当前位置: 仪器信息网 > 行业主题 > >

半导体射线检测

仪器信息网半导体射线检测专题为您提供2024年最新半导体射线检测价格报价、厂家品牌的相关信息, 包括半导体射线检测参数、型号等,不管是国产,还是进口品牌的半导体射线检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合半导体射线检测相关的耗材配件、试剂标物,还有半导体射线检测相关的最新资讯、资料,以及半导体射线检测相关的解决方案。

半导体射线检测相关的资讯

  • 中科院高能所研发X射线三维检测设备 可为功率半导体做“CT”
    记者27日从中国科学院高能物理研究所(中科院高能所)获悉,由该所济南研究部(济南中科核技术研究院)自主研发、可为功率半导体做“CT”(计算机断层扫描)的功率半导体封测新添“利器”——“全自动绝缘栅双极晶体管(IGBT)缺陷X射线三维检测设备”,近日在湖南株洲举行的功率半导体行业联盟第八届国际学术论坛上亮相推出,备受业界关注。中科院高能所副研究员、锐影检测科技(济南)有限公司(锐影检测)总经理刘宝东博士接受媒体采访介绍说,IGBT是一种功率半导体器件,被誉为电力电子装置的“心脏”,在高铁、新能源汽车、轨道交通、智能电网、航空航天等领域应用广泛。IGBT模块在运行过程中会产生大量的热,需要及时散掉,它通常存在两个焊料层,焊料层气孔会严重影响散热效率,可能导致重大安全事故,因此需要对气孔率严格控制。目前,常用的检测手段是超声检测,但非常容易受散热柱的干扰,导致检测偏差。同时,超声检测要将模块浸入到水中,需要隔离水的工装,还需要人工操作,检测过程复杂,难以实现在线检测,效率较低。此外,普通的二维X光成像会将IGBT模块两个焊料层混在一起,无法区分,并且有些大功率模块带有散热柱,会严重影响气孔检测的准确率。针对这些问题,中科院高能所研发团队基于10余年在大尺寸板状物三维层析成像领域的技术积累,在成功研发专用于板状古生物化石的X射线三维层析成像仪器(1.0版)基础上,面向国家重大需求的工业CT,针对集成电路先进封装的检测需求,突破一系列关键技术,研发出分辨率更高、更成熟的2.0版“全自动IGBT缺陷X射线三维检测设备”。刘宝东称,该2.0版设备依托X射线计算机层析成像技术和先进的缺陷智能检测软件算法,并将人工智能算法引入检测系统,可对不合格产品进行自动识别及分拣,为IGBT模块封测提供全自动在线无损检测解决方案,从而大大提高检测效率,保障IGBT模块的产品品质。他表示,在功率半导体封测设备研发过程中,研发团队也积累了丰富的工程化经验。而作为中科院高能所与地方合作孵化的科技成果转化企业,锐影检测为团队经验技术转化为成熟产品提供了良好平台,从而打通从技术研发到产品应用的“最后一公里”。(完)
  • 日本禁止向俄罗斯出口X射线检测设备、半导体设备等产品,自2月3日起施行
    继俄乌之间爆发最新的冲突后,日本周五加强了对俄罗斯的制裁,将系列产品列入出口禁令清单,并冻结了部分俄罗斯官员和实体的资产。据路透社报道,这一决定是在俄罗斯周四对乌克兰发动导弹袭击,造成至少11人死亡之后作出的。此前,德国和美国承诺提供坦克,帮助乌克兰对抗俄罗斯的任何新攻势。日本经济产业省在一份新闻稿中表示:"鉴于乌克兰周围的局势,为确保国际和平而努力作出贡献,日本将与其他主要国家一道实施出口禁令。”在新的制裁措施中,日本将从2月3日起禁止向俄罗斯的49个组织运送可能用于加强其军事能力的物品。该部指出,这些产品将包括从高压水枪、天然气勘探设备和半导体设备到疫苗、X射线检测设备、炸药和机器人等产品。另外,日本还将冻结俄罗斯三个实体和22名个人的资产,包括飞机公司JSC Irkut Corp、地对空导弹制造商MMZ Avangard、国防部副部长Mikhail Mizintsev和司法部长Konstantin Chuychenko,以及14名与"吞并"乌克兰东南部地区有关的亲莫斯科个人。对此,俄罗斯克里姆林宫发言人Dmitry Peskov警告称,日本从一开始就处于“不友好”国家的阵营中,这将对与日本原已"不友好"的关系造成难以估量的影响。
  • 蔡司推出半导体封装失效分析高分辨3D X射线成像解决方案
    p   新型亚微米与纳米级XRM系统及新型microCT系统为失效分析提供了灵活选择,帮助客户加速技术发展,提高先进半导体封装的组装产量。 /p p    strong 加州普莱斯顿与德国上科亨,2019年3月12日 /strong --蔡司发布了一套新型高分辨率3D X射线成像解决方案,用于包括2.5/3D与扩散型晶圆级封装在内的先进半导体封装的失效分析(FA)。蔡司X射线显微系统包括:通过亚微米级和纳米级高分辨率成像对封装产品进行失效分析的 a href=" https://www.instrument.com.cn/news/20190124/479353.shtml" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " Xradia 600 Versa系列 /span /strong /a 和 Xradia 800 Ultra X射线显微镜(XRM),以及Xradia Context microCT。随着在现有产品基础上新设备的研发推出,现如今,蔡司可以为半导体行业提供一系列3D X射线成像技术辅助生产。 /p p   蔡司制程控制解决方案(PCS)部门与蔡司SMT部门总裁Raj Jammy博士介绍说:“在170年的历史中,蔡司始终致力于拓展科学研究的疆域,推动成像技术的发展,以实现新的工业应用和技术创新。在今天的半导体行业,封装尺寸与器件尺寸越做越小,因此我们比以往任何时候都更需要新型成像解决方案,用于快速排除故障,实现更高的封装产量。蔡司很荣幸宣布推出这一新型先进半导体封装3D X射线成像解决方案,为客户提供强大的高分辨率成像分析设备,以提高失效分析准确率。” /p p    strong 先进封装技术需要新型缺陷检测与失效分析的方法 /strong /p p   随着半导体产业面临CMOS微缩极限的挑战,人们需要通过半导体封装技术弥合性能上的差距。为了继续生产更小巧、更快速、更低功耗的器件,半导体行业正在通过芯片的3D堆叠和其他新型封装方式尝试封装创新。这些创新催生了日益复杂的封装架构,带来了新的制造挑战,同时也增加了封装故障的风险。此外,由于发生故障的位置往往隐藏于复杂的三维结构之中,传统的故障位置确认方法难以满足高效分析的需求。行业需要新型技术来有效地筛选和确定产生故障的根本原因。 /p p   为满足这一需求,蔡司开发出全新3D X射线成像解决方案,提供亚微米与纳米级3D图像,显示出隐藏于完整的封装3D结构中的特性与缺陷。将样品置于系统,样品在光路中旋转,从不同角度捕捉一系列2D X射线投影图像,然后使用复杂的数学模型和算法重建3D模型。新型解决方案可以从任意角度观察3D模型虚拟切片,从而在进行物理失效分析(PFA)之前对缺陷进行三维可视化。蔡司亚微米和纳米级XRM解决方案相结合,为客户提供独特的故障分析工作流程,有助于显著提高失效分析成功率。蔡司的新型Xradia Context microCT采用基于投影的几何放大技术,在大视场中实现高衬度和高分辨率成像,而且也可以全面升级至Xradia Versa X射线显微镜。 /p p   strong  新型成像解决方案详解 /strong /p p    a href=" https://www.instrument.com.cn/news/20190124/479353.shtml" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " strong Xradia 600 Versa /strong /span /a 系列是新一代3D XRM,能够在完整的已封装半导体器件中对已定位的缺陷进行无损成像。在结构化分析和失效分析应用中,新型解决方案在制程开发、良率提升和工艺分析等方面表现出色。Xradia 600 Versa系列以屡获殊荣且具有大工作距离高分辨率(RAAD)特性的Versa X射线显微镜为基础,提供优异的成像性能,实现大工作距离下的大样品的高分辨率成像,用于为封装、电路板和300毫米晶圆生产确定产生缺陷与故障的原因。利用该解决方案,可以轻松看到与封装级故障相关的缺陷,例如凸块或微型凸块中的裂纹、焊料润湿或硅通孔(TSV)空隙。在进行物理失效分析之前对缺陷进行3D可视化处理,有助于减少伪影,提供横纵方向的虚拟切片效果,从而提高失效分析成功率。新型解决方案的主要特性包括: /p p   ◆最高空间分辨率0.5微米,最小体素40纳米 /p p   ◆与Xradia 500 Versa系列相比, 工作效率提高了两倍,且在保证高分辨率的同时,在整个kV(电压)和功率范围内保持出色的X射线源焦点尺寸稳定性与热稳定性 /p p   ◆更加简便易用,包括快速激活源 /p p   ◆可靠性测试中可实现多个位点连续成像,并能观察封装结构内部亚微米结构变化 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/fcb3b14e-afb6-4859-b117-ade3ce9e1694.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p    strong Xradia 800 Ultra /strong 将3D XRM提升至纳米级尺度,并在纳米尺寸下探索隐藏的特性,获得高空间分辨率图像的同时保持感兴趣区域的结构完整性。其应用包括超密间距覆晶与凸块连接的工艺分析、结构分析和缺陷分析,从而改进超密间距封装与后段制程(BEOL)互连的工艺改进。Xradia 800 Ultra能够对密间距铜柱微凸块中的金属间化合物所消耗焊料的结构和体积进行可视化。在成像过程中保留缺陷部位,有助于采用其他技术进行针对性的后期分析。还可以利用3D图像来表征盲孔组件(blind assemblies)的结构质量,例如晶圆对晶圆键合互连与直接混合键合等。该解决方案的主要特性包括: /p p   ◆空间分辨率150纳米与50纳米(需要制备样品) /p p   ◆选配皮秒激光样品制备工具,能够在一小时内提取完整体积(结构)样品(通常直径为100微米) /p p   ◆兼容多种后续分析方法,包括透射电子显微镜(TEM)、能量色散X射线谱(EDS)、原子力显微镜(AFM)、二次离子质谱(SIMS)和纳米探针 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/52ac92be-9189-4c80-bd09-b60d7bb9da1b.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p    strong Xradia Context microCT /strong 是一种基于Versa平台的新型亚微米分辨率3D X射线microCT系统。该解决方案用于封装产品在小工作距离和高通量下进行高分辨率成像。主要特性包括: /p p   ◆在大视场下提供大样品的全视场成像(体积比Xradia Versa XRM系统大10倍) /p p   ◆小像素尺寸的高像素密度探测器(六百万像素)即使在观察视野较大的情况下也能确保较高分辨率 /p p   ◆X射线microCT拥有空间分辨率0.95微米,最小体素0.5微米 /p p   ◆出色的图像质量与衬度 /p p   ◆可升级为Xradia Versa,实现RaaD功能,对完整大样品进行高分辨率成像 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/a444699e-2096-43cc-a3ed-3471855ecc79.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p   上海新国际博览中心即将于3月20日至22日举办中国半导体展(SEMICON China),蔡司将在展会上展示最新显微镜产品和解决方案,包括新型Xradia 600 Versa系列、Xradia 800 Ultra和Xradia Context microCT系统。如有意了解详情,您可到N2展厅2619号展位参观蔡司展品。 /p p    strong 关于蔡司 /strong /p p   蔡司是全球光学和光电领域的先锋。上个财年度,蔡司集团旗下四个部门的总收入超过58亿欧元,包括工业质量与研究、医疗技术、消费市场,以及半导体制造技术(截止:2018年9月30日)。 /p p   蔡司为客户开发、生产和分销用于工业测量与质量控制的创新解决方案,用于生命科学和材料研究的显微镜解决方案,以及用于眼科和显微外科诊断与治疗的医疗技术解决方案。在半导体行业,“蔡司”已成为世界优秀的光学光刻技术的代名词,该技术被芯片行业用于制造半导体元件。眼镜镜片、照相机镜片和双筒望远镜等引领行业潮流的蔡司产品正在全球市场热销。 /p p   凭借与数字化、医疗保健和智能生产等未来增长领域相结合的投资组合,以及强大的品牌,蔡司正在塑造光学和光电行业以外的未来。该公司在研发方面的重大、可持续投资为蔡司技术和市场成功保持领先地位和持续扩张奠定了基础。 /p p   蔡司拥有约30,000名员工,活跃于全球近50个国家,拥有约60家自有销售和服务公司、30多家生产基地和约25家开发基地。公司于1846年创办于耶拿(Jena),总部位于德国上科亨。卡尔· 蔡司基金会(Carl Zeiss Foundation)是德国最大的基金会之一,致力于促进科学发展,是控股公司卡尔· 蔡司股份公司的唯一所有者。 /p
  • SEMICON现场直击:半导体X射线缺陷检测和失效分析解决方案
    2023年6月29日,半导体和电子行业年度盛会SEMICON China 2023在上海新国际博览中心隆重举行。展会现场,无锡日联科技股份有限公司(展位号:E7507)也携最新半导体相关技术解决方案亮相E7馆。展会期间,日联科技向仪器信息网展示了他们在半导体行业的解决方案。以下是现场视频:
  • 盘点|半导体常用失效分析检测仪器
    失效分析是芯片测试重要环节,无论对于量产样品还是设计环节亦或是客退品,失效分析可以帮助降低成本,缩短周期。常见的半导体失效都有哪些呢?下面为大家整理一下:显微镜分析OM无损检测金相显微镜OM:可用来进行器件外观及失效部位的表面形状,尺寸,结构,缺陷等观察。金相显微镜系统是将传统的光学显微镜与计算机(数码相机)通过光电转换有机的结合在一起,不仅可以在目镜上作显微观察,还能在计算机(数码相机)显示屏幕上观察实时动态图像,电脑型金相显微镜并能将所需要的图片进行编辑、保存和打印。金相显微镜可供研究单位、冶金、机械制造工厂以及高等工业院校进行金属学与热处理、金属物理学、炼钢与铸造过程等金相试验研究之用,实现样品外观、形貌检测 、制备样片的金相显微分析和各种缺陷的查找等功能。体视显微镜OM无损检测体视显微镜,亦称实体显微镜或解剖镜。是一种具有正像立体感的目视仪器,从不同角度观察物体,使双眼引起立体感觉的双目显微镜。对观察体无需加工制作,直接放入镜头下配合照明即可观察,成像是直立的,便于操作和解剖。视场直径大,但观察物要求放大倍率在200倍以下。体视显微镜可用于电子精密部件装配检修,纺织业的品质控制、文物 、邮票的辅助鉴别及各种物质表面观察等领域,实现样品外观、形貌检测 、制备样片的观察分析、封装开帽后的检查分析和晶体管点焊检查等功能。X-Ray无损检测X-Ray是利用阴极射线管产生高能量电子与金属靶撞击,在撞击过程中,因电子突然减速,其损失的动能会以X-Ray形式放出。而对于样品无法以外观方式观测的位置,利用X-Ray穿透不同密度物质后其光强度的变化,产生的对比效果可形成影像,即可显示出待测物的内部结构,进而可在不破坏待测物的情况下观察待测物内部有问题的区域。X-Ray可用于产品研发,样品试制,失效分析,过程监控和大批量产品观测等,实现观测DIP、SOP、QFP、QFN、BGA、Flipchip等不同封装的半导体、电阻、电容等电子元器件以及小型PCB印刷电路板,观测器件内部芯片大小、数量、叠die、绑线情况,芯片crack、点胶不均、断线、搭线、内部气泡等封装缺陷,以及焊锡球冷焊、虚焊等焊接缺陷等功能。C-SAM(超声波扫描显微镜)无损检测超声扫描显微镜是一种利用超声波为传播媒介的无损检测设备。在工作中采用反射或者透射等扫描方式来检查材料内部的晶格结构,杂质颗粒、夹杂物、沉淀物、内部裂纹、分层缺陷、空洞、气泡、空隙等。I/V Curve量测可用于验证及量测半导体电子组件的电性、参数及特性。比如电压-电流。集成电路失效分析流程中,I/V Curve的量测往往是非破坏分析的第二步(外观检查排在第一步),可见Curve量测的重要性。I/V Curve量测常用于封装测试厂,SMT领域等,实现Open/Short Test、 I/V Curve Analysis、Idd Measuring和Powered Leakage(漏电)Test功能。SEM扫描电镜/EDX能量弥散X光仪(材料结构分析/缺陷观察,元素组成常规微区分析,精确测量元器件尺寸)扫描电镜(SEM)SEM/EDX(形貌观测、成分分析)扫描电镜(SEM)可直接利用样品表面材料的物质性能进行微观成像。EDX是借助于分析试样发出的元素特征X射线波长和强度实现的,根据不同元素特征X射线波长的不同来测定试样所含的元素。通过对比不同元素谱线的强度可以测定试样中元素的含量。通常EDX结合电子显微镜(SEM)使用,可以对样品进行微区成分分析。在军工,航天,半导体,先进材料等领域中,SEM/EDX(形貌观测、成分分析)扫描电镜(SEM)可实现材料表面形貌分析,微区形貌观察,材料形状、大小、表面、断面、粒径分布分析,薄膜样品表面形貌观察、薄膜粗糙度及膜厚分析,纳米尺寸量测及标示和微区成分定性及定量分析等功能EMMI微光显微镜微光显微镜(Emission Microscope, EMMI)是常用漏电流路径分析手段。对于故障分析而言,微光显微镜(Emission Microscope, EMMI)是一种相当有用且效率极高的分析工具。主要侦测IC内部所放出光子。在IC元件中,EHP(Electron Hole Pairs)Recombination会放出光子(Photon)。如在P-N结加偏压,此时N阱的电子很容易扩散到P阱,而P的空穴也容易扩散至N,然后与P端的空穴(或N端的电子)做EHP Recombination。在故障点定位、寻找近红外波段发光点等方面,微光显微镜可分析P-N接面漏电;P-N接面崩溃;饱和区晶体管的热电子;氧化层漏电流产生的光子激发;Latch up、Gate Oxide Defect、Junction Leakage、Hot Carriers Effect、ESD等问题Probe Station 探针台测试探针台主要应用于半导体行业、光电行业。针对集成电路以及封装的测试。 广泛应用于复杂、高速器件的精密电气测量的研发,旨在确保质量及可靠性,并缩减研发时间和器件制造工艺的成本,可用于Wafer,IC测试,IC设计等领域。FIB(Focused Ion beam)线路修改FIB(聚焦离子束,Focused Ion beam)是将液态金属离子源产生的离子束经过离子枪加速,聚焦后照射于样品表面产生二次电子信号取得电子像,此功能与SEM(扫描电子显微镜)相似,或用强电流离子束对表面原子进行剥离,以完成微、纳米级表面形貌加工。在工业和理论材料研究,半导体,数据存储,自然资源等领域,FIB可以实现芯片电路修改和布局验证、Cross-Section截面分析、Probing Pad、 定点切割、切线连线,切点观测,TEM制样,精密厚度测量等功能。失效分析前还有一些必要的样品处理过程。取die用酸法去掉塑封体,漏出die decap(开封,开帽)利用芯片开封机实现芯片开封验证SAM,XRAY的结果。Decap即开封,也称开盖,开帽,指给完整封装的IC做局部腐蚀,使得IC可以暴露出来,同时保持芯片功能的完整无损,保持 die,bond pads,bond wires乃至lead-frame不受损伤,为下一步芯片失效分析实验做准备,方便观察或做其他测试(如FIB,EMMI), Decap后功能正常。化学开封Acid DecapAcid Decap,又叫化学开封,是用化学的方法,即浓硫酸及发烟硝酸将塑封料去除的设备。通过用酸腐蚀芯片表面覆盖的塑料能够暴露出任何一种塑料IC封装内的芯片。去除塑料的过程又快又安全,并且产生干净无腐蚀的芯片表面。研磨RIERIE是干蚀刻的一种,这种蚀刻的原理是,当在平板电极之间施加10~100MHZ的高频电压(RF,radio frequency)时会产生数百微米厚的离子层(ion sheath),在其中放入试样,离子高速撞击试样而完成化学反应蚀刻,此即为RIE(Reactive Ion Etching)。 自动研磨机自动研磨机适用于高精微(光镜,SEM,TEM,AFM,ETC)样品的半自动准备加工研磨抛光,模块化制备研磨,平行抛光,精确角抛光,定址抛光或几种方式结合抛光,主要应用于半导体元器件失效分析,IC反向等领域,实现断面精细研磨及抛光、芯片工艺分析、失效点的查找等功能。 其可以预置程序定位切割不同尺寸的各种材料,可以高速自动切割材料,提高样品生产量。其微处理系统可以根据材料的材质、厚度等调整步进电动机的切割距离、力度、样品输入比率和自动进刀比率等。去金球 De-gold bump,去层,染色等,有些也需要相应的仪器机台,SEM可以查看die表面,SAM以及X-Ray观察封装内部情况以及分层失效。除了常用手段之外还有其他一些失效分析手段,原子力显微镜AFM ,二次离子质谱 SIMS,飞行时间质谱TOF - SIMS ,透射电镜TEM , 场发射电镜,场发射扫描俄歇探针, X 光电子能谱XPS ,L-I-V测试系统,能量损失 X 光微区分析系统等很多手段,不过这些项目不是很常用。芯片失效分析步骤:1、非破坏性分析:主要是超声波扫描显微镜(C-SAM)--看有没delamination,xray--看内部结构,等等;2、电测:主要工具,万用表,示波器,sony tek370a3、破坏性分析:机械decap,化学 decap芯片开封机4、半导体器件芯片失效分析 芯片內部分析,孔洞气泡失效分析(原作者:北软失效分析赵工)
  • AI驱动半导体向上 再议创新合作|第二届半导体第三方分析检测生态圈战略大会召开
