当前位置: 仪器信息网 > 行业主题 > >

智能温度调节器

仪器信息网智能温度调节器专题为您提供2024年最新智能温度调节器价格报价、厂家品牌的相关信息, 包括智能温度调节器参数、型号等,不管是国产,还是进口品牌的智能温度调节器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合智能温度调节器相关的耗材配件、试剂标物,还有智能温度调节器相关的最新资讯、资料,以及智能温度调节器相关的解决方案。

智能温度调节器相关的论坛

  • 【求助】视度调节器

    目镜上的视度调节器的作用是什么呢?应该是调节视度用的,视度是指观察范围么?前辈帮我扫盲啊,谢谢啦

  • 什么是荧光强度调节器?

    最近在给仪器做期间核查,下载了一个原子荧光计量的文件(JJG939-2009),里面提到一个静态信号模拟,需要将初始荧光值先调整到500左右,这个调整需要用到“荧光强度调节器”,话说是一个金属制品,可是我从来没有见到过,之前计量所来帮我们仪器计量时也没有用到这个玩意,我以前期间核查时,静态模拟,初始信号值是什么样就什么样(通常也就100左右),反正也操作得好好的(现在就不知道合不合适啦),所以就来向各位老师取取经啦,有用过或见过或听过的老师帮忙解决解决哈,先谢了!!

  • 【分享】对JJG376-1985《电导仪》中计算常数调节器误差的质疑

    【分享】对JJG376-1985《电导仪》中计算常数调节器误差的质疑

    引言 JJC 376 -1985《电导仪》试行检定规程第14条对常数调节器的检定做如下规定:“按检定规程的图示方式接通线路。先将常数调节器置于J1= 1. 00(0)。接入标准电导G1标时,电计示值为G1,此时G1=K1,应符合表1规定。然后将常数调节器由J1变换至待检的J处,重新确定仪器零点,而标准电导G1标不变,测得电计示值K检。再根据J和G1标可得到计算值K计,按下式计算常数调节器的误差:[img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908161640_166012_1615922_3.jpg[/img]式中:k[sub]满 [/sub]为电导仪被检档的满量程。若按此规定,依据常数J和G1标计算得K[sub]记1[/sub],(下同)代入式( 4)进行常数调节器误差的计算,将会把被检点的电计引用误差引入到仪器常数调节器误差中来,不能客观真实的反映被检对象常数调节器的调节性能。若依据J和电计示值C [sub]1平[/sub]的平均值可得到计算值 K[sub]记1[/sub](下同)代入式阵(4)进行常数调节器误差的计算,则能避免电计引用误差的影响,客观地反映出常数调节器的真实性能。

  • 【求助】氮气压力调节器用于氦气压力调节,显示的压力偏大还是偏小?

    氮气压力调节器用于氦气压力调节,显示的压力偏大还是偏小?因为买不到氦气压力调节器,所以用氮气的代替,但是最近压力下降到了1.5MPa作用以后开始出现空气峰,查漏也没有办法找到泄露点,所以怀疑氦气压力过低,杂气跑出来了。请问一下,氮气压力调节器用于氦气压力调节,读数表上的压力是比实际值大,还是比实际值小??

  • 石墨炉冷却水机调节器

    各位老师,我们岛津AA6880[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]石墨炉配套的冷水机上的调节器堵了,已经反接用了几年。最近实在用不了了,冷水机厂家也没有这东西。大家有什么替代品推荐吗?[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2024/04/202404111742421085_5576_3371959_3.png[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2024/04/202404111742426236_5704_3371959_3.png[/img]

  • GB 21455-2013 转速可控型房间空气调节器能效限定值及能效等级

    标准号:GB 21455-2013现 行 http://www.spsp.gov.cn/images/newbtn01.gif中文名称: 转速可控型房间空气调节器能效限定值及能效等级英文名称:Minimum allowable values of the energy efficiency and energy efficiency grades for variable speed room air conditioners中标分类:F01ICS分类:27.010标准分类编号:CN页数:7发布日期:2013-06-09实施日期:2013-10-01作废日期: - -被替代标准:代替标准:GB 21455-2008引用标准:GB/T 7725;GB/T 17758采用标准:起草单位:中国标准化研究院归口单位:全国能源基础与管理标准化技术委员会标引依据:国家标准公告2013年第9号补充修订:备注:范围:本标准规定了转速可控型房间空气调节器的能效限定值、节能评价值、能效等级、试验方法及检验规则。本标准适用于采用空气冷却冷凝器、全封闭转速可控型电动压缩机,额定制冷量在14 000 W及以下,气候类型为T1的转速可控型房间空气调节器。本标准不适用于移动式空调器、多联式空调机组、风管式空调器。

  • 【资料】仪器仪表:动态电压调节器(DVR)的技术介绍

    非线性和冲击性负载的增长导致了许多电能质量问题,例如电压跌落、闪变、电流谐波、不平衡等。这些问题严重影响了电力系统的稳定和敏感性用户的安全。为了解决这些问题,人们提出并试验了许多方案,例如针对电流问题的有源滤波器(APF),针对电压问题的动态电压调节器(DVR),针对无功补偿的静态无功发生器(STATCOM),针对敏感性负荷的不间断电源(UPS)等。动态电压调节器DVR(Dynamic Voltage Regulator)是一种串联型电能质量调节器,采用基于电力电子器件的PWM逆变器结构,其主电路由以下四个部分组成:基于全控器件的电压源型逆变器、输出滤波器、串联变压器和直流储能单元。DVR相当于一个串联在配电系统中动态受控的电压源,采用适当的控制方法可以使该电压源输出抵消电力系统扰动对负荷电压造成的不良影响,如电压跌落、电压不平衡及谐波等。当直流侧能量通过从系统整流获得时,在系统侧即使发生单相故障,其它两相仍可以提供电能来维持DVR的正常运行,补偿长期的电压跌落也成为可能。如果在直流侧电容两端并联蓄电池,或采用大容量电容储能,该装置还可起到UPS的作用,即在系统侧发生短期故障时可以向负荷提供一定时间的功率。采用合适的拓扑结构,DVR可以综合地治理配电系统中的动态电压质量问题如跌落、浪涌和稳态电压质量问题如谐波、波动、三相不平衡,是一个多目标的电压质量综合治理装置。1996年8月,西屋公司(Westinghouse Electric Corporation)在Duke电力公司位于南加州安德森的12.47kV变电站安装了第一台DVR,用于解决一家自动化纺织厂的供电电压问题。随后 ABB公司研制的22KV/4MVA DVR也成功地应用于半导体生产厂的故障电压恢复。ABB还推出了基于IGCT的DVR。SIEMENS公司也在动态电压恢复器的研制上处于先进水平,不仅开发了用于中等电压等级的DVR,还开发了用于大功率负荷的多模块动态电压恢复器以及架空DVR PM(Platform-Mounted DVR)系统。除了上述的动态电压恢复器实例,世界上还有很多厂家和研究机构正在研制各自的DVR,如Cutler-Hammer,美国威斯康星大学等。清华大学电机系柔性交流输配电系统研究所也已经独立研制了一台10kVA/380V的三相DVR样机,实验结果表明该样机性能优越,不仅能有效地解决系统的动态电压质量问题,例如电压跌落、闪变等,还能解决一些稳态的电压质量问题,如三相电压不平衡、谐波等。

  • 色谱温度调节

    色谱温度调节

    一台高麦氩色谱,发现基线毛剌较大,想调节温度烘一下,居然调不起来,会是我操作程序不对呢?还是电路板有问题?http://ng1.17img.cn/bbsfiles/images/2013/02/201302272150_427436_1605035_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/02/201302272150_427438_1605035_3.jpg纯化器是与之近似类型的调节器,调节自如。

