带有嵌入式GPS功能,因此用户可以将精确的GPS坐标与结果一起存入文件中,并绘制元素位置的映射图。将GPS数据、XRF检测结果和来自可选5百万像素全景摄像头的图像综合在一起,可以进行内容全面的归档和简洁的报告制作。用户针对目标元素,在野外绘制映射图、观察图像、评价并进行跟进调查,可以更快地作出正确的决策。环保相关专业学术科研与教育SciAps分析仪有助于完成大学校园内实验室中进行的实验,支持本科生和研究生完成科研项目,并在日常的教学活动中,帮助环保相关专业教师完成教学任务。由于SciAps手持式XRF分析仪可以迅速提供结果,因此不仅可以帮助学生们了解现代分析方式,辨别各种样本,而且还可以加深学生们对土壤沉积以及研究相关的污染成因等知识的了解。创新点:1.仪器机身设计更人性化,手柄部分小巧,与手掌虎口形状贴合的流线型设计理念,使得哪怕是手比较小的女性使用者在抓握仪器时也会有很舒服的使用体验。 2.检测元素时间更快。 3.领先技术确保精确结果,采用的都是市面上技术最先进的元器件。X-50 Si-pin 探测器 LOD值相当于2010年SDD 探测器的值。极大的提升了检测速度,提高用户的检测效率。
  • Picarro | 基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永
    青藏高原是地球上海拔最高的高原,被称为“世界屋脊”、“第三极”。青藏高原光照和地热资源充足。高原上冻土广布,植被多为天然草原。它扮演着重要的生态角色,影响着全球气候变化。这个区域的碳循环系统尤其引人注目。图片来源于网络,如有侵权请联系删除随着全球气候变暖,青藏高原的永冻层正在消融,导致大量的甲烷和其他温室气体被释放到大气中,从而影响了全球气候变化的速度。这种现象对人类社会和生态系统都产生了深远的影响,今天想向大家介绍的文章,正好与此相关。基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永冻层湿地甲烷排放的影响湿地甲烷排放是全球收支中最大的自然来源,在推动21世纪气候变化方面发挥着日益重要的作用。多年冻土区碳库是受气候变化影响的大型储层,对气候变暖具有正反馈作用。在与气候相关的时间尺度上,融化的永久冻土中的甲烷排放是温室气体收支的关键。因此,多年冻土区湿地甲烷排放过程与湿地碳循环密切相关,对理解气候反馈、减缓全球变暖具有重要意义。青藏高原是地球上最大的高海拔永久冻土区,储存了大量的土壤有机碳和天然气水合物中的热生烃。湿地甲烷排放源识别是了解青藏高原湿地甲烷排放和碳循环过程与机制的重要问题。基于此,来自中国地质调查局的研究团队于2017年测量青藏高原木里永冻层近地表和天然气水合层钻井(DK-8)的CH4和CO2排放量及其碳同位素组成(Picarro G2201-i碳同位素分析仪)。并计算CH4和CO2碳同位素分馏( Ԑ C:δ13CCO2- δ13CCH4)。旨在为木里多年冻土湿地甲烷排放的重要来源-天然气水合物释放提供新的证据,揭示天然气水合物释放对湿地甲烷季节性排放的影响,进一步揭示钻井等人为活动对青藏高原多年冻土湿地甲烷排放的影响。研究区域位置【结果】DK-8中CH4含量、δ13CCH4 及Ԑ C土壤层中CH4含量、δ13CCH4 及Ԑ C【结论】热成因天然气水合物分解是湿地甲烷排放重要的源季节性湿地甲烷排放受人类钻井活动的影响天然气水合物释放的甲烷特征:【δ13CCH4】 -25.9±1.4‰~-26.5±0.5‰,【Ԑ C】-25.3‰~ -32.1‰δ13CCH4和Ԑ C值可以区分复杂环境中的热成因和微生物成因甲烷秋冬季节以热成因甲烷为主导,春夏季节微生物成因甲烷贡献较大随着天然气水合物资源的进一步探索和开采,天然气水合物分解对永冻层湿地甲烷排放的影响会更显著
  • 应用丨全自动有机质分析仪测定土壤中的有机质
    土壤有机质是指土壤中来源于生命的物质,主要来源于植物、动物及微生物残体。有机质是衡量土壤肥力高低的重要指标,测量有机质有利于及时了解土壤的物理状况,便于合理施肥、改良土壤、加强土壤环境管理。2022年2月16日,国务院印发《关于开展第三次全国土壤普查的通知》,决定自2022年起开展第三次全国土壤普查,其中有机质是测定项目之一。本文参考NY/T 1121.6-2006《土壤检测 第6部分:土壤有机质的测定》采用睿科AT200全自动土壤有机质分析仪实现对大批量土壤的有机质进行测定,土壤质控样实验结果准确度高,精密度好,满足标准质控要求,可以替代人工进行土壤有机质的自动测定。仪器与耗材1.1仪器睿科AT200全自动土壤有机质分析仪1.2耗材搅拌子150 mL带刻度玻璃杯1.3试剂重铬酸钾-硫酸溶液(0.4000mol/L):19.613g优级纯重铬酸钾(120℃烘2h)溶于500mL水中,溶解后少量多次加入500mL浓硫酸(加液时杯子放入水中降温),冷却后用50%硫酸溶液定容至1L,常温保存(低温保存重铬酸钾可能会析出)。硫酸亚铁标准溶液:称取40g硫酸亚铁铵或28g硫酸亚铁溶于800mL水中,缓慢加入20mL浓硫酸,冷却后用水定容至1L,避光保存。邻菲罗啉指示剂:称取1g硫酸亚铁铵或0.7g硫酸亚铁溶于100mL水中后称1.49g 1,10-菲啰啉溶于硫酸亚铁溶液中,超声溶解后使用,避光保存。土壤质控样1:编号为VIP(T)10219,真值为5.50g/kg(不确定度0.49 g/kg),研制厂家为信阳市中检计量生物科技有限公司。土壤质控样2:编号ERM-510501,真值为10.7g/kg(不确定度1.5 g/kg),研制厂家为坛墨质检科技股份有限公司土壤质控样3:编号为RMU081,真值为51.7g/kg(不确定度4.6g/kg),研制厂家为东莞市精析标物计量科技有限公司。分析步骤2.1标定在同一杯盘上放4个干净空杯子,4滴定位各一个,置于仪器上。仪器方法标定那一栏选择好设定的方法。建立序列,在序列上选择杯子所在杯盘的位置,样品类型选择“标定”,点运行,仪器自动对硫酸亚铁溶液进行标定。2.2测定a) 称取已过0.25mm孔径筛的风干试样0.05g-0.5g(精确至0.0001g)于仪器自带玻璃杯中,杯中加入干净的搅拌子,将杯子放入杯架中,在软件界面建立序列,选中杯子放置在杯架中的位置,选择好样品类型和其他参数,点击预热,仪器预热完成后仪器自动开始测试。b) 方法设置界面如下图所示,可根据实验测试需要自行增减步骤。准确度及精密度实验分别称取3种土壤质控样各0.05g-0.5g于玻璃杯中,每种质控样做6份平行,按照上述方法设置进行有机质测定,实验结果如下表所示。所有测试数据均在质控要求范围内,准确度良好;含量小于10g/kg质控样重复性测试绝对相差≤0.5g/kg,含量10g/kg-40g/kg控样重复性测试绝对相差≤1.0g/kg,含量40g/kg-70g/kg控样重复性测试绝对相差≤3.0g/kg。表-1.土壤质控样准确度及精密度(n=6)注意事项4.1 本方法测试土壤必须是风干过筛样品,且不宜用于测含氯化物较高的土壤。4.2 温度对仪器参数有一定影响,仪器方法中冷却时间的长短受温度影响,冷却时间需需根据不同温度进行调整。建议温度保持在室温25~28摄氏度。4.3 操作过程中不要将头伸入仪器内。4.4 仪器所用试剂中重铬酸钾-硫酸溶液硫酸含量有50%,使用时须小心,且长期使用硫酸溶液对注射器也有一定腐蚀作用,注射器如有损坏需及时更换,测试完成后要对注射器进行排空清洗,不要让硫酸溶液在注射器中过夜。4.5 杯子外壁要洗干净,否则会影响摄像头读取RGB信号进而影响滴定结果;还有杯盖隔一段时间要取出清洗干净再放回抽屉中。4.6 若长时间不用仪器则需要将管路用水清洗干净然后将管路排空。
  • 应用丨全自动有机质分析仪测定土壤中的有机质
