当前位置: 仪器信息网 > 行业主题 > >

杯式风速传感器

仪器信息网杯式风速传感器专题为您提供2024年最新杯式风速传感器价格报价、厂家品牌的相关信息, 包括杯式风速传感器参数、型号等,不管是国产,还是进口品牌的杯式风速传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合杯式风速传感器相关的耗材配件、试剂标物,还有杯式风速传感器相关的最新资讯、资料,以及杯式风速传感器相关的解决方案。

杯式风速传感器相关的资讯

  • 管道风速传感器如何测量管道风压、风速、风量
    风速是天气监测中重要因素之一,用来测量风速的传感器被称为风速传感器,如我们常见的杯式风速传感器,超声波风速传感器,但有一种风速传感器虽不常见但应用广泛,这就是管道风速变送器。以前通风管道风压、风速、风量测定方法一、测定位置和测定点(一)测定位置的选择通风管道内风速及风量的测定,是通过测量压力换算得到。测得管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对测量结果的影响很大。测量断面应尽量选择在气流平稳的直管段上。测量断面设在弯头、三通等异形部件前面(相对气流流动方向)时,距这些部件的距离应大于2倍管道直径。当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。当测试现场难于满足要求时,为减少误差可适当增加测点。但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5倍。测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面不宜作为测定断面。如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面(检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值大,这时毕托管与风管外壁垂线的夹角即为气流方向与风管中心线的偏离角)。选择测量断面,还应考虑测定操作的方便和安全。(二)测试孔和测定点由于速度分布的不均匀性,压力分布也是不均匀的。因此,必须在同一断面上多点测量,然后求出该断面的平均值。1圆形风道在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同心环,对于圆形风道,测点越多,测量精度越高。2矩形风道可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小矩形每边的长度为200mm左右,圆风管测点与管壁距离系数(以管径为基数)。二、风道内压力的测定(一)原理测量风道中气体的压力应在气流比较平稳的管段进行。测试中需测定气体的静压、动压和全压。测气体全压的孔口应迎着风道中气流的方向,测静压的孔口应垂直于气流的方向。用U形压力计测全压和静压时,另一端应与大气相通(用倾斜微压计在正压管段测压时,管的一端应与大气相通,在负压管段测压时,容器开口端应与大气相通)。因此压力计上读出的压力,实际上是风道内气体压力与大气压力之间的压差(即气体相对压力)。大气压力一般用大气压力表测定。由于全压等于动压与静压的代数和,可只测其中两个值,另一值通过计算求得。(二)测定仪器气体压力(静压、动压和全压)的测量通常是用插入风道中的测压管将压力信号取出,在与之连接的压力计上读出,常用的仪器有毕托管和压力计。1 毕托管(1)标准毕托管它是一个弯成90°的双层同心圆管,其开口端同内管相通,用来测定全压;在靠近管头的外壁上开有一圈小孔,用来测定静压,按标准尺寸加工的毕托管校正系数近似等于1。标准毕托管测孔很小,易被风道内粉尘堵塞,因此这种毕托管只适用于比较清洁的管道中测定。(2)S型毕托管它是由两根相同的金属管并联组成,测量时有方向相反的两个开口,测定时,面向气流的开口测得的相当于全压,背向气流的开口测得的相当于静压。由于测头对气流的影响,测得的压力与实际值有较大误差,特别是静压。因此,S型毕托管在使用前须用标准毕托管进行校正,S型毕托管的动压校正系数一般在0.82~0.85之间。S型毕托管测孔较大,不易被风道内粉尘堵塞,这种毕托管在含尘污染源监测中得到广泛应用。2.压力计(1)U形压力计由U形玻璃管制成,其中测压液体视被测压力范围选用水、酒精或汞,U形压力计不适于测量微小压力。压力值由液柱高差读得换算,p值按下式计算:p=ρgh (Pa) (2.8-1)式中p—压力,Pa;h—液柱差,mm;ρ—液体密度,g/cm3;g—重力加速度,m/s2。(2)倾斜式微压计测压时,将微压计容器开口与测定系统中压力较高的一端相连,斜管与系统中压力较低的一端相连,作用于两个液面上的压力差,使液柱沿斜管上升,压力p按下式计算:p=KL(Pa)(2.8-2)式中L—斜管内液柱长度,mm;K—斜管系数,由仪器斜角刻度读得。测压液体密度,常用密度为0.1g/cm3的乙醇。当采用其他密度的液体时,需进行密度修正。(三)测定方法1.试前,将仪器调整水平,检查液柱有无气泡,并将液面调至零点,然后根据测定内容用橡皮管将测压管与压力计连接。毕托管与U形压力计测量烟气全压、静压、动压的连接方法。2测压时,毕托管的管嘴要对准气流流动方向,其偏差不大于5°,每次测定反复三次,取平均值。三、管道内风速测定常用的测定管道内风速的方法分为间接式和直读式两类。(一)间接式先测得管内某点动压pd,可以计算出该点的流速v。用各点测得的动压取均方根,可以计算出该截面的平均流速vp。式中pd—动压值,pdi断面上各测点动压值,Pa;vp—平均流速是断面上各测点流速的平均值。此法虽较繁琐,由于精度高,在通风系统测试中得到广泛应用。(二)直读式常用的直读式测速仪是热球式热电风速仪,这种仪器的传感器是一球形测头,其中为镍铬丝弹簧圈,用低熔点的玻璃将其包成球状。弹簧圈内有一对镍铬—康铜热电偶,用以测量球体的温升程度。测头用电加热。由于测头的加热量集中在球部,只需较小的加热电流(约30mA)就能达到要求的温升。测头的温升会受到周围空气流速的影响,根据温升的大小,即可测出气流的速度。仪器的测量部分采用电子放大线路和运算放大器,并用数字显示测量结果。测量的范围为0.05~19.0m/s(必要时可扩大至40m/s)。仪器中还设有P-N结温度测头,可以在测量风速的同时,测定气流的温度。这种仪器适用于气流稳定输送清洁空气,流速小于4m/s的场合。管道风速传感器测量风速、风量我们可以通过风速(V)算出风量(L)的大小,如1小时内通过风量的计算公式为L=F*V*3600秒,公式中:F——风口通风面积(m2),V——测得的风口平均风速(m/s)。通过配置软件设置风更方便我们的使用,将地址及波特率设置好,将管道截面积添加好之后,软件会自动计算出风速值和风量值。广泛应用在油烟管道、通风管道、暖通空调进出风口等地方来测量风速和风量。
  • 简述超声波风速风向传感器的原理特点和应用
    风既有大小,又有方向,因此风的预报包括风速和风向两项。风速,是指空气相对于地球某一固定地点的运动速率,常用单位是m/s。风速是没有等级的,风力才有等级,风速是风力等级划分的依据。一般来讲,风速越大,风力等级越高,风的破坏性越大。在气象上,一般将风力大小划分为十七个等级。 气象上把风吹来的方向确定为风的方向。风来自北方叫作北风,风来自南方叫作南风。当风向在某个方位摇摆不能肯定方位时,气象台站预报就会加以“偏”字,比如偏南风。利用风向可以在人们的生活、生产、建厂、农业、交通、军事等各种领域发挥积极作用。 测量风速时可以使用测风器,风压板扬起所过长短齿的数目,表示风力大小。测量风向时可以使用风向标,风向标对的风向箭头指在哪个方向即表示当时刮什么方向的风。 同时测量风速和风向可以使用超声波风速风向传感器。超声波风速风向传感器是一款基于超声波原理研发的风速风向测量仪器,利用超声波时差法来实现风速风向的测量。由于声音在空气中的传播速度会和风向上的气流速度叠加,如果超声波的传播方式和风向相同,那么它的速度会加快;反之则会变慢。所以在固定的检测条件下,超声波在空气中传播的速度可以和风速函数对应,通过计算即可得到精确的风速和风向。超声波风速风向传感器与传统的风速风向传感器相比,它不需要维护和现场校准, 360°全方位无角度限制,没有启动风速的限制,可以同时获得风速、风向的数据;无移动部件,磨损小,使用寿命长;采用随机误差识别技术,大风下也可以保证测量的低离散误差,使输出更平稳。 超声波风速风向传感器安装也比较简单方便。那超声波风速风向传感器可以应用在哪些方面呢? 超声波风速风向传感器可以应用在新型能源开发领域,一些重要的设备十分容易受到风速变化的影响;可以应用在工矿领域,为了确保煤矿安全生产的正常进行,相关部门也推出了针对矿井环境必须使用风速传感器这类设备的规定;可以应用在塔式起重机,当大风影响起重机工作时,它会发出报警;也可以应用于气象领域和煤矿等。
  • 德国lambrecht风速仪/lambrecht风速传感器现货促销
    德国lambrecht风速仪/lambrecht风速传感器现货促销德国Lambrecht(兰博瑞)公司是有150多年历史的老字号气象产品生产厂家,能提供地面气象站系统以及组成地面气象系统的各种分立元件、风速传感器、风向传感器、雨量计、大气压力计、气象系统、温湿度计、辐射等德国Lambrecht风向传感器主要特点是:稳定性能好、精度高、寿命长。该公司产品在世界各地气象、工业、环保尤其是在海洋、船舶和军队得到广泛的应用德国Lambrecht风向传感器测量范围: 0.3...75 m/s精确度: ± 0.3 m/s =10 m/s ± 1% FS ...50 m/s分辨率: 0.1 m/s起始风速: 0.3 m/s输出: 0/4...20 mA = 0...75 m/s- 外壳采用经阳极处理的防海水腐蚀的铝材- 含12 m 可插接导线, 含有内部加热装置,高端传感器德国Lambrecht风速传感器技术参数测量范围: 0...360°分辨率: 2,5°输出: 0/4...20 mA = 0...360° 3 x 0 … 10 VDC (electrical wave)起始风速: 0.7 m/s供电电压: 24 VDC (10...30 VDC)风速传感器 (14575)测量范围: 0.7...35 m/s分辨率: 0.1 m/s输出: 0/4...20 mA = 0...35 m/s0…700 Hz = 0...35 m/s- 外壳采用防海水腐蚀的铝材,插接连接- 认证的传感器, 含有内部加热装置德国Lambrecht风向传感器、风向传感器、进口风向传感器、风向仪、风速风向仪、风向标、Lambrecht风向传感器供应德国lambrecht风速仪/lambrecht风速传感器中国总代理 单位名称:南京铭奥仪器设备有限公司 联系人:张先生联系电话:025-87163873 18913964277 网站:www.mingaoyq.com
  • 玛瑞泰科风速风向传感器成功中标国内知名港机供应商2024年度风速仪采购计划