  • 分析智能仪器仪表的几大发展趋势

    智能仪器仪表凭借其体积小、功能强、功耗低等优势,迅速地在家用电器、科研单位和工业企业中得到了广泛的应用。智能仪器仪表的工作原理为传感器拾取被测参量的信息并转换成电信号,经滤波去除干扰后送入多路模拟开关;由单片机逐路选通模拟开关将各输入通道的信号逐一送入程控增益放大器,放大后的信号经a/d转换器转换成相应的脉冲信号后送入单片机中;单片机根据仪器所设定的初值进行相应的数据运算和处理(如非线性校正等);运算的结果被转换为相应的数据进行显示和打印;同时单片机把运算结果与存储于片内flashrom(闪速存储器)或e2prom(电可擦除存贮器)内的设定参数进行运算比较后,根据运算结果和控制要求,输出相应的控制信号(如报警装置触发、继电器触点等)。此外,智能仪器还可以与pc机组成分布式测控系统,由单片机作为下位机采集各种测量信号与数据,通过串行通信将信息传输给上位机——pc机,由pc机进行全局管理。 智能仪器仪表的发展概况 80年代,微处理器被用到仪器中,仪器前面板开始朝键盘化方向发展,测量系统常通过ieee—488总线连接。不同于传统独立仪器模式的个人仪器得到了发展等。 90年代,仪器仪表的智能化突出表现在以下几个方面:微电子技术的进步更深刻地影响仪器仪表的设计;dsp芯片的问世,使仪器仪表数字信号处理功能大大加强;微型机的发展,使仪器仪表具有更强的数据处理能力;图像处理功能的增加十分普遍;vxi总线得到广泛的应用。 近年来,智能化测量控制仪表的发展尤为迅速。国内市场上已经出现了多种多样智能化测量控制仪表,例如,能够自动进行差压补偿的智能节流式流量计,能够进行程序控温的智能多段温度控制仪,能够实现数字pid和各种复杂控制规律的智能式调节器,以及能够对各种谱图进行分析和数据处理的智能色谱仪等。 国际上智能测量仪表更是品种繁多,例如,美国honeywell公司生产的dstj-3000系列智能变送器,能进行差压值状态的复合测量,可对变送器本体的温度、静压等实现自动补偿,其精度可达到0.1%fs;美国raca-dana公司的9303型超高电平表,利用微处理器消除电流流经电阻所产生的热噪声,测量电平可低达-77db;美国fluke公司生产的超级多功能校准器5520a,内部采用了3个微处理器,其短期稳定性达到1ppm,线性度可达到0.5ppm;美国foxboro公司生产的数字化自整定调节器,采用了专家系统技术,能够像有经验的控制工程师那样,根据现场参数迅速地整定调节器。这种调节器特别适合于对象变化频繁或非线性的控制系统。由于这种调节器能够自动整定调节参数,可使整个系统在生产过程中始终保持最佳品质。

  • 具有备份传感器功能的超高精度PID调节器以保证控制过程的安全性

    具有备份传感器功能的超高精度PID调节器以保证控制过程的安全性

    [size=14px][color=#990000]摘要:为了保证科研生产中的安全运行和控制,针对一些对可靠性、安全性和产品价值要求较高的控制对象,往往要求传感器具有冗余设计。本文介绍了VPC 2021-1系列多功能超高精度PID控制器,主要介绍了此控制器的双传感器冗余功能及其使用方法。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~[/align][size=14px] 在各种工业和科研领域中,会采用大量各种传感器进行相应的过程参数测量和控制。在一些使用环境比较恶劣的条件下,如高低温、高压力、腐蚀、侵蚀、振动和强磁场等,传感器往往会受到损伤而发生故障,由此会在使用过程中给测量和控制带来严重影响,从而造成测量和控制效果降低,甚至造成产品报废和试验失败,更严重的还会造成控制失控而引发事故。特别是在一些高价值产品的长时间生产控制过程中,绝不允许期间出现中断而造成控制参数巨变造成高价值产品报废现象。[/size][size=14px] 为了解决上述运行过程中传感器损坏而带来的控制失效问题,最好的解决方法是进行冗余设计,即对工作用传感器进行备份。如图1所示,在被控对象中布置至少两个传感器,一个作为主传感器,另一个为备份传感器。当主传感器出现故障时,特别是主传感器出现断路时,控制器自动切换到备份传感器。[/size][align=center][size=14px][color=#990000][img=双传感器冗余示意图,500,294]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161612313860_2879_3221506_3.jpg!w690x407.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#990000]图1 冗余设计的双传感器(主传感器和备份传感器)[/color][/align][size=14px] 在控制过程和运行设备中配备双传感器比较容易实现,条件是主传感器和备份传感器的规格型号和量程要完全一致,但发挥这种冗余设计功效的关键是要求相应的PID控制器具有传感器断路自动监测能力,并同时要求能将控制回路自动切换到备份传感器。[/size][size=14px] 为了满足安全生产和控制需要,VPC2021-1系列多功能超高精度PID控制器配备这种双传感器冗余功能。如图2所示,此系列PID控制器具备万能型传感器输入功能,可连接的47种类型的输入信号,其中包括10种热电偶温度传感器、9种电阻型温度传感器、3种纯电阻、10种热敏电阻、3种模拟电流和12种模拟电压。在备份传感器的具体使用中,可以将两只完全相同的传感器分别接入主输入端和辅助输入端,并将辅助输入通道设置为双传感器冗余功能。开始运行后,控制器同时采集两只传感器信号,但采用主传感器信号进行控制。当主传感器开路时,当前测量自动转入辅助输入端(备份传感器)的测量值并继续进行控制。[/size][align=center][size=14px][color=#990000][img=具有双传感器冗余功能的多功能超高精度PID控制器,350,388]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161614314227_180_3221506_3.jpg!w496x551.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#990000]图2 具有双传感器冗余功能的PID控制器[/color][/align][size=14px] 这种双端口输入信号的功能还可以进行扩展,可以通过相应的设置用来进行加热器断丝报警、阀位反馈、远程设定、不同量程双传感器切换。[/size][size=14px] 总之,这种具体双传感器冗余功能的PID调节器完全可以满足安全控制的需要,功能十分强大,同时还保持了超高精度的测量控制能力。[/size][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size]

  • 智能仪器功能原理及其发展趋势

    国际上智能测量仪表更是品种繁多,例如,美国HONEYWELL公司生产的DSTJ-3000系列智能变送器,能进行差压值状态的复合测量,可对变送器本体的温度、静压等实现自动补偿,其精度可达到±0.1%FS;美国RACA-DANA公司的9303型超高电平表,利用微处理器消除电流流经电阻所产生的热噪声,测量电平可低达-77dB;美国FLUKE公司生产的超级多功能校准器5520A,内部采用了3个微处理器,其短期稳定性达到1ppm,线性度可达到0.5ppm;美国FOXBORO公司生产的数字化自整定调节器,采用了专家系统技术,能够像有经验的控制工程师那样,根据现场参数迅速地整定调节器。这种调节器特别适合于对象变化频繁或非线性的控制系统。由于这种调节器能够自动整定调节参数,可使整个系统在生产过程中始终保持最佳品质。 4.智能仪器发展趋势 4.1微型化 微型智能仪器指微电子技术、微机械技术、信息技术等综合应用于仪器的生产中,从而使仪器成为体积小、功能齐全的智能仪器。它能够完成信号的采集、线性化处理、数字信号处理,控制信号的输出、放大、与其他仪器的接口、与人的交互等功能。微型智能仪器随着微电子机械技术的不断发展,其技术不断成熟,价格不断降低,因此其应用领域也将不断扩大。它不但具有传统仪器的功能,而且能在自动化技术、航天、军事、生物技术、医疗领域起到独特的作用。例如,目前要同时测量一个病人的几个不同的参量,并进行某些参量的控制,通常病人的体内要插进几个管子,这增加了病人感染的机会,微型智能仪器能同时测量多参数,而且体积小,可植入人体,使得这些问题得到解决。 4.2多功能化 多功能本身就是智能仪器仪表的一个特点。例如,为了设计速度较快和结构较复杂的数字系统,仪器生产厂家制造了具有脉冲发生器、频率合成器和任意波形发生器等功能的函数发生器。这种多功能的综合型产品不但在性能上(如准确度)比专用脉冲发生器和频率合成器高,而且在各种测试功能上提供了较好的解决方案。 4.3人工智能化 人工智能是计算机应用的一个崭新领域,利用计算机模拟人的智能,用于机器人、医疗诊断、专家系统、推理证明等各方面。智能仪器的进一步发展将含有一定的人工智能,即代替人的一部分脑力劳动,从而在视觉(图形及色彩辨读)、听觉(语音识别及语言领悟)、思维(推理、判断、学习与联想)等方面具有一定的能力。这样,智能仪器可无需人的干预而自主地完成检测或控制功能。显然,人工智能在现代仪器仪表中的应用,使我们不仅可以解决用传统方法很难解决的一类问题,而且可望解决用传统方法根本不能解决的问题。 4.4融合ISP和EMIT技术,实现仪器仪表系统的Internet接入(网络化) 伴随着网络技术的飞速发展,Internet技术正在逐渐向工业控制和智能仪器仪表系统设计领域渗透,实现智能仪器仪表系统基于Internet的通讯能力以及对设计好的智能仪器仪表系统进行远程升级、功能重置和系统维护。在系统编程技术(In-SystemProgramming,简称ISP技术)是对软件进行修改、组态或重组的一种最新技术。它是LATTICE半导体公司首先提出的一种使我们在产品设计、制造过程中的每个环节,甚至在产品卖给最终用户以后,具有对其器件、电路板或整个电子系统的逻辑和功能随时进行组态或重组能力的最新技术。ISP技术消除了传统技术的某些限制和连接弊病,有利于在板设计、制造与编程。ISP硬件灵活且易于软件修改,便于设计开发。由于ISP器件可以像任何其他器件一样,在印刷电路板(PCB)上处理,因此编程ISP器件不需要专门编程器和较复杂的流程,只要通过PC机,嵌入式系统处理器甚至INTERNET远程网进行编程。 EMIT嵌入式微型因特网互联技术是emWare公司创立ETI(eXtendtheInternet)扩展Internet联盟时提出的,它是一种将单片机等嵌入式设备接入Internet的技术。利用该技术,能够将8位和16位单片机系统接入Internet,实现基于Internet的远程数据采集、智能控制、上传/下载数据文件等功能。 目前美国ConnectOne公司、emWare公司、TASKING公司和国内的P&S公司等均提供基于Internet的DeviceNetworking的软件、固件(Firmware)和硬件产品。 4.5虚拟仪器是智能仪器发展的新阶段 测量仪器的主要功能都是由数据采集、数据分析和数据显示等三大部分组成的。在虚拟现实系统中,数据分析和显示完全用PC机的软件来完成。因此,只要额外提供一定的数据采集硬件,就可以与PC机组成测量仪器。这种基于PC机的测量仪器称为虚拟仪器。在虚拟仪器中,使用同一个硬件系统,只要应用不同的软件编程,就可得到功能完全不同的测量仪器。可见,软件系统是虚拟仪器的核心,“软件就是仪器”。 传统的智能仪器主要在仪器技术中用了某种计算机技术,而虚拟仪器则强调在通用的计算机技术中吸收仪器技术。作为虚拟仪器核心的软件系统具有通用性、通俗性、可视性、可扩展性和升级性,能为用户带来极大的利益,因此,具有传统的智能仪器所无法比拟的应用前景和市场。 5.结束语 智能仪器是计算机科学、电子学、数字信号处理、人工智能、VLSI等新兴技术与传统的仪器仪表技术的结合。随着专用集成电路、个人仪器等相关技术的发展,智能仪器将会得到更加广泛的应用。作为智能仪器核心部件的单片计算机技术是推动智能仪器向小型化、多功能化、更加灵活的方向发展的动力。