    土壤有机质是指土壤中来源于生命的物质,主要来源于植物、动物及微生物残体。有机质是衡量土壤肥力高低的重要指标,测量有机质有利于及时了解土壤的物理状况,便于合理施肥、改良土壤、加强土壤环境管理。2022年2月16日,国务院印发《关于开展第三次全国土壤普查的通知》,决定自2022年起开展第三次全国土壤普查,其中有机质是测定项目之一。本文参考NY/T 1121.6-2006《土壤检测 第6部分:土壤有机质的测定》采用睿科AT200全自动土壤有机质分析仪实现对大批量土壤的有机质进行测定,土壤质控样实验结果准确度高,精密度好,满足标准质控要求,可以替代人工进行土壤有机质的自动测定。仪器与耗材1.1仪器睿科AT200全自动土壤有机质分析仪1.2耗材搅拌子150 mL带刻度玻璃杯1.3试剂重铬酸钾-硫酸溶液(0.4000mol/L):19.613g优级纯重铬酸钾(120℃烘2h)溶于500mL水中,溶解后少量多次加入500mL浓硫酸(加液时杯子放入水中降温),冷却后用50%硫酸溶液定容至1L,常温保存(低温保存重铬酸钾可能会析出)。硫酸亚铁标准溶液:称取40g硫酸亚铁铵或28g硫酸亚铁溶于800mL水中,缓慢加入20mL浓硫酸,冷却后用水定容至1L,避光保存。邻菲罗啉指示剂:称取1g硫酸亚铁铵或0.7g硫酸亚铁溶于100mL水中后称1.49g 1,10-菲啰啉溶于硫酸亚铁溶液中,超声溶解后使用,避光保存。土壤质控样1:编号为VIP(T)10219,真值为5.50g/kg(不确定度0.49 g/kg),研制厂家为信阳市中检计量生物科技有限公司。土壤质控样2:编号ERM-510501,真值为10.7g/kg(不确定度1.5 g/kg),研制厂家为坛墨质检科技股份有限公司土壤质控样3:编号为RMU081,真值为51.7g/kg(不确定度4.6g/kg),研制厂家为东莞市精析标物计量科技有限公司。分析步骤2.1标定在同一杯盘上放4个干净空杯子,4滴定位各一个,置于仪器上。仪器方法标定那一栏选择好设定的方法。建立序列,在序列上选择杯子所在杯盘的位置,样品类型选择“标定”,点运行,仪器自动对硫酸亚铁溶液进行标定。2.2测定a) 称取已过0.25mm孔径筛的风干试样0.05g-0.5g(精确至0.0001g)于仪器自带玻璃杯中,杯中加入干净的搅拌子,将杯子放入杯架中,在软件界面建立序列,选中杯子放置在杯架中的位置,选择好样品类型和其他参数,点击预热,仪器预热完成后仪器自动开始测试。b) 方法设置界面如下图所示,可根据实验测试需要自行增减步骤。准确度及精密度实验分别称取3种土壤质控样各0.05g-0.5g于玻璃杯中,每种质控样做6份平行,按照上述方法设置进行有机质测定,实验结果如下表所示。所有测试数据均在质控要求范围内,准确度良好;含量小于10g/kg质控样重复性测试绝对相差≤0.5g/kg,含量10g/kg-40g/kg控样重复性测试绝对相差≤1.0g/kg,含量40g/kg-70g/kg控样重复性测试绝对相差≤3.0g/kg。表-1.土壤质控样准确度及精密度(n=6)注意事项4.1 本方法测试土壤必须是风干过筛样品,且不宜用于测含氯化物较高的土壤。4.2 温度对仪器参数有一定影响,仪器方法中冷却时间的长短受温度影响,冷却时间需需根据不同温度进行调整。建议温度保持在室温25~28摄氏度。4.3 操作过程中不要将头伸入仪器内。4.4 仪器所用试剂中重铬酸钾-硫酸溶液硫酸含量有50%,使用时须小心,且长期使用硫酸溶液对注射器也有一定腐蚀作用,注射器如有损坏需及时更换,测试完成后要对注射器进行排空清洗,不要让硫酸溶液在注射器中过夜。4.5 杯子外壁要洗干净,否则会影响摄像头读取RGB信号进而影响滴定结果;还有杯盖隔一段时间要取出清洗干净再放回抽屉中。4.6 若长时间不用仪器则需要将管路用水清洗干净然后将管路排空。
  • 使用高频红外碳硫分析仪分析土壤中的碳硫元素
    1 绪言检测土壤中的碳硫元素含量是农业、环境科学与可持续发展领域中的一项核心任务。这一检测过程至关重要,因为它不仅直接反映了土壤的健康状况和肥力水平,为土壤管理和改良提供科学依据,还关乎到植物的营养需求,确保植物能够获取足够的碳和硫元素以支持其正常的生长和发育,从而保障农作物的产量和品质。此外,土壤中的碳硫元素含量还是评估土壤污染状况的重要指标,通过监测这些元素的含量变化,我们可以及时发现并应对潜在的土壤污染问题,保护生态环境和人类健康。综上所述,检测土壤中的碳硫元素含量是维护土壤质量、合理利用土地资源、保障食品安全以及实现农业和环境可持续发展的关键步骤。当前行业内普遍采用高频红外法检测土壤中的碳硫元素含量。该方法主要步骤为:经过净化后的纯净氧气进入燃烧室,燃烧室中预先放置在陶瓷坩埚中的土壤样品通过高频感应炉加热,使得样品中的碳(C)、硫(S)在富氧条件下转化成CO2和SO2,所生成的CO2和SO2以及载气组成的混合气体通过除尘除水净化装置后进入到相应的光学检测单元进行检测,检测信号通过数据处理后即可得到碳、硫元素的百分含量,含有CO2、SO2和O2的残余气体经过吸收装置后由专用管路排出。传统的滴定法检测土壤中的碳硫元素含量,由于存在操作繁琐、误差来源多、检测时间长以及实验条件要求高等诸多缺点,已经较少被采用。2 实验部分2.1仪器与试剂仪器:上海宝英光电科技有限公司高频红外碳硫分析仪锐意5S,高纯氧作为载气,流量为400mL/min,红外吸收法测碳硫元素含量。高频红外碳硫分析仪锐意5S指标名称性能指标碳硫分析范围0.00001%-99.99%0.00001%-99.99%灵敏度0.01ppm载气高纯氧气陶瓷坩埚:使用前于1100摄氏度灼烧2小时 以上,随炉冷却后置于干燥器中备用;助熔剂:纯铁,纯锡 ,纯钨。2.2样品处理土壤粉末经天平称重后直接投样分析测试,无需特殊处理,本实验选择的是样品编号GSS-32、GSS-7a、GSS-34的原料样品(非标准物质)进行碳、硫元素检测&zwnj 。2.3实验方法和步骤2.3.1 分析前准备仪器开机,依次打开动力气(工业氮气)和载气(氧气)气瓶,打开仪器电源预热,预热一小时待仪器稳定后,打开计算机电源进入软件,设定合适的分析参数。2.3.2 空白试验仪器基线稳定后,进行空烧做样,用空的坩埚做实验,重复5 ~ 6 次,观察曲线稳定性。待系统稳定下来后,在空坩埚中加入助熔剂进行分析测定系统碳、硫的空白值,并进行空白补偿。2.3.3 称样称重使用的是梅特勒AL104万分之一天平,将陶瓷坩埚放置于天平上,去皮后称取0.08g左右土壤粉末样品,依次加入2g左右纯钨、0.15g左右纯锡以及0.3g左右纯铁助熔剂。梅特勒AL104万分之一天平2.3.4样品测试将陶瓷坩埚以及所盛样品与助熔剂放至仪器高频感应炉中,点击软件上开始分析按钮,仪器按照分析自动流程进行碳、硫元素的熔融分析,绘制分析曲线,通过已经建立的分析方法计算并输出碳、硫的含量。按确定的实验方法,对GSS-32、GSS-7a、GSS-34号样品的碳、硫含量分别连续进行了两次测试。2.3.5 测定结果数据样品标识碳含量%碳含量%重量(克)GSS-320.26430.007870.08430.26470.008130.0853GSS-7a1.19720.04000.04531.20360.04310.0500GSS-341.80460.04360.04131.82980.04410.04242.3.6样品释放曲线2.3.7 分析中使用到的耗材碳硫分析用陶瓷坩埚:使用前于1100摄氏度灼烧2小时以上,随炉冷却后置于干燥器中备用;助熔剂:纯铁,纯锡 ,纯钨。纯铁纯锡纯钨陶瓷坩埚3 结论使用红外碳硫分析仪测试土壤中碳硫元素,具有分析速度快、步骤简单、分析结果可信度高等优点,完全可以替代传统的滴定检测法成为土壤中碳硫元素分析的主流方法。
  • 高光谱遥感技术再立功!可建立森林土壤预测模型
