当前位置: 仪器信息网 > 行业主题 > >

矿用温度传感器

仪器信息网矿用温度传感器专题为您提供2024年最新矿用温度传感器价格报价、厂家品牌的相关信息, 包括矿用温度传感器参数、型号等,不管是国产,还是进口品牌的矿用温度传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合矿用温度传感器相关的耗材配件、试剂标物,还有矿用温度传感器相关的最新资讯、资料,以及矿用温度传感器相关的解决方案。

矿用温度传感器相关的论坛

  • 矿用甲烷传感器新标准

    矿用甲烷传感器新标准,兄弟一个字一个字敲出来的,可参阅[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=24490]甲烷传感器[/url]

  • 矿用一氧化碳传感器新标准

    同甲烷传感器[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=24491]一氧化碳传感器[/url]

  • 在线粉尘浓度传感器

    在线粉尘浓度传感器

    [b]在线粉尘浓度传感器设计依据:[/b]  在线粉尘浓度传感器可直读空气中粉尘颗粒物质量浓度。该传感器根据MT163-1997《直读式粉尘浓度测量仪表通用技术条件》和Q/320581ESD001-2008《GCG1000型粉尘浓度传感器》企业标准及GB3836.4-2000标准中ExibI等级防爆设计,吸收消化了国内外先进的测尘技术,利用光折射原理对粉尘进行检测,由微处理器对检测数据进行运算直接显示粉尘质量浓度并转换成数据信号输出,供矿井监测系统或其他测控系统使用。该传感器由采样头、检测装置、单片机系统及抽气系统组成,具有携带方便,测量快速准确、检测灵敏度高、性能稳定、维护简单等特点。由于采用激光技术及高可靠抽气系统等新技术,使该传感器更具质量与技术优胜。[b]在线粉尘浓度传感器应用范围: [/b]适用于煤矿及其它有爆炸危险性的作业环境中现场连续监测其大气中的总粉尘浓度。能准确、及时地反映粉尘作业场所中粉尘的污染状况。[img=,170,170]http://ng1.17img.cn/bbsfiles/images/2016/12/201612281532_01_3167027_3.jpg[/img][b]在线粉尘浓度传感器主要技术指标[/b][table=500][tr][td][color=#666666]测定原理[/color][/td][td][color=#666666]光散射原理[/color][/td][/tr][tr][td][color=#666666]测定对象[/color][/td][td][color=#666666]含有瓦斯或煤尘爆炸危险的煤矿井下或其它粉尘作业场所的粉尘质量浓度[/color][/td][/tr][tr][td][color=#666666]测量误差[/color][/td][td][color=#666666]≤±10%[/color][/td][/tr][tr][td][color=#666666]总粉尘浓度测量范围[/color][/td][td][color=#666666]0 mg/m3~1000 mg/m3[/color][/td][/tr][tr][td][color=#666666]显示方式[/color][/td][td][color=#666666]四位LED数码管[/color][/td][/tr][tr][td][color=#666666]信号输出[/color][/td][td][color=#666666](200~1000)HZ频率信号,RS485接口任选一种[/color][/td][/tr][tr][td][color=#666666]报警输出[/color][/td][td][color=#666666]一路光电耦合[/color][/td][/tr][tr][td][color=#666666]工作电压[/color][/td][td][color=#666666]18V(本安)[/color][/td][/tr][tr][td][color=#666666]工作电流[/color][/td][td][color=#666666]≤200mA[/color][/td][/tr][tr][td][color=#666666]采样流量[/color][/td][td][color=#666666]2L/min[/color][/td][/tr][tr][td][color=#666666]外形尺寸[/color][/td][td][color=#666666]270×145×73 mm[/color][/td][/tr][tr][td][color=#666666]重量[/color][/td][td][color=#666666]1.6 kg[/color][/td][/tr][tr][td][color=#666666]防爆形式[/color][/td][td][color=#666666] 矿用本质安全型[/color][/td][/tr][tr][td][color=#666666]使用环境[/color][/td][td][color=#666666]温度:0~40℃ [/color][color=#666666]相对湿度:≤95%[/color][/td][/tr][tr][td][color=#666666]大气压[/color][/td][td][color=#666666]86 kPa~110kPa[/color][/td][/tr][tr][td][color=#666666]防爆标志[/color][/td][td][color=#666666]ExibⅠ[/color][/td][/tr][/table][color=#666666]含有瓦斯或煤尘爆炸危险的煤矿井下或其它粉尘作业场所[/color]

  • 【求助】煤矿检测中心建标申请表及技术报告

    [em09512]检测的项目有煤矿用载体催化式甲烷报警仪检定煤矿用载体催化式甲烷传感器鉴定矿用一氧化碳报警仪检定矿用一氧化碳传感器检定矿用温度传感器检定等等。。。申请书里面的标准代码在那里可以找到,稳定行,不确定度,怎么填写?

  • 大锤轰温度传感器也行?

    周末去一个朋友实验室参观,他们的技术员正在修理温度传感器。。那传感器扭曲得严重,只见那技术员拿个铁锤朝弯的部分很大力锤,据说他们以前也这么修的,还可以继续用。大家的温度传感器都可以经受如此“修复”吗?

  • 温度传感器的标定方法

    温度传感器的标定和大多数其它传感器的标定一样,最普遍的方法就是将传感器放置在一个可精确测定的、已知温度的环境中一段时间,然后记录检查传感器的输出是否与已知的环境温度一致,并计算出传感器的误差。那么接下来我们具体的看看温度变送器的标定方法吧。  由于自然环境下温度始终是一个缓变的物理量,所以一般情况下对温度传感器的检定是属于静态的,这也能满足绝大部分温度传感器的实际需要。动态的检定极少,能实现温度动态检测的设备也极少。  由于静态温度传感器检定的方法和原理极其简单,所以这类资料或标准反而少见。对温度传感器动态标定一般都是采用激光的方法。改善温度传感器的动态特性最好的方法就是选用反应敏感的感温材料和减少传感器感温部分的质量,降低其热惯性。  温度传感器的标定过程实际上也是确定温度传感器的各参数指标,尤其是精度问题,所以这个过程所用测量设备的精度通常要比待标定传感器的精度高一个数量级,这样通过标定确定购温度传感器性能指标才是可靠的,所确定的精度才是可信的。

  • 温度传感器

    哪个大侠对温度传感器很了解,谁能给接收一下?有没有分辨率达到0.005K的温度传感器,有的话,推荐一下。谢谢

  • 蚕丝新用 做可食用传感器检测食物状况

    你每天食用的食品安全么?你是否将过期或变质的食物吞下后才大呼后悔?不过有了这个新型传感器,这一切烦恼就可以都抛开了。近日,美国研究人员利用蚕丝研制出了一种柔性传感器,不仅能够为你检测食品,而且其本身可以实用。 据悉,该传感器由蚕丝膜上嵌入黄金天线所构成,由于蚕丝膜成分为蛋白质,因此完全可以食用。使用该传感器时,只需要将传感器贴到食物上,贴到鸡蛋上,印记到水果上,或浮在牛奶中,这些食物的状况你就都能够知晓了。果实是否成熟?牛奶是否变味?这些问题都可以轻松知晓,让你吃下去的食物有着可靠保障。 该丝质传感器能够感知水果内部发生变化(如成熟或腐烂等)时的介电性能,并发出对应的电磁信号,最终用带有阅读器的监测设备就能识别,人们就能够知道食物可否放心食用。同时还可以对传感器的灵敏度和尺寸进行调整,来满足不同的对象需求。丝质传感器,可食用的传感器,为你即将入口的食物把好关。

  • 【转帖】温度传感器的工作原理?

