当前位置: 仪器信息网 > 行业主题 > >

智能单相电压表

仪器信息网智能单相电压表专题为您提供2024年最新智能单相电压表价格报价、厂家品牌的相关信息, 包括智能单相电压表参数、型号等,不管是国产,还是进口品牌的智能单相电压表您都可以在这里找到。 除此之外,仪器信息网还免费为您整合智能单相电压表相关的耗材配件、试剂标物,还有智能单相电压表相关的最新资讯、资料,以及智能单相电压表相关的解决方案。

智能单相电压表相关的论坛

  • 单相电能表接插件及使用方法介绍

    随着电网的改造升级,单相电能表的使用越来越广泛,然而目前电能表与断路器隔离开关是依靠接线的方式进行安装,由于采用是人工螺钉拧紧的方式,导致现场安装施工工作量大,很容易出现错接、漏接,造成安全隐患,同时也加大了运营的成本,故需要设计一种更为简便且安全的接线装置以替代原有的接线装置。[b]发明内容[/b]本发明所要解决的技术问题是提供一种单相电能表接插件及使用方法,以解决原有接线装置过于复杂,接线不便的问题。本发明其技术问题所采用的技术方案是:提供一种单相电能表接插件,包括表托,表托通过滑动导槽结构与单相电能表连接,所述的表托的主体为一平板,所述主体的一侧相邻的三条边缘向上延伸出三块背板形成一框架结构,所述框架结构的底板上开有若干个并排的安装孔位;所述底板的内侧固定连接插头座,所述插头座内下半部分通过定位槽与插头限位块两侧的卡槽配合安装,使得插头限位块上部并排的若干个半圆结构与插头座的若干个半圆结构配合形成若干个圆孔,圆孔位置正对应安装孔位;探针穿过插头座上的探针孔限位于底板上安装孔位上方一侧;所述的安装孔位和圆孔内定位,并安装有插头。所述的插头形状为柱状,所述插头从头到尾依次为插头头部、灯笼花弹片安装部、插头主体和电阻焊平台,所述的插头主体的中间有插头限位圈,所述的电阻焊平台为半圆柱型,所述的灯笼花弹片安装槽的直径小于插头主体和插头头部的直径,插头限位圈的直径大于插头主体的直径,灯笼花弹片安装槽上套有灯笼花弹片。灯笼花弹片为中空柱体,所述中空柱体外表面呈斜纹镂空状并于柱体中段向外膨胀形成弧度。插头形状为半圆柱状,所述插头包括插头主体和插头限位圈,插头主体上从头到尾依次是导电平台、防转平台和电阻焊平台,所述防转平台位于半圆柱的平面上形成一个平面凸台,防转平台上有插头限位圈,插头限位圈圆弧半径大于防转平台的圆弧半径。所述框架结构底板的内侧通过四个角上的螺丝与插头座固定。所述探针固定在底板上部一角。一种单相电能表接插件使用方法,包括:1 )将插头的电阻焊平台用电阻焊机器焊上导线,且焊点的外径小于插头主体的外径;2 )将插头与底座的安装孔位保持在同轴位置;3 )将插头限位块插入插头座下面,使得插头在径向和轴向上都限位住;4 )将导线依次从框架结构的底板内侧通过安装孔位推入底板中;5 )用螺丝拧紧底板和插头座;6 )判断插头上是否有灯笼花弹片安装槽,如果有所述灯笼花弹片安装槽,则套上灯笼花弹片;7 )将单相电能表顺着表托上的滑动导槽结构插入单相电能表接插件,完成安装。本发明采用插拔的接线方式取代原先的接线方式,可有效避免错接、漏接的情况,减少现场施工安装的工作量。本实用新型的进线处为封闭的框架结构,使得进线连接部分更为安全。本实用新型通过灯笼花弹片、安装孔位和圆孔配合的方式进行定位,使得单相电能表插拔具备一定的插拔强度。其中灯笼花采用铍铜材料制作,并进行热处理,表面进行镀银处理。有效解决了过盈配合时插头材料具有较高弹性及耐摩擦性。每种规格插头实现了与公差范围(±0 .1mm )内相应的电能表插孔过盈配合或(插入)间隙配合,有效解决了灯笼花连接部分长时间通电温升极限值的稳定性。

  • 【分享】示波器和电压表的不同之处?

    示波器和电压表之间的主要区别是:  1、电压表是可以给出被测信号的数值,这通常是有效值,即RMS值。但它不能给出有关信号形状波纹类的信息。有的电压表也能测量信号的峰值电压和频率。然而,示波器则能以图形的方式显示信号随时间变化的历史情况。  2、电压表通常只能对一个信号进行检测,而示波器则能同时显示两个或多个信号。  我们可以把示波器简单地看成是具有图形显示的电压表。

  • 【分享】电压表的工作原理

    [em09506] 我们要知道在电压表内,有一个磁铁和一个导线线圈,通过电流后,会使线圈产生磁场,这样线圈通电后在磁铁的作用下会旋转,这就是电流表、电压表的表头部分。 这个表头所能通过的电流很小,两端所能承受的电压也很小(肯定远小于1V,可能只有零点零几伏甚至更小),为了能测量我们实际电路中的电压,我们需要给这个电压表串联一个比较大的电阻,做成电压表。这样,即使两端加上比较大的电压,可是大部分电压都作用在我们加的那个大电阻上了,表头上的电压就会很小了。 可见,电压表是一种内部电阻很大的仪器,一般应该大于几千欧。 电流表是跟据通电导体在磁场中受磁场力的作用而制成的。 电流表内部有一永磁体,在极间产生磁场,在磁场中有一个线圈,线圈两端各有一个游丝弹簧,弹簧各连接电流表的一个接线柱,在弹簧与线圈间由一个转轴连接,在转轴相对于电流表的前端,有一个指针。 当有电流通过时,电流沿弹簧、转轴通过磁场,电流切磁感线,所以受磁场力的作用,使线圈发生偏转,带动转轴、指针偏转。 由于磁场力的大小随电流增大而增大,所以就可以通过指针的偏转程度来观察电流的大小。 这叫磁电式电流表,就是我们平时实验室里用的那种。 电流表串联一个大电阻。测量时并联到被测量的两点之间,不会改变原有电路的特性,电流表显示数值正比于被测量点的电压: 电流表内阻 Ro 很小,可以忽略不计,外接电阻 R 很大,这样根据欧姆定律得到: I = U/(R + Ro) ≈ U/R DA30A 型真有效值电压表 性能特点 : 真正有效值测量 可测量各种波形电压和无规则噪声电压 热电偶检波方式,线性指示 测量频率范围:10 Hz — 10 MHz 大镜面表头指示,读数清晰 直流放大器输出,可驱动其它辅助设备 简要介绍:: DA30A型真有效值电压表主要用于对各种信号波形进行有效值测量,采用热电偶检波方式,仪器指示具有线性刻度,无需调零,并附有直流输出装置以驱动直流数字电压表来提高测量精度。可广泛用于工厂、实验室、科研单位、大专院校等。 技术参数: 频响范围 10 Hz — 10 MHz 基本精度 ± 2% 输入电阻, 电容, 过载电压 1 mV — 300 mV: ≥8 MΩ,≤ 40 pF, ≤100 V 300 mV — 300 V: ≥8 MΩ,≤ 20 pF, ≤600 V 直流输出电压 -1 V(逢10量程) 一般技术指标 工作温度, 湿度 0℃ — 40℃, ≤90% RH 电源要求 198 V — 242 V AC, 47.5 Hz — 52.5 Hz 功耗 ≤ 6 VA 尺寸(W×H×D) 240 mm×140 mm×280 mm 重量 约2.5 kg

  • 电镀是为什么既要看电流表,又要看电压表?