    近日,中国科学院武汉植物园研究人员利用光谱技术建立了森林土壤光谱反演预测模型,从而较好地实现对高异质性森林SOC和TN的快速预测。森林土壤预测模型  快速、廉价、准确地获取土壤中碳(C)、氮(N)含量信息是当前土壤质量评价和全球土壤碳库收支管理研究的基础和前提,而土壤空间异质性加大了人们对土壤属性动态监测的难度和成本。  森林土壤是调控陆地生态系统碳收支平衡的重要基础。利用近地高光谱遥感技术实现多层次森林土壤C、N含量信息的快速、高效、无损、低成本建模估测,有望为当前土壤C、N动态研究及制图开辟新的途径,必将有助于加深对土壤C、N空间异质性及影响因素的理解,对于森林土壤碳库管理和持续经营具有重要意义。然而,受土壤层次的影响,土壤属性的高光谱反演模型的预测能力降低,限制了模型的应用。  中国科学院武汉植物园助理研究员姜庆虎在研究员刘峰的指导下,以中亚热带(八大公山)森林不同层次土壤为例,利用光谱技术建立了该区表层和亚表层土壤有机碳(SOC)和全氮(TN)的光谱反演预测模型,从而较好地实现对高异质性森林SOC和TN的快速预测。其中,光谱模型对SOC预测的R2为0.79-0.90,对TN预测的R2为0.66-0.86。在此基础上,针对模型难以实现层次间的传递性应用问题,利用spiking法并借助加权算法,成功解决了这一难题,使得预测模型的传递性得到大幅提升。该研究的开展,为快速获取高异质性土壤属性信息提供了潜在的可能。  该研究得到国家自然科学基金(31270515,31470526)和国家重点基础研究发展计划(2014CB954004)的资助,结果发表在Geoderma杂志上。
  • 智慧环境 | 谱育科技全新一代便携式土壤重金属分析仪
    背景日前,国务院印发了《关于开展第三次全国土壤普查的通知》,决定自2022年起开展第三次全国土壤普查,这是距上一次全国土壤普查40年后,我国再一次对土壤进行的“全面体检”,引起社会广泛关注。应时而生,专为土壤检测所打造从土壤普查到日常的土壤检测过程中,土壤的重金属污染检测是其中的重中之重。为更好助力土壤检测工作,谱育科技为土壤重金属检测量身定制快速高效的土壤分析助手:全新一代的EXPEC 4720 便携式土壤重金属分析仪。全新一代EXPEC 4720 便携式土壤重金属分析仪是一款基于X射线荧光原理的土壤现场分析利器,是谱育科技在环保领域深耕多年的最新力作。仪器扣动扳机一键即测,还具备专利的湿度校正功能【1】,检测结果快速且准确。仪器小巧轻便,性能稳定,可随身携带,现场测量。轻松应对复杂、恶劣的野外环境,广泛适用于环境土壤和沉积物重金属污染的现场评估等场景。更快、更准、更灵活EXPEC 4720 便携式土壤重金属分析仪湿度校正,不惧水分自主设计的土壤湿度校正功能,可根据土壤湿度自动校正检测数据,显著降低土壤水分对结果的影响,检测数据更加精准。10 s出数,30+元素扣动扳机一键即测,10 s左右即可得到稳定测量值,可同时分析30多种土壤金属元素,还可根据客户需求定制增加检测元素。X射线管,性能优异采用高性能微型X射线管,搭配智能多位滤光片,针对重点元素进行了特别优化,达到最优异的检测效果。联动定制,实时掌握可定制检测监察APP,整合多款检测仪器终端数据,自动上传至部门环境管理信息化平台,实现多要素监测、一体化管控。配件丰富,便捷简化标准测试架、简易测试架、制样包多种配件,可极大地简化客户测试工作;碳纤维防扎窗口,可快速更换,避免探测器损坏。仪器应用领域►土壤普查小巧轻便的机身(整机仅重1.5KG)可随身携带,深入检测现场,轻松应对复杂、恶劣的野外环境,对各类农业用地、居住用地、商业用地和工业用地等级进行重金属污染环境评价。►土壤修复对污染地带进行详细评估分析,对土壤修复现场清理效果的即时抽查,和土壤无害化处理的流程监控,提高筛查效率,实时监控污染土壤修复情况。► 应急处理可用于污染事件发生后的应急处理,能快速准确追踪污染异常,对污染区域现场及周边环境监测,有效圈定污染边界,进行实时勘察。【1】申请(专利)号:CN 200920193118
  • 应时而生 | 谱育科技全新一代便携式土壤重金属分析仪!
    背景日前,国务院印发了《关于开展第三次全国土壤普查的通知》,决定自2022年起开展第三次全国土壤普查,这是距上一次全国土壤普查40年后,我国再一次对土壤进行的“全面体检”,引起社会广泛关注。应时而生,专为土壤检测所打造从土壤普查到日常的土壤检测过程中,土壤的重金属污染检测是其中的重中之重。为更好助力土壤检测工作,谱育科技为土壤重金属检测量身定制快速高效的土壤分析助手:全新一代的EXPEC 4720 便携式土壤重金属分析仪。全新一代EXPEC 4720 便携式土壤重金属分析仪是一款基于X射线荧光原理的土壤现场分析利器,是谱育科技在环保领域深耕多年的最新力作。仪器扣动扳机一键即测,还具备专利的湿度校正功能【1】,检测结果快速且准确。仪器小巧轻便,性能稳定,可随身携带,现场测量。轻松应对复杂、恶劣的野外环境,广泛适用于环境土壤和沉积物重金属污染的现场评估等场景。更快、更准、更灵活EXPEC 4720 便携式土壤重金属分析仪湿度校正,不惧水分自主设计的土壤湿度校正功能,可根据土壤湿度自动校正检测数据,显著降低土壤水分对结果的影响,检测数据更加精准。10 s出数,30+元素扣动扳机一键即测,10 s左右即可得到稳定测量值,可同时分析30多种土壤金属元素,还可根据客户需求定制增加检测元素。X射线管,性能优异采用高性能微型X射线管,搭配智能多位滤光片,针对重点元素进行了特别优化,达到最优异的检测效果。联动定制,实时掌握可定制检测监察APP,整合多款检测仪器终端数据,自动上传至部门环境管理信息化平台,实现多要素监测、一体化管控。配件丰富,便捷简化标准测试架、简易测试架、制样包多种配件,可极大地简化客户测试工作;碳纤维防扎窗口,可快速更换,避免探测器损坏。仪器应用领域►土壤普查小巧轻便的机身(整机仅重1.5KG)可随身携带,深入检测现场,轻松应对复杂、恶劣的野外环境,对各类农业用地、居住用地、商业用地和工业用地等级进行重金属污染环境评价。►土壤修复对污染地带进行详细评估分析,对土壤修复现场清理效果的即时抽查,和土壤无害化处理的流程监控,提高筛查效率,实时监控污染土壤修复情况。► 应急处理可用于污染事件发生后的应急处理,能快速准确追踪污染异常,对污染区域现场及周边环境监测,有效圈定污染边界,进行实时勘察。
  • 250万!中国科学院南京土壤研究所土壤比表面及孔隙度分析仪等采购项目
    项目编号:OITC-G220361755项目名称:中国科学院南京土壤研究所第二批仪器设备采购项目预算金额:250.0000000 万元(人民币)采购需求:包号货物名称数量(台/套)是否允许采购进口产品采购预算(人民币)1动态激光粒度仪1套否50万元2LDIR激光红外成像系统1套是150万元3土壤比表面及孔隙度分析仪1套是50万元合同履行期限:详见采购需求部分本项目( 不接受 )联合体投标。
  • 土壤污染防治先进技术装备目录发布 液相-原子荧光分析仪在列
    p   1月2日,科技部、工信部、环保部等六部委联合发布土壤污染防治先进技术装备目录(具体见附件),土壤砷(形态)、锑、汞液相-原子荧光(LC-AFS)分析仪等15种装备在列。 br/ /p p   此前,科技部曾于2017年11月28日对土壤污染防治先进技术装备目录进行公示,与公示内容相比,终稿中减少了“农田土壤镉生物有效态钝化/稳定化技术”这一技术装备,该技术主要适用于轻中度镉污染酸性稻田土壤,对于土壤pH值& lt 6.5,土壤总镉0.3~1.5mg/kg的稻田土壤修复效果良好。 /p p   液相-原子荧光分析仪可对样品中的砷、汞、硒等元素进行形态分析,目前国内已有海光、吉天等企业推出了该款产品。 /p p & nbsp & nbsp 附件: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201801/ueattachment/42f729cf-afc1-45bf-a5a3-b944cff18954.pdf" 土壤污染防治先进技术装备目录.pdf /a /p p br/ /p
  • 新品|奥谱天成手持式土壤重金属分析仪,科学助力环境发展!