    仪器信息网讯 2024年7月25日,第二届半导体第三方分析检测生态圈战略大会在苏州召开。大会由胜科纳米(苏州)股份有限公司主办,以主论坛会议、圆桌会议及专业展览的形式开展高峰对话,会议前夕举行了国际合作论坛和生态圈闭门会议。会议吸引半导体产业链上下游龙头企业负责人等500多名嘉宾出席,覆盖芯片设计、晶圆制造、设备材料、封装测试、消费终端、分析检测实验室等领域400多家国内外企业及科研院所,为半导体产业生态圈企业打开一扇观察行业标准化及差异化发展、技术创新、人才培育的活力之窗。大会现场主论坛会议上,十余位行业大咖带来了前沿的技术分享和创新发展的报告,不仅涵盖了半导体产业生态的创新发展与协同合作,还包括了第三方分析检测服务机构评价体系的构建、实验室智能化系统的应用与发展等。演讲嘉宾:胜科纳米(苏州)股份有限公司 董事长 李晓旻演讲题目:半导体行业周期和周期内的赛道轮回报告伊始,李晓旻回顾了半导体分析实验室过去40年的演变历程。各年代实验室的主要技术从最初的光学显微镜到透射电镜,再到现代失效分析综合系统的变迁,半导体分析实验室的技术发展极大提升了对纳米级芯片的观察能力。在半导体产业链专业化分工浪潮下,Labless模式应运而生。接着,李晓旻从半导体分析实验室的发展历程、半导体行业细分的要求、设备和人才痛点的需求以及分析检测赛道对半导体行业周期的判断等方面,详细阐述其首创Labless商业理念的初衷及对行业现状和未来前景的深刻见解。对于未来半导体行业的发展,李晓旻认为,人工智能将成为推动行业发展的新动力,而半导体行业也将迎来更加广阔的应用前景。此外,也强调了建立严谨的评价体系对于第三方实验室的重要性。他认为,只有通过科学的评价体系,才能确保实验室的服务质量和水平,从而推动整个行业的健康发展。最后,李晓旻表示,胜科纳米将始终关注半导体行业的发展动态和技术创新,与业界同仁共同努力,为推动我国半导体行业的进步和发展贡献力量。演讲嘉宾:中国半导体行业 资深专家 江涛演讲题目:发展新质生产力对中国半导体第三方测试机构的高标准和严要求随着人工智能技术的飞速发展,半导体行业面临着前所未有的挑战和机遇。人工智能大模型的工作特点对半导体行业提出了更高的要求。为了跟上人工智能摩尔定律的步伐,半导体行业需要持续创新,提高技术水平。此外,先进封装技术将成为半导体行业的一个重要发展方向,为半导体市场带来更多的机会和挑战。江涛表示,第三方测试行业在新的发展背景下,需要不断提升技术水平和服务质量,以支撑新质新增生产力的发展趋势。第三方测试实验室应具备智慧驱动能力,能够帮助客户解决问题,降低成本,提高效率。此外,第三方测试机构还需要具备前瞻性,能够提前预测行业发展趋势,为客户提供更有价值的服务。同时,还需要加强行业标准的制定和执行,提高整个行业的水平。在这个过程中,第三方测试机构将成为半导体行业发展的重要助力。演讲嘉宾:日立科学仪器(北京)有限公司 副董事长 佐藤贤一演讲题目:Introduction of Advanced semiconductor failure and process analysis随着半导体行业的不断发展,对故障分析和工艺控制的需求越来越高。佐藤贤一表示,为了满足客户的需求,日立科学仪器公司提供了多种先进的半导体分析设备,如OCD量测、SEM、FIB-SEM、TEM等,这些设备可以帮助客户更准确地找到故障点,提高产品质量。他认为,第三方检测机构需要不断研发新技术,提高测试精度和效率,以满足半导体行业的发展需求。关于与客户的合作模式,佐藤贤一认为,第三方检测机构应与客户建立紧密的合作关系,共同开发新技术,提高生产效率,降低成本。此外,佐藤贤一还提到了半导体行业的未来发展趋势,包括人工智能、物联网等领域的应用。并表示,日立愿意与第三方检测机构加强合作,紧跟行业发展趋势,不断提升自身能力,以共同应对未来的挑战。演讲嘉宾:新加坡工程院士、新加坡科学院士、SUTD professor YEO KIAT SENG演讲题目:Talent-The Challenge to Establish a Globally Competitive Semiconductor Industry报告主要讨论了在建立全球竞争力的半导体产业过程中,人才所面临的挑战和机遇。YEO KIAT SENG指出,半导体市场预计将以8.8%的年复合增长率增长,到2032年市场规模将超过1.3万亿美元。而智能、集成和创新将是推动半导体行业发展的关键因素。建立全球竞争力的半导体产业离不开人才的培养和发展。此外,YEO KIAT SENG强调了多学科教育的重要性,面对复杂的问题,单一学科的教育模式已经不再适用。提倡跨学科的教育模式,让学生在学习过程中接触不同领域的知识,培养创新能力和创造力。最后,YEO KIAT SENG谈到了未来工作的变化。并认为,自动化和智能机器人将取代许多传统工作,而信息和数据将成为新的货币。个人需要不断提升自己的技能,以适应未来的挑战。演讲嘉宾:青岛四方思锐智能技术有限公司 副总经理 谢均宇演讲题目:集成电路装备研发与第三方测试协同发展谢均宇表示,集成电路装备研发与第三方测试之间存在密切的协同关系。在研发过程中,测试可以帮助企业更好地了解设备的性能、结构和成分,从而提高设备的稳定性和可靠性。同时,测试还可以为企业提供有关工艺改进和创新的重要依据。通过深度合作和资源共享,双方可以实现优势互补,共同推动技术创新和产业升级。此外,谢均宇提到了公司在集成电路装备研发方面的一些突破,如公司已成功交付国内第一台高能离子注入机,并已实现批量销售。也分享了ALD设备应用、IMP工艺材料的表征需求等。演讲嘉宾:蔡司 XRM亚太应用技术专家 曹春杰演讲题目:三维无损分析在半导体领域的最新应用进展曹春杰首先介绍了三维无损分析技术在半导体领域、尤其是在结构和拓展方面的重要性。 接着,详细阐述了三维无损分析技术的原理、该技术在消费电子、封装测试等领域的应用,以及该技术的优势和特点。案例分享环节,曹春杰展示了三维无损分析技术在半导体领域的实际应用效果。提到了该技术在分析电子管道、IC结构等方面的应用,以及在故障分析和可靠性分析中的作用。最后,曹春杰介绍了蔡司公司的最新技术和产品,如630 Versa系列,以及AI技术在三维无损分析中的应用等。这些新技术也将进一步提高三维无损分析技术的性能和效率。演讲嘉宾:赛默飞世尔公司 高级业务拓展经理 曹潇潇演讲题目:标准化-加速半导体三方检测市场发展的新引擎曹潇潇在报告中强调了标准化在半导体产业中的重要性。认为标准化可以帮助企业在高速发展阶段建立共同的起跑线,提高研发效率和创新能力。此外,标准化还可以提升整个产业链的培训资源和降低错误率,确保产业链上下游站在同一水平上进行对话。接着分享了关于标准化在半导体时效分析中的具体应用。曹潇潇提到,赛默飞世尔公司在时效失效分析领域占据90%的市场份额,并提供了一套系统化的整体解决方案,希望将标准化工作进一步拓展到前端市场关系的过程中。同时也通过一些具体案例展示了标准化工作的实现。例如,在失效分析过程中,通过开发系列功能,可以实现跨平台之间的样品定位和数据的综合管理。此外,还可以实现工厂管理系统的无缝对接,提高自动化水平等。演讲嘉宾:胜科纳米(苏州)股份有限公司 前沿技术总监 乔明胜演讲题目:Labless助力半导体第三方分析检测服务机构评价体系的构建乔明胜首先介绍了半导体分析检测行业的概况,指出全球半导体第三方检测分析市场的年增长率超过10%,国内增长率更是接近20%。接着分析了国际国内实验室认证的现状。并强调,实验室认证本质上是管理体系的评价,而非技术水平的高低评价。乔明胜认为,Labless模式可以帮助企业在满足基本要求的同时,为客户提供更多的价值。并建议第三方检测机构应具备规模、技术先进性、设备能力和质量安全等方面的基本能力。他指出,目前半导体分析检测领域缺乏专门的标准体系,需要进一步完善。提出了构建半导体第三方分析检测服务机构评价体系的建议。而胜科纳米也正在完善自己的技术标准体系,以期为行业做出更多贡献。演讲嘉宾:天津三英精密仪器股份公司 董事长 须颖演讲题目:高分辨X射线三维成像技术与应用目前,通用显微成像技术如光学显微镜、扫描电镜等在分辨率上已达到一定水平,但在观察内部结构方面仍有局限。而X射线三维成像技术可以在不破坏样品的情况下,实现对样品内部结构的三维立体成像。须颖详细介绍了高分辨X射线三维成像技术的原理和特点,以及天津三英在该技术方面的工作成果。公司坚持高层面技术路线,使得公司在高分辨X射线三维成像领域具有竞争优势。须颖认为,随着工业应用的深入,客户对缺陷检测、内部结构测量等方面的需求越来越高,高分辨X射线三维成像技术在这些领域具有广泛的应用前景。天津三英也将不断完善产品线,开发针对不同类型样品的专用设备,以满足客户的需求。也坚信高分辨X射线三维成像技术将为工业检测、设计等领域带来更多的便利和价值。演讲嘉宾:IBM 科技事业部存储产品总监 周立暘演讲题目:IBM 存储,助力企业实现降本、增效、安全的数字化周立暘首先提到了数字化转型和国家半导体行业的发展,强调了数据作为新的生产要素在企业中的重要性。他表示,IBM存储产品可以帮助企业更好地管理和利用数据,实现降本增效。IBM的核心技术已经在国内半导体制造企业的MS系统中得到广泛应用,帮助企业更好地利用资产投入产生效益。在数据安全方面,介绍了IBM的High-Availability Data Replication技术,可以在短时间内恢复被勒索软件攻击篡改的数据。最后,周立暘表示,IBM希望通过存储技术和资源调度技术的结合,帮助企业在全球化国际化的环境中实现数据的优化管理和应用加速,从而助力企业实现更高的发展。演讲嘉宾:麦格昆磁 副总裁 Klaus Dittmer演讲题目:Advanced magnetic powder development and collaboration with third party analytical service providersKlaus Dittmer首先介绍了麦格昆磁公司,包括在稀土和其他关键金属领域的业务等。接着讨论了磁性粉末在永磁材料领域的重要性,并强调了磁性粉末微观结构表征的重要意义。关于如何通过精确的测量和控制来实现所需的磁性能,Klaus Dittmer介绍了扫描电镜、透射电镜、X射线衍射等几种用于表征磁性粉末微观结构的技术。在谈到与第三方分析服务提供商的合作时,Klaus Dittmer强调了成本、时间、质量和保密性等因素在选择合作伙伴时的重要性。他认为,与第三方服务提供商合作可以为公司提供更高效、高质量的分析和表征服务,同时降低成本和提高保密性。最后,Klaus Dittmer总结了麦格昆磁在磁性粉末开发与第三方分析服务合作方面的经验,强调了这种合作为公司带来的价值。演讲嘉宾:滨松光子学商贸(中国)有限公司 半导体领域负责人 王宁波演讲题目:半导体电性失效分析介绍失效分析有助于改进设计和工艺,提升产品性能。王宁波分享了失效分析的技术原理、常用的定位方法,以及在半导体制造和使用过程中的应用,如改善工艺、完善品质和提升芯片能力。最后,王宁波介绍了滨松光子公司在半导体电性失效分析领域的技术发展。包括公司在光电探测方面的专长、公司在半导体检测领域的一些新技术,如磁光电流成像、高分辨热成像和全自动探测系统等。这些技术有助于提高失效分析的精度和效率,满足半导体制造和设计工业的发展需求。圆桌会议为了进一步交流探讨,以“半导体第三方分析检测服务机构评价要素”为议题的圆桌会议压轴亮相。圆桌嘉宾从实验室基本能力、实验室服务效果以及实验室可持续发展三个维度展开深入探讨。在实验室基本能力方面,嘉宾们细致讨论了实验室建设的规模与布局、硬件设施的先进性与完备性,以及管理体系的健全程度。这些因素被普遍认为是实验室提供高质量服务的基础。实验室服务效果的议题中,服务流程的专业性、检测结果的准确性、响应时间的迅速性以及客户服务的周到性等关键指标备受瞩目。此外,信息安全也被特别提及,作为评价服务效果时不可忽视的一个维度。在实验室可持续发展方面,技术创新能力被视为推动实验室长期发展的核心动力。同时,人才培养、市场拓展策略以及行业合作与交流也被认为是实验室持续发展的重要支撑。圆桌讨论内容覆盖了半导体第三方分析检测服务机构评价的多个关键要素,旨在推动行业向更专业、更高效、更可持续的方向发展。这不仅是对当前行业现状的一次全面审视,更是对未来发展方向的一次前瞻性思考。同期展会掠影
  • 十五种分析仪器助力半导体工艺检测
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 半导体器件生产中,从半导体单晶片到制成最终成品,须经历数十甚至上百道工序。为了确保产品性能合格、稳定可靠,并有高的成品率,根据各种产品的生产情况,对所有工艺步骤都要有严格的具体要求。因而,在生产过程中必须建立相应的系统和精确的监控措施,首先要从半导体工艺检测着手。 /span /p p style=" text-align: justify text-indent: 2em " 半导体工艺检测的项目繁多,内容广泛,方法多种多样,可粗分为两类。第一类是半导体晶片在经历每步工艺加工前后或加工过程中进行的检测,也就是半导体器件和集成电路的半成品或成品的检测。第二类是对半导体单晶片以外的原材料、辅助材料、生产环境、工艺设备、工具、掩模版和其他工艺条件所进行的检测。第一类工艺检测主要是对工艺过程中半导体体内、表面和附加其上的介质膜、金属膜、多晶硅等结构的特性进行物理、化学和电学等性质的测定。其中许多检测方法是半导体工艺所特有的。 /p p style=" text-align: justify text-indent: 2em " 工艺检测的目的不只是搜集数据,更重要的是要把不断产生的大量检测数据及时整理分析,不断揭示生产过程中存在的问题,向工艺控制反馈,使之不致偏离正常的控制条件。因而对大量检测数据的科学管理,保证其能够得到准确和及时的处理,是半导体工艺检测中的一项重要关键。同时半导体检测也涉及大量的科学仪器,针对于此,对一些半导体检测的仪器进行介绍。 /p h3 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/zc/537.html" target=" _self" 椭偏仪 /a /h3 p style=" text-align: justify text-indent: 2em " 椭偏仪是一种用于探测薄膜厚度、光学常数以及材料微结构的光学测量仪器。由于测量精度高,适用于超薄膜,与样品非接触,对样品没有破坏且不需要真空,使得椭偏仪成为一种极具吸引力的测量仪器。 /p p style=" text-align: justify text-indent: 2em " 目前,椭偏仪是测量透明、半透明薄膜厚度的主流方法,它采用偏振光源发射激光,当光在样本中发生反射时,会产生椭圆的偏振。椭偏仪通过测量反射得到的椭圆偏振,并结合已知的输入值精确计算出薄膜的厚度,是一种非破坏性、非接触的光学薄膜厚度测试技术。在晶圆加工中的注入、刻蚀和平坦化等一些需要实时测试的加工步骤内,椭偏仪可以直接被集成到工艺设备上,以此确定工艺中膜厚的加工终点。 /p h3 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/zc/1677.html" target=" _self" span style=" text-indent: 2em " 四探针测试仪 /span /a /h3 p style=" text-align: justify text-indent: 2em " 四探针测试仪是用来测量半导体材料(主要是硅单晶、锗单晶、硅片)电阻率,以及扩散层、外延层、ITO导电箔膜、导电橡胶方块电阻等的测量仪器。 /p p style=" text-align: justify text-indent: 2em " 测量半导体电阻率方法的测量方法主要根据掺杂水平的高低,半导体材料的电阻率可能很高。有多种因素会使测量这些材料的电阻率的任务复杂化,包括与材料实现良好接触的问题。特殊的探头设计用于测量半导体晶片和半导体棒的电阻率。这些探头通常由诸如钨的硬质金属制成,并接地到探头。在这种情况下,接触电阻很高,必须使用四点共线探针或四线绝缘探针。两个探针提供恒定电流,另外两个探针测量整个样品一部分的电压降。通过使用所测电阻的几何尺寸来计算电阻率。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 薄膜应力测试仪 /span br/ /h3 p style=" text-align: justify text-indent: 2em " 薄膜应力作为半导体制程、MEMS微纳加工、光电薄膜镀膜过程中性能测试的必检项,其测试的精度、重复性、效率等因素为业界所重点关注。对应产品目前业界有两种主流技术流派:1)以美国FSM、KLA、TOHO为代表的双激光波长扫描技术(线扫模式),尽管是上世纪90年代技术,但由于其简单高效,适合常规Fab制程中进行快速QC,至今仍广泛应用于相关工厂。2)以美国kSA为代表的MOS激光点阵技术,抗环境振动干扰,精于局部区域内应力测量,这在研究局部薄膜应力均匀分布具有特定意义。线扫模式主要测量晶圆薄膜整体平均应力,监控工序工艺的重复性有意义。但在监控或精细分析局部薄膜应力,激光点阵技术具有特殊优势,比如在MEMS压电薄膜的应力和缺陷监控。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 热波系统 /span br/ /h3 p style=" text-align: justify text-indent: 2em " 热播系统主要用来测量掺杂浓度。热波系统通过测量聚焦在硅片上同一点的两束激光在硅片表面反射率的变化量来计算杂质粒子的注入浓度。在该系统内,一束激光通过氩气激光器产生加热的波使硅片表面温度升高,热硅片会导致另一束氦氖激光的反射系数发生变化,这一变化量正比于硅片中由杂质粒子注入而产生的晶体缺陷点的数目。由此,测量杂质粒子浓度的热波信号探测器可以将晶格缺陷的数目与掺杂浓度等注入条件联系起来,描述离子注入工艺后薄膜内杂质的浓度数值。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " ECV设备 /span /h3 p style=" text-align: justify text-indent: 2em " ECV又名扩散浓度测试仪,结深测试仪等,即电化学CV法测扩散后的载流子浓度分布。电化学ECV可以用于太阳能电池、LED等产业,是化合物半导体材料研究或开发的主要工具之一。电化学ECV主要用于半导体材料的研究及开发,其原理是使用电化学电容-电压法来测量半导体材料的掺杂浓度分布。电化学ECV(CV-Profiler, C-V Profiler)也是分析或发展半导体光-电化学湿法蚀刻(PEC Etching)很好的选择。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 少子寿命测试仪 /span /h3 p style=" text-align: justify text-indent: 2em " 载流子寿命就是指非平衡载流子的寿命。而非平衡载流子一般也就是非平衡少数载流子(因为只有少数载流子才能注入到半导体内部、并积累起来,多数载流子即使注入进去后也就通过库仑作用而很快地消失了),所以非平衡载流子寿命也就是指非平衡少数载流子寿命,即少数载流子寿命。例如,对n型半导体,非平衡载流子寿命也就是指的是非平衡空穴的寿命。 /p p style=" text-align: justify text-indent: 2em " 少子寿命是半导体材料和器件的重要参数。它直接反映了材料的质量和器件特性。能够准确的得到这个参数,对于半导体器件制造具有重要意义。少子寿命测试仪可以直接获得长硅的质量参数。 /p h3 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/zc/34.html" target=" _self" 拉曼光谱 /a /h3 p style=" text-align: justify text-indent: 2em " 拉曼光谱是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.Raman在1928年所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息并应用于分子结构研究的一种分析方法。 /p p style=" text-align: justify text-indent: 2em " 拉曼光谱在材料科学中是物质结构研究的有力工具,在相组成界面、晶界等课题中可以做很多工作。半导体材料研究中,拉曼光谱可测出经离子注入后的半导体损伤分布,可测出半磁半导体的组分,外延层的质量,外延层混品的组分载流子浓度。 span style=" text-indent: 2em " & nbsp /span /p h3 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/zc/31.html" target=" _self" 红外光谱仪 /a /h3 p style=" text-align: justify text-indent: 2em " 红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。 /p p style=" text-align: justify text-indent: 2em " 红外光谱法操作简单,不破坏样品,使其在半导体分析的应用日趋广泛。半导体材料的红外光谱揭示了晶格吸收、杂质吸收和自由载流子吸收的情况,直接反映了半导体的许多性质,如确定红外透过率和结晶缺陷,监控外延工艺气体组分分布,测载流子浓度,测半导体薄层厚度和衬底表面质量。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 二次粒子质谱 /span /h3 p style=" text-align: justify text-indent: 2em " 二次粒子质谱是借助入射粒子的轰击功能,将样品表面原子溅出,由质谱仪测定二次粒子质量,根据质谱峰位的质量数,可以确定二次离子所属的元素和化合物,从而可精确测定表面元素的组成。这是一种常用的表面分析技术。其特点是高灵敏度和高分辨率。 /p p style=" text-align: justify text-indent: 2em " 利用二次离子质谱对掺杂元素的极高灵敏度的特点,对样品的注入条件进行分析,在生产中可以进行离子注入机台的校验,并确定新机台的可以投入生产。同时,二次离子质谱对于CVD沉积工艺的质量监控尤其是硼磷元素的分布和生长比率等方面有不可替代的作用。通过二次离子质谱结果的分析帮助CVD工程师进行生长条件的调节,确定最佳沉积工艺条件。对于杂质污染的分析,可以对样品表面结构和杂质掺杂情况进行详细了解,保证芯片的有源区的洁净生长,对器件的电性质量及可靠性起到至关重要的作用。对掺杂元素退火后的形貌分析研究发现通过改变掺杂元素的深度分布,来保证器件的电学性能达到设计要求。可以帮助LTD进行新工艺的研究对于90nm/65nm/45nm新产品开发起到很大作用。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " X射线光电子能谱仪 /span br/ /h3 p style=" text-align: justify text-indent: 2em " X射线光电子能谱仪以X射线为激发源。辐射固体表面或气体分子,将原子内壳层电子激发电离成光电子,通过分析样品发射出来的具有特征能量的光电子,进而分析样品的表面元素种类、化学状态和电荷分布等信息,是一种无损表面分析技术。 /p p style=" text-align: justify text-indent: 2em " 这种技术分析范围较宽,原则上可以分析除氢以外的所有元素,但分析深度较浅,大约在25~100 Å 范围,不过其绝对灵敏度高,测量精度可达10 nm左右,主要用于分析表面元素组成和化学状态,原子周围的电子密度,特别是原子价态及表面原子电子云和能级结构。 /p h3 style=" text-align: justify text-indent: 2em " X射线衍射 /h3 p style=" text-align: justify text-indent: 2em " 当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有X射线衍射分析相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关,每种晶体所产生的衍射花样都反映出该晶体内部的原子分配规律。这就是X射线衍射的基本原理。 /p p style=" text-align: justify text-indent: 2em " 半导体制造中的大部分材料是多晶材料,比如互连线和接触孔。XRD能够将多晶材料的一系列特性量化。这其中最重要的特性包括多晶相(镍单硅化物,镍二硅化物),平均晶粒大小,晶体织构,残余应力。 /p h3 style=" text-align: justify text-indent: 2em " 阴极荧光光谱 /h3 p style=" text-align: justify text-indent: 2em " 阴极荧光谱是利用电子束激发半导体样品,将价带电子激发到导带,之后由于导带能量高不稳定,被激发电子又重新跳回价带,并释放出能量E≤Eg(能隙)的特征荧光谱。CL谱是一种无损的分析方法,结合扫描电镜可提供与形貌相关的高空间分辨率光谱结果,是纳米结构和体材料的独特分析工具。利用阴极荧光谱,可以在进行表面形貌分析的同时,研究半导体材料的发光特性,尤其适合于各种半导体量子肼、量子线、量子点等纳米结构的发光性能的研究。 /p p style=" text-align: justify text-indent: 2em " 例如,对于氮化镓单晶,由于阴极萤光显微镜具有高的空间分辨率并且具有无损检测的优点,因此将其应用于位错密度的检测已经是行业内广泛采用的方法。目前也制定了相应的标准。 /p h3 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/zc/1016.html" target=" _self" 轮廓仪 /a /h3 p style=" text-align: justify text-indent: 2em " 轮廓仪是一种两坐标测量仪器,仪器传感器相对被测工件表而作匀速滑行,传感器的触针感受到被测表而的几何变化,在X和Z方向分别采样,并转换成电信号,该电信号经放大和处理,再转换成数字信号储存在计算机系统的存储器中,计算机对原始表而轮廓进行数字滤波,分离掉表而粗糙度成分后再进行计算,测量结果为计算出的符介某种曲线的实际值及其离基准点的坐标,或放大的实际轮廓曲线,测量结果通过显示器输出,也可由打印机输出。 /p p style=" text-align: justify text-indent: 2em " 而利用先进的3D轮廓仪可以实现对硅晶圆的粗糙度检测、晶圆IC的轮廓检测、晶圆IC减薄后的粗糙度检测。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em font-size: 16px " AOI (自动光学检测) /span br/ /h3 p style=" text-align: justify text-indent: 2em " AOI的中文全称是自动光学检测,是基于光学原理来对焊接生产中遇到的常见缺陷进行检测的设备。AOI是新兴起的一种新型测试技术,但发展迅速,很多厂家都推出了AOI测试设备。当自动检测时,机器通过摄像头自动扫描PCB,采集图像,测试的焊点与数据库中的合格的参数进行比较,经过图像处理,检查出PCB上缺陷,并通过显示器或自动标志把缺陷显示/标示出来,供维修人员修整。 /p p style=" text-align: justify text-indent: 2em " 运用高速高精度视觉处理技术自动检测PCB板上各种不同贴装错误及焊接缺陷。PCB板的范围可从细间距高密度板到低密度大尺寸板,并可提供在线检测方案,以提高生产效率,及焊接质量。通过使用AOI作为减少缺陷的工具,在装配工艺过程的早期查找和消除错误,以实现良好的过程控制。早期发现缺陷将避免将坏板送到随后的装配阶段,AOI将减少修理成本将避免报废不可修理的电路板。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " ATE测试机 /span /h3 p style=" text-align: justify text-indent: 2em " 广义上的IC测试设备我们都称为ATE(AutomaticTest Equipment),一般由大量的测试机能集合在一起,由电脑控制来测试半导体芯片的功能性,这里面包含了软件和硬件的结合。 /p p style=" text-align: justify text-indent: 2em " 在元器件的工艺流程中,根据工艺的需要,存在着各种需要测试的环节。目的是为了筛选残次品,防止进入下一道的工序,减少下一道工序中的冗余的制造费用。这些环节需要通过各种物理参数来把握,这些参数可以是现实物理世界中的光,电,波,力学等各种参量,但是,目前大多数常见的是电子信号的居多。ATE设计工程师们要考虑的最多的,还是电子部分的参数比如,时间,相位,电压电流,等等基本的物理参数。就是电子学所说的,信号处理。 /p p style=" text-align: justify text-indent: 2em " 此外,原子力显微镜、俄歇电子能谱、电感耦合等离子体质谱仪、X光荧光分析、气相色谱等都可以用于半导体检测。而随着半导体制程工艺的进步,工艺过程中微小的沾污、晶格缺陷等都可能导致电路的失效等,半导体的工艺检测也凸显的越来越重要。 /p
