齿轮速度传感器

仪器信息网齿轮速度传感器专题为您提供2024年最新齿轮速度传感器价格报价、厂家品牌的相关信息, 包括齿轮速度传感器参数、型号等,不管是国产,还是进口品牌的齿轮速度传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合齿轮速度传感器相关的耗材配件、试剂标物,还有齿轮速度传感器相关的最新资讯、资料,以及齿轮速度传感器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

齿轮速度传感器相关的厂商

  • 深圳市恒驰机电设备有限公司是集柴油发电机组及配套零部件的销售、维修、保养服务为一体的一站式服务。深圳市恒驰机电设备有限公司在发电机行业二十多年营销实践中,积累了丰富的市场信息和管理经验,具有网络全球化的零件采购体系和网络,并因货物品种齐全、品质纯正、价格低廉、服务迅捷而深得用户信赖。主要经营进口柴油发电机组维修保养配件:瑞典沃尔沃Volvo、德国奔驰MTU、底特律Detroit Diesel、美国康明斯Cummins、珀金斯Perkins、德国MAN、日本三菱Mitsubishi、美国强鹿John Deere、德国道依茨Deutz、美国卡特彼勒Caterpillar柴油发动机典型配件:缸套、活塞、活塞环、进气门、排气门、前后油封、曲轴、曲轴瓦、连杆身、连杆瓦、涡轮增压器、喷油泵、密封圈、油底壳、上止推片、下止推片、气缸体、气缸盖、气缸垫、挺杆、推杆、轴承、机油泵、摇臂、充电机、起动马达、支架、皮带轮、凸轮轴、凸轮轴齿轮、水泵、回油管、飞轮壳、电子调速器的执行器、电子调速器、停车电磁铁、水套加热器、中冷器、机油冷却器、风扇、螺栓、柱塞、O型密封圈、上部修理包、下部修理包、水泵修理包等发电机配件:斯坦福系列、马拉松系列、英格系列、利莱森玛系列 发电机组易损件:空气滤清器、柴油滤清器、机油滤清器、滤芯、油水分离器 、CD、CF、CG级润滑油、防锈剂等 控制器模块:科迈ComAp控制器、深海DeepSea控制器、DST4600A控制器 调速控制器:GAC电子调速器、调速板、调速模块、速度控制模块 电压控制器:电压板、电压模块、电压AVR、调压板 加热器:发电机组水套加热器、机油加热器 配电输电设备:发电机并机柜/并网柜/并联柜、高低压并机柜、ATS自动转换柜、高低压配电柜,采用品牌开关 电器开关:ABB、西门子Siemens、施耐德Schneider等品牌断路器和塑壳开关用于发电机组控制和发电机组并联。韩光电器、SOCMEC索高美电器、LK电器等先进自动转换开关(简称ATS)用于发电机组和市电自动转换。附:供国产ATS开关 传感器及仪表:压力传感器、温度传感器、速度传感器、机油压力表、水温表、转速计时表等 发电机组租赁服务:提供50KW-1600KW柴油发电机组中短期租赁业务(联系人:罗先生 手机:18926497081 电话:0755-29078851 http://www.szhengchi.com )
    留言咨询
  • 安徽天光传感器有限公司创建于1991年,占地面积22000平方米。主要研发、生产、销售:称重传感器,电力覆冰检测传感器,扭矩传感器,拉力传感器,轴销传感器,压力传感器,拉压力传感器以及相配套测控仪表等产品。二十多年来天光不断吸取国内外的先进技术,引进国外领先的设备与工艺,学习与吸收现代企业管理理念,先后研发、生产了百余种测力传感器及配套仪器仪表,产品广泛应用于军工、航空航天、油田、交通、医药、冶金建材、教学等行业的计量与自动化过程中的检测等方面,其半导体应变计的生产工艺、设备及产量为国内领先,已申报发明专利。2008年我公司荣幸为北京奥运会主体育场鸟巢提供专用传感器,并获得好评。 陈圆圆180 5523 0933
    留言咨询
  • 合肥力智传感器系统有限公司,专门从事传感器、变送器、智能仪器、仪表等方面的科研开发与制造。公司成立十多年来,力智测控以雄厚的技术、科技开发力量及精湛的生产工艺水平,研制、开发、制造上百种力敏传感器、压力变送器、智能仪表及计算机控制系统。广泛应用于冶金、化工、油田、军工、航空航天、各大科研所、院校、汽车、交通、能源、机械制造、建材等行业的计算机和自动化过程控制。产品遍布全国,创新、诚信、奋进为企业精神,坚持以优质的产品,真诚的服务和卓越的信誉,共同创造和见证您我共同的辉煌历程。你的需要就是我们的服务。我们愿和国内外客商真诚合作、共同发展。我们等待着你的到来。
    留言咨询

齿轮速度传感器相关的仪器

  • GTS211A测速传感器 型号GTS211/GTS211AGTS211-P/GTS211B输出方式NPNPNP外形直径16mm额定感应距离(SN)3mm检测频率1Hz┈10000Hz检速范围1┈20000(转/分钟)(与合适齿轮配套)工作电压6...24VDC防护等级IP67zui大输出电流200mA运行温度―25℃ ― +75℃保护措施有工作电压极性保护和输出短路保护◆概述:本传感器采用电磁感应原理来达到测速目的,具有输出信号大,不需要放大,抗干扰性能好,可在烟雾、油气、水汽等恶劣环境中使用等特点,可替代其他相关齿轮传感器,广泛用于国防化工,纺织机械领域。 ◆ 产品特点:1. 输出稳定方波、抗抖动能力强适用于各种场所的速度检测。2. GTS系列产品采用标准圆管防水型结构,具有防水、防尘、防油污的优点,能在恶劣环境中可靠工作,特别适用于工业控制和军事领域。全密封设计,防水防油防尘;其优点是温度范围宽,热稳定性高,抗干扰能力强。 ◆ 产品安装:1.安装时用传感器自带的螺母固定在安装孔上,固定装置建议采用非导磁材料(铜、不锈钢等),传感器应正对齿面安装,齿面和传感器前端面的间距不应大于额定检测距离。2.检测距离与配套使用的检测齿轮的模数相关,模数越大可以有效检测的距离越长。 注意事项 ◆检测齿轮 1、模数:m≥1 2、齿轮厚度:≥4mm 3、齿形:渐开线或梯形直齿 4、齿轮材料:导磁材料(如45#钢)
    留言咨询
  • 瑞士GR20s手表齿轮轴向径向跳动检测测量范围:同时测量两个高精度(~21' 000点)正交传感器不同的测量方式(oring,airflow)测量范围:齿轮,轴和直径。计算数量:平坦度差(轴向跳动),圆形度差(径向跳动),角度,直径,......众多综合数学函数(平均值,Max ,标准差,量程......)Rev Master软件特点:文章数据库能够保存所有测量数据具有访问级别的用户管理使用和不使用仪器的软件操作(物品的准备和测量的后处理)。为初学者自动配置仪器。技术规格功率工作15 [W]待机2 [W]重量6 kg尺寸520 x 260 x480 mm电源15 V 1A90 to 240 V AC温度In operation10-40 C°湿度In operationMax 80%分辨率DP20 Sensor0.16 [μm]重复性直径测量(标准偏差|范围)0.2 [μm] | 1.0 [μm]轴向和径向(标准偏差|范围)0.2 [μm] | 2.5 [μm]精度直径+/- 0.9 [μm]轴向 径向跳动(典型)+/- 1 [μm]GR20S夹具Vee夹具 标准的Vee安装可以配备电动弓或空气喷嘴来驱动工件。电动弓形驱动器有两种版本,慢速和快速两种版本,可以根据要测量的零件类型调整速度。空气喷射驱动器包括内置于设备中的微处理器,并由软件控制,以实现最灵活的空气流量控制。 RSA夹具 对于没有轴的齿轮的测量,该部件保持在直径略小于齿轮孔的量规上。齿轮压在仪表上的齿轮孔上,消除了两者之间的间隙。与顶端之间的解决方案相比,它避免了测量顶端的不对准或齿轮的倒角。GR20s软件:Rev Master除GR20外,Rev Master软件还提供一系列用于测量分析,文件准备和用户管理的功能。Rev Master无需许可即可安装,也可无限制地发送给您的客户。例如,要使它们能够验证您的测量结果。Rev Master易于使用,只需双击一下,即可加载文件,您就可以进行测量。您也可以在没有仪器的情况下使用Rev Master,例如用于离线准备物品或分析结果。 主要功能?文件的定义和管理?按级别管理用户?记录后处理的原始数据?测量点的图形显示?数学函数,如值,Max 值,标准偏差,平均值....完全集成在软件?以Word,Excel和pdf格式创建和打印测量报告
    留言咨询
  • 齿轮磨削烧伤检测仪 400-860-5168转0766
    齿轮磨削烧伤检测仪主要特点表面质量控制的有效手段利用巴克豪森效应检测表面磨削缺陷和热处理烧伤完全无损,准确快速,避免酸洗各种探头,适合不同类型零件单通道/多通道设置报警限、计算机显示齿轮磨削烧伤检测仪特性使用EasyGear软件的可编程测量定位只需拔下并插入传感器连接器即可快速连接传感器而无需任何工具即可进行更换标准系统功能控制面板具有:灯泡测试按钮停止测量按钮复位按钮控制电源关闭按钮门开灯紧急停止传感器支架自动X和Z线性移动自动A和T旋转适用于Rollscan和PC的集成柜集成电柜,带主开关带有安全开关的移门启用手动驾驶开关键盘和显示器支架存储Stresstech Oy总部设在芬兰,是生产便携式X射线应力分析仪和齿轮磨削烧伤检测仪的生产厂。主要产品有:残余应力分析仪,齿轮磨削烧伤检测仪,磨削烧伤检测仪,在线磨削烧伤检测仪,激光小孔法应力检测仪,巴克豪森噪声分析仪,表面质量检测仪,无损磨削烧伤检测仪,小孔法残余应力检测仪,便携式残余应力分析仪,残余奥氏体测量仪。
    留言咨询