    随着我国工业化进程的不断加快,诸多原因导致部分地区土壤污染较重,耕地土壤环境质量堪忧,工矿业废弃土壤环境问题突出,全国土壤环境状况总体不容乐观。为更好助力土壤检测工作,奥谱天成为土壤重金属检测量身定制快速高效的土壤分析助手:ATX4600S手持式土壤重金属分析仪。 一.产品参数:型号备注工作环境温度:-20℃~55℃; 湿度:相对湿度≤95%激发源4瓦微型一体化射线源,最大管压50kv,管流0-200μA可调,Ag靶探测器高分辨率硅漂移SDD探测器,分辨率129±5eV探测器保护内置探测器保护装置,有效防止探测器被尖锐物刺伤(可以根据用户需要选配)滤光系统内置6组滤光片,可根据测试需要自动切换组合CPU高性能低功耗4核处理器,主频1.44GHz数据存储内置64GB存储容量,可存储>50万组数据、图谱及图片显示屏高亮5寸液晶触控一体显示屏,可根据环境光自动调整亮度接口USB3.0接口数据传输内置WIFI和蓝牙、USBGPS内置GPS,可记录现场经纬度和海拔高度电池带电显示的6800mAh锂电池,单块电池连续工作时间不少于8小时充电器智能充电器可同时为主机和独立电池进行充电气压补偿内置气压测量模块,用于系统补偿和矫正操作系统定制的工业级Windows/Linux/Android操作系统(可选) 安全保护具有空测保护设计,防止误操作网络功能具有云端互联技术,可通过云端服务器进行软件升级尺寸和重量L * W * H: 250mm * 80mm * 320mm、1.8kg 二.产品特点:l环境适应性优异l仪器工作稳定可靠l检出限极低l数据更可靠l检测效率极高l测试方式更灵活 三.产品应用领域:l污染场地调查l农田土壤重金属普查l工业场地、固废场地重金属监测l土壤重金属污染应急监测l工业废水中重金属污染应急监测 四.测试性能l国家土壤标准物质比对测试测试元素CdAsPbCrCuNiZnGSS-14标准值0.26.5317027.43396测试值0.21732682635101相对误差(%)57.73.22.95.16.15.2GSS-28标准值0.5228.561943843134测试值0.483063.196.8439.542139相对误差(%)7.75.23.53.13.952.323.75 l重复性元素CdAsPbCrCuNiZnRSD(%)4.52.74.8352.71.6 l检出限(以SiO2)元素CaVCrMnFeCoNiCuZnAsSeAgCdSnSbAuHgPbLOD(ppm)379168104332113357322 土壤养分流失是主要的土壤退化过程,被认为是影响全球粮食安全和可持续性的最关键问题之一。目前全球约33%的土壤已退化。土壤退化导致部分土壤养分枯竭,失去了支持作物生长的能力。 ATX4600S凭借先进的技术致力于为水、土环境监测、污染土壤修复治理提供快速高效的检测方案。ATX4600S杰出的性能很好的满足各类客户的检测需求,在场地调查、土壤修复、环保执法等应用领域,无论在野外现场还是室内应用场景,都能快速提供准备可靠的检测数据,为客户带来直接的经济效益。
  • 土壤养分检测仪 土壤养分分析仪 厂家
    (一)多功能土壤肥料检测仪测定项目土壤:铵态氮、有效磷、速效钾、有机质、碱解氮、硝态氮、全氮、全磷、全钾、有效钙、有效镁、有效硫、有效铁、有效锰、有效硼、有效锌、有效铜、有效氯、有效硅、pH、含盐量、水分;肥料:单质肥、复合肥中的氮、磷、钾等。有机肥、叶面肥(喷施肥)中各形态氮、磷、钾、腐植酸以及pH值、有机质,钙、镁、硫、硅、铁、锰、硼、锌、铜、氯等。植株:氮、磷、钾、钙、镁、硫、硅、铁、锰、硼、锌、铜、氯等。(二)多功能土壤肥料检测仪功能介绍1.操作系统:Android操作系统,主控须采用多核处理器,CPU主频≥1.8Ghz,大容量内存,运转速度快、稳定性强,无卡顿卡机现象。配带 USB 双接口,快速导出上传数据,快速导出上传数据。2.仪器采用7.0寸大屏幕,支持中英文一键切换,可存储打印检测结果,具备历史数据查询打印功能。3.内置中英文双语显示,一键切换,满足出口需求。4.自主研发科研级高精度检测模块,软件著作权证书号:软著登字第7934007号。5.仪器具有自身保护功能,可设置用户名及密码;配有指纹锁用于指纹登录,防止非工作人员操作查看实验数据。6.支持Wifi传输,数据可局域网和互联网数据上传,检测结果可直接传至云平台。7.内置作物图谱:根据各农作物营养缺失的图片,进行叶面对比,丰缺诊断。8.数据打印:内置热敏打印机,可打印出检测项目、检测单位、检测人员、检测时间、通道号、吸光度、含量(mg/kg)、二维码等信息。9.每台仪器配备专属的云平台账户密码,可通过电脑网页及手机微信查看。10.仪器内置样品前处理步骤以及上机检测步骤操作视频,点击仪器主界面即可观看,一对一指导教学,上手更快速简单!11.内置先进的定位器,实现每个通道定位精准;12.仪器配置四种(红、蓝、绿、橙)波长光源,光源波长稳定,寿命长达10万小时级别,重现性好,准确度高。13.仪器带有电压显示灯,实时显示当前电压值,保证操作过程的稳压状态,并带有断电保护功能,在突然断电时,可以对数据进行自动储存,以防数据丢失。14.内置测土配方施肥系统,直接输入养分检测结果,即可计算出一次性施肥量;可对百余种全国农业经济作物的目标产量计算推荐施肥量,配方施肥科学指导农业生产;测土配方施肥结果可打印,打印内容包含作物种类、肥料种类、目标产量、需求总量、建议施肥方案。15.土壤中速效N、P、K等多种养分一次性同时浸提测定。16.检测速度:在正常熟练程度下,测土壤铵态氮、磷、钾三项要20分钟(含土样前处理及药剂准备),测肥料氮、磷、钾三项需50分钟左右,微量元素单项检测需20分钟左右。(三)多功能土壤肥料检测仪技术指标1.电源:交流220±22V直流12V+5V(仪器内置大容量锂电池)2.功率:≤5W3.量程及分辨率:0.001-99994.重复性误差:≤0.04%(0.0004,重铬酸钾溶液)5.仪器稳定性:一个小时内漂移小于0.3%(0.003,透光度测量)。仪器开机预热5分钟后,三十分钟内显示数字无漂移(透光度测量);一个小时内数字漂移不超过0.3%(透光度测量)、0.001(吸光度测量);两个小时内数字漂移不超过0.5%(0.005,透光度测量)。6.线性误差:≤0.2%(0.002,硫酸铜检测)
  • 便携式土壤重金属分析仪获得国家发明专利授权
    由市农科院农产品质量检测与农田环境监测中心、信息中心联合设计研制的“便携式土壤重金属分析仪”,日前获得国家发明专利授权。   该发明集成了重金属X射线荧光检测、GPS定位和上位机软件空间分析功能,不仅可以在田间原位快速同步检测20多种重金属,而且使重金属定量信息与取样点的位置信息在米级精度上实时匹配,还可以对重金属含量进行插值、空间分布特征分析、污染原因查找、污染等级评价评价和专题图可视化表达等。   此前,该项成果已经获得一项实用新型专利授权,并被农业部推荐在“国家级农产品产地安全数据库建设”中使用。
  • 应用案例 | HT8850便携式温室气体分析仪成功应用在塔里木大学双循环土壤呼吸观察系统项目
    项目内容:土壤呼吸温室气体排放测试项目时间:2023年11月开始项目地点:新疆塔里木大学 海尔欣昕甬智测HT8850便携式多组分(CO2、N2O、CH4、H20)高精度温室气体分析仪搭配呼吸叶室,项目一期完成户外草地系统部署,项目二期将用以检测新疆塔里木地区多点土壤温室气体通量的长期、连续监测。部署仪器 HT8850便携式高精度温室气体(二氧化碳、甲烷、氧化亚氮、水)分析仪由宁波海尔欣光电科技有限公司自主研发、生产和销售,为“昕甬智测”品牌国产创新产品。该系列仪器基于量子级联激光技术设计,利用气体分子在中远红外的“指纹”吸收谱,使用半导体量子级联激光器(QCL)作为光源,使激光通过中红外增强型光腔,被中红外光电探测器接收透射光并提取和分析透射光谱,准确反演获得目标温室气体成分的浓度,实现对目标温室气体分子的更精确、更及时、更科学的测量。 HT8850系列便携式高精度温室气体分析仪在便携的仪器箱内实现快速响应的高精度温室气体测量,采用独立强吸收谱线,使其不受其他气体分子光谱的交叉干扰。该系列气体分析仪可由太阳能或锂电池供电,实现温室气体浓度的定点或移动连续观测。
  • 67.17万!潍坊市生态环境局临朐分局采购土壤采样及分析仪器
    项目概况: 潍坊市生态环境局临朐分局采购土壤采样及分析仪器项目采购项目的潜在供应商应在网上自行下载。获取采购文件,并于2022-01-12 09:00:00(北京时间)前提交响应文件。一、项目基本情况: 项目编号:SDGP370724202102000223 项目名称:潍坊市生态环境局临朐分局采购土壤采样及分析仪器项目 采购方式:竞争性磋商 预算金额:67.17万元 最高限价:67.17万元 采购需求:标的标的名称数量简要技术需求或服务要求本包预算金额(单位:万元)A详见招标文件。 1 1、符合《中华人民共和国政府采购法》第二十二条规定;2、须具有合法生产或销售本项目所需产品及提供相应服务的能力;3、本项目不接受联合体投标。 67.170000 合同履行期限:合同签订后一个月内交货。 本项目不接受联合体投标。二、申请人的资格要求: 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策需满足的资格要求:财库﹝2020﹞46号《政府采购促进中小企业发展管理办法》、潍财采〔2021〕40号《潍坊市财政局关于优化政府采购营商环境创新突破举措的通知》;财库【2014】68号《关于政府采购支持监狱企业发展有关问题的通知》、财库【2017】141号《关于促进残疾人就业政府采购政策的通知》、鲁财库〔2007〕32号《山东省节能环保产品政府采购评审办法》,《鲁财采〔2019〕39号和财库〔2019〕9号文,《中华人民共和国政府采购法》、《中华人民共和国政府采购法实施条例》等相关法规。(详见竞争性磋商文件)。 3、本项目的特定资格要求:供应商须具有合法生产或销售本项目所需产品及提供相应服务的能力;三、获取采购文件: 1.