    对于任何一种镀液,其工艺条件中都明确规定了电流密度的上限和下限,有的还指出了最佳电流密度。所谓电流密度,就是将通过镀槽的总电流除以受镀制件的表面积。控制电流密度在工艺规定的范围,才可以得到合格的镀层;否则,即使形状简单的零件也会镀不到合格的镀层,不是烧毛,就是发暗,但镀槽上安装的是电流表,所显示的是通过镀槽的总电流,因此要根据镀件的面积来计算出所需要的总电流,以便从电流表上监测电流密度的变化。 在电镀的电源回路中,往往还要安置一个电压表,以显示镀槽电压。电镀过程中的槽电压(E)时有几个串联的电位组成的,即阴极电位k、阳极电位a、槽内电压降IR内和槽外导体电压降IR外。可以用公司表示如下: E=k+a+IR内+IR外 这几个不同电位的变化都会影响到电流密度的变化。通常是电阻增加,使电压升高,而阳极钝化或镀液电导的增加以及导线电阻的增加都会使电压升高。也就是通过观察电压表也能了解镀液是否工作正常,因此电镀过程中对电流表和电压表都要加以注意。

  • 数字电压表头的故障检修与应用实例

    数字仪器仪表头的故障检修与应用实例 数字电压表表头(DVM)是数字仪器仪表的重要部件之一,其精度、可界性及灵敏度等电气指标均优干指针式表头,并使于和计算机,打印机等相接而实现自动化控制.且使用直观方便。数字电压表头可用来组成数字万用表(DMM),数字温度计、数字压力计、数字频率计等多种数字化测量仪器仪表,因而数字电压表头目前在电子仪器仪表中有着极为广泛的应用‘ 一、数字电压表头常见故障的检修 对于不同的数字电压表头由于共电路的结构和所用的A/D转换器不同.因此其故障待点也有所区别,但常T见的故障却有许多共同之处,下面就对其典型故障的检修及其ICL7106MC14433和ICL7135 A/D芯片各引脚的正常电压值作一些简介。 I.常见典型故障的检修 (1)无显示 无显示故障是指在给数宁电压表头加上电流后,当输入一定的电压信号时,显示器中无任何显示的现象。 无显示故障大多是因芯片间的供电线路不通或接触不良。可先检测一下各芯片的电源端t(Vcc或vDD)与地端(GND)的电压值是否正常‘对采用集成电路插座的数字电压表头,可将集成片拔出后重新插入,以排除管脚接触不良之故潭. 知各芯片的工作电压正常且无接触不良故障之后,显示器仍无显示.则可能是A/D芯片或译码秘动芯片损坏.可用同型号的芯片代换一试,如代挽后故障依旧,则很可能是 A/D芯片的外,围电路有故障,如振洗器的外按电阻电容损坏或外搜振荡器停振等。 (2)显示出错 对于采用LCD梢晶显示屏的数字电压表头.此类故障大多是由干其导电橡胶夸曲变 形或接触不良所至 对于采用LED数码显器的数字电压表头,此类故障可能是A/D集成片已坏.可换用型 号的集成片一试。 (3)读数偏差较大 引起该故障的主要原因可能是积分电阻的阻值或基准电压值发生交化,可通过检 测积分电阻和基准电压的值来进行判断。 (4)输人短接时读数不为琴 此种故障主要是由于基准电容漏电或容量减小,或自动校零电容容量变小所致, 检修时可用质量较好的电容代换试之。 2.ICL7106、MC14433和ICL7135的引脚参考电阻值 ICL.7106,MC1443和ICL71357 A/D转换器各引脚的实洲参考电阻值如表表1-4所示 ,表中的数据均为笔者用M F 10 型指针式万用表*1k挡所侧,对不同型号的万用表和不 同厂家的芯片,测得的数据可能会有些偏差,一般偏羞不会太大。此表中的数据可供 判断A/D集成片好坏时参考.http://www.china-1718.com/File/2011-09-24-14-06-23.jpg来自 仪器仪表网

  • 模拟式(电工仪表型)电压表能接于RC分压器后测量高电压吗?

    对于一些被测的试验电压,被测的试验过程中,被测电压高近100kV,试验过程较长,不包括逐渐升压过程,无击穿后就得5min,往往升压过程中也有被击穿的试品,即整个试验过程中又频频伴有击穿和放电现象,此时普通的数字电压表易损坏。此时能否用模拟式(电工仪表型)电压表能接于RC分压器后测量高电压,避免数字电压表易损坏。

  • 【分享】JJG 124-2005电流表、电压表、功率表及电阻表

    附件是关于电流表、电压表、功率表及电阻表的国家检定规程(JJG 124-2005)。论坛资料中心有相同的,但不是很清晰。希望对大家有所帮助。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=53788]JJG 124-2005电流表、电压表、功率表及电阻表[/url]

  • Beckman MDQ CE 正相电压问题,反相电压还好

    仪器的状况:1) 正相电压。之前使用正相电压的时候,90%都会出现“current leakage”。今天 30 cm毛细管用20 mM phosphate buffer 25 psi 冲洗了 5min后,用Direct Control 来测试仪器,结果正相电压在30kV 的情况下 电流从67 uA 一分钟内上升到了 150 uA, 手动停止了高压。(电流持续夸张上升http://simg.instrument.com.cn/bbs/images/default/em09504.gif)。2)反相电压。相同条件下,Direct Control测试反相电压,电流稳定在67uA,虽然偶尔会出现"Current leakage", 不过还能用:)。已经和Beckman的 specialist 讨论很久关于仪器Current leakage的问题,到最后还是得 on-site service,不过这个on site service 得 $7,000左右,老板也没有计划在CE上面投入那么多钱(组里做HPLC的多)http://simg.instrument.com.cn/bbs/images/default/em09509.gif。虽然没有寄予太多希望能够解决问题,不过还是想看看大家的意见http://simg.instrument.com.cn/bbs/images/default/em09511.gif。1. The capillary is broken at the window.2. One of the electrode is loose.3. Conditioning of the capillary before applying voltage (buffer should be conditioning with the separation buffer before applying voltage).4. Buffer composition - also make sure the same separation buffer is on the inlet and outlet side.5. Bubbles in the buffer.6. Make sure the caps are not wet (don’t overfill the buffer vials), the interface block and injection levers are clean and free of buffer/gel.7. Problem with the interface block and/or high voltage power supply (only a qualified engineer would be able to assess this).目前,1~6 都可以排除,希望可以得到更多关于高压源和横梁的建议。