    近日,玛瑞泰科风速风向传感器成功中标国内知名港机供应商2024年度风速仪采购计划!交通运输部对于港口作业机械防风装置有强制性要求,而传统意义的风杯式传感器存在量程低、精度差的缺陷,而我司自研自产的小型螺旋桨风速风向传感器全面弥补国内无小型高精度机械风传感器的空白,在提升港机产品品质、作业效率和安全性方面迈出了坚实有力的国产化替代步伐!小型风速风向传感器小型风速风向传感器是用来测量水平风场的风速和风向数据的标准化仪器。本产品为螺旋桨式一体风速风向传感器,具有体积小、量程大、重量轻、精度高、耐腐蚀等特点。可广泛应用于海洋气象监测、交通气象监测、农林牧副气象监测、极地气象监测、光伏环境监测、风力发电气象监测等领域。关于我们青岛玛瑞泰科科技有限公司是山东省第四届“创业齐鲁&bull 共赢未来”高层次人才创业大赛(团队类)获奖项目成果转化成立的科创企业,注册资本1000万元。公司业务主要面向海洋信息工程、环境气象监测等领域,研发团队依托哈尔滨工业大学高端平台开展海洋声学技术、海洋仪器、环境气象监测设备研发,开发了多种具有自主知识产权的仪器装备,打破了国外垄断和技术封锁,可广泛应用于气象监测、海洋环境监测、水下通信、海洋地质勘探、海水养殖、拖网捕捞等领域,致力于成为海洋信息工程领域的领航者,海洋仪器生态的构建者。
  • LUFFT超声波风传感器在风功率预测市场的应用
    前言 风电功率预测是指对未来一段时间内风电场所能输出的功率大小进行预测,以便安排调度计划。风功率预测意义重大:通过风功率预测系统的预测结果,电网调度部门可以合理安排发电计划,减少系统的旋转备用容量,提高电网运行的经济性;提前预测风功率的波动,合理安排运行方式和应对措施,提高电网的安全性和可靠性;对风电进行有效调度和科学管理,提高电网接纳风电的能力;指导风电场的计划检修,提高风电场运行的经济性。 测风塔系统测风塔系统是风功率预测重要组成部分,其包括:风塔、传感器、电源、数据处理存储装置、安全与保护装置和传输设备等。传感器分为风速传感器、风向传感器、温度传感器、气压传感器和湿度传感器等,用来测量指定的环境参数为风功率预测提供依据。其中风速风向传感器以机械式和超声波测量为主。机械式风速风向传感器造价低,但是也存在着非常明显的缺陷:风速升高或降低时,由于惯性作用,升速或减速慢;有活动部件,极易磨损,易受沙尘等恶劣天气的损耗,易受冰冻、雨雪干扰,需定期维护; 对于阵风测量精度低;启动风速阈值高;风杯受到的风压力正比于空气密度,空气密度的变化将会影响测量精度; 风速和风向分立式,需要单独拉线,成本增加;本地采集端需要数据采集器进行模拟量到数字量的转换,成本增加而超声波风速风向仪很好地解决了以上的不足,技术成熟,安装方便,同时数字接口输出,可以节省本地数据采集器的成本。 Lufft测风塔解决方案Lufft作为全球专业的气象传感器供应商,其提供的超声波传感器WS200-UMB和气象五参数WS500-UMB很好地满足地测风塔数据的要求。WS200-UMB可以安装在30米、50米、70米和80米测量风速和风向,而WS500-UMB安装在10米高度测量风速、风向、温度、湿度和气压等参数。本文将从组成、传感器、数据采集、供电、防雷和通讯等几个方面阐述。 系统组成根据规范要求,系统配置包括:传感器(4* WS200,1*WS500)、机箱、太阳能板、电池和支架等组成。其中机箱内含有:电源模块、太阳能控制器、数据采集模块、通信模块,防雷模块、开关和接线端子等部件。 Lufft测风塔系统框图 现场安装示意图 传感器参数气象五参数WS500-UMB可以测量风速、风向、温度、湿度、露点温度、空气密度和气压,并配备电子罗盘,修正真风向。同时输出测量质量,判别测量输出数据的有效性。超声风探头配备加热功能,供电允许的情况下,有效抵制结冰积雪。 WS200-UMB WS500-UMB Lufft超声风传感器和气象五参数,性能良好,提供的数据丰富,产品特色总结如下:数字接口输出,无需外接数据采集器进行模数转换,可以直接连接数字通信模块(光端机或DTU),降低成本;除基本数据外,气象五参数还可以输出空气密度和风速风向的标准偏差数据;配备电子罗盘,现场安装施工难度大,人为调正北指向误差大,可用设备自身的修正风向;通过配置传感器参数,可以通过预留的接口连接第三方降水传感器,数字接口统一输出;探头具备加热功能,供电允许的情况下,可以有效防止结冰引起传感器的无法测量的问题,保证数据的完整性;测风质量是Lufft产品特有的技术指标,是传感器自身在测量过程中,单位时间内测量的有效次数与总次数比值的百分比;其体现了测量数据的有效性,尤其是同一地点不同设备输出数据的差别比较大的情况下,判断孰优孰劣的有力依据。 数据采集存储由于Lufft的传感器都是RS485数字接口,可以采用总线模式连接到数据采集模块或通信模块。同时,数据的采集和存储相对比较简单,不需要专门的数据采集器,可以选择带多个RS485口和以太网口的RTU模块(存储功能可以定制)。通信协议可以使用市场主流的Modbus协议。
  • LUFFT VENTUS风传感器应用于海洋
    lufft ventus风传感器应用于海洋背景海洋浮标站是布设在海上以观测浮标为主体组成的海洋水文水质气象自动观测站,用于获取海洋气象水文观测资料的大型综合性观测设备,是探测海上灾害性天气的重要手段。它能按规定要求长期、连续地为海洋科学研究、海上石油(气)开发、港口建设和国防建设收集所需海洋水文水质气象资料,特别是能收集到调查船难以收集的恶劣天气及海况的资料。海洋浮标是一个无人的自动海洋观测站,它由被固定在指定的海域,随波起伏,如同航道两旁的航标。其集计算机、通信、能源、传感器测量、抗海洋恶劣环境、长期可靠性设计等技术于一身,科技含量较高,是沿海和海岛站等其他海洋气象监测手段无法替代的监测站。海洋环境是最为恶劣的自然腐蚀环境,海水本身是一种具有很强腐蚀性的电解质溶液。由于浮标站长期处于高盐雾腐蚀、高温、高湿的环境下,有时还会有台风造成的破坏,所以对设备的质量和稳定性要求极高。一旦设备高频率出现故障,对后期的维护将造成极大的挑战,不仅是高维护费用,更重要的是数据的缺失,将无法弥补。 海洋浮标测风解决方案 海洋浮标站测量的要素中,风是很重要的一个要素,其对于海洋风暴的预测以及研究海洋气候变化,提供数据支撑。超声波风速传感器是利用超声波时差法来实现风速的测量。声音在空气中的传播速度,会和风向上的气流速度叠加。若超声波的传播方向与风向相同,它的速度会加快;反之,若超声波的传播方向若与风向相反,它的速度会变慢。因此,在固定的检测条件下,超声波在空气中传播的速度可以和风速函数对应,同时计算得出风向。lufft ventus-umb超声波风速风向仪汲取lufft公司多年的技术沉淀和丰富的应用儿经验设计研发的。ventus 是一款使用铝镁硅合金材料,防盐雾腐蚀设计的风速风向仪,除具备高精度的风速风向测量功能之外,还输出气压、虚拟温度(空气温度)和空气密度等参数。 lufft ventus 具备众多优异的功能:ventus 的风速测量范围最高可达90m/s(可提供第三方测试报告).ventus 具备多种信号接口,数字rs485和模拟量接口(电流、电压、频率信号),便于集成.ventus 执行高等级的盐雾防护标准(通过cnas认证的1440小时的盐雾测试).ip68防护等级,在接线口做好密封的情况下,有效抵抗海浪和因浮标倾斜没入水中的影响.lufft 公司在中国上海专门设立国际标准的风洞检测设施,为ventus风速风向仪提供及时的检定及技术服务.针对风速、风向参数提供cnas的检测报告; ventus技术指标风向原理超声波测量范围0 ... 359.9 °精度±2° rmse 1.0 m/s分辨率0.1 °风速原理超声波测量范围0 ... 90 m/s虚拟温度原理超声波测量范围-50 ... 70 °c精度±2.0 °c (无加热且无太阳照射或风 4 m/s的情况下)分辨率0.1 °c气压原理mems 电容测量范围300 ... 1200 hpa精度±1.5 hpa分辨率0.1 hpa
  • 地铁隧道气象传感器-一款闪闪发光的五要素气象传感器@2023已更新《风途/仪器》
    地铁隧道气象传感器Czujnik pogody tunelu metra风途【FT-WQX5】是一款闪闪发光的五要素气象传感器。随着公路隧道向长大化方向发展,行车速度和密度加大,公路隧道火灾事故的发生率也随之增加,隧道通风排烟问题也逐渐引起高度重视。  一、产品简介  山东风途物联网科技有限公司作为专业研发生产销售微型气象仪的企业,一直致力于微型气象仪和气象环境解决方案推广应用。具有完整的生产链、实力雄厚的技术团队和全面的营销团队,我们研发生产的超声波风速风向仪、五要素微气象仪、六要素微气象仪和小型自动气象站等气象产品,已广泛应用到气象监测、城市环境监测、风力发电、航海船舶、航空机场、桥梁隧道等领域,客户遍布全国各地,并取得了良好的社会效益和经济效益。  与传统的微型气象仪相比,我司产品克服了对高精度计时器的需求,避免了因传感器启动延时、解调电路延时、温度变化而造成的测量不准问题。  FT-WQX5型五要素微气象仪创新性地将风速、风向、温度、湿度、大气压力通过一个高集成度结构来实现,可实现户外气象参数24小时连续在线监测,通过数字量通讯接口将五项参数一次性输出给用户。  二、产品特点  1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡(实用新型专利,专利号ZL 2020 2 3215713.X)☆  2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向(发明专利,专利号ZL 2021 1 0237536.5)☆  3、风速、风向、温度、湿度、大气压力五要素一体式(实用新型专利,专利号ZL 2020 2 3215649.5)☆  4、采用先进的传感技术,实时测量,无启动风速☆  5、抗干扰能力强,具有看门狗电路,自动复位功能,保证系统稳定运行  6、高集成度,无移动部件,零磨损  7、免维护,无需现场校准  8、采用ASA工程塑料室外应用常年不变色  9、产品设计输出信号标配为RS485通讯接口(MODBUS协议) 可选配232、USB、以太网接口,支持数据实时读取☆  10、可选配无线传输模块,最小传输间隔1分钟  11、探头为卡扣式设计,解决了运输、安装过程松动不准的问题☆
  • 船舶气象仪-一款有条不紊的微型气象传感器