时间:2021年12月29日9时0分至2022年1月11日9时0分,每天上午09:00至11:30,下午13:00至17:00(北京时间,法定节假日除外 ) 2.地点:网上自行下载。 3.方式:供应商登陆潍坊市公共资源交易网进行注册(网址:http://ggzy.weifang.gov.cn),办理信息入库并生成保证金子账号(已注册的供应商可直接生成保证金子账号)后获取采购文件。已注册的供应商应按照《潍坊市公共资源交易中心关于开展公共资源交易信用承诺的通知》(潍资中发〔2019)6号)要求,在参与报价前登陆潍坊市公共资源交易网企业会员系统通过“修改信息”功能重新签署和上传《信用承诺书》,《信用承诺书》模板可在网站首页-“资料下载”-“综合下载”中下载。各供应商在获取采购文件的时间节点内登录潍坊市公共资源交易网“企业会员系统”,在“采购业务”-“采购文件下载”-“领取”-下载采购文件。凡有意参加本次政府采购活动的供应商还必须在递交响应文件截止时间前访问中国山东政府采购网(http://www.ccgp-shandong.gov.cn)进行供应商注册。供应商须同时在潍坊市公共资源交易网及中国山东政府采购网注册,任一网站未成功注册均视为报价无效。注:网上获取招标(采购)文件时的资料查验不代表资格审查的最终通过或合格,供应商最终资格的确认以评标现场组织的资格后审为准。 4.售价:0元。四、响应文件提交: 1.截止时间:2022年1月12日9时0分(北京时间) 2.地 点:本项目实行无直播网上不见面开标。各投标人在会员系统内开标解密,投标人无需现场递交投标文件,只需要将加密的电子投标文件(文件格式为.WFTF),在投标文件递交截止时间前通过潍坊市公共资源交易平台企业会员系统上传。五、开启: 1.开启时间:2022年1月12日9时0分(北京时间) 2.开启地点:本项目实行无直播网上不见面开标。各投标人在会员系统内开标解密,投标人无需现场递交投标文件,只需要将加密的电子投标文件(文件格式为.WFTF),在投标文件递交截止时间前通过潍坊市公共资源交易平台企业会员系统上传。六、公告期限: 自本公告发布之日起5个工作日。七、其他补充事宜: 其他补充事宜:1.本项目发布的媒介为:潍坊市公共资源交易网、中国山东政府采购网、中国政府采购网。2.关于本项目的疑问提出、答复、变更、修改、澄清、补充内容及对项目的暂停、延期通知等情况均在潍坊市公共资源交易网及有关网站发布。供应商有义务自行查阅网站信息及进入交易系统查询,或于报价前向招标代理机构电话询问确认,未按要求查阅者自行承担相应后果,恕不予单独告知。3.资格评审阶段,通过“信用中国”、“中国政府采购网”等渠道查询供应商信用记录,对查询时列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商,对列入潍坊市中级人民法院、潍坊市国家税务局、潍坊市环境保护局发布的联合惩戒对象名单中的供应商,拒绝其参与政府采购活动。注:1.本项目实行电子招标投标,如有意向参与投标,请尽早阅知招标文件中的《网上招投标工作须知》和《不见面开标系统签到解密操作手册(投标人手册)》,以便能顺利进行投标。2.制作电子投标(响应)文件或报价前下载并升级新点驱动(山东省版),具体操作过程详见《潍坊市公共资源交易中心山东省多CA驱动操作手册》。3.本项目实行无直播网上不见面开标,请各潜在投标人在开标后15分钟内自行在系统内解密。4.请各投标人务必再次确认所上传的加密电子投标文件,是否能正常参与开评标活动,若由此造成的一切后果均由各投标人承担。5.各投标人必须保证投标文件中资格要求及其它相关资料及企业荣誉相关资料的真实性,后期招标人将对中标投标人的以上资料进行核查,若发现有弄虚作假情况招标人有权取消其中标资格。6.本项目无复会环节,最终结果会在潍坊市公共资源交易中心、中国山东政府采购网、中国政府采购网进行公示。八、对本次招标提出询问,请按以下方式联系: 1、采购人信息 名 称:潍坊市生态环境局临朐分局 地 址:临朐县东城街道创业大厦 联系方式:0536-3317102 2、采购代理机构 名 称:临朐县工程建设监理有限公司 地 址:山东省潍坊市临朐县县(区)新华路76号 联系方式:0536-3330866 3、项目联系方式 项目联系人:临朐县工程建设监理有限公司 联系方式:0536-3330866
  • 115万!中国科学院青海盐湖研究所核磁共振土壤含水量分析仪采购项目
    项目编号:OITC-G220220640项目名称:中国科学院青海盐湖研究所核磁共振土壤含水量分析仪采购项目预算金额:115.0000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品采购预算(万元人民币)1核磁共振土壤含水量分析仪1是115 投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。2、技术要求详见公告附件。合同履行期限:合同签订后270天内本项目( 不接受 )联合体投标。
  • 473万!福建省泉州环境监测中心站计划采购PH计、土壤pH自动分析仪等仪器设备
    项目概况 受福建省泉州环境监测中心站委托,泉州市坤大招标代理有限公司对[350500]QZSKDZB[GK]2022004、2022年环境监测能力建设(一)货物类采购项目组织公开招标,现欢迎国内合格的供应商前来参加。 2022年环境监测能力建设(一)货物类采购项目的潜在投标人应在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目获取采购文件,并于2022-06-23 09:30(北京时间)前递交投标文件。一、项目基本情况 项目编号:[350500]QZSKDZB[GK]2022004 项目名称:2022年环境监测能力建设(一)货物类采购项目 采购方式:公开招标 预算金额:4734800元 包1: 采购包预算金额:1800000元 投标保证金:0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A02100415-环境监测仪器及综合分析装置藻类人工智能快速分析系统1(台)否详见附件12000001-2A02100415-环境监测仪器及综合分析装置显微镜2(台)否详见附件600000 合同履行期限: 签定合同后90个日历日内送达并安装完毕。 本采购包:不接受联合体投标 包2: 采购包预算金额:1463600元 投标保证金:0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)2-1A02100415-环境监测仪器及综合分析装置土壤pH自动分析仪1(台)否详见附件3992002-2A02100415-环境监测仪器及综合分析装置土壤有机质分析仪1(台)否详见附件3900002-3A02100415-环境监测仪器及综合分析装置低流量地下水自动洗井采样设备2(台)否详见附件4840002-4A02100415-环境监测仪器及综合分析装置阳离子交换量测定仪1(台)否详见附件190400 合同履行期限: 签定合同后90个日历日内送达并安装完毕。 本采购包:不接受联合体投标 包3: 采购包预算金额:1471200元 投标保证金:0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)3-1A02100415-环境监测仪器及综合分析装置离子色谱仪1(台)否详见附件5954003-2A02100415-环境监测仪器及综合分析装置全自动COD分析仪1(台)否详见附件3498003-3A02100415-环境监测仪器及综合分析装置全自动固相萃取仪1(台)否详见附件3780003-4A02100415-环境监测仪器及综合分析装置全自动定量浓缩仪1(台)否详见附件148000 合同履行期限: 签定合同后90个日历日内送达并安装完毕。 本采购包:不接受联合体投标二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.本项目的特定资格要求: 包1 (1)明细:招标文件规定的其他资格证明文件(若有) 描述:1、本合同包内所采购显示器为强制类节能产品,须在此处提供产品节能证书复印件; 2、(按照政府采购法实施条例第17条除第“(一)-(四)”款外的其他条款规定填写投标人应提交的材料,如:采购人提出特定条件的证明材料、为落实政府采购政策需满足要求的证明材料(强制类)等,若有,应在此处填写)。 ※1上述材料中若有与“具备履行合同所必需设备和专业技术能力专项证明材料”有关的规定及内容在本表b1项下填写,不在此处填写。 ※2投标人应按照招标文件第七章规定提供。 (2)明细:具备履行合同所必需设备和专业技术能力专项证明材料(若有) 描述:1、招标文件要求投标人提供“具备履行合同所必需的设备和专业技术能力专项证明材料”的,投标人应按照招标文件规定在此项下提供相应证明材料复印件。 2、投标人提供的相应证明材料复印件均应符合:内容完整、清晰、整洁,并由投标人加盖其单位公章。 包2 (1)明细:招标文件规定的其他资格证明文件(若有) 描述:1、本合同包内所采购激光打印机为强制类节能产品,须在此处提供产品节能证书复印件; 2、(按照政府采购法实施条例第17条除第“(一)-(四)”款外的其他条款规定填写投标人应提交的材料,如:采购人提出特定条件的证明材料、为落实政府采购政策需满足要求的证明材料(强制类)等,若有,应在此处填写)。 ※1上述材料中若有与“具备履行合同所必需设备和专业技术能力专项证明材料”有关的规定及内容在本表b1项下填写,不在此处填写。 ※2投标人应按照招标文件第七章规定提供。 (2)明细:具备履行合同所必需设备和专业技术能力专项证明材料(若有) 描述:1、招标文件要求投标人提供“具备履行合同所必需的设备和专业技术能力专项证明材料”的,投标人应按照招标文件规定在此项下提供相应证明材料复印件。 