  • 如何选用交流电流表和电压表的相关方法

    我们知道,一般配电盘上常用的交流电流表和交流电压表都是电磁式仪表,并且分为直接接入表和比数表两类。如:1Ti—A型电流表(直通)有0.5、1、2、3、5、10、15、20、30、50、75、100、150、200(A)等规格。电流比数表则与电流互感器配套使用,其量程可达300、400、600(A)。 ITi一V型电压表(直通)有15、30、75、150、250、300、450、500、600V等规格。电压比数表则与电压互感器配套使用,其量程可达6000、10000、110000V以上。是不是我们需要测多大电流或电压,就选购多大量程的仪表就可以了呢?这样选择是不行。因为电磁式仪表的刻度是不均匀的,为了以小测量误差,应当使被测值在仪表刻度2/3以上区间为好。 在选择仪表时还要注意了解有关仪表的误差和准确度的含义.一般把仪表由于本身结构的不完善,元件间的摩擦及外磁场的影响,或者安装不当和测量方法上的缺点,导致测量结果与实际值之间的差别叫做仪表的误差。其表示方式有三种: (1)绝对误差:绝对误差=测得值一实际值,绝对误差可以是正,也可以是负,实际值是用标准表所测得的值。 (2)相对误差:相对误差=(绝对误差/实际值)×100%。相对误差有正负之分。 (3)相对额定误差;相对额定误差=(绝对误差/仪表最大量程)×100%。相对额定误差也叫允许误差,是一个百分数,有正负之分。 仪表的准确度等级就是根据允许误差的纯数值来划分的。一般仪表表盘上左下角标有该仪表的准确度等级,也是它的允许误差。仪表用互感器也是按允许误差分有准确度等级的,一般电能表规定使用0.5级的互感器。下面举例来说明仪表相对误差。 例:用一块准确度为1.5级、量程为100A的电流表分别去测量80A与30A的电流,测量时可产生的最大相对误差分别为: 测80A时相对误差=士1.5%×([/

  • 电压互感器的分类及接线方式

    电压互感器原理上是一个带铁心的变压器,主要是由一、二次线圈、铁心、绝缘组成。采用三只单相三绕组电压互感器或者一只三相五柱式电压互感器的接线形式。电压互感器的接线方式有一台单项电压互感器,用两台电压互感器,三台电压互感器测量的三种接线方式。 电压互感器按绕组数目可分为双绕组和三绕组电压互感器,三绕组电压互感器除一次侧和基本二次侧外,还有一组辅助二次侧,供接地保护用。电压互感器按照绝缘方式可分为干式、浇注式、油浸式和充气式,干式浸绝缘胶电压互感器结构简单、无着火和爆炸危险,浇注式电压互感器结构紧凑、维护方便,适用于3kV~35kV户内式配电装置;油浸式电压互感器绝缘性能较好,可用于10kV以上的户外式配电装置;充气式电压互感器用于SF6全封闭电器中。 用一台单相电压互感器来测量某一相对地电压或相间电压的接线方式,用两台单相互感器接成不完全星形,也称V—V接线,用来测量各相间电压,但不能测相对地电压,广泛应用在20KV以下中性点不接地或经消弧线圈接地的电网中。用三台单相三绕组电压互感器构成YN,yn,d0或YN,y,d0的接线形式,广泛应用于3~220KV系统中,其二次绕组用于测量相间电压和相对地电压,辅助二次绕组接成开口三角形,供接入交流电网绝缘监视仪表和继电器用。

  • 插头式DM55-1型市电交流电压表简易调校方法

    [font=宋体] [size=18px]插头式[/size][/font][size=18px]DM55-1[font=宋体]型市电交流电压表体积小,价格便宜,作为实验室检测市电电源插座的供电电压,直接插入电源插座使用,简单方便,测量准确,是实验室的一种小工具。[/font][font=宋体] 网购[/font]12[font=宋体]元钱包邮的插头式市电交流电压表(以下简称交流电压表)见下图,全英文包装,型号[/font]DM55-1[font=宋体],测量范围[/font]AC 80[font=宋体]~[/font]300[font=宋体]伏,有点像外贸[/font]OEM[font=宋体]货:[/font] [img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/08/202408160117389454_7350_1807987_3.jpg!w690x517.jpg[/img] [img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/08/202408160117384949_2091_1807987_3.jpg!w690x517.jpg[/img] [font=宋体]采用国标两相插头:[/font] [img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/08/202408160117389903_3040_1807987_3.jpg!w690x517.jpg[/img] [font=宋体]将其插在市电插座上,立即显示出电压,十分醒目:[/font] [img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/08/202408160117389429_6744_1807987_3.jpg!w690x517.jpg[/img] [font=宋体]下面介绍对插头式市电[/font]DM55-1[font=宋体]型交流电压表的准确度检测及简易调校方法。[/font] [font=宋体]1[/font][font=宋体]、检测调校工具[/font] [font=宋体]采用一只经验证、准确度高的数字万用表作为标准表。这里使用福禄克116C型数字万用表。[/font] [font=宋体]2[/font][font=宋体]、[/font][font=宋体]准确度简易检测[/font] [font=宋体] 被测表与标准表同时测量市电电压,测量值与标准表福禄克116C对比,见下图。福禄克116C显示221.5伏,该交流电压表显示218伏,低于标准表3.5伏。误差(221.5-218)÷221.5×100%=1.58%,对于实验室普通用电,这点误差完全可以接受。如果误差大于5%,就必须要对被测表进行校准。[/font] [img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/08/202408160954207847_1976_1807987_3.jpg!w690x517.jpg[/img] [font=宋体]3[/font][font=宋体]、误差调校[/font] [font=宋体]3.1[/font][font=宋体]了解交流电压表电路[/font] [font=宋体]拆下交流电压表背面四颗固定螺丝:[/font] [img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/08/202408160140344547_1941_1807987_3.jpg!w690x517.jpg[/img] [font=宋体]取下外壳,看见电压表内部结构:[/font] [img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/08/202408160140009698_2069_1807987_3.jpg!w690x517.jpg[/img] [img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/08/202408160139277901_4086_1807987_3.jpg!w690x517.jpg[/img] [font=宋体]根据电路板上的电子元件分布分析,该交流电压表电路由阻容整流电源电路、电压取样电路、黑胶封装专用[/font]IC[font=宋体](内含[/font]A/D[font=宋体]、液晶显示器驱动等电路)、液晶显示屏构成,见下图:[/font] [img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/08/202408160138595133_3353_1807987_3.jpg!w690x517.jpg[/img] 3.2[font=宋体]调校方法:使用一字小改刀,逆时针旋转交流电压表电路板上的微调电位器,可将显示值调大;顺时针旋转,可将显示值调小。 [img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/08/202408160137493964_6201_1807987_3.jpg!w690x517.jpg[/img][/font] 3.3[font=宋体]调校过程:将万用表与交流电压表同时接入电源插座,调节交流电压表电路板上的电压取样微调电位器,使其电压显示值与万用表电压显示值一致即可。[/font] [img=,690,517]https://ng1.17img.cn/bbsfiles/images/2024/08/202408160136308059_9517_1807987_3.jpg!w690x517.jpg[/img] 4[font=宋体]、使用注意事项[/font] [font=宋体] 通过拆解,看见该交流电压表内部电路采用阻容整流电路供电。这种电路结构,如果整流电容长时间工作,电容量会很快衰减,造成故障。所以,该交流电压表适用于短时测量市电电压,测量后应及时取下,不宜长时间插在电源插座上使用。该交流电压表电路是按照[/font][font='Calibri','sans-serif']50[/font][font=宋体]~60Hz市电电源设计的,不宜用于方波、逆变器输出、修正正弦波输出电路电压测量,可能会出现误差大、损坏故障。[/font][/size]