    传感器的定义 传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处理(模拟或数字)能力的系统”。传感器是传感系统的一个组成部分,它是被测量信号输入的第一道关口。 传感器把某种形式的能量转换成另一种形式的能量。有两类:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。 无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能,传感器承担将某个对象或过程的特定特性转换成数量的工作。其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,它将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示。 传感器原理结构 在一段特制的弹性轴上粘贴上专用的测扭应片并组成变桥,即为基础扭矩传感器;在轴上固定着:(1)能源环形变压器的次级线圈,(2)信号环形变压器初级线圈,(3)轴上印刷电路板,电路板上包含整流稳定电源、仪表放大电路、V/F变换电路及信号输出电路。在传感器的外壳上固定着: (1)激磁电路,(2)能源环形变压器的初级线圈(输入),(3) 信号环形变压器次级线圈(输出),(4)信号处理电路 工作过程 向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2030功率放大器即产生交流激磁功率电源,通过能源环形变压器T1从静止的初级线圈传递至旋转的次级线圈,得到的交流电源通过轴上的整流滤波电路得到±5V的直流电源,该电源做运算放大器AD822的工作电源;由基准电源AD589与双运放AD822组成的高精度稳压电源产生±4.5V的精密直流电源,该电源既作为电桥电源,又作为放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测得到的mV级的应变信号通过仪表放大器AD620放大成1.5v±1v的强信号,再通过V/F转换器LM131变换成频率信号,通过信号环形变压器T2从旋转的初级线圈传递至静止次级线圈,再经过外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号,该信号为TTL电平,既可提供给专用二次仪表或频率计显示也可直接送计算机处理。由于该旋转变压器动--静环之间只有零点几毫米的间隙,加之传感器轴上部分都密封在金属外壳之内,形成有效的屏蔽,因此具有很强的抗干扰能力。 传感器分类 倾角传感器 倾角传感器在军事、航天航空、工业自动化、工程机械、铁路机车、消费电子、海洋船舶等领域得到广泛运用。辉格公司为国内用户提供全球最全面、最专业的产品方案和服务。提供超过500种规格的伺服型、电解质型、电容型、电感型、光纤型等原理的倾角传感器。 加速度传感器(线和角加速度) 分低频高精度力平衡伺服型、低频低成本热对流型和中高频电容式加速度位移传感器。总频响范围从DC至3000Hz。应用领域包括汽车运动控制、汽车测试、家电、游戏产品、办公自动化、GPS、PDA、手机、震动检测、建筑仪器以及实验设备等。 红外温度传感器 广泛应用于家用电器(微波炉、空调、油烟机、吹风机、烤面包机、电磁炉、炒锅、暖风机等)、医用/家用体温计、办公自动化、便携式非接触红外[url=http://www.cgxk163.com]温度传感器[/url]、工业现场温度测量仪器以及电力自动化等。不仅能提供传感器、模块或完整的测温仪器,还能根据用户需要提供包括光学透镜、ASIC、算法等一揽子解决方案。 想了解更多信息吗,请访问辉格科技网 传感器的应用传感器的应用领域涉及机械制造、工业过程控制、汽车电子产品、通信电子产品、消费电子产品和专用设备等。 ① 专用设备 专用设备主要包括医疗、环保、气象等领域应用的专业电子设备。目前医疗领域是传感器销售量巨大、利润可观的新兴市场,该领域要求传感器件向小型化、低成本和高可靠性方向发展。 ② 工业自动化 工业领域应用的传感器,如工艺控制、工业机械以及传统的;各种测量工艺变量(如温度、液位、压力、流量等)的;测量电子特性(电流、电压等)和物理量(运动、速度、负载以及强度)的,以及传统的接近/定位传感器发展迅速。 ③ 通信电子产品 手机产量的大幅增长及手机新功能的不断增加给传感器市场带来机遇与挑战,彩屏手机和摄像手机市场份额不断上升增加了传感器在该领域的应用比例。此外,应用于集团电话和无绳电话的超声波传感器、用于磁存储介质的磁场传感器等都将出现强势增长。 ⑤ 汽车工业 现代高级轿车的电子化控制系统水平的关键就在于采用压力传感器的数量和水平,目前一辆普通家用轿车上大约安装几十到近百只传感器,而豪华轿车上的传感器数量可多达二百余只,种类通常达30余种,多则达百种。

  • 【原创】温度压强传感器出故障了

    10月份我们实验室的微波消解仪的温度压强传感器由于我们使用不当导致温度传感器异常,之后拿去供货商那里校准可以用了,之前的问题是1号罐的外管温度比内管温度高,现在温度是正常的,但是压强升不上去,直接导致温度升不上去,但是温度传感器是正常的,所以现在很郁闷啊,只有把温度压强传感器寄到总部请求帮忙,所以大家以后使用温度压强传感器的时候一定要小心使用,以免出现故障