    船舶气象仪-一款有条不紊的微型气象传感器#2022已更新【品牌型号:天合环境TH-Y6】雷雨大风天气对船舶航行安全会带来很大影响,船舶在大风浪区域航行,将出现较剧烈的摇荡运动、降速、航向不稳定,以及由此引起的其他操纵方面的困难,甚至出现难以预料的危险,而且大雨、暴雨会引起能见度下降,影响航行安全。一、产品简介山东天合环境科技有限公司作为专业研发生产销售微型气象仪的企业,一直致力于微型气象仪和气象环境解决方案推广应用。具有完整的生产链、实力雄厚的技术团队和全面的营销团队,我们研发生产的超声波风速风向仪、五要素微气象仪、六要素微气象仪和小型自动气象站等气象产品,已广泛应用到气象监测、城市环境监测、风力发电、航海船舶、航空机场、桥梁隧道等领域,客户遍布全国各地,并取得了良好的社会效益和经济效益。TH-Y6型六要素微气象仪原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向。与传统的超声波风速风向仪相比,我司产品克服了对高精度计时器的需求,避免了因传感器启动延时、解调电路延时、温度变化而造成的测量不准问题。TH-Y6型六要素微气象仪创新性地将气象标准六参数(环境温度、相对湿度、风速、风向、大气压力、压电雨量)通过一个高集成度结构来实现,可实现户外气象参数24小时连续在线监测,通过数字量通讯接口将六项参数一次性输出给用户。二、产品特点1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向3、风速、风向、温度、湿度、大气压力、压电雨量六要素一体式4、采用先进的传感技术,实时测量,无启动风速☆5、抗干扰能力强,具有看门狗电路,自动复位功能,保证系统稳定运行6、高集成度,无移动部件,零磨损7、免维护,无需现场校准8、采用ASA工程塑料室外应用常年不变色9、产品设计输出信号标配为RS485通讯接口(MODBUS协议);可选配232、USB、以太网接口,支持数据实时读取☆10、可选配无线传输模块,最小传输间隔1分钟11、探头为卡扣式设计,解决了运输、安装过程松动不准的问题☆三、技术参数1、风速:0~60m/s(±0.1m/s);2、风向:0~360°(±2°);3、空气温度:-40-60℃(±0.3℃);4、空气湿度:0-100%RH(±3%RH);5、大气压力:300-1100hpa(±0.25%);6、压电雨量:0-4mm/min(±4%)7、功率:1.08W8、生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证☆9、生产企业具有知识产权管理体系认证证书和计算机软件注册证书☆四、产品尺寸图五、产品结构图六、注意事项1.传感器水平周围1米半径无遮挡,避免水滴飞溅影响2.传感器安装位置应避开强机械振动源3.传感器安装上方应为开阔区域,雨滴应直接滴落至传感器,应免二次滴落和连续水流冲击
  • 灵敏度升十倍 廉价石墨烯传感器问世
    美研制出廉价石墨烯海绵传感器 灵敏度是现有最好设备的10倍   据美国《大众科学》网站近日报道,美国伦斯勒理工学院的科学家最新研制出了一款纤巧、便宜且能重复使用的新式传感器,其由石墨烯泡沫制成,性能远超现在市面上的商用气体传感器,而且,在不远的未来,科学家们能在此基础上研制出更优异的炸弹探测器和环境传感器。   新传感器摒弃了阻止传感器应用和发展的诸多限制。最近几年,在操作纳米结构并用其制造性能卓越的探测器以精确追踪空气中的化学物质方面,科学家们已经取得了重大的进步,然而,他们研制出的各式各样的传感器,尽管从理论上而言很好,但却并不实用。   目前传感器的设计都非常复杂,常常依赖单个纳米结构,而且,科学家们需要对这样的结构进行仔细操作以及更加精确的分析。另外,制造出的传感器往往不能重复使用,且必须在特定的温度或压力下才能工作,因此,科学家们一直没有制造出一款可靠、便宜且可以重复使用的手持传感设备。   现在,伦斯勒理工学院的科学家们使用石墨烯泡沫研制出了这种邮票大小的新型传感器。他们将石墨烯,即单层碳原子,种植在泡沫镍结构上,随后移除泡沫镍,留下一个类似泡沫的石墨烯结构,其具有独特的电性,能够用于执行传感任务。   当将其暴露于空气中时,空气中的粒子会被吸收到泡沫表面,而且每个这样的粒子会用不同的方式影响石墨烯泡沫,对其电阻进行微小的改动。让电流通过其中并且测量电阻的变化,就能知道泡沫上依附的是什么粒子。科学家们让大约100毫安的电流通过该泡沫,结果发现,这种石墨烯泡沫能够导致粒子解吸,也就是说,粒子自动从传感器上剥落下来,清除这些粒子,传感器就可以重复使用了。   科学家们对传感器进行了微调,让其来探测氨水(自制爆炸物硝酸氨的关键成分),该石墨烯泡沫传感器在5分钟到10分钟内就设法探测到了这种富有攻击性的粒子,而且效率是现有市面上最好探测器的10倍。科学家们接着用其来探测有毒气体二氧化氮(爆炸物分解的时候也会释放出这种气体),结果表明,其效率也是目前商用传感器的10倍。   石墨烯泡沫非常容易处理且操作简单,而且在室温下也能很好地工作,这都是科学家们非常心仪的特质,该石墨烯泡沫传感器可让科学家们更快制造出更便宜实用的手持传感设备来对大气进行探测。
  • 背照式CMOS图像传感器工艺中_硅晶圆背面抛光的新技术!
    新加坡科技研究局微电子研究所Institute of Microelectronics Agency for Science的Venkataraman等人与奥地利Nexgen Wafer Systems公司以及新加坡格罗方德公司GlobalFoundries的工程师组成研究团队,共同开发出一种新的晶圆背面抛光技术。在光检测与测距(LiDAR)等各种应用中,背照式三维堆叠CMOS图像传感器备受该领域专家们关注。这种三维集成器件的重要挑战之一,是对单光子雪崩二极管(SPAD)晶圆的精确背面抛光,该晶圆与CMOS晶圆堆叠,晶圆背面抛光通常通过背面研磨和掺杂敏感湿法化学蚀刻硅的组合来实现。研究团队开发了一种湿法蚀刻工艺,基于HF:HNO3:CH3COOH定制化学试剂,能够在p+/ p硅过渡层实现蚀刻停止,掺杂剂选择性高达90:1。他们证明了全晶圆300mm内厚度变化仅约300nm的可行性。此外,也对HNA蚀刻硅表面的着色和表面粗糙度进行了表征,最后,提出一种湿法锥蚀方法来降低表面粗糙度。该研究成果发表于2023年5月30日至6月2日在美国佛罗里达州奥兰多召开的第73届电子组件与技术会议(ECTC)上。论文录用日期为2023年8月3日,并被IEEE Xplore 收录。这项突破将有可能推动背照式CMOS图像传感器在汽车智能驱动等领域的应用。
  • 德图温湿度、风速变送器监测建筑“呼吸”
    11月21日下午16点,历时6天的第十一届中国国际高新技术成果交易会(简称高交会)在深圳圆满闭幕。在这场科学发展、全面推进创新的盛会上,建筑科研单位首度亮相,其中一座节能建筑的模型在高交会馆八号馆展出,吸引了众多参观者的目光。 这栋名叫建科大厦的建筑不仅是深圳市可再生能源利用城市级示范工程,而且是国家第一批可再生能源示范工程。这座建筑外形普通,甚至毫不起眼,但却使用了诸多节能科技成果。 比如,建科大厦采用了自然通风节能设计,经过精确计算,建筑采用了&ldquo 吕&rdquo 字形体形和平面,为室内通风创造了良好条件 设计中根据房间使用功能和时间上的差异,对不同的楼层区域采用了不同的空调方式。据测算,通过这些能源利用措施,建科大厦比普通大厦可节能65%。&ldquo 它是&lsquo 能够呼吸&rsquo 的建筑。&rdquo 深圳市建筑科学院院长叶青介绍。 在这栋&ldquo 有生命的建筑&rdquo 里,监控建筑的&ldquo 呼吸&rdquo 也是很重要的一环。只有充分掌握建筑环境里的温度、湿度、风速等诸多环境参数,这栋建筑才能根据办公区域人员的多和少,自动调节水平带窗,在窗墙比、自然采光、隔热防晒间找到最佳平衡点。在这里,德图的在线温湿度变送器大展身手,全面监测建筑环境中温度、湿度、风速等诸多环境参数,提供优异精度的数据,让管理人员全方位实时掌握建筑 &ldquo 呼吸&rdquo 状态成为可能。 多年来,德图的温湿度变送器一直是干燥处理及其他关键环境的策略首选。高品质温湿度变送器的核心在于高品质的传感器。从1996至2001,testo的湿度传感器历时5年,走过世界9大国家权威实验室,接受不同的方式的检测,精度都优于1%RH。如此强有力的保证,也是深圳建科大厦选择德图温湿度变送器的原因。&ldquo 深圳建科大厦一共用了150多台testo变送器,涵盖风速、温湿度、温度的测量,德图能以如此大的力度参与中国绿色节能第一楼的建设和维护,我作为产品经理,是非常骄傲的!&rdquo 德图产品经理吴保东高兴的表示。
  • 倍加福并购西门子接近传感器业务
    全世界领先的电气传感器和内安防爆元件制造商倍加福于2010年2月成功收购西门子接近传感器业务,以此添加了电感式传感器以及光电传感器产品线的产品组合,同时加强了倍加福在工厂自动化中超声波传感器技术的市场地位。   2010年2月27日,倍加福在曼海姆与地处纽伦堡的西门子工业自动化部签署了一项关于收购西门子工厂自动化接近开关业务的协议。首先,双方商定在整合期内,西门子将全面筹备业务的移交工作,在此期间,西门子将继续接受和执行接近传感器所有订单。整合期结束后,这一职责将转移到倍加福,以此保证交货不受影响。今年年中,这一交接将全面完成。   西门子接近开关业务的并购提升倍加福超声波传感器的市场地位   “我们希望能够受益于技术的多元交流,高素质人才的吸收,以及西门子强大的市场地位,使我们能在超声波传感器领域中具有更强的竞争力并获取更多利益。”Gunther Kegel博士,倍加福公司首席执行官说道。   “倍加福,作为在电气传感器和自动化行业元件的运作专家,为进一步发展我们目前的二元传感器业务提供了夯实根基。”Hans-Georg Kumpfmüller,西门子工业自动化分支传感器与通讯业务部总裁说道。
  • 德国Lambrecht风速风向监测站,风速风向仪,风速风向监测站促销
    ?德国Lambrecht风速风向监测站,风速风向仪,风速风向监测站促销? 德国Lambrecht风速风向仪中国总代理:南京铭奥仪器公司 ?Lambrecht(兰博瑞)公司是有140多年历史的老字号气象产品生产厂家,能提供地面气象站系统以及组成地面气象系统的各种分立元件。产品主要特点是:稳定性能好、精度高、寿命长。该公司产品在世界各地气象、工业、环保尤其是在海洋、船舶和军队得到广泛的应用。德国LAMBRECHT中国总代理特价供应Lambrecht风速仪、Lambrecht自动雨量计(降水传感器)、Lambrecht一体式气象站等Lambrecht气象测量仪器仪表。Lambrecht产品主要特点是:稳定性能好、精度高、寿命长且种类齐全。 Lambrecht公司产品在世界各地气象、工业、机场、港口码头、船舶、交通运输、地质、林业、环境保护、风力发电、科学研究等尤其是在海洋、船舶和军队得到广泛的应用。 单位名称:南京铭奥仪器设备有限公司 详细地址:江苏 南京市秦淮区刘家岗84号 联系电话:025-87163873 18913964277 传真:025-87163873 Email:suhua1985@126.com
  • 奥松电子6英寸MEMS传感器芯片生产线正式投入运营,2021二期工程将建成
