当前位置: 仪器信息网 > 行业主题 > >

半导体元件分析

仪器信息网半导体元件分析专题为您提供2024年最新半导体元件分析价格报价、厂家品牌的相关信息, 包括半导体元件分析参数、型号等,不管是国产,还是进口品牌的半导体元件分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合半导体元件分析相关的耗材配件、试剂标物,还有半导体元件分析相关的最新资讯、资料,以及半导体元件分析相关的解决方案。

半导体元件分析相关的资讯

  • 半导体封装行业的热分析应用
    半导体业务中的典型供应链, 显示了需要材料表征、材料选择、质量控制、工艺优化和失效分析的不同工艺步骤热分析在半导体封装行业中有不同的应用。使用的封装材料通常是环氧基化合物(环氧树脂模塑化合物、底部填充环氧树脂、银芯片粘接环氧树脂、圆顶封装环氧树脂等)。具有优异的热稳定性、尺寸稳定性以及良好户外性能的环氧树脂非常适合此类应用。固化和流变特性对于确保所生产组件工艺和质量保持一致具有重要意义。通常,工程师将面临以下问题:特定化合物的工艺窗口是什么?如何控制这个过程?优化的固化条件是什么?如何缩短循环时间?珀金埃尔默热分析仪的广泛应用可以提供工程师正在寻找的答案。差示扫描量热法(DSC)此项技术最适合分析环氧树脂的热性能,如图1所示。测量提供了关于玻璃化转变温度(Tg)、固化反应的起始温度、固化热量和工艺最终温度的信息。图 1. DSC曲线显示环氧化合物的固化特征DSC可用于显示玻璃化转变温度,因为它在给定温度下随固化时间(图2)的变化而变化。图 2. DSC 曲线显示玻璃化转变温度随着固化时间的延长而逐渐增加玻璃化转变温度(Tg)是衡量环氧化合物交联密度的良好指标。事实上,过程工程师可以通过绘制玻璃化转变温度与不同固化温度下固化时间的关系图来确定最适合特定环氧化合物的工艺窗口(图3)。图 3. 玻璃化转变温度与不同固化温度下的固化时间的关系如果工艺工程师没有测试这些数据,则生产过程通常会导致产品质量低下,如图4所示。图 4. 玻璃化转变温度与不同固化温度下的固化时间的关系在本例中,制造银芯片粘接环氧树脂使用的固化条件处于玻璃化转变温度与时间的关系曲线的上升部分(初始固化过程)。在上述条件下,只要固化时间或固化温度略有改变,就有可能导致结果发生巨大变化。结果就是组件在引脚框架和半导体芯片之间容易发生分层故障。通过使用功率补偿DSC(例如珀金埃尔默的双炉DSC),生成上述玻璃化转变温度与温度 / 时间关系曲线,可确定最佳工艺条件。使用此法,即使是高度填充银芯片粘接环氧树脂的玻璃化转变也可以被检测出。这些数据为优化制造工艺提供了极有帮助的信息。使用DSC技术,可以将固化温度和时间转换至160° C和2.5小时,以此达到优化该环氧树脂固化条件的目的。这一变化使过程稳定并获得一致的玻璃化转变温度值。在珀金埃尔默,DSC不仅被用于优化工艺,而且还通过监测固化产物的玻璃化转变温度值,发挥质量控制工具的作用。DSC 8000 差示扫描量热仪DSC 还可以用于确定焊料合金的熔点。用DSC分析含有3%(重量比)铜(Cu)、银(Ag)或铋(Bi)的锡合金。图5中显示的结果表明,不同成分的合金具有非常不同的熔点。含银合金在相同浓度(3%(重量比))下熔点最低。图 5. DSC:不同焊接合金在不同湿度环境下的熔点分析热重分析(TGA)珀金埃尔默热分析仪有助于设计工程师加深对材料选择的理解。例如,珀金埃尔默TGA 8000® (图6)可以检测出非常小的重量变化,并可用于测量重要的材料参数,如脱气性能和热稳定性。这将间接影响组件的可焊性。图7显示了在230°C 和260° C下具有不同脱气性能的两种环氧树脂封装材料。重量损失(脱气)程度越高,表明与引脚框架接触的环氧树脂密封剂的环氧—引脚框架分离概率越高。图 6. 珀金埃尔默TGA 8000图 7. TGA结果显示两种材料具有不同的脱气性能热机械分析(TMA)当材料经受温度变化时,TMA可精确测量材料的尺寸变化。对于固化环氧树脂体系,TMA可以输出热膨胀系数(CTE)和玻璃化转变温度。环氧树脂的热膨胀系数是非常重要的参数,因为细金线嵌入环氧化合物中,并且当电子元件经受反复的温度循环时,高热膨胀系数可能导致电线过早断裂。不同热膨胀系数之间的拐点可以定义为玻璃化转变温度(图8)。TMA还可以用于确定塑料部件的软化点和焊料的熔点。图 8. 显 TMA 4000 测试的典型的 TMA 图动态力学分析(DMA)选择材料时,内部封装应力也是关键信息。将DMA与 TMA技术结合,可以获得关于散装材料内应力的定量信息。DMA测量材料的粘弹性,并提供不同温度下材料的模量,具体如图9所示。当材料经历热转变时,模量发生变化,使分析人员能够轻松指出热转变,如玻璃化转变温度、结晶或熔化。图 9. DMA 8000 测试的典型的 DMA 图热分析仪用于ASTM® 和IPC材料标准试验、质量控制和材料开发。图10显示了一个涉及热分析仪的IPC试验。珀金埃尔默DMA目前已在半导体行业得到广泛应用。图 10. DMA:显示透明模塑化合物的内应力热分析仪是半导体封装行业的重要工具。它们不仅在设计和开发阶段发挥了重要作用,而且还可用于进行故障分析和质量控制。许多标准方法都对热分析的使用进行了描述(图11)。使用珀金埃尔默热分析仪,用户可以优化加工条件并选择合适的材料以满足性能要求,从而确保半导体企业能够生产出高品质的产品。考虑到此类分析可以节省大量成本,热分析仪无疑是一项“必备”试验设备!图 11. 用于标准方法的热分析仪
  • 盘点|半导体常用失效分析检测仪器