  • 半导体行业常用的十五类材料检测科学仪器与技术盘点
    自中美贸易战以来,国家对于半导体行业的重视日渐提升。为避免关键技术被“卡脖子”,国家大力推动半导体行业的发展,先后发布了《国务院关于印发新时期促进集成电路产业和软件产业高质量发展若干政策的通知》、《关于促进集成电路产业和软件产业高质量发展企业所得税政策的公告》等政策,从财税政策、投融资政策、研究开发政策、进出口政策、人才政策、知识产权政策、市场应用政策、国际合作政策等多个层面支持国内半导体行业的自主创新。半导体材料主要包括第一代半导体材料(Si等)、第二代半导体材料(砷化镓GaAs、锑化铟InSb等)、第三代半导体材料(碳化硅SiC、氮化镓GaN、氧化锌ZnO、金刚石、氮化铝等),以及在半导体工艺环节必须用到的特种气体、靶材、光刻胶、显影液、抛光液和抛光垫、键合胶、电镀液、清洗液、刻蚀液、研磨材料、掩模版、光阻材料等。其中,大部分半导体材料依赖于对外进口,目前主要进口自美国、日本、韩国等。表1 热门半导体材料主要进口国家及地区主要半导体材料主要进口国家及地区硅片等日本、德国、韩国、美国、中国台湾砷化镓GaAs等日本碳化硅SiC等美国、欧洲特种气体美国、德国、法国、日本靶材美国、日本光刻胶中国台湾、日本、美国抛光液和抛光垫美国、日本、韩国研磨材料美国掩模版日本湿电子化学品德国、美国、日本、韩国、中国台湾光阻材料日本封装材料中国台湾半导体材料的晶体结构和缺陷杂质都将对半导体器件的性能产生较大的影响,因此半导体材料的检测对于成品质量具有至关重要的意义,以下整理了半导体检测中用到的主要科学仪器及其在半导体领域的应用。表 半导体检测仪器和用途半导体检测仪器与技术(点击下方仪器进入专场)在半导体领域的应用光学测量仪器外延层厚度测量、测定元素含量、用于高纯气体分析等电学测量仪器(四探针、三探针、扩展电阻、C-V法、霍尔测量)测量电阻率、载流子浓度、导电类型、迁移率、寿命及载流子浓度分布等X射线衍射仪缺陷及形貌观察(无损检测),检测二次缺陷的形成和消除等金相显微镜观察晶体缺陷等俄歇电子能谱表面层原子成分、含量、化学键合状态分析等二次离子质谱杂质检测等扫描电镜微区形貌观察,成分、结构分析,失效分析,缺陷检测等透射电镜半导体晶体缺陷分析等原子吸收分光光度痕量杂质检测等气相色谱气体分析高频电感耦合等离子体发射光谱微量成分分析等离子束用于分析离子注入层和外延层损伤、定位等离子探针用于薄层分析、微区分析、测量浓度分布,分析痕量杂质等电子探针成分分析等以上列举了半导体行业用到的热门半导体材料和检测仪器,日后仪器信息网也将对半导体检测解决方案进行盘点敬请期待。
  • 【第二轮通知】2024中国检测技术与半导体应用大会暨半导体分析检测仪器与设备发展论坛
    为促进半导体材料、器件和芯片领域科研院校,芯片设计、制造与封测企业,半导体分析检测仪器与设备企业,分析检测设备零部件供应企业之间的互动交流和融合创新,由国家集成电路创新中心、上海市仪器仪表行协会、财联社等主办,复旦大学光电研究院等协办的“2024 中国检测技术与半导体应用大会暨半导体分析检测仪器与设备发展论坛”第二轮通知正式发布。会议将在于7月11-13日在上海虹桥举办,欢迎广大专家学者和企业高管积极参会,企业参展交流。你将有机会与500位来自科研院所、芯片设计制造与封测企业、半导体分析检测仪器与设备企业的专家教授和企业高管,共同研判半导体检测技术的发展趋势,共同碰撞产学研合作火花,共同对接面向产业市场和科研市场的高质量合作机遇。一、会议宗旨为提高产品质量,针对先进半导体材料、薄膜、器件、芯片等工艺控制和精确测试、测量分析技术,以及创新链、供应链合作机遇,主要探讨交流:1、相关科学技术应用现状、未来去哪里、怎么去实现、有哪些障碍及具体的需求,高校科研院所和企业在专业人才培养、产学研合作、技术成果转移转化等方面如何打通双向合作通道;2、从事半导体技术研究的高校科研院所,从事半导体制造的企业,从事半导体材料制造企业的研发水平提升、产品质量提高和未来发展方向等对半导体相关分析检测仪器与设备的需求;3、半导体分析检测仪器设备及其零部件产业发展现状如何、未来的方向、怎么去实现、有哪些障碍及相应的需求,供应链上下游企业合作机遇及合作方式等。二、会议主题1、集成电路、新能源、显示、LED、汽车电子领域中先进半导体工艺、器件2、半导体材料、薄膜表征技术及其仪器,包括SEM, TEM, XPS, AFM, XRD, SIMS等3、半导体器件表征技术及其仪器,包括电学、光学、光电特性等表征及相关仪器4、半导体芯片表征技术及其设备,包括功能、性能、封装可靠性等表征及相关设备5、企业上下游供应链对接,科创型企业知识产权布局和保护6、企业与科研院所产学研合作,科研院所科研成果展示和发布三、参会人员1、利用各种物理、化学、光学、微结构、电学等技术进行半导体材料、薄膜、器件、芯片制备研究及分析检测仪器与设备研发等领域(集成电路、新能源、显示、LED、汽车电子)研究的高校科研院所课题组长、系主任、院长和学生;2、芯片设计行业、半导体材料和半导体前后道制造领域的企业管理者和技术负责人;3、半导体分析检测仪器与设备业管理者和技术负责人;4、半导体分析检测仪器与设备零部件制造企业的管理者和技术负责人。四、组织单位指导单位:中国技术创业协会、上海市经济和信息化委员会、上海市科学技术协会、上海虹桥商务区管理委员会、上海市闵行区人民政府主办单位:国家集成电路创新中心、上海市仪器仪表行业协会、财联社承办单位:复旦大学光电研究院、上海复创芯半导体科技有限公司、科创板日报、上海南虹桥投资开发(集团)有限公司协办单位:中国上海测试中心、上海市集成电路行业协会、上海市真空学会、上海电子学会智能仪器与设备专委会、上海市在线检测与控制技术重点实验室、上海理工大学光电学院、上海大学特种光纤与光接入网重点实验室、求是缘半导体联盟、复旦大学校友总会集成电路行业分会、上海段和段律师事务所特别报道:《CMG数字中国》融媒体节目支持媒体:仪器信息网、半导体综研、半导体行业联盟、上海真空学会官网、大同学吧、芯片揭秘支持期刊:半导体学报、自动化仪表五、已确认参会的专家/企业(持续更新中)六、会议信息1、会议时间:2024年7月11日-13日2、会议日程:日期时间活动议程7月11日14:00-20:00大会报到、展台布置7月12日09:00-12:00大会报告-113:30-17:30分会报告、墙报18:00-19:30晚宴、颁奖7月13日08:30-12:00分会报告、技术培训13:30-17:00大会报告-2、论坛、人才交流3、报告主题:报告主题主题一集成电路晶圆级缺陷检测技术主题二半导体封装及缺陷检测技术主题三高分辨显微技术及半导体应用主题四薄膜制备及椭圆偏振测试技术主题五X射线检测技术及半导体应用主题六光谱技术应用于半导体材料检测主题七功率器件、芯片缺陷检测技术主题八射频芯片检测及分析技术主题九半导体器件可靠性及失效分析技术主题十芯片、微纳器件形貌、热探测技术主题十一半导体光电器件、芯片检测技术主题十二AI技术应用于半导体分析检测(备注:会议议程持续更新,以现场实际安排为准)4、会议地点会议规模:500人左右会议地点:上海虹桥 新华联索菲特大酒店具体地址:上海市闵行区泰虹路666号(直线距离虹桥火车站、虹桥2号航站楼3公里)七、注册费用及报名名称费用(元/人)2024年6月25日前缴费2024年6月25日后及现场缴费会议代表23002800学生代表15001800(备注:注册费用包含大会期间的餐费、会议资料及纪念品等,不包含住宿费用)请扫描二维码 立刻在线报名请参会人员于2024年6月25日前微信扫码登记或填写附件3“会议参会回执表八、论文摘要/企业参展赞助1、会议论文摘要(详见附件1"会议论文摘要模板”)2、本次会议及论坛的参展与赞助(详见附件2"会议赞助权益清单”)(附件下载,详见文末)九、报名及赞助联系方式会议Emait:kjyzy@fudan.edu.cn院校师生报名及论文投递联系人:刘老师 139 1828 3051企业报名及赞助咨询联系人:徐老师 135 8571 1280报名缴费及发票确认联系人:王老师 178 2179 68082024中国检测技术与半导体应用大会_会议论文摘要模板_附件1.doc2024中国检测技术与半导体应用大会_会议赞助权益清单_附件2.pdf2024中国检测技术与半导体应用大会_参会确认表_附件3.docx
  • 862项标准获批,涉及半导体、化工检测和检测仪器等领域
    2020年12月25日,工信部发布《中华人民共和国工业和信息化部公告》,批准《霍尔元件 通用技术条件》等669项行业标准,批准《白云石标准样品》等76项行业标准样品,批准《高纯铝锭》等23项行业标准外文版,批准《75℃热稳定性试验仪校准规范》等94项行业计量技术规范。在669项标准中,多项标准涉及半导体行业(包括了半导体器件、半导体设备和半导体材料等方面)和多种化学品的检测。此外,94项行业计量技术规范涉及了热稳定性试验仪、便携式挥发性有机物泄漏检测仪、漆膜弯曲试验仪、漆膜附着力测定仪、直流辉光放电质谱仪、双联电解分析仪等多种分析检测仪器,相关标准如下:附件:23项行业标准外文版编号、名称、主要内容等一览表.doc94项行业计量技术规范编号、名称、主要内容等一览表.docx76项行业标准样品目录.docx669项行业标准编号、名称、主要内容等一览表.doc半导体相关标准(部分)标准号标准名称标准内容JB/T 9473-2020霍尔元件 通用技术条件本标准规定了霍尔元件的术语和定义、基本参数和符号、要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于非集成的半导体霍尔元件。JB/T 9481-2020扩散硅力敏器件本标准规定了扩散硅力敏器件的术语与定义、分类与命名、要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于半导体扩散硅力敏器件。HG/T 5736-2020高纯工业品过氧化氢本标准规定了高纯工业品过氧化氢的分型、要求、试验方法、检验规则、标志、标签、包装、运输和贮存。本标准适用于高纯工业品过氧化氢。该产品主要用于太阳能光伏行业、液晶显示器件和半导体行业制程的清洗或刻蚀,以及其他对高纯过氧化氢有需求的行业。XB/T 515-2020钪铝合金靶材本标准规定了钪铝合金靶材的要求、试验方法、检验规则与标志、包装、运输、贮存及质量证明书。本标准适用于铸造法制得的钪铝合金靶材,主要用于半导体及光电等领域。QC/T 1136-2020电动汽车用绝缘栅双极晶体管(IGBT)模块环境试验要求及试验方法本标准规定了电动汽车用绝缘栅双极晶体管(IGBT)模块环境适应性要求和试验方法。本标准适用于电动汽车用IGBT模块,其他半导体器件模块可参考使用。SJ/T 11761-2020200mm及以下晶圆用半导体设备装载端口规范本标准规定了晶圆承载器与晶圆制造/检测设备之间的机械端口要求,主要包括晶圆承载器在设备上的位置和方向。本标准适用于加工直径200 mm及以下晶圆的半导体设备装载端口。SJ/T 11762-2020半导体设备制造信息标识要求本标准规定了半导体设备制造信息标识的术语和定义、设计和原则、使用及相应的综合标签库。半导体设备制造信息标识包括半导体制造设备选择、安装、使用和维护时需要的各种类型的技术和商业信息。信息类型包括操作手册/指南、安装手册、维护手册、维护计划、备件/零部件清单、维修/故障排除手册、发行说明、培训手册等。SJ/T 11763-2020半导体制造设备人机界面规范本标准规定了半导体制造设备人机界面的术语和要求。本标准适用于半导体制造设备。SJ/T 10454-2020厚膜混合集成电路多层布线用介质浆料本标准规定了厚膜混合集成电路多层布线用介质浆料的技术要求、试验方法、检验规则、包装、贮存及运输,适用于与金、钯银导体浆料相匹配的厚膜混合集成电路多层布线用介质浆料。SJ/T 10455-2020厚膜混合集成电路用铜导体浆料本标准规定了厚膜混合集成电路用铜导体浆料的技术要求、试验方法、检验规则、包装、贮存及运输,适用于厚膜混合集成电路用铜导体浆料。化工检测相关标准(部分)标准号标准名称标准内容SH/T 1829-2020塑料 聚乙烯和聚丙烯树脂中微量元素含量的测定 电感耦合等离子体发射光谱法 本标准规定了采用电感耦合等离子体发射光谱法(ICP-OES)测定聚乙烯和聚丙烯树脂中镁(0.10 mg/kg~50.00 mg/kg)、铝(0.20 mg/kg~100.00 mg/kg)、钙(0.40 mg/kg~130.00 mg/kg)、锌(0.50 mg/kg~200.00 mg/kg)、铬(0.10 mg/kg~3.00 mg/kg)、钛(0.10 mg/kg~6.00 mg/kg)等微量元素含量的方法。 本标准适用于粉末状、颗粒状聚乙烯和聚丙烯树脂。SH/T 1830-2020丙烯腈-丁二烯橡胶中壬基酚含量的测定 气相色谱-质谱法 本标准规定了采用气相色谱-质谱法测定丙烯腈-丁二烯生橡胶中壬基酚含量的方法。 本标准适用于丙烯腈-丁二烯生橡胶,壬基酚单组分含量最低检出限为1.4mg/kg。SH/T 1831-2020丙烯腈-丁二烯橡胶中游离丙烯腈含量的测定 顶空气相色谱法 本标准规定了采用顶空气相色谱法测定丙烯腈-丁二烯生橡胶中游离丙烯腈含量的方法。 本标准适用于丙烯腈-丁二烯生橡胶,游离丙烯腈含量最低检出限为1.8mg/kg。SH/T 1832-2020异戊二烯橡胶微观结构的测定 核磁共振氢谱法 本标准规定了采用核磁共振氢谱法测定异戊二烯橡胶(IR)中顺式1,4结构(cis-1,4)、反式1,4结构(trans-1,4)和3,4结构(3,4)含量的方法。 本标准适用于异戊二烯生橡胶。SH/T 1142-2020工业用裂解碳四 液态采样法 本标准规定了采取供分析用的工业用裂解碳四以及其他碳四液态烃类样品的设备和方法。 本标准适用于采取工业用裂解碳四及其他碳四液态烃类样品。SH/T 1482-2020工业用异丁烯纯度及烃类杂质的测定 气相色谱法 本标准规定了用气相色谱法测定工业用异丁烯纯度及烃类杂质的含量。 本标准适用于纯度大于98.00%(质量分数),丙烷、丙烯、异丁烷、正丁烷、反-2-丁烯、1-丁烯、顺-2-丁烯、丙炔、1,3-丁二烯、正戊烷、异戊烷等烃类杂质含量不小于0.0010%(质量分数)的工业用异丁烯测定。SH/T 1483-2020工业用碳四烯烃中微量含氧化合物的测定 气相色谱法 本标准规定了用气相色谱法测定工业用碳四烯烃中的微量含氧化合物含量。 本标准适用于工业用碳四烯烃中微量二甲醚、甲基叔丁基醚、甲醇和叔丁醇等含氧化合物的测定,其最低测定浓度为0.0001%(质量分数)。SH/T 1492-2020工业用1-丁烯纯度及烃类杂质的测定 气相色谱法 本标准规定了用气相色谱法测定工业用1-丁烯的纯度及其烃类杂质含量。 本标准适用于纯度不小于99.00% (质量分数),丙烷、丙烯、异丁烷、正丁烷、乙炔、反-2-丁烯、异丁烯、顺-2-丁烯等烃类杂质含量不小于0.001%(质量分数),丙二烯、丙炔含量不小于2mL/m3,1,3-丁二烯含量不小于10 mL/m3或0.001%(质量分数)的工业用1-丁烯试样的测定。SH/T 1549-2020工业用轻质烯烃中水分的测定 在线分析仪使用导则本标准规定了测定轻质烯烃气体中微量水分的在线分析仪的工作原理、一般特征、分析程序和结果报告等要求的指南。本标准适用于工业用轻质烯烃中水分的测定。SH/T 1763-2020氢化丁腈生橡胶(HNBR)中残留不饱和度的测定 碘值法 本标准规定了用韦氏(Wijs)试剂测定氢化丁腈生橡胶(HNBR)残留不饱和度(即碘值)的方法。 本标准适用于氢化丁腈生橡胶。SH/T1814-2020乙烯-丙烯共聚物(EPM)和乙烯-丙烯-二烯烃三元共聚物(EPDM)中钒含量的测定 本标准规定了用分光光度法和电感耦合等离子体发射光谱法测定乙烯-丙烯共聚物(EPM)和乙烯-丙烯-二烯烃三元共聚物(EPDM)中钒含量的方法。 本标准适用于以齐格勒-纳塔型催化剂(铝-钒催化剂)生产的钒含量范围在0.5 µg/g~40 µg/g的乙丙橡胶。SH/T 3042-2020合成纤维厂供暖通风与空气调节设计规范 本标准规定了合成纤维(涤纶、锦纶、维纶、腈纶、氨纶)厂供暖、通风与空气调节设计的空气计算参数和设计要求。 本标准适用于新建、扩建和改建的合成纤维厂的生产厂房及辅助建筑物的供暖、通风与空气调节设计。SH/T 3523-2020石油化工铬镍不锈钢、铁镍合金、镍基合金及不锈钢复合钢焊接规范 本标准规定了铬镍不锈钢、铁镍合金、镍基合金、不锈钢复合钢的材料、焊接工艺评定、焊工考试、焊接工艺、焊接检验和焊后热处理要求。 本标准适用于石油化工、煤化工、天然气化工设备与管道的焊条电弧焊、钨极气体保护焊、熔化极气体保护焊和埋弧焊。SH/T 3545-2020石油化工管道工程无损检测标准本标准规定了石油化工金属管道射线检测、超声检测、磁粉检测、渗透检测、衍射时差法超声检测、相控阵超声检测和便携式荧光光谱检测的工艺要求及质量评定。本标准适用于下列管道无损检测的质量评定:1)公称厚度为2 mm~100 mm的金属管道对接焊接接头、支管连接焊接接头的射线检测与质量评定;2)公称厚度大于或等于6 mm、外径大于等于108 mm的碳钢和非奥氏体合金钢制管道对接焊接接头的超声检测与质量评定;3)铁磁性材料的表面和近表面缺陷磁粉检测与质量评定;4)表面开口缺陷的渗透检测与质量评定;5)公称厚度为16 mm~100mm、外径大于等于273 mm的碳钢和非奥氏体合金钢制管道对接焊接接头的衍射时差法超声检测与质量评定;6)公称厚度3.5 mm~60 mm、外径大于等于57 mm的碳钢和非奥氏体合金钢制管道对接焊接接头的相控阵超声检测与质量评定;奥氏体不锈钢管道对接焊接接头的相控阵超声检测与质量评定按附录M的规定进行;7)金属材料(包括熔敷金属)中金属元素的便携式荧光光谱检测。行业计量技术规范(部分)技术规范编号技术规范名称技术规范主要内容JJF(石化)030-202075℃热稳定性试验仪校准规范本校准规范适用于爆炸品分类用的75℃热稳定性试验装置的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)031-2020固体氧化性试验装置校准规范本规范适用于固体氧化性试验装置的校准,不适用于氧化性固体重量试验装置的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)032-2020易燃固体燃烧速率试验装置校准规范本校准规范适用于易燃固体燃烧速率试验装置的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)033-2020便携式挥发性有机物泄漏检测仪(氢火焰离子法)校准规范本规范适用于量程小于50000µmol/mol的便携式挥发性有机物(VOCs)泄漏检测仪(氢火焰离子法)的校准,其他相似原理和用途的仪器校准可参照本规范。其主要内容包含本规范的适用范围、引用的技术文件、计量性能、校准条件、校准方法、校准结果、校准时间间隔和不确定度评定示例等。JJF(石化)034-2020石油化工产品软化点试验仪(环球法)校准规范本规范适用于环球法测定软化点的软化点试验仪的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)035-2020漆膜弯曲试验仪(圆柱轴)校准规范本规范的校准适用于测试漆膜圆柱弯曲试验时用的漆膜弯曲试验仪。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)036-2020漆膜附着力测定仪(划圈法)校准规范本规范的校准适用于测试漆膜划圈试验用的漆膜附着力试验仪。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)037-2020橡胶门尼黏度计校准规范本规范规定了橡胶门尼黏度计的计量特性、校准条件、校准用设备及校准方法。本规范适用于橡胶门尼黏度计的校准。JJF(石化)038-2020硫化橡胶回弹性试验机校准规范本规范规定了硫化橡胶回弹性试验机的计量特性、校准条件、校准用设备及校准方法。本规范适用于硫化橡胶回弹性试验机的校准。JJF(石化)039-2020橡胶阿克隆磨耗试验机校准规范本规范适用于橡胶阿克隆磨耗试验机的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定评定示例等。JJF(石化)040-2020橡胶压缩应力松弛仪校准规范本规范适用于橡胶压缩应力松弛仪的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定评定示例等。
  • 第三方检测巨资布局半导体