齿轮速度传感器相关的资讯

  • 齿轮视觉检测仪器与技术研究进展
    齿轮视觉检测仪器与技术研究进展石照耀 1*,方一鸣 1,王笑一 2 1 北京工业大学北京市精密测控技术与仪器工程技术研究中心,北京 100124; 2 河南科技大学河南省机械设计及传动系统重点实验室,河南 洛阳 471003摘要:相对于接触式测量,机器视觉检测这种非接触式测量具有效率高、信息全、稳定性好、可识别缺陷等优点,在齿轮检测领域得到越来越广泛的应用。近十年来出现了影像仪、闪测仪、CVGM仪器、在线检测设备等多种基于机器视觉技术的齿轮检测仪器,它们既可以实现齿轮综合式测量,又可以实现齿轮分析式测量。回顾了齿轮视觉检测仪器的发展历程和特点,分析了齿轮视觉检测中边缘检测、亚像素定位、特征提取和模式识别等算法的研究和应用进展,总结了机器视觉在齿轮精度测量和齿轮缺陷检测两个方面的技术发展,并指明了齿轮视觉检测仪器与技术的发展前景。关键词:机器视觉;齿轮测量;齿轮视觉检测仪器;齿轮精度测量;齿轮缺陷检测1 引言齿轮是应用广泛的基础件,其质量直接影响齿轮传动系统的承载能力和寿命等。齿轮检测是分析齿轮加工误差来源、提高齿轮加工精度、保证齿轮产品质量的必备手段。齿轮测量可分为接触式测量和非接触式测量。由于齿轮形状复杂,精度要求高,传统的非接触式测量方法难以满足齿轮测量精度要求,因此传统的齿轮检测设备通常采用接触式测量方式。应用广泛的齿轮测量中心和齿轮双啮检查仪分别是齿轮分析式测量设备和综合式测量设备,均为接触式测量方式。随着计算机技术和视觉测量技术的进步,机器视觉测量精度逐渐提高,在一些场合已经可以满足齿轮检测的需求。相对于接触式测量,机器视觉测量具有效率高、信息全、稳定性好、可识别缺陷等优点,在齿轮测量领域应用越来越广泛。近年来出现了影像仪、闪测仪、computer vision gear measurement(CVGM)仪器、在线检测设备等多种基于机器视觉技术的齿轮检测仪器,它们既可以实现齿轮综合式检测,又可以实现齿轮分析式测量,更能进行齿轮缺陷检测。接触式测量属于串联测量模式,通过测量齿面上一系列点来完成某种测量目标,测量效率较低,大批量齿轮的在线全检是个挑战。此外,接触式测量方法只能测量齿轮的尺寸和精度,难以进行齿轮缺陷检测。目前齿轮产品的外观缺陷主要依靠肉眼筛查,一些细微缺陷还要借助放大镜、工具显微镜等辅助设备进行识别,这些设备检测效率低、误检率高,且无法对缺陷进行准确分类和溯源。齿轮视觉检测属于并联测量模式,一次测量可获取整个区域内的几何要素和外观缺陷数据,检测速度得到极大提升,可以用于大批量齿轮的全检;更重要的是能同时进行齿轮精度测量和齿轮缺陷在线检测。基于视觉的齿轮精度测量是齿轮精度理论与机器视觉技术的有机结合,作者将我国首创的齿轮整体误差理论融入齿轮视觉检测技术中,大大拓展了对齿轮误差的分析能力。齿轮缺陷在线视觉检测技术可实现对大批量齿轮的100% 全检,柔性和自动化程度高,既能实时反映生产状态,及时预警,也方便管理者掌控一定周期内产品质量变化,还可以根据大数据做进一步的质量评估、产能分析和工艺优化。2 齿轮视觉检测仪器如图1 所示,齿轮视觉检测仪器由工业相机、镜头、光源、计算机等几个主要部分组成。常用两种照明方式:图1(a)采用背光光源从待测齿轮下方照明,采集到的是齿轮投影图像,齿轮边缘锐度高、噪声小,此方式适用于齿轮精度测量;图1(b)采用正光光源从待测齿轮上方照明,采集到的是齿轮端面图像,能够凸显齿轮表面缺陷特征,此方式适用于齿轮表面缺陷检测。图1 齿轮视觉检测仪器构成(a)齿轮精度测量系统;(b)齿轮缺陷检测系统几十年来,齿轮视觉检测仪器经历了从只能“离线抽检”齿轮的“个别尺寸”,到结合齿轮精度理论做出齿轮“精度评定”,再到可以在生产现场“在线检测”的越,从通用仪器演变为专用仪器。常见的通用仪器有影像仪、闪测仪等,专用仪器有CVGM 仪器、齿轮在线检测设备等。2.1 影像仪影像仪(VMM)是小零件行业应用广泛的通用视觉检测仪器,可用于测量齿轮外径、孔径等几何尺寸。影像仪有手动式和自动式之分。手动式影像仪的成本较低,但调光、对焦、选点、修正等都依赖人工操作;测量齿轮时,需要人工取点来拟合齿顶圆、齿根圆等几何要素。世界上第一台由电机驱动的自动影像测量系统是1977 年由美国View Engineering 公司研发的“RB-1”系统。目前,国内外有众多企业生产自动式影像仪,典型有瑞典海克斯康、德国蔡司、日本三丰、深圳中图仪器、贵阳新天光电、苏州天准科技等。自动式影像仪在工作台的X、Y 和Z 轴方向可以精确移动,能够实现自动对焦,测量精度更高。通过示教或编程可以实现齿轮测量中的自动取点,但操作过程较为复杂,对操作人员要求高。自动式影像仪一般没有齿轮测量专用软件,能够测量的齿轮指标不全,不能进行精度评价和分析。传统影像仪视场一般较小,为了获取整个齿轮端面轮廓,需要进行图像拼接。手动式影像仪进行图像拼接时效率低、难度大,精度也较差。自动式影像仪可以实现图像的自动拼接,效率较高,但拼接成的图像存在亮度、对比度不均匀的现象,尺寸测量精度同样受到影响。2.2 闪测仪近年来,市面上出现一种新型的一键式影像测量仪(闪测仪),视场范围大,可以一次测量多个零件。日本基恩士的IM-8000 闪测仪可在数秒内同时完成最多100 个目标物、300 个部位的测量,可以任意摆放工件,一键自动识别,自动匹配测量。独特的亚像素处理技术可使图像分辨率达0. 01 pixel,测量精度达±2 μm。深圳中图仪器的VX8000 系列闪测仪也可实现同等级的测量精度。此外,闪测仪还可导入CAD 图,通过“比较测量”识别缺陷,如将实际齿廓图像与标准CAD 图的齿廓对比,可以得到缺齿、断齿等缺陷信息。闪测仪的测量效率相比传统影像仪显著提升,但价格昂贵,同样缺少齿轮精度评价专门功能。2.3 CVGM 仪器1980年代,日本和我国开始了齿轮激光全息测量技术研究。基本原理如图9所示,以单频的氦氖激光器为光源,首先在干涉测量系统获得参考标准齿面的全息图像,然后将标准齿面替换为被测齿面放置于干涉测量系统中,同时将已经拍摄到的全息图像置于系统中。测量时,激光经分光棱镜分光扩束后分为了测量光路和参考光路,其中测量光照射到被测齿面上。两束光线同时照射在全息图上,形成了被测齿面和参考齿面间的干涉条纹,并投影在接收屏幕上。在对条纹图像进行数据处理后,可以得到被测齿面相对于标准齿面的形状误差。在测量光与全息图像之间放入平行平晶,用来调整测量光的相位。对于模数0. 2 mm 以下的小模数齿轮,难以使用接触式方法测量齿廓、齿距、公法线长度等关键参数;现有影像式测量设备不能给出齿轮精度评价报告。如图2所示,CVGM 仪器专用于解决小模数齿轮测量难题,可在1 s内自动计算出齿廓、齿距、径向跳动、公法线长度、齿厚变动量、内孔尺寸、实际压力角等关键精度信息,自动根据齿轮精度标准ISO-1328对齿轮误差进行评级,输出完整的齿轮精度检测报告,并做出OK/NG 判断。CVGM 仪器的齿廓偏差测量精度为±3 μm,齿距偏差测量精度为±2 μm,具有强大的分析功能,可测量双向截面整体误差曲线(SJZ 曲线)。图2 CVGM 小模数齿轮测量系统(a)CVGM 软件;(b)CVGM 系统如图3 所示,CVGM 仪器使用齿轮整体误差曲线作为齿轮单项误差计算的中间体,即先由齿轮轮廓生成齿轮整体误差曲线,再由齿轮整体误差曲线计算出各单项误差;并以SJZ 曲线方式表达测量结果,大大提升了齿轮误差分析能力。图3 基于视觉的齿轮整体误差分析2.4 齿轮在线检测设备齿轮视觉在线检测设备一般都具有分选功能,根据检测结果把被测产品分成合格品、不合格品,或按齿轮精度等级分类,或按缺陷类型分类。该类设备结构形式有三种:直接集成在齿轮产品传送带上方,结构较简单;使用专用上下料机械手和其他辅助机构,结构最复杂;采用玻璃转盘式结构,应用最广泛。图4位于传送带上方的齿轮视觉在线检测设备,优点是占用空间小,但传送带运动不平稳和易磨损,产品摆放角度不固定,导致检测精度难以提高。由于传送带不透光,该设备无法获取齿轮与传送带接触面的图像,不能实现双面测量。图4 传送带式齿轮视觉检测系统图5 所示设备采用了机械手、导轨、转盘等部件,结合专门设计的自动检测装置完成齿轮上下料、检测、分选和摆盘等一系列操作。这类检测设备功能较强,但结构复杂,成本较高。