    失效分析是芯片测试重要环节,无论对于量产样品还是设计环节亦或是客退品,失效分析可以帮助降低成本,缩短周期。常见的半导体失效都有哪些呢?下面为大家整理一下:显微镜分析OM无损检测金相显微镜OM:可用来进行器件外观及失效部位的表面形状,尺寸,结构,缺陷等观察。金相显微镜系统是将传统的光学显微镜与计算机(数码相机)通过光电转换有机的结合在一起,不仅可以在目镜上作显微观察,还能在计算机(数码相机)显示屏幕上观察实时动态图像,电脑型金相显微镜并能将所需要的图片进行编辑、保存和打印。金相显微镜可供研究单位、冶金、机械制造工厂以及高等工业院校进行金属学与热处理、金属物理学、炼钢与铸造过程等金相试验研究之用,实现样品外观、形貌检测 、制备样片的金相显微分析和各种缺陷的查找等功能。体视显微镜OM无损检测体视显微镜,亦称实体显微镜或解剖镜。是一种具有正像立体感的目视仪器,从不同角度观察物体,使双眼引起立体感觉的双目显微镜。对观察体无需加工制作,直接放入镜头下配合照明即可观察,成像是直立的,便于操作和解剖。视场直径大,但观察物要求放大倍率在200倍以下。体视显微镜可用于电子精密部件装配检修,纺织业的品质控制、文物 、邮票的辅助鉴别及各种物质表面观察等领域,实现样品外观、形貌检测 、制备样片的观察分析、封装开帽后的检查分析和晶体管点焊检查等功能。X-Ray无损检测X-Ray是利用阴极射线管产生高能量电子与金属靶撞击,在撞击过程中,因电子突然减速,其损失的动能会以X-Ray形式放出。而对于样品无法以外观方式观测的位置,利用X-Ray穿透不同密度物质后其光强度的变化,产生的对比效果可形成影像,即可显示出待测物的内部结构,进而可在不破坏待测物的情况下观察待测物内部有问题的区域。X-Ray可用于产品研发,样品试制,失效分析,过程监控和大批量产品观测等,实现观测DIP、SOP、QFP、QFN、BGA、Flipchip等不同封装的半导体、电阻、电容等电子元器件以及小型PCB印刷电路板,观测器件内部芯片大小、数量、叠die、绑线情况,芯片crack、点胶不均、断线、搭线、内部气泡等封装缺陷,以及焊锡球冷焊、虚焊等焊接缺陷等功能。C-SAM(超声波扫描显微镜)无损检测超声扫描显微镜是一种利用超声波为传播媒介的无损检测设备。在工作中采用反射或者透射等扫描方式来检查材料内部的晶格结构,杂质颗粒、夹杂物、沉淀物、内部裂纹、分层缺陷、空洞、气泡、空隙等。I/V Curve量测可用于验证及量测半导体电子组件的电性、参数及特性。比如电压-电流。集成电路失效分析流程中,I/V Curve的量测往往是非破坏分析的第二步(外观检查排在第一步),可见Curve量测的重要性。I/V Curve量测常用于封装测试厂,SMT领域等,实现Open/Short Test、 I/V Curve Analysis、Idd Measuring和Powered Leakage(漏电)Test功能。SEM扫描电镜/EDX能量弥散X光仪(材料结构分析/缺陷观察,元素组成常规微区分析,精确测量元器件尺寸)扫描电镜(SEM)SEM/EDX(形貌观测、成分分析)扫描电镜(SEM)可直接利用样品表面材料的物质性能进行微观成像。EDX是借助于分析试样发出的元素特征X射线波长和强度实现的,根据不同元素特征X射线波长的不同来测定试样所含的元素。通过对比不同元素谱线的强度可以测定试样中元素的含量。通常EDX结合电子显微镜(SEM)使用,可以对样品进行微区成分分析。在军工,航天,半导体,先进材料等领域中,SEM/EDX(形貌观测、成分分析)扫描电镜(SEM)可实现材料表面形貌分析,微区形貌观察,材料形状、大小、表面、断面、粒径分布分析,薄膜样品表面形貌观察、薄膜粗糙度及膜厚分析,纳米尺寸量测及标示和微区成分定性及定量分析等功能EMMI微光显微镜微光显微镜(Emission Microscope, EMMI)是常用漏电流路径分析手段。对于故障分析而言,微光显微镜(Emission Microscope, EMMI)是一种相当有用且效率极高的分析工具。主要侦测IC内部所放出光子。在IC元件中,EHP(Electron Hole Pairs)Recombination会放出光子(Photon)。如在P-N结加偏压,此时N阱的电子很容易扩散到P阱,而P的空穴也容易扩散至N,然后与P端的空穴(或N端的电子)做EHP Recombination。在故障点定位、寻找近红外波段发光点等方面,微光显微镜可分析P-N接面漏电;P-N接面崩溃;饱和区晶体管的热电子;氧化层漏电流产生的光子激发;Latch up、Gate Oxide Defect、Junction Leakage、Hot Carriers Effect、ESD等问题Probe Station 探针台测试探针台主要应用于半导体行业、光电行业。针对集成电路以及封装的测试。 广泛应用于复杂、高速器件的精密电气测量的研发,旨在确保质量及可靠性,并缩减研发时间和器件制造工艺的成本,可用于Wafer,IC测试,IC设计等领域。FIB(Focused Ion beam)线路修改FIB(聚焦离子束,Focused Ion beam)是将液态金属离子源产生的离子束经过离子枪加速,聚焦后照射于样品表面产生二次电子信号取得电子像,此功能与SEM(扫描电子显微镜)相似,或用强电流离子束对表面原子进行剥离,以完成微、纳米级表面形貌加工。在工业和理论材料研究,半导体,数据存储,自然资源等领域,FIB可以实现芯片电路修改和布局验证、Cross-Section截面分析、Probing Pad、 定点切割、切线连线,切点观测,TEM制样,精密厚度测量等功能。失效分析前还有一些必要的样品处理过程。取die用酸法去掉塑封体,漏出die decap(开封,开帽)利用芯片开封机实现芯片开封验证SAM,XRAY的结果。Decap即开封,也称开盖,开帽,指给完整封装的IC做局部腐蚀,使得IC可以暴露出来,同时保持芯片功能的完整无损,保持 die,bond pads,bond wires乃至lead-frame不受损伤,为下一步芯片失效分析实验做准备,方便观察或做其他测试(如FIB,EMMI), Decap后功能正常。