  • 【原创大赛】【仪器故事】实验室仪器设备温度指示调节仪简介

    【原创大赛】【仪器故事】实验室仪器设备温度指示调节仪简介

    [align=center][b]实验室仪器设备温度指示调节仪简介[/b][/align][b][/b][align=left][b] 1概述[/b][/align][align=left][b][/b][/align][b] 温度指示调节仪配热电偶或热电阻用以测量温度的仪器,辅以相应的执行机构能组成温度控制系统,接受标准化模拟直流电信号或其他产生电阻变化的传感器的信号就可以测量和控制其他物理量。主要是对实验室仪器仪表、试验箱、马弗炉(箱式炉)、烘烤箱、制冷设备、医疗仪器等仪器设备,进行温度测量和高精度控制。温度调节仪除了在实验室应用之外,另外广泛应用于冶金、化工、轻工、纺织、农业、计量、航天等行业领域, 早期的温度调节仪是从传统的动圈式调节仪表发展而来,经历了机械指针型、电子模拟型、数字显示型式、智能图文型几个阶段。现阶段智能型温度调节仪发展为彩色无纸记录仪型,已成为市场上的主流,从功能、精度、使用控制等方面来看,其它几种传统的温度调节仪无法比拟的。目前在配备其他物理量传感器的前提下,已发展到了压力、流量、液位、位移、角度、转速、流速等物理量的测量显示和控制。 2、温度调节仪简介 (1)机械调节模拟指针型(图2-1,图2-2)。[/b][align=center][b][img=,600,342]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302230554582_4789_1841898_3.jpg!w600x342.jpg[/img][/b][/align][align=center][b]图1-1 模拟指针式温度调节仪正视图(中低温型)[/b][/align][b] 中低温型所用热电阻有Gu50铜电阻,PT100铂电阻,热电偶有T,E,N,K型等热电偶,中间调节钮为指针零点校正,左面调节钮为低端值设定,右面调节为高端值设定。[/b][align=center][b][/b][/align][align=center][b][img=,595,448]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302231213639_8318_1841898_3.jpg!w595x448.jpg[/img][/b][/align][align=center][b]图1-2 模拟指针式温度调节仪侧视图(高温型)[/b][/align][align=center][b][/b][/align][b] 高温型所用热电偶有S,R,B,WR25型等热电偶。[/b][align=center][b][img=,600,336]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302231580002_7710_1841898_3.jpg!w600x336.jpg[/img][/b][/align][align=center][b]图1-3 模拟指针式温度调节仪背面图[/b][/align][b] “+,-” 为热电偶(或热电阻)接线端,“高,中,低”为继电器触点控制高位或低位接线端,“短”为模拟指示针运输时防止强烈摆针电路接线端,220VAC为电源接线端,╧为保护地线。[/b][align=center][b][img=,562,377]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302232173775_8817_1841898_3.jpg!w562x377.jpg[/img][/b][/align][align=center][b]图1-4 模拟指针式温度调节仪内部图[/b][/align][b] 其内部主要是模拟电子元件等组成,体积较大。[/b][align=center][b][img=,600,409]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302232505636_1153_1841898_3.jpg!w600x409.jpg[/img][/b][/align][align=center][b]图1-5 模拟指针式温度调节仪内部图[/b][/align][b] 组成元件有晶体二极管,三极管,电阻,可调电阻,电容,变压器,继电器,动圈仪表等。[/b][align=center][b][img=,550,361]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302233209270_6088_1841898_3.jpg!w550x361.jpg[/img][/b][/align][align=center][b]图1-6 模拟指针式温度调节仪内部图[/b][/align][b] 图中腔体内为指针式动圈仪表,其主要部件包括磁铁、动圈、指针、感应铝旗、固定支架等。 (2) 电位器设定型(指针显示及LED数码管或模拟条显示型) 通过面板温度调节旋钮和刻度面板配合来设定相应所需控制温度值。由于电位器旋转只是刻度无法细化,因此温度设定无法用电位器旋钮设定的办法来判定仪表的灵敏度,只能通过输入信号在仪表上的指示,来判断温度仪表的灵敏度。[/b][align=center][b][/b][/align][align=center][b][img=,500,506]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302233521682_4455_1841898_3.jpg!w500x506.jpg[/img][/b][/align][align=center][b][/b][/align][align=center][b]图2-1 立式电位器设定型温度调节仪[/b][/align][align=center][b][/b][/align][align=center][b][img=,575,433]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302234108333_963_1841898_3.jpg!w575x433.jpg[/img][/b][/align][align=center][b]图2-2卧式电位器设定型温度调节仪[/b][/align][align=center][b][/b][/align][align=center][b][img=,550,388]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302234359062_9443_1841898_3.jpg!w550x388.jpg[/img][/b][/align][align=center][b][/b][/align][align=center][b]图2-3卧式电位器设定型温度调节仪内部结构实物图[/b][/align][align=center][b][/b][/align][align=center][b][img=,550,412]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302235183697_1326_1841898_3.jpg!w550x412.jpg[/img][/b][/align][align=center][b][/b][/align][align=center][b]图2-4 卧式电位器设定型温度调节仪内部结构俯视图图[/b][/align][align=center][b][/b][/align][align=center][b][img=,550,412]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302235480418_1000_1841898_3.jpg!w550x412.jpg[/img][/b][/align][align=center][b][/b][/align][align=center][b]图2-5卧式电位器设定型温度调节仪内部元件布局图[/b][/align][align=center][b][/b][/align][b] 图3-6为电位器和指示表头(LED数码管显示)相配合设定型,这种设定方法需先将仪表上的设定开关拨到“设定”位置,然后再将电位器旋转所需温度值的位置,此时表头指针(或数字显示)随之变化,当指针指到(数字显示)所需设定值即可,最后设定开关返回到“测量”位置即可。当对三位式控制设定时,则需将设置开关拨向上限或下限位置后,分别转动电位器进行设定,待设定完毕后,将拨动开关返回到“测量”位置。[/b][align=center][b][img=,537,546]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302236121875_2736_1841898_3.jpg!w537x546.jpg[/img][/b][/align][align=center][b][/b][/align][align=center][b]图2-6电位器和指示表头(或数字显示)相配合设定型[/b][/align][align=center][b][/b][/align][b] (3)拨码开关设定型(指针或数字型)在拨码开关上直接设定所需数码(温度)值,无须用开关来转换测量与设定,使用更方便,拨码开关设定温度值相比于电位器式数字精度要高一些,但值得注意的是,在此方式设定时需注意不能超过仪表本身标称量值范围。图4-1,图4-2[/b][align=center][b][/b][/align][align=center][b][img=,550,550]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302236507004_7930_1841898_3.jpg!w550x550.jpg[/img][/b][/align][align=center][b][/b][/align][align=center][b]图3-1 拨码开关设定型温度调节仪[/b][/align][align=center][b][/b][/align][align=center][b][img=,550,549]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302237130826_2495_1841898_3.jpg!w550x549.jpg[/img][/b][/align][align=center][b][/b][/align][align=center][b]图3-2 立式拨码开关设定型温度调节仪[/b][/align][align=center][b][/b][/align][b] (4) 智能按键设定型(LED数字显示或模拟条显示型) 智能型温度调节仪表可通过面板相应按键,按仪表芯片设置程序可对仪表所控制的上下限温度报警值、回差、PID参数、传感器安装位置造成的误差修正参数等均可通过面板相应按键设置并实时显示。[/b][align=center][b][/b][/align][align=center][b][img=,500,524]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302237397858_9442_1841898_3.jpg!w500x524.jpg[/img][/b][/align][align=center][b]图4-1 智能按键设定型温度调节仪(LED数字显示及模拟条显示)[/b][/align][align=center][b][/b][/align][align=center][b][img=,550,398]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302238030092_7892_1841898_3.jpg!w550x398.jpg[/img][/b][/align][align=center][b]图4-2 卧式智能型温度调节仪[/b][/align][align=center][b][/b][/align][align=center][b][img=,600,338]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302238209882_3331_1841898_3.jpg!w600x338.jpg[/img][/b][/align][align=center][b]图4-3卧式智能型温度调节仪背面接线端说明[/b][/align][align=center][b][/b][/align][align=center][b][img=,600,432]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302238432794_3825_1841898_3.jpg!w600x432.jpg[/img][/b][/align][align=center][b]图4-4卧式智能型温度调节仪内部器件布局图[/b][/align][b] 目前国内智能型温控仪一般都采用红、绿双排数码管分别显示测量值和设定值,具有良好的人机界面。控制仪壳体均采用DIN国际标准尺寸外形。内部采用专用微处理芯片进行数据分析和控制,如对上、下限报警值、回差、PID参数、手动输出的百分比及因传感器安装位置造成的误差修正等参数,具有先进的AI人工智能调节算法、自诊断、自整定以及自适应功能。[/b][align=center][b][/b][/align][align=center][b][img=,600,482]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302239040686_1099_1841898_3.jpg!w600x482.jpg[/img][/b][/align][align=center][b]图4-5日本导电高精度温度调节仪(国内组装)[/b][/align][align=center][b][/b][/align][align=center][b][img=,550,412]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302239307368_9558_1841898_3.jpg!w550x412.jpg[/img][/b][/align][align=center][b]图4-6日本导电高精度温度调节仪内部结构(一)[/b][/align][align=center][b][/b][/align][align=center][b][img=,550,412]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302239482561_6574_1841898_3.jpg!w550x412.jpg[/img][/b][/align][align=center][b]图4-7日本导电高精度温度调节仪内部结构(二)[/b][/align][align=center][b][/b][/align][b] 智能型温度调节仪从功能结构上采用模块化结构,极大的丰富了其使用功能。使其仪表能输入各种传感器及电压、电流信号,通过配用不同的的模块可输出不同信号以满足不同的使用场所需求。如输出继电器触点通断信号、输出能驱动固态继电器的有源信号还可输出直接触发可控硅的移相或过零脉冲信号。多样输出信号的输出和控制,使其原需多台组合方能完成相应功能,只需一台仪表就能完成其功能,这样不仅提高和扩大了产品的控制性能,也大大提高了自身产品使用的可靠性。 (5) 智能无纸记录仪型(彩色显示屏数字或图形显示型)。 智能无纸记录仪型温度调节仪通常简称彩色无纸记录仪,除了温度调节功能,与上面所介绍的温度调节仪相比有明显优越性,它不仅仅是一个普通的智能温度调节仪,在输入端输入不同物理传感器信号,如压力、流量、流速、液位、位移、角度、转速等。并且同时存储多路所检测的信号,供操作者随时调用查询之用,大大的方便了用户。它还可以通过与远处计算机联机完成远程温度巡检及控制功能,是智能温度调节仪上升到了一个新的台阶。[/b][align=center][b][/b][/align][align=center][b][img=,600,600]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302240174805_9797_1841898_3.jpg!w600x600.jpg[/img][/b][/align][align=center][b]图5-1 常用智能无纸记录仪型(数字显示)[/b][/align][align=center][b][/b][/align][align=center][b][img=,550,543]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302240335393_1659_1841898_3.jpg!w550x543.jpg[/img][/b][/align][align=center][b]图5-2 智能无纸记录仪型(图形显示)[/b][/align][align=center][b][/b][/align][align=center][b][img=,550,498]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302240554056_6832_1841898_3.jpg!w550x498.jpg[/img][/b][/align][align=center][b]图5-3 智能无纸记录仪(多参数图形显示)[/b][/align][align=center][b][/b][/align][b] 彩色无纸记录仪操作方便,应用于生产设备,试验设备,过程控制所需的历史数据记录,报警记录和通断电记录场合。由于具备丰富的输入和输出接口及算法,作为速度快,精度高的数据采集单元也得到大量应用。显示具体数字及百分比进度条显示,操作者一目了然,数据提取采用U盘即插即用或远程计算机记录,提取数据快捷简单。[/b][align=center][b][img=,600,520]https://ng1.17img.cn/bbsfiles/images/2020/08/202008302241068950_4327_1841898_3.jpg!w600x520.jpg[/img][/b][/align][align=center][b]图5-4 智能无纸记录仪(多界面,多参数,多功能彩色显示)[/b][/align][b] 智能无纸记录仪能够直接在屏幕上显示百分值、当前值、变化趋势曲线、报警状态、积值等。在显示的同时,还能够比较变化趋势,便于观察和故障原因分析。无纸、无笔,避免了纸和笔的消耗和维护,内部无任何机械传动部件,大大减轻了仪表操作者的工作量。 智能无纸记录仪采用以 CPU为核心,大容量存储器RAM,可存储多个过程变量瞬时值及大量历史数据,可与计算机连接,将数据存入计算机,进行显示、记录和处理等。随着微处理器在仪表中的推广应用,各个仪表生产厂家纷纷推出新一代的彩色无纸记录仪,必将成为传统记录仪更新换代的替代品。 3、温度调节仪小结 智能温度调节仪仪现已成为发展的主流,随着智能化的不断发展,使操作者可以通过简单的操作流程实现其所需功能,相应的应用的领域也在不断增大,并也将逐渐淘汰传统的温度调节仪。 总之,随着彩色无纸记录仪的应用推广,当前互联网、大数据、云技术的快速发展,工业智能温度物联网记录仪+云平台技术,将以最新形式、以最低成本的数据监控方案,实实在在的开启全新物联网数据云监控时代。实现物联网化管理,不仅可以提高企业开发的效率,还可以最大限度地降低企业成本。最后真心希望我国的智能温度调节仪早日赶超国际水平。[/b]