    7月1日,苏州苏试试验集团股份有限公司发布“创业板向特定对象发行证券募集说明书(申报稿)”。募集说明书显示,苏试试验本次向特定对象发行股票募集资金总额不超过6亿元,主要用于扩建集成电路全产业链失效分析、宇航产品检测实验室、高端制造中小企业产品可靠性综合检测平台三个检测实验室。其中用于仪器设备购置和安装的投资金额预算近4亿元。投募项目苏试试验于2019年12月收购苏试宜特(上海)检测技术有限公司将公司可靠性试验服务的检测范围拓宽至集成电路领域,“面向集成电路全产业链的全方位可靠度验证与失效分析工程技术服务平台建设项目”的实施主体为发行人的全资子公司苏州苏试广博环境可靠性实验室有限公司。随着半导体投资金额越来越巨大、对设计失误的容忍度几乎为 0,因此必须在芯片进入量产之前、量产中,需要进行严格的验证测试,主要包括功能测试和物理验证等,通常又称为实验室测试或特性测试,这部分通常由第三方检测实验室为芯片设计公司提供服务,具体服务范围涵盖晶圆制造、集成电路(IC)设计、集成电路封装、终端产品等等。第三方半导体检测市场巨大近年来,越来越多的集成电路设计、晶圆制造企业放弃测试环节的产能扩充,而将其测试需求委托给第三方集成电路测试企业,独立的第三方集成电路测试企业正逐步成为集成电路产业链中不可或缺的一部分:一方面,第三方测试企业可以减少测试设备的重复投资,通过规模效应降低测试费用,缩减产品生产成本;另一方面,专业化分工下的第三方测试企业能够更加快速地跟进集成电路测试技术的更新,及时为集成电路设计、晶圆制造及封装企业提供多样化的测试服务。目前第三提供的检测服务通常包括可靠性分析(RA)、失效分析(FA)、晶圆材料分析(MA)、信号测试、芯片线路修改等,其中比较重要的包括可靠性分析、失效分析等。根据不同的分类标准,失效形式有多种类型,如根据电测结果,失效模式有开路、短路或漏电、参数漂移、功能失效等;根据失效原因可以分为电力过应、静电放电导致的失效、制造工艺不良导致的失效等。根据中国赛宝实验室的数据,在分立器件使用过程中的失效模式,开路、参数漂移、壳体破碎、短路、漏气的占比分别约为35%、28%、17%、15%、4%,集成电路使用过程中的失效模式,短路、开路、功能失效、参数漂移占比分别约为38%、27%、 19%、10%。失效分析主要为集成电路设计企业服务,而集成电路设计产业已成为引领中国半导体产业发展的重要环节。根据2019年中国半导体产业产值分布来看,IC设计业占比将达40.6%、IC制造占比约28.7%、IC封测占比约30.7%。根据中国集成电路设计业2019年会上发布的数据,2015-2019年中国集成电路设计企业分别为736、1362、1380、1698、1780家,年均复合增速达到24.7%,未来随着国内半导体产业的不断崛起,预计国内半导体设计企业数量仍将保持较快速增长。2019年IC设计销售收入达到3084.9亿元,同比2018年的2576.9亿元增长19.7%,在全球集成电路设计市场的比重首次超过10%。随着中国大陆半导体产业的迅猛发展,国内涌现出越来越多的上下游半导体企业,形成了一个强大的产业链,这些企业对实验室分析存在切实需求,但众多企业的需求量不足以投入百万或千万美元级的资金设立实验室和采购扫描电子显微镜等高端设备。另外,人员成本和技术门槛日益提高,在这种背景下第三方采购相关分析设备建立商业实验室应运而生。根据苏试宜特的预测,国内半导体第三方实验室检测行业未来3-5年的市场规模将达到 50亿元人民币,同时加上工业用、车用、医疗、军工电子产业上游晶圆制造到中下游终端产品验证分析的需求,估计2030年市场至少达150-200亿。相关仪器市场将爆发随着第三方半导体检测机构的兴起,IC企业的研发门槛和成本将大幅度降低,整个集成电路市场将持续发展,第三方半导体检测机构将采购大量的相关仪器设备以应对日益增长的半导体检测需求。与此同时,芯片制造生产技术快速发展迭代,新的技术对检测仪器设备提出了多样化需求,第三方检测机构需要不断进行仪器设备的更新换代,这将进一步促成相关仪器市场爆发。相关的检测项目如下:广义检测设计前道:晶圆生产中道:晶圆制造后道:晶圆封测切磨抛离子注入扩散镀膜抛光刻蚀曝光清洗第三方检测验证测试(可靠性分析、失效分析、电性测试、电路修改)WAT测试CP测试FT测试缺陷检测surface scan无图形缺陷检测有图形缺陷检测review SEME-Beam掩模版检测残留/沾污检测量测wafer-sites膜厚四探针电阻膜应力掺杂浓度关键尺寸套准精度几何尺寸测量测试有效性验证:对晶圆样品、封装样品有效性验证WAT测试:硅片完成所有制程工艺后的电性测试功能和电参数性能测试:CP测试(封装前)、FT测试(封装后)本次苏试试验集成电路检测的采购清单如下:序号设备/软件名称数量(台/套)总价(万元)1聚焦离子束11,4002双束聚焦离子束11,1003穿透式电子显微镜12,8004双束电浆离子束11,5005X 射线光电子能谱11,1006飞行时间二次离子质谱仪11,1007俄歇电子能谱仪17708傅立叶红外光谱仪12409超声波扫描显微镜246010超声波切割系统120011扫描电子显微镜21,60012粒子研磨系统115013立体显微镜428014阻抗测试仪115015奈米探针测试11,20016原子力显微镜1280173D 断层扫瞄11,00018多管脚集成电路耐静电测试22,60019集成电路耐静电测试21,40020多管脚集成电路自身充放电测试228021电压/电流检测仪228022雷射打标机12023离子蚀刻机18024老化系统超大功率21,68025老化系统中大功率21,20026低温老化系统中大功率132027老化系统多电源中大功率240028高加速应力测试系统中小功耗18029快速温变试验箱214030导通电阻评估系统15031老化系统中低功耗130032潮湿敏感度模拟设备回流焊14033高温反偏老练检测系统26034高温反偏老练检测系统25035高温高湿反偏老练检测系统210036间隙寿命老练检测系统216037高温反偏老练检测系统12038分离器件综合老练检测系统12039DC/DC 电源高温老练检测系统15040三端稳压器高温老练检测系统13041电容器高温电老练检测系统12542集成电路高温动态老练检测系统12543继电器都通测试仪11044颗粒碰撞噪声检测仪13545氦质谱检漏仪15046氦气氟油加压检漏装置19047数字电桥1248绝缘电阻测试仪1249漏电流测试仪1250耐电压绝缘测试仪1251温湿度偏压测试系统210052高加速温湿度偏压测试系统222053高低温实验/湿度循环/储存测试系统324054液态高低温冲击测试系统216055翘曲实验系统126056物理尺寸量测设备17057半导体分立器件测试系统(含自检模块)13258继电器综合参数测试仪14559混合信号测试仪112060超大规模集成电路测试系统15561电源模块测试系统15062Tester Handler113463数位模拟混合信号 IC 测试系统15064大规模数字集成电路 ATE 测试机140065冷却水塔16066空压机14067制水机14068空调系统120069环保设备23070环保设备12071设计软件19072信息管理软件190
  • 半导体工艺监测中的光谱应用,助力提升芯片质量和产量
    根据检测工艺所处的环节,IC集成电路检测被分为设计验证、前道量检测和后道检测。前道量测、检测均会用到光学技术和电子束技术,其中光学量测通过分析光的反射、衍射光谱间接进行测量,其优点是速度快、分辨率高、非破坏性。后道检测工艺是芯片生产线的“质检员”,根据工艺在封装环节的前后顺序,后道检测可以分为CP测试和FT测试。在以上测试中,光谱仪可以用于膜厚测量、蚀刻终点监控等工艺中。(1)膜厚测量半导体集成电路的生产以数十次至数百次的镀膜、光刻、蚀刻、去膜、平坦等为主要工序,膜层的厚度、均匀性等直接影响芯片的质量和产量,在加工中必须不断地检测及控制膜层的厚度。光学薄膜测厚仪是半导体生产流程中必不可少的设备之一,用于对芯片晶圆及相关半导体材料的镀膜厚度等进行检测。半导体光学薄膜测厚仪技术主要有光谱反射仪和椭偏仪两种。椭偏仪考虑了光的极化,采用P波和S偏振反射光之间的相位差异,适用于非常薄的薄膜,并可直接测试N,K值。光谱反射仪虽然没有椭偏仪的这些性能,但也能测量数纳米以下的薄膜厚度,测量精度高,而且测量速度较快。基于光波的干涉现象,光束照射在薄膜表面,由于入射介质、薄膜材料和基底材料具有不同的折射率值和消光系数值,使得光束在透明/半透明薄膜的上下表面发生反射,反射光波相互干涉,从而形成干涉光,这些干涉光在不同相位处的强度将随着薄膜的厚度发生变化。通过对干涉光的检测,结合适当的光学模型即可计算得到薄膜的厚度。海洋光学(OceanInsight)膜厚仪检测系统,配置有采样平台、UV-VIS反射探头,配置如下。图1:薄膜厚度测量系统配置(2)终点监控在基于等离子体的蚀刻工艺中,等离子体监测对工艺控制很重要。晶圆是用光刻技术制造和操作的,蚀刻是这一过程的主要部分,在这一过程中,材料可以被分层到一个非常具体的厚度。当这些层在晶圆表面被蚀刻时,等离子体监测被用来跟踪晶圆层的蚀刻,并确定等离子体何时完全蚀刻了一个特定的层并到达下一个层。通过监测等离子体在蚀刻过程中产生的发射线,可以精确跟踪蚀刻过程。这种终点检测对于使用基于等离子体的蚀刻工艺的半导体材料生产至关重要。等离子体监测可以通过灵活的模块化设置完成,使用高分辨率光谱仪,如海洋光学的HR或Maya2000Pro系列(后者是检测UV气体的一个很好的选择)。对于模块化设置,HR光谱仪可以与抗曝光纤相结合,以获得在等离子体中形成的定性发射数据。从等离子体室中形成的等离子体中获取定性发射数据。如果需要定量测量,用户可以增加一个光谱库来比较数据,并快速识别未知的发射线、峰和波段。图2:模块化的光谱仪设置可以配置为真空室中的等离子体测量。图3:通过真空室窗口测量氩气等离子体的发射。紫外-可见-近红外光谱是测量等离子体发射的有力方法,以实现元素分析和基于等离子体过程的精确控制。这些数据说明了模块化光谱法对等离子体监测的能力。Maya2000Pro在紫外光下有很好的响应。另外,光谱仪和子系统可以被集成到其他设备中,并与机器学习工具相结合,以实现对等离子体室条件更复杂的控制。在半导体领域中的光谱应用是海洋光学的未来业务侧重点之一。从OceanOptics更名为OceanInsight,也是海洋光学从光谱产品生产商转型为光谱解决方案提供商战略调整的开始。海洋光学不仅继续丰富扩充光传感产品线,且增强支持和服务能力,为需要定制方案的客户提供量身定制的系统化解决方案和应用指导。作为海洋光学官方授权合作伙伴,爱蛙科技(iFrogTechnology)致力于与海洋光学携手共同帮助客户面对问题、探索未来课题,为打造量身定制的光谱解决方案而努力。本文资料来源-海洋光学/编辑整理-爱蛙科技关于海洋光学海洋光学(OceanInsight)作为世界领先的光学解决方案提供商,应用于半导体、照明及显示、工业控制、环境监测、生命科学生物、医药研究、教育等领域。其产品包括光谱仪、化学传感器、计量检测设备、光纤、透镜等。作为光纤光谱仪的发明者,如今海洋光学在全球已售出超过40万套的光纤光谱仪。关于爱蛙科技爱蛙科技(iFrogTechnology)是海洋光学官方授权合作伙伴,提供光谱分析仪器销售、租赁、维护,以及解决方案定制、软件开发在内的全链条一站式精准服务。
  • 半导体检测赛道迎机遇!第五届纳博会分析测试应用论坛召开
    仪器信息网讯 2023年3月1日,由中国微米纳米技术学会、中国国际科学技术合作协会、国家第三代半导体技术创新中心(苏州)主办,苏州纳米科技发展有限公司承办的第十三届中国国际纳米技术产业博览会在苏州国际博览中心迎来盛大开幕!大会开幕式现场本届纳博会为期三天,聚焦微纳制造(MEMS)、第三代半导体、纳米新材料、柔性印刷电子、纳米压印、分析测试、纳米大健康等热门领域,汇聚众多全球顶级专家、行业领军,以1场大会主报告、11场专业论坛、344场行业报告、22000平米展览、2场大赛为主体,“会、展、赛、奖、发布”五位一体,邀请国内外院士19人,参会参展的纳米技术相关企业超两千多家,参会参展嘉宾总人数将达两万余人。3月2日,作为十一个分论坛之一,第五届纳博会分析测试应用论坛如期召开,该论坛由胜科纳米(苏州)股份有限公司、中国半导体行业协会MEMS分会、苏州纳米科技发展有限公司共同主办,赛默飞世尔科技、日立科学仪器(北京)有限公司、卡尔蔡司(上海)管理有限公司、牛津仪器科技(上海)有限公司、仪器信息网共同协办。论坛围绕集成电路及元器件失效分析和材料分析表征,先进封装和复杂芯片的故障分析方案,Labless商业模式变革等主题,邀请11位国内外半导体领域的专家、学者、企业家分享相关的分析测试技术进展,探讨半导体分析测试行业发展与趋势。以下为论坛精彩分享摘要,以飨读者。分析测试应用论坛现场胜科纳米 (苏州) 股份有限公司公共关系副总裁 邵宏伟 主持会议胜科纳米 (苏州) 股份有限公司董事长 李晓旻 致欢迎辞并分享报告报告题目:企业家的预见性--从分析检测赛道看半导体行业周期胜科纳米是世界顶尖的第三方分析实验室,为集成电路行业提供一站式失效分析、材料分析、产品开发和质量保证服务,服务全球客户已超2400家,并深度参与到整个全产业链的生产研发活动。此背景下,胜科纳米创始人李晓旻拥有了俯视产业的视角,曾提出Labless商业理念,多次准确预判半导体行业周期。敬畏行业周期性,报告中李晓旻从独特视角、结合二十余年的从业经验,分享了从分析检测赛道对半导体行业周期的判断,分别对近年来“芯片荒”、“低端芯片内卷,高端芯片稀缺”、“行业细分”等预判进行了探讨与延伸。最后认为,半导体已真正进入性价比时代,一切能够提升芯片性价比的赛道将成为下一周期。胜科纳米一直致力于提升整个半导体行业性价比,其正向发展走势与周期必然性一致。报告人:湖南越摩先进半导体有限公司CEO 谢建友报告题目:SiP先进封装行业的技术现状及发展趋势 (线上)SiP封装技术的发展是摩尔定律得以延续的主要技术路径。谢建友报告表示,随着晶圆技术的“瓶颈”化和成本的提高,封装技术会承担越来越最重要的作用和提供更高的价值。计算、移动通讯 (5G)的持续发展需要封装技术的不断创新、发明、优化来满足持续增长的性能需求和成本的降低。而Chiplet、2.5D/3D等广义上的 SiP,新兴的材料,设备,工艺是未来封装界需要侧重开发的领域。报告人:上海光源中心副主任 李爱国报告题目:集成电路器件同步辐射无损表征方法上海光源装置由一台150MeV电子直线加速器、一台全能量增强器、一台3.5GeV储存环和众多光束线站组成,一期总投资14.3亿元,2009年5月对用户开放。目前正在建设二期线站工程,总投资16.7亿元,将在2023年中全部对用户开放。李爱国报告分享了同步辐射无损表针技术在集成电路器件领域的应用及展望,发展高精度同步辐射无损表征技术可以实现集成电路的sub-7nm缺陷的快速无损成像检测,同时,同步辐射能为集成电路芯片的生产流程优化、失效机理分析和设计验证提供有效支撑。报告人:蔡司显微镜业务拓展经理 黄承梁报告题目:化合物半导体的先进失效分析技术黄承梁介绍了蔡司显微镜多尺度表征解决方案在化合物半导体先进失效分析中的应用与案例。应用涵盖芯片、外延、设计、制造、封装等环节,对应相关蔡司技术包括光镜、扫描电镜-阴极发光、ECCL、FIB、XRM、LM等。供应商颁奖典礼(最佳用户体验奖-牛津仪器,最佳设备质量奖-日立科学仪器,最佳技术合作奖-蔡司,最佳服务质量奖-赛默飞)圆桌会议圆桌会议环节,由胜科纳米公共关系副总裁 邵宏伟主持,分别邀请南开大学讲席教授罗锋、胜科纳米董事长李晓旻、中国科学院半导体研究所教授级高级工程师钮应喜、赛默飞半导体中国区高级商务总监朱雪雁等,围绕半导体分析测试领域发展的多方合作、分析测试技术如何应对半导体快速发展的需求、高端试片制备技术发展、半导体测试领域人才短缺等话题进行了逐一探讨交流。报告人:南开大学讲席教授 罗锋报告题目:半导体分析检测设备在3nm以下IC工艺节点中的挑战与机遇罗锋在报告中表示,立足研发是实现我国芯片的自主可控必由之路,材料和加工工艺与装备是最大瓶颈,而对应测试与检测设备是检验设备性能可靠性的必要手段和提升其性能的指导工具。接着分享了围绕面向3nm以下工艺节点的IC关键工艺与装备,其团队的开展的相关研究与代表性成果,包括研发4D电与超快阴极荧光系统、开展金属氧簇型EUV光刻材料研究、研发桌面型高能自由电子激光器、自研原子层沉积/刻蚀技术与装备、集成电路表面分析与表面处理装备开发等。报告人:国家纳米科学中心研究员 葛广路报告题目:纳米材料测试标准葛广路分享了纳米材料分析测试的挑战及纳米材料测试标准情况,关于相关测试标准展望,葛广路认为,已发布的检测标准用于基础研究和技术研发中的数据比较,尚不能支撑市场监管和高端应用。下一步关注基质中纳米材料的检测,和器件中纳米性能的评估。同时呼吁打通壁垒,形成国家、行业、地方、团体标准的完善体系,建立国内纳米测量比对实验的组织机制,提升标准质量。报告人:赛默飞世尔科技EFA商务拓展经理 唐涌耀报告题目:提高失效分析成功率-赛默飞整体解决方案助你一臂之力唐涌耀首先介绍了失效分析流程和电性失效定位方法,接着围绕“分析方法原理、EFA基本原理原则与流程、分析方法的限制/极限/应用范围”等,依次分享了赛默飞整体解决方案,相关技术包括LIT、PFIB、Nanoprobing、FIB、SEM/TEM等。报告人:牛津仪器科技(上海) 有限公司应用科学家 马岚报告题目:牛津仪器半导体显微分析技术进展马岚报告主要介绍了牛津仪器旗下材料分析业务(MAG)在半导体显微分析技术方面的进展,相关技术主要包括纳米分析(EDS, EBSD, WDS, OP)、共聚焦拉曼成像显微镜、原子力显微镜等,并分别列举了每种技术在半导体显微分析方便的最新应用案例。报告人:日立科学仪器 (北京) 有限公司经理 张希文报告题目:日立电镜产品助力最先进半导体产业日立在半导体领域可以提供全面设备技术,张希文报告主要介绍了其中电镜技术在半导体产业中的最新应用进展,并分别详细介绍了日立优势产品冷场发射扫描电镜SU8600/SU9000、球差校正透射电镜HF5000、纳米探针NP8000等产品技术的最新应用案例与优势。报告人:中国科学院半导体研究所教授级高级工程师 钮应喜报告题目:碳化硅缺陷表征以及其对器件性能的影响钮应喜报告首先介绍了碳化硅的缺陷,以及缺陷对器件性能的影响,接着表示,随着碳化硅的技术发展、成本进一步降低,在终端应用市场的渗透率进一步提升,尤其在新能源汽车领域。在各个工艺环节中还存在很多缺陷,影响性能、合格率、可靠性,还需持续改进,尤其上下游的协同作用。报告人:胜科纳米 (新加坡) 副总裁 华佑南报告题目:X-射线能谱 (EDS)、X-射线光电子能谱 (XPS) 和俄歌电子能谱 (AES) 分析技术研究和在半导体芯片设计、晶圆制造和先进封装中的应用(线上)华佑南在报告中探讨了X-射线能谱(EDS)、X-射线光电子能谱(XPS)和俄歇电子能谱(AES)三种分析技术。提出了“EDS清洁是不清洁的,Auger清洁则是清洁的”的分析概念。确定了“EDX不能用来检测一个正常铝焊盘上的氟污染水平,必须应用俄歇电子能谱(AES)来检测。通过一些应用实例,对三种分析技术的优缺点做了比较。帮助失效分析和质量管理人员选择合适的分析技术,提高材料分析和失效分析的准确度和精度,和提升半导体产品的良率和可靠性。
  • 欧姆龙开发出30秒快速检测半导体芯片的设备
    日本医疗保健设备和工厂自动化供应商欧姆龙公司正将目光投向利润丰厚的芯片制造设备市场,以推动未来的增长。欧姆龙将于明年春季推出一款X射线扫描仪,将更好地检测先进半导体制造中的缺陷,并提高全球芯片制造商的产量。VT-X950设备将生成具有足够分辨率的芯片3D图像,以识别1nm尺度的缺陷,至少比当前一流的硅制造技术领先一代。由于每次扫描仅需30秒,芯片制造商近乎实时地监控生产情况,并更有效地进行调整和修正。对于台积电和三星电子等制造商来说,良率(即每个硅片生产的无缺陷芯片的比例)是受到密切关注的指标——它影响着每家公司的成本和完成客户订单的速度。欧姆龙检查系统总经理Kazuhisa Shibuya表示:“半导体行业的需求趋势是小批量生产更多种类的芯片,但如果没有实时CT扫描,这在经济上是不可行的。”CT(计算机断层扫描)是医疗诊断的支柱,也已经成为芯片制造中重要的质量控制工具。拥有90年历史的欧姆龙,其8760亿日元(59亿美元)年收入的一半以上来自工厂自动化产品,该公司于2012年发布VT-X900,首次进入半导体供应链。Kazuhisa Shibuya表示,这仍然是其业务的一小部分,主要局限于几家主要芯片制造商。Kazuhisa Shibuya认为,随着芯片变得越来越复杂、制造成本越来越高,需求将会增长。在仅仅几平方厘米的区域内,制造商需要编写比人的头发还细的金属线,并沉积数千个纳米级焊料凸点。将晶体管堆叠成三维结构的新技术——例如台积电和三星的(GAA)环栅架构——提高了精度要求。Omdia分析师Akira Minamikawa表示:“半导体制造过程中对CT扫描的需求非常迫切。随着行业追求芯片缩小和Chiplet(小芯片)技术,所需的键合技术水平飙升,特别是在过去几年。”当今需求最大的芯片是英伟达的顶级人工智能(AI)加速器,但台积电先进封装的生产能力却遇到了瓶颈。在这种情况下,质量控制和产量提高变得至关重要,因为微小的偏差都可能使售价数万美元的芯片变得一文不值。对制造出来的芯片进行X射线检查可以帮助检测缺陷,并允许工人根据需要微调流程。索尼集团此前表示,其最新智能手机摄像头传感器的量产遇到了麻烦,最终导致该公司的营业利润前景下降了15%。一般来讲,芯片制造商依靠所谓的功能测试来判断设备是否能按设计运行。CT也已被使用,但速度要慢得多:从生产线拾取样品单元,在单独的房间进行X射线检查,每次可能需要长达一个小时。东洋证券分析师Hideki Yasuda表示,对速度更快的检查设备的需求将急剧增加。尖端芯片制造的成本将要求更多的实时监控,以最大限度地减少硅浪费。Kazuhisa Shibuya表示,欧姆龙的CT扫描仪是芯片制造商在其装配线上安装的唯一现实选择,因为没有其他设备可以实时生成高质量的CT图像。与欧姆龙之前的型号相比,最新型号将扫描时间缩短了一半。
  • 基于光电晶体管架构的X射线直接探测器研发成功
    中国科学院深圳先进技术研究院先进材料科学与工程研究所材料界面研究中心副研究员李佳团队,中科院院士、西北工业大学教授黄维团队,以及深圳先进院生物医学与健康工程研究所生物医学成像研究中心合作,首次将具有内部信号增益效应的异质结光电晶体管用于X射线直接探测器,实现了超灵敏、超低辐射剂量、超高成像分辨的X射线直接探测。相关研究成果以Ultrathin and Ultrasensitive Direct X-ray Detector Based on Heterojunction Phototransistors为题,发表在Advanced Materials上。   当前,X射线直接探测器多采用反向偏置二极管结构(图1a)。这类器件普遍缺乏内部信号增益效应或增益较低,这意味着没有足够的信号补偿方案来补充载流子复合过程中湮灭的电子-空穴对。因此,这类设备的光-电转化效率较低,且需要使用高质量和高度均匀的X射线光电导材料(Photoconductor)以保证有效的电子-空穴的产生和传输,这对探测器性能的进一步提升设定了难以突破的上限,也增加了材料、器件制备的复杂性和成本。   科研团队在前期研究的基础上(Advanced Materials, 31,1900763,2019),提出异质结X射线光电晶体管(Heterojunction X-ray Phototransistor)这一新型器件概念,首次将具有内部信号增益效应的异质结光电晶体管引入X射线直接探测。光电晶体管是三电极型光电探测器,其沟道载流子密度可通过调控栅压和入射光子进行有效调制,从而结合了晶体管和光电导的综合增益效应,如图1b所示。将这种高增益机制引入X射线探测器可以对光生电流进行放大,并使外量子效率远超过100%,进而实现超灵敏的X射线直接探测。本工作中,研究团队设计了由钙钛矿光电导材料与有机半导体沟道材料组成的异质结光电晶体管,实现了高效的X射线吸收,获得了快速的载流子再注入与循环,导致高效的载流子产生、输运与巨大的信号增益效应,使X射线直接探测灵敏度达到109μCGyair-1cm-2(图2c),最低可检测剂量率低至1 nGyair s-1。同时,探测器具有较高的成像分辨率(图2e)——X射线成像调制传递函数(MTF)在20%值下显示每毫米11.2线对(lp mm-1),成像分辨率高于目前基于CsI:Tl的X射线探测器。   高增益异质结X射线光电晶体管为高性能X射线直接探测与成像开辟了新机遇,并体现出超灵敏、超低检测限、高成像分辨率、轻量、柔性(图2d)、低成本等优点,在医学影像、工业检测、安检安防、科学设备等领域具有广阔的应用前景。该成果将激发科研人员开发各种高增益器件以实现直接探测不同类型高能辐射的研究动力。   研究工作得到国家自然科学基金、深圳市科技计划等的资助。图1.a、传统X射线探测器中,间接探测(左)使用闪烁体材料与光电二极管可见光探测器相互集成,X射线通过闪烁体材料转换为可见光,可见光由光电二极管探测器探测;直接探测(右)使用如非晶硒等半导体材料,半导体吸收X射线后直接产生电子-孔穴对,在半导体材料上施加高电场,分离和收集电子-空穴对;b、X射线光电晶体管结构,异质结中电子-空穴对产生(1)、分离(2)、电子捕获/空穴注入(3)和空穴再循环(4)产生高增益效应的过程图示图2.a、X射线光电晶体管器件结构;b、X射线探测的时间响应;c、X射线辐照下探测器灵敏度随栅压的变化关系;d、柔性X射线光电晶体管器件;e、金属光栅的光学显微照片(上)与X射线成像图(下),scale-bar为200微米;f、X射线光电晶体管的MTF曲线