  • 温度传感器基础知识

    一、温度测量的基本概念(温度传感器有双金属温度计、热电偶、热电阻等)1、温度定义:温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度 :数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。摄氏温标(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等份,每等分为摄氏1度,符号为℃。华氏温标(℉)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等份每等份为华氏1度符号为℉。热力学温标(符号T)又称开尔文温标(符号K),或绝对温标,它规定分子运动停止时的温度为绝对零度。国际温标:国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(REV-75)。但由于IPTS-68温度存在一定的不捉,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过1990年国际ITS-90,ITS-90温标替代IPS-68。我国自1994年1月1日起全面实施ITS-90国际温标。1990年国际温标:a、温度单位:热力学温度是基本功手物理量,它的单位开尔文,定义为水三相点的热力学温度的1/273.16,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这个方法。根据定义,摄氏度的大小等于开尔文,温差亦可用摄氏度或开尔文来表示。国际温标ITS-90同时定义国际开尔文温度(符号T90)和国际摄氏温度(符号t90)。b、国际温标ITS-90的通则:ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。ITS-90是这样制订的即在全量程,任何于温度采纳时T的最佳估计值,与直接测量热力学温度相比T90的测量要方便的多,而且更为精密,并且有很高的复现性。c、ITS-90的定义:第一温区为0.65K到5.00K之间,T90由3He和4He的蒸汽压与温度的关系式来定义。第二温区为3.0K到氖三相点(24.5661K)之间T90是氦气体温度计来定义。第三温区为平蘅氢三相点(13.8033K)到银的凝固点(961.78℃)之间,T90是由铂电阻温度计来定义,它使用一组规定的定义内插法来分度。银凝固点(961.78℃)以上的温区,T90是按普朗克辐射定律来定义的,复现仪器为光学高温计。二、温度测量仪表的分类温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠、测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测量元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。三、传感器的选用国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。(一)、现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理选用传感器,是在进行某个量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。1、根据测量对象与测量环境确定传感器的类型:要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使测量同一物理量,也有多种原理的传感器可供选用,那一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下具体问题:量程的大小;被测位置对传感器的体积要求;测量方式为接触式或非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,是进口还是国产的,价格能否接受,还是自行研制。2、灵敏度的选择:通常,在传感器的线性范围内,希望传感器的灵敏度越高越好,因为只有灵敏度高时,与被测量变化对应的输出信号才比较大有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度,因此要求传感器本身具有很高的信躁比,尽量减少从外界引入的厂忧信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器,如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。3、频率响应特性:传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有一定的延迟,希望延迟越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、随机等)响应特性,以免产生过火的误差。4、线性范围:传感器的线性范围是指输出与输入成正比的范围。从理论上讲,在此范围内,灵敏度保持定值,传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内可以将非线性误差较小的传感器近似看作线性,这会给测量带来极大的方便。5、稳定性:传感器使用一段时间后,其性能保持不变化的能力称稳定性。影响传感器长期稳定的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减少环境影响。在某些要求传感器能长期使用而又轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。6、精度:精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高,这样就可以在满足同一测量的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器,自制传感器的性能应满足使用要求。(二) 测温器:1、热电阻:热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精度是最高的,它不广泛应用于工业测温,而且被制成标准的基准仪。① 热电阻测温原理及材料:热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用铑、镍、锰等材料制造热电阻。② 热电阻测温系统的组成:热电阻测温系统一般由热电阻、连接导线和数码温度控制显示表等组成。必须注意两点:“热电阻和数码温度控制显示表的分度号必须一致;为了消除连接导线电阻变化的影响,必须采取三线制接法。”2、热敏电阻:NTC热敏电阻器,具有体积小,测试精度高,反应速度快,稳定可靠,抗老化,互换性,一致性好等特点。广泛应用于空调、暖气设备、电子体温计、液位传感器、汽车电子、电子台历等领域。3、热电偶:热电偶是工业上最常用的温度检测元件之一。其优点是:① 测量精度高。因热电偶直接与被测对象接触,不受中间介质影响。② 测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③ 构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。(1).热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。(2).热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电

  • 【分享】-几个矿用标准(MT/T-2005)

    几个2005年的标准,希望对大家有帮助!(楼下有全部的压缩包)[em61] [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=36131]MTT 355-2005 矿用防坠器技术条件[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=36132]MTT 929-2004 矿用高强度紧凑链[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=36133]MTT 351.4-2005 矿用橡套软电缆聚氨酯冷补胶浇注料试验方法[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=36134]MTT 942-2005 矿用锚索[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=36135]MTT 943-2005 矿用低压交流软起动器[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=36136]MTT 944-2005 矿用关节轴承[/url]

  • 如何看待温度传感器

    如何看待温度传感器的作用PH和EC都应该有的我今天看下了EC接不接 数值没变化http://simg.instrument.com.cn/bbs/images/default/emyc1010.gif温度传感器说有什么温度补偿功能我怎么没体会到

  • 热阻抗增加对电偶温度传感器的影响

    在高温下使用的热电偶温度传感器,如果被测介质为气态,那么保护管表面沉积的灰尘等将烧熔在表面上,使保护管的热阻抗增大;如果被测介质是熔体,在使用过程中将有炉渣沉积,不仅增加了热电偶的响应时间,而且还使指示温度偏低。因此,除了定期检定外,为了减少误差,经常抽检也是必要的。例如,进口铜熔炼炉,不仅安装有连续测温热电偶温度传感器,还配备消耗型热电偶测温装置,用于及时校准连续测温用热电偶的准确度。