    p style=" text-indent: 2em text-align: justify " 随着生物医疗、人工智能、物联网、5G网络等新兴信息技术发展,传统制造业将会借助于新技术进一步转型升级。MEMS半导体传感器芯片在智能物联网时代中起到核心作用,智能传感器产业已成为推进传统工业转型升级的关键,这对粤港澳大湾区、乃至我国的经济发展、产业结构优化具有重大的战略意义。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" http://uploadimg2.moore.ren/images/news/2020-09-22/110306.jpg" / /p p style=" text-indent: 2em text-align: justify " 据麦姆斯咨询了解,广州奥松电子有限公司6英寸MEMS半导体传感器芯片生产线正式投入运营,成功量产出温湿度、流量、气体、差压、风速等传感器芯片,并为部分珠三角客户提供MEMS半导体芯片代工服务。该生产线的建成投产标志奥松电子成为华南地区领先的MEMS半导体传感器芯片生产基地,推动国内、特别是粤港澳大湾区的MEMS半导体传感器高质量发展奠定了良好的基础。 /p p style=" text-indent: 2em text-align: justify " 奥松电子斥巨资打造MEMS半导体芯片生产线,一期工程净化车间总面积约2500平方米,配置湿法清洗区、百级洁净度光刻区、千级洁净度镀膜区、千级洁净度刻蚀区、千级洁净度离子注入区及参观通道等。整个洁净车间安装了多套高性能风淋系统,对进入洁净间的员工或者货物进行彻底风淋除尘。 /p p style=" text-indent: 2em text-align: justify " 该生产线一期工程于2019年3月立项,2019年6月正式进入施工阶段。经过6个月的施工,生产线的基础设施已安装完成。2020年,多台步进式投影光刻机、双面光刻机、涂胶显影机、深硅刻蚀机、大束流离子注入机、PECVD、LPCVD、氧化炉、磁控溅射机、探针台、应力测试仪、全自动RCA清洗机等先进的自动化生产设备搬入,生产线正式投入运营。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" http://uploadimg2.moore.ren/images/news/2020-09-22/110307.jpg" / /p p style=" text-indent: 0em " img style=" max-width:100% max-height:100% " src=" http://uploadimg2.moore.ren/images/news/2020-09-22/110308.jpg" / /p p style=" text-indent: 2em text-align: justify " 奥松电子MEMS半导体生产线一期工程为500纳米MEMS半导体工艺制程,生产设备约占整个投资规模的70%。一期工程已成功量产出温湿度传感器、空气质量传感器、气体传感器、流量传感器、差压传感器等多款优质的芯片产品。根据规划,2021年二期工程将建成350纳米制程工艺MEMS半导体生产线;2022年三期工程将建成180纳米制程工艺MEMS半导体生产线;总项目全部建成投产后,每月流片规模将达到4万片,满足奥松电子自身需求及粤港澳大湾区各类MEMS半导体芯片的代工需求。 /p p style=" text-indent: 2em text-align: justify " 随着物联网时代的到来,珠三角经济区作为中国最重要的制造基地之一,一直走在时代的前列。《粤港澳大湾区发展规划纲要》政策落实后,广州作为广东省省会城市和经济中心、一带一路新亚欧大陆经济走廊主要节点城市和海上合作战略支点,优势地位不断得到提升。奥松电子立足广州,在MEMS半导体传感器领域打破了国外企业的垄断,实现国产替代进口,勇担历史使命,为粤港澳大湾区建设贡献自己的一份力量。 /p
  • 我国发明创新传感器电极制备新方法
    近日,中科院长春应用化学研究所研制的“全氟磺酸离子交换膜电极的制备方法”获国家专利授权。这一发明创新了一种改进的传感器电极制备方法,是研发具有自主知识产权的电化学气体传感器核心技术的一项新突破。   据悉,化学气体传感器以其体积小、检测速度快、准确、便携、可现场直接检测和连续检测等优点,越来越引起国内外专家学者的普遍关注,并成为竞相研发的热点项目之一。而我国电化学气体传感器研发起步较晚,一些核心技术还受制于国外,所需传感器几乎依赖进口。为此,不断强化电化学传感器核心技术的突破,尽快研发出具有我国自主知识产权的电化学气体传感器,成为我国经济建设急需解决的重要课题之一。   长春应化所绿色化学与工程实验室化学传感器组的王玉江研究员等发明设计的“全氟磺酸离子交换膜电极的制备方法”,包括活性物质的涂载、洗涤、全氟磺酸离子交换膜的复合成型三个步骤。其在二氧化硫、一氧化碳等电化学气体传感器的组装上得以实施,证明该方法通过增强敏感电极层催化剂与电解质之间的离子传输速率,从而提高了传感器对目标气体的响应灵敏度 此外,全氟磺酸离子交换膜的复合,克服了传统电极制备过程中因为层与层间物质不相溶而使得结构松散,长时间工作易剥离脱落等缺陷,大大提高了传感器的稳定性和寿命。
  • 湖北省筹建微型电量传感器计量检定中心
    12月22日,记者从天门市质监局了解到,经湖北省质监局批准,天门市开始筹建湖北省微型电量传感器计量检定中心,这是湖北省唯一的省级微型电量传感器检测机构,也是天门市首个省级高科技检测机构,计划在天门市建立首个国家级计量基准。   此项目由天门市质量技术监督局与天门电工仪器仪表研究所共同组织筹建。据天门质监局有关负责人介绍,微型电流传感器是应用在电子式电能表、继电保护装置,电子测量仪器上的一种电子元器件,使用范围广泛,随着国家实施“西电东送”、“智能电网”等重点工程的进展,在国内年需求量达10亿只以上,天门市也有数家企业从事此项产品的生产。微型电流传感器在出厂后和使用中必须进行校准,而目前国内还没有相关的国家标准量值,天门质监局邀请中国计量院、国家电网武汉高压试验研究院、国家电工仪器仪表质量监督检验中心、华中科技大学等单位的专家、教授,开展技术攻关,旨在填补我国微型电流传感器量值溯源的空白,目前已完成关键技术的研发。天门市筹建省级微型电量传感器计量检定中心后,可凭借技术上的领先优势,建成国内唯一的微型电量传感器检测机构,抢占微量电量传感器这一产品的至高点,打造天门高科技“城市名片”,进一步提升天门对外影响力,促进天门经济产业结构调整升级,壮大微型电量传感器产业集群,优化天门招商引资工作环境和平台。
  • 摄像光线不足将成历史 新传感器光敏度强千倍
    这种新型传感器是由新加坡南洋理工大学的研究人员研制的,它对可见光和红外线都高度敏感,这就意味着它可以用于尼康品牌的所有产品。    研究人员称,这是首次使用纯石墨烯制造出一种用途广泛的高光敏度传感器   这种传感器对光线的敏感度超过现在摄像机所使用的成像传感器千倍,这都得益于它所使用的创新式结构。它是由石墨烯制作而成的,石墨烯是一种拥有蜂窝状结构的超强碳化合物,它和橡胶一样柔韧,而且比硅更具传导性。石墨烯是一种单原子厚的石墨层,它已经获得了认同可以作为未来的建筑材料。2010年Andre Geim和Konstantin Novoselov也因为他们对于石墨烯的研究而获得了诺贝尔物理学奖。   南洋理工大学电气与电子工程系的助教Wang Qijie发明了这种新型传感器,他说道:&ldquo 这是首次使用纯石墨烯制造出一种用途广泛的高光敏度传感器。我们已经证实,现在有可能仅使用石墨烯就制造出廉价而又柔韧的感光传感器。我们期望这项创新,不仅能够对成像企业的消费者而且能够对卫星成像和通信企业产生巨大的影响。&rdquo Wang声称,这种新型传感器的关键在于使用了&ldquo 滞留光线&rdquo 的纳米结构。纳米结构能够比传统的传感器更长时间的捕获产生光线的电子微粒。这就会导致产生一种更强的电信号,就像数码相机所拍摄的照片一样,它能够将这种电信号转变成图像。   现在大多数摄像机的传感器都使用一种互补金属氧化物半导体作为基座。但是Wang声称他的石墨烯基座要高效的多,能产生更加清晰和精美的照片。而且据Wang所说,他在设计这种新型传感器的时候,甚至考虑到了现在的制造业规范。一般而言,摄像机生产企业能够使用同样的过程来制造这种传感器,仅仅需要将基座材料转换成石墨烯即可。Wang说道,如果有企业采纳他的设计,那么就能够带来更廉价、更轻便而且电池寿命更长久的摄像机。
  • 国外公司设计内置传感器水杯 摇一摇就能检测水质
    无论是什么时候,人最离不开的就是水,尤其是户外运动的时候水更是必不可少的东西,但是大家都知道在户外喝水其实是一件非常危险的事情,因为你并不知道,你喝的水是否是干净的水,所以这个时候你就需要一个检测水质是否安全的装备,Ecomo公司设计的水杯就问世了。一款可以检测水质的水杯非常适合户外使用  在这款水杯上有一个手环,这不是一般的手环,而是一个可以检测水质的手环,同时在被子内还内置了一组传感器,可以轻松识别出水质的好坏,检测方式也非常简单,只要轻松摇一摇,手环就会通过不同颜色的灯光来变现水质。
  • 北醒参与智能传感器项目获得国家重点研发计划立项
    近日,国家科技部公布2023年度国家重点研发计划“智能传感器”重点专项评审结果,北醒参与申报的“列车前向运行环境监测传感器及系统应用”项目获批立项。此次立项,标志着北醒激光雷达关键技术符合国家科技发展战略规划,获得政府与行业的支持认可。该项目由交控科技股份有限公司牵头,北京交通大学、北京航空航天大学、中国科学院半导体研究所、机械工业仪器仪表综合技术经济研究所、凌云光技术股份有限公司、国能朔黄铁路发展有限责任公司、成都轨道交通集团有限公司、北京埃福瑞科技有限公司参与合作。北醒基于独特的先进技术架构,实现可靠的三维环境感知能力,其设计可满足交通复杂场景严苛的可靠性要求。在此研发经验基础之上,将着力攻克一批关键核心技术,构建自主可控的产业体系,形成高性能传感器、新方法、新技术及新系统设备,有助于减少对国外企业的依赖,提升我国轨道交通产品的国际竞争力和市场占有率,为实现“交通强国,铁路先行”的国家战略提供有力支撑。北醒致力于提升设备运力和效率,降低事故率,让人类出行更智能更安全。北醒入选国家级专精特新“小巨人”企业,并获准设立博士后科研工作站,参与联合创新完成的项目曾荣获“北京市科学技术进步奖二等奖”,在智能轨交、智能公路、智能民航等智能交通领域深耕已久。北醒CEO李远表示,未来,北醒将以此为契机,继续为民生基建护航,向世界领先迈进。在项目实施与企业发展中,北醒继续坚守长期主义和技术至上的价值主张,持续提升激光雷达高安全、高可靠性技术,助力国家科技进步与行业发展。关于北醒(北京)光子科技有限公司公司成立于2015年,是一家全球领先的激光雷达产品及解决方案提供商。公司致力于通过激光雷达技术赋能千万移动智能体,从而推动数字化与智能化,全面提升用户安全、运力和效率。北醒激光雷达产品广泛应用于智能车载、智能交通、智能工业传感等领域,通过搭建全系产品矩阵,打造出业内独一无二的多元化、全方位业务布局。截至目前,公司业务已经覆盖全球90多个国家和地区,累计交付超百万台激光雷达,开启了激光雷达大规模商用化时代。