2、投标人提供的相应证明材料复印件均应符合:内容完整、清晰、整洁,并由投标人加盖其单位公章。 包3 (1)明细:招标文件规定的其他资格证明文件(若有) 描述:1、(强制类节能产品证明材料,若有,应在此处填写); 2、(按照政府采购法实施条例第17条除第“(一)-(四)”款外的其他条款规定填写投标人应提交的材料,如:采购人提出特定条件的证明材料、为落实政府采购政策需满足要求的证明材料(强制类)等,若有,应在此处填写)。 ※1上述材料中若有与“具备履行合同所必需设备和专业技术能力专项证明材料”有关的规定及内容在本表b1项下填写,不在此处填写。 ※2投标人应按照招标文件第七章规定提供。 (2)明细:具备履行合同所必需设备和专业技术能力专项证明材料(若有) 描述:1、招标文件要求投标人提供“具备履行合同所必需的设备和专业技术能力专项证明材料”的,投标人应按照招标文件规定在此项下提供相应证明材料复印件。 2、投标人提供的相应证明材料复印件均应符合:内容完整、清晰、整洁,并由投标人加盖其单位公章。(如项目接受联合体投标,对联合体应提出相关资格要求;如属于特定行业项目,供应商应当具备特定行业法定准入要求。) 三、采购项目需要落实的政府采购政策 进口产品,不适用。节能产品,适用于所有合同包,按照“关于印发节能产品政府采购品目清单的通知”(财库〔2019〕19号)执行。环境标志产品,适用于所有合同包,按照按照“关于印发环境标志产品政府采购品目清单的通知”(财库〔2019〕18号)执行。信息安全产品,适用于所有合同包。小型、微型企业,适用于所有合同包。监狱企业,适用于所有合同包。促进残疾人就业 ,适用于所有合同包。信用记录,适用于所有合同包,按照下列规定执行:(1)投标人应在(填写招标文件要求的截止时点)前分别通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)查询并打印相应的信用记录(以下简称:“投标人提供的查询结果”),投标人提供的查询结果应为其通过上述网站获取的信用信息查询结果原始页面的打印件(或截图)。(2)查询结果的审查:①由资格审查小组通过上述网站查询并打印投标人信用记录(以下简称:“资格审查小组的查询结果”)。②投标人提供的查询结果与资格审查小组的查询结果不一致的,以资格审查小组的查询结果为准。③因上述网站原因导致资格审查小组无法查询投标人信用记录的(资格审查小组应将通过上述网站查询投标人信用记录时的原始页面打印后随采购文件一并存档),以投标人提供的查询结果为准。④查询结果存在投标人应被拒绝参与政府采购活动相关信息的,其资格审查不合格。四、获取招标文件 时间:2022-06-02 10:28至2022-06-17 23:59(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至11:59:59,下午12:00:00至23:59:59(北京时间,法定节假日除外) 地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。 方式:在线获取 售价:免费五、提交投标文件截止时间、开标时间和地点 2022-06-23 09:30(北京时间)(自招标文件开始发出之日起至投标人提交投标文件截止之日止,不得少于20日) 地点:福建省泉州市丰泽区海星街100号东海大厦A栋四楼开标室六、公告期限 自本公告发布之日起5个工作日。七、其他补充事宜 无八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:福建省泉州环境监测中心站 地 址:泉州新华南路91号 联系方式:15059596128 2.采购代理机构信息(如有) 名 称:泉州市坤大招标代理有限公司 地  址:泉州市丰泽区泉秀街道成洲社区沉州路39号俊伟写字楼C幢1层-2层 联系方式:0595-22286909 3.项目联系方式 项目联系人:许先生 电   话:0595-22286909 网址:zfcg.czt.fujian.gov.cn 开户名:泉州市坤大招标代理有限公司 泉州市坤大招标代理有限公司 2022-06-02
  • GEODERMA丨肖春旺教授团队在草地土壤碳激发效应研究领域取得新进展
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达23篇。 今天与大家分享的是肖春旺教授团队在草地土壤碳激发效应研究领域取得新进展,在该项研究中,研究团队利用PRI-8800对来自外源碳和土壤有机质的土壤微生物呼吸的快速、连续、高频观测,为研究结果提供了有力的数据支撑。 来自植物根际和凋落物层淋溶的易分解外源碳(LOC)输入土壤是生态系统常见的自然现象,其在微生物介导的土壤碳循环中发挥着关键作用,尤其是在植物根系密集的草原生态系统。然而,外源碳的输入并不总是意味着土壤碳的净增加,因其能为异养微生物群落提供可用的碳和能量,进一步对土壤有机质的分解产生影响,即激发效应(Priming Effect,PE)。长期以来,尽管许多研究已经探讨了由外源碳添加诱导的激发效应,但很少有研究关注其短期效应。其次,输入土壤的外源碳是高度动态变化的,会迅速融入微生物、土壤有机质,或分解为CO2,但由于土壤微生物对外源碳输入的反应很快,来自外源碳的呼吸作用对微生物呼吸作用的相对贡献及其影响因素仍不确定。此外,围栏禁牧被认为是实现草地生态系统自我恢复的重要途径,其对土壤碳氮特性具有重要的积极影响,而围栏禁牧所导致的土壤碳氮特征变化可能进一步影响微生物对外源碳和土壤有机质的分解,但目前仍然缺乏对此的全面了解。 针对以上科学问题,肖春旺教授团队在中科院内蒙古草原生态站开展了相关研究,研究人员采集了3个不同围封禁牧时间(42年、22年和0年[自由放牧])和4个不同土层深度(0–10、10–30、30–50、50–100 cm)的土壤。通过向土壤中添加δ13C标记的葡萄糖以模拟自然界的碳输入,并使用北京普瑞亿科科技有限公司研发的PRI–8800全自动变温培养土壤温室气体在线测量系统,在105-h内实现了分钟尺度上对来自外源碳和土壤有机质的土壤微生物呼吸的快速、连续、高频观测,主要探究了土壤碳氮特征变化对土壤微生物响应外源碳输入的短期过程以及对外源碳和土壤有机质分解的影响及机制。 研究结果发现,土壤微生物对外源碳的输入反应迅速,由土壤有机碳和碳氮比控制的微生物生物量是直接影响微生物对外源碳输入反应强度的最重要因素。放牧和较深的土壤层减少了来自外源碳的呼吸作用及其对总呼吸作用的相对贡献(图1),主要归因于土壤碳氮比和真菌/细菌的变化。此外,外源碳添加促进了所有土壤中有机质的分解,使土壤有机质的呼吸作用增加了11.3–92.4 mg C g-1 SOC,相当于18.7–266.1%的激发效应。放牧和土壤深度增加导致了更大的激发效应和土壤碳损失,其中土壤碳氮比和有机碳含量是最重要的调节因素。图1 不同土壤中来自外源碳和土壤有机质的累积碳矿化量及其比值注:GE42(10)、GE22(10)和GE0(10)分别代表围栏禁牧42年、22年和0年样点的0–10 cm土壤;GE42(10)、GE42(30)、GE42(50)和GE42(50)分别代表围栏42年样点的0–10、10–30、30–50、50–100 cm的土壤。 禁牧被认为是实现草原生态系统自我恢复的重要途径,了解放牧对外源碳输入下草原碳循环的影响可能有助于提高我们对未来草原土壤碳动态的预测。因此,结合本研究结果,研究人员建立了一个概念框架,阐明了禁牧年限和土壤深度变化对外源碳输入下草原土壤微生物呼吸和土壤碳动态的影响(图2)。禁牧对植被的积极影响进一步提升了土壤有机质的质和量,进而通过影响微生物特性导致更多的外源碳被微生物呼吸代谢,并增大其对总微生物呼吸的贡献,但是却会减小其诱导的激发效应和土壤碳损失。然而,对于不同深度的土壤而言,增加土层深度会影响土壤有机质的质和量,导致来自外源碳的呼吸及其对总微生物呼吸的贡献均减小,但是却会减小其诱导的激发效应和土壤碳损失。目前在世界大部分地区,由于受到人类活动的影响,草原正面临着严重退化的困境,而禁牧可能是实现表层土壤碳固持的有效措施。图2 禁牧和土壤深度变化对外源碳输入下草原土壤微生物呼吸和土壤碳动态影响的概念图 相关研究成果以“The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands”为题在线发表于国际土壤学领域主流期刊《Geoderma》(中科院一区Top,IF5 = 7.444)上。 生命与环境科学学院2019级博士研究生李超为本论文第一作者,肖春旺教授为本论文的通讯作者。中国科学院地理科学与资源研究所何念鹏研究员为本研究的重要合作作者,另外,中国科学院地理科学与资源研究所的徐丽副研究员和李明旭博士也参与了本研究。来源丨中央民族大学生命与环境科学学院官网相关论文信息:Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.原文链接:https://doi.org/10.1016/j.geoderma.2023.116385. 自2018年上市以来,PRI-8800全自动变温培养土壤温室气体在线测量系统得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达23篇。 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;150ml样品瓶,25位样品盘;大气本底缓冲气或钢瓶气清洗气路;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X,Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.16.Wang Q, HeNP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochesion: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.