图5 使用机械手和自动装置的齿轮视觉检测设备本团队研制了玻璃转盘式的注塑齿轮在线检测分选系统,如图6 所示,该系统已应用于注塑齿轮生产线,工作稳定,取得了突出的使用效果。玻璃转盘由伺服电机和精密减速器驱动,带动待检齿轮通过视觉检测工位,可保证图像采集过程中齿轮匀速平稳运动。转盘采用高透明玻璃材质,不需翻转就可得到产品底部的检测图像。由光电传感器定位齿轮在转盘上的位置,使用气动执行器将OK/NG 的齿轮吹入相应的存储盒实现自动分拣。该系统能够实现注塑齿轮黑点、毛刺、缺齿、断齿、翘曲变形等外观缺陷检测,也能完成常规几何尺寸和形位误差的测量,并能根据缺陷阈值、尺寸公差实时分选出合格品和不合格品,且具备报警功能。该系统对齿轮端面的检测时间小于0. 3 s,满足生产节拍的需求,特别是具有齿轮轴向测量功能。图6 玻璃转盘式齿轮视觉检测分选系统图7 为注塑齿轮在线检测分选系统软件界面。该软件具有自主知识产权,在软件数据库中贮存了常见齿轮型号及对应的尺寸公差和配置参数,包括CPK 分析和XR图分析,提高了参数输入效率。注塑齿轮在线检测分选系统兼具精密测量与缺陷检测功能,包括齿轮轴向高度、齿距、公法线、同心度等与齿轮精度相关的检测,齿轮外观缺陷识别准确率能满足注塑齿轮大批量在机检测需求。图7 注塑齿轮在线检测分选系统软件界面3 齿轮视觉检测技术齿轮视觉检测技术是齿轮视觉检测仪器的核心,涉及光学、电子学、计算机图形学、齿轮几何学等多个学科,内容覆盖光学成像、图像处理、软件工程、工业控制、传感器、齿轮精度理论等。近几年,与齿轮视觉检测技术相关的新技术、新理论、新方法大量出现,在多个核心问题上取得了重要的研究进展。齿轮视觉检测技术既有一般视觉检测的共性问题,又有齿轮视觉检测中的特殊问题。齿轮视觉检测的工作流程包括图像采集、图像预处理、边缘检测、齿轮精度评定或齿轮缺陷分析等,其中图像采集、图像预处理、特征提取、图像分割、边缘检测、亚像素算法等属于通用的视觉检测技术,而齿轮精度评定和齿轮缺陷识别属于齿轮视觉检测技术的个性问题。这里先从图像采集系统(硬件)和图像处理算法(软件)两个方面综述与齿轮视觉检测技术相关的共性问题的研究进展,然后从齿轮精度测量和齿轮缺陷检测两个方面介绍齿轮视觉检测技术中个性问题的研究进展。3.1 图像采集系统图像采集系统一般由计算机(主机)、图像采集卡、工业相机、镜头、光源等组成。工业相机按照传感器芯片种类可分为CCD 相机和CMOS 相机两种,传统上CCD 相机效果更好,但随着技术的发展,目前在一般应用场合CMOS 相机基本已经取代了CCD 相机。相机数据接口常见的有GigE 接口、USB 接口(USB2. 0和USB3. 0)、Cameralink 接口等。其中采用GigE 或USB 接口的工业相机可以直接通过线缆与主机通讯,不需要数据采集卡;而其他接口如Camerlink 接口的相机则需要配备图像采集卡才能与主机通讯。常用的工业镜头按等效焦距分类主要有广角、长焦、中焦、远心、微距镜头等。一般远心镜头的畸变更小,景深更大,可以消除“近大远小”的测量误差,更适合进行高精度的尺寸测量,因此在齿轮视觉检测领域使用最多的镜头为远心镜头。但远心镜头通常价格较高,对精度测量要求不高时,可用普通镜头替代。视觉检测领域常用的光源有点光源、面光源、条形光源、环形光源、穹顶光源、同轴光源等类型,其作用主要有强化特征和弱化背景、突出测量特征、提高图像信息、简化算法、降低系统设计的复杂度、提高系统的检查精度和效率。在齿轮精度测量领域常用的光源主要是面光源,面光源的光线具有更好的方向性,均匀性更好,齿廓更清晰;在齿轮缺陷检测领域主要使用穹顶光源、环形光源和同轴光源等,这些光源可使整个齿轮端面图像的照度十分均匀,突出缺陷特征。齿轮视觉检测的核心问题是测量精度和检测效率,这两个问题都与图像采集系统密切相关。为了提高测量精度,应当选用分辨率更高的相机;为了提高检测效率,需要选择分辨率低的相机,以减少需要处理的数据量,提高软件计算速度。精度和效率是一对矛盾,通过选用运算能力更强的计算机和改进图像处理算法的效率,可以部分地解决精度和效率的矛盾问题。无论是为了提高检测精度还是为了提高检测效率,选用精度更好的镜头和更加稳定的光源都可以改善整体的性能指标。3.2 图像处理算法齿轮视觉检测技术中用到的图像处理算法有图像预处理、边缘检测、亚像素定位、特征提取和模式识别等。其中图像预处理方法与机器视觉其他应用场合的预处理方法基本相同。3.2.1 边缘检测算法齿轮视觉检测中常采用的边缘检测方法有经典微分算子、小波变换和数学形态学。边缘检测算法能够把齿轮二维端面图像中的关键轮廓提取出来,得到轮廓像素点的坐标集合。根据轮廓点的坐标信息和相机标定参数就可以精确计算出齿轮的特征尺寸,包括齿顶圆直径、齿根圆直径、内孔直径、齿高、齿厚和齿距等。1)经典微分算子图像边缘一般是图像灰度变化率最大的位置,因此可用一阶/二阶导数来检测边缘,由此诞生了一系列经典微分算子。根据微分的阶数可以将经典微分算子分为两类:一类是通过寻找图像灰度值的一阶导数极值点来确定边界的一阶微分算子,有Roberts 算子、Prewitt 算子、Sobel 算子、Canny 算子;另一类是根据图像二阶导数的零点来寻找边界的二阶微分算子,有Laplacian 算子、LoG(Laplacian-of-Gaussian)算子、DoG(Difference-of-Gaussian)算子。对这些经典微分算子在齿轮边缘检测中的性能进行了比较,如表1 所示。表1 经典微分算子在齿轮边缘检测中的性能比较Canny 算子采用双阈值和非极大值抑制策略提升对噪声的抗干扰性,具有滤波、增强、检测多个阶段的优化,是性能最优良的微分算子。对于齿轮图像,采用Canny 算子提取的齿廓信息最完整,最接近实际齿廓,如图8 所示。图8 基于Canny 算子的齿廓提取2)小波变换小波变换具有良好的时频局部化特性和多尺度特性。良好的时频局部化特性使其特别适用于检测突变信号,而图像中的突变信号对应边缘,因此小波变换也适用于图像边缘检测。利用Harr 小波函数对齿轮图像进行重构,再结合Canny 算子提取重构图像的齿廓,比单独采用Canny 算子有更优的效果。多尺度特性使其能很好地抑制噪声。图像中的噪声和边缘都属于高频分量,经典微分算子引入各种形式的微分运算后必然对噪声较为敏感,而随着尺度的增加,噪声引起的小波变换的模的极大值迅速减小,而边缘的模值不变,这一特性可以很好地抑制图像噪声。提出一种基于Curvelet 变换的尺度与方向相关性联合降噪方法,该方法对齿轮图像进行降噪处理,在继承小波变换多尺度降噪的基础上,同时进行尺度内方向相关性降噪,可以为齿轮边缘检测提供高质量的输入图像。因此,小波变换是一种齿轮图像边缘提取的有效方法。3)数学形态学数学形态学是基于积分几何和几何概率理论建立的关于图像形状和尺寸的研究方法,其实质是一种非线性滤波方法,通过物体形状集合与结构元素之间的相互作用对图像进行非线性滤波。由于数学形态学提取边缘时容易造成间距小的低灰度轮廓的错位和合并,因此常将其与微分算子提取出的轮廓加权融合。相关文献就提出了一种融合Canny 算子和数学形态学的含噪声齿轮图像边缘检测算法,分别采用改进的Canny 算子和多尺度多结构元素灰度形态学边缘检测算子提取边缘;然后对两幅边缘图像进行了小波分解,得到各层子图像;最后对子图像进行自适应加权融合,并使用小波逆变换重构图像得到最终的边缘检测图像。相关文献采用数学形态学中的四邻域腐蚀法提取出边缘宽度,并将其作为单个像素的轮廓,测量分度圆直径为5 mm 以下的齿轮的齿顶圆直径和齿根圆直径,与千分尺测量结果差值的绝对值在2 μm 以内。3.2.2 亚像素定位算法数字图像是以离散化的像素形式存在的,传统边缘检测算法的测量分辨率只能达到一个像素级,提取出的边缘由像素块构成,边缘定位精度不高,如图9(c)所示。亚像素定位算法是在像素级边缘检测的基础上逐渐发展而来的,首先需要经过像素级边缘检测粗定位,然后利用粗定位边缘点周围邻域内的像素数据进行边缘点的亚像素级精确定位,如图9(d)所示。图9 亚像素边缘处理亚像素定位算法主要有三类:矩方法、插值法和拟合法。1)矩方法矩方法计算简便,应用于齿轮边缘检测可以减小测量误差。相关文献提出一种利用前三阶灰度矩进行亚像素边缘定位的算法,这是文献中最早提出的矩方法。随后基于空间矩、Zernike 正交矩的方法也相继被提出。