  • 【原创大赛】智能电能表技术规范的请教!

    【原创大赛】智能电能表技术规范的请教!

    因为智能电能表的广泛使用,而相应的检定规程又还没有发布,所以我认真学习了贵司发布的Q/GDW364—2009《单相电能表技术规范》(见附件1)。学习中有几处不好理解,特向版友请教,恳请赐教!1、第4.2.10款:接线图 “电能表应采用激光蚀刻等非粘贴性方式在端子盖内侧刻印电能表电压接线端子、电流接线端子、辅助接线端子的接线图;接线图应清晰、永久不脱落。” 对于现在接线较机电式电能表复杂的电子式电能表,特别是三相电能表,最好还是要将接线图标在电能表的本体上,而不要再将接线图采用激光蚀刻等非粘贴性方式在端子盖内侧,因为端子盖易互换或遗失。其实有的电能表生产厂家,已经进行了改进,以免误接线。请参考贵司农电工作部主办的《农村电工》2008年第5期发表的《测得异常误差的分析及启示》(见附件2)。2、第4.4.1款:计量功能 a) 具有正向有功电能、反向有功电能计量功能,能存储其数据,并可以据此设置组合有功。 其中的“组合有功”不知何意?我查阅了Q/GDW364—2009《单相电能表技术规范》的条文解释(见附件1),其中也没有给出相应的解释。3、第4.4.2.1项:本地费控电能表 在电能表内进行电费实时计算,其主要功能包括: a) 当剩余金额小于或等于设定的报警金额时,电能表应能以声、光或其他方式提醒用户;透支金额应实时记录,当透支金额低于设定的透支门限金额时,电能表应发出断电信号,控制负荷开关中断供电;当电能表接收到有效的续交电费信息后,应首先扣除透支金额,当剩余金额大于设定值(默认为零)时,方可通过远程或本地方式使电能表处于允许合闸状态,由用户人工恢复供电。 其中:“当透支金额低于设定的透支门限金额时,电能表应发出断电信号”的低于,是否应该是高于?4、第4.6.6款:由其他影响量引起的误差改变极限 影响量相对于参比条件的变化引起的附加的百分数误差改变不应超过表4-5规定的极限。 表4-5 影 响 量影响量电流值功率因数百分数误差改变极限%2级表电压改变±10%aIb10.5L0.71.0频率改变±2%Ib10.5L0.50.7电压和电流线路中谐波分量0.5Imax1.00.8交流线路中直流和偶次谐波0.707Imax[a

  • 【分享】功率因数表

    原理  采用电动系电表测量机构的单相功率因数表原理见图,其可动部分由两个互相垂直的动圈组成。动圈1与电阻器R串联后接以电源电压U,并和通以负载电流I的固定线圈(静圈)组合,相当于一个功率表,从而使可动部分受到一个与功率UIcosφ和偏转角正弦sinα的乘积成正比的力矩M1,M1=K1UIcosφ sinα 。K1为系数,cosφ为负载功率因数。动圈2与电感器L(或电容器C)串联后接以电源电压U,并与静圈组合,相当于无功功率表,从而使可动部分受到一个与无功功率UIsinφ和偏转角余弦cosα的乘积成正比的力矩M2,M2=K2UIsinφ cosα 。K2为系数。   对纯电阻负载,φ=0°,M2=0,电表可动部分在M1的作用下,指针转到φ=0°即 cosφ=1的标度处。对纯电容负载,φ=90°,M1=0,电表可动部分在M2的作用下,指针逆时针转到φ=90°即cosφ=0(容性)的标度处。对纯电感负载,由于静圈电流I及力矩 M2改变了方向,电表可动部分在M2的作用下,指针顺时针转到φ=90°即cosφ=0(感性)的标度处。对一般负载,在力矩M1和M2的作用下,指针转到相应的cosφ值的标度处。   应用  电动系单相功率因数表可用来测量单相电路的功率因数,也可用来测量中点可接的对称三相电路的功率因数,这时电表的电压端应接相电压。对中点不可接的对称三相电路,可采用三相功率因数表来测量。德庆电表

  • 功率因数表的原理

    采用电动系电表测量机构的单相功率因数表原理见图,其可动部分由两个互相垂直的动圈组成。动圈1与电阻器R串联后接以电源电压U,并和通以负载电流I的固定线圈(静圈)组合,相当于一个功率表,从而使可动部分受到一个与功率UIcosφ和偏转角正弦sinα的乘积成正比的力矩M1,M1=K1UIcosφ sinα 。K1为系数,cosφ为负载功率因数。动圈2与电感器L(或电容器C)串联后接以电源电压U,并与静圈组合,相当于无功功率表,从而使可动部分受到一个与无功功率UIsinφ和偏转角余弦cosα的乘积成正比的力矩M2,M2=K2UIsinφ;cosα 。K2为系数。 对纯电阻负载,φ=0°,M2=0,电表可动部分在M1的作用下,指针转到φ=0°即 cosφ=1的标度处。功率因数表 对纯电容负载,φ=90°,M1=0,电表可动部分在M2的作用下,指针逆时针转到φ=90°即cosφ=0(容性)的标度处。对纯电感负载,由于静圈电流I及力矩 M2改变了方向,电表可动部分在M2的作用下,指针顺时针转到φ=90°即cosφ=0(感性)的标度处。对一般负载,在力矩M1和M2的作用下,指针转到相应的cosφ值的标度处。 应用 电动系单相功率因数表可用来测量单相电路的功率因数,也可用来测量中点可接的对称三相电路的功率因数,这时电表的电压端应接相电压。对中点不可接的对称三相电路,可采用三相功率因数表来测量。