化学开封Acid DecapAcid Decap,又叫化学开封,是用化学的方法,即浓硫酸及发烟硝酸将塑封料去除的设备。通过用酸腐蚀芯片表面覆盖的塑料能够暴露出任何一种塑料IC封装内的芯片。去除塑料的过程又快又安全,并且产生干净无腐蚀的芯片表面。研磨RIERIE是干蚀刻的一种,这种蚀刻的原理是,当在平板电极之间施加10~100MHZ的高频电压(RF,radio frequency)时会产生数百微米厚的离子层(ion sheath),在其中放入试样,离子高速撞击试样而完成化学反应蚀刻,此即为RIE(Reactive Ion Etching)。 自动研磨机自动研磨机适用于高精微(光镜,SEM,TEM,AFM,ETC)样品的半自动准备加工研磨抛光,模块化制备研磨,平行抛光,精确角抛光,定址抛光或几种方式结合抛光,主要应用于半导体元器件失效分析,IC反向等领域,实现断面精细研磨及抛光、芯片工艺分析、失效点的查找等功能。 其可以预置程序定位切割不同尺寸的各种材料,可以高速自动切割材料,提高样品生产量。其微处理系统可以根据材料的材质、厚度等调整步进电动机的切割距离、力度、样品输入比率和自动进刀比率等。去金球 De-gold bump,去层,染色等,有些也需要相应的仪器机台,SEM可以查看die表面,SAM以及X-Ray观察封装内部情况以及分层失效。除了常用手段之外还有其他一些失效分析手段,原子力显微镜AFM ,二次离子质谱 SIMS,飞行时间质谱TOF - SIMS ,透射电镜TEM , 场发射电镜,场发射扫描俄歇探针, X 光电子能谱XPS ,L-I-V测试系统,能量损失 X 光微区分析系统等很多手段,不过这些项目不是很常用。芯片失效分析步骤:1、非破坏性分析:主要是超声波扫描显微镜(C-SAM)--看有没delamination,xray--看内部结构,等等;2、电测:主要工具,万用表,示波器,sony tek370a3、破坏性分析:机械decap,化学 decap芯片开封机4、半导体器件芯片失效分析 芯片內部分析,孔洞气泡失效分析(原作者:北软失效分析赵工)
  • 超高灵敏度芯片半导体器件失效分析显微镜
    新一代超高灵敏度半导体芯片失效分析热成像显微镜日前在美国问世,于2014年3月18日慕尼黑上海电子展上在大中华区发布并在中国大陆,台湾和香港同步上市,由孚光精仪公司负责该区域销售和售后服务。新一代热发射显微镜采用锁相热成型技术,可探测到1mK (0.001°C) 的器件温度变化,可探测到 100 μW 的功率变化。据悉,这种热发射显微镜可快速定位半导体器件的温度异常点,从而找到漏电等失效点位置。这种热发射显微镜不需要对器件表面处理,可对裸器件和封装器件失效分析,也可定位SMD器件的低功率位置,比如电容泄露测试。除了失效分析之外,这套热发射显微镜还具有器件的真实温度测量功能,以及结点温度,热阻和芯片黏着 Die Attach分析功能。详情浏览:http://www.f-opt.cn/rechengxiang/hongwaixianweijing.html应用领域:器件漏电分析栅极和漏极之间的电阻短路分析封装器件的复合模具短路分析Latch-up点定位金属性短路分析缺陷晶体管和二极管定位分析氧化层击穿SMD元件漏电分析特色和功能超高灵敏度失效点定位堆叠芯片的缺陷深度分析真实温度测量结点温度测量封装和裸露器件分析正面和背面分析检测芯片粘接问题
  • 新购激光粒度分析仪、气相色谱仪等进口设备,清华大学半导体产业重大科研项目落户无锡
    1月30日,在江苏富乐华功率半导体研究院,高新区与无锡海古德新技术有限公司成功签约,清华大学国家863科技成果转化项目——年产1020万片半导体功率模块使用陶板基板项目正式落户高新区半导体产业园。该项目由无锡海古德投资6亿元创建江苏海古德新技术有限公司,占地80亩,厂房面积7万平方米,新上六条流延线及排胶线,新购烧结炉、研磨机、激光粒度分析仪、气相色谱仪等进口设备,年产氮化铝基板720万片、氮化硅基板300万片,年可实现开票10亿元。据悉,无锡海古德是一家拥有自主知识产权、高科技专利技术,集新型陶瓷材料及其电子元件研发、生产、销售为一体的现代化高新技术企业。核心产品高性能氮化铝陶瓷材料、氮化硅陶瓷基板及其元器件,是国家强基工程关键领域的关键基础材料,已通过欧、美、日、韩等多家知名企业技术认证,各项性能指标均已达到国际先进水平,得到众多客户信赖与支持。签约前,高新区和投资方研究审定了江苏海古德新技术有限公司年产1020万片半导体功率模块使用陶板基板项目的规划和建筑单体设计方案,并就加快项目实施速度,提升项目推进效率,扎实推动半导体产业集群高质量发展进行了交流、沟通和探讨。签约活动结束后,无锡海古德新技术有限公司一行参观了江苏富乐华功率半导体研究院。富乐华研究院以创建国家级功率半导体科研机构为目标追求,致力于将技术成熟的功率半导体系列项目就地转化,强力驱动高新区半导体产业不断延链强链。
  • 赛默飞发布三款用于半导体领域新品 提升实验室分析效率