  • 半导体缺陷检测对工业CT需求上涨,国产三维CT正摆脱进口依赖——访丹东奥龙项目应用总监陈立明
    2024年3月20日至22日,备受瞩目的SEMICON China 2024在上海新国际博览中心隆重举行。作为全球规模最大、规格最高、最具影响力的展会,有1100家企业参展,覆盖芯片设计、制造、封测、设备、材料、光伏、显示等产业链,是半导体行业的开年盛会。展会期间,仪器信息网有幸采访到了丹东奥龙X射线仪器集团有限公司项目应用总监陈立明老师。在采访中,陈老师就奥龙集团在半导体量测或缺陷检测等方面的发展现状、奥龙在近年取得的成绩以及2024年的发展规划、半导体量测和晶圆缺陷检测设备在未来国际竞争中的发展趋势等话题进行了深入交流。以下是现场采访视频: 仪器信息网:本次是贵公司第几次参加Semicon China,参会感受如何?陈立明老师:我们奥龙集团每一届都会参加,展会很好,展会上我们结交了很多新朋友新客户,通过展会让我们和新老客户有一个更多的交流的机会。仪器信息网:本次参会,贵公司带来了哪些半导体量测或缺陷检测等方面的解决方案或产品?其采用的主要原理或技术有哪些,有哪些创新?陈立明老师:本次我们奥龙集团带来了最先进的快速扫描的桌面型微焦点CT,新款的x射线晶体定向仪和荧光光谱仪。专门为半导体系统开发的这种桌面型的微焦点CT,具有精度高,能达到一个面的这种检测精度,满足了晶圆等半导体这种的检测的精度。该产品具有使用快捷,采集速度快等特点,可以实现便携移动式使用。晶体定向仪,可以根据客户的需求进行差异化定制,能解决客户晶圆角度偏差的这种问题。仪器信息网:相关产品主要有哪些具体的应用?解决了用户的哪些痛点?陈立明老师:用户在多层线路板焊接后,如果用二维检测会影响检测的效果,而三维检测就能解决在多层线路板中检测的这种问题。仪器信息网:相比于其他量检测技术有哪些优势和特点?在与竞争对手的较量中,贵公司如何保持自己的差异化优势?陈立明老师:奥龙集团是最早投入3D检测的这种民营企业,公司承担了国家科技部多模式成像系统的项目研发,完成实现了国产化软件的控制。尤其自主开发的这种平面CT,为晶圆线路板的检测提供了有力的技术支持。我公司对于高端X射线技术,每一年的研发投入都在不断的提升,工业CT产品每一年都有新产品的推出。 仪器信息网:您认为当前半导体行业对量测和缺陷检测设备的最大需求是什么?陈立明老师:作为X射线检测技术,奥龙集团作为承载着中国X射线60年的这种研发历史的企业,立足于三维CT产品的国产化的开发,目前大部分企业使用的还是进口设备,而我公司研发的这种开放式射线管解决了用户依靠进口机器的这种瓶颈。仪器信息网:贵公司在过去一年中,在中国市场取得了怎样的成绩?在2024年又有哪些战略或市场规划?陈立明老师:过去一年奥龙集团成绩很喜人,业绩较比同行业有较高的数据增长,高端设备的开发、自动化检测发布力度也进行了加大,让机械机器代替人工进行无损检测,还有人工智能投入也比较比前几年也有很大的提高。仪器信息网:近年来,中美科技战愈演愈烈,特别是美日荷出口半导体设备的管制越来越严。面对全球市场的变化,贵公司有哪些长远的战略规划?陈立明老师:首先面对这种国际形势,我们奥龙集团在软件方面实现了自主研发国产化,在XRD、XRF这种设备中控制软件全部国产的自主化,硬件部分采用了国产的自主品牌。仪器信息网:根据您的观察和分析,您认为未来半导体量测和晶圆缺陷检测设备市场将呈现哪些趋势?陈立明老师:结合着奥龙集团近几年销售产品的这种情况,我们综合分析产品趋势呈上升趋势。我公司近几年销售的 X射线定向仪和衍射仪销量呈上涨趋势,设备的销售预示着该行业需求会越来越大,未来市场也会更大,机遇也会更多,晶圆缺陷使用无损检测的这种需求也是越来越多,平面CT的检测需求也在加大,未来的中国市场会更好。
  • 半导体检测缺陷,迈出重要一步
    将更智能、更强大的电子元件塞进不断缩小的设备中的一个挑战是开发工具和技术,以越来越高的精度分析构成它们的材料。密歇根州立大学的物理学家在这方面迈出了期待已久的一步,采用了一种结合高分辨率显微镜和超快激光的方法。这项技术在《自然光子学》杂志上进行了描述,使研究人员能够以无与伦比的精度发现半导体中的失配原子。半导体物理学将这些原子称为“缺陷”,听起来像是负面的,但它们通常是故意添加到材料中的,对于当今和未来的半导体性能至关重要。“这对于具有纳米级结构的组件特别相关,”密歇根州立大学的实验物理学杰里科文讲席教授兼新研究的负责人泰勒科克说。这包括像计算机芯片这样的东西,它们通常使用具有纳米级特征的半导体。而且,研究人员正致力于通过工程材料将纳米级架构发挥到极致,这些材料的厚度只有一个原子。“这些纳米材料是半导体的未来,”科克说,他也是密歇根州立大学物理与天文学系的超快太赫兹纳米显微镜实验室的负责人。“当你有纳米级电子产品时,确保电子能够按照你希望的方式移动非常重要。”缺陷在电子运动中起着重要作用,这就是为什么像科克这样的科学家渴望准确了解它们的位置和行为。科克的同行们很高兴得知,他团队的新技术将让他们轻松获取这些信息。“我的一位同事说,‘我希望你们出去庆祝了,’”科克说。主导这一项目的Vedran Jelic是科克团队的一名博士后研究员,现在在加拿大国家研究委员会工作,是这份新报告的第一作者。研究团队还包括博士生Stefanie Adams、Eve Ammerman和Mohamed Hassan,以及本科生研究员Kaedon Cleland-Host。科克补充说,使用适当的设备,这项技术实施起来很简单,他的团队已经在将其应用于像石墨烯纳米带这样厚度仅一个原子的材料上。“我们有许多开放的项目,正在使用这项技术研究更多的材料和更具异国情调的材料,”科克说。“我们基本上将其纳入我们所做的一切,作为一种标准技术使用。”轻触目前已经有工具,特别是扫描隧道显微镜(STM),可以帮助科学家发现单原子缺陷。与许多人从高中科学课上认出的显微镜不同,STM不使用镜头和灯泡来放大物体。相反,STM使用原子级尖端扫描样品表面,类似于唱片播放器上的唱针。但STM的尖端不会触及样品表面,只是足够接近,使电子可以在尖端和样品之间跳跃或隧穿。STM记录电子跳跃的数量和位置,以及其他信息,以提供关于样品的原子级信息(因此,科克的实验室称之为纳米显微镜而非显微镜)。但仅靠STM数据并不足以清晰地解析样品中的缺陷,尤其是在镓砷这种在雷达系统、高效太阳能电池和现代电信设备中应用的重要半导体材料中。在他们的最新出版物中,科克和他的团队专注于镓砷样品,这些样品故意掺入了硅缺陷原子,以调整电子在半导体中的运动方式。“硅原子对电子来说基本上就像一个深坑,”科克说。尽管理论家们已经研究了这种类型的缺陷几十年,但实验者直到现在还无法直接检测到这些单个原子。科克和他团队的新技术仍然使用STM,但研究人员还直接在STM的尖端照射激光脉冲。这些脉冲由太赫兹频率的光波组成,意味着它们每秒钟振动一万亿次。最近,理论家们表明,这与硅原子缺陷在镓砷样品中来回振动的频率相同。通过结合STM和太赫兹光,密歇根州立大学团队创造了一种对缺陷具有无与伦比灵敏度的探针。当STM尖端接触到镓砷表面上的硅缺陷时,团队的测量数据中出现了一个突然、强烈的信号。当研究人员将尖端移到离缺陷一个原子远的地方时,信号消失了。“这里有一个人们已经追寻了四十多年的缺陷,我们看到它像钟一样响,”科克说。“起初,这很难相信,因为它如此明显,”他继续说。“我们不得不以各种方式测量它,以确定这是真实的。”一旦他们确信信号是真实的,就很容易解释,因为已经有数十年的理论研究对其进行了彻底的表征。“当你发现这样的东西时,已经有数十年的理论研究详细描述它,这真的很有帮助,”Jelic说,他与科克一样,也是这篇新论文的通讯作者。尽管科克的实验室在这一领域处于前沿,但世界各地的研究小组目前也在将STM和太赫兹光结合起来。还有各种其他材料可以从这种技术中受益,用于超出检测缺陷的应用。现在他的团队已经与社区分享了他们的方法,科克对未来的发现感到兴奋。
  • X射线无损检测技术及其在科研和工业领域的应用
    X射线检测作为无损检测中一种相对较重要的检测方法,主要应用在工件内部形状缺陷检测,能够得到缺陷部位的直观图像,此外,还可对长、宽和高度等相关参数进行检测。因此,这项检测技术在各个行业中获得了广泛应用。为促进相关人员深入了解X射线无损检测技术的发展和应用现状,在即将召开的第二届无损检测技术进展与应用网络会议,特别设置射线检测技术专场,邀请了多位业内专家围绕X射线无损检测技术原理、仪器、应用等展开分享。部分报告预告如下:中国科学院上海硅酸盐研究所研究员 程国峰《X射线三维吸收成像技术原理及其应用》(报名听会)程国峰,理学博士,博士生导师,中国科学院上海硅酸盐研究所 X射线衍射结构表征课题组组长。中国晶体学会粉末衍射专业委员会委员、中国物理学会固体缺陷专业委员会委员、上海市物理学会X射线衍射与同步辐射专业委员会副主任兼秘书长。主要研究领域为X射线衍射与散射理论及应用、三维X射线成像术、拉曼光谱学等。曾先后主持国家自然科学基金、上海市和中国科学院项目多项,主编出版《纳米材料的X射线分析》、《二维X射线衍射》等专译著4部,发布国家标准和企业标准12项,获专利授权7项,在Nat. Mater.,J. Appl. Phys.,Mater. Lett.等SCI期刊上发表论文90余篇。中国科学院金属研究所高级工程师 王绍钢《Fe基非晶涂层的无损原位三维表征与评价研究》(报名听会)王绍钢,博士,高级工程师,中国科学院金属研究所沈阳材料科学国家研究中心技术支撑部射线组组长。长期致力于材料科学三维评价技术的开发及应用,进行多项软、硬件开发、改造或升级,在无损多相多维多尺度高分辨精确定量和原位多场动态三维评价等方面取得系列技术突破,相关技术在多个重大任务关键材料或部件自主研制中成功应用;负责公共射线技术平台,建设了具有衍射、成像和谱学的综合X射线表征平台。在Science Advances、Advanced Materials、Acta Materialia等SCI期刊上发表论文60多篇,被引用4900余次,H因子为29。申请发明专利5项,已授权2项。主持或参与国家973课题、国家面上自然科学基金、沈阳材料科学国家研究中心青年人才项目和中科院仪器创新项目等。国内外会议特邀报告、口头报告等40余次。Scientific Reports、Chemical Engineering Journal、 Intermetallics等14本SCI期刊特邀审稿人。曾获2014年中国百篇最具影响国际学术论文,2017年度中国精品科技期刊顶尖学术论文-领跑者5000论文,乌鲁木齐市科学技术进步奖一等奖,中国科学院研究生院优秀毕业生等。报告摘要:本报告将对X射线三维成像技术做个简要介绍,在此基础上,重点汇报如何利用X射线三维成像技术对Fe基非晶涂层进行无损三维表征与评价研究。Fe基非晶涂层具有强度高、抗腐蚀能力和抗磨损能力强等诸多优点,有望应用于油气生产、舰船关键部件以及核废水处理等环境。本报告将围绕非晶涂层实际应用中面临的一些腐蚀、冲击等问题,尝试通过无损三维表征与评价研究,来理解特定环境下的损伤机制,找出影响因素及规律,提高涂层的抗腐蚀和抗冲击性能,保障涂层实际应用的安全性和可靠性。上海理工大学副教授 詹科《X射线残余应力测试及应用》(报名听会)詹科,工学博士,上海理工大学副教授,硕士生导师。上海交通大学材料科学与工程学院获博士学位,2010年-2011年获国家留学基金委资助赴美University of Virginia联合培养。现为机械工程学会高级会员,机械工程学会材料分会委员,残余应力专业委员会副主任委员,中国机械工程学会喷丸技术专业委员会副主任委员,上海市物理学会X射线衍射学术委员会委员。目前主要从事金属基复合材料、材料表面工程、残余应力理论及应用等领域的研究。先后主持及参与多项国家自然科学基金、上海市自然科学基金、中国博士后基金等科研项目,发表SCI/EI 论文30余篇,申报专利10余项,参与编著《现代物理丛书-内应力衍射分析》,《金属材料喷丸强化及其X射线衍射表征》。先后与中国中车、中国船级社、宝钢中央研究院、上海航天装备总厂、新疆金风科技、上海华测等单位开展关键核心零部件的残余应力分析与优化研究。曾受邀作为主讲人开展材料喷丸强化及残余应力测试专题培训。报告摘要:在现代制造业中,从材料-零件-部件-整机装配-使用全寿命周期,残余应力对产品的疲劳,应力腐蚀性能以及尺寸稳定性影响较大,残余应力的检测及调控对提升产品质量及可靠性具有重要意义。在残余应力的测试方法中,X射线衍射方法由于其理论严谨,是残余应力测试最常用的有效方法之一。本报告围绕X射线残余应力测试基本原理及应用,拟介绍以下三部分内容:第一:残余应力的产生及调控方法;第二:X射线残余应力测试方法,介绍X射线残余应力测试基本原理,参数选择,在测试过程中存在的问题;第三:X射线残余应力测试在工程实践中的应用。微旷科技总经理、南京工业大学教授 马毅《极端服役环境X射线CT研发与应用》(报名听会)马毅,工学博士,现为南京工业大学教授、长三角先进材料研究院项目总监,微旷科技(苏州)有限公司联合创始人,担任总经理职务。长期专注于极端服役环境材料失效研究和原位X射线三维成像装备开发。主持完成多项国家自然科学基金和浙江省自然科学基金项目,担任科技部重点研发计划课题负责人,作为骨干参与国家重大科研仪器研制项目。以第一/通讯作者在Acta Mater, Scripta Mater, Int J Fatigue, Eng Fract Mech, Fatigue Fract Eng M等材料和工程权威期刊发表论文50余篇,引用超过1400次。申请发明专利四十余项授权多项。长期多个SCI期刊长期审稿人。报告摘要:本报告主要介绍高性能原位X射线CT设备的研发。该设备基于X射线强穿透能力和计算机断层扫描技术,结合亚微米级精密控制转台和机械控制,实现微米级高分辨X射线CT成像,以及毫米/厘米级试样的三维无损成像。通过配置超高温模块、低温模块、高载荷模块(拉伸/压缩/弯曲/疲劳),构建热-力耦合系统,实现超高温变形、超低温变形以及热冲击、疲劳、蠕变等复杂工况下材料和工程构件的原位CT成像。奥龙集团董事长兼总经理、高级工程师 李义彬《2D、3DX射线智能检测系统》(点击报名)李义彬,高级工程师,毕业于大连理工大学电子工程系,丹东奥龙射线仪器集团有限公司董事长,从事无损检测技术研发工作三十余年。先后取得10余项国家专利,参与制订4项国家及行业标准,获得辽宁省科技进步奖二等奖、三等奖及市科技进步奖项11项。带头承担国家高技术产业化示范工程项目、国家重大科学仪器设备开发专项等国家、省部重点项目6项。先后组织完成了XYD-4010/3型X射线实时检测系统等多项课题研究;其中组织完成的ICT-3400型工业CT无损检测系统课题研究填补了国内空白。任辽宁省人大代表,中国仪器仪表行业协会常务理事,中国仪器仪表学会试验机分会副理事长,辽宁高层次科技专家库专家,中国机械工业科学技术奖仪器仪表专业评审组专家,中国机械工程学会无损检测分会射线检测专业委员会委员,丹东市科学技术协会副主席。报告摘要:2D、3D X射线检测设备不光应用在工业领域,同样应用于科研、航空航天、军工等领域。2D、3D智能检测提高了检测效率,解放了劳动力,并提供了全面且精准的检测结果,是X射线无损检测设备重要发展方向。TESCAN资深应用工程师 袁明春《TESCAN Micro-CT系统及原位动态4D应用介绍》(点击报名)袁明春,无损检测专业硕士,曾在BAM德国联邦材料研究与测试研究所(8.3)、上海材料研究所工作学习过。现就职于泰思肯贸易(上海)有限公司,任动态原位Micro-CT资深应用工程师。主要负责动态原位显微CT和新产品-能谱CT的应用工作以及客户培训工作,熟悉亚微米扫描、真实时4D动态原位超快速扫描以及多尺度联动(大样品)扫描。了解CT系统在电子、半导体、汽车、航空航天、医疗、生物、材料、地矿等众多领域的3D成像和4D动态成像的应用。报告摘要:当下CT系统多专注于三维成像,随着原位实验需求与日俱增,静态3D结果已无法满足科研和工业需求,TESCAN显微CT不仅可实现多尺度的高分辨(亚微米)、高通量三维成像,也可进行长时间连续扫描(几百小时)以及快速“4D”动态成像。本报告将展示如何使用动态CT对原本无法观测的连续变化或只能模拟仿真的实验实现实时观测。岛津企业管理(中国)有限公司市场专员 李惠《应用于工厂快速筛查的三维检测工具》(点击报名)李惠,多年从事NDI产品工作,现负责NDI产品市场专员工作。报告摘要:本报告主要介绍岛津从客户实际应用出发,新研发的X射线台式CT。该设备操作简便、图像清晰,特别适合工厂的快速筛,为产线检测带来新思路。第二届无损检测技术进展与应用网络会议为推动我国无损检测技术发展和行业交流,促进新理论、新方法、新技术的推广与应用,仪器信息网将于2023年9月26-27日召开第二届无损检测技术进展与应用网络会议。本届会议开设射线检测技术、超声检测技术、无损检测新技术与新方法(上)、无损检测新技术与新方法(下)四大专场,邀请二十余位无损检测领域专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开研讨,欢迎大家在线参会交流。一、主办单位:仪器信息网二、支持单位:吉林大学三、参会指南1、进入会议官网(https://www.instrument.com.cn/webinar/meetings/ndt2023/)进行报名。扫描下方二维码,进入会议官网报名2、报名并审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人高老师(微信:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)周老师(微信:nulizuoxiegang 邮箱:zhouhh@instrument.com.cn)
  • 精工盈司用于检测大米中的镉的X射线荧光检测仪器「SEA1300VX」发售
    用于检测大米中的镉 X射线荧光检测仪器「SEA1300VX」发售 无需预处理、只需数分钟即可完成含有标准的判断 精工电子纳米科技有限公司(简称:SIINT,社长:川崎贤司,总公司:千叶县千叶市)是精工电子有限公司(简称:SII,社长:新保雅文,总公司:千叶县千叶市)的全资子公司,主要从事测量分析仪器的生产和销售。本次,将于7月1日发售X射线荧光检测仪器「SEA1300VX」,无需处理就能在数分钟内检测出大米等食品中镉的含量。 SEA1300VX 食品中的镉污染是一个一直以来长期存在的问题,特别是日本人将大米作为主食,为此厚生劳动省已通过食品卫生法设定了标准值。以往含量在1.0ppm以上的产品一直被禁止流通。但在去年4月,伴随食品卫生法的修订,糙米以及精米中镉的标准值被修改至0.4ppm以下,并从今年2月28日开始实施。 以往,像这种针对大米中镉的浓度测量法,通常采用原子吸光分析或ICP发光分光分析等方法。但在分析时,需要对样品进行粉碎、溶解等预处理,需要花费大量的成本和时间,而且需要由专家进行操作,难以测量众多的样品。 另一方面,X射线荧光分析法无需进行预处理,而且测量操作也很简单,因而被广泛用作管理工业产品等的有害金属浓度的检测仪器。但在食品检测中,在性能上则要求所需的检测浓度要比传统的0.1ppm高出1位以上,因而未能达到实用要求。精工电子纳米科技有限公司运用长年积累的X射线荧光技术,把镉的检测强度提高到传统仪器的100倍左右※1,开发出可以检测出0.1ppm浓度的检测仪器「SEA1300VX」。 「SEA1300VX」仪器只需把4g左右的糙米或白米装入测量容器,无需进行预处理,而且谁都能够很方便地测量。而且大大缩短了测量时间。例如,对于基本不含有镉的糙米,只需1分钟左右就可测量出是否超出0.4ppm的标准值。另外,对于含有浓度在0.4ppm左右的糙米,只需10分钟左右就可准确检测出镉的实际含量。再有,如果使用自动取样器,则只需设置一次,最多能够自动测量90个样品。每月能够测量约5,000个样品。 另外,对于蔬菜等镉含量的检测标准,要比大米的检测标准更加严格。如果使用本机器,只需把样品进行干燥、浓缩,即可进行测量。另外还可测量砷、铅等有害金属的含量。为了确保人们在今后吃得安全、吃得放心,精工电子纳米科技有限公司正把「SEA1300VX」销往食品生产和流通领域。 【SEA1300VX的主要特征】(1)直接测量糙米 只需把4g左右的米装入测量容器,然后按下测量按钮,就可测量镉的浓度。完全不需要传统方法中所必须的粉碎、溶解等预处理过程。 (2) 对于不含镉的糙米,标准值以下的测量时间大约需要1分钟 通过改良检测仪,我们已把镉的检测强度提高到传统X射线荧光仪器的100倍※1。检测强度的提高直接缩短了测量时间。对于不含镉的糙米,用来判定在0.4ppm这一标准以下的测量时间只需1分钟左右。 (3)力求定量、准确的测量,也只需10分钟 在镉的含有浓度接近0.4ppm的标准值时,某种程度上要求测量作业具备定量、准确性。这时,会自动延长测量时间。另外,对于确保标准偏差在0.05ppm左右的测量,也只需10分钟左右。 (4) 用自动取样器进行自动测量 只要把所要测量的样品事先放置到仪器中,每1次就可自动测量最多90个样品。每月可测量约5,000个样品。 【SEA1300VX的主要规格】 X射线源: 空冷式小型X射线管检测仪 : Vortex 半导体检测仪(无需液化氮)样品重量:    4g 仪器尺寸: 700(宽)×580(深)×730(高)mm 【价  格】 1000万日元~(不含税) 【参考】 X射线荧光分析法 通过向所要测量的样品照射X射线,根据由样品二次发出的X射线荧光,来检测样品中所含元素的种类和浓度的方法。其最大特点是:无需对样品进行预处理,只需把样品设置到仪器上,就可简单地进行测量。 ※1与本公司产品相比,由本公司实施的调查。 本产品的咨询方式 中国:精工盈司电子科技(上海)有限公司TEL:021-50273533FAX:021-50273733MAIL:sales@siint.com.cn 日本:【媒体宣传】精工电子有限公司综合企划本部 秘书广告部 【客户】精工电子纳米科技有限公司分析营业部 营业二科TEL: 03-6280-0077(直线)MAIL:info@siint.co.jp
  • 利用原子力显微镜对半导体制造中的缺陷进行检测与分类