  • 【2023世界传感器大会】智能传感器关键材料及元器件-产业基础分场活动圆满举行
    11日5日,2023世界传感器大会在郑州国际会展中心隆重举行。本次大会由河南省人民政府与中国科学技术协会主办,河南省人民政府副秘书长魏晓伟主持开幕式。尤政、蒋庄德、周立伟等11位中外院士受邀参加。河南省副省长刘尚进、郑州市副市长马志峰、中德友好协会联合会副主席菲力克斯库尔兹出席致辞。中国科学院院士褚君浩、英国皇家工程院院士肯尼斯格拉特、开鸿数字产业发展有限公司首席执行官王成录、赛迪顾问股份有限公司副总裁李珂作大会主旨报告。相关省市领导,国际组织代表,高校、科研机构专家学者以及国内外协会、学会、知名企业代表等嘉宾共同出席开幕式。大会现场中国仪器仪表学会仪表功能材料分会、重庆材料研究院有限公司、河南省科学院、河南理工大学等单位联合承办了大会的“智能传感器关键材料及元器件”产业基础分场论坛。中国科学院院士刘云圻,俄罗斯工程院院士、欧洲科学院外籍院士李长明,河南省工业和信息化厅二级巡视员卢钦华,郑州市人民政府办公厅副主任李广利,中国仪器仪表行业协会副理事长、重庆材料研究院有限公司副总经理(主持工作)吴保安,重庆材料研究院有限公司副总经理刘奇等出席会议。论坛由河南理工大学微电子封装与精密成形研究院院长曹军主持。曹军院长主持论坛,吴保安副总经理致辞卢钦华巡视员、李广利副主任为论坛致辞,吴保安副总经理向出席的院士、专家及代表表示诚挚欢迎。刘云圻院士、李长明院士、仪综所所长欧阳劲松、中广核高级技术专家黄美良、智能传感功能材料国家重点实验室教授级高工赵鸿滨、厦门大学电子科学与技术学院副教授廖新勤分别作了题为《二维材料的可控制备及其高性能传感器》、《智能传感的创新与产业化》、《新时代传感器高质量发展的思考与建议》、《面向数字化转型的核电智能传感器的技术》、《智能传感功能材料发展现状与趋势》《功能复合材料与柔性智能触摸传感器》的学术报告,围绕智能传感器领域的技术前沿、产业趋势和热点问题进行高端对话,共享成果,共话未来。刘云圻院士作报告李长明院士作报告欧阳劲松所长作报告黄美良高工、赵鸿滨高工、廖新勤副教授作报告本次论坛的主题是“材料创新助力技术发展”,论坛采取线上线下结合的方式,来自传感器关键材料及元件、智能传感器等领域专家学者、企业代表、科技工作者代表、新闻媒体线下逾150余人参加。论坛现场
  • 深圳一家传感器企业成功上市:背靠华为比亚迪,市值超70亿
    近日,深圳安培龙科技股份有限公司(下文简称“安培龙”)在深圳证券交易所创业板正式上市,深圳收获一家A股上市传感器龙头企业。以创新打破国外技术垄断安培龙成立于2004年,是一家专业从事热敏电阻及温度传感器、氧传感器、压力传感器研发、生产和销售的公司。目前公司已形成了热敏电阻及温度传感器、氧传感器、压力传感器三大类产品线,包含上千种规格型号的产品,目前主要应用于家电、通信及工业控制领域,同时也逐渐在汽车、光伏、储能、医疗等领域扩大应用。公司已取得境内专利授权64项,其中包括发明专利13项、实用新型专利51项。在热敏电阻领域,公司具有突出的技术开发及规模化产业转化能力,参与了多项国家级科研项目。公司“微晶热敏陶瓷纳米粉体及其片式元件制备技术”获得中国电子协会科技进步一等奖。在温度传感器领域,NTC热敏电阻作为其中最为关键的元件,公司利用多年在NTC热敏电阻开发及产业化过程中积累的实践经验,开发出了高性能的温度传感器,产品主要技术指标与国外领先企业接近,已逐步进入国际品牌的供应链体系。在压力传感器领域,基于陶瓷材料方面的深入研究,公司获得了“一种陶瓷电容式压力传感器及制备方法”、“一种温度-压力一体式传感器”等核心技术专利,打破国外公司对该类型产品的技术壁垒;同时,公司获得工信部2019年度工业强基重点产品传感器“一条龙”应用计划示范企业,具有较强的技术研发实力。在氧传感器领域,经过近十年的开发,公司实现了氧传感器所用关键材料的国产化,取得了“一种高热导LTCC陶瓷基板”等发明专利,并承担了“面向国六排放标准的气体传感器研发”的深圳市科技计划项目。通过对核心技术进行攻关,于2019年入选了工信部第一批专精特新“小巨人”企业(共248家)、2021年入选了工信部第一批建议支持的国家级专精特新“小巨人”企业(全国共782家,为深圳市6家入选企业之一),于2021年被广东省科学技术厅认定为“广东省基于先进功能陶瓷材料的 智能传感器工程技术研究中心”的依托单位。凭借着长期积累的平台优势,优异的产品性能,安培龙主要产品已配套用于国内外知名品牌的终端产品,包括:比亚迪、上汽集团、长城汽车、东风汽车、万里扬、华为、美的集团、格力电器、海尔智家、东芝、三星、伊莱克斯等客户。安培龙近年业绩保持快速增长势头。公司2020年、2021年、2022年、2023年1-9月营业收入分别为4.18亿元、5.02亿元、6.26亿元、5.47亿元;归母净利润分别为0.60亿元、0.53亿元、0.89亿元、0.61亿元。助力战略性新兴产业发展近年来,中国汽车产业实现“弯道超车”,其中新能源汽车表现抢眼。产业的快速增长也带来众多上下游企业带来了发展新机遇。中国汽车产业的崛起,对于传感器行业而言是百年难遇的大机会,安培龙早早看到了这一机遇并布局。招股说明书资料显示,安培龙拟募集资金将主要用于投建安培龙智能传感器产业园项目。该募投项目建成后将实现年产1500万只压力传感器、年产非汽车综合用温度传感器10000万只、年产汽车用温度传感器500万只的产能,此外,还将进行智能传感器研发中心建设项目以及厂房办公室生活配套项目的建设。作为深圳最年轻的行政区之一,坪山承载着“深圳东部中心、深圳国家高新区核心园区、深圳未来产业试验区”的重担,并在全市“20+8”产业集群中承接“9+2”战略性新兴产业和未来产业集群发展,已初步形成“智能车、创新药、中国芯”为代表的三大主导产业,打造的新能源(汽车)和智能网联、生物医药、新一代信息技术三大主导产业均是当下乃至未来最具发展潜力的战新产业。登陆资本市场,安培龙也开启了新的发展阶段。谈及公司未来发展目标,邬若军表示,“短期来说,希望公司的压力传感器、温度传感器、氧传感器在汽车行业得到广泛的推广,成为国内汽车电子的领先品牌。长期而言,安培龙希望成为国际领先的智能传感器企业。”
  • 上海微系统所制备出微型光电一体化集成钻石量子磁传感器
    近日,上海微系统所传感技术国家重点实验室采用微纳加工技术制备了一种基于氮空位(NV)色心的微型光电一体化集成钻石量子磁传感器。相关研究成果于2022年5月9日以“Amicrofabricatedfiber-integrated diamond magnetometer with ensemble nitrogen-vacancy centers”为题发表在当期的Applied Physics Letters上。 钻石,不仅可以作为珠宝装饰品,更是具有极高研究价值的新型量子材料。氮空位缺陷——NV色心,是钻石晶体结构中最常见的点缺陷,由氮原子取代碳原子和相邻空穴而形成,利用其在磁场中的量子顺磁共振效应及荧光辐射特性可以进行精密磁测量。NV色心在常温下也具有稳定的量子态,可以在非制冷的室温下工作。同时,钻石量子磁传感器以其高空间分辨率、高灵敏度、高生物兼容性等技术优势,在近场微观磁共振、磁异常探测、生命科学等领域具有重要的应用前景。 小型化、集成化、便携化是钻石量子传感器取得实际应用的重要条件。该团队基于晶圆级微机电工艺平台,利用标准微纳加工技术,制备出钻石量子磁传感器的核心——钻石芯片。芯片内部集成了微波辐射结构,实现了原位微波量子态操控。采用金属热压键合技术实现了钻石单晶与硅晶圆的异质集成,确保了机械稳定性。钻石芯片耦合带有梯度变化折射率透镜的光纤模块,实现了“光进光出”的工作模式,大大缩小了探头尺寸,实现了钻石磁强计探头的高集成度。并进一步指出,采用双频共振技术可以同时进行磁场和温度场的同步实时测量,不仅通过温漂抑制提高了磁场测量的信噪比,还确保了传感器的温度稳定性。 该团队提出的制备工艺可以在晶圆级进行拓展,具有批量化制备的潜力,为建立高一致性、高灵敏度的可穿戴传感器阵列提供了可能性。目前钻石量子磁传感器整体尺寸仅有20×15×1.5 mm3,灵敏度达到2.03nT/√Hz。同时,该钻石磁传感器可以对小于0.5 mm(甚至更小)的目标区域进行近距离测量,具有在心磁、脑磁等弱磁信号探测场景的应用潜力,为后续实用化的可穿戴生物磁传感器提供了良好的研究基础。 该论文的第一作者单位和通讯单位为中科院上海微系统所,第一作者为博士研究生谢非,通讯作者为武震宇研究员和陈浩副研究员。该工作得到中国科学院战略性先导科技专项(XDC07030200)、国家重点研发计划(2021YFB3202500)、中科院科研仪器装备研制(YJKYYQ20190026)等项目的支持。 论文链接:https://doi.org/10.1063/5.0089732
  • 应用案例 | 使用开路传感器系统研究温度和湿度对N2O吸收谱和浓度的影响
    近日,来自山东师范大学物理与电子科学学院的联合研究团队发表了一篇题为Effects of Temperature and Humidity on the Absorption Spectrum and Concentration of N2O Using an Open-Path Sensor System的研究论文。