  • 新型温度传感器的研究与发展

    温度是一个基本的物理现象,它是生产过程中应用最普通、最重要的工艺参数,无论是工农业生产,还是科学研究和国防现代化,都离不开温度测量及温度传感器。它是现代测试和工业过程控制中应用频率最高的传感器之一。然而,温度的准确测量并非轻而易举,即使有了准确度很高的温度传感器,但是,如果测量方法选择不当或者测量的环境不能满足要求,则都难以得到预期的结果。  温度测量的最新进展  当前,虽然主要的温度传感器,如热电偶、热电阻及辐射温度计等的技术已经成熟,但是只能在传统的场合应用,不能满足许多领域的要求,尤其是高科技领域。因此,各国专家都在针对性的竞争开发各种新型温度传感器及特殊的实用测量技术。  光纤温度传感器  光导纤维(简称光纤)自20世纪70年代问世以来,随着激光技术的发展,从理论和实践上都已证明它具有一系列的优越性,光纤在传感技术领域中的应用也日益受到广泛重视。光纤传感器是一种将被测量的状态转变为可测的光信号的装置。它是由光耦合器、传输光纤及光电转换器等三部分组成。目前已有用来测量压力、位移、应变、液面、角速度、线速度、温度、磁场、电流、电压等物理量的光纤传感器问世,解决了传统方式难以解决的测量技术问题。据统计,目前约有百余种不同形式的光纤传感器,用于不同领域进行检测。可以预料,在新技术革命的浪潮中,光纤传感器必将得到广泛的应用,并发挥出更多的作用。  特种测温热敏电缆  热电偶是传统的温度传感器,用途非常广泛。近年来,又发展出了一种新的测温技术,能在火灾事故预警中有独特的应用。这种新型温度传感器称为特种测温热敏电缆,又被称为连续热电偶ConTInuous Thermocouple)或寻热式热电偶(Heating Seeking Thermocouple)。  热敏电缆利用电偶热电效应,但测量的不是偶头部的温度,而是沿热电极长度上最高温度点的温度。由于这种独特功能,最初被发达国家作为高精技术设备铺设在航空母舰、驱逐舰的舰舱以及军用飞机等军事设备中。目前,已被广泛应用到各个领域来预防和减少因“过热”引起的事故和损失。  热敏电缆的主要性能  目前,热敏电缆主要有两种产品类型(FTLD和CTTC),它们测温原理相同,只是技术参数不同。  材料构成外层保护管:FTLD型采用双层聚四氟乙烯,CTTC型采用铬镍铁合金。为有效避免测量环境中的粉尘、油脂以及水分等介质浸入,以及温度范围不同而引起的误报,故采用不同材料。测温元件:K型热电偶。  外形尺寸目前现有的产品长度约6~15m,若需长度加大,可以将几根热敏电缆连接起来。外径尺寸FTLD为f3.5mm,CTTC为f9.3~18.7mm,可安装在传统探头无法铺设到的恶劣环境中。  工作温度 FTLD为-40~200℃,CTTC为-40~899℃。 石英温度计  分度与灵敏度热敏电缆的分度与普通热电偶相近,由于连续热电偶的“临时”热接点不是紧密连接,热接点之外两电极间也并非完全绝缘,所以热敏电缆的输出热电势与同种热电偶相比稍有降低,换算成温度大约相差十几摄氏度,这对于火警预报来说是可以接受的。  弯曲半径除和热敏电缆组成材料的性能和质量有关外,还与隔离材料的密实程度有关。一般弯曲半径为热敏电缆外径的10~20倍。   随着生产及科学技术的发展,各部门对温度测量与控制的要求越来越高,尤其对高精度、高分辨率温度传感器的需求越来越强烈,普通的传感器难以满足要求。  石英温度计的特性  高分辨率分辨率达0.001~0.0001℃。  高精度在-50℃~120℃范围内,精度为±0.05℃。普通温度计的精度为±0.1℃。  误差小热滞后误差小,响应时间为1s,可以忽略。  性能稳定它是频率输出型传感器,故不受放大器漂移和电源波动的影响,即使将传感器远距离(如1500m)设置也不受影响,但是抗强冲击性能较差。  石英温度计的应用  石英温度计既可用于高精度、高分辨率的温度测量,又可作为标准温度计进行量值传递,也可以在现场稳态温度场合下进行精密测温或用于恒温槽的精密控温,还可用作远距离多点温度测量等。[/

  • 智能温度传感器的发展趋势

    智能温度传感器都具有多种工作模式可供选择,主要包括单次转换模式、连续转换模式、待机模式,有的还增加了低温极限扩展模式,操作非常简便。对某些智能温度传感器而言,主机(外部微处理器或单片机)还可通过相应的寄存器来设定其A/D转换速率(典型产品为MAX6654),分辨力及最大转换时间(典型产品为DS1624)。   能温度控制器是在智能温度传感器的基础上发展而成的。典型产品有DS1620、DS1623、TCN75、LM76、MAX6625。智能温度控制器适配各种微控制器,构成智能化温控系统;它们还可以脱离微控制器单独工作,自行构成一个温控仪。 2.3总线技术的标准化与规范化   目前,智能温度传感器的总线技术也实现了标准化、规范化,所采用的总线主要有单线(1-Wire)总线、I2C总线、SMBus总线和spI总线。温度传感器作为从机可通过专用总线接口与主机进行通信。 2.4可靠性及安全性设计   传统的A/D转换器大多采用积分式或逐次比较式转换技术,其噪声容限低,抑制混叠噪声及量化噪声的能力比较差。新型智能温度传感器(例如TMP03/04、LM74、LM83)普遍采用了高性能的Σ-Δ式A/D转换器,它能以很高的采样速率和很低的采样分辨力将模拟信号转换成数字信号,再利用过采样、噪声整形和数字滤波技术,来提高有效分辨力。Σ-Δ式A/D转换器不仅能滤除量化噪声,而且对外围元件的精度要求低;由于采用了数字反馈方式,因此比较器的失调电压及零点漂移都不会影响温度的转换精度。这种智能温度传感器兼有抑制串模干扰能力强、分辨力高、线性度好、成本低等优点。   为了避免在温控系统受到噪声干扰时产生误动作,在AD7416/7417/7817、LM75/76、MAX6625/6626等智能温度传感器的内部,都设置了一个可编程的“故障排队(fAultqueue)”计数器,专用于设定允许被测温度值超过上、下限的次数。仅当被测温度连续超过上限或低于下限的次数达到或超过所设定的次数n(n=1~4)时,才能触发中断端。若故障次数不满足上述条件或故障不是连续发生的,故障计数器就复位而不会触发中断端。这意味着假定n=3时,那么偶然受到一次或两次噪声干扰,都不会影响温控系统的正常工作。   LM76型智能温度传感器增加了温度窗口比较器,非常适合设计一个符合ACPI(AdvAnced ConfigurAtion And Power InterfAce,即“先进配置与电源接口”)规范的温控系统。这种系统具有完善的过热保护功能,可用来监控笔记本电脑和服务器中CPU及主电路的温度。微处理器最高可承受的工作温度规定为tH,台式计算机一般为75°C,高档笔记本电脑的专用CPU可达100°C。一旦CPU或主电路的温度超出所设定的上、下限时, INT端立即使主机产生中断,再通过电源控制器发出信号,迅速将主电源关断起到保护作用。此外,当温度超过CPU的极限温度时,严重超温报警输出端(T_CRIT_A)也能直接关断主电源,并且该端还可通过独立的硬件关断电路来切断主电源,以防主电源控制失灵。上述三重安全性保护措施已成为国际上设计温控系统的新观念。   为防止因人体静电放电(ESD)而损坏芯片。一些智能温度传感器还增加了ESD保护电路,一般可承受1000~4000V的静电放电电压。通常是将人体等效于由100PF电容和1.2K欧姆电阻串联而成的电路模型,当人体放电时,TCN75型智能温度传感器的串行接口端、中断/比较器信号输出端和地址输入端均可承受1000V的静电放电电压。LM83型智能温度传感器则可承受4000V的静电放电电压。   最新开发的智能温度传感器(例如MAX6654、LM83)还增加了传感器故障检测功能,能自动检测外部晶体管温度传感器(亦称远程传感器)的开路或短路故障。MAX6654还具有选择“寄生阻抗抵消”(PArAsitic ResistAnce CAncellAtion,英文缩写为prc)模式,能抵消远程传感器引线阻抗所引起的测温误差,即使引线阻抗达到100欧姆,也不会影响测量精度。远程传感器引线可采用普通双绞线或者带屏蔽层的双绞线。 2.5虚拟温度传感器和网络温度传感器 (1)虚拟传感器   虚拟传感器是基于传感器硬件和计算机平台、并通过软件开发而成的。利用软件可完成传感器的标定及校准,以实现最佳性能指标。最近,美国B&K公司已开发出一种基于软件设置的TEDS型虚拟传感器,其主要特点是每只传感器都有唯一的产品序列号并且附带一张软盘,软盘上存储着对该传感器进行标定的有关数据。使用时,传感器通过数据采集器接至计算机,首先从计算机输入该传感器的产品序列号,再从软盘上读出有关数据,然后自动完成对传感器的检查、传感器参数的读取、传感器设置和记录工作。 (2)网络温度传感器   网络温度传感器是包含数字传感器、网络接口和处理单元的新一代智能传感器。数字传感器首先将被测温度转换成数字量,再送给微控制器作数据处理。最后将测量结果传输给网络,以便实现各传感器之间、传感器与执行器之间、传感器与系统之间的数据交换及资源共享,在更换传感器时无须进行标定和校准,可做到“即插即用(Plug&PlAy)”,这样就极大地方便了用户。 2.6单片测温系统   单片系统(