  • 土壤领域再出新标准 涉及多种分析仪器
    p   日前,生态环境部发布了多项国家环境保护标准征求意见稿,包括水质检测、气体检测、固体废物检测等领域,涉及便携式顶空/气相色谱-质谱仪、原子吸收分光光度计、 便携式气相色谱-质谱、高分辨气相色谱-高分辨质谱、波长色散X射线荧光光谱仪等仪器。 /p p   继水质、大气、固废等领域后,近日,生态环境部再次发布3项土壤领域检测相关标准征求意见稿,涉及到的仪器包括顶空/气相色谱-质谱仪、电感耦合等离子体质谱仪、气相色谱-三重四级杆质谱仪等仪器,3项标准均为首次发布。 /p p   详情如下: /p p   为贯彻《中华人民共和国环境保护法》,保护生态环境,保障人体健康,提高生态环境管理水平,规范生态环境监测工作,我部决定制定《土壤和沉积物 酮类和醚类化合物的测定 顶空/气相色谱-质谱法》《土壤和沉积物 金属元素总量的测定 电感耦合等离子体质谱法》和《土壤和沉积物 毒杀芬的测定 气相色谱-三重四极杆质谱法》三项国家环境保护标准。目前,标准编制单位已完成征求意见稿。按照《国家环境保护标准制修订工作管理规定》(国环规科技〔2017〕1号)要求,现就标准(征求意见稿)征求你单位意见,请认真研究并提出书面意见,于2020年4月30日前通过信函或电子邮件的方式将意见反馈我部,逾期未反馈的按无意见处理。 /p p   联系人:生态环境监测司孙娟 /p p   电话:(010)66556826 /p p   传真:(010)66556826 /p p   邮箱:zhiguanchu@mee.gov.cn /p p   地址:北京市西城区西直门南小街115号 /p p   邮编:100035 /p p   附件: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/202003/attachment/01748054-3920-4041-81ed-5d17e8e6942c.pdf" target=" _self" title=" 1.pdf" textvalue=" 1.征求意见单位名单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 1.征求意见单位名单.pdf /span /a /p p span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://www.instrument.com.cn/download/shtml/947094.shtml" target=" _self" title=" 2.pdf" textvalue=" 2.土壤和沉积物 酮类和醚类化合物的测定 顶空/气相色谱-质谱法(征求意见稿).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 2.土壤和沉积物 酮类和醚类化合物的测定 顶空/气相色谱-质谱法(征求意见稿).pdf /span /a /p p span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://www.instrument.com.cn/download/shtml/947096.shtml" target=" _self" title=" 3.pdf" textvalue=" 3.《土壤和沉积物 酮类和醚类化合物的测定 顶空/气相色谱-质谱法(征求意见稿)》编制说明.pdf" style=" font-size: 16px color: rgb(0, 112, 192) text-decoration: underline " span style=" font-size: 16px color: rgb(0, 112, 192) " 3.《土壤和沉积物 酮类和醚类化合物的测定 顶空/气相色谱-质谱法(征求意见稿)》编制说明.pdf /span /a /p p span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://www.instrument.com.cn/download/shtml/947097.shtml" target=" _self" title=" 4.pdf" textvalue=" 4.土壤和沉积物 金属元素总量的测定 电感耦合等离子体质谱法(征求意见稿).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 4.土壤和沉积物 金属元素总量的测定 电感耦合等离子体质谱法(征求意见稿).pdf /span /a /p p span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://www.instrument.com.cn/download/shtml/947098.shtml" target=" _self" title=" 5.pdf" textvalue=" 5.《土壤和沉积物 金属元素总量的测定 电感耦合等离子体质谱法(征求意见稿)》编制说明.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 5.《土壤和沉积物 金属元素总量的测定 电感耦合等离子体质谱法(征求意见稿)》编制说明.pdf /span /a /p p span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://www.instrument.com.cn/download/shtml/947099.shtml" target=" _self" title=" 6.pdf" textvalue=" 6.土壤和沉积物 毒杀芬的测定 气相色谱-三重四极杆质谱法(征求意见稿).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 6.土壤和沉积物 毒杀芬的测定 气相色谱-三重四极杆质谱法(征求意见稿).pdf /span /a /p p span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://www.instrument.com.cn/download/shtml/947100.shtml" target=" _self" title=" 7.pdf" textvalue=" 7.《土壤和沉积物 毒杀芬的测定 气相色谱-三重四极杆质谱法(征求意见稿)》编制说明.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 7.《土壤和沉积物 毒杀芬的测定 气相色谱-三重四极杆质谱法(征求意见稿)》编制说明.pdf /span /a /p
  • 土壤安全意味着人类安全 – 让NIC成为您在全国土壤普查中汞分析的得力助手
    土壤安全意味着人类安全 – 让NIC成为您在全国土壤普查中汞分析的得力助手 土壤安全是所有生物食品安全的基础。 土壤安全是食品安全的关键性决定因素之一。汞在人为排放之后,最终将沉降到土壤中,土壤在整个汞循环中起着至关重要作用。 由于土壤成分复杂,汞可以与其中的某些成分相互作用并形成不同种类的汞。这些不同种类的汞特性也各不相同。这些汞可以是无机的、有机的,或者是强结合的汞,在土壤中能够稳定而长期存在。水和土壤是所有农作物和生物的基础。为了采取补救措施,必须准确测量土壤中的汞。必须经过样品消解步骤的传统技术 湿法化学样品制备(酸消解)等常规方法可用于消解土壤样品。由于是土壤样品,有时需要使用强酸,如氢氟酸和王水来对样品进行消解。然后通过冷蒸气原子吸收法(CVAAS)对消解后的样品进一步分析。由于汞在酸性环境中的独特性质,它往往会产生记忆效应,从而引起交叉污染或残留。因此,对于许多分析人员来说,获得准确和精确的结果具有一定难度。 湿法化学样品制备繁琐、耗时,因为试剂的使用而导致成本增加。而测量结果往往达不到预期。NIC MA 系列测汞仪直接分析土壤样品样品无需前处理 – 快速准确的测量结果不需要对样品进行预消解,使用NIC直接汞分析仪可以直接分析所有类型的土壤样品。测量土壤样品的三个简单步骤:1. 确保土壤样品均匀性2. 加入适量的样品3. 在NIC MA3WIN 软件中选择合适的方法最小的处理错误 - 准确可靠的结果,自信的报告 样品提取过程或湿法化学样品制备过程可能会产生较大的误差幅度,对测量结果造成疑问和不确定性。 NIC MA 系列测汞仪,能够大限度地避免处理错误。更小的处理误差也意味着更少的维护停机时间和更快的测量周转时间。100位的自动进样器 – 可提高实验室的检测能力,提升工作效率 在全面的土壤普查中,需要分析采自不同地点的各种土壤样品,样品分析量很大。NIC MA-3000配置100位的自动进样器,可以提供高通量汞分析,大大提高实验室工作效率效率。NIC具有四十多年的直接汞分析的专业知识和经验 – 您可以信赖我们 1978 年开始生产直接汞分析仪,具有40多年的直接汞分析经验和专业知识。NIC测汞仪受到全球数千家实验室的信赖。MA系列测汞仪 – 您在实验室中高效且性能优越的助手 除了土壤样品分析外,MA系列还可以直接分析各种食物样品,如水稻,谷物,茶叶和海鲜等,这对进一步调查土壤汞污染造成的后果非常有用。应用说明免费下载: 使用 NIC MA-3 Solo测汞仪测量土壤样品中总汞含量的应用说明,可在以下网址免费下载:https://www.instrument.com.cn/netshow/SH104984/s937843.htm