    利用原子力显微镜进行的自动缺陷复检可以以纳米级的分辨率在三维空间中可视化缺陷,因此纳米级成像设备是制造过程的一个重要组成部分,它被视为半导体行业中的理想技术。结合原子力显微镜的三维无创成像,使用自动缺陷复查对缺陷进行检测和分类。伴随光刻工艺的不断进步,使生产更小的半导体器件成为可能。 随着器件尺寸的减小,晶圆衬底上的纳米级缺陷已经对器件的性能产生了限制。 因此对于这些缺陷的检测和分类需要具有纳米级分辨率的表征方法。 由于可见光的衍射极限,传统的自动光学检测(AOI)无法在该范围内达到足够的分辨率,这会损害定量成像和随后的缺陷分类。 另一方面,使用原子力显微镜 (AFM) 的自动缺陷复检 (ADR)技术以 AFM 常用的纳米分辨率能够在三维空间中可视化缺陷。 因此,ADR-AFM 减少了缺陷分类的不确定性,是半导体行业缺陷复检的理想技术。 缺陷检查和复检 随着半导体器件依靠摩尔定律变得越来越小,感兴趣的缺陷(DOI)的大小也在减小。DOI是可能降低半导体器件性能的缺陷,因此对工艺良率管理非常重要。DOI尺寸的减小对缺陷分析来说是一个挑战:合适的表征方法必须能够在两位数或一位数纳米范围内以高横向和垂直分辨率对缺陷进行无创成像。 传统上,半导体行业的缺陷分析包括两个步骤。第一步称为缺陷检测,利用高吞吐量但低分辨率的快速成像方法,如扫描表面检测系统(SSIS)或AOI。这些方法可以提供晶圆表面缺陷位置的坐标图。然而,由于分辨率较低,AOI和SSIS在表征纳米尺寸的DOI时提供的信息不足,因此,在第二步中依赖高分辨率技术进行缺陷复检。对于第二步,高分辨率显微镜方法,如透射或扫描电子显微镜(TEM和SEM)或原子力显微镜(AFM),通过使用缺陷检测的缺陷坐标图,对晶圆表面的较小区域进行成像,以解析DOI。利用AOI或SSIS的坐标图可以最大限度地减少感兴趣的扫描区域,从而缩短缺陷复检的测量时间。 众所周知,SEM和TEM的电子束可能会对晶圆造成损伤,所以更佳的技术选择应不能对晶圆产生影响。那么选择采用非接触测量模式的AFM可以无创地扫描表面。不仅有高横向分辨率,AFM还能够以高垂直分辨率对缺陷进行成像。因此,原子力显微镜提供了可靠的缺陷定量所需的三维信息。 原子力显微镜 通过在悬臂末端使用纳米尺寸的针尖对表面进行机械扫描,AFM在传统成像方法中实现了最高的垂直分辨率。除了接触模式外,AFM还可以在动态测量模式下工作,即悬臂在样品表面上方振荡。在这里,振幅或频率的变化提供了有关样品形貌的信息。这种非接触AFM模式确保了以高横向和垂直分辨率对晶圆表面进行无创成像。由于自动化原子力显微镜的最新发展,原子力显微镜的应用从学术研究扩展到了如硬盘制造和半导体技术等工业领域。该行业开始关注AFM的多功能性及其在三维无创表征纳米结构的能力。因此,AFM正在发展成为用于缺陷分析的下一代在线测量解决方案。 使用原子力显微镜自动缺陷复检 基于 AFM 的缺陷复检技术的最大挑战之一是将缺陷坐标从 AOI 转移到 AFM。最初,用户在 AOI 和 AFM 之间的附加步骤中在光学显微镜上手动标记缺陷位置,然后在 AFM 中搜索这些位置。然而,这个额外的步骤非常耗时并且显着降低了吞吐量。另一方面,使用 AFM 的自动缺陷复检从 AOI 数据中导入缺陷坐标。缺陷坐标的导入需要准确对准晶圆以及补偿 AOI 和 AFM 之间的载物台误差。具有比 AOI 更高位置精度的光学分析工具(例如Candela),可以减少快速中间校准步骤中的载物台误差。以下 ADR-AFM 测量包括在给定缺陷坐标处的大范围调查扫描、缺陷的高分辨率成像和缺陷分类。由于自动化,测量过程中用户不必在场,吞吐量增加了一个数量级。为了保持纳米级的针尖半径,使多次后续扫描依旧保持高分辨率,ADR-AFM 采用非接触式动态成像模式。因此,ADR-AFM 可防止探针针尖磨损并确保对缺陷进行精确地定量复检。图1:用AOI和ADR-AFM测定的缺陷尺寸的直接比较,见左侧表格。右侧显示了所有六种缺陷的相应AFM形貌扫描。突出的缺陷称为Bump,凹陷的缺陷称为Pit。 AOI和ADR-AFM的比较 图1比较了 AOI 和 ADR-AFM 对相同纳米级缺陷的缺陷复检结果。AOI 根据散射光的强度估计缺陷的大小,而 ADR-AFM 通过机械扫描直接缺陷表面进行成像:除了横向尺寸外,ADR-AFM 还测量缺陷的高度或深度,从而可以区分凸出的“bump”和凹陷的“pit”缺陷。 缺陷三维形状的可视化确保了可靠的缺陷分类,这是通过 AOI 无法实现的。当比较利用 AOI 和 ADR-AFM 确定缺陷的大小时,发现通过 AOI估计的值与通过 ADR-AFM 测量的缺陷大小存在很大差异。对于凸出的缺陷,AOI 始终将缺陷大小低估了一半以上。 这种低估对于缺陷 4 尤其明显。在这里,AOI 给出的尺寸为 28 nm ,大约是 ADR-AFM 确定的尺寸为 91 nm 的三分之一。 然而,在测量“pit”缺陷 5 和 6 时,观察到了 AOI 和 ADR-AFM 之间的最大偏差。 AOI将尺寸在微米范围内的缺陷低估了两个数量级以上。 用 AOI 和 ADR-AFM 确定的缺陷大小的比较清楚地表明,仅 AOI不足以进行缺陷的成像和分类。图 2:ADR-AFM 和 ADR-SEM 之间的比较,a) ADR-SEM 之前遗漏的凸出缺陷的 AFM 图像。 ADR-SEM 扫描区域在 AFM 形貌扫描中显示为矩形。 b) 低高度 (0.5 nm) 缺陷的成像,ADR-SEM 无法解析该缺陷。 c) ADR-SEM 测量后晶圆表面上的电子束损伤示例,可见为缺陷周围的矩形区域。 ADR-SEM和ADR-AFM的比较 除了ADR-AFM,还可以使用 ADR-SEM 进行高分辨率缺陷复查。ADR-SEM根据AOI数据中的DOI坐标,通过SEM测量进行自动缺陷复检,在此期间,高能电子束扫描晶圆表面。虽然SEM提供了很高的横向分辨率,但它通常无法提供有关缺陷的定量高度信息。为了比较ADR-SEM和ADR-AFM的性能,首先通过ADR-SEM对晶圆的相同区域进行成像,然后进行ADR-AFM测量(图2)。AFM图像显示,ADR-SEM扫描位置的晶圆表面发生了变化,在图2a中,AFM形貌显示为矩形。由于ADR-AFM中ADR-SEM扫描区域的可见性,图2a说明ADR-SEM遗漏了一个突出的缺陷,该缺陷位于SEM扫描区域正上方。此外,ADR-AFM具有较高的垂直分辨率,其灵敏度足以检测高度低至0.5nm的表面缺陷。由于缺乏垂直分辨率,这些缺陷无法通过ADR-SEM成像(图2b)。此外,图2c通过总结高能电子束对样品表面造成的变化示例,突出了电子束对晶片造成损坏的风险。ADR-SEM扫描区域可以在ADR-AFM图像中识别为缺陷周围的矩形。相比之下,无创成像和高垂直分辨率使ADR-AFM非常适合作为缺陷复检的表征技术。
  • 直播预告!半导体缺陷检测和量测技术篇
    2023年10月18-20日,仪器信息网(www.instrument.com.cn) 与电子工业出版社将联合主办第四届“半导体材料与器件分析检测技术与应用”主题网络研讨会。iCSMD 2023会议围绕光电材料与器件、第三代半导体材料与器件、传感器与MEMS、半导体产业配套原材料等热点材料、器件的材料分析、失效分析、可靠性测试、缺陷检测和量测等热点分析检测技术,为国内广大半导体材料与器件研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。本次大会分设:半导体材料分析技术新进展、可靠性测试和失效分析技术、可靠性测试和失效分析技术(赛宝实验室专场)、缺陷检测和量测技术4个主题专场,诚邀业界人士报名参会。主办单位:仪器信息网,电子工业出版社参会方式:本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/icsmd2023/ 或扫描二维码报名“缺陷检测和量测技术”专场预告(注:最终日程以会议官网为准)时间报告题目演讲嘉宾专场:缺陷检测和量测技术(10月20日上午)9:30半导体芯片量检测技术及装备杨树明(西安交通大学 教授)10:00国家纳米计量体系与半导体产业应用施玉书(中国计量科学研究院纳米计量研究室主任 主任/副研究员)10:30面向集成电路微纳检测设备产业的自溯源纳米长度计量体系邓晓(同济大学 副教授)嘉宾简介及报告摘要(按分享顺序)杨树明 西安交通大学 教授【个人简介】杨树明,西安交通大学教授,博士生导师,国际纳米制造学会(ISNM)会士、国家杰出青年基金获得者、国家重点研发计划项目首席、教育部新世纪优秀人才、陕西省重点科技创新团队带头人等。承担国家及省部级重大重点项目20余项,发表学术论文200余篇,出版专著2部,授权/公开国际国内发明专利100多件,获科技奖励9项。被遴选为亚洲精密工程与纳米技术学会(ASPEN)理事、中国计量测试学会常务理事、中国微米纳米技术学会微纳米测量与仪器分会副理事长、中国计量测试学会几何量专业委员会副主任委员、中国计量测试学会计量仪器专业委员会常务理事、中国仪器仪表学会机械量测试仪器分会常务理事、中国机械工程学会微纳制造技术分会常务理事等。在国际国内学术会议应邀做大会报告和特邀报告50余次,担任JMS、IJPEM-GT、IJRAT、NMME、MST、PE、IJAMT、Photonics等国际期刊编委和客座编委以及多个国内期刊编委等。报告题目:半导体芯片量检测技术及装备【摘要】该报告将介绍半导体晶圆制造过程、图形化过程以及封装后关键尺寸和缺陷检测技术及其装备。施玉书 中国计量科学研究院纳米计量研究室主任 主任/副研究员【个人简介】施玉书,男,工学博士,博士生导师,中国计量科学研究院纳米计量研究室主任与微纳计量创新团队带头人,国际计量委员会长度咨询委员会国际互认与纳米工作组委员、ISO/TC213与ISO/TC201专家委员、SAC/TC240、SAC/TC279/WG11委员、东北亚标准合作会议WG11召集人、全国几何量长度计量技术委员会委员及纳米几何量计量工作组组长、国家重点研发计划项目负责人。致力于我国纳米量值的等效一致与国际互认,以实现我国纳米科技与产业高端精密仪器的量值准确可靠,先后承研了国家级项目/课题10余项,自主研制了多台套国家最高纳米计量标准装置与多结构纳米几何特征参量国家标准物质,建立了全链条国家纳米计量体系。主持和参与国家标准与计量技术规范制定20项,建立社会公用计量标准8项、获批国家标准物质29项,主导/参与国际比对5项,主导国内比对2项,在国内外刊物发表论文80余篇,授权专利20余项。作为第一和主要完成人先后获得省部级科技奖励6项,学会科技奖励3项。报告题目:国家纳米计量体系与半导体产业应用【摘要】国际权威的半导体技术蓝图(ITRS)明确指出,计量是集成电路的关键使能技术之一。我国半导体产业一直从国外溯源,使得关键尺寸量值长期受制于人。随着我国半导体产业能力的发展,迫切需要纳米级甚至亚纳米级准确度国家计量能力的技术支撑。面对溯源方式与测量原理双重极限的挑战,多年来中国计量科学研究院纳米计量团队开展了针对性的计量与应用技术研究,成功研制了用于量值溯源的基于不同测量原理的纳米计量国家标准装置与用于量值传递的多特征结构的国家标准物质,应用于我国半导体产业的纳米计量能力正在逐步的形成。随着研究的深入与产业需求的对接,相关计量能力与标准物质已在国内半导体产业广泛应用。 邓晓 同济大学 副教授【个人简介】邓晓,同济大学物理学院副教授,博士生导师,主要研究方向为纳米长度计量,具体包括原子光刻、光栅干涉仪、MOEMS加速度计与相对重力仪等。2021年入选中国科协“第六届青年人才托举工程”,2023年入选上海市“启明星”人才计划,是全国新材料与纳米计量技术委员会委员。作为项目负责人主持国家重点研发计划项目、基金委面上与青年项目多项。研究成果获批国家一级标准物质2项、国家二级标准物质2项,近五年共发表SCI论文15篇(含一作/通讯共10篇);申请中国发明专利10项(授权4项);申请美国发明专利2项;参与起草国家标准与国家计量技术规范各1项。报告:面向集成电路微纳检测设备产业的自溯源纳米长度计量体系【摘要】 集成电路微纳检测设备产业是把核心的原材料与零部件,结合技术和软件集成后开发微纳检测设备产品为芯片中的晶圆制造工艺服务。纳米长度计量体系是集成电路微纳检测设备量值溯源,误差控制与测量准确性的核心支撑。对自然界常数的物化、量传和复用是提升测量准确性的有效手段。自溯源标准物质是指物质的关键参数可以溯源到自然界常数的标准物质。汇报人将介绍基于铬原子光刻技术研制纳米长度标准物质、自溯源位移传感器及新型计量型AFM的研究思路与成果。系列光栅的准确性水平得到国际权威机构计量认可,并获批多项国家标准物质。系列可以溯源到铬原子跃迁频率的标准物质、位移传感器与计量仪器有望构建新型自溯源纳米长度计量体系。会议联系会议内容仪器信息网康编辑:15733280108,kangpc@instrument.com.cn会议赞助周经理,19801307421,zhouhh@instrument.com.cn
  • XRT 在半导体材料晶体缺陷表征中的应用介绍
    XRT 在半导体材料晶体缺陷表征中的应用介绍‍半导体(semiconductor)指常温下导电性能介于导体与绝缘体之间的材料。半导体在集成电路、消费电子、通信系统、光伏发电、照明、大功率电源转换等领域都有应用,如二极管就是采用半导体制作的器件。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关联。按照半导体材料发展历程和材料本征禁带宽度,习惯上按照如下方法进行分类:第一代半导体材料主要是指硅(Si)、锗(Ge)这类半导体材料,主要兴起于二十世纪五十年代,其兴起也带动了以集成电路为核心的微电子产业的快速发展,并被广泛的应用于消费电子、通信、光伏、军事以及航空航天等多个领域。就应用和市场需求量而言,半导体Si材料仍是半导体行业中体量最大的,产品规格以8-12英寸为主。第二代半导体材料是以砷化镓(GaAs)、磷化铟(InP)为主的化合物半导体,其主要被用于制作高频、高速以及大功率电子器件,在卫星通讯、移动通讯以及光通讯等领域有较为广泛的应用。相比于第一代半导体而言,化合物半导体长晶和加工工艺复杂,产品附加值要高一些,产品规格以3-6英寸为主,国内部分厂家可以提供8英寸晶圆。第三代半导体材料包括了以碳化硅(SiC)、氮化镓(GaN)为代表的宽禁带化合物半导体。相比于第一代及第二代半导体材料,第三代半导体材料在耐高温、耐高压、高频工作,以及承受大电流等多个方面具备明显的优势,因而更适合于制作高温、高频、抗辐射及大功率器件,在电力电子器件、微波射频等领域的应用优势更为明显。产品规格以2-6英寸为主。图1不同半导体材料禁带宽度及应用[1]在半导体材料制备和应用过程中,对于晶体缺陷的要求与控制是十分重要的。因为晶体缺陷的类型、大小和多少直接决定了半导体器件性能的优劣和使用稳定性等性能指标。所以,无论是在晶体长晶环节还是晶片加工及晶圆外延等环节,都要进行晶体/晶圆缺陷检查,确保使用在器件上芯片是满足设计要求的。晶圆中常见的缺陷主要有如下几类,参见图2[2]。点缺陷:在三维空间各方向上尺寸都很小的缺陷。空位、间隙原子、替位原子等;线缺陷:在两个方向上尺寸很小,而另一个方向上尺寸较大的缺陷。如位错,刃型位错和螺型位错;面缺陷:在一个方向上尺寸很小,在另外两个方向上尺寸较大的缺陷。如晶界、相界、表面等。体缺陷:杂质沉积、孔洞及析出相等。图2 半导体材料中常见晶体缺陷对于上述提到的四类半导体材料缺陷中,第一类缺陷属于原子层面的缺陷,通常是从掺杂及长晶工艺优化等角度去进行改进。通常不作为生产过程控制的主要参数,一般选择用其他方法进行测量,如采用FTIR方法可以测量Si晶体中代位C原子和间隙氧原子的浓度。第二到四类缺陷,则需要在加工环节进行100%直接或间接检测,确保所生产晶圆/芯片缺陷指标满足订单要求。对于这类缺陷传统方法就是采用腐蚀性化学药液(如熔融的KOH)对晶、体/圆进行腐蚀。在腐蚀过程中由于晶体有缺陷的区域会优先腐蚀,无缺陷区域则腐蚀速度相对较慢,所以在规定腐蚀时间后在晶圆表面会有腐蚀坑(Etch Pit)出现,这是一种破坏性的检测方法。腐蚀好的晶圆在显微镜下对这些腐蚀坑识别和计数,就可以得到该晶体的缺陷信息, 图3 为SiC 晶圆通过KOH腐蚀得到缺陷照片,缺陷主要有刃型位错、螺型位错和微管等[2]。图3 SiC 晶片腐蚀后缺陷形貌[3]对于半导体晶圆,上述传统缺陷表征方法最大的问题就是破坏性的,检测后的晶圆无法继续使用只能做报废处理。对于像第二代和第三代半导体材料而言,晶体生长技术要求水平较高,成品和晶圆数量受晶棒长度及其他加工方式限制而良率相对不高。像国内部分企业SiC 晶棒成品长度一般在20mm左右。如果按照单片晶圆成品厚度约在0.5mm,除去切割和研磨、抛光损耗,基本上0.8mm才能出一片合格晶圆。如果在晶棒头、尾各取一片晶圆去做缺陷检测,则有约8%的成本损耗。所以很多半导体厂家都希望有一种可以用于半导体晶体材料缺陷的表征的无损检测技术。日本理学株式会社(www.rigaku.com)作为全球著名的X-Ray 仪器制造商,自1923年以来,理学公司一直专注于X射线仪器领域的研发和生产。该公司生产制造的XRT (X-ray Topography)检测系统则是利用X射线的布拉格衍射原理和晶格畸变(缺陷)造成特征峰宽化和强度变化等特性,再结合理学公司开发的X射线形貌技术,可以对晶体内缺陷进行成像。这种XRT检测技术最大的优点就是无损检测,在不破坏晶圆的情况下实现2-12英寸半导体晶体中线缺陷、面缺陷和体缺陷的检测和表征。图4 XRT设备实物图图5 XRT 缺陷表征原理示意图[3]工作模式:XRT主要有反射成像和透射成像两种模式,反射模式是Cu靶,透射模式则是Mo靶,参见图6。透射模式成像后可以进行3D重构和成像,参见图7 SiC晶圆缺陷图片。图6 XRT 反射模式和透射模式[3]图7 SiC 晶圆缺陷表征[3]系统软件介绍:该仪器标配的图像分析软件可以对检测样品内的缺陷进行统计,给出缺陷数量和分布信息,参见图8。图 8 XRT 标配软件数据结果界面[3]后续我们会针对XRT在不同半导体材料检测和应用案例刊发几期相关介绍,敬请期待。附:[1] 第三代半导体-氮化镓(GaN) 技术洞察报告,P3 [2] 理学XRT 内部资料;[3] 理学XRT公开彩页.
  • 利用原子力显微镜对半导体制造中的缺陷进行检测与分类
    利用原子力显微镜进行的自动缺陷复检可以以纳米级的分辨率在三维空间中可视化缺陷,因此纳米级成像设备是制造过程的一个重要组成部分,它被视为半导体行业中的理想技术。结合原子力显微镜的三维无创成像,使用自动缺陷复查对缺陷进行检测和分类。伴随光刻工艺的不断进步,使生产更小的半导体器件成为可能。 随着器件尺寸的减小,晶圆衬底上的纳米级缺陷已经对器件的性能产生了限制。 因此对于这些缺陷的检测和分类需要具有纳米级分辨率的表征方法。 由于可见光的衍射极限,传统的自动光学检测(AOI)无法在该范围内达到足够的分辨率,这会损害定量成像和随后的缺陷分类。 另一方面,使用原子力显微镜 (AFM) 的自动缺陷复检 (ADR)技术以 AFM 常用的纳米分辨率能够在三维空间中可视化缺陷。 因此,ADR-AFM 减少了缺陷分类的不确定性,是半导体行业缺陷复检的理想技术。缺陷检查和复检随着半导体器件依靠摩尔定律变得越来越小,感兴趣的缺陷(DOI)的大小也在减小。DOI是可能降低半导体器件性能的缺陷,因此对工艺良率管理非常重要。DOI尺寸的减小对缺陷分析来说是一个挑战:合适的表征方法必须能够在两位数或一位数纳米范围内以高横向和垂直分辨率对缺陷进行无创成像。传统上,半导体行业的缺陷分析包括两个步骤。第一步称为缺陷检测,利用高吞吐量但低分辨率的快速成像方法,如扫描表面检测系统(SSIS)或AOI。这些方法可以提供晶圆表面缺陷位置的坐标图。然而,由于分辨率较低,AOI和SSIS在表征纳米尺寸的DOI时提供的信息不足,因此,在第二步中依赖高分辨率技术进行缺陷复检。对于第二步,高分辨率显微镜方法,如透射或扫描电子显微镜(TEM和SEM)或原子力显微镜(AFM),通过使用缺陷检测的缺陷坐标图,对晶圆表面的较小区域进行成像,以解析DOI。利用AOI或SSIS的坐标图可以最大限度地减少感兴趣的扫描区域,从而缩短缺陷复检的测量时间。众所周知,SEM和TEM的电子束可能会对晶圆造成损伤,所以更佳的技术选择应不能对晶圆产生影响。那么选择采用非接触测量模式的AFM可以无创地扫描表面。不仅有高横向分辨率,AFM还能够以高垂直分辨率对缺陷进行成像。因此,原子力显微镜提供了可靠的缺陷定量所需的三维信息。原子力显微镜通过在悬臂末端使用纳米尺寸的针尖对表面进行机械扫描,AFM在传统成像方法中实现了最高的垂直分辨率。除了接触模式外,AFM还可以在动态测量模式下工作,即悬臂在样品表面上方振荡。在这里,振幅或频率的变化提供了有关样品形貌的信息。这种非接触AFM模式确保了以高横向和垂直分辨率对晶圆表面进行无创成像。由于自动化原子力显微镜的最新发展,原子力显微镜的应用从学术研究扩展到了如硬盘制造和半导体技术等工业领域。该行业开始关注AFM的多功能性及其在三维无创表征纳米结构的能力。因此,AFM正在发展成为用于缺陷分析的下一代在线测量解决方案。使用原子力显微镜自动缺陷复检基于 AFM 的缺陷复检技术的最大挑战之一是将缺陷坐标从 AOI 转移到 AFM。最初,用户在 AOI 和 AFM 之间的附加步骤中在光学显微镜上手动标记缺陷位置,然后在 AFM 中搜索这些位置。然而,这个额外的步骤非常耗时并且显着降低了吞吐量。另一方面,使用 AFM 的自动缺陷复检从 AOI 数据中导入缺陷坐标。缺陷坐标的导入需要准确对准晶圆以及补偿 AOI 和 AFM 之间的载物台误差。具有比 AOI 更高位置精度的光学分析工具(例如Candela),可以减少快速中间校准步骤中的载物台误差。以下 ADR-AFM 测量包括在给定缺陷坐标处的大范围调查扫描、缺陷的高分辨率成像和缺陷分类。由于自动化,测量过程中用户不必在场,吞吐量增加了一个数量级。为了保持纳米级的针尖半径,使多次后续扫描依旧保持高分辨率,ADR-AFM 采用非接触式动态成像模式。因此,ADR-AFM 可防止探针针尖磨损并确保对缺陷进行精确地定量复检。图1:用AOI和ADR-AFM测定的缺陷尺寸的直接比较,见左侧表格。右侧显示了所有六种缺陷的相应AFM形貌扫描。突出的缺陷称为Bump,凹陷的缺陷称为Pit。AOI和ADR-AFM的比较图1比较了 AOI 和 ADR-AFM 对相同纳米级缺陷的缺陷复检结果。AOI 根据散射光的强度估计缺陷的大小,而 ADR-AFM 通过机械扫描直接缺陷表面进行成像:除了横向尺寸外,ADR-AFM 还测量缺陷的高度或深度,从而可以区分凸出的“bump”和凹陷的“pit”缺陷。 缺陷三维形状的可视化确保了可靠的缺陷分类,这是通过 AOI 无法实现的。当比较利用 AOI 和 ADR-AFM 确定缺陷的大小时,发现通过 AOI 估计的值与通过 ADR-AFM 测量的缺陷大小存在很大差异。对于凸出的缺陷,AOI 始终将缺陷大小低估了一半以上。 这种低估对于缺陷 4 尤其明显。在这里,AOI 给出的尺寸为 28 nm ,大约是 ADR-AFM 确定的尺寸为 91 nm 的三分之一。 然而,在测量“pit”缺陷 5 和 6 时,观察到了 AOI 和 ADR-AFM 之间的最大偏差。 AOI将尺寸在微米范围内的缺陷低估了两个数量级以上。 用 AOI 和 ADR-AFM 确定的缺陷大小的比较清楚地表明,仅 AOI不足以进行缺陷的成像和分类。图 2:ADR-AFM 和 ADR-SEM 之间的比较,a) ADR-SEM 之前遗漏的凸出缺陷的 AFM 图像。 ADR-SEM 扫描区域在 AFM 形貌扫描中显示为矩形。 b) 低高度 (0.5 nm) 缺陷的成像,ADR-SEM 无法解析该缺陷。 c) ADR-SEM 测量后晶圆表面上的电子束损伤示例,可见为缺陷周围的矩形区域。ADR-SEM和ADR-AFM的比较除了ADR-AFM,还可以使用 ADR-SEM 进行高分辨率缺陷复查。ADR-SEM根据AOI数据中的DOI坐标,通过SEM测量进行自动缺陷复检,在此期间,高能电子束扫描晶圆表面。虽然SEM提供了很高的横向分辨率,但它通常无法提供有关缺陷的定量高度信息。为了比较ADR-SEM和ADR-AFM的性能,首先通过ADR-SEM对晶圆的相同区域进行成像,然后进行ADR-AFM测量(图2)。AFM图像显示,ADR-SEM扫描位置的晶圆表面发生了变化,在图2a中,AFM形貌显示为矩形。由于ADR-AFM中ADR-SEM扫描区域的可见性,图2a说明ADR-SEM遗漏了一个突出的缺陷,该缺陷位于SEM扫描区域正上方。此外,ADR-AFM具有较高的垂直分辨率,其灵敏度足以检测高度低至0.5nm的表面缺陷。由于缺乏垂直分辨率,这些缺陷无法通过ADR-SEM成像(图2b)。此外,图2c通过总结高能电子束对样品表面造成的变化示例,突出了电子束对晶片造成损坏的风险。ADR-SEM扫描区域可以在ADR-AFM图像中识别为缺陷周围的矩形。相比之下,无创成像和高垂直分辨率使ADR-AFM非常适合作为缺陷复检的表征技术。结论随着现代技术中半导体器件尺寸的不断减小,原子力显微镜作为一种高分辨率、无创的缺陷分析方法在半导体工业中的作用越来越明显。AFM测量的自动化简化并加快了之前AFM在缺陷表征方面低效的工作流程。AFM自动化方面的进展是引入ADR-AFM的基础,在ADR-AFM中,缺陷坐标可以从之前的AOI测量中导入,随后基于AFM的表征不需要用户在场。因此,ADR-AFM可作为缺陷复检的在线方法。特别是对于一位或两位级纳米范围内的缺陷尺寸,ADR-AFM补充了传统的AOI,AFM的高垂直分辨率有助于可靠的三维缺陷分类。非接触式测量模式确保了无创伤表面表征,并防止AFM针尖磨损,从而确保在许多连续测量中能够维持高分辨率。作者:Sang-Joon Cho, Vice President and director of R&D Center, Park Systems Corp.Ilka M. Hermes, Principal Scientist, Park Systems Europe.