IntroductionSince China’ s proposal of the “carbon peak” and “carbon neutrality” goals, the government and society have attached great importance to the problems of air pollution and global warming. Nitrous oxide (N2O) isamong the six greenhouse gases under the Kyoto Protocol. N2O content is relatively low compared to carbon dioxide (CO2), but its global warming potential is about 310 times that of CO2. In addition, it is destructive to ozone (O3). There are many reasons for the changes in N2O concentrations in the atmosphere, which are partly due to anthropogenic activities, such as the widespread use of fertilizers in agricultural activities. The concentrations of other gases in the atmosphere, as well as the wind speed and direction, are all correlated with changes in N2O concentrations. At the macro level, temperature and humidity are also factors affecting the absorption coefficient of N2O gas. However, relatively few studies have been conducted on the specific effects of temperature and humidity on N2O gas, and analysis has also been lacking on the influence of temperature and humidity on the absorption spectrum and the concentration of N2O. Moreover, some uncertainty and variability remain in the observations of the relationship between N2O gas concentrations and temperature and humidity. The reasons for these discrepancies may be regional differences, differences in observation methods, and imperfections in data, which are all important bases for measuring the N2O concentration in atmospheric, medical, combustion, and agricultural processes. Thus, further research and exploration, combined with additional field observations and modeling experiments, can uncover the mechanism of temperature and humidity on the N2O concentration. Consequently, providing a scientific basis for this concentration is essential for reducing N2O emissions, controlling climate change, and promoting sustainable development and environmental protection. 简介自中国提出“碳峰值”和“碳中和”目标以来,政府和社会对空气污染和全球变暖问题给予了极大关注。N2O是《京都议定书》下的六种温室气体之一。与二氧化碳(CO2)相比,N2O含量相对较低,但其全球变暖潜力约为CO2的310倍。此外,它对臭氧(O3)具有破坏性。大气中N2O浓度的变化有许多原因,部分原因是人类活动造成的,例如在农业活动中广泛使用化肥。大气中其他气体的浓度以及风速和风向都与N2O浓度的变化相关。在宏观水平上,温度和湿度也是影响N2O气体吸收系数的因素。然而,对温度和湿度对N2O气体具体影响的研究相对较少,对温度和湿度对N2O吸收谱和浓度的影响分析也不足。此外,在N2O气体浓度与温度和湿度之间的关系观察中仍存在一些不确定性和变异性。导致这些差异的原因可能是地区差异、观测方法差异以及数据的不完善,这些都是测量大气、医疗、燃烧和农业过程中N2O浓度的重要基础。因此,进一步的研究和探索,结合更多的现场观测和建模实验,可以揭示温度和湿度对N2O浓度的机制。因此,为减少N2O排放、控制气候变化,促进可持续发展和环境保护提供科学依据至关重要。Experimental DetailsSensor SetupBased on WMS technology and an open optical path, an open optical-path detection system for detecting N2O gas in the atmosphere was built. The schematic diagram is shown in Figure 1. The sensor system is composed of a light-source module, photoelectric Remote Sens. 2023, 15, 5390 4 of 11 detection module, and data processing module. The light-source module mainly consists of signal generation, a laser drive, QCL, and an indication light source. To effectively realize the tunable characteristics of laser emission wavelength, we designed the signal generator plate to generate a high-frequency sine wave signal with a frequency of 10 kHz to realize the modulation function and to generate a low-frequency sawtooth wave signal with a frequency of 10 Hz to realize the scanning function. The two signals are superimposed on the laser driver, controls the temperature and central emission wavelength of QCL and converts it into an injection current acting on the detection light source QCL so that the emission wavelength of QCL is in the tunable range of 2203.7–2204.1 cm&minus 1.实验细节传感器设置基于波长调制光谱学(WMS)技术和开路光学路径,建立了一种用于检测大气中N2O气体的开路光学路径检测系统。示意图如图1所示。该传感器系统由光源模块、光电检测模块和数据处理模块组成。光源模块主要包括信号生成、激光驱动、量子级联激光器(QCL)和指示光源。为了有效实现激光发射波长的可调特性,我们设计了信号生成器板,生成频率为10 kHz的高频正弦波信号以实现调制功能,并生成频率为10 Hz的低频锯齿波信号以实现扫描功能。这两个信号叠加在激光驱动器上,控制QCL的温度和中心发射波长,并将其转化为作用于检测光源QCL的注入电流,使QCL的发射波长处于2203.7–2204.1 cm-1的可调范围内。Figure 1. Schematic diagram of N2O open optical sensor system.项目使用的激光驱动器是宁波海尔欣光电科技有限公司的QC750-TouchTM量子级联激光屏显驱动器。&bull 集成电流及温控驱动,功能完备;&bull 温度控制驱动采用非PWM式的连续电流输出控制,大大延长TEC器件的使用寿命;&bull 多种输出安全保护机制,保护QCL使用安全:可调电流钳制、输出缓启动、过压欠压保护、超温保护、继电器短路输出保护;&bull 大电流软钳制功能,避免误操作大电流损坏激光管;&bull UI界面显示便于用户操作使用及数据观测;&bull 全自主研发,集成度高,性价比高。QC750-TouchTM, Ningbo HealthyPhoton Technology, Co., Ltd.Selection of N2O TransitionsTo achieve effective detection of N2O gas molecules, we need to select the absorption line intensity and the emission central wavelength of the laser. First, combined with the HITRAN-2016 database, the wave number range of 2000–2250 cm&minus 1 was selected to analyze the region of the absorption spectral line intensity of N2O, and then carbon monoxide (CO), carbon dioxide (CO2), and water (H2O) molecules were simulated and analyzed, as shown in Figure 2. Within this wave number range, the absorption spectra of CO2 were mainly distributed within the 2000–2081 cm&minus 1 range, and the absorption spectra of CO gas were distributed within the 2025–2200 cm&minus 1 wave number range. The absorption spectra of N2O gas were distributed before the 2020 cm&minus 1 wave number range. The absorption spectra of N2O gas molecules were mainly distributed in the 2200–2250 cm&minus 1 wave number range, and they were far from the absorption spectra of water vapor and other gases, reducing interference. At around 2203.7 cm&minus 1 , the absorption spectra ofN2O gas were the strongest. Therefore, we set the position of the N2O absorption line to 2203.7333 cm&minus 1, which was used as the wave number of the QCL emission center. The corresponding spectral line intensity was 7.903 × 10&minus 19 (cm&minus 1 .mol&minus 1 ). The central current and temperature of QCL were set at 330 mA and 36.0 ◦ C, respectively.N2O跃迁的选择为了有效检测N2O气体分子,我们需要选择吸收线强度和激光的发射中心波长。