    p    strong 2017年7月4日,成都 /strong ——近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)亮相成都第 24 届国际集成电路物理与失效分析研讨会 (IPFA 2017),并发布三款用于半导体失效分析工作流程的全新产品,旨在帮助半导体故障分析实验室提升处理样品和获取数据的效率,为寻求快速、高质量的电性和物理失效分析的半导体制造商提供创新解决方案。 /p p   新型 Helios G4 等离子聚焦离子束 (FIB) 系统可对各类半导体器件进行逆向剥层处理,并提供超高分辨率扫描电子显微镜 (SEM) 分析。新型 flexProber 纳米探针量测系统可用于快速电性失效分析的应用。它能对半导体晶片在互连导线和晶体管级别上的故障位置,做出准确的定位。新型 Themis S 透射电子显微镜 (TEM)用在最具挑战性的半导体器件上,可提供原子级分辨率的成像和高产率的元素分析。 /p p   “作为科学服务领域的世界领导者,赛默飞始终立于世界科学发展的前沿,以强大的技术创新领导力,为全球用户提供先进科学服务产品。”赛默飞中国区总裁江志成(Gianluca Pettiti)先生表示:“目前中国的半导体市场充满机遇与挑战,提升产品性能与效率是产业的发展重点。赛默飞始终聚焦中国的科研需求、与本地客户密切协作,致力于帮助客户提高实验室效率,践行我们的本地化承诺。” /p p   “半导体市场不断地快速发展,内存、代工、物联网 (IoT)、先进封装和显示屏市场领域都呈现出强劲的增长”,赛默飞材料与结构分析部亚洲区副总裁荆亦仁阐述道:“这一发展带动了人们对快速、高质量电性和物理失效分析需求的提升。这些新的产品将为我们现有的失效分析解决方案增添新的功能,并提高了机动性”。 /p p   Helios G4 等离子聚焦离子束系统是赛默飞最新一代的双束显微镜。它具有从快速剥层、扫描电子显微镜截面成像到透射电子显微镜样品制备在内的多种功能。半导体剥层技术在 14 nm 以下技术节点器件上的缺陷定位应用变得越来越重要。等离子聚焦离子束搭配Dx 化学气体可用于均匀展露金属层,使赛默飞的纳米探针测量系统能够进行电性故障的定位与分析。 /p p style=" text-align: center " img title=" 赛默飞新型 Helios G4 等离子聚焦离子束 (FIB) 系统.png" src=" http://img1.17img.cn/17img/images/201707/insimg/309a0d7f-1c24-47fd-b0bc-832df82b37cf.jpg" / /p p style=" text-align: center "   赛默飞新型 Helios G4 等离子聚焦离子束 (FIB) 系统 /p p   Helios G4 等离子聚焦离子束系统可支持 7 nm 技术节点以下器件的逆向剥层处理并提供自动终点检测,以在指定的金属层或通过层显露时自动停止蚀刻。它提供比传统 (Ga+) 聚焦离子束系统快 10 到 20 倍的蚀刻速率,使客户能够为纳米探针测量系统、透射电子显微镜以及扫描电子显微镜制备更大面积的样品,并可广泛地应用于先进 (2.5D) 封装、发光二极管 (LED)、显示屏以及微电子机械系统 (MEMS) 。 /p p   新型 flexProber 系统旨在帮助客户对电性失效做出快速定位,并利用低电压扫描电子显微镜来引导精密机械探针到故障电路元件上。准确定位有助于提高后续分析的效率和成本的效益,确保由此定位而制取的透射电镜样品包含了故障区域。专为探针设计的flexProber 系统的扫描电镜,与其前代产品 nProber II 相比分辨率提升了 2 倍。它融入了赛默飞高端纳米探针量测系统的许多功能,适用于广泛的半导体器件类型和不同的制程技术。它提供了入门级配置,同时保留了未来升级到完整纳米探针测量系统的可能性。 /p p style=" text-align: center " img title=" 赛默飞新型 flexProber 纳米探针量测系统.png" src=" http://img1.17img.cn/17img/images/201707/insimg/136972db-c7e7-4224-bdab-7cc10bba0ef1.jpg" / /p p style=" text-align: center "   赛默飞新型 flexProber 纳米探针量测系统 /p p   Themis S 系统是赛默飞行业标准 Themis 系列透射电镜的最新成员。以为20 nm 技术节点以下的半导体器件失效分析为目的,Themis S 系统旨在提供大规模的半导体图像和分析数据,同时Themis S还包括了集成的隔振护罩和完整的远程操作功能。球差矫正器、80-200kV 镜筒、自动对中、XFEG 电子枪和 DualX X 射线能谱仪提供了强大的亚埃级成像能力和快速、准确的元素和应力分析功能。 /p p style=" text-align: center " img title=" 赛默飞新型 Themis S 透射电子显微镜 (TEM).png" src=" http://img1.17img.cn/17img/images/201707/insimg/f73b2fc6-0338-45ed-b133-2065a9429bc7.jpg" / /p p style=" text-align: center "   赛默飞新型 Themis S 透射电子显微镜 (TEM) /p p   “我们客户的半导体器件多种多样,从最先进的 7 到20 nm节点的内存和逻辑器件,到在智能手机和物联网等产品中仍占据重要地位的成熟技术的器件”,荆亦仁表示:“我们的失效分析工具系列可满足不同半导体客户的各种需求。我们期待在中国 IPFA 会议上,与我们的客户面对面探讨我们将如何满足半导体领域不断增长的需求。” /p p    strong 关于赛默飞世尔科技 /strong /p p   赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额180亿美元,在50个国家拥有约55,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。赛默飞的重要应用领域包括食品安全、生物制药、环境及医疗保健等垂直市场。