  • 【原创大赛】实验室仪器设备温度指示调节仪发展综述

    【原创大赛】实验室仪器设备温度指示调节仪发展综述

    实验室仪器设备温度指示调节仪发展综述一 概述 温度调节仪广泛应用于冶金、化工、轻工、纺织、农业、军工、航天等行业领域,主要是对实验室仪器仪表、试验箱、马弗炉(箱式炉)、烘烤箱、制冷设备、医疗仪器、塑料机械、恒温大棚、家用电器。作-200~1800℃范围内的温度测量和高精度控制。 温度调节仪从最早的传统的动圈式,经历了电子模拟式、数显式、智能型几个阶段。从发展趋势方面而言,智能型温度调节仪是未来发展的主流,无论从功能、精度、使用控制等方面看都是以上其它几种温度调节仪无法比拟的。如配相应的传感器也可拓展到压力、流量、液位、位移等物理量的测量、显示和控制。二 温度调节仪的类型与发展1. 电子管时代的机械模拟指针型:(发展年代为五十年代~六十年代,纯电子管型) 此早期使用的机械模拟指针型,主要是五十年代末~六十年代初我国从前苏联和前东德引进的的技术,组装和吸收消化自产并行,产品以EFT系列为主。http://ng1.17img.cn/bbsfiles/images/2011/12/201112010049_334440_1841897_3.jpg图一 电子管EFT-100型温度调节仪(正面图)

  • 恒温恒湿试验箱之教您了解蒸发压力调节阀

    蒸发压力调节阀是一种安装在恒温恒湿试验箱制冷系统蒸发器出口管道上,以防止蒸发器内制冷剂蒸发压力低于设定值为目的而设置的调节机构。 恒温恒湿试验箱之蒸发压力调节阀的作用: (1)在不允许放置空间的环境温度低于设定温度的场合,可以确保设定的蒸发温度。 (2)防止水或过度冷却而冻结,防止蒸发压力过低(防止冷水机组中蒸发器冻裂)。当蒸发器内压力低压设定值时,调节器关闭。 (3)维持恒定的蒸发压力,使蒸发器的表面温度保持恒定。调节器的控制是可以调节的,通过调节器在吸气管路上的节流作用,使恒温恒湿试验箱制冷剂的流量同蒸发器的负荷相匹配。 (4)可以防止恒温恒湿试验箱制冷系统中的冷却盘管表面过度结霜。 (5)在2台以上不同蒸发温度的蒸发器并联使用时,压缩机是以最低的蒸发温度作为运行基准的。