首先,结合HITRAN-2016数据库,选择了2000–2250 cm&minus 1的波数范围,以分析N2O吸收光谱线强度的区域,然后对一氧化碳(CO)、二氧化碳(CO2)和水(H2O)分子进行了模拟和分析,如图2所示。在这个波数范围内,CO2的吸收光谱主要分布在2000–2081 cm&minus 1范围内,CO气体的吸收光谱分布在2025–2200 cm&minus 1波数范围内。H2O气体的吸收光谱分布在2020 cm&minus 1波数范围之前。N2O气体分子的吸收光谱主要分布在2200–2250 cm&minus 1波数范围内,远离水蒸气和其他气体的吸收光谱,减少了干扰。在2203.7 cm&minus 1左右,N2O气体的吸收光谱最强。因此,我们将N2O吸收线的位置设置为2203.7333 cm&minus 1,用作QCL发射中心的波数。相应的光谱线强度为7.903 × 10&minus 19(cm&minus 1mol&minus 1)。QCL的中心电流和温度分别设置为330 mA和36.0 ℃。Figure 2. The intensity distribution of absorption lines of N2O, CO, CO2, and H2O in the range of 2000–2250 cm&minus 1.ConclusionsIn this study, we investigated the effects of temperature and humidity on the concentration of N2Oand its absorption spectra using an open-path sensor system. By combining theoretical analysis and field monitoring, we first conducted monitoring of N2O in a campus environment, analyzing the effects of temperature on its concentration and absorption spectra. We discovered that the concentration of N2O would increase correspondingly with the increase in temperature. The influence of humidity on N2O concentration was monitored under the condition that the ambient temperature of the laboratory remained unchanged. The concentration of N2O was negatively correlated with humidity. The 2f and 1f signals under different temperature and humidity levels were extracted for analysis. We found that the higher the temperature, the smaller the peak value ofthe 2f and the 1f signals, which accords with the trend of the Gaussian function changing with temperature. Under different humidity conditions, the lower thehumidity, the larger the 2f signal peak the higher the humidity, the smaller the 2f signal. This study is of great significance for analyzing the relationship between N2O and environmental parameters such as temperature and humidity. We hope that our research findings can assist environmental agencies in formulating more effective environmental policies for different environments. In the future, we can use QCL to analyze the relationship between N2Oand other environmental and gas parameters.结论在本研究中,我们利用开路传感器系统研究了温度和湿度对N2O浓度及其吸收光谱的影响。通过理论分析和现场监测相结合,我们首先在校园环境中进行了N2O监测,分析了温度对其浓度和吸收光谱的影响。我们发现随着温度升高,N2O浓度相应增加。在实验室环境中,保持环境温度不变的条件下监测了湿度对N2O浓度的影响。N2O浓度与湿度呈负相关。在不同温度和湿度水平下提取并分析了2f和1f信号。我们发现温度越高,2f和1f信号的峰值越小,这与高斯函数随温度变化的趋势相符。在不同湿度条件下,湿度越低,2f信号峰值越大;湿度越高,2f信号越小。这项研究对分析N2O与温度、湿度等环境参数之间的关系具有重要意义。我们希望我们的研究结果能够协助环境机构为不同环境制定更有效的环境政策。未来,我们可以利用QCL来分析N2O与其他环境和气体参数之间的关系。参考:Effects of Temperature and Humidity on the Absorption Spectrum and Concentration of N2O Using an Open-Path Sensor System, Remote Sens. 2023, 15, 5390.
  • 合肥研究院制备可穿戴传感器实现对尿素的视觉监测
    近期,中国科学院合肥物质科学研究院固体物理研究所研究员蒋长龙团队在可穿戴水凝胶贴片及体液中尿素视觉监测方面取得进展,通过在三维多孔聚丙烯酰胺(PAM)水凝胶中嵌入上转换光学探针,设计制备了一种可穿戴传感贴片,并将该贴片与智能手机的颜色识别器结合,实现了对尿素的现场快速定量分析。相关研究成果发表在Analytical Chemistry上。   尿素是人体含氮物质最终代谢的主要产物,会通过汗液、尿液、唾液和血液排出,其在临床诊断中被认为是肾功能的重要指标,因此有效检测尿素水平对于疾病的研究和早期诊断至关重要。可穿戴传感器由于可以直接佩戴在人体皮肤上且具有非侵入性的特性受到广泛关注,三维网络状结构的水凝胶具有良好的柔韧性、拉伸性和生物相容性,这些特性使其成为可穿戴传感器的理想材料,然而目前报道的大多数荧光水凝胶都是由短波长激发的,在检测生物样品时容易受到自发荧光和背景荧光的干扰。上转换纳米粒子(UCNPs)与传统的荧光材料相比,能消除生物样品的自荧光和背景干扰,提高检测灵敏度。因此,利用UCNPs设计可穿戴传感器是检测人类生物标志物的有效策略。   鉴于此,研究团队设计了一种基于上转换光学探针的聚丙烯酰胺水凝胶传感器。探针由UCNPs和对二甲氨基肉桂醛(p-DMAC)组成,基于内滤效应(IFE),尿素与p-DMAC反应产生的红色产物猝灭UCNPs的绿色荧光,使上转换荧光从黄色转变为红色,实现尿素的荧光检测。在此基础上该研究结合PAM水凝胶制作了柔性可穿戴传感器,并利用3D打印技术构建便携式传感平台。   研究团队设计的上转换荧光探针和水凝胶传感器的检测限(LOD)分别为1.4μM和30μM。水凝胶传感贴片为检测体液中的生物标志物提供了便利和准确的传感策略,在疾病预警和临床诊断设备上具有应用潜力。图(a)设计可穿戴水凝胶传感贴片;(b)汗液中尿素的传感和水凝胶的SEM图像;(c)水凝胶传感贴片在980 nm激发光和日光下对尿素的响应;(d)便携式尿素检测传感平台;(e) G/R比值与尿素浓度在0-40 mM范围内的线性关系。
  • 流化床颗粒制备过程多传感器融合测试技术研究获进展
    流化床颗粒制备反应器具有结构简单、传热传质速率高、能耗低和能够实现连续化生产的优点,提升了生产效率和产品质量,广泛应用于化工、医药以及农业领域中的催化剂、药品和化肥等颗粒的制备过程。由于流化床颗粒制备过程通常涉及气、液、固三相掺混,反应器内部的流动呈现出时空非稳态和多尺度效应。流化床颗粒制备过程的关键参数在线监测和过程诊断是国际多相流测量领域的热点与难点,而现有的在线监测技术多基于单一传感器,获取的信息有限,且受到运行条件的限制,难以用于解析流化床反应器内部复杂多相流动的特性以及为过程调控提供数据支持。   针对流化床颗粒制备过程在线测量面临的挑战,中国科学院工程热物理研究所开发了结合电容层析成像(Electrical Capacitance Tomography,ECT)、高速摄像(CCD)、声发射(AE)和压力传感器的非侵入式多模态融合测量技术,提出了多传感器数据融合分析方案(图1)。该团队开发了新型组合电极ECT传感器,实现了流化床反应器的高质量断面成像和内部参数分布信息的获取。进而,该研究将ECT断面图像信息、颗粒流高速摄像数字图像分析和压力信号时频域分析相结合,基于信息互补和相互验证,准确识别了正常喷动和加湿-干燥过程中的典型流态以及流态转变,揭示了不稳定喷动产生的原因(图2)。   为获取更多颗粒流动微观尺度信息,科研人员将ECT断面图像信息与高频声发射(AE)信号时频域、递归分析相结合,实现了流化床颗粒制备过程中颗粒团聚现象的识别以及颗粒流动性变化、失流演变过程的准确监测。该研究同时结合ECT和CCD图像信息和原始数据,基于pSNN神经网络,提出了颗粒湿度分级预测模型(图3)。与传统方法相比,颗粒湿度的预测精确度明显提升。该研究为流化床颗粒制备过程在线测量技术的工程应用奠定了重要基础。   相关研究成果发表在Chemical Engineering Science、Industrial & Engineering Chemistry Research上,并在首届多相传输及能源转化利用国际会议上作了报告。研究工作得到国家自然科学基金和中国科学院对外重点国际合作项目的支持。上述成果由工程热物理所、北京航空航天大学、清华大学深圳研究生院和英国曼彻斯特大学合作完成。