  • 利用原子力显微镜对半导体制造中的缺陷进行检测与分类
    作者: Sang-Joon Cho, Park Systems Corp.副总裁兼研发中心总监、Ilka M. Hermes, Park Systems Europe 首席科学家利用原子力显微镜进行的自动缺陷复检,通过纳米级的分辨率在三维空间中可视化缺陷。因此,纳米级成像设备是制造过程的一个重要组成部分,它被视为当今半导体行业中最理想的技术。结合原子力显微镜的三维无创成像,使用自动缺陷复查对缺陷进行精确检测和准确分类。 与时俱进的光刻工艺使得生产的半导体器件越来越微小化。器件尺寸一旦减小,晶圆衬底上的纳米级缺陷就限制了器件的性能使用。因此对于这些缺陷的检测和分类需要具有纳米级分辨率的表征技术。由于可见光的衍射极限,传统的自动光学检测(AOI)无法在该范围内达到足够的分辨率,进而损害定量成像和随后的缺陷分类。而原子力显微镜 (AFM) 自动缺陷复检 (ADR)技术则有效地解决了该问题。该技术利用 AFM 常用的纳米分辨率,能够在三维空间中可视化缺陷,大大减少了缺陷分类的不确定性。因此,ADR-AFM 成为了当今半导体行业缺陷复检最理想的技术。缺陷检查和复检由于摩尔定律,半导体器件变得越来越小,需要检查的缺陷(DOI)大小也在减小。DOI可能会降低半导体器件性能的缺陷,因此对工艺良率的管理非常重要。DOI尺寸的减小对缺陷分析来说是一个挑战。合适的表征技术必须能够在两位数或一位数纳米范围内以高横向分辨率和垂直分辨率对缺陷进行无创成像。一般来说,半导体行业的缺陷分析包含两个步骤。第一步:缺陷检测。利用吞吐量虽高但低分辨率的快速成像方法,如扫描表面检测系统(SSIS)或AOI。这些方法可以提供晶圆表面缺陷位置的坐标图。然而,由于分辨率较低,AOI和SSIS在表征纳米尺寸的DOI时提供的信息不足,接下来需要依赖高分辨率技术进行缺陷复检。第二步:缺陷复检。利用高分辨率显微镜方法,如透射电子显微镜(TEM)或扫描电子显微镜(SEM)或原子力显微镜(AFM)。通过使用缺陷检测的缺陷坐标图,对晶圆表面的较小区域进行成像,以解析DOI。利用AOI或SSIS的坐标图可以最大限度地减少检查的扫描区域,从而缩短缺陷复检的测量时间。众所周知,SEM和TEM的电子束可能会对晶圆造成损伤,而非接触测量模式的AFM则有效地避免了该影响。它不仅可以无创地扫描表面,还有高横向和垂直分辨率对缺陷进行成像。因此,原子力显微镜能提供可靠的缺陷定量所需的三维信息。原子力显微镜通过在悬臂末端使用纳米尺寸的针尖对表面进行机械扫描,AFM在传统成像方法中可达到最高的垂直分辨率。除接触模式外,AFM还可以启用动态测量模式,即悬臂在样品表面上方振荡。由此,振幅或频率的变化提供了有关样品形貌的信息。这种非接触AFM模式确保了以高横向和垂直分辨率对晶圆表面进行无创成像。随着自动化原子力显微镜的更新发展,原子力显微镜的应用越来越广泛,从学术研究扩展到了如硬盘制造和半导体技术等工业领域。该行业开始关注AFM的多功能性及其在三维无创表征纳米结构的能力。因此,AFM正发展成为用于缺陷分析的新一代在线测量解决方案。使用原子力显微镜自动缺陷复检AFM 缺陷复检技术的最大挑战之一是将缺陷坐标从 AOI 转移到 AFM。基于此,用户最初会在 AOI 和 AFM 之间的附加步骤中,手动在光学显微镜上手动标记缺陷位置,然后在 AFM 中搜索这些位置。然而,这个额外的步骤不仅非常耗时还大大降低了吞吐量。另外,使用 AFM 的自动缺陷复检需要从 AOI 数据中导入缺陷坐标。而缺陷坐标的导入需要准确对准晶圆及精减AOI 和 AFM 之间的载物台误差。位置精度比AOI 更高的光学分析工具(例如Candela),可以有效减少中间校准步骤中的载物台误差。以下 ADR-AFM 测量包括在给定缺陷坐标处的大范围调查扫描、缺陷的高分辨率成像和缺陷分类。自动化的测量过程无需用户在场,吞吐量还增加了一个数量级。为了保持纳米级的针尖半径和连续扫描依旧保持高分辨率,ADR-AFM 采用非接触式动态成像模式。因此,ADR-AFM 可有效防止探针针尖磨损并确保对缺陷进行精确地定量复检。△图1:用AOI和ADR-AFM测定的缺陷尺寸的直接比较,见左侧表格。右侧显示了所有六种缺陷的相应AFM形貌扫描。突出的缺陷称为Bump,凹陷的缺陷称为Pit。AOI和ADR-AFM的比较图1比较了 AOI 和 ADR-AFM 在相同纳米级缺陷下所产生的不同缺陷复检结果。AOI 根据散射光的强度估计缺陷的大小,而 ADR-AFM 则通过机械直接扫描缺陷表面进行成像。除了横宽,ADR-AFM 还测量缺陷的高度或深度,从而可以区分凸出的“bump”和凹陷的“pit”缺陷。可视化的缺陷三维形状确保了缺陷分类的可靠性和精确性,而这些是AOI无法实现的。当对比分别利用 AOI 和 ADR-AFM 确定缺陷的大小时,我们发现通过 AOI 估计的值与通过 ADR-AFM 测量的缺陷大小存在很大差异。对于凸出的缺陷,AOI 始终将缺陷大小低估了一半以上。这种低估对于缺陷 4 尤其明显。在这里,AOI 给出的尺寸为 28 nm ,大约是 ADR-AFM确定的 91 nm 尺寸的三分之一。在测量“pit”缺陷 5 和 6 时,我们观察到了 AOI 和 ADR-AFM 之间的最大偏差。AOI将尺寸在微米范围内的缺陷低估了两个数量级以上。上述比较清楚地表明,仅用AOI不足以进行缺陷的成像和分类。△图2:ADR-AFM 和 ADR-SEM 之间的比较,a) ADR-SEM 之前遗漏的凸出缺陷的 AFM 图像。ADR-SEM 扫描区域在 AFM 形貌扫描中显示为矩形。b) 低高度 (0.5 nm) 缺陷的成像,ADR-SEM 无法解析该缺陷。c) ADR-SEM 测量后晶圆表面上的电子束损伤示例,可见为缺陷周围的矩形区域。ADR-SEM和ADR-AFM的比较除了ADR-AFM, ADR-SEM 也可以进行高分辨率的缺陷复查。ADR-SEM根据AOI数据中的DOI坐标,通过SEM测量进行自动缺陷复检。在此期间,高能电子束扫描晶圆表面。虽然SEM提供了很高的横向分辨率,但它通常无法提供有关缺陷的定量高度信息。为了比较ADR-SEM和ADR-AFM的性能,首先需要通过ADR-SEM对晶圆的相同区域进行成像,然后通过ADR-AFM进行测量(图2)。AFM图像显示,ADR-SEM扫描的晶圆表面发生了变化,在图2a中,AFM形貌显示为矩形。由于ADR-AFM中ADR-SEM扫描区域的可视性,图2a表明ADR-SEM遗漏了一个突出的缺陷,该缺陷位于SEM扫描区域正上方。此外,ADR-AFM具有较高的垂直分辨率,其灵敏度足以检测高度低至0.5nm的表面缺陷。由于缺乏垂直分辨率,这些缺陷无法通过ADR-SEM成像(图2b)。此外,图2c通过总结高能电子束对样品表面造成的变化示例,突出了电子束对晶片造成损坏的风险。ADR-SEM扫描区域可以在ADR-AFM图像中识别为缺陷周围的矩形。相比之下,无创成像和高垂直分辨率使ADR-AFM非常适合作为缺陷复检的表征技术。结论随着现代技术不断创新,半导体器件尺寸不断减小,原子力显微镜作为一种高分辨率、无创的缺陷分析方法在半导体工业中的作用越来越明显。AFM自动化的测量简化并加快了之前AFM在缺陷表征方面低效的工作流程。AFM自动化方面的进展是引入ADR-AFM的基础。在ADR-AFM中,缺陷坐标可以从之前的AOI测量中导入,随后基于AFM的表征不需要用户在场。因此,ADR-AFM可作为缺陷复检的在线方法。特别是对于一位或两位级纳米范围内的缺陷尺寸,ADR-AFM补充了传统的AOI性能,AFM的高垂直分辨率有助于进行可靠的三维缺陷分类。非接触式测量模式确保了无创伤的表面表征,并有效防止AFM针尖磨损,从而确保在许多连续测量中能够依旧保持精准的高分辨率。
  • 重大突破!功率半导体封测再添“利器”
    记者27日从中国科学院高能物理研究所(中科院高能所)获悉,由该所济南研究部(济南中科核技术研究院)自主研发、可为功率半导体做“CT”(计算机断层扫描)的功率半导体封测新添“利器”——“全自动绝缘栅双极晶体管(IGBT)缺陷X射线三维检测设备”,近日在湖南株洲举行的功率半导体行业联盟第八届国际学术论坛上亮相推出,备受业界关注。中科院高能所副研究员、锐影检测科技(济南)有限公司(锐影检测)总经理刘宝东博士接受媒体采访介绍说,IGBT是一种功率半导体器件,被誉为电力电子装置的“心脏”,在高铁、新能源汽车、轨道交通、智能电网、航空航天等领域应用广泛。IGBT模块在运行过程中会产生大量的热,需要及时散掉,它通常存在两个焊料层,焊料层气孔会严重影响散热效率,可能导致重大安全事故,因此需要对气孔率严格控制。目前,常用的检测手段是超声检测,但非常容易受散热柱的干扰,导致检测偏差。同时,超声检测要将模块浸入到水中,需要隔离水的工装,还需要人工操作,检测过程复杂,难以实现在线检测,效率较低。此外,普通的二维X光成像会将IGBT模块两个焊料层混在一起,无法区分,并且有些大功率模块带有散热柱,会严重影响气孔检测的准确率。针对这些问题,中科院高能所研发团队基于10余年在大尺寸板状物三维层析成像领域的技术积累,在成功研发专用于板状古生物化石的X射线三维层析成像仪器(1.0版)基础上,面向国家重大需求的工业CT,针对集成电路先进封装的检测需求,突破一系列关键技术,研发出分辨率更高、更成熟的2.0版“全自动IGBT缺陷X射线三维检测设备”。刘宝东称,该2.0版设备依托X射线计算机层析成像技术和先进的缺陷智能检测软件算法,并将人工智能算法引入检测系统,可对不合格产品进行自动识别及分拣,为IGBT模块封测提供全自动在线无损检测解决方案,从而大大提高检测效率,保障IGBT模块的产品品质。他表示,在功率半导体封测设备研发过程中,研发团队也积累了丰富的工程化经验。而作为中科院高能所与地方合作孵化的科技成果转化企业,锐影检测为团队经验技术转化为成熟产品提供了良好平台,从而打通从技术研发到产品应用的“最后一公里”。
  • 半导体产业复苏在即 检测技术新趋势、新方向在这里|直击中国检测技术与半导体应用大会
    7月11日-13日,2024中国检测技术与半导体应用大会暨半导体分析检测仪器与设备发展论坛在上海成功举办。这场半导体行业盛会由中国技术创业协会、上海市经济和信息化委员会、上海市科学技术协会、上海虹桥国际中央商务区管委会、上海市闵行区人民政府指导,国家集成电路创新中心、上海市仪器仪表行业协会、财联社主办,复旦大学光电研究院、复创芯、科创板日报、上海南虹桥投资开发(集团)有限公司、上海段和段(虹桥国际中央商务区)律师事务所承办。本次盛会汇聚了来自政府、学界、企业界等500多名人士,旨在提高产品质量,针对先进半导体材料、薄膜、器件、芯片等工艺控制和精确测试、测量分析技术,以及创新链、供应链合作机遇进行探讨交流。开幕式上,中国工程院院士庄松林、上海虹桥国际中央商务区管委会副主任李康弘、国家集成电路创新中心副总经理沈晓良等作了致辞。复旦大学光电研究院院长、中国科学院院士褚君浩,中国半导体行业协会副秘书长兼封测分会秘书长,西安交通大学微电子行业校友会秘书长徐冬梅,曾任超瞬态装置实验室主任、电子显微镜中心科研合作主任唐文新,上海复旦微电子集团股份有限公司副总经理沈磊等在大会上作了报告分享。大会报告称,受全球消费电子市场萎缩,订单下滑影响,2023年整体封测市场并不乐观,但是随着下游客户端库存下降,年底市场显示出复苏迹象,预计封测市场2024年将迎来反弹,年产业规模有望突破3300亿元。多名演讲嘉宾认为,伴随着集成电路往更小尺度、更高集成度和更多功能方向发展,半导体检测精度和可靠性愈发严格和重要。此外,新兴的应用领域如汽车电子和人工智能进一步提高了检测的需求,包括更高的精度、速度和更低的成本。▍新产业形态的催生多名演讲嘉宾表示,从2022年下半年截至目前,半导体行业仍处于周期性调整过程,但受新能源车、人工智能、5G自动驾驶等领域的蓬勃发展带动,2024年半导体产业增长有望摆脱下降趋势,开始回调,实现超10%的增长。根据统计数据显示,2023年中国大陆封测业的销售额是2932.2亿元,同比下降2.1%,虽封测市场处于下滑态势,但我国本土封测代工厂整体营收实现增长,2023年超过1300亿元,同比增长8%。尤其是在先进封测领域,国内企业实现技术的不断突破。“在大批实现营收正增长点国内封测代工厂中,增幅前三的分别是盛合晶微、佩顿科技和颀中科技。”盛合晶微是国内硅片级先进封装领域的头部企业,是目前国内极少数大规模量产2.5D封装的封测厂之一。佩顿科技在2023年完成了16层堆叠技术研发并具备量产能力,超薄POP封装技术实现量产。因为受惠于面板驱动芯片的反弹,总部位于合肥的颀中科技也实现了20%的增长。此外,国内有四家企业常年稳居全球委外封测前十强,分别为长电、通富、华天、智路封测,市占率达到25.83%。在先进封装技术领域,晶圆级封装产品工艺如多重布线(RDL)、WLCSP工艺技术、晶圆级高密度凸点/窄节距CuPillar等核心技术全面实现自主突破并已分别被大量应用。高密度多层封装基板制造工艺实现了IC封装基板产品零的突破,突破了国外的技术垄断并实现量产。高性能运算(HPC)2.5D先进封装、射频SiP/AiP、汽车电子封装、三维堆叠封装技术、大尺寸多芯片Chip Last封装、3D NAND FIash封装等先进封装制程均实现产业化,Chiplet集成技术成为各厂商竞相开发的技术。除了国内封装企业的进步和国产技术的不断突破以外,有不同演讲嘉宾指出,自2020年以来,中国半导体产业经历了产能爆满、市场需求强劲的阶段,随后进入了周期性调整状态。尽管行业处于调整期,但并购活动并未停止,尤其在第三代半导体等领域表现出聚焦态势。标志着产业向着更先进的新器件、新材料方向发展。“当前半导体行业的技术日新月异,尤其是在仿真器、机械结构变化等方面,正经历着从二维到三维,再到更高级别的演进。这些变化不仅体现在应用层面,也深入到物理和技术等多个层面。同时,由于仪器设备的进步,特别是各类高端分析工具的应用,使得对半导体材料的研究更为细致深入。在当前大数据背景下,基于AI的设备和服务也将对检测环节产生深远影响,催生新的产业形态。”▍新技术带来新征程对于半导体检测技术的未来发展,上海复旦微电子集团股份有限公司副总经理沈磊在大会上表示,随着多系统集成带来的新挑战,检测与验证变得尤为重要。“首先要通过实时数据的收集,建立数据库和数据模型,对大后台数据进行比对。其次要通过智能化对仪器仪表进行赋能,可以通过人工智能的图像识别来提高检测的有效性。最后是精度,可以通过新的技术形式,丰富检测手段使其更加精准”。中国半导体行业协会副秘书长兼封测分会秘书长徐冬梅则强调了Chiplet的发展。她认为,Chiplet采用先进封装,利用小芯片的组合代替大的单片芯片。借助小芯片的可重用性和高良率等优势,可以有效降低芯片设计和制造成本。“芯片成本的快速增加,催生了Chiplet封装技术的崛起。人工智能、HPC高性能计算对于Chiplet的尝试会更加迫切。另外,平板电脑应用处理器、自动驾驶预处理器和数据中心应用处理器也将会是Chiplet率先落地的应用领域”。复旦大学光电研究院院长、中国科学院院士褚君浩表示,在智能时代背景下,科技创新不断提升信息传感分析和数字技术水平,促进人工智能、传感器物联网与智慧低碳等智能制造仪器设备产业发展,从而推动数字经济高质量发展,形成新质生产力,推动未来产业发展,提高人们生活水平。曾任超瞬态装置实验室主任、电子显微镜中心科研合作主任唐文新表示,高精度半导体检测技术的创新,是一个多学科交叉融合、协同发展的过程。它不仅需要材料科学、物理学和电子工程等基础学科的支持,也离不开数据科学和人工智能等新兴技术的推动。大会上,多位演讲嘉宾认为新能源车、5G和AI等领域呈现快速增长趋势,使半导体产业正面临着一系列新的挑战与需求,同时也迎来了前所未有的发展机遇。这一技术浪潮不仅向半导体产业提出了更高要求,还为检测技术注入了强大的动力。通过深度融合人工智能算法,芯片缺陷检测实现了高度自动化,极大地提升了检测效率与准确性。新兴技术的发展正逐步将半导体制造推向更加智能化、精细化的新阶段。本次大会的执行主席复旦大学微电子学院卢红亮教授、复创芯发起人介绍,近年来围绕集成电路产业的基础研究、技术路径、产业应用等方面的比拼愈发激烈,亟需构建我国集成电路产业高质量创新发展的基础设施体系,发展相应的行业技术标准和测试方法,大力提升面向半导体产业的先进检测设备和测试仪器。本次大会通过报告、分会报告、产品展览、科研成果展示、学术墙报等多种形式,搭建了创新链、产业链和供应链的合作平台,为高校科技成果转移转化链接合作机遇,为半导体检测与测试设备、仪器企业提供展示技术和产品的舞台,为地方政府提供展示投资环境的投资路途。此外,本次大会进行了长三角半导体高质量创新服务中心揭牌仪式。
  • 在半导体、激光加工、安检行业,滨松的核心光技术如此发力
    自1953年成立以来,滨松公司一直积极投入与人们日常生活息息相关的领域。从扫地机器人到LIDAR小车,从可穿戴健康监测设备到健康随时报警器,再到用于检测晶圆等产品的半导体失效分析设备,滨松公司在半导体制造、健康监测,激光加工,智能设备以及未来的太赫兹等应用领域持续创新,致力于为人们的生活带来便捷与创新。接下来小编会与大家共同分享,在此次光子展中滨松的半导体应用,激光加工应用,X射线应用等相关产品如何将光技术融入我们的日常生活,为我们的生活带来便捷与希望。半导体制造行业在信息时代的大潮中,半导体成为了不可或缺的基石,如同粮食对于工业的重要性,它是电子设备的心脏,深深影响着我们的生活。从尖端的科技领域到日常生活的方方面面,半导体无处不在。比如,半导体芯片在智能汽车、5G通信、航空航天、国防军工、医疗卫生等领域中发挥着关键作用。滨松,一直致力于半导体产业的发展,通过自主研发,推出了多款创新产品,满足各种应用技术的需求。例如,一款独特的电离静电消除器,它能在低到高真空级别下工作,无需吹气。此外,还有用于检测micro LED晶圆的系统、高精度高速膜厚测量仪、丰富的光谱仪产品线以及小型化高输出的UV-LED单元等。那么,这些产品在实际使用中有哪些独特的优势和表现呢?让我们一探究竟!VUV电离器静电消除器VUV静电消除装置,真空静电消除器是使用“光离子化”来应用真空紫外光去除静电的静电电荷去除器。这种创新的离子化方法利用真空紫外光的独特功能来消除真空(减压状态)中不需要的静电电荷,这是此前一直无法实现的。主要用于消除工业生产过程中真空的静电,例如半导行业,LCD行业以及其他自动化工序的关键工艺中。产品特点:■可真空中和 、高水平的静电消除性能(0 V静电消除);■不需要吹气 、支持低到高真空级别;■防止反向充电,无粉尘产生。MiNYPL:微型LED PL测试仪MiNYPL 是一种使用光致发光 (PL) 测量方法的微型 LED 晶圆检查系统。MiNYPL是一种独特的二维成像技术,不必使用光谱仪,就可以一次性计算出平面内的发光波长。主要应用于Micro/Mini LED产品的发光和波长异常的检测中,可以在产品出现缺陷问题时帮助客户进行精准、快速定位。产品特点:■能够检测到仅通过外观检查无法发现的发光异常和波长异常;■实现电致发光(EL)测试无法实现的详尽测试;■通过在生产前进行检验来提高良率。高精度膜厚测量仪Optical NanoGauge 膜厚测量系统 C15151-01 是一种利用光谱干涉法的非接触式膜厚测量系统。这种大功率、高稳定的白光光源支持精确测量薄膜厚度,包括超薄薄膜(1 nm)。此外,光源的使用寿命为 10,000 小时,适用于在线操作。产品特点:■支持超薄薄膜测量(1 nm甚至更换激光器后更低); ■高度精确(测量重复性:0.1 nm以下);■采用大功率白光光源;■使用寿命长(维护周期1年以上)。光谱仪光谱分析是物质分析中的一种重要方法,在工业,农业,环境,食品,医药和制药等领域中的应用都十分普遍,而光谱仪则是长期征战于第一线的核心器件之一。针对于光谱仪来说,滨松可谓是拥有各种型号不同性能的全线产品。并且就连光谱仪需要的软件滨松也在近期有了升级,”尖雀“光谱仪软件全新亮相。1、滨松超小型光谱仪家族全亮相,满足不同波段需求(可量产)2、从图像传感器到微型光谱仪的进阶之路,滨松有话说3、滨松光谱仪软件升级了,诚邀测试反馈4、三招提升光谱仪信号质量 LIGHTNINGCURELC-L5G线性照明型UV-LED单元滨松 LIGHTNINGCURE LC-L5G 系列是线性照射型 UV-LED 光源系列,有多种波长范围如365 nm / 385 nm /395 nm / 405 nm可供选择,具有许多出色的特点,如小型化、重量轻、高输出和大片照射区域,使其成为包括 UV 印刷、UV 涂布和 UV 粘合剂固化等各种用途的理想选择。为了实现最高的 UV-LED 光源性能,滨松采用了名为 ThoMaS 的专利型空气制冷法,名为 HANCE (*1) 的专利型氮气吹扫法,以及可延长产品保修期的保修延期选项 ALiCE。*1:ThoMaS 和 HANCE 仅适用于 GH-103A 型号。激光加工行业在当今高速发展的科技时代,激光技术已经渗透到各个领域,尤其在中国制造2025的大背景下,它已成为不可或缺的重要支撑。从晶圆切割、手机屏幕粘贴,到玻璃切割、塑料焊接以及表面处理,激光技术的身影无处不在。众所周知,半导体激光器因其大输出功率、低价格的优势,使得激光器处理的用途越来越广泛。但随之而来的是可靠性和质量控制的担忧,成为了阻碍其普及的难题。对此,滨松认为激光器处理过程的稳定性与视觉控制是消除这些担忧的关键。如今,滨松光已经将半导体激光器应用于各类产品中,从研发到生产现场,无一不是它的用武之地。SPOLDld辐照光源L13920系列印刷电子是通过印刷制造电子电路的技术,只需将设计好的电路用金属纳米油墨印刷在衬底上,加热(烧结)即可制成电子电路。金属纳米油墨加热(烧结)过程的热源可以采用滨松的SPOLD辐照激光产品,使用激光束照射金属纳米油墨加热,使金属纳米颗粒粘合在一起进行烧制。产品特点:■由于只有激光应用的纳米墨水被加热和烧结,它几乎不影响周边;■即使是不耐热的材料也可以用作基板;■可以节省电力,因为电路可以只使用能量来加热工件;■由于从电到激光的高转换效率,卓越的能源效率(电光转换效率:60%或更高)。硅基液晶-空间光调制器滨松LCOS-SLM 是反射空间光相位调制器,可自由调制光相位,而激光的光相位由液晶调制。光的波前控制可应用于光束光刻、像差校正。并且滨松最近也发布了最新款SLM,通过应用我们专有的热设计技术和改善散热性能,我们能够将耐光性能提高到世界级的700 W(大约是以前型号的3.5倍)。配合大功率激光,可实现灵活、高精度、高效率的加工,点击此处了解新品详情。针对于SLM需要的代码,滨松现在也免费提供给大家,详情可以点击此处了解。iPMSEL 可积相位调制表面发射激光器iPMSEL全称是Integrable Phase Modulating Surface Emitting Lasers,是滨松开发的一种芯片大小的光源,可以从半导体芯片直接控制光束输出,可集成相位调制表面发射激光器,通过超小模式光源实现自然立体显示。由于它们的精细性,集成是可能的,并且在未来,正在进行的技术目标是将大量光束转向灵活的方向。安全检测产业随着世界各地海关港口、民用航空和交通运输的飞速进步,人们对安全的重视程度与日俱增,安检市场也因此蓬勃发展。在这样的背景下,快速、准确地识别和应对危险因素变得至关重要。滨松凭借其独特的X射线技术,精心打造出微焦点射线源和相关的X射线探测器,广泛应用于无损检测等关键领域。这些产品不仅代表了滨松的技术实力,更为安检行业树立了新的标杆。低真空操作离子探测器机场安检拥堵、漫长的排队等待,让人疲惫不堪?这一切都因为传统的检测方式太粗糙,许多细小的物件常常被遗漏,导致误报频发,而重复检测又耗费大量时间。那么,有没有一种方法能解决这个问题呢?答案是肯定的!低真空操作离子探测器就是救星!只需将检测板与待测物品轻轻一碰,然后立即放入检测设备中,即可迅速完成安全检测。这种高科技设备不仅对目标材料极其敏感,而且还能大大简化检测流程,再也不用为机场安检排队而烦恼了!X射线检测X射线可以穿透普通可见光无法穿透的物质,穿透能力与X射线的波长及穿透材料的密度、厚度有关。X射线波长越短,穿透率越高;待测物密度越低且厚度越薄,X射线穿透就越容易。X射线成像的基本原理便是根据X射线的特性以及零件的密度和厚度的差异来进行。可以清楚地观察内部而不损坏物体,因此在广泛应用于安全检测。滨松在X射线方面所具有的成像能力,大家可以点击此篇文章如何获得一张满意的X射线图像(收藏就等于会了来了解技术原理解析,接下来从产品层面为大家进一步说明。X射线源对于要求高精度检测技术的X射线无损检测市场,例如越来越精细的电子设备和越来越多样化的食品,滨松通过提供广泛的X射线源和探测器来满足各种需求,在X射线无损检测中发挥关键作用。以下只是滨松部分线源的型号,如有需求可以在评论区留言,会有工程师与您联系。详解:无损检测中的微焦点X射线源(MFX)X射线探测器(一维成像)适用于需要高速工作和高灵敏度在线成像用途的相机。传统的线阵传感器相机在高分辨率成像下具有低辉度,而 X 射线 TDI 相机则提高了图像辉度,从而增强了图像。最适用于线性移动物体成像或宽高比显著不对称的成像。另提供可在狭小空间内安装的垂直 X 射线 TDI 相机。X射线平板传感器(二维成像)将大面阵 CMOS 图像传感器和微光纤板与闪烁体 (FOS) 结合在一起的 X 射线平板传感器。可以采集百万像素级的高清数字视频和静态图像,而不会失真。平板传感器外形薄、重量轻,可轻松安装到其他设备中。产品特点:■ 高速成像;■ 高X射线电阻;■ 低噪音,低缺陷。以上关于部分热门应用的相关介绍就到此结束,如果还有其他问题,欢迎评论区留言或者直接联系相关工程师获取技术支持。编辑:又又&▼
  • 半导体所在硅上In线的光致相变机理研究中获进展
    自20世纪初期,量子理论对技术发展做出了重大贡献。尽管量子理论取得了成功,但由于缺乏非平衡量子系统的框架,其应用主要限于平衡系统。超短激光脉冲和自由电子加速器X射线的产生,推动了整个非平衡超快动力学领域的发展。超快现象在物理、化学和生物等领域备受关注,例如光致相变、光诱导退磁、高能离子碰撞和分子化学反应等。非平衡超快领域的实验研究成果颇丰,已成为热点。然而,实验不能给出原子尺度的原子/分子位移,故关于激发态动力学的认知存在争议。为了探讨超快动力学现象,理论模拟至关重要。为推动超快领域的发展以及揭开超快动力学过程中的诸多谜团,中国科学院半导体研究所骆军委团队和汪林望团队合作发展了一系列含时演化的算法,并将这些算法应用于不同领域。  近期,科研人员将此算法应用到Si的(111)表面In线相变中,解决了实验上的较多争议。Si的(111)表面上吸附单个铟原子层,在室温下形成Si(111)-(4×1)-In两个平行锯齿形In链组成的量子线结构(图1b),具有金属性质。当温度降低到125 K以下,In原子重新排列成具有(8×2)重构的四重晶胞扭曲六边形(图1a),伴随周期性晶格畸变产生一维电荷密度波(CDW),并打开带隙成为凝聚态物理中的绝缘体相(窄禁带半导体)(图1c)。激光脉冲辐照可以实现硅上In线在半导体相与金属相间的超快转变。然而,激光脉冲辐照下的硅上In线在转变为半导体相变后其相干声子振荡快速衰减,未出现其他量子相变材料中普遍存在的两个相间来回振荡的现象。  为了研究硅上In线在光致相变后相干声子振荡快速衰减的微观机理。该工作利用含时密度泛函理论(rt-TDDFT)方法模拟了硅上In线(In/Si(111))在激光脉冲辐照下的动力学过程,在理论上重现了实验中(图1g)观察的半导体相转变为金属相的超快过程(图1、2)。研究发现,激光脉冲把硅中的价电子激发到In线的表面态S1和S2导带,且由于S1和S2能带来自单个In锯齿链上In dimer的成键态,光激发形成使该In dimer变长的原子力,驱动In原子朝着半导体相运动,在晶格周期下In原子的集成运动形成CDW相干声子模式,导致结构相变(图3、4)。研究表明,在转变为半导体相后,S1和S2能带切换为跨越两个锯齿In链上的原子,这种能带成分的转换导致原子驱动力的方向旋转约π/6,阻止In原子在CDW声子模式中的集体运动。该研究从局域原子驱动力进行解释,为光致相变过程提供了更简单的物理图像,为实验调控结构相变提供了直观的理论指导。上述模拟均可在PWmat软件中实现。  相关研究成果以Origin of Immediate Damping of Coherent Oscillations in Photoinduced Charge-Density-Wave Transition为题,发表在《物理评论快报》(Physical Review Letters)上。研究工作得到国家自然科学基金国家杰出青年科学基金项目、中科院前沿科学重点研究计划和中科院战略性先导科技专项等的支持。图1.光诱导半导体相(CDW)到金属相相变的动力学模拟及实验对比 图2.原子结构、原子受力和光激发电子分布随时间的演化