  • AMC系列多回路监控单元在智能配电回路中的应用

    摘 要:介绍了AMC系列多回路智能监控单元在智能配电回路中的的应用,将众多配出回路的测量、计量、开关状态监测、控制和数字通讯等功能于一体,大大简化了系统的设计,降低了设备成本,简化了用户投资,方便了用户的使用和检修。具有功能强大、性价比高、方便用户使用、节约用户投资等优点关键字:AMC系列智能监控单元,简化系统,降低投资,性价比高0  引言  随着配电系统的发展,智能配电回路中各种仪表向集成化和网络化发展的方向是越来越清晰。目前单回路集成化的优势已经出现,但是对多个回路的集成还未产生。  本文将要介绍的是最新开发的AMC系列多回路智能监控单元在智能配电出线回路中的应用。该系列监控单元主要应用于多个配电出线回路的电参量的监测,它将回路中的母线电压、多个配出回路的电流、功率、电能和各个回路的开关状态集中测量、显示、并通讯输出,实现了对监控要求较简单的配电出线回路的集中测量和监视,一个AMC多回路监控单元就能实现上述多个回路的监测功能,大大方便了系统的接线、安装、调试;节约了用户的投资,降低了系统成本等优点,必将引领国内外智能配电领域的发展方向,成为智能配电中出线回路监控系统的发展主流。1  技术背景  在传统的智能配电出线回路中,要实现对回路中每个负载的各种电参量的全面监测,一般有以下2种组网方式(以三相为例):    该方案在三相智能配电出线回路中是比较常见的一种方案。在对配电出线回路负载的监控中,用户一般需要监控各路负载的各种电参量,包括每路负载的电流、电压、功率、电能、开关状态等。因此在设计方案时,针对每种电参量,用户需要单独配置可以测量各种电参量的仪表,由图1可以看到,为了监控每路负载,用户必须为每路负载配置1个电流表、1个电压表、1个功率表、1个电能表、1个I/O模块。而且为了实现网络化管理,每个仪表还必须是能够进行通讯的。由图1 可以看出,用于监测每路三相负载的电测仪表达到5个。采用该方案的缺点是需要多个仪表才能监控每路负载的各种电参量,监控路数越多,使用仪表越多,用户安装、维修、管理很不方便。且投资较大。优点是单个仪表出故障不影响对配电回路的其他电参量的监控,测量的精度较高,实时性较强。  方案2:(图2)  该方案在三相智能配电出线回路中也是比较常见的一个方案。该方案较上面方案的先进之处在于,用于监控每个回路电参量的仪表由1个多功能的智能仪表代替了多个仪表,1个多功能仪表集测量电流、电压、功率、电能和开关量输入输出于一体,并可进行组网通讯。该方案的优点是每路负载只需配置1个仪表即可实现对该路负载的所有电参量的测量和控制,组网方便,用户投资较方案1少,安装、维护、管理较为方便,测量的精度较高,实时性较强。缺点是一旦仪表出线故障则无法对该负载继续监控。  以上2中方案在智能配电出线回路中是常用的,但是,以上2中方案的缺点是显而易见的,投资成本太大是一个主要的缺点。且接线、安装、调试等都不方便。2  AMC系列智能监控单元技术指标  AMC系列智能监控单元是针对出线回路中一般回路的监控要求,经过充分调研并结合实际需求开发的多回路智能配电监控装置。该监控单元分为单相和三相2大系列,其型号分类见表1。其技术指标见表2。外型及安装尺寸见图3,一般安装在配电柜内。3  AMC系列智能监控单元的设计简介  AMC系列多回路智能监控单元的原理设计上,采用多个电子切换开关+1个电能计量芯片+1个CPU来实现对多个回路的监测。其原理框图见图4。  核心器件CPU选用飞思卡尔公司的MC9S08AW32型单片机,它是第一款基于高度节能型S08核的器件,片上资源丰富,抗干扰能力突出。内含32K字节用户程序空间,片上集成2048字节RAM,支持BDM片上调试功能,片内集成看门狗电路。  电能计量芯片采用ADI公司的高精度三相电能测量芯片ADE7758,适用于各种三相电路(不论三线制或者四线制)中测量有功功率、复功率、视在功率。该IC内嵌了高精度的模数转换器和固定模式的数字处理信号处理器(DSP),具有数字积分、数字滤波和具有众多实用电能监测、计量功能,是新一代高性能全数字电能表的理想芯片。  电子开关采用双四选一的CD4052高速电子开关。在单片机的控制下,实现在不同电流信号之间的高速切换。  多路电流信号经电子开关进入电能芯片,结合母线电压即可由电能芯片测得多个回路的各种电参量。4  AMC系列智能监控单元的应用4.1 典型应用  图5为AMC系列三相多回路智能监控单元的典型应用图。在应用中,出线回路中的3个三相负载的所有电参量测量都由1个AMC三相多回路监控单元来实现。并带有Modbus通讯输出,供用户远程监测和控制。  图6为AMC系列单相多回路智能监控单元的典型应用图。在应用中,出线回路中的9个单相负载的所有电参量测量都由1个AMC单相多回路监控单元来实现。并带有Modbus通讯输出,供用户远程监测和控制。4.2 应用案例  图7是江苏某广电大厦0.4kV低压配电出线图。在该设计图中,每个单相负载的电流测量采用CL72-AI(测量单相电流)表来实现,每个三相负载的电流测量由CL72-AI3来实现(测量三相电流)。由图可以看出,该出线回路总共要使用12个仪表。  图8是采用AMC多回路监控单元后,针对图7系统所做的修改。由图8可以看出,1个AMC16-1E9代替了9个CL72-AI,1个AMC16-3E3代替了3个CL72-AI3,大大简化了系统,并可同时检测母线电压、每个出线回路的电能,并可利用通讯接口,实现广电大厦的内部电能计量、考核、管理。5  结语  AMC系列产品的功能强大,单个仪表能够测量多个回路负载的多种电参量。对比图7和图8两种设计方案,采用AMC系列多回路智能监控单元,能够大大简化系统的设计方案,与传统方案相比,降低用户的投资成本,方便了系统的接线、安装、调试、维护等优点。

  • 电能表行业对于温度老化室的离不开

    电能表行业对于温度老化室的离不开

    温度老化室定义又叫高温老化试验室,是针对高性能电子产品仿真出一种高温、恶劣环境测试的设备,是提高产品稳定性、可靠性的重要实验设备、是各生产企业提高产品质量和竞争性的重要生产流程,该设备广泛应用于电源电子、电脑、通讯、生物制药等领域。[align=center][img=,600,600]https://ng1.17img.cn/bbsfiles/images/2022/04/202204291606252109_5211_1385_3.jpg!w600x600.jpg[/img][/align]  电能表可分为单相电能表和三相电能表:  1、单相电能表是用来计量用电设备消耗电能的仪表。按照采样原来分为机械式电能表、电子式电能表和机电一体式电能表。根据智能电网建设,未来3-5年内,基本被电子式的智能电能表取代。根据相数分,分为单相和三相电能表。目前,家庭用户基本是单相表,工业动力用户通常是三相表。  2、三相电能表折叠三相有功电能表分为三相四线制和三相三线制两种。常用的三相四线制有功电能表有DT系列。  三相四线制有功电能表的额定电压一般为220V,额定电流有1.,3A,,6A,10A,1,20A,2,30A,40A,60A等数种,其中额定电流为的可经电流互感器接入电路;三相三线有功电能表的额定电压(线电压)一般为380V,额定电流1.,3A,,6A,10A,1,20A2,30A,40A,60A等数种,其中额定电流为的可经电流互感器接入电路。  按用途:工业与民用表、电子标准表、很大需量表、复费率表  按结构和工作原理:感应式(机械式)、静止式(电子式)、机电一体式(混合式)  按接入电源性质:交流表、直流表  按准确级:常用普通表:0.2S、0.5S、0.2.0.5.1.0、2.0等  标准表:0.01.0.05.0.2.0.5等  按安装接线方式:直接接入式、间接接入式  按用电设备:单相、三相三线、三相四线电能表  科技功能:普通电表、智能电表  所以综合以上,我们看到不管是什么类型的电能表,都离不开[b][url=http://www.instrument.com.cn/netshow/SH101384/C27608.htm]温度老化室[/url][/b]的检测。