  • LI-2100 | 基于稳定同位素分析毛乌素沙地东北部不同林龄人工沙柳的水分利用来源
    近年来,全球环境问题日益突出,资源的合理利用和环境的保护已成为全人类共同面临的挑战。水分是生命的基础,对于植物的生长发育和生态系统的稳定运行起着至关重要的作用。然而,人类的过度开采和污染已导致严重的水资源短缺、土壤荒漠化等问题。沙柳作为一种生长在贫瘠土壤和干旱地区的植物,具有很强的水分利用能力和环境适应性。沙柳生长迅速,枝叶茂密,根系繁大,固沙保土力强,是中国沙荒地区造林面积最大的树种之一。同时,它长而发达的根系,能够迅速吸收土壤中的水分,高效利用水资源。其表面一层厚厚的叶蜡,也能够减少水分的蒸发和流失,有效避免土壤干燥和水分的浪费。因此,通过对沙棘的深入研究和广泛应用,我们可以有效地解决环境保护的问题。接下来这篇相关论文,我们来了解一下沙柳的水分利用来源。基于稳定同位素分析毛乌素沙地东北部不同林龄人工沙柳的水分利用来源沙柳具有很好的应对非生物胁迫(如干旱、寒冷、低肥力)的能力,已广泛引入毛乌素沙地东北部以防风固沙及改善生态系统功能和服务。然而,早期引入的沙柳出现了退化和枯死现象。预计由于气候持续变暖和人为干预增加,沙柳人工灌丛将出现更严重的干旱胁迫。鉴于人类世日益严重的水资源短缺和土壤荒漠化的持续扩大。了解植物与土壤水分关系并实施合理的水分管理策略,必须确定人工植被在沙漠生态系统中的水分利用模式。然而,对于不同发育阶段沙柳的特性、调控和水源差异等研究还知之甚少。基于此,为确定毛乌素沙地圪丑沟小流域(38°11′–38°53′ N,109°21′–110°03′ E)不同林龄(6年、12年和18年)人工沙柳水分利用模式的季节变化和控制因素,揭示老化沙柳枯死的潜在机制,理解土壤水-植物的关系和人工植被的生态适应性。来自中国科学院地理科学与资源研究所的研究者们于2019-2021年5-10月(5、6、10月为旱季;7、8、9月为雨季)植物生长季进行了相关研究。试验开始前,作者采集了土壤样品,确定其土壤颗粒组成,总N含量(TN)及总P含量(TP)。采集了根系样品,确定植物根系分布。试验期,采集了0-20 cm、20-40 cm、40-60 cm、60-90 cm、90-120 cm、120-150 cm、150-200 cm、200-250 cm及250-300 cm土壤样品,将其分为两部分,一部分用来测定同位素,一部分用来测定土壤含水量(SWC)。同时采集了植物木质部样品。并于降水事件后收集降雨,采集降水量和气温数据。通过计算土壤干燥化指数(SDI)描述土壤水分亏缺状态。利用LI-2000植物土壤水分抽提系统(北京理加联合科技有限公司)提取木质部和土壤中的水分。利用Picarro L2130-i水同位素分析仪确定土壤水及降水的δ18O和δ2H。同时确定木质部水的δ18O和δ2H。最后通过MixSIAR模型区分并量化植物水源。【结果】试验期降水δ2H和δ18O(c)及降水量与δ2H/δ18O之间的关系(d)。生长季土壤水δ2H和δ18O的深度和时间分布。潜在水源对沙柳水分吸收贡献率的季节性变化。【结论】在整个生长季,6年沙柳60%的水源来自于0–120 cm土壤层。相比之下,12年和18年沙柳具有更大程度的生态可塑性,分别从旱季120-300 cm(71.93%)和40-200 cm(68.91%)水源转变到雨季的0-120 cm(65.09%和56.14%)水源。根系和土壤含水量垂直分布的变化是影响不同林龄沙柳水分利用模式季节性变化的主要因素。18年林分中,严重的土壤干涸和死根削弱了老化沙柳的生态可塑性,降低了其吸收深层水(200-300 cm)的能力,从而导致沙柳退化。因此,野外管理措施,例如(i)通过沙柳退化枝条覆盖地面以减少土壤水蒸发;(ii)使成熟沙柳稀疏以减少水分消耗;(iii)通过对最佳植物密度或生物量进行建模来确定植被阈值,以指导所研究地区的未来植被恢复。在这项研究中,针对沙柳拟议的管理实践可以为世界其他沙漠地区相似林龄人工恢复植物的水分利用策略提供参考。
  • 岛津的土壤中金属分析方案
    随着城市化的推进,化工污染成为重大污染源。苯、酚、磷类有机污染及镉、砷、铅、铬、汞等重金属污染严重,在对空气、水体造成污染的同时,也成为土壤中长期存在的&ldquo 毒瘤&rdquo 。业内人士指出,重金属无论是污染水体,还是污染大气,最终都会回归土壤,造成土壤污染。在经过几十年的沉淀后,我国土壤重金属污染正进入集中多发期。而在邻国,伴随工厂旧址等的开发,重金属等造成土壤污染的问题不断增多,引人注目。在这种状况下,各国纷纷采取了用于掌握污染状况、保护人类健康的措置。以保护国民健康为目的,日本于2002年5月29日颁布了「土壤污染对策法」,该法于2003年2月15日起正式实施。其中列出了可能在表层土壤中以高浓度状态长期蓄积的做为特定有害物质的重金属等9个项目,以及,基于摄取地下水等观点而设置的做为土壤环境标准的溶出标准25个项目。 岛津使用广泛应用于各领域无机元素分析中的AA、ICP、ICP-MS,开发了土壤中有害金属的测定方法。了解详情。请点击《土壤中金属的分析》。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 德国元素 x 全国土壤分析技术研讨会
    为了助力第三次全国土壤普查,推动新技术新方法在土壤学、环境科学及生态学研究中的探索与应用,促进土壤行业的发展与创新,德国元素Elementar参加了2023年5月24-27日在重庆市举办的“第三届全国土壤分析技术研讨会”,提供了土壤与肥料中碳、氮、硫及总有机碳分析解决方案,展示了经典的有机元素分析仪、总有机碳分析仪、杜马斯定氮仪、红外碳硫仪以及稳定同位素比质谱仪等多款土壤、肥料、植物分析方案。德国元素的老客户-中国农业科学院农业资源与农业区划研究所的汪主任在大会报告中也分享了“三普土壤碳氮检测技术”,为各位土壤研究者与老师分享了可参考的分析方法。德国元素作为有机元素分析的“百年品牌”,在碳、氮、硫等元素的分析方面具有非常丰富的经验。相比于传统的化学法,元素分析仪及杜马斯定氮仪采用经典的高温催化燃烧法,无需复杂的样品制备,仅干燥研磨后直接称量包裹,即可进行仪器自动化分析,整个过程简便、快速,几分钟即可获得精准结果。针对土壤、植物、肥料中总碳、总氮、全硫、有机碳等分析,德国元素可提供多种测试方案,解决您不同的测试需求。具体如下:有机元素分析仪解决方案杜马斯定氮仪解决方案TOC总有机碳分析仪解决方案无机材料红外碳硫仪解决方案稳定同位素比质谱仪解决方案德国元素Elementar 在125年前(1897年),就一直致力于元素分析领域的发展,并于1904年,成功研发并推出第一台元素分析仪。1923年,Fritz Pregl凭借Heraeus(德国元素的前身)分析技术,在微量元素分析基础研究中取得突破性进展,荣获诺贝尔化学奖。作为引领元素分析的技术主导者,德国元素Elementar 历经125年的传承和创新,德国元素研发并推出了满足各个领域分析需求的元素分析仪。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制