  • 浅谈智能仪器仪表的几大发展趋势分析

    【亚洲流体网讯】 智能仪器仪表凭借其体积小、功能强、功耗低等优势,迅速地在家用电器、科研单位和工业企业中得到了广泛的应用。智能仪器仪表的工作原理为传感器拾取被测参量的信息并转换成电信号,经滤波去除干扰后送入多路模拟开关;由单片机逐路选通模拟开关将各输入通道的信号逐一送入程控增益放大器,放大后的信号经a/d转换器转换成相应的脉冲信号后送入单片机中;单片机根据仪器所设定的初值进行相应的数据运算和处理(如非线性校正等);运算的结果被转换为相应的数据进行显示和打印;同时单片机把运算结果与存储于片内flashrom(闪速存储器)或e2prom(电可擦除存贮器)内的设定参数进行运算比较后,根据运算结果和控制要求,输出相应的控制信号(如报警装置触发、继电器触点等)。此外,智能仪器还可以与pc机组成分布式测控系统,由单片机作为下位机采集各种测量信号与数据,通过串行通信将信息传输给上位机——pc机,由pc机进行全局管理。 智能仪器仪表的发展概况 80年代,微处理器被用到仪器中,仪器前面板开始朝键盘化方向发展,测量系统常通过ieee—488总线连接。不同于传统独立仪器模式的个人仪器得到了发展等。 90年代,仪器仪表的智能化突出表现在以下几个方面:微电子技术的进步更深刻地影响仪器仪表的设计;dsp芯片的问世,使仪器仪表数字信号处理功能大大加强;微型机的发展,使仪器仪表具有更强的数据处理能力;图像处理功能的增加十分普遍;vxi总线得到广泛的应用。 近年来,智能化测量控制仪表的发展尤为迅速。国内市场上已经出现了多种多样智能化测量控制仪表,例如,能够自动进行差压补偿的智能节流式流量计,能够进行程序控温的智能多段温度控制仪,能够实现数字pid和各种复杂控制规律的智能式调节器,以及能够对各种谱图进行分析和数据处理的智能色谱仪等。 国际上智能测量仪表更是品种繁多,例如,美国honeywell公司生产的dstj-3000系列智能变送器,能进行差压值状态的复合测量,可对变送器本体的温度、静压等实现自动补偿,其精度可达到0.1%fs;美国raca-dana公司的9303型超高电平表,利用微处理器消除电流流经电阻所产生的热噪声,测量电平可低达-77db;美国fluke公司生产的超级多功能校准器5520a,内部采用了3个微处理器,其短期稳定性达到1ppm,线性度可达到0.5ppm;美国foxboro公司生产的数字化自整定调节器,采用了专家系统技术,能够像有经验的控制工程师那样,根据现场参数迅速地整定调节器。这种调节器特别适合于对象变化频繁或非线性的控制系统。由于这种调节器能够自动整定调节参数,可使整个系统在生产过程中始终保持最佳品质。 智能仪器仪表发展趋势 微型化 微型智能仪器指微电子技术、微机械技术、信息技术等综合应用于仪器的生产中,从而使仪器成为体积小、功能齐全的智能仪器。它能够完成信号的采集、线性化处理、数字信号处理,控制信号的输出、放大、与其他仪器的接口、与人的交互等功能。微型智能仪器随着微电子机械技术的不断发展,其技术不断成熟,价格不断降低,因此其应用领域也将不断扩大。它不但具有传统仪器的功能,而且能在自动化技术、航天、军事、生物技术、医疗领域起到独特的作用。例如,目前要同时测量一个病人的几个不同的参量,并进行某些参量的控制,通常病人的体内要插进几个管子,这增加了病人感染的机会,微型智能仪器能同时测量多参数,而且体积小,可植入人体,使得这些问题得到解决。 多功能化 多功能本身就是智能仪器仪表的一个特点。例如,为了设计速度较快和结构较复杂的数字系统,仪器生产厂家制造了具有脉冲发生器、频率合成器和任意波形发生器等功能的函数发生器。这种多功能的综合型产品不但在性能上(如准确度)比专用脉冲发生器和频率合成器高,而且在各种测试功能上提供了较好的解决方案。 人工智能化 人工智能是计算机应用的一个崭新领域,利用计算机模拟人的智能,用于机器人、医疗诊断、专家系统、推理证明等各方面。智能仪器的进一步发展将含有一定的人工智能,即代替人的一部分脑力劳动,从而在视觉(图形及色彩辨读)、听觉(语音识别及语言领悟)、思维(推理、判断、学习与联想)等方面具有一定的能力。 这样,智能仪器可无需人的干预而自主地完成检测或控制功能。显然,人工智能在现代仪器仪表中的应用,使我们不仅可以解决用传统方法很难解决的一类问题,而且可望解决用传统方法根本不能解决的问题。 融合isp和emit技术,实现仪器仪表系统的internet接入(网络化 伴随着网络技术的飞速发展,internet技术正在逐渐向工业控制和智能仪器仪表系统设计领域渗透,实现智能仪器仪表系统基于internet的通讯能力以及对设计好的智能仪器仪表系统进行远程升级、功能重置和系统维护。 在系统编程技术(in-systemprogramming,简称isp技术)是对软件进行修改、组态或重组的一种最新技术。它是lattice半导体公司首先提出的一种使我们在产品设计、制造过程中的每个环节,甚至在产品卖给最终用户以后,具有对其器件、电路板或整个电子系统的逻辑和功能随时进行组态或重组能力的最新技术。isp技术消除了传统技术的某些限制和连接弊病,有利于在板设计、制造与编程。isp硬件灵活且易于软件修改,便于设计开发。由于isp器件可以像任何其他器件一样,在印刷电路板(pcb)上处理,因此编程isp器件不需要专门编程器和较复杂的流程,只要通过pc机,嵌入式系统处理器甚至internet远程网进行编程。 emit嵌入式微型因特网互联技术是emware公司创立eti(extendtheinternet)扩展internet联盟时提出的,它是一种将单片机等嵌入式设备接入internet的技术。利用该技术,能够将8位和16位单片机系统接入internet,实现基于internet的远程数据采集、智能控制、上传/下载数据文件等功能。 目前美国connectone公司、emware公司、tasking公司和国内的p&s公司等均提供基于internet的devicenetworking的软件、固件(firmware)和硬件产品。 虚拟仪器是智能仪器发展的新阶段 测量仪器的主要功能都是由数据采集、数据分析和数据显示等三大部分组成的。在虚拟现实系统中,数据分析和显示完全用pc机的软件来完成。因此,只要额外提供一定的数据采集硬件,就可以与pc机组成测量仪器。这种基于pc机的测量仪器称为虚拟仪器。在虚拟仪器中,使用同一个硬件系统,只要应用不同的软件编程,就可得到功能完全不同的测量仪器。可见,软件系统是虚拟仪器的核心,“软件就是仪器”。 传统的智能仪器主要在仪器技术中用了某种计算机技术,而虚拟仪器则强调在通用的计算机技术中吸收仪器技术。作为虚拟仪器核心的软件系统具有通用性、通俗性、可视性、可扩展性和升级性,能为用户带来极大的利益,因此,具有传统的智能仪器所无法比拟的应用前景和市场。 结束语 智能仪器是计算机科学、电子学、数字信号处理、人工智能、vlsi等新兴技术与传统的仪器仪表技术的结合。随着专用集成电路、个人仪器等相关技术的发展,智能仪器将会得到更加广泛的应用。作为智能仪器核心部件的单片计算机技术是推动智能仪器向小型化、多功能化、更加灵活的方向发展的动力。可以预料,各种功能的智能仪器在不远的将来会广泛地使用在社会的各个领域。本文转载:亚洲流体网

  • 【讨论】关于煤气分析仪温度调节机的故障

    煤气分析仪中的温度调节机冬天不热夏天制冷,使得仪器主机温度不稳,冬天冷凝器经常结冰,最好加电热板,伴热带,到夏天再拆掉加风机,如此,温度调节机根本不起作用,各位有此类情况发生吗?是怎么处理的?