  • 【资料】温度传感器基础知识详细解析

    一、温度测量的基本概念 1、温度定义: 温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。 摄氏温标(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等份,每等分为摄氏1度,符号为℃。 华氏温标(℉)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等份每等份为华氏1度符号为℉。 热力学温标(符号T)又称开尔文温标(符号K),或绝对温标,它规定分子运动停止时的温度为绝对零度。 国际温标:国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(REV-75)。但由于IPTS-68温度存在一定的不捉,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过1990年国际ITS-90,ITS-90温标替代IPS-68。我国自1994年1月1日起全面实施ITS-90国际温标。 1990年国际温标: a、温度单位:热力学温度是基本功手物理量,它的单位开尔文,定义为水三相点的热力学温度的1/273.16,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这个方法。根据定义,摄氏度的大小等于开尔文,温差亦可用摄氏度或开尔文来表示。国际温标ITS-90同时定义国际开尔文温度(符号T90)和国际摄氏温度(符号t90)。 b、国际温标ITS-90的通则:ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。ITS-90是这样制订的即在全量程,任何于温度采纳时T的最佳估计值,与直接测量热力学温度相比T90的测量要方便的多,而且更为精密,并且有很高的复现性。 c、ITS-90的定义: 第一温区为0.65K到5.00K之间,T90由3He和4He的蒸汽压与温度的关系式来定义。 第二温区为3.0K到氖三相点(24.5661K)之间T90是氦气体温度计来定义。 第三温区为平蘅氢三相点(13.8033K)到银的凝固点(961.78℃)之间,T90是由铂电阻温度计来定义,它使用一组规定的定义内插法来分度。银凝固点(961.78℃)以上的温区,T90是按普朗克辐射定律来定义的,复现仪器为光学高温计。 二、温度测量仪表的分类 温度测量仪表按测温方式可分为接触式和非接触式两大类。通常来说接触式测温仪表比较简单、可靠、测量精度较高;但因测温元件与被测介质需要进行充分的热交金刚,需要一定的时间才能达到热平衡,所以存在测温的延迟现象,同时受耐高温材料的限制,不能应用于很高的温度测量。非接触式仪表测温是通过热辐射原理来测量温度的,测量元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体的发射率、测量距离、烟尘和水气等外界因素的影响,其测量误差较大。 三、传感器的选用 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 (一)、现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理选用传感器,是在进行某个量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。 1、根据测量对象与测量环境确定传感器的类型:要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使测量同一物理量,也有多种原理的传感器可供选用,那一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下具体问题:量程的大小;被测位置对传感器的体积要求;测量方式为接触式或非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,是进口还是国产的,价格能否接受,还是自行研制。 2、灵敏度的选择:通常,在传感器的线性范围内,希望传感器的灵敏度越高越好,因为只有灵敏度高时,与被测量变化对应的输出信号才比较大有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度,因此要求传感器本身具有很高的信躁比,尽量减少从外界引入的厂忧信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器,如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。 3、频率响应特性:传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有一定的延迟,希望延迟越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、随机等)响应特性,以免产生过火的误差。 4、线性范围:传感器的线性范围是指输出与输入成正比的范围。从理论上讲,在此范围内,灵敏度保持定值,传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内可以将非线性误差较小的传感器近似看作线性,这会给测量带来极大的方便。 5、稳定性:传感器使用一段时间后,其性能保持不变化的能力称稳定性。影响传感器长期稳定的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减少环境影响。在某些要求传感器能长期使用而又轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。 6、精度:精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高,这样就可以在满足同一测量的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器,自制传感器的性能应满足使用要求。 (二) 测温器: 1、热电阻:热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精度是最高的,它不广泛应用于工业测温,而且被制成标准的基准仪。 ① 热电阻测温原理及材料:热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用铑、镍、锰等材料制造热电阻。 ② 热电阻测温系统的组成:热电阻测温系统一般由热电阻、连接导线和数码温度控制显示表等组成。必须注意两点:“热电阻和数码温度控制显示表的分度号必须一致;为了消除连接导线电阻变化的影响,必须采取三线制接法。” 2、热敏电阻:NTC热敏电阻器,具有体积小,测试精度高,反应速度快,稳定可靠,抗老化,互换性,一致性好等特点。广泛应用于空调、暖气设备、电子体温计、液位传感器、汽车电子、电子台历等领域。 3、热电偶:热电偶是工业上最常用的温度检测元件之一。其优点是: ① 测量精度高。因热电偶直接与被测对象接触,不受中间介质影响。 ② 测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③ 构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 (1).热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 (2).热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。 标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。 非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准

  • 哪些微波消解仪采用光纤温度传感器?

    荧光光纤温度传感器传感探头采用全光纤微小探头,无金属材料,具有完全的电绝缘性,不受高压、强电磁场的影响,抗化学腐蚀和无污染,而且测温探头尺寸小,柔韧性好,耐高温,可实现探头直径0.2mm~3mm,弯曲半径最小到5mm以下,使得荧光光纤测量技术可以应用在不同工作的情况下,尤其微小功能系统中和电磁干扰下的测量;测温探头可以互换,测温探头替换后不需要校正。 荧光光纤温度传感器既可以采用接触式的测量方式,也可以采用非接触式的测量方式,并可远距离传输,使传感器的光电器件脱离测温现场,避开了恶劣的环境。由于采用全光纤微小探头,无金属材料,具有完全的电绝缘性,不受高压、强电磁场的影响,抗化学腐蚀和无污染,荧光光纤温度传感器不仅限于物体表面的定向测量,其探头还可以插入固体物质中、浸入液体中或导入设备中,到达特定区域。 传感器温度探头被安放在光纤的顶端内部。使用时将光纤传感器探头直接永久安装在变压器需要测量温度的位置。传感器光纤具有高抗电流击穿和抗化学腐蚀的特性,还具有非常强的机械特性。 荧光光纤温度传感器传感探头&光纤定制考虑因素:1)测温范围;2)测温精度;3)距离(长短);4)芯径;5)光纤及探头类型