相关文献利用基于Zernike 矩的齿廓边缘检测算法,对齿顶圆直径为49. 751 mm、齿数为23 的齿轮测得的齿顶圆直径、齿根圆直径的相对误差在0. 02% 以内,齿距累积总偏差的相对误差约5. 15%。相关文献提出一种基于灰度矩的亚像素边缘检测算法,该算法以邻域窗口的灰度均方差积表示边缘强度,灰度重心所在的方向表示灰度变化的方向,在初始边缘的基础上按求取的灰度变化方向划分为八个区域,构建一维灰度矩模型解算亚像素边缘位置,对于噪声系数为0. 005 的模拟图像,该算法的绝对定位误差为0. 013 pixel。相关文献提出了一种复合亚像素边缘检测方法,该方法基于orthogonal Fourier-Mellin moment(OFMM),可为后续齿廓缺陷检测提供精确的齿廓形状。2)插值法插值法运算速度快,应用于齿轮在线检测设备能够满足生产节拍的要求。插值法的核心是对像素点的灰度值或灰度值的导数进行插值,以增加信息。德国MVtec 公司开发的著名机器视觉算法包Halcon 在工业领域应用广泛,其中的亚像素边缘检测算子采用的就是插值法。相关文献基于Halcon 算法包中的亚像素边缘检测算子,开发了一套齿轮测量应用程序,可以得到齿廓亚像素点集合,并设定条件剔除假边缘,最终得到齿顶圆直径等参数。3)拟合法拟合法对噪声不敏感,适用于噪声较多的齿轮图像,但求解速度较慢。拟合法是通过对像素坐标和灰度值进行理想边缘模型拟合来获得亚像素边缘的。相关文献提出一种基于高斯积分曲面拟合的亚像素边缘定位算法,可最大限度地消除噪声的影响,与原有高斯拟合算法相比,该算法通过坐标变换简化了曲面拟合问题,计算速度提高1 倍,可以满足五级精度的渐开线直齿圆柱齿轮的齿廓偏差测量要求。3.2.3 特征提取和模式识别算法缺陷检测算法一般由图像预处理、图像分割、特征提取和模式识别等步骤组成,其中特征提取和模式识别是缺陷检测的关键环节。特征提取的有效性对后续目标缺陷识别精度、计算复杂度、检测鲁棒性等均有重大影响。常用的特征提取算法可以分为三种,分别是基于纹理、颜色和形状的特征提取算法。提取完特征后,还需采用模式识别算法对缺陷进行区分。模式识别算法主要有匹配识别和分类识别两类。齿轮缺陷检测常用的匹配识别算法有FAST 和SIFT 算法等,常用的分类识别算法有基于人工神经网络或支持向量机的算法。相关文献提出了一种基于FAST-Unoriented-SIFT 提取算法和BoW(Bag-of-Words)模型的行星齿轮故障识别方法,该方法将原始振动信号转换为灰度图像后,通过FAST-Unoriented-SIFT 算法直接提取灰度图像中的特征。FAST-Unoriented-SIFT 算法结合了FAST 和SIFT 算法的优点,忽略了特征的方向。最后在提取的特征的基础上建立BoW 模型,该方法对齿轮故障的整体识别率达98. 67%。相关文献提出了一种改进的GA-PSO 算法,称为SHGAPSO算法,先经过图像分割算法提取齿轮的几何形状、纹理和颜色特征,再重建BP 神经网络,并使用SHGA-PSO 算法优化结构和权重。SHGA-PSO 算法对坏齿、划痕、磨损和裂纹4 种不同的齿轮缺陷样本的识别正确率在94% 以上。相关文献基于YOLO-v3 网络实现了对金属齿轮端面凸起、凹陷和划痕三种缺陷的快速检测和定位,对每幅图像的平均检测时间为77 ms,对三种缺陷的平均精确度(AP)和平均召回率(mean recall)分别为93% 和91%,检测效果如图10 所示。图10 齿轮缺陷特征提取与模式识别3.3 齿轮精度测量齿轮形状复杂,精度要求高。为保证齿轮产品质量,需要控制的齿轮精度指标有齿距偏差、齿廓偏差、螺旋线偏差、齿厚、齿圈跳动等,其中除螺旋线偏差外,其他精度指标都可以用齿轮端截面轮廓数据进行计算。齿轮精度测量主要有两个问题需要解决,一是通过图像处理获得被测齿轮的精确的端面轮廓信息,二是根据齿轮精度理论和相关齿轮精度标准计算齿轮各项偏差值并给出齿轮精度评定结果。通过齿轮精度等级,可以确定对视觉检测系统的测量精度要求。以齿数20、模数1 mm、5 级精度的直齿圆柱齿轮为例,其齿距累积总偏差为11 μm,齿廓总偏差为4. 6 μm。按测量仪器精度为被测指标允差的1/3~1/5 估算,测量5 级精度齿轮的测量仪的精度应优于1. 6 μm。这对视觉测量而言,是非常困难的。齿轮视觉测量精度依赖于测量系统的硬件和数据处理算法。由于所用相机、镜头等图像采集系统硬件和图像处理算法等软件的不同,以及被测对象齿轮的尺寸参数和精度要求不同,齿轮视觉检测系统的测量精度的差异很大,但在齿轮被测项目评定方面,都是根据齿轮精度相关标准进行的。相关文献依据齿轮精度标准ISO1328-1,给出了视觉测量齿距偏差和齿廓偏差的评定方法,对模数为0. 5 mm 的8 级精度直齿轮测得的齿距偏差、齿廓偏差与齿轮测量中心的测量结果差值最大为4 μm。相关文献采用视觉测量方法测量模数为2 mm、齿数为90的齿轮,齿廓总偏差5 次测量的标准差为0. 028 μm,取得了很好的测量重复性。相关文献提出了视觉测量齿轮的公法线长度的方法,其测量精度能够满足工程应用要种类不全,提高缺陷识别准确率和效率是着力重点。随着人工成本的增加和产业升级需求的提升,在大规模齿轮生产过程中齿轮视觉在线检测设备的应用越来越多。齿轮视觉在线检测设备的特点有:耦合于生产线上,可高效测量批量齿轮的尺寸精度,实时监测齿轮质量,自动剔除不合格品,形成“生产-检测-分选”自动化流水线;对齿轮外观缺陷进行识别和分类,实现大批量齿轮的“应检尽检”,用“大数据”手段分析齿轮工艺问题,与生产管控系统互联,及时调整工艺参数,减少损失;实现齿轮质量长期监测,及时发现齿轮质量的异常变化;可实现网络化监管和远程监控,即使在千里之外也可以监控整个生产过程,把握生产动态。在未来,齿轮视觉检测技术必将纳入更多先进的科学技术,齿轮视觉检测仪器也将集成更多新技术,并充分发挥各项技术的优点,提升检测效率和精度。三维视觉检测技术、视觉检测设备的复合化、微型化和智能化将是齿轮视觉检测技术的发展趋势。未来每条齿轮产线的生产动态都可以集成到一个软件中进行分析,检测数据实时存储到云端,长期积累的庞大数据将为齿轮生产工艺带来巨大的变革。毫不夸张地说,视觉检测技术将会带来齿轮检测领域的革命,现在还仅仅处于入门口。(省略参考文献51篇)
  • 齿轮制造有了国产测量“慧眼”
    p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 齿轮是现代传动装置中关键的基础元件之一,被广泛应用于机械装置和工业设备中。准确、快速地检测齿轮的各项误差是控制齿轮精度和提高传动质量的关键。然而,国内齿轮测量装置存在着测量驱动和误差评定系统不完善、测量效率低下的问题。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 面对圆锥齿轮或特殊齿轮等复杂型面齿轮甚至出现难以测量的困境,扬州大学机械工程学院教授宋爱平带领团队进行了5年多的攻关,成功设计出一款齿轮激光精密测量装置,目前该装置已进行应用测试。 /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) font-family: & quot times new roman& quot " strong 自主研发 弥补短板 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 国内现有的齿轮测量装置可分为齿轮啮合检查仪、CNC齿轮测量中心、齿轮在线测量分选机三种,在设备稳定性、系统精度、适用范围,特别是测量软件和测量方式上与国外产品仍然存在一定的差距。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " “这些齿轮测量中心专用设备并不完善,操作复杂、测量时间长、人工测量效率低下、精度不足,制约了国内齿轮制造精度的提高。”宋爱平告诉《中国科学报》,齿轮作为机械传动部件中的重要部分,其精度直接决定了机械传动的稳定性,因此对其生产制造的要求也越来越严格,对齿轮制造精度的检测成为企业生产过程中的重要环节。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 针对这些问题,从2014年开始,宋爱平带领团队开启了研发高效率齿轮激光精密测量装置之路。