  • 冷热温度正反向控制技术在冷凝器热疲劳试验中的应用

    冷热温度正反向控制技术在冷凝器热疲劳试验中的应用

    [size=16px][color=#3366ff][b]摘要:空调换热器需要进行可靠性试验以满足整机产品在不同环境下的寿命周期,温度交变试验是可靠性试验中是较为关键的一项。本文在现有PLC交变温度控制技术基础上,提出了一种模块式的改进解决方案,即增加了专用的高精度PID调节器分别进行热水箱和冷水箱的温度控制,特别是采用具有冷热双向控制功能的PID调节器,在提高控温精度的同时,主要是能够大幅减小PLC控制器的软硬件复杂程度和编程工作量,更重要的是此方案可推广应用到其它任何形式的温度波和压力波的形成。[/b][/color][/size][size=16px][color=#3366ff][b][/b][/color][/size][align=center][size=16px][img=换热器热疲劳试验装置的冷热温度交变控制解决方案,600,331]https://ng1.17img.cn/bbsfiles/images/2023/05/202305221448031765_8068_3221506_3.jpg!w690x381.jpg[/img][/size][/align][size=18px][color=#3366ff][b]1. 问题的提出[/b][/color][/size][size=16px] 单冷式空调以及冷暖型空调(又称为热泵型)中的室外换热器(也称为冷凝器或蒸发器),其所处环境比较复杂严酷,例如在冬季使用时,室外换热器经常会结霜,在运行一段时间后空调控制器就会让其化霜。所以室外换热器经常会处于温度交替变化状态,如果换热器结构或材料选用不当,极端情况下换热器会出现裂缝导致制冷剂泄漏造成空调器不能工作。因此,为了考核换热器的可靠性,室外换热器必须进行冷热温度交变条件下的可靠性试验。[/size][size=16px] 目前很多用于热疲劳可靠性试验的换热器温度交变试验装置,基本都采用如图1所示的控制结构,分别使得冷热液体交替通过换热器来实现冷热温度交变。其中热水箱采用加热器进行温度调节,冷水箱则通过加热器和压缩制冷机进行加热和制冷调节,加热器和制冷机则则采用了PLC上位机进行PID自动控制。[/size][align=center][size=16px][color=#3366ff][b][img=01.温度交变试验装置结构示意图,550,293]https://ng1.17img.cn/bbsfiles/images/2023/05/202305221449444721_961_3221506_3.jpg!w690x368.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#3366ff][b]图1 温度交变试验装置结构示意图[/b][/color][/size][/align][size=16px] 换热器温度交变试验装置基本都是自行搭建的非标设备,在实施过程过程中存在以下问题:[/size][size=16px] (1)温度交变试验装置采用PLC作为上位机进行控制是非常合理的,但PLC同时还要具有加热器控制功能,这需要增加PID温度控制模块及其相应的编程,这对很多PLC使用人员较有难度。[/size][size=16px] (2)特别是还需采用PLC实现冷水温度加热和制冷的双向控制,这更是增大了采用PLC进行控制的实现难度。[/size][size=16px] 为了解决上述问题,本文将提出一种模块化解决方案,即采用高精度PID温度控制器,特别是采用一种高精度的加热制冷双向PID温度控制器去控制加热器和压缩机制冷机组,由此控制器组成温控模块与上位机PLC通讯,可大幅减小温度交变试验装置的搭建难度和编程工作量。[/size][size=18px][color=#3366ff][b]2. 解决方案[/b][/color][/size][size=16px] 为了实现模块式温度交变试验装置的搭建,简化温度系统中PLC的复杂程度和编程难度,本文提出的解决方案如图2所示,即在图1所示的试验装置中增加了两套专用的PID温度控制器。[/size][align=center][size=16px][color=#3366ff][b][img=02.模块式温度交变试验装置结构示意图,600,261]https://ng1.17img.cn/bbsfiles/images/2023/05/202305221450133742_6417_3221506_3.jpg!w690x301.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#3366ff][b]图2 模块式温度交变试验装置结构示意图[/b][/color][/size][/align][size=16px] 如图2所示,在模块式温度交变试验装置中采用了两个独立的PID温度控制器,其中一个用于热水箱的温度加热控制,另一个用于冷水箱的制冷加热双向控制。这里的PID温度控制器是一种高精度的PID调节器,具有24位AD、16位DA和0.01%最小输出百分比,并具有正反双向控制等一些串级、分程和比值复杂控制功能,非常适合同时进行加热和制冷控制的仪器设备,具有PID参数自整定功能和无超调PID控制功能。[/size][size=16px] 图2中所配置的PID温度控制器具有RS485通讯接口和随机软件,可直接采用软件在计算机上运行温控器进行温度控制,也可以与上位机PLC通讯进行参数设置和运行控制。[/size][size=18px][color=#3366ff][b]3. 总结[/b][/color][/size][size=16px] 通过上述的解决方案,采用独立的多功能高精度PID调节器,可实现模块式温度交变试验装置的搭建,简化了温度系统中PLC的复杂程度和编程难度。[/size][size=16px] 更重要的是,采用高精度PID调节器组成的模块式试验装置,可推广应用到其它类型换热器的温度交变可靠性测试中,可以用于其他任何试验所需的高精度温度波和压力波的生成。[/size][align=center][size=16px][color=#3366ff][b][/b][/color][/size][/align][align=center][size=16px][color=#3366ff][b]~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 智能温度传感器的发展趋势

    智能温度传感器都具有多种工作模式可供选择,主要包括单次转换模式、连续转换模式、待机模式,有的还增加了低温极限扩展模式,操作非常简便。对某些智能温度传感器而言,主机(外部微处理器或单片机)还可通过相应的寄存器来设定其A/D转换速率(典型产品为MAX6654),分辨力及最大转换时间(典型产品为DS1624)。   能温度控制器是在智能温度传感器的基础上发展而成的。典型产品有DS1620、DS1623、TCN75、LM76、MAX6625。智能温度控制器适配各种微控制器,构成智能化温控系统;它们还可以脱离微控制器单独工作,自行构成一个温控仪。 2.3总线技术的标准化与规范化   目前,智能温度传感器的总线技术也实现了标准化、规范化,所采用的总线主要有单线(1-Wire)总线、I2C总线、SMBus总线和spI总线。温度传感器作为从机可通过专用总线接口与主机进行通信。 2.4可靠性及安全性设计   传统的A/D转换器大多采用积分式或逐次比较式转换技术,其噪声容限低,抑制混叠噪声及量化噪声的能力比较差。新型智能温度传感器(例如TMP03/04、LM74、LM83)普遍采用了高性能的Σ-Δ式A/D转换器,它能以很高的采样速率和很低的采样分辨力将模拟信号转换成数字信号,再利用过采样、噪声整形和数字滤波技术,来提高有效分辨力。Σ-Δ式A/D转换器不仅能滤除量化噪声,而且对外围元件的精度要求低;由于采用了数字反馈方式,因此比较器的失调电压及零点漂移都不会影响温度的转换精度。这种智能温度传感器兼有抑制串模干扰能力强、分辨力高、线性度好、成本低等优点。   为了避免在温控系统受到噪声干扰时产生误动作,在AD7416/7417/7817、LM75/76、MAX6625/6626等智能温度传感器的内部,都设置了一个可编程的“故障排队(fAultqueue)”计数器,专用于设定允许被测温度值超过上、下限的次数。仅当被测温度连续超过上限或低于下限的次数达到或超过所设定的次数n(n=1~4)时,才能触发中断端。若故障次数不满足上述条件或故障不是连续发生的,故障计数器就复位而不会触发中断端。这意味着假定n=3时,那么偶然受到一次或两次噪声干扰,都不会影响温控系统的正常工作。   LM76型智能温度传感器增加了温度窗口比较器,非常适合设计一个符合ACPI(AdvAnced ConfigurAtion And Power InterfAce,即“先进配置与电源接口”)规范的温控系统。这种系统具有完善的过热保护功能,可用来监控笔记本电脑和服务器中CPU及主电路的温度。微处理器最高可承受的工作温度规定为tH,台式计算机一般为75°C,高档笔记本电脑的专用CPU可达100°C。一旦CPU或主电路的温度超出所设定的上、下限时, INT端立即使主机产生中断,再通过电源控制器发出信号,迅速将主电源关断起到保护作用。此外,当温度超过CPU的极限温度时,严重超温报警输出端(T_CRIT_A)也能直接关断主电源,并且该端还可通过独立的硬件关断电路来切断主电源,以防主电源控制失灵。上述三重安全性保护措施已成为国际上设计温控系统的新观念。   为防止因人体静电放电(ESD)而损坏芯片。一些智能温度传感器还增加了ESD保护电路,一般可承受1000~4000V的静电放电电压。通常是将人体等效于由100PF电容和1.2K欧姆电阻串联而成的电路模型,当人体放电时,TCN75型智能温度传感器的串行接口端、中断/比较器信号输出端和地址输入端均可承受1000V的静电放电电压。LM83型智能温度传感器则可承受4000V的静电放电电压。   最新开发的智能温度传感器(例如MAX6654、LM83)还增加了传感器故障检测功能,能自动检测外部晶体管温度传感器(亦称远程传感器)的开路或短路故障。MAX6654还具有选择“寄生阻抗抵消”(PArAsitic ResistAnce CAncellAtion,英文缩写为prc)模式,能抵消远程传感器引线阻抗所引起的测温误差,即使引线阻抗达到100欧姆,也不会影响测量精度。远程传感器引线可采用普通双绞线或者带屏蔽层的双绞线。 2.5虚拟温度传感器和网络温度传感器 (1)虚拟传感器   虚拟传感器是基于传感器硬件和计算机平台、并通过软件开发而成的。利用软件可完成传感器的标定及校准,以实现最佳性能指标。最近,美国B&K公司已开发出一种基于软件设置的TEDS型虚拟传感器,其主要特点是每只传感器都有唯一的产品序列号并且附带一张软盘,软盘上存储着对该传感器进行标定的有关数据。使用时,传感器通过数据采集器接至计算机,首先从计算机输入该传感器的产品序列号,再从软盘上读出有关数据,然后自动完成对传感器的检查、传感器参数的读取、传感器设置和记录工作。 (2)网络温度传感器   网络温度传感器是包含数字传感器、网络接口和处理单元的新一代智能传感器。数字传感器首先将被测温度转换成数字量,再送给微控制器作数据处理。最后将测量结果传输给网络,以便实现各传感器之间、传感器与执行器之间、传感器与系统之间的数据交换及资源共享,在更换传感器时无须进行标定和校准,可做到“即插即用(Plug&PlAy)”,这样就极大地方便了用户。 2.6单片测温系统   单片系统(