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。 /p p    strong 赛默飞世尔科技中国 /strong /p p   赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约4000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有7家工厂分别在上海、北京和苏州运营。我们在全国共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务 位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品 我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。 /p p    strong 媒体垂询: /strong /p p strong   赛默飞世尔科技 /strong /p p   高赫 /p p   公共关系经理 /p p   电子邮件:sura.gao@thermofisher.com /p p   电话:(86-21) 6865 4588-2695 /p p    strong 公关公司 /strong /p p strong   爱德曼国际公关 /strong /p p   秦雯 /p p   电子邮件:Cherry.Qin@edelman.com /p p   电话: (86-21) 6193 7411 /p p & nbsp /p
  • 蔡司推出半导体封装失效分析高分辨3D X射线成像解决方案
    p   新型亚微米与纳米级XRM系统及新型microCT系统为失效分析提供了灵活选择,帮助客户加速技术发展,提高先进半导体封装的组装产量。 /p p    strong 加州普莱斯顿与德国上科亨,2019年3月12日 /strong --蔡司发布了一套新型高分辨率3D X射线成像解决方案,用于包括2.5/3D与扩散型晶圆级封装在内的先进半导体封装的失效分析(FA)。蔡司X射线显微系统包括:通过亚微米级和纳米级高分辨率成像对封装产品进行失效分析的 a href=" https://www.instrument.com.cn/news/20190124/479353.shtml" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " Xradia 600 Versa系列 /span /strong /a 和 Xradia 800 Ultra X射线显微镜(XRM),以及Xradia Context microCT。随着在现有产品基础上新设备的研发推出,现如今,蔡司可以为半导体行业提供一系列3D X射线成像技术辅助生产。 /p p   蔡司制程控制解决方案(PCS)部门与蔡司SMT部门总裁Raj Jammy博士介绍说:“在170年的历史中,蔡司始终致力于拓展科学研究的疆域,推动成像技术的发展,以实现新的工业应用和技术创新。在今天的半导体行业,封装尺寸与器件尺寸越做越小,因此我们比以往任何时候都更需要新型成像解决方案,用于快速排除故障,实现更高的封装产量。蔡司很荣幸宣布推出这一新型先进半导体封装3D X射线成像解决方案,为客户提供强大的高分辨率成像分析设备,以提高失效分析准确率。” /p p    strong 先进封装技术需要新型缺陷检测与失效分析的方法 /strong /p p   随着半导体产业面临CMOS微缩极限的挑战,人们需要通过半导体封装技术弥合性能上的差距。为了继续生产更小巧、更快速、更低功耗的器件,半导体行业正在通过芯片的3D堆叠和其他新型封装方式尝试封装创新。这些创新催生了日益复杂的封装架构,带来了新的制造挑战,同时也增加了封装故障的风险。此外,由于发生故障的位置往往隐藏于复杂的三维结构之中,传统的故障位置确认方法难以满足高效分析的需求。行业需要新型技术来有效地筛选和确定产生故障的根本原因。 /p p   为满足这一需求,蔡司开发出全新3D X射线成像解决方案,提供亚微米与纳米级3D图像,显示出隐藏于完整的封装3D结构中的特性与缺陷。将样品置于系统,样品在光路中旋转,从不同角度捕捉一系列2D X射线投影图像,然后使用复杂的数学模型和算法重建3D模型。新型解决方案可以从任意角度观察3D模型虚拟切片,从而在进行物理失效分析(PFA)之前对缺陷进行三维可视化。蔡司亚微米和纳米级XRM解决方案相结合,为客户提供独特的故障分析工作流程,有助于显著提高失效分析成功率。蔡司的新型Xradia Context microCT采用基于投影的几何放大技术,在大视场中实现高衬度和高分辨率成像,而且也可以全面升级至Xradia Versa X射线显微镜。 /p p   strong  新型成像解决方案详解 /strong /p p    a href=" https://www.instrument.com.cn/news/20190124/479353.shtml" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " strong Xradia 600 Versa /strong /span /a 系列是新一代3D XRM,能够在完整的已封装半导体器件中对已定位的缺陷进行无损成像。在结构化分析和失效分析应用中,新型解决方案在制程开发、良率提升和工艺分析等方面表现出色。Xradia 600 Versa系列以屡获殊荣且具有大工作距离高分辨率(RAAD)特性的Versa X射线显微镜为基础,提供优异的成像性能,实现大工作距离下的大样品的高分辨率成像,用于为封装、电路板和300毫米晶圆生产确定产生缺陷与故障的原因。