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 宋爱平团队研发的测量装置针对目前接触式齿轮测量方法的不足,创新性使用了非接触式测量法,有效提高齿轮的测量精度与效率,同时建立齿面全信息数据处理方法,开发齿轮几何偏差分析软件,有效测量处理齿轮误差信息。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 据宋爱平介绍,该测量装置操作简单,效率高并且能够适用于多种齿轮类型,可以对直齿圆柱齿轮、斜齿圆柱齿轮、圆锥齿轮以及摆线齿轮进行齿距、齿廓和径向跳动偏差的测量分析,弥补了国内齿轮测量装置在适用性、使用精度上的短板。 /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) font-family: & quot times new roman& quot " strong 推动齿轮制造精度提升 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 理想的齿轮测量中心应具备操作简单、工作高效、适用面广的特点。为了达成这一目标,宋爱平创新采用激光三角测距法,这是一种高速、高效、高精度的具有广阔应用前景的非接触齿轮测量方法。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 宋爱平解释说,与传统接触式测量相比,激光三角法测量避免了测头与工件表面的接触压力,同时解决了接触测头半径较大带来的横向分辨率问题,对比其它非接触测量方法,测量精度和测量范围都有很大的提高,并且对待测物体表面尺寸要求较低,可以胜任微小齿轮的轮廓测量和大型齿轮的形貌测量。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 此外,激光三角法采用非接触式测量法,能有效简化测量的前置步骤,从而提高测量效率。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " “该测量装置基于激光三角测距法,具有实现对齿轮形面的精密测量、对齿轮外表面实际形状的高精度几何建模、实现齿轮副的综合传动误差分析、保证测量系统对复杂齿形测量的适应性这几大创新点。”宋爱平表示。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 激光测量可以不干扰被测物体的运动,具有精度高、测量范围大、效率高、空间分辨率高等优点。同时,运用激光反射法能连续测量物体、单点采集形面数据,克服常用齿轮的齿面反射性不足等问题。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 为实现对齿轮外表面实际形状的精确几何建模,解决测量驱动和误差评定系统研发的重大课题,宋爱平团队新研发的软件通过样条曲线构建齿轮截面轮廓曲线,将齿轮实测数据模型与理想模型相比较,采用图形变换、插值样条分析、多点曲线拟合技术,实现齿轮全方位几何偏差的测量与分析。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 目前,该团队已研制出的齿轮激光测量装置可以对多种圆柱齿轮实现几何测量与基本偏差分析,并已申请“一种基于激光位移传感器的齿轮测量装置及齿轮测量方法”“一种基于激光 位移传感器的齿轮测量装置”“一种多自由度激光位移传感器系统及弧齿锥齿轮测量方法”“一种蜗杆测量方法”4项发明专利,已授权2项。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 宋爱平表示,希望随着齿轮测量方法的应用,可以解决目前国内企业齿轮测量方面的难题,实现国内齿轮检测领域的自主创新,推动齿轮制造精度的提升。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 《中国科学报》 (2019-08-22 第8版 装备制造) /span /p p br/ /p
  • 回顾近二十年我国齿轮量仪的发展(下)
    前文回顾:近二十年我国齿轮量仪的发展(上)5 CNC大齿轮测量中心和超大齿轮测量系统是CNC齿轮测量中心在大齿轮及超大齿轮测量的扩展和创新(1)1989年,工具所推出的局部CNC式1.2m大齿轮测量仪CZE1200D,如前所述,该仪器由单片式计算机控制步进电机二联动,首次实现齿轮量仪螺旋线的CNC数控数字化测量。其改进型为2015年的CZE1200DA齿轮测量仪(图24);图24 工具所CZE1200DA齿轮测量仪(2)2004年,哈量国内首次开发2m CNC大齿轮测量仪CNC3929,改进型为CNC L200(图25);图25 哈量L200 CNC大齿轮测量中心(3)2011年,精达创新设计开发2.5mCNC大齿轮齿轮中心,其改进型为JLR300(图26),在国内创新采用了三坐标三联动(θ,X,Y)的渐开线成形原理,实现沿端面啮合线对大齿轮渐开线齿廓精度的测量,即“NDG”法向展成测量原理;精达公司将该原理创新应用于小模数齿轮的测量中,取得了良好效果。图26 精达JLR300大齿轮测量中心(4)2017年,哈尔滨同和光学公司展出精密CNC大齿轮测量中心T150A(图27)。作为哈尔滨工业大学精密超精密加工和测量设备领域的科技成果产业化基地的哈尔滨同和光学展出的大齿轮测量中心,集成了超高精度气浮轴系、气浮托盘调心技术及直线电机驱动等先进技术。近年不少国产大型CNC齿轮测量中心,如哈量CNC L200(见图25)、精达JW型(图28)和智达ZD(图29)型大齿轮测量中心,都采用了5轴坐标系统结构布局,即径向坐标采用了上下二层,既简化机械结构又可减少测头阿贝误差,具有提高仪器稳定性和精度等优点。智达2020年新开发的Z系列大齿轮测量中心甚至采用了三种齿廓测量原理:法线极坐标、极坐标和啮合线测量原理,以适应不同用户需求。仪器采用全新分层控制理念的3U架构全闭环控制器实现动态位置全闭环控制,仪器性能得到了提升。图27 哈尔滨同和T150A齿轮测量中心图28 精达JW型齿轮测量中心图29 智达ZD型齿轮测量中心(5)2013年,北京工业大学成功开发了用于超大齿轮的双测量装置集成综合测量系统——“激光跟踪+三维平台”在位测量系统(图30),首次进行了大胆创新和探索,在超大齿轮的测量理论、技术和实践上,取得了令人可喜的成果。(a)(b)(c)图30 北工大超大齿轮旁置式双测量装置集成综合测量系统6 自动化智能化齿轮测量分选仪器/系统实现CNC齿轮测量中心在齿轮生产现场在线测量(1)2005年,工具所推出车间用齿轮在线三维双啮测量分选机CQPF2000, 随后哈量—北工大也成功开发出3501齿轮分选机(图31),能在线实现批产齿轮径向综合三维误差测量及分选功能。图31 工具所及北工大—哈量齿轮三维双啮测量机(2)2013年,精达为东风汽车变速箱生产线开发了JDFX-1型齿轮自动分选机,用机械手实现半自动盘/轴类齿轮的双啮检测和分选。2015年精达、智达及金量展出风格迥异的双啮式齿轮自动/半自动分选机(图32)。2015年,南京二机床展出了由六轴机器人操作的“智能化齿轮加工岛”(见图5),在实现齿轮无人化双啮自动检测的同时,通过网络连结,能根据测量结果进行反馈,对系统中的数控滚齿机和剃齿机的加工参数进行智能化调整后再加工,实现批产齿轮闭环质量控制与制造,在我国圆柱齿轮制造业的数字化、智能化和自动化中树立了发展标杆。哈量于2017年推出具有时代感的3503齿轮分选机(图33)。此外还有2005年秦川机床推出的在数控磨齿机上的数字化在机测量装置,近年在国内也得到重视,国产全自动流水线齿轮分选机的开发发展迅速。其中,哈尔滨精达和智达(图34)都有相应产品系列相继问世,服务于齿轮制造企业。以上齿轮分选机基本上都是以齿轮双啮仪为检测仪器。在提升齿轮双啮仪的自动误差补偿功能上,精达于2017年展出了获得专利的补偿式齿轮智能双面啮合检查仪产品,既提高仪器测量精度也满足了国际市场标准要求,该双啮仪的补偿功能引起行业的关注与好评。