  • 真空浓缩过程中新型PID控制器和高速电动阀门对温度和压强的精确控制

    真空浓缩过程中新型PID控制器和高速电动阀门对温度和压强的精确控制

    [color=#990000]摘要:真空浓缩过程中,浓缩温度和压强是核心控制参数。本文针对目前浓缩仪器和设备中压强控制存在精度差、波动性大等问题,提出了详细解决方案,并提出采用新型双通道超高精度多功能PID控制器和高速电动阀门来实现浓缩过程中温度和压强的同时准确测量和控制。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]1、问题提出[/color][/size] 真空浓缩的工作原理是将样品在冷冻干燥、离心浓缩和旋转蒸发等状态下,同时采用真空和加热技术使样品中的溶剂快速蒸发、样品体系得到快速浓缩或干燥。由于不同样品对温度有不同的敏感性,同时压强与温度之间存在强相关性,所以在真空浓缩过程中,如何准确控制浓缩温度和压强,就成了使用者最关心的问题。在目前各种常用的真空浓缩设备中,普遍还存在以下几方面问题: (1)压强测量和控制精度普遍不高,特别是低压情况下更是如此,这主要是所采用的传感器和控制器精度不够。压强控制精度不高同时会对温度带来严重影响。 (2)浓缩仪器和设备普遍采用的是下游压强控制方式,即在容器和真空泵之间安装调节阀来实时调控容器的排气速率。这种下游方式适用于较高压强的准确控制,但对10mbar以下的低压则很难实现控制的稳定准确。 (3)目前绝大多数电动调节阀采用的是电动执行机构,从闭合到全开的时间基本都在10秒以上,这种严重滞后的阀门调节速度也很难保证控制精度和稳定性。 (4)由于浓缩过程中有水汽两相介质排出,很多时候介质还带有腐蚀性,这就对下游调节阀耐腐蚀性提出了很高的要求。[size=18px][color=#990000]2、解决方案[/color][/size][color=#990000]2.1 采用高精度压强传感器[/color] 对于真空浓缩过程,压强传感器是保证整个浓缩过程可控性的核心,强烈建议采用高精度压强传感器以保证真空度的测量和控制准确性。一般真空浓缩过程基本都采用机械式真空泵,低压压强(绝压)不会超过0.01mbar,高压压强接近一个大气压,因此高精度压强传感器建议采用电容薄膜规,如图1所示,其绝对测量精度可以达到±0.2%。 如果浓缩仪器和设备使用的压强范围比较宽,建议采用两只不同量程的传感器进行覆盖,如10Torr和1000Torr。[align=center][color=#990000][img=真空浓缩,600,450]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041456355439_1975_3384_3.png!w600x450.jpg[/img][/color][/align][align=center][color=#990000]图1 电容薄膜式真空压力计[/color][/align] 如果采用其他类型的真空度传感器,也需要达到一定的精度要求。[color=#990000]2.2 采用高精度双通道PID控制器[/color] 在真空压力测量和控制中,为了充分利用上述电容薄膜压力计的测量精度,控制器的数据采集和控制至少需要16位的模数和数模转化器。目前已经推出了测控精度为24位的通用性PID控制器,如图2所示。[align=center][color=#990000][img=真空浓缩,690,358]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457090941_3284_3384_3.png!w690x358.jpg[/img][/color][/align][align=center][color=#990000]图2 国产VPC-2021系列温度/压力控制器[/color][/align] 对于真空浓缩的过程控制,此系列PID控制器具有以下特点: (1)高精度:24位A/D采集,16位D/A输出。 (2)多通道:独立的1通道和2通道。2通道可实现温度和压强的同时测量及控制。 (3)多功能:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制,可进行正反向控制(双向控制模式)。 (4)PID控制:改进型PID算法,支持PV微分和微分先行控制。20组分组PID。 (5)双传感器切换:每一个通道都可支持温度高低温和高低真空度的双传感器切换,两通道可形成总共接入四只传感器的控制组合。 (6)程序控制:可自行建立和存储最多20种浓缩程序,进行浓缩时只需选择调用即可开始(程序控制模式)。[color=#990000]2.3 增加上游进气控制和双向控制模式[/color] 目前普遍采用的下游控制模式比较适合压强接近大气压的浓缩过程,但对10mbar以下的低压浓缩过程,就需要引入上游进气控制模式,即在浓缩容器上增加进气通道,通过电子针阀控制进气通道的进气流量来实现压强的准确控制。 如图3所示,目前已有各种流量的国产电子针阀可供选择,结合下游的真空泵抽气,通过上游模式可实现高真空(低压)的精确控制。[align=center][color=#990000][img=真空浓缩,599,513]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457210338_3059_3384_3.png!w599x513.jpg[/img][/color][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align] 为同时满足低压和高压全量程准确控制,可以采用如图4所示的双传感器和双向控制模式。 在图4所示的控制模式中,就需要用到上述VPC-2021系列双通道控制器的正反向控制和双传感器自动切换功能,即在不同气压控制过程中,控制器自动切换相应量程的真空计,并选择相应的电子针阀和高速电动球阀进行控制。[align=center][img=真空浓缩,690,548]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457335020_3012_3384_3.png!w690x548.jpg[/img][/align][align=center][color=#990000]图4 双向控制和双传感器自动切换模式示意图[/color][/align][color=#990000][/color][color=#990000]2.4 采用高速电动球阀[/color] 所谓高速阀门一般是指阀门从全闭到全开的动作时间小于1s,这对于气体流量和压力控制非常重要。特别是对于真空浓缩过程,气压控制的快速响应可保证浓缩的准确性、安全性和提高蒸发速率。 目前已经开发出国产高速电动球阀,如图5所示。NCBV系列微型化的高速电动球阀和蝶阀,是目前常用慢速电动阀门的升级产品,与VPC2021系列温度/压力控制器相结合,可构成快速准确的真空压力闭环控制系统。[align=center][img=真空浓缩,377,500]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041457527127_514_3384_3.png!w377x500.jpg[/img][/align][align=center][color=#990000]图5 国产NCBV系列高速电动球阀[/color][/align][color=#990000][/color][color=#990000]2.5 采用真空控压型调节器[/color] 在目前的真空浓缩仪器和设备中,浓缩是在密闭容器中发生,通过加热和真空手段将蒸发气体冷凝和排出,真空泵是对一个密闭容器进行抽气,并通过抽气流量调节来实现密闭容器内的气压恒定在设定值,这是一个典型的流量控制型恒压模式。这种控流型调压方式相当于一个开环控制方式,容器内部自生气体,且自生气体并没有很明显的规律(如线性变化),这非常不利于容器内部压强的准确控制。对于这种控流型调压方式,如图2所示,会在浓缩容器的前端增加一个进气通道,并对进气流量进行调节以使容器内部真空度控制在稳定的设定值。 对于有些真空浓缩仪器和设备,并不允许增加额外的进气通道,这里就可以用到如图6所示的控压型调节器。[align=center][img=真空浓缩,690,372]https://ng1.17img.cn/bbsfiles/images/2021/12/202112041458102995_3900_3384_3.png!w690x372.jpg[/img][/align][align=center][color=#990000]图6 控压型调节器在浓缩过程真空度控制中的应用[/color][/align] 控压型真空压力调节器实际上一个内置真空压力传感器、微控制器、空腔和两个电动阀门的集成式装置。在真空压力控制过程中,内置传感器测量空腔内压力,如果压力小于设定值,则进气口处阀门打开直到等于设定值,如果压力大于设定值则抽气口处阀门打开直到等于设定值,从而始终保证空腔内压力始终保持在设定值上,而调节器空腔与浓缩容器连通,即调节器空腔压力始终等于浓缩容器压力。 由此可见,控压型调节器是一个自带进气阀的独立真空压力调节装置。如图6所示,控压型调压器也可以外接传感器,设定值可以手动设置,也可以通过PID控制器设置。[align=center]=======================================================================[/align]