利用该解决方案,可以轻松看到与封装级故障相关的缺陷,例如凸块或微型凸块中的裂纹、焊料润湿或硅通孔(TSV)空隙。在进行物理失效分析之前对缺陷进行3D可视化处理,有助于减少伪影,提供横纵方向的虚拟切片效果,从而提高失效分析成功率。新型解决方案的主要特性包括: /p p   ◆最高空间分辨率0.5微米,最小体素40纳米 /p p   ◆与Xradia 500 Versa系列相比, 工作效率提高了两倍,且在保证高分辨率的同时,在整个kV(电压)和功率范围内保持出色的X射线源焦点尺寸稳定性与热稳定性 /p p   ◆更加简便易用,包括快速激活源 /p p   ◆可靠性测试中可实现多个位点连续成像,并能观察封装结构内部亚微米结构变化 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/fcb3b14e-afb6-4859-b117-ade3ce9e1694.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p    strong Xradia 800 Ultra /strong 将3D XRM提升至纳米级尺度,并在纳米尺寸下探索隐藏的特性,获得高空间分辨率图像的同时保持感兴趣区域的结构完整性。其应用包括超密间距覆晶与凸块连接的工艺分析、结构分析和缺陷分析,从而改进超密间距封装与后段制程(BEOL)互连的工艺改进。Xradia 800 Ultra能够对密间距铜柱微凸块中的金属间化合物所消耗焊料的结构和体积进行可视化。在成像过程中保留缺陷部位,有助于采用其他技术进行针对性的后期分析。还可以利用3D图像来表征盲孔组件(blind assemblies)的结构质量,例如晶圆对晶圆键合互连与直接混合键合等。该解决方案的主要特性包括: /p p   ◆空间分辨率150纳米与50纳米(需要制备样品) /p p   ◆选配皮秒激光样品制备工具,能够在一小时内提取完整体积(结构)样品(通常直径为100微米) /p p   ◆兼容多种后续分析方法,包括透射电子显微镜(TEM)、能量色散X射线谱(EDS)、原子力显微镜(AFM)、二次离子质谱(SIMS)和纳米探针 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/52ac92be-9189-4c80-bd09-b60d7bb9da1b.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p    strong Xradia Context microCT /strong 是一种基于Versa平台的新型亚微米分辨率3D X射线microCT系统。该解决方案用于封装产品在小工作距离和高通量下进行高分辨率成像。主要特性包括: /p p   ◆在大视场下提供大样品的全视场成像(体积比Xradia Versa XRM系统大10倍) /p p   ◆小像素尺寸的高像素密度探测器(六百万像素)即使在观察视野较大的情况下也能确保较高分辨率 /p p   ◆X射线microCT拥有空间分辨率0.95微米,最小体素0.5微米 /p p   ◆出色的图像质量与衬度 /p p   ◆可升级为Xradia Versa,实现RaaD功能,对完整大样品进行高分辨率成像 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/a444699e-2096-43cc-a3ed-3471855ecc79.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p   上海新国际博览中心即将于3月20日至22日举办中国半导体展(SEMICON China),蔡司将在展会上展示最新显微镜产品和解决方案,包括新型Xradia 600 Versa系列、Xradia 800 Ultra和Xradia Context microCT系统。如有意了解详情,您可到N2展厅2619号展位参观蔡司展品。 /p p    strong 关于蔡司 /strong /p p   蔡司是全球光学和光电领域的先锋。上个财年度,蔡司集团旗下四个部门的总收入超过58亿欧元,包括工业质量与研究、医疗技术、消费市场,以及半导体制造技术(截止:2018年9月30日)。 /p p   蔡司为客户开发、生产和分销用于工业测量与质量控制的创新解决方案,用于生命科学和材料研究的显微镜解决方案,以及用于眼科和显微外科诊断与治疗的医疗技术解决方案。在半导体行业,“蔡司”已成为世界优秀的光学光刻技术的代名词,该技术被芯片行业用于制造半导体元件。眼镜镜片、照相机镜片和双筒望远镜等引领行业潮流的蔡司产品正在全球市场热销。 /p p   凭借与数字化、医疗保健和智能生产等未来增长领域相结合的投资组合,以及强大的品牌,蔡司正在塑造光学和光电行业以外的未来。该公司在研发方面的重大、可持续投资为蔡司技术和市场成功保持领先地位和持续扩张奠定了基础。 /p p   蔡司拥有约30,000名员工,活跃于全球近50个国家,拥有约60家自有销售和服务公司、30多家生产基地和约25家开发基地。公司于1846年创办于耶拿(Jena),总部位于德国上科亨。卡尔· 蔡司基金会(Carl Zeiss Foundation)是德国最大的基金会之一,致力于促进科学发展,是控股公司卡尔· 蔡司股份公司的唯一所有者。 /p
  • 第三代半导体专利分析——氮化镓篇