  • 【讨论】什么叫三相交流电路?

    由三相交流电源供电的电路。简称三相电路。三相交流电源指能够提供3个频率相同而相位不同的电压或电流的电源,最常用的是三相交流发电机。三相发电机的各相电压的相位互差120°。它们之间各相电压超前或滞后的次序称为相序。三相电动机在正序电压供电时正转,改为负序电压供电时则反转。因此,使用三相电源时必须注意其相序。一些需要正反转的生产设备可通过改变供电相序来控制三相电动机的正反转。  三相电源连接方式 常用的有星形连接(即Y形)和三角形连接(即△形)。从电源的3个始端引出的三条线称为端线(俗称火线)。任意两根端线之间的电压称为线电压。星形连接时线电压为相电压的根号3倍;3个线电压间的相位差仍为120°,它们比3个相电压各超前30°。星形连接有一个公共点,称为中性点。三角形连接时线电压与相电压相等,且3个电源形成一个回路,只有三相电源对称且连接正确时,电源内部才没有环流。  三相负载 按三相阻抗是否相等分为对称三相负载和不对称三相负载。三相电动机、三相电炉等属前者;一些由单相电工设备接成的三相负载(如生活用电及照明用电负载),通常是取一条端线和由中性点引出的中线(俗称地线)供给一相用户,取另一端线和中线给另一相用户。这类接法三条端线上负载不可能完全相等,属不对称三相负载。三相负载的连接方式也有星形与三角形之分。  三相电路的瞬时功率(见交流电路中的功率)等于各相瞬时功率之和。即  P=PA+PB+PC  式中下标分别表示各相。对于对称电路,  此时UA=UB=UC=UP,式中UP、IP、U、I分别是相电压、相电流、线电压和线电流的有效值。对称三相电路的平均功率与其瞬时功率相等。其无功功率为UIsin,视在功率为。对称三相电路的瞬时功率为常量,因此,正常运行时带动三相发电机的原动机所受的反力矩和三相电动机的输出转矩都是平稳的。