  • 简述风速传感器的应用领域以及超声波风速传感器优缺点

    简述风速传感器的应用领域以及超声波风速传感器优缺点

    风速传感器是可连续监测上述地点的风速、风量(风量=风速x横截面积)大小,能够对所处巷道的风速风量进行实时显示,是矿井通风安全参数测量的重要仪表。其传感器组件由风速传感器、风向传感器、传感器支架组成。主要适用于煤矿井下具有瓦斯爆炸危险的各矿井通风总回风巷、风口、井下主要测风站、扇风机井口、掘进工作面、采煤工作面等处,以及相应的矿产企业。然而对于气象数据的收集,通常比较受到人们的重视,所以会使用一些高精度的测量工具,当然,风速的收集工作也是如此,目前大多数的风速收集工作其实都是通过超声波风速传感器来完成的。[align=center][img=,378,267]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251531244576_3444_3345088_3.png!w378x267.jpg[/img][/align]在气象领域使用的超声波风速传感器比同类设备相比,在不同的气象环境下可以一更高的精度测量到更加准确的风速变化信息,而且在同一时间内,超声波传感器的响应时间也要高于同类设别,当需要测量周围温度的变化但又没有温度测量设备的时候,这个时候使用超声波风速传感器也可以测量到周围温度的变化,这就是超声波风速传感器的优势。但是超声波风速传感器设备其实并不是完美的,在高精度的背后,有着整体结构复杂,重量大,价格高的缺陷,这也是这种传感器一直没有被广泛使用的主要原因,不过相信随着高新技术的不断投入,这个问题早晚都会别解决。对于气象领域的监测工釆网小编推荐法国LCJ Capteurs [b]超声波风速传感器[/b] SONIC-ANEMO-MICRO[align=center][img=,292,285]http://ng1.17img.cn/bbsfiles/images/2018/01/201801251531054007_844_3345088_3.png!w292x285.jpg[/img][/align] 由于传统的风速计有旋转的机械部分使得这些移动的部分容易使得传感器损坏,因此超声波传感器的设计在于避免任何的机械部分是为了确保更可靠的操作。同时超声波传感器有着长期的稳定性而不需要维护。关于声音方面,声音则是在交叉口由流动的物体传输。传输是是由电子声学传感器(1)用超声波信号(2)在他们之间通信,沿着正交轴, 由风速(3)引起声波传输时间不同。法国LCJ Capteurs 超声波风速传感器 SONIC-ANEMO-MICRO 则是在他们之间通信传输 4 种不同的测试,然而测试得到的食量头部风用于计算。结合测量计算出风速和根据基轴计算出风向。温度测量则是用于校准。传感器的设计减小倾角的影响(4)(传感器倾角的影响能被部分校正是由于传感器空间的形状) 。此外CV7 还可以传输了4 个独立的测试数据以保证检查用于头风矢量计算的正确性,这个方法给出了 0.15m/S的风速灵敏度,卓越的线性度,可达到 40m/S。在超声波传感器的应用中,超声波风速传感器它具有重量轻、没有任何移动部件、坚固耐用的特点, 而且不需维护和现场校准,能同时输出风速和风向。客户可根据需要选择风速单位、 输出频率及输出格式。也可根据需要选择加热装置(在冰冷环境下推荐使用)或模拟输出。可以与电脑、数据采集器或其它具有RS485或模拟输出相符合的采集设备连用。如果需要,也可以多台组成一个网络进行使用。超声波风速风向仪是一种较为先进的测量风速风向的仪器。 由于它很好地克服了机械式风速风向仪固有的缺陷, 因而能全天候地、长久地正常工作,越来越广泛地得到使用。它将是机械式风速仪的强有力替代品。[b] [/b]风速的变化,往往就表现出了当前时间风力数据的变化,所以在气象、地理等领域的许多工作当中往往都会使用到风速传感器这种传感器设备,那么平时我们常见的风速传感器的应用都有哪些呢?[b] 在新型能源开发领域的应用[/b]大多数的新型能源的开发工作其实都是在比较开阔的环境中进行的,尤其是对风能和太阳能的开发领域,往往由于安装环境十分开阔,所以一些重要的设备十分容易受到风速的变化的影响,而为了避免变化的风速影响到太阳能电池板或者风电机组的正常使用,国内的新型能源开发领域风杯式风速传感器的也得到了广泛的应用。[b]在工矿领域的应用[/b]无论是煤矿还是多种金属矿业的开采过程中,往往都需要注意矿井中的一些气体成分的变化,所以大多数的矿井通常在整合了多种气体传感器设备的同时,往往会注意通风系统的运行状况,而风速传感器就是用来监测矿井内部的通风效果的,所以为了确保煤矿安全生产的正常进行,相关部门也推出了针对矿井环境必须使用风速传感器一类设备的规定。[b]塔式起重机上的应用[/b]通常,为了确保建筑工程的进行,大多数的塔式起重机通常都会安装风速传感器设备,它的存在可以让起重机在大风影响起重机工作的时候,发出报警,但是当大风已经开始影响起重机工作的时候,往往就需要注意风向的变化,这样才能针对不同风向的风做出应对措施,所以部分起重机上面已经使用了风向传感器设备。[b]煤矿上的应用[/b]安装在矿井中的通风设备,往往型号不一,而且其工作功率也有着较大的差别,所以需要使用风速传感器设备对各个通风道的风速值进行监视,防止某个位置的通风率过低而出现的有害气体浓度过高的现象出现。其实为了确保各大、中、小型煤矿生产工作安全的进行,根据相关规定,在煤矿中应该安装风速传感器设备,在每一个采矿区、翼回风巷以及总回风巷都应该设置风速传感器设备,而掘进工作面就属于采矿区的一部分,因此掘进工作面,是需要安装风速传感器的。掘进工作面更容易出现有害气体。其实在掘进面中需要安装风速传感器还有一个主要的原因,就是通常煤矿中的甲烷、一氧化碳、瓦斯等有害气体往往从掘进面出现的概率最大,甚至有些气体在地下形成的“气室”中的气体直接就是一些有害性气体,因此煤矿中需要在每个位置都安装风速传感器并连接通风设备。[b]气象上的应用[/b]在气象领域,通常需要对许多种自然现象进行观察,如风速与气象的变化,当然还有风向的变化,对于风向的测量工作,现在基本是使用风向仪或者风向传感器设备来解决这个问题。地面风向变化的测量:在沙漠、高原地区的风沙治理工作中,通常人们需要注意气流流动的速度与风向的变化,这样可以掌握到更多的气象数据,一边制定更完善的治理方案,所以在整个过程中用到风向传感器这种气象设备。海洋风暴预警:可以说海洋气象预警系统是风向传感器在气象领域重要应用之一,它为海洋气象预警系统提供的风向变化数据,是预测台风覆盖范围以及“运行”轨迹的重要参数之一。[b] [/b]

  • 微波消解 est-300温度传感器 是什么?

    cem微波消解仪 est-300温度传感器 是怎么用呀?看到炉腔底部有个好像是红外传感器,但怎么只有一个呀? 这个是红外测温吗?为什么系统不能选择 RTP-300的光纤传感器呀?请教大家。谢谢!