(a)(b)图32 精达半自动在线分选机(a)(b)图33 哈量3503齿轮分选机(a)和秦川机床在机测量(b)(a)(b)图34 精达JFE全自动流水线齿轮分选机(a)及智达2020年为浙江双环传动改造的日本制造桁架式齿轮在线检测分选设备(b)(3)2020年,智达为株洲齿轮有限公司提供了2台六轴机器人齿轮在线快速智能检测系统(见图6),集成了包括国产CNC齿轮测量中心和齿轮双啮测量仪以及意大利光学图像测量仪在内的3台检测功能各异的齿轮精密测量仪器,实现在线轴类齿轮零件的精度检测和质量统计及分选,充分显现了我国齿轮在线检测成套技术和装备的开发制造能力,在数字化、智能化和自动化方面已经提升到了一个崭新高度。7 齿轮整体误差测量仪技术传承难能可贵,新的发展令人期待和鼓舞1970年前后,由工具所黄潼年为首的我国齿轮制造与测量业界众多科研技术人员共同努力,创新开发的成套齿轮整体误差测量技术,致力于研究分析,力图探索齿轮的几何形状及位置精度和齿轮的啮合运动综合精度之间的因果关联。齿轮整体误差技术目前可大致分为三类:即采用坐标式几何解析测量法的齿轮静态整体误差测量技术、采用啮合滚动点扫描测量法的运动态齿轮整体误差测量技术以及与虚拟数字化测量齿轮或虚拟数字化配对工件齿轮进行啮合滚动的虚拟啮合滚动点扫描测量技术,三者都归类于运动几何测量原理。测量项目有:静态齿轮整体误差曲线族、运动态齿轮整体误差曲线族以及虚拟齿轮整体误差曲线族。期待今后会有传动动力态齿轮整体误差测量技术及相应曲线出现。(1)2002年,工具所持续开发锥齿轮整体误差测量技术,建立了锥齿轮局部互换性测量的相对测量体系,实现锥齿轮齿廓二次局部基准误差的补偿(图35),曾应用于青岛精锻齿轮厂。(a)(b)图35 工具所锥齿轮整体误差测量仪及局部互换性测量体系(2)至2007年,工具所不断改进并生产齿轮整体误差测量仪系列产品,包括CZD1200EA齿条式圆柱渐开线齿轮整体误差测量仪(见图24)、CZ450蜗杆式圆柱齿轮整体误差测量仪(图36)及用于小模数圆柱齿轮的CZ150蜗杆式测量仪(图37)。图36 工具所CZ450齿轮整体误差测量仪图37 工具所CZ150小齿轮测量仪(3)2015年,工具所和北工大相继成功开发出齿轮单面啮合差动式小模数齿轮整体误差测量仪(图38)。(4)2015年,北工大在蜗杆式圆柱渐开线齿轮整体误差测量理论和啮合计算上取得重大突破,在大幅提高齿轮误差测量范围评定精度和可靠性的基础上,成功开发出齿轮在线快速测量机及相应测量系统(图39)。测量机采用蜗杆式间齿单啮整体误差测量原理,集成了实施自动上下被测齿轮工件的工业机器人,组成了可用于汽车齿轮生产线的在线检测系统。该齿轮在线自动检测系统已于2015 年底在北齿和浙江双环二个企业的生产现场中得到了实际使用。图38 差动式整体误差测量仪图39 北工大齿轮在线测量机(a)(b)图40 基圆智能小模数齿轮影像测量系统和虚拟整体误差曲线(5)2021年,原北工大博士后和基圆智能科技(深圳)有限公司合作,在2015年齿轮整体误差测量与啮合计算的突破成果基础上,成功开发出CVGM小模数齿轮测量软件和配套的小模数齿轮机器视觉影像测量系统(图40),实现微小/小模数齿轮的在线快速测量。该CVGM软件系统除了采用齿轮整体误差测量理论,能够按照齿轮精度标准迅速计算得到传统小模数齿轮的单项几何误差,还能以虚拟(静态、运动态)齿轮整体误差(曲线)方式表达测量误差数据,从而大大扩展了该测量系统的齿轮误差分析和综合能力,为我国批量小模数精密齿轮快速测量开创了一个新局面,也大大丰富了我国开创的齿轮整体误差测量理论和实践。8 齿轮传动链综合测量仪呈现良好势头,开辟了齿轮测量仪器发展新天地从单个齿轮的几何精度测量与质量评价,进入到对齿轮副传动链的使用性能测试和评估,这可以看成是我国齿轮质量保障体系更为重要的一个环节和阶段,是我国齿轮制造从单个零件制造向关键传动部件制造发展质量保证提升的重要标志。近年国产齿轮传动链综合测量仪的蓬勃发展也揭示了这个发展趋势。秦川机床工具集团近期荣获的2021年度中国机械工业科学技术进步奖一等奖的项目“工业机器人精密减速器测试方法与性能提升技术研究“ ,充分显示了我国在国产减速器测试技术与实践领域所取得的丰硕成果。(1)2005年,重庆工学院和内江机床厂合作开发并提供的YKN9550锥齿轮滚动检验机产品(图41);图41 YKN9550滚动检验仪(2)2017年,北京国际机床展览会上,精达首次展示了国产齿轮传动装置/传动链综合测量仪产品(图42),该仪器可实现齿轮装置运动性能和传动性能的综合检测,包括速度、载荷及温度等参数变量下传动链综合性能的精确测量与分析。智达展示了为谐波减速器开发的综合性能测试仪(图17)。图42 精达传动链综合检测仪(3)2019年,北工大、北京市精密测控技术及仪器工程研究中心在国际机床展览会上展出新开发的RV减速器传动链测量仪和小模数锥齿轮综合误差滚动测量仪(图43a);2021年又开发了用于额定输出扭矩达1500Nm的RV减速器综合性能测试台(图43b)。该测试台集先进传感器、数据采集、控制技术与一体的高精度测试仪器,可测量RV减速器的传动误差、回差、扭转刚度、背隙、空载摩擦扭矩、启动转矩、反向启动转矩、传动效率等多种性能参数,选配不同附件可实现多种规格RV减速器的综合性能测试,已为厦门理工大学、集美大学及河南科技大等提供了产品。(a)(b)图43 北工大精密中心RV减速器综合性能测试仪及测试台9 一级齿轮精度基准的精心制作创建,成绩斐然;非渐开线基准的新途径探索,别有洞天(1)大连理工王院士团队通过几十年埋头实干,以工匠精神铸造出我国精品齿轮样板:研制出一级精度渐开线基准样板(图44)和标准齿轮;成套的超精加工测量理论、超精加工测量技术和制造工艺、成套超精加工的技术装备,为我国齿轮精加工和超精加工奠定了坚实基础。图44 大连理工一级精度渐开线基准样板(2)近年国家计量院研制开发了我国首个国家级直径1m齿轮形渐开线齿轮精度基准(图45),其技术参数供参考(见表1)。表1 中国计量院标准大齿轮参数图45 计量院基准齿轮(3)北工大研制开发了我国非渐开线齿廓精度基准:2011年开发的双球式非渐开线齿廓精度样板和2021年的双轴圆弧形齿廓精度样板(图46)。尝试探索一条新的途径来解决高精度及超高精度渐开线实物基准,尤其是解决大尺寸高精度渐开线实物基准的制造难题,以利于更切实地建立起具有我国特色的大尺寸齿轮几何精度的实物溯源体系。(a)(b)图46 北工大双球和双轴圆弧非渐开线样板10 结语北京国际机床展览会作为我国机床工具制造业改革开放的窗口和平台,是我国机床工具行业技术进步和发展的重要标杆和旗帜。自1989年创办以来,北京国际机床展览会是迄今为止我国规模最大、历时最久的机床工具展览会。经过多年不懈努力,已荣登当今世界四大国际机床工具展览会之列, 成为推动我国机床工具行业对外技术交流和商贸合作的重要平台。近20年来,北京机床展览会上真切展现了我国精密数控齿轮量仪的发展历程,揭示出我国精密数控齿轮量仪的发展方向是数字数控化、信息网络化、自动智能化,集成融入生产制造全过程是必由之路;从被动地在计量室进行齿轮精度质检,到生产一线现场批量齿轮的在线自动化快速检测,再进一步融入生产过程,通过测量数据处理实时反馈调整加工参数、实施齿轮的闭环制造,甚至实现了包括齿轮刀具在内的闭环齿轮物联网制造系统的建立。作者不能不由衷感叹我国齿轮量仪制造行业所取得的可喜成就和坚守实干敬业的奋发精神,更体会到党和政府领导下改革开放方针政策的英明正确。“制造业是国民经济的主体,是立国之本、兴国之器、强国之基。十八世纪中叶开启工业文明以来,世界强国的兴衰史和中华民族的奋斗史一再证明,没有强大的制造业,就没有国家和民族的强盛。打造具有国际竞争力的制造业,是我国提升综合国力、保障国家安全、建设世界强国的必由之路。” 为响应“中国制造2025”国家发展战略,支持并强化国产齿轮量仪制造业关键部件国产化精制化和齿轮测量与加工制造信息的网络闭环智能化,打造具有国际竞争力的齿轮量仪制造业,是我国齿轮制造业大国向齿轮制造业强国发展的必由之路。近来由北工大石照耀教授牵头的“小模数粉末冶金齿轮(MM/PM)高速高效大规模制造成套技术与产业化”项目,荣获“2021年度广东省科学技术奖”科技进步一等奖。该项齿轮制造成套技术与产业化的成功实施,显示了我国向齿轮制造强国目标阔步前进的强劲步伐。