    第三代半导体材料主要是以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)等为代表的宽禁带半导体材料。与第一、二代半导体材料相比,第三代半导体材料具有更宽的禁带宽度、更高的击穿电场、更高的热导率、更高的电子饱和速率及更高的抗辐射能力,更适合于制作高温、高频、抗辐射及大功率器件,通常又被称为宽禁带半导体材料(禁带宽度大于2.3eV),亦被称为高温半导体材料。从目前第三代半导体材料及器件的研究来看,较为成熟的第三代半导体材料是碳化硅和氮化镓,而氧化锌、金刚石、氮化铝等第三代半导体材料的研究尚属起步阶段。碳化硅(SiC)和氮化镓(GaN),被行业称为第三代半导体材料的双雄。专利一般是由政府机关或者代表若干国家的区域性组织根据申请而颁发的一种文件,这种文件记载了发明创造的内容,并且在一定时期内产生这样一种法律状态,即获得专利的发明创造在一般情况下他人只有经专利权人许可才能予以实施。在我国,专利分为发明、实用新型和外观设计三种类型。专利文献作为技术信息最有效的载体,囊括了全球90%以上的最新技术情报,相比一般技术刊物所提供的信息早5~6年,而且70%~80%发明创造只通过专利文献公开,并不见诸于其他科技文献,相对于其他文献形式,专利更具有新颖、实用的特征。可见,专利文献是世界上最大的技术信息源,另据实证统计分析,专利文献包含了世界科技技术信息的90%~95%。如此巨大的信息资源远未被人们充分地加以利用。事实上,对企业组织而言,专利是企业的竞争者之间惟一不得不向公众透露而在其他地方都不会透露的某些关键信息的地方。因此,通过对专利信息细致、严密、综合、相关的分析,可以从其中得到大量有用信息。基于此,仪器信息网特统计分析了第三代半导体中氮化镓的专利信息,以期为从业者提供参考。(本文搜集信息源自网络,不完全统计分析仅供读者参考,时间以专利申请日为准)专利申请趋势分析(1994-2020)申请人数量趋势分析(1994-2020)发明人数量趋势分析(1994-2020)本次统计,以“氮化镓”为关键词进行检索,共涉及专利总数量为9740条(含世界知识产权组织254条专利),其中发明专利8270条、实用新型专利1169条和外观专利47条。从统计结果可以看出可以看出,从1994年开始,氮化镓专利数量和专利申请人数量整体呈增长趋势,只在2012-2014年之间和2020年呈下降趋势。这表明氮化镓的研发投入不断增加,相关企业和科研院所数量也在不断增加。从专利发明人数量趋势可以看出,从事氮化镓相关研究的人数也在逐年增加,氮化镓已成为研究热点。申请人专利排行发明人专利量排行那么从事相关研发工作的主要有哪些单位呢?从申请人专利量排行可以看出,在专利申请人申请量排名中,中国科学院半导体研究所的表现最为突出共申请专利314件,三菱电机株式会社(排名第二)与电子科技大学(排名第三)也不甘示弱,分列第二与第三位。具体来看,半导体所的专利主要集中于材料生长、加工工艺等方面;三菱电机的专利主要集中于功率器件制造、半导体装置等方面。在发明人专利量排行中,李鹏的专利量最多,其次为胡加辉、李晋闽等人。李鹏发明的专利主要归华灿光电所属,专利集中于氮化镓发光二极管领域的研究。据了解,华灿光电成立于2005年的华灿光电股份有限公司,是我国领先的半导体技术型企业。目前有张家港、义乌、玉溪三大生产基地。历经十几年的发展,华灿光电已成为国内第二大LED芯片供应商,国内第一大显示屏用LED芯片供应商。2015年收购云南蓝晶,整合LED上游产业资源。专利申请区域统计通过对专利申请区域进行统计能够了解到目前专利技术的布局范围以及技术创新的活跃度,进而分析各区域的竞争激烈程度。从专利申请区域可以看出,氮化镓专利申请主要集中于广东省、江苏省等,这些地区都是半导体产业发达的地区,其在第三代半导体方面的布局也快人一步。值得注意的是,日本企业在国内也有很多专利布局。专利技术分类统计从专利技术分类来看,大部分氮化镓的专利都集中于电学领域。这主要是因为氮化镓是功率器件和射频器件的重要半导体材料,在电力电子、射频芯片等领域都要重要的应用。具体来看,相关研究主要集中于光发射的半导体器件、半导体装置或设备、半导体材料在基片上的沉积等方面。
  • 快速精确的半导体质控和分析的新技术---SPV
    从初始的晶圆到最终器件,半导体的分析一直被被认为是专家的工作,很少有分析工具可以直接作为生产过程中材料质量好坏的“决策者”。Freiberg Instruments全新的SPV是一款真正的生产工具,因为它可以在不影响工作流程速度的情况下完成工作。SPV检查生产中使用的材料的关键产率参数:无论是硅,碳化硅或其他半导体或光活性材料。SPV工具测量材料在被一个或多个光源激发时的时间分辨表面光电压响应。光源根据材料的电子特性和材料中可能与产量损失相关的已知缺陷来选择。例如,在单晶硅晶圆中,可能有许多缺陷会导致器件加工过程中的产率损失。单晶硅晶圆可能含有来源于晶体生长周期或不同设备加工步骤的高浓度氮。氮原子可以在原本完美的硅晶体中形成一个取代对,导致在硅片中形成了不好的电子状态,这可以严重影响MOS栅结构的性能。SPVcheck工具不仅可以测量这种缺陷的存在,而且还可以测量它们的近似密度。通过这种方式,晶圆批次内和晶圆批次之间的变化可以通过设备/工具到主机的接口协议进行监控和报告,并用于SPC目的。SPV是一个非常通用的工具,可以通过多种方式进行配置。它几乎可以用于任何光活性材料。可测量纳秒时间分辨的表面光电压信号,具有良好的信噪比和5-6个数量级的尺度。一次测量大约需要15-30秒,包括信号分析环路。可以输出符合各种标准,以及被测材料状态的完整测量报告。符合自动化材料处理系统(AMHS)法规和SEMI标准。【相关应用】金刚石中的电子跃迁宽禁带半导体体极化现象的非接触探测氧化镓的表征光催化材料BiVO4的研究光催化材料(TiO2)的研究与监测SiC、GaN和AlGaN的非接触表征表面光电压光谱-功率半导体研究4H-SiC的缺陷表面光电压光谱-光化学/光催化水裂解研究3C-和4H-SiC的缺陷和电荷动力学【相关产品】SPVmapSPSresearch更多有关SPV产品和应用的资讯,请联系弗莱贝格仪器(上海)有限公司!