  • 红外温度传感器工作原理选型应用

    红外温度传感器工作原理选型应用

    [b]红外温度传感器简介[/b]红外温度传感器[color=#333333],在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0.75~100μm 的红外线,红外温度传感器就是利用这一原理制作而成的。[/color][color=#333333]温度是度量物体冷热程度的一个物理量,是工业生产中很普遍、很重要的一个热工参数,许多生产工艺过程均要求对温度进行监视和控制,特别是在化工、食品等行业生产过程中,温度的测量和控制直接影响到产品的质量和性能。[/color][color=#333333][img=,236,195]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081550_01_3332482_3.jpg!w236x195.jpg[/img][/color][color=#333333][b]红外温度传感器工作原理[/b][color=#333333]红外线[/color][color=#333333]红外线是一种人眼看不见的光线,但事实上它和其它任何光线一样,也是一种客观存在的物质。任何物体只要它的温度高于热力学零度,就会有红外线向周围辐射。红外线是位于可见光中红色光以外的光线,故称红外线。它的波长范围大致在0.75~100μm的频谱范围之内。[/color][color=#333333]红外辐射[/color][color=#333333]红外辐射的物理本质是热辐射。物体的温度越高,辐射出来的红外线越多,红外辐射的能量就越强。研究发现,太阳光谱的各种单色光的热效应从紫色光到红色光是逐渐增大的,而且最大的热效应出现在红外辐射的频率范围之内,因此人们又将红外辐射称为热辐射或者热射线。[/color][color=#333333]传感原理[/color][color=#333333]热传感器是利用辐射热效应,使探测器件接收辐射能后引起温度升高,进而使传感器中一栏与温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过赛贝克效应来探测辐射的,当器件接收辐射后,引起一非电量的物理变化,也可通过适当变化变为电量后进行测量。[/color][/color][color=#333333][color=#333333][img=,511,294]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081550_02_3332482_3.jpg!w511x294.jpg[/img][/color][/color][color=#333333][color=#333333][b]红外温度传感器选型要点[/b]主要从性能指标和环境和工作条件两方面来加以考虑。性能指标:首先就是量程也就是测温范围,选择红外温度传感器时一定要注意到它的量程,只有选择了适合的量程才能更好的测量。用户的被测温度范围一定要考虑准确、周全,既不要过窄,也不要过宽。其次是要注意传感器的尺寸,不能选择过大也不能太小,必须选择适合自己的尺寸才能更好的方便测量,量程和尺寸是选择传感器都要注意的,但是选择红外温度传感器还要确定光学分辨率、确定波长范围、确定响应时间、信号处理功能等。工作条件:红外温度传感器所处的环境条件对测量结果有很大影响,应加以考虑、并适当解决,否则会影响测温精度甚至引起测温仪的损坏。当环境温度过高、存在灰尘、烟雾和蒸汽的条件下,可选用厂商提供的保护套、水冷却、空气冷却系统、空气吹扫器等附件。这些附件可有效地解决环境影响并保护测温仪,实现准确测温。[/color][/color][color=#333333][color=#333333][img=,536,285]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081551_01_3332482_3.jpg!w536x285.jpg[/img][/color][/color][color=#333333][color=#333333][b]红外温度传感器应用[/b]非接触式温度测量红外辐射探测移动物体温度测量连续温度控制热预警系统气温控制医疗器械长距离测量[b]红外温度传感器在智能空调上的应用[/b]舒适的生活环境是我们大家共同追求的,随着电子技术的发展,科技已经改变了我们周围的生活,科技化智能化的家居生活将成为可能。空调作为重要的家电产品,其创新发展技术也在不断进步,新型的智能空调运用多种传感器技术以及新型科技技术,实现了空调健康舒适、节能环保的智能化目标。[b]红外温度传感器在智能空调上的应用[/b]传统的空调出风量和出风的位置是固定不变的,人们在房间的时候,空调的出风大小是不会改变的,这样只能固定的出风,不仅满足不了人们的需求,而且浪费电量,新型的智能传感器安装了利用红外传感器设计的动感仪,红外温度传感器感应人体活动量,按需分配风量,让不同的人各有舒适,空调上的动感仪可以对室内空间进行5区域的划分,并实时监控5个区域,并在140度的大范围实时监测和敏锐感知人体活动量并进行分区差异化按需送风,以此适应不同家庭成员的个性化使用需求,进而提高空调房间的整体舒适性。[/color][/color][color=#333333][color=#333333][img=,549,249]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081551_02_3332482_3.jpg!w549x249.jpg[/img][/color][/color][color=#333333][color=#333333][color=#333333]智能空调的动感仪由三组不同角度的红外温度感应器构成,每组动感仪有2个感应头,共有6个感应头对出风口进行智能调节风量及风向,自动识别人体位置和活动量,不断更新采集数据,智能分析数据,根据不同的人体活动量进行差异化送风,让不同活动量的人都感觉舒适,并且减少了达到人感所需温度的时间。[/color][/color][/color][color=#333333][color=#333333][color=#333333][img=,388,316]http://ng1.17img.cn/bbsfiles/images/2017/12/201712081551_03_3332482_3.jpg!w388x316.jpg[/img][/color][/color][/color][color=#333333][color=#333333][color=#333333]以上就是工采网小编今天给大家介绍的关于[/color]红外温度传感器[color=#333333]的相关知识及它的应用范围的介绍,因为红外温度传感器的使用帮助我们生产和科研的过程编的更加的简单,所以我们增加对于它的相关知识的了解是非常的有必要的,毕竟是我们经常会使用的工具。这就是今天讲解的全部内容了,希望对大家在日后的生活中能够有所帮助。[/color][/color][/color]