齿轮速度传感器相关的方案

齿轮速度传感器相关的资料

齿轮速度传感器相关的试剂

齿轮速度传感器相关的论坛

  • 【分享】齿轮测量机的特征及功能

    齿轮测量机又称为齿轮测量仪,是用于测量圆柱齿轮或齿轮刀具的渐开线齿形误差和螺旋线齿向误差的测量仪器。齿轮测量机的主机结构、部件先进,测量精度高。主机外形美观,结构稳定。齿轮测量机采用大理石平台、美观不变形。采用高精度测头、示值稳定,用户可根据实际情况选择测量项目。齿轮测量机可以进行齿廓公差带、齿廓凸度、螺旋线公差带、齿向鼓度等项目的评定。 齿轮测量机采用基圆分级调整式测量原理,包流量单盘式仪器传动链短、精度稳定可靠和对环境温度要求不高的特点,测量主机采用四坐标测量系统,主轴采用力矩式直驱电机、进口长光栅、圆光栅传感器作为位置传感器,形成全闭环反馈控制,提高了系统的测量精度。齿轮测量机采用了电子测量记录系统将误差记录成曲线图,图形清晰、准确。操作方便,由计算机控制测量过程自动完成,测量效率高。 齿轮测量机可测量渐开线圆柱齿轮的齿廓偏差、螺旋线偏差、齿距偏差、径向跳动,以及剃齿刀、插齿刀的齿廓偏差、齿距偏差、径向跳动。齿轮测量机可广泛适用于汽车、航空航天、拖拉机、通用机械、机床工具、仪器仪表、机器制造、国防工业等科研部门及工厂计量室、车间检查站。

  • 无速度传感器将弥补速度传感器的缺陷

    由于速度传感器的安装给系统带来一些缺陷:系统的成本大大增加;精度越高的码盘价格也越贵;码盘在电机轴上的安装存在同心度的问题,安装不当将影响测速的精度;电机轴上的体积增大,而且给电机的维护带来一定困难,同时破坏了异步电机的简单坚固的特点;在恶劣的环境下,码盘工作的精度易受环境的影响。因此,越来越多的学者将眼光投向无速度传感器控制系统的研究。 近些年许多国学者致力于无速度传感器控制系统的研究开发,无速度传感器控制技术的发展始于常规带速度传感器的传动控制系统,解决问题的出发点是利用检测的定子电压、电流等容易检测到的物理量进行速度估计以取代速度传感器。重要的方面是如何准确地获取转速的信息,且保持较高的控制精度,满足实时控制的要求。无速度传感器的控制系统无需检测硬件,免去了速度传感器带来的种种麻烦,提高了系统的可靠性,降低了系统的成本;另一方面,使得系统的体积小、重量轻,而且减少了电机与控制器的连线,使得采用无速度传感器的异步电机的调速系统在工程中的应用更加广泛。提高转速估计精度的同时改进系统的控制性能,增强系统的抗干扰,抗参数变化能力的鲁棒性,降低系统的复杂性,使得系统结构简单可靠,这是将来无速度传感器前进的一大方向。