  • 谈电力仪表在建筑节能计量中的应用

    -谈电力仪表在建筑节能计量中的应用摘 要:以沪建交【2008】828号文件指导方针为依据,介绍了电力仪表的特点及选型方案,电力仪表的通讯功能,并介绍了电力仪表的组网及ACREL5000能耗分项计量系统,并以实例验证了电力仪表及系统在建筑节能计量中的应用。关键词:电力仪表 ACREL5000 建筑能耗分项计量 Read HuJianJiao 【2008】828 file —analyses on application of power meter in building energy- subentry measureLiu Hui, Lu MingAbstract: According to guidelines of HuJianJiao 【2008】828 file, characters and select scheme of power meter are introduced. Power meter could make up of background power ACREL5000, and validate the application of power meter in building energy-saving measure by practical example.Key words: power meter, ACREL5000, building energy- subentry measure0  引言  根据有关部门统计建筑能耗已成为一个国家总能耗的重要组成部分,发达国家的建筑能耗占其总能耗的30-40%,现有400多亿平方米的建筑,在使用过程中采暖、空调、通风、照明、动力等方面消耗的能量已占全国总能耗的30%左右,上海市建筑能耗为全市总能耗的25.4%。电能作为二次能源,具有很高的终端利用效率,也更清洁和便于使用。因此对建筑运行能耗而言,电力消耗已成为建筑物的主要能耗,根据对上海市公共建筑的调研和统计表明,高级商场、办公楼和宾馆,单位建筑面积的年耗电量为70~300kWh/平方米,相当于普通居民住宅的10~20倍,是建筑能源消耗的高密度领域。而从各种公共建筑能耗比例分析来看,上海属于夏热冬冷地区,公共建筑的运行能耗以空调能耗为主,但电气照明与动力能耗也相当高,尤其是高级商场与办公楼二者占总能耗的50%以上,因此,应该重视大型公建的节能工作。  一方面,我国大型公共建筑用电巨大其建筑总面积不足城镇建筑面积的4%,但能耗缺占总耗电的22%。另一方面,我们也缺乏直接数据为用电节能决策的制定提供参考。为此,上海市建设和交通委员会制定并印发沪建交828号《加强本市民用建筑设备专业节能设计技术管理的通知》,来加强公共建筑节能运行管理,将节能减排各项工作目标和任务逐级分解落实,建立节能监管体系和长效用能检查、考核机制,完善用能计量设计。  电力在日常生产生活中起到了越来越重要的作用,在能源消耗中占到了大部分。因此,大型公共建筑实行电能计量管理,可准确、及时了解各机电设备的能耗状况,从而发现可能存在的能耗漏洞,使节能改造对症展开,并使各种节能措施的实施效果得以客观的反映和评价及时发现纠正用电浪费现象,为建筑节能考核提供数据。1  沪建交【2008】828号文解读  沪建交〔2008〕828号规定从2009年1月1日起,单体建筑面积大于2万平方米的大型公共建筑、市(区)两级国家机关办公建筑、申请国家和本市的建筑节能示范项目,应当符合下列要求:  (1) 建筑照明功率密度(LPD)应当达到现行《建筑照明设计准》(GB50034)的照明节能目标值要求。  (2)采用的房间空调器,其能效比(EER)不应低于《空间空气调节器能效限定值及能源效率等级》在(GB12021.3-2004)中的2级标准要求。  (3) 按照《技术导则》要求设置建筑能耗监测系统。  (4)对要求设置建筑能耗监测系统的项目,建设单位在组织工程项目竣工验收时应当纳入竣工验收的内容。市或者区(县)建设工程质量监督部门应当加强监督检查。  (5)建筑物能耗数据采集子系统应当包括:监测建筑物中各计量装置、数据采集器和数据采集通道。   (6)能耗数据采集方式分为自动和人工采集两种。对建筑物耗煤(液化石油、人工煤气、汽油、柴油、煤油)等能耗量,在无法实现自动采集情况下,应当通过人工采集方式输入能耗监测系统;对建筑物能耗监测系统的自动计量装置所采集的能耗数据,应当通过RS485接口,并采用TCP/IP通信协议自动和实时上传能耗数据。2  电力仪表在建筑能耗分项计量中的选型方案  大型公共建筑电能计量宜采用智能电力仪表作为内部管理电表,电力仪表在用户安装供电部门收费电表的基础上,考虑内部电能计量与节能管理的需要安装,用于建筑内部电量的统计与管理。因此用户可自主选择采购,但应注意制造商是否有电力仪表(电能部分)的计量许可证。电力仪表可以完成对各回路、各楼层或各分项计量区的电能数据的采集,通过ACREL5000能耗分项计量系统完成对大型公共建筑的电力监控与电能计量管理。  电力仪表是针对电力系统、工矿企业、公用设施、智能大型公共建筑的电力监控与电能管理需求而设计的。它能高精度的测量所有常用的电力参数,如三相电压、三相电流、有功功率、无功功率、频率、功率因数、四象限电能等,采用可视度高的LCD来显示仪表测量参数和电网系统的运行信息。电力仪表功能、型号繁多,价格也各不相同,电能计量方案也多种多样,因此,应合理选配,达到较佳的性价比。  根据沪建交828号文件,对大型公共建筑能耗数据实行分类计量,对电量按动力用电、照明与插座用电、空调用电和特殊用电进行分项计量管理。因此,针对宿舍、商铺、宾馆客房等需单独计量的地方,可采用DDS1352或DDSF1352电表;  DDS1352单相电表,又称为ADL10;单相电能计量表,DIN35mm导轨安装,宽度为1个模数(即宽为18mm),一次最大接入单相电流30A,精度1.0级。该仪表尺寸小,价格低,缺点是没有通讯功能,不能组网,但有脉冲输出可与ARTU-P32连接进行组网。  DDSF1352单相电表,又称为ADL100,同样为DIN35mm导轨安装,宽度为4个模数,一次最大接入单相电流为80A,精度1.0级,可测量电压、电流,具有峰、平、谷电能分时复费率计量功能,带RS485接口,Modbus通讯协议或DL/T645规约,可组网。主要应用于对单相电能的计量,常用在配电箱内。DDS1352及DDSF1352单相电表外形及应用如图1所示:http://www.acrel.cn/cn/download/common/upload/2011/02/18/105938ro.jpg图1 DDS1352电表外形,DDSF1352电表外形及其应用  针对用电设施按照明与插座用电、动力用电、空调用电、特殊用电进行分项计量,对学校教室、医疗病房、宾馆客房按楼层或功能分区计量时,可选用DTSF1352或ACR120EL电表。  采用DTSF1352三相四线电表(见图2),又称ADL300,用于三相电能计量,具有尖、峰、平、谷电能分时复费率计量功能,DIN35mm导轨安装,宽度为7个模数,可安装在照明箱或动力箱中,一次最大接入三相电流80A,80A以上可经电流互感器二次接入,精度0.5级,带RS485接口,Modbus通讯协议或DL/T645通讯规约,可组网。http://www.acrel.cn/cn/download/common/upload/2011/02/18/11152hn.jpg图2 DTSF1352电表外形及其在动力箱中的应用  ADL系列导轨式安装电能表,可以很方便地安装在配电柜(箱)背面的导轨上,不需要对面板进行开孔,这种一对一式的计量,对于系统的检修维护是非常方便的。  采用ACR120EL多功能电表,该表为嵌入式安装,可安装在动力箱或低压出线柜门板上,面板尺寸为80mm×80mm,开孔为76mm×76mm,规格为220/380V、5A,电流经互感器二次接入,精度0.5级,可测量电流、电压、功率、频率、功率因数、四象限电能等电参量,带RS485接口,Modbus通讯协议。   对于一些重要回路需检测谐波含量的,可采用ACR230ELH多功能电表,沪建交828号文规定,在变压器低压侧(AC230/400V)总进线处,应当设置多功能电能表,至少具有监测和计量三相电流、电压、有功功率、功率因数、有功电能、最大需量、总谐波含量和2-21次各次谐波分量的功能。因此,采用ACR230ELH多功能电表,嵌入式安装在配电柜门板上,面框尺寸为96mm×96mm,除测量所有电参量外,还具有最大需量,2-31次电流、电压谐波分量、电压波峰系数、电流K系数、电话波形因子、电流电压不平衡度、正负零序分量分析等功能。ACR120EL,ACR230ELH多功能电表外形及其在低压配电柜中的实际应用如图3所示。http://www.acrel.cn/cn/download/common/upload/2011/02

  • 电能表行业对于温度老化室的离不开

    电能表行业对于温度老化室的离不开

    [url=http://www.instrument.com.cn/netshow/SH101384/][b]温度老化室[/b][/url]定义又叫高温老化试验室,是针对高性能电子产品仿真出一种高温、恶劣环境测试的设备,是提高产品稳定性、可靠性的重要实验设备、是各生产企业提高产品质量和竞争性的重要生产流程,该设备广泛应用于电源电子、电脑、通讯、生物制药等领域。[align=center][img=,600,600]https://ng1.17img.cn/bbsfiles/images/2022/10/202210191620031545_8732_1760631_3.jpg!w600x600.jpg[/img][/align]  电能表可分为单相电能表和三相电能表:  1、单相电能表是用来计量用电设备消耗电能的仪表。按照采样原来分为机械式电能表、电子式电能表和机电一体式电能表。根据智能电网建设,未来3-5年内,基本被电子式的智能电能表取代。根据相数分,分为单相和三相电能表。目前,家庭用户基本是单相表,工业动力用户通常是三相表。  2、三相电能表折叠三相有功电能表分为三相四线制和三相三线制两种。常用的三相四线制有功电能表有DT系列。  三相四线制有功电能表的额定电压一般为220V,额定电流有1.,3A,,6A,10A,1,20A,2,30A,40A,60A等数种,其中额定电流为的可经电流互感器接入电路;三相三线有功电能表的额定电压(线电压)一般为380V,额定电流1.,3A,,6A,10A,1,20A2,30A,40A,60A等数种,其中额定电流为的可经电流互感器接入电路。  按用途:工业与民用表、电子标准表、很大需量表、复费率表  按结构和工作原理:感应式(机械式)、静止式(电子式)、机电一体式(混合式)  按接入电源性质:交流表、直流表  按准确级:常用普通表:0.2S、0.5S、0.2.0.5.1.0、2.0等  标准表:0.01.0.05.0.2.0.5等  按安装接线方式:直接接入式、间接接入式  按用电设备:单相、三相三线、三相四线电能表  科技功能:普通电表、智能电表  所以综合以上,我们看到不管是什么类型的电能表,都离不开温度老化室的检测。