  • 基于温度传感器的新型多点测温系统设计

    1、温度传感器DS18B20介绍    DALLAS公司单线数字温度传感器DS18B20是一种新的“一线器件”,它具有体积小、适用电压宽等特点。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20支持“一线总线”接口,测量温度范围为-55℃~+125℃,在-10℃~+85℃范围内,精度为±0.5℃;通过编程可实现9~12位的数字值读数方式;可以分别在93.75ms和750ms内将温度值转化为9位和12位的数字量。每个DS18B20具有唯一的64位长序列号,存放于DS18B20内部ROM只读存储器中。    DS18B20温度传感器的内部存储器包括1个高速暂存RAM和1个非易失性的电可擦除E2RAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。暂存存储器包含了8个连续字节,前2字节为测得的温度信息,第1个字节为温度的低8位,第2个字节为温度的高8位。高8位中,前4位表示温度的正(全“0”)与负(全“1”);第3个字节和第4个字节为TH、TL的易失性拷贝;第5个字节是结构寄存器的易失性拷贝,此三个字节内容在每次上电复位时被刷新;第6、7、8个字节用于内部计算;第9个字节为冗余检验字节。所以,读取温度信息字节中的内容,可以相应地转化为对应的温度值。表1列出了温度与温度字节间的对应关系。    2、系统硬件结构    系统分为现场温度数据采集和上位监控PC两部分。图1为系统的结构图。需要指出的是,下位机可以脱离上位PC机而独立工作。增加上位机的目的在于能够更方便地远离现场实现监控、管理。现场温度采集部分采用8051单片机作为中央处理器,在P1.0口挂接10个DS18B20传感器,对10个点的温度进行检测。非易失性RAM用作系统温度采集及运行参数等的缓冲区。上位PC机通过RS485通信接口与现场单片微处理器通信,对系统进行全面的管理和控制,可完成数据记录,打印报表等工作。    系统各模块分析如下:    2.1DS18B20与单片机的接口电路    DS18B20与8051单片机连接非常简单,只需将DS18B20信号线与单片机一位I/O线相连,且一位I/O线可连接多个DS18B20,以实现单点或多点温度测量。DS18B20可以通过2种方式供电:外加电源方式和寄生电源方式。前者需要外加电源,电源的正负极分别与DS18B20的VDD和GND相连接。后者采用寄生电源,将DS18B20的VDD与GND接在一起,当总线上出现高电平时,上拉电阻提供电源;当总线低电平时,内部电容供电。由于采用外加电源方式更能增强DS18B20的抗干扰性,故本设计采用这种方式。在实际应用中,传感器与单片机的距离往往在几十米到几百米,传输线的寄生电容对DS18B20的操作也有一定的影响,所以往往在接口的地方稍加改动,以增加芯片的驱动能力和减少传输线电容效应带来的影响,达到远距离传输的目的。    2.2键盘及显示    键盘通过编程设置可完成以下功能:对温度值进行标定,定时显示各路的温度值,单独显示某路的温度值,给每一路设定上下限报警值等。LED则可为用户提供直观的视觉信息。在工作现场,用户可通过6位LED的显示数据来确定系统的当前工作状态以及采样的温度值信息等。    2.3报警电路    当被测温度值超过预先设定的上下限时,报警电路作出响应,蜂鸣器发出响声,告知用户温度的异常。具体哪一个传感器温度值超限,可由软件查询各DS18B20内部告警标志而确定,继而调整该现场温度,以达到对温度波动的控制。    3、软件设计及流程    3.1下位机软件    系统下位测温部分软件采用MCS51汇编语言编写,主要完成对DS18B20的读写操作,实现实时数据的采集,并获取最终温度值送至单片机内存。但需要注意的是,由于DS18B20的单总线方式,数据的读写都占用同一根线,所以每一种操作都必须严格按照时序进行。图2为测温子系统流程图。单片机首先发送复位脉冲,该脉冲使信号线上所有的DS18B20芯片都被复位,接着发送ROM操作命令,使得序列号编码匹配的DS18B20被激活。被激活后的DS18B20进入接收内存访问命令状态,内存访问命令完成温度转换、读取等工作(单总线在ROM命令发送之前存储命令和控制命令不起作用)。    3.2上位机软件    系统上位机的软件采用VC++6.0编写。主要完成的功能包括:与下位单片微机的实时通信;模拟显示各采集点温度曲线;保存各测温点温度数据;统计各采集点平均温度值;打印各点温度统计报表等。    4、结论    本系统具有如下特点:    a.结构简单,成本低廉,维护方便。    b.直接将温度数据进行编码,可以只使用单根电缆传输温度数据,通信方便,传输距离远且抗干扰性强。    c.配置灵活、方便、易于扩展。可扩展多路下位温度采集子系统,将它们通过RS485与上位PC机组网,形成多点温度采集网络。也可在各子系统中有选择性地增减温度传感器。    d.工作稳定,测温精度高。实验表明,在长达200m的一位总线上挂接24个DS18B20温度传感器,系统可正确地进行温度采集,分辨率为0.5℃。    e.适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。在大范围温度多点监控系统中具有十分诱人的应用前景。

  • 花制冰机的温度传感器的作用及温控原理

    制冰机是一种将水通过蒸发器由制冷系统冷却后生成冰的制冷机仪器。雪花制冰机的温度传感器有三个,分别设置在搅冰机构上、冷凝器上、冰桶上。 搅冰机构上的温度传感器是用来感受温度是否比较低,甚至是传动机构阻力太大,也就是说当温度比较低时,水流受阻,搅冰机构需要的扭矩变大,电机输入电流猛增,这时候需要冲冰,打开电磁阀,让压缩机的冷媒直接进入搅冰机构,而不是经过冷凝器后再进入搅冰机构,这样的一些列工作的完成是由温度传感器来检测和控制系统进行的。 在冷凝器上的温度传感器是这样工作的,当冷凝器上的温度过高时,风扇电机产生的冷却效果来不及冷却,这时候温度传感器感受到的温度过高,通过A/D转换,把模拟信号转换成数字信号,通过程序进行判断,发出指令,控制压缩机电机的继电器是否做出相应,最终控制着压缩机的工作状态。 冰桶上的温度传感器的作用是控制着冰块是否达到一定的高度,当冰块达到一定的高度后,感温传感器感受到,温度比较低时,一般设置的温度为7度,也是通过A/D模块进行模数转换,通过程序判断,作出相应的指令,指令发出,控制着整个系统的通断判断,最终控制着系统的运行与否。

  • 压差表、温度传感器、温度变送器校准问题请教

    1.目前企业有很多温度变送器、传感器(A级),想建立内校能力,考虑效率问题,不想用油槽。一般干井炉连接标准铂电阻温度计,准确度能达到0.05度,请问用这种方法是否可行?据说这种方法是没法建标的。2.压差表(2000Pa以下)大家都用什么校准,听说普通的手动微压泵很不稳定,有用过的没有,帮忙介绍下,谢谢!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制