  • 齿轮接触疲劳试验机齿轮弯曲疲劳试验机技术

    FZG齿轮试验机德国慕尼黑工业大学齿轮及齿轮机构研究所(FZG)的齿轮试验机主要是由电动机、试验齿轮箱、陪试齿轮箱和杠杆加载装置等组成的机械功率封闭分箱式齿轮运转设备。它的主要优点是,结构简单、能耗小,使用可靠、加载准确、可双向加载。但试验机不能空载启动,运转中不能改变载荷,实现程序控制和摸拟试验。这种试验机既可用于齿轮试件试验,也可用于齿轮箱产品的试验。GNeiman和HWinter等人设计了著名的FZG齿轮试验机,并编制了FZG的齿轮试验规程,做了大量试验,并提供了大量试验数据,已成为ISO齿轮承载能力计算标准的基础。我国参考FZG齿轮试验机设计了CL-100,JG-150等型号的通用齿轮试验机,并投入批量生产。NASA齿轮试验机美国国家航空和宇航局(NASA)的Lewis研究所的齿轮试验机,是将试验齿轮和陪试齿轮装在同一箱体内,采用叶片式液压加载器,组成一个机械封闭的同箱式液压加载齿轮试验设备。该试验机用带传动进行增速和变速,用氩气增压式密封,还安装有振动传感器。它只适用于齿轮试件的试验,而不适用于齿轮箱产品运转试验,也不适用于齿轮噪声和动载荷性能试验。它是比较典型的中、高速齿轮运转试验机。与FZG齿轮试验机相比,有以下特点:可获得较大载荷,可空载启动,在运转过程中可改变载荷实现程序控制和模拟载荷试验;但结构较复杂,外形尺寸大,制造成本高,扭转角度小,要求试验封闭系统有足够的刚度和可靠的密封装置,否则容易造成润滑油泄漏,加载不准和污染环境。[img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303100014357994_9941_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303100014361503_9313_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303100014359053_2425_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303100014361289_1324_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303100014362578_5386_1602049_3.png[/img]

齿轮速度传感器相关的耗材

  • JX20系列电涡流位移传感器
    电涡流位移传感器(以下简称传感器)能测量被测体(必须是金属导体)与探头端面的相对位置。由于其非接触测量、长期工作可靠性高、灵敏度高、抗干扰能力强、响应速度快、不受油水等介质的影响,常被用于对大型旋转机械的轴位移、轴振动、轴转速等参数进行长期实时监测,可以分析出设备的工作状况和故障原因,有效地对设备进行保护及进行预测性维修。可测量位移、振幅、转速、尺寸、厚度、表面不平度等。从转子动力学、轴承学的理论上分析,大型旋转机械的运行状态主要取决于其核心&mdash &mdash 转轴,而电涡流位移传感器能直接测量转轴的状态,测量结果可靠、可信。 第一节 简介 JX20系列电涡流位移传感器的领先科技: 1、&ldquo 线圈最佳温度稳定性参数匹配&rdquo 技术保证良好的探头温度稳定性; 2、采用新型PPS工程塑料通过&ldquo 二次注塑&rdquo 工艺,保证良好的探头密封性、尺寸稳定性和互换性,工作温度范围扩展到-50℃~+175℃; 3、&ldquo 变形联接&rdquo 工艺组合,更高探头强度、可靠性; 4、&ldquo 深度负反馈稳定谐振回路&rdquo 技术,使前置器稳定性达到(0.05%/℃,0.02%/年); 5、按美国军用规范设计生产,前置器可在-50~+105℃环境下长期连续工作; 6、前置器电路采用容错设计,保证任意接线错误不会损坏; 7、前置器采用最新电子技术,功耗低于12mA; 8、前置器壳体采用压铸工艺、高频插座内凹及接线端子镶嵌保护、工程塑料隔离绝缘等结构,使前置器更加坚固、安装使用更加方便; 9、先进的电涡流位移传感器相频特性的测试和控制方法,使JX20系列产品在动态特性方面处于国际领先水平。 应用领域: 正广泛应用于电力、石油化工、冶金等行业的汽轮机、水轮机、发电机、鼓风机、压缩机、齿轮箱等设备的位移、振动、转速、油膜厚度等参数的在线监测与故障诊断。
  • JX71C磁电式转速传感器
    概述: 本传感器采用电磁感应原理来达到测速目的、具有输出信号大,不需要放大,抗干扰性能好,不需外接电源,可在烟雾、油气、水气等恶劣环境中使用。 技术指标: 1. 输出电压: 在齿轮模数4、齿数60、材料为G3、间隙为1mm时 转速为 1000转/分 输出有效值大于5V 转速为 2000转/分 输出有效值大于10V 转速为 3000转/分 输出有效值大于15V 2. 直流电阻:低阻200~250&Omega ;高阻500~600&Omega 3. 绝缘阻抗:在500V直流时大于50M&Omega 4. 工作温度:-20℃~120℃ 5. 重量:约100g(不包括尾部引出线 工作原理: 使用时应在被测量转速的轴上装一齿轮(正、斜齿轮基带槽圆盘都可以),将传感器安装在支架上,调整传感器与齿轮齿顶之间的间隙为1mm左右。 当轴旋转时带动齿轮旋转,根据电磁感应原理在传感器内部线圈的两端产生一个电压脉冲信号,轴转动一圈时就产生Z(齿数)个电压脉冲信号,将此信号输入JX5031转速表,在转速表里设定好齿数,转速表就可以反应出轴的转速。
  • 0871LH1冻雨传感器
    0871LH1冻雨传感器是一个小巧的、低功耗的传感器,可以监测结冰情况以便于做出预防措施,防止损坏供电和通讯线路,对交通危害做出预警,报告风力电机叶片或飞机机翼上的结冰情况等。传感器上的冰探测器有自动除冰功能。主要组成是镍合金棒,固有共振频率为40KHZ。当冰块附着在探头上时,附加的重量会导致共振频率降低。当频率降到130HZ(或者冰层厚度到0.02-in)内部的加热装置开始自动给传感器除冰。0871LH1应当安装在与主风向成20~30o倾角的方向上。这样有利于传感器底部的水排出。优点与特性1. 用于防止电缆损坏,对道路结冰、飞机机翼结冰和风力电机叶片结冰发出警报2. 用户可选信号输出3. 当冰层厚度达到0.5mm 时可以实现自动除霜风能上的应用0871LH1 可以监测到风力电机叶片上的结冰情况,,因为结冰危害很大:1. 叶轮可以把结成的大块冰甩到很远的位置极其危险,有致命的潜在危险。2. 结冰会导致涡轮叶片、轴承和齿轮箱负载不均匀3. 结冰会影响发电机的输出功率0871LH1 可用于风能勘探,帮助预测一个潜在的风能电场因结冰情况影响可能无法正常工作的时间。另外,用户还可了解什么时候结冰可能会导致传感器无法正常传送数据。订购信息冻雨传感器0871LH1 Goodrich 冻雨传感器。需要一根传感器线缆和一个安装工具包。如果需要加热,还要附加24Vdc 的电源组件。通用配件0871LH1CBL L0871LH1 传感器线缆,需要用户自己定义长度;单位英尺,-L 后输入线缆长度。26966 0871LH1 安装包26967 0871LH1 24V 电源组件技术参数0871LH1冻雨传感器技术参数临界点当探测结冰厚度超过0.5mm±0.13 mm时,信号激活。输出格式RS-422 输出,速率9600bps工作电压18 到29.5Vdc功耗传感器模式24 伏电压,最大功耗5W除冰模式24 伏电压,最大功耗27W温度范围工作温度–55° to +71°C存储温度–65° to +90°C随机振动7.9 grms (DO-160C, Category E)震动DO-160C重量0.3 kg (0.7 lb)基座直径7.32 cm (2.88 in)基座高度3.81 cm (1.5 in)平板尺寸7.37 x 7.37 x 0.22 cm (2.9 x 2.9 x 0.085 in)支柱直径3.10 cm (1.22 in)支柱高度2.54 cm (1.0 in)测杆直径0.64 cm (0.25 in)测杆高度2.54 cm (1.0 in)工作模式传感器模式无冰或者冰层厚度在设定值之下除冰模式冰层厚度超过设定值不连续输出信号结冰信号没有结冰Open检测到结冰Ground状态信号正常工作Ground检测失败OpenRS-422 输出信号结冰信号1结冰0没有结冰状态失效1失败0正常电气接头物理接口MS27474T10B199PN匹配接口MS27474T10B199SN 产地:美国
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制