  • AMC系列多回路监控单元在智能配电回路中的应用

    AMC系列多回路监控单元在智能配电回路中的应用安科瑞 蔡昀羲摘 要:介绍了AMC系列多回路智能监控单元在智能配电回路中的的应用,将众多配出回路的测量、计量、开关状态监测、控制和数字通讯等功能于一体,大大简化了系统的设计,降低了设备成本,简化了用户投资,方便了用户的使用和检修。具有功能强大、性价比高、方便用户使用、节约用户投资等优点关键字:AMC系列智能监控单元,简化系统,降低投资,性价比高0  引言  随着配电系统的发展,智能配电回路中各种仪表向集成化和网络化发展的方向是越来越清晰。目前单回路集成化的优势已经出现,但是对多个回路的集成还未产生。  本文将要介绍的是最新开发的AMC系列多回路智能监控单元在智能配电出线回路中的应用。该系列监控单元主要应用于多个配电出线回路的电参量的监测,它将回路中的母线电压、多个配出回路的电流、功率、电能和各个回路的开关状态集中测量、显示、并通讯输出,实现了对监控要求较简单的配电出线回路的集中测量和监视,一个AMC多回路监控单元就能实现上述多个回路的监测功能,大大方便了系统的接线、安装、调试;节约了用户的投资,降低了系统成本等优点,必将引领国内外智能配电领域的发展方向,成为智能配电中出线回路监控系统的发展主流。1  技术背景  在传统的智能配电出线回路中,要实现对回路中每个负载的各种电参量的全面监测,一般有以下2种组网方式(以三相为例):  方案1:(图1)http://www.acrel.cn/cn/download/common/upload/2011/02/24/152038p9.jpg图 1    该方案在三相智能配电出线回路中是比较常见的一种方案。在对配电出线回路负载的监控中,用户一般需要监控各路负载的各种电参量,包括每路负载的电流、电压、功率、电能、开关状态等。因此在设计方案时,针对每种电参量,用户需要单独配置可以测量各种电参量的仪表,由图1可以看到,为了监控每路负载,用户必须为每路负载配置1个电流表、1个电压表、1个功率表、1个电能表、1个I/O模块。而且为了实现网络化管理,每个仪表还必须是能够进行通讯的。由图1 可以看出,用于监测每路三相负载的电测仪表达到5个。采用该方案的缺点是需要多个仪表才能监控每路负载的各种电参量,监控路数越多,使用仪表越多,用户安装、维修、管理很不方便。且投资较大。优点是单个仪表出故障不影响对配电回路的其他电参量的监控,测量的精度较高,实时性较强。  方案2:(图2)http://www.acrel.cn/cn/download/common/upload/2011/02/24/152058jp.jpg图 2  该方案在三相智能配电出线回路中也是比较常见的一个方案。该方案较上面方案的先进之处在于,用于监控每个回路电参量的仪表由1个多功能的智能仪表代替了多个仪表,1个多功能仪表集测量电流、电压、功率、电能和开关量输入输出于一体,并可进行组网通讯。该方案的优点是每路负载只需配置1个仪表即可实现对该路负载的所有电参量的测量和控制,组网方便,用户投资较方案1少,安装、维护、管理较为方便,测量的精度较高,实时性较强。缺点是一旦仪表出线故障则无法对该负载继续监控。  以上2中方案在智能配电出线回路中是常用的,但是,以上2中方案的缺点是显而易见的,投资成本太大是一个主要的缺点。且接线、安装、调试等都不方便。2  AMC系列智能监控单元技术指标  AMC系列智能监控单元是针对出线回路中一般回路的监控要求,经过充分调研并结合实际需求开发的多回路智能配电监控装置。该监控单元分为单相和三相2大系列,其型号分类见表1。其技术指标见表2。外型及安装尺寸见图3,一般安装在配电柜内。表 1  产品型号及功能http://www.acrel.cn/cn/download/common/upload/2011/02/25/161746lo.jpg表 2  技术指标http://www.acrel.cn/cn/download/common/upload/2011/02/25/161757ca.jpghttp://www.acrel.cn/cn/download/common/upload/2011/02/25/161813uv.jpg图 33  AMC系列智能监控单元的设计简介  AMC系列多回路智能监控单元的原理设计上,采用多个电子切换开关+1个电能计量芯片+1个CPU来实现对多个回路的监测。其原理框图见图4。http://www.acrel.cn/cn/download/common/upload/2011/02/21/104235r4.jpg图 4  核心器件CPU选用飞思卡尔公司的MC9S08AW32型单片机,它是第一款基于高度节能型S08核的器件,片上资源丰富,抗干扰能力突出。内含32K字节用户程序空间,片上集成2048字节RAM,支持BDM片上调试功能,片内集成看门狗电路。  电能计量芯片采用ADI公司的高精度三相电能测量芯片ADE7758,适用于各种三相电路(不论三线制或者四线制)中测量有功功率、复功率、视在功率。该IC内嵌了高精度的模数转换器和固定模式的数字处理信号处理器(DSP),具有数字积分、数字滤波和具有众多实用电能监测、计量功能,是新一代高性能全数字电能表的理想芯片。  电子开关采用双四选一的CD4052高速电子开关。在单片机的控制下,实现在不同电流信号之间的高速切换。  多路电流信号经电子开关进入电能芯片,结合母线电压即可由电能芯片测得多个回路的各种电参量。4  AMC系列智能监控单元的应用4.1 典型应用  图5为AMC系列三相多回路智能监控单元的典型应用图。在应用中,出线回路中的3个三相负载的所有电参量测量都由1个AMC三相多回路监控单元来实现。并带有Modbus通讯输出,供用户远程监测和控制。http://www.acrel.cn/cn/download/common/upload/2011/02/24/152457rk.jpg图 5  图6为AMC系列单相多回路智能监控单元的典型应用图。在应用中,出线回路中的9个单相负载的所有电参量测量都由1个AMC单相多回路监控单元来实现。并带有Modbus通讯输出,供用户远程监测和控制。http://www.acrel.cn/cn/download/common/upload/2011/02/24/1525120s.jpg图 64.2 应用案例  图7是江苏某广电大厦0.4kV低压配电出线图。在该设计图中,每个单相负载的电流测量采用CL72-AI(测量单相电流)表来实现,每个三相负载的电流测量由CL72-AI3来实现(测量三相电流)。由图可以看出,该出线回路总共要使用12个仪表。http://www.acrel.cn/cn/download/common/upload/2011/02/25/161826ga.jpg图 7    图8是采用AMC多回路监控单元后,针对图7系统所做的修改。由图8可以看出,1个AMC16-1E9代替了9个CL72-AI,1个AMC16-3E3代替了3个CL72-AI3,大大简化了系统,并可同时检测母线电压、每个出线回路的电能,并可利用通讯接口,实现广电大厦的内部电能计量、考核、管理。http://www.acrel.cn/cn/download/common/upload/2011/02/25/161834h1.jpg图 85  结语  AMC系列产品的功能强大,单个仪表能够测量多个回路负载的多种电参量。对比图7和图8两种设计方案,采用AMC系列多回路智能监控单元,能够大大简化系统的设计方案,与传统方案相比,降低用户的投资成本,方便了系统的接线、安装、调试、维护等优点。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制