  • 未雨绸缪:半导体检测仪器核心零部件抢先一步国产替代
    p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height:150%" 从 span 2018 /span 年开始,美国掀起了对中国新一轮的贸易战,旨在打压中国在以 span 5G /span 为代表的高端制造业领域的竞争。 /span /p p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height: 150%" 5G /span span style=" line-height:150%" 是第五代移动通信技术的简称和英文缩写,是最新一代蜂窝移动通信技术,也是继 span 4G /span ( span LTE-A /span 、 span WiMax /span )、 span 3G /span ( span UMTS /span 、 span LTE /span )和 span 2G /span ( span GSM /span )系统之后的延伸。 span 5G /span 的性能目标是高数据速率、减少延迟、节省能源、降低成本、提高系统容量和大规模设备连接。 span 5G /span 网络的数据传输速率远远高于以前的蜂窝网络,最高可达 span 10Gbit/s /span ,比当前的有线互联网要快,比先前的 span 4G LTE /span 蜂窝网络快 span 100 /span 倍。此外, span 5G /span 的网络延迟较低(更快的响应时间),低于 span 1 /span 毫秒,而 span 4G /span 为 span 30-70 /span 毫秒。由于数据传输更快, span 5G /span 网络将不仅仅为手机提供服务,还将成为一般性的家庭和办公网络提供商,与有线网络提供商竞争。以前的蜂窝网络提供了适用于手机的低数据率互联网接入,但是一个手机发射塔不能经济地提供足够的带宽作为家用计算机的一般互联网供应商。 /span /p p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height:150%" 而国内以华为中兴为首的 span 5G /span 设备制造商,此次更是成为了美国的重点打击对象。 /span 目前禁令更是蔓延到半导体领域,禁止相关企业为华为芯片代工。 span style=" line-height:150%" 国内其他相关企业也面临着 /span 关键核心器件依赖进口的风险。从事无线通信测试仪器行业的上海创远仪器技术 span style=" line-height:150%" 股份有限公司首先注意到了这种风险,并在申请向不特定合格投资者公开发行股票的公开发行说明书中特别提醒投资者对关键核心器件依赖进口的风险予以关注。 /span /p p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height:150%" 从 span 5G /span 设备到半导体产业,随着贸易战的“战火”沿着产业链条不断蔓延,贸易 “战火”又将燃向何方?国内检测仪器公司又该何去何从?“谜底”或可从贸易战的历程中窥得一二。 /span /p h3 style=" text-align: justify line-height: 150% " strong span style=" font-size:16px line-height:150%" 5G /span /strong strong span style=" font-size:16px line-height:150%" 掀起贸易风波 /span /strong strong /strong /h3 p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height: 150%" 5G /span span style=" line-height:150%" 通信已成为各国和地区争抢发展的技术高地,各国都试图在标准领域拥有更多的话语权。国际咨询机构安永预计,到 span 2025 /span 年,中国的 span 5G /span 用户数将达到 span 5.76 /span 亿,占全球总数逾 span 40% /span 中国 span 5G /span 资本支出将达到 span 1.5 /span 万亿元 span ( /span 约合 span 2230 /span 亿美元 span ) /span 。 /span /p p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height:150%" 面对激烈的 span 5G /span 之争,中国企业步步领先,拥有世界最先进的 span 5G /span 技术。德国的一加专利分析公司 span IPlytics /span 就正式对外发布了一份 span 5G /span 专利研究报告,研究报告中指出,截止至 span 2019 /span 年 span 4 /span 月份,中国四家公司拥有的 span 5G /span 标准必要专利数量竟然达到了惊人的 span 36% /span ,紧随其后的便是韩国的 span 25% /span ,而美国仅仅只有 span 14% /span ,和芬兰一样。在全球范围内,华为拥有 span 1554 /span 族 span 5G /span 标准必要专利,力压所有竞争对手位居全球第一。 /span /p p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height:150%" 然而, span 2018 /span 年 span 4 /span 月 span 16 /span 日晚,在中兴接受了 span 8.9 /span 亿美元的罚款一年后,美国商务部仍悍然发布公告称,美国政府在未来 span 7 /span 年内禁止中兴通讯向美国企业购买敏感产品。面对禁令,中兴感到措手不及,最终选择息事宁人。中兴事件对中国企业是个镜鉴,中国企业必须进一步提高创新,尽快把核心技术掌握在自己手中。 /span /p p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height:150%" 然而山雨欲来风满楼,树欲静而风不止。美国政府很快将目标指向掌握更多 span 5G /span 专利技术的华为。 span 2018 /span 年 span 12 /span 月 span 1 /span 日,美国当局以捏造的罪名要求加拿大逮捕了孟晚舟;同月 span 11 /span 日,加拿大法院作出裁决,批准孟晚舟的保释申请。“孟晚舟事件”归根结底是美国妄图通过“人质”要挟华为就范,放弃 span 5G /span 技术的领先优势。面对美国的卑鄙手段和中兴的前车之鉴,华为却没有接受美国的无耻要挟,而是启动了一系列的“备胎”转正计划,凭借华为多年来居安思危、未雨绸缪的准备,在部分关键技术领域摆脱了对美依赖。 /span /p p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height:150%" 北京时间 span 2020 /span 年 span 7 /span 月 span 24 /span 日上午,加拿大不列颠哥伦比亚省高等法院公开孟晚舟引渡案下一阶段庭审的证据材料。该法院公开证据表明,所谓孟晚舟案,完全是美国炮制的政治案件。汇丰银行参与构陷,恶意做局、拼凑材料、捏造罪证,扮演了极不光彩的角色。孟晚舟是清白的! /span /p p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height:150%" 以上种种迹象表明,美国政府的制裁目标实际上是中国的 span 5G /span 设备制造和技术研发。 /span /p h3 style=" text-align: justify line-height: 150% " strong span style=" font-size:16px line-height:150%" 贸易战火蔓延至半导体制造领域 /span /strong /h3 p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height:150%" 面对美国对华为各种业务(手机、通讯设备等)的制裁,华为拿出了一系列的“备胎”转正计划。一时间,美国政府无从下手,最终将目光射向了和通信设备密切关联的半导体制造产业,企图限制其他企业为华为芯片代工。 /span /p p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height:150%" 半导体产业分为 span IC /span 设计、半导体制造和封装测试三部分,其中华为完成 span IC /span 设计,之后由半导体制造企业代工制造芯片,最后再进行封装。目前我国的封装测试技术已在国际上夺得一席之地,然而半导体的先进制程制造仍大量依赖于国际企业,尖端半导体设备仍与世界半导体设备巨头企业差距巨大。 /span /p p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height: 150%" 2019 /span span style=" line-height:150%" 年 span 5 /span 月,美国发布“出口管制”只要销售给华为的产品当中,涵盖硬件、软件等的美国技术含量超过 span 25% /span ,就会被要求禁止,而这当中的 span “ /span 美国技术含量 span ” /span 包括制造地位于美国、技术源于美国,以及国外制造但源自美国的内容超过 span 25% /span 都算在限制的范围内。 /span /p p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height:150%" 随着国内半导体企业不断发力半导体制造领域,大量晶圆厂立项。今年八月,据路透社报道,美国正在考虑对半导体制造设备及相关软件工具,激光器,传感器和其他技术的出口实行新的限制,以阻止中国等美国的对手使用。报道指出,特朗普政府以国家安全为由,通过了一系列措施限制对中国公司特别是华为的技术出口。为限制拟禁止向中国企业出售半导体设备。 /span /p p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height: 150%" 9 /span span style=" line-height:150%" 月 span 4 /span 日更是传出消息,美国拟制裁中芯国际,切断国内最后的先进制程代工。次日中芯国际发布严《中芯国际关于外媒报道美国政府考虑将公司列入贸易黑名单的声明》。为了限制中国的 span 5G /span 设备制造,美国对我国半导体产业围追堵截,贸易战正不断扩展延申至半导体产业。 /span /p h3 style=" text-align: justify line-height: 150% " strong span style=" font-size:16px line-height:150%" 未来半导体检测仪器或面临制裁 /span /strong /h3 p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height:150%" 半导体制造的检测,包括前道和后道检测。前道量检测运用于晶圆的加工制造过程,它是一种物理性、功能性的测试,用以检测每一步工艺后产品的加工参数是否达到了设计的要求,并且查看晶圆表面上是否存在影响良率的缺陷,确保将加工产线的良率控制在规定的水平之上。 /span /p p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height:150%" 前道量检测设备行业具有极高的技术、资金壁垒,对业内公司研发能力有很强要求。目前市场呈现高度垄断的局面,美国厂商 span KLA-Tencor /span 占据 span 52% /span 的市场份额,是行业内的绝对龙头, 遥遥领先排在第二位的 span AMAT /span 。 凭借在前道量检测设备领域的垄断地位, span KLA /span 在 span 2016 /span 年名列全球半导体设备商第五位,如今依旧在列。 /span /p p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height:150%" 后道的性能测试主要偏重于从芯片功能性的角度检测芯片的性能表现是否符合设计要求,对应设备包括:测试机、探针台、分选机等。测试机是检测芯片功能和性能的专用设备。分选机和探针台是将芯片的引脚与测试机的功能模块连接起来并实现批量自动化测试的专用设备。 /span /p p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height:150%" 后道检测设备市场呈现寡头垄断的局面,这是因为后道检测设备具有较高的技术壁垒,设备的核心技术均掌握在少数几个西方国家的厂商手中。其中,爱德万与泰瑞达两家公司以超过 span 90% /span 的市场份额垄断测试台市场;在探针台领域内,东京精密一家公司的市占率已经达到了 span 60% /span ;同样的在分选机市场内,爱德万、科休、爱普生三家公司的市场份额已经超过了 span 60% /span 。 /span /p p style=" text-indent: 28px line-height: 150% text-align: justify " span style=" line-height:150%" 目前半导体测试设备的国产化率仍不足 span 10% /span 。随着贸易战的蔓延,半导体检测仪器关键核心零部件和半导体检测设备依赖进口的风险逐渐凸显。放弃幻想,准备斗争,对于半导体检测仪器企业来说,这既是机遇,也是挑战。以下为半导体检测设备清单 /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border-collapse: collapse border: none " align=" center" tbody tr class=" firstRow" td width=" 104" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: center " span 分类 /span /p /td td width=" 132" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: center " span 仪器 /span /p /td td width=" 317" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: center " span 用途 /span /p /td /tr tr td width=" 104" rowspan=" 6" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: center " span 前道检测设备 /span /p /td td width=" 132" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" line-height: 150% text-align: center " a href=" https://www.instrument.com.cn/zc/537.html" target=" _self" style=" background: white color: rgb(0, 0, 0) text-decoration: underline " strong span style=" background: white color: rgb(0, 0, 0) " 椭偏仪 /span /strong /a /p /td td width=" 317" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 150% text-align: center " span style=" color:#333333 background:white" 测量透明、半透明薄膜厚度 /span /p /td /tr tr td width=" 132" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" line-height: 150% text-align: center " a href=" https://www.instrument.com.cn/zc/1677.html" target=" _self" style=" color: rgb(0, 0, 0) text-decoration: underline " span style=" color: rgb(0, 0, 0) " strong span style=" color: rgb(51, 51, 51) background: white " 四探针 /span /strong /span /a /p /td td width=" 317" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 150% text-align: center " span style=" color:#333333 background:white" 测量不透明薄膜厚度 /span /p /td /tr tr td width=" 132" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 150% text-align: center " span style=" color:#333333 background:white" 热波系统 /span /p /td td width=" 317" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 150% text-align: center " span style=" color:#333333 background:white" 测量掺杂浓度 /span /p /td /tr tr td width=" 132" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 150% text-align: center " span style=" color:#333333 background:white" 相干探测显微镜 /span /p /td td width=" 317" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 150% text-align: center " span style=" color:#333333 background:white" 套准精度测量设备 /span /p /td /tr tr td width=" 132" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 150% text-align: center " a href=" https://www.instrument.com.cn/list/sort/5.shtml" target=" _self" style=" background: white color: rgb(0, 0, 0) text-decoration: underline " strong span style=" background: white color: rgb(0, 0, 0) " 光学显微镜 /span /strong /a /p /td td width=" 317" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 150% text-align: center " span style=" color:#333333 background:white" 快速定位表面缺陷 /span /p /td /tr tr td width=" 132" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" line-height: 150% text-align: center " a href=" https://www.instrument.com.cn/zc/53.html" target=" _self" style=" color: rgb(0, 0, 0) text-decoration: underline " span style=" color: rgb(0, 0, 0) " strong span style=" color: rgb(51, 51, 51) background: white " 扫描电子显微镜 /span /strong /span /a /p /td td width=" 317" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 150% text-align: center " span style=" color:#333333 background:white" 对缺陷进行精准成像 /span /p /td /tr tr td width=" 104" rowspan=" 3" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: center " span 后道检测设备 /span /p /td td width=" 132" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 150% text-align: center " span style=" line-height:150%" 测试台 /span /p /td td width=" 317" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 150% text-align: center " span style=" line-height:150%" 检测芯片功能和性能 /span /p /td /tr tr td width=" 132" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" line-height: 150% text-align: center " a href=" https://www.instrument.com.cn/zc/1801.html" target=" _self" style=" color: rgb(0, 0, 0) text-decoration: underline " span style=" color: rgb(0, 0, 0) " strong span style=" color: rgb(0, 0, 0) line-height: 150% " 探针台 /span /strong /span /a /p /td td width=" 317" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 150% text-align: center " span style=" line-height:150%" 用于晶圆加工之后、封装工艺之前的 span CP /span 测试环节,负责晶圆的输送与定位,使晶圆上的晶粒依次与探针接触并逐个测试 /span /p /td /tr tr td width=" 132" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 150% text-align: center " span style=" line-height:150%" 分选机 /span /p /td td width=" 317" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 150% text-align: center " span style=" line-height:150%" 根据测试结果对产品进行筛选与分类 /span /p /td /tr /tbody /table p br/ /p
  • X射线衍射成像技术的相关应用
    X射线衍射成像技术(XRD)是一种重要的材料分析技术,它通过测量材料内原子平面对X射线的衍射来研究和量化材料的结晶性质。以下是X射线衍射成像技术的相关应用:1. 材料科学晶体结构分析:XRD是分析材料晶体结构的主要手段之一,能够确定晶体的晶格常数、晶胞参数、晶体缺陷等。相鉴定与定量分析:可以识别材料中存在的不同相(如固溶体、化合物等),并对各相进行定量分析。应力与应变测量:通过测量材料在特定条件下的XRD图谱变化,可以评估材料内部的应力和应变状态。2. 制药业药物分析:XRD是固态药物分析的关键技术,可用于确定药物的晶体结构、晶型转变、纯度等,对药物开发、测试和生产的各个阶段都大有裨益。药物专利保护:在分离出活性药物后,索引X射线粉末衍射图样可用于确定晶体结构,从而帮助获得专利和保护公司投资。3. 法医学接触者追踪分析:XRD在法医学中主要用于接触者追踪分析,如通过油漆薄片、头发、玻璃碎片等材料的XRD图谱,帮助鉴定和比较物证,有助于对涉嫌犯罪的人定罪或开脱罪责。4. 地质应用矿物勘探:XRD是矿物勘探的关键工具,能够快速识别矿物样本中的矿物种类,并量化不同矿物的存在比例。岩石学研究:通过XRD分析,可以了解岩石的矿物组成、晶体结构等信息,对岩石成因、地质构造等研究具有重要意义。5. 工业领域无损检测:X射线成像技术可用于无损检测材料和产品的缺陷,如金属零件中的裂纹、焊接接口质量等,确保质量控制。质量控制:在制造过程中,XRD可用于检查产品的尺寸、形状和结构特征,及时发现偏差和不符合要求的情况,从而进行调整和改进。6. 半导体行业晶体结构表征:X射线衍射技术可用于分析和表征半导体材料的晶体结构,对研究半导体材料的质量和性能至关重要。缺陷检测:结合X射线显微成像技术,可以检测半导体器件中的缺陷,如晶体管、集成电路和微芯片中的金属连接问题、曝露问题和局部结构缺陷等。7. 玻璃工业缺陷识别:虽然玻璃是X射线无定形物,但XRD可用于识别造成块状玻璃微小缺陷的结晶颗粒。涂层分析:测量结晶涂层的质地、晶粒尺寸和结晶度,以优化涂层性能。综上所述,X射线衍射成像技术在多个领域具有广泛的应用价值,是材料分析、质量控制、法医学、地质勘探等领域不可或缺的重要工具。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制