  • 美研制出增强拉曼散射传感器 灵敏度提高10亿倍
    据美国物理学家组织网3月22日(北京时间)报道,美国科学家研制出一种超灵敏传感器,可使用其增强的拉曼散射来探测包括癌症信号、炸药等物质,其灵敏度比普通拉曼散射传感器增强了10亿倍。   拉曼散射是指光通过介质时由于入射光与分子运动相互作用而引起光的频率变化,1928年由印度物理学家钱德拉塞卡拉拉曼发现。在拉曼散射中,一束单色光照射到一个物体后,其反射光会包含另外两种频率的光,这两种光的频率仅与该物体的分子组成相关,这就潜在地提供了一种有效识别物质的方法。但由于这种额外的光太微弱,科学家几十年来很难将拉曼散射付诸于实践。   上世纪70年代,科学家研制出表面增强拉曼散射(SERS)技术,可以通过将所鉴别物质放在粗糙的金属表面或金、银小粒子之上来增强拉曼信号。但科学家随后发现,这种增强的拉曼信号仅出现在传感器表面的几个随机点上,很难预测其具体位置,仍然非常微弱。   而普林斯顿大学电子工程系教授斯蒂芬周领导的团队摒弃了以往设计和制造拉曼传感器的方法,研发出一种全新的SERS结构:一块芯片上布满一行行由金属和半导体组成的小柱子。   新传感器获胜的“秘密武器”就是这些小柱子的排列方式:每个柱子上部和底部各有一个由金属制成的中空部分 柱壁上布满直径约为20纳米的金属粒子(等离子体纳米点),金属粒子之间有2纳米左右的空隙。金属粒子和空隙能显著增强拉曼信号 中空部分能捕捉光信号,让光多次而不是仅一次地通过等离子体纳米点,从而也能增强拉曼信号。迄今为止,该芯片的灵敏度比不经过拉曼增强而研制出的传感器高10亿倍,而且其灵敏度非常稳定,能可靠地应用于感应设备中。   除灵敏度大增之外,借助纳米压印技术和纳米粒子自组装技术,新芯片能实现高质量、规模化制造,研究人员已经在4英尺的晶片上制造出这些传感器。   美国海军研究实验室的科学家也在进行相关实验,希望军队也能使用该技术探测化学物质、生物试剂和炸药。
  • 缩小10倍!最小的二氧化碳传感器
    在“TECHNO 2012”上,日本旭化成株式会社(Asahi Kasei)展出了采用红外线传感器的超小型二氧化碳CO2传感器模块试制型产品。该试制品的最大特点是,尺寸还不到现有最小产品的1/10。该模块被封装在外形尺寸为15.0mm×7.0mm×4.5mm的超小型封装中,体积仅为0.47cc。 由于采用了旭化成电子制造的高速响应、高灵敏度红外线传感器元件“IR1011”,产品的尺寸能够得到缩小。IR1011的尺寸只有2.7mm×1.9mm×0.4mm,气体传感器采用该元件后,可较原产品大幅缩小模块尺寸。此外,由于IR1011的灵敏度出色,因此可缩小气体浓度计指示灯与传感器之间的距离,这也为小型化做出了贡献。另外,传感器试制品的耗电量只有3mW(电源电压为3.0V,测量周期为8秒时),也比现有产品大幅降低,使得该产品能够用于便携式设备。 图为展出的CO2传感器模块试制品,能够将测量到的CO2浓度数据直接显示在PC上。此次试制的传感器模块的主要性能参数如下。工作电源电压为2.7V~5.5V,工作温度范围为0~50℃。测量范围为300~5000ppm,测量周期为1~28秒。配备有有I2C总线数字接口。 图为连接电脑进行CO2浓度测量演示。显示的2190ppm是相当糟糕的空气了。 旭化成电子计划利用新产品小型化、低耗电的特点,将其用于便携式CO2监测计、空调CO2浓度监测以及在移动终端中嵌入CO2传感器等用途。
  • 宋延林课题组利用打印技术制备高性能无铅柔性压电声敏传感器
    根据世界卫生组织的数据,全球约4.3亿人因耳蜗受损而遭受听力损失,改善听力主要靠人工耳蜗。然而,传统的人工耳蜗语音识别能力较低,而且刚性电极与软组织间的不匹配可能导致神经损伤和耳鸣等问题。随着物联网和人工智能的发展,柔性自供电人工耳蜗的研究引起了广泛关注。在国家自然科学基金委、科技部、中国科学院和北京市的大力支持下,化学研究所绿色印刷院重点实验室宋延林课题组近期在各向异性材料合成和图案化器件制备方面取得了系列进展,如二维MXene与纳米晶复合材料研究(J. Mater. Chem. A, 2022, 10, 14674-14691 Nano Res. 2022, DOI:10.1007/s12274-022-4667-x),直写高性能原子级厚二维半导体薄膜和器件(Adv. Mater. 2022, DOI:10.1002/adma.202207392),制备基于交替堆叠微电极的湿度传感超级电容器(Energy Environ. Mater. 2022, DOI:10.1002/eem2.12546)等。压电材料可以作为未来人工耳蜗的有利候选材料,然而,主流含铅压电材料与生物不相容,对环境不友好,其他压电材料的电输出功率由于声电转换性能低,不足以直接刺激听觉神经。因此,制造高性能无铅柔性压电声学传感器意义重大。最近,他们受人类耳蜗外耳毛细胞的启发,报道了一种基于准同型相边界的多组分无铅钙钛矿棒的直写微锥阵列策略,该策略一方面利用取向工程和在两个不同正交相(Amm2和Pmmm)之间形成的准同型相边界,显著提高应力对压电材料性能影响,实现压电响应增强;另一方面在压电薄膜表面引入微锥阵列,增加与声波的接触面积,增强对声波的吸收,从而制备高性能柔性压电声学传感器(FPAS)。该传感器显示出高灵敏度、宽频率响应的特点,覆盖常用的语音频率,同时具有角度灵敏度,可用于记录声音信号,并实现语音识别和人机交互。FPAS还具备防水和耐酸碱等特点,满足自然环境对可穿戴声学传感器的要求。研究成果近日发表于Matter期刊上(https://doi.org/10.1016/j.matt.2022.11.023),论文第一作者是硕士生向钟元,通讯作者是宋延林研究员和李立宏副研究员。 图1. 微锥阵列柔性压电声敏器件应用演示图图2. 声音数据采集、人机交互应用和FPAS的防水性能
  • 近代物理所制备出可穿戴柔性多孔汗液传感器
    近日,中国科学院近代物理研究所材料研究中心报道了基于核径迹技术的可穿戴柔性多孔汗液传感器。近期,相关研究成果以Wearable and Flexible Nanoporous Surface-Enhanced Raman Scattering Substrates for Sweat Enrichment and Analysis为题,发表在《美国化学学会应用纳米材料》(ACS Applied Nano Materials)上。  监测人体物理和化学信号,对疾病预防特别是慢性疾病至关重要。然而,对人体进行高效、连续、实时和无创检测目前仍是挑战。汗液携带的物质与人体的生理状态密切相关,因此对这些生物标记物实现准确、实时检测和分析的重要途径是开发无创、可穿戴式汗液传感器。  科研人员借助兰州重离子研究装置(HIRFL),通过在离子径迹蚀刻聚碳酸酯(PC)膜上原位合成金纳米星(AuNSs),制备了一种可穿戴纳米多孔柔性SERS基底用于汗液富集和分析。由于基底具有纳米多孔结构,能够有效地快速收集分析物,在10-4到10-13M的分析物浓度范围内表现出良好的信号重现性和均匀性,并可从收集的汗液中给出乳酸和尿酸等物质信息的变化。 与其他柔性光学汗液传感器相比,该汗液传感器结合了灵活性、纳米多孔性和等离子体效应的特点,并具备长期稳定性和良好的机械性能,且可重复利用以降低使用成本。这一新型可穿戴基底将为汗液传感技术开辟新途径,有望在未来个人健康实时监测中发挥重要作用。研究工作得到国家自然科学基金的支持。  可穿戴汗液传感器示意图及人体真实汗液测试(图/桂小钰)
  • 2022世界传感器大会(WSS)精彩抢先看!
    2022世界传感器大会(WSS)由中华人民共和国工业和信息化部、中国科学技术协会与河南省人民政府作为主办单位,郑州市人民政府、河南省工业和信息化厅、河南省科学技术协会、中国仪器仪表学会承办,大会定于2022年8月21至23日在郑州国际会展中心召开。  2022世界传感器大会以“感知世界 智创未来”为主题,以“立足中原、辐射中国、引领国际”为理念,以“强产业、强合作、强品牌”为目标,以“国际化、智慧化、专业化”为特色,以“优秩序、优环境、优服务”为宗旨,集“会、展、赛”为一体,集聚全球传感器领域最具影响力的科学家和企业家,以及相关政府部门的领导,围绕传感器领域的技术前沿、产业趋势和热点问题发表演讲和进行高端对话,打造全球传感器领域顶级盛会。大会主旨报告会邀请2005年诺贝尔奖获得者、西澳大利亚大学教授Barry Marshall,美国加州大学圣地亚哥分校教授Joseph Wang,中国工程院院士、西安交通大学教授蒋庄德,国际电气和电子工程师协会(IEEE)候任主席、美国弗吉尼亚理工大学电气与计算机工程系终身教授Saifur Rahman就传感器技术发展与应用做主旨报告。围绕传感器技术热门话题组织十场主旨报告会分场活动,每场论坛汇集院士专家、国际组织代表、海内外学术代表及知名企业嘉宾,探讨传感器技术在各领域发展趋势、应用案例,包括:(1)MEMS与智能传感器技术(2)可穿戴传感器与智慧医疗(3)鸿蒙智能传感生态(4)触觉传感器(5)油气管网智能传感器(6)专精特新高质量发展(7)视觉传感器(8)传感器与智能网联汽车(9)高性能传感器敏感材料(10)传感器产业链生态建设高端对话会议同期设“2022世界传感器大会科技成果展”,展览以传感器研发创新为核心,以传感器系统集成与应用为切入点,涉及传感器应用、标准发展和相关元器件,产业链上下游的关联企业同台展示传感器产业生态圈。截至目前,共有传感器相关企业206家参展,其中世界500强西门子、江森、华为、三菱、百度云、亚马逊、明电舍等将盛装亮相。 中国(国际)传感器创新创业大赛于2022年3月30日开赛,大赛共收到作品近400项,来自全国高校、科研院所、企业等150多家单位、1000余名高校学生、教师、科研人员和工程技术人员参与大赛。经大赛评委会评审,共评选出90项优秀作品进入决赛。8月21-22日,90项优秀作品将在郑州国际会展中心一绝高下。届时,大会还将举办中国(国际)传感器创新创业大赛颁奖典礼及优秀作品展示。大会官网:http://www.china-wss.com/参会联系:卢佳佳 13269689196长按扫码报名携手共进,合作共赢促进国际间传感器技术的交流助推我国传感器科技与产业的大力发展!2022年8月21日-23日河南郑州不见不散!!!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制