  • 串级控制和超高精度PID调节器在微张力精密控制中的应用

    串级控制和超高精度PID调节器在微张力精密控制中的应用

    [size=16px][color=#339999][b]摘要:采用当前的各种涂布机很难适用气体扩散层这类脆性材料的涂布工艺,需要控制精度更高的微张力控制系统。为此本文基于串级控制原理,提出了采用双闭环PID控制模式和超高精度PID张力控制器的解决方案,一方面形成浮动摆棍闭环和主动辊闭环构成的串级控制回路,另一方面是采用目前测控精度最高的工业用PID控制器,结合相应配套的高精度传感器和执行器,可真正实现微张力的精密控制。[/b][/color][/size][align=center] [img=微张力精密控制,690,225]https://ng1.17img.cn/bbsfiles/images/2023/07/202307261628010805_2785_3221506_3.jpg!w690x225.jpg[/img][/align][size=16px] [/size][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 气体扩散层(GDL)在燃料电池中起到支撑催化层、收集电流、传导气体和排出反应产物水的重要作用,常用于质子交换膜燃料电池,在具体生产工艺中需要在GDL材料表面定量涂布一层特定功能涂料。由于GDL基体层材料较脆,涂布工艺过程中易造成基体层材料断裂或撕裂,转弯处易折断,在高温状态下材料比常温下更脆弱,一般要求涂布过程中控制张力设定在5~10N很窄的一个范围内,且还需要在此微张力范围内具有较高的控制精度。[/size][size=16px] 传统涂布设备,浮动摆辊均为气缸驱动,直线电位器反馈摆辊位置。存在以下问题:[/size][size=16px] (1)无法精确控制摆辊位置。[/size][size=16px] (2)气缸行程只有一个方向,需要料膜的张力平衡气缸推力,易造成GDL脆性材料拉伸。[/size][size=16px] (3)摆辊瞬间偏移至一端时,料膜张力瞬间增大或减小,极易造成GDL脆性材料的撕裂甚至断裂。[/size][size=16px] (4)张力控制器中的模数转换AD精度和数模转换DA精度较低,最小输出百分比也只能达到0.1%,无法提供更高精度的测量和控制。[/size][size=16px] 由此可见,为实现GDL脆性材料的微张力控制,实现具有精度高、张力小、控制稳的伺服电机驱动的浮动摆辊微张力控制是氢能材料制备的关键技术,为此本文提出了相应的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为实现涂布工艺中的微张力高精度控制,本文提出的解决方案包含以下两方面的内容:[/size][size=16px] (1)采用双闭环PID控制形式调节料膜张力,即对浮动摆棍和主动辊进行独立的PID控制。[/size][size=16px] (2)采用超高精度的双通道PID控制器,每个通道都具有24位AD、16位DA和0.01%最小输出百分比。[/size][size=16px] 解决方案所涉及的微张力控制系统结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=双闭环微张力控制系统结构示意图,500,200]https://ng1.17img.cn/bbsfiles/images/2023/07/202307261628351448_1980_3221506_3.jpg!w690x277.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 双闭环微张力控制系统结构示意图[/b][/color][/size][/align][size=16px] 在图1所示的双闭环控制系统中,浮动摆辊PID闭环控制的具体过程是根据工艺要求,给控制器输入张力值,控制器根据张力传感器信号与设定张力值之差进行快速PID计算后输出控制信号,此控制信号控制浮动摆辊伺服驱动器和伺服电机动作,从而使浮动摆棍产生偏移使得料膜张力快速达到设定值。[/size][size=16px] 浮动摆辊的PID闭环控制过程主要是通过浮动摆辊偏移来调节料膜张力,主动辊速度仍为主机速度,并未参与调节。当浮动摆辊伺服电机持续动作调节料膜张力时,浮动摆辊偏差会导致累积,最终达到浮动摆辊位置报警值。因此仅由浮动摆辊伺服电机调节料膜张力不能完全解决张力不稳、精度不高的问题,为此增加主动辊PID闭环控制实现张力的精准控制。[/size][size=16px] 第二路主动辊PID闭环控制的具体过程是在浮动摆辊PID闭环控制实现调节后,由于浮动摆辊偏离中位,位移传感器跟随浮动摆辊偏移产生对应的偏移电压信号并输入给控制器,控制器根据此偏移电压信号与0V值的正负偏差进行快速PID计算后输出控制信号,此信号控制主动辊伺服驱动和主动辊伺服电机来改变主动辊速度,使得浮动摆棍回到中位,最终实现GDL脆性材料的微张力精准控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过上述解决方案,可很好的解决微张力的精密控制问题,具体优点如下:[/size][size=16px] (1)解决方案所采用的双闭环控制结构,实际上是一个非常典型的串级控制结构,因此充分利用了串级控制结构的优势,更利于实现高精度张力的控制。[/size][size=16px] (2)制约微张力精密控制的另一个主要因素是控制器的精度普遍不高,采用PLC很难达到超高的采集和控制精度。因此,本解决方案中采用了超高精度的双通道PID控制,既使用了串级控制功能,又实现了超高精度的PID控制。[/size][size=16px] 当然,传感器和执行器精度也是制约微张力精密控制的因素,为了真正实现微张力的精密控制,还需在使用串级控制和超高精度PID控制器的基础上,配备相应高精度的传感器和执行器。[/size][size=16px][/size][size=16px][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align]

  • 【原创大赛】电热恒温干燥箱的温度控制系统改造

    【原创大赛】电热恒温干燥箱的温度控制系统改造

    针对一些老式电加热恒温设备需要修理、改造而缺乏配件的困难,找出了在仪器设备原有基础上,利用数显温度控制仪表、接触器以及各种功率模块组合,代替原有温度控制部件,实现了更加直观、方便、可靠,精准的温度控制方案。通过几年来改造过的数台电加热恒温设备运行表明,改造方案是成功的,本文以电热恒温干燥箱改造为例,介绍改造原理及过程,以期对大家有所启发。 在实验室有一些老式电热烘箱,这些烘箱控制温度的方式采用热膨胀调温式即在其工作室内安装测温杆,将两种膨胀系数不同的金属片,或膨胀灵敏的金属杆,借热胀冷缩在不同温度下有不同的伸长或缩短长度来控制断电或通电,来达到温度控制的目的,温度显示需借助顶端的玻璃温度计,这种控制方式控温精度低、读数不直观。由于机械磨损,调温装置损坏,造成温度失控,因这种控温器已没有备件出售,有些烘箱已处于停用状态。若能修复这些设备,不仅能延长其使用寿命,还能为单位节约大量采购经费。存在的问题 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021139_530969_1173612_3.jpg 该电热恒温干燥箱1983年生产,它主要由金属箱体、保温材料、电阻性加热部件、控制电路及控制面板等构成。其中箱体、保温材料等的机械结构还是完好的,托架、隔板齐全、完好,而这些又是设备价值较高的部分,但由于使用多年,温度调节器机械磨损严重,无法正常调节温度,找到同型号配件更换,已处于停用状态。 从以上情况来看,只要修复或更新温度控制系统,该电热恒温干燥箱还是可以恢复使用的。改造方案及实施原有的控制线路及原理 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021139_530970_1173612_3.jpg 其控制温度的原理是:操作者将电源开关拨至接通位置,待箱体上面的水银温度计显示的温度值接近工艺温度时,操作者须不断调节温度调节器旋钮,处于“通——断”状态,直至温度计的稳态值刚好等于工艺温度。通常情况下,要调节出工艺温度需要时间较长,而且误差较大。改进前烘箱的控制缺陷分析 原有机械式温度调节方式:由于在控制过程中,设备的加热只有“通——断”两种状态,所以称为二位式机械控温,这种控温方式具有结构简单、价格低廉、使用维修方便的特点。但是调节精度不高,被调温度始终不能定在给予定值上,总是在给予定值上、下周期性的波动,其特性曲线见图 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021139_530971_1173612_3.jpg 由于加热系统的的热惯性,在某一段时间温度仍然在继续下降,直到t4时才回升。这样反映温度变化的是一条在给定温度上、下一定范围内波动的曲线,这表时存在着“动差”。这种调节方式精度较低,对象的热惯性越大,仪表不灵敏区越大,动差就越大。因此,位式调节不适于热惯性较大的系统,也满足有些实验工艺的要求。改造方案 随着电子技术的飞速发展,数显温度控制仪表技术日益成熟,价格低,通用性更好,使用更为简捷和方便,在各种控制领域中应用越来越广泛。因此,可以利用数显控温仪表作为主控部件,针对不同的控制对象、控制要求及控制成本,合理选用接触器、可控硅、固态继电器等各种功率模块作为执行部件与之相配合,替代老设备原有的控制电路,对其进行改造升级,实现更为直观、方便、精准、可靠的温度控制。 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021139_530972_1173612_3.jpg 温度控制仪表选择:在改造中我们采用了AI808自整定专家PID控制仪表。AI调节器是控温系统的核心部分,AI仪表首创性地采用了平台概念,将非常专业化的数字调节仪表转为平台化设计的产品,采用的是AI人工智能调节算法是采用模糊规则进行PID调节的一种新型算法,在误差大时,运用模糊算法调节,以消除PID饱和积分现象,当误差趋小时,采用改进后的PID算法进行调节,并能在调节中自动学习和记忆被控对象的部分特征以使效果最优化。 控制元件:电热恒温干燥箱加热功率1000W,工作电流4.5A,工作电压220V。而我们选用的BTA41-600,双向可控硅,工作电流41A,耐压600V,完全能够满足要求,而且体积小,便于安装。 温度传感器:电热恒温干燥箱额度工作温度为200℃, Pt100铂热电阻,它用来测量(-200~850)℃范围内的温度,其物理、化学性能稳定,复现性好,铂热电阻与温度是近似线性关系。所以温度传感器选用Pt100。 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021151_530978_1173612_3.jpg控制电路的设计 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021140_530975_1173612_3.jpg http://ng1.17img.cn/bbsfiles/images/2015/01/201501021140_530976_1173612_3.jpg安装调试根据设计图纸,完成了安装、接线并进行调试。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制