  • 半导体SERS基底非吸附分析物检测获进展
    近日,华东理工大学化学与分子工程学院张金龙教授课题组和曹宵鸣教授课题组合作,在表面增强拉曼光谱(SERS)领域获得最新进展。相关研究以《提高半导体基底的电磁场增强能力用于非吸附分析物的SERS检测》为题发表于《化学》。 表面包覆结构示意。 华东理工大学供图SERS具有超高检测灵敏度,因此在多个领域得到广泛应用。开发低成本、高活性SERS基底是该领域的研究热点。目前,常见的贵金属SERS基底主要通过电磁机制,增强分析物分子的SERS信号,因此具有极高的检测灵敏度,但其缺点是化学性质活泼、制备繁琐、价格昂贵。相较而言,半导体SERS基底化学性质稳定、制备方便、成本低廉,但绝大多数半导体SERS基底需要分析物分子吸附在半导体基底表面。因此,传统的半导体SERS技术只能用于极少分子(染料分子、硫醇分子等),这极大地限制了半导体SERS技术的应用。近期,有研究报道发现,Ta2O5、ZnO和SnO2-NiOx等半导体SERS基底同样能通过电磁增强机制提升分析物分子的SERS信号。不同于化学增强机制,电磁增强机制可以作用于距SERS基底表面一定范围内的吸附性/非吸附性分析物分子。然而,相较于贵金属SERS基底,半导体SERS基底的电磁增强能力极弱。因此,提高半导体SERS基底的电磁增强能力是拓展半导体SERS技术应用前景的关键。在该项工作中,研究团队设计并制备了具有次级结构的ZnO纳米粒子,通过在其外表面包覆ZIF-8壳层,提升了ZnO纳米粒子的电磁增强能力,实现了6种非吸附性有机化合物(VOCs)的低浓度检测,检测极限可与贵金属SERS基底相当。研究发现,在这种表面包覆结构不仅可以富集大量VOC分子,还可以改变ZnO表面的折射率,从而有效抑制电磁场在ZnO纳米粒子表面随距离的衰减。这进一步拓展了电磁增强机制在ZnO纳米粒子表面的作用范围,使更多富集在ZIF-8壳层中的信号得到电磁增强,从而实现VOC分子的低浓度检测。此外,密度泛函理论(DFT)计算同时表明,这种结构可以通过空间位阻效应阻碍VOC分子与ZnO之间形成化学键,避免两者可能存在的电荷转移,从而排除了化学增强机制的影响。因此,在该研究中电磁增强机制是VOC分子SERS信号得到增强的唯一作用机制。该研究表明半导体SERS基底的电磁增强能力可以通过包覆MOF材料得到显著提高,这对未来半导体SERS基底的设计和应用有着重要的意义。
  • AI驱动半导体向上 再议创新合作|第二届半导体第三方分析检测生态圈战略大会召开
    仪器信息网讯 2024年7月25日,第二届半导体第三方分析检测生态圈战略大会在苏州召开。大会由胜科纳米(苏州)股份有限公司主办,以主论坛会议、圆桌会议及专业展览的形式开展高峰对话,会议前夕举行了国际合作论坛和生态圈闭门会议。会议吸引半导体产业链上下游龙头企业负责人等500多名嘉宾出席,覆盖芯片设计、晶圆制造、设备材料、封装测试、消费终端、分析检测实验室等领域400多家国内外企业及科研院所,为半导体产业生态圈企业打开一扇观察行业标准化及差异化发展、技术创新、人才培育的活力之窗。大会现场主论坛会议上,十余位行业大咖带来了前沿的技术分享和创新发展的报告,不仅涵盖了半导体产业生态的创新发展与协同合作,还包括了第三方分析检测服务机构评价体系的构建、实验室智能化系统的应用与发展等。演讲嘉宾:胜科纳米(苏州)股份有限公司 董事长 李晓旻演讲题目:半导体行业周期和周期内的赛道轮回报告伊始,李晓旻回顾了半导体分析实验室过去40年的演变历程。各年代实验室的主要技术从最初的光学显微镜到透射电镜,再到现代失效分析综合系统的变迁,半导体分析实验室的技术发展极大提升了对纳米级芯片的观察能力。在半导体产业链专业化分工浪潮下,Labless模式应运而生。接着,李晓旻从半导体分析实验室的发展历程、半导体行业细分的要求、设备和人才痛点的需求以及分析检测赛道对半导体行业周期的判断等方面,详细阐述其首创Labless商业理念的初衷及对行业现状和未来前景的深刻见解。对于未来半导体行业的发展,李晓旻认为,人工智能将成为推动行业发展的新动力,而半导体行业也将迎来更加广阔的应用前景。此外,也强调了建立严谨的评价体系对于第三方实验室的重要性。他认为,只有通过科学的评价体系,才能确保实验室的服务质量和水平,从而推动整个行业的健康发展。最后,李晓旻表示,胜科纳米将始终关注半导体行业的发展动态和技术创新,与业界同仁共同努力,为推动我国半导体行业的进步和发展贡献力量。演讲嘉宾:中国半导体行业 资深专家 江涛演讲题目:发展新质生产力对中国半导体第三方测试机构的高标准和严要求随着人工智能技术的飞速发展,半导体行业面临着前所未有的挑战和机遇。人工智能大模型的工作特点对半导体行业提出了更高的要求。为了跟上人工智能摩尔定律的步伐,半导体行业需要持续创新,提高技术水平。此外,先进封装技术将成为半导体行业的一个重要发展方向,为半导体市场带来更多的机会和挑战。江涛表示,第三方测试行业在新的发展背景下,需要不断提升技术水平和服务质量,以支撑新质新增生产力的发展趋势。第三方测试实验室应具备智慧驱动能力,能够帮助客户解决问题,降低成本,提高效率。此外,第三方测试机构还需要具备前瞻性,能够提前预测行业发展趋势,为客户提供更有价值的服务。同时,还需要加强行业标准的制定和执行,提高整个行业的水平。在这个过程中,第三方测试机构将成为半导体行业发展的重要助力。演讲嘉宾:日立科学仪器(北京)有限公司 副董事长 佐藤贤一演讲题目:Introduction of Advanced semiconductor failure and process analysis随着半导体行业的不断发展,对故障分析和工艺控制的需求越来越高。佐藤贤一表示,为了满足客户的需求,日立科学仪器公司提供了多种先进的半导体分析设备,如OCD量测、SEM、FIB-SEM、TEM等,这些设备可以帮助客户更准确地找到故障点,提高产品质量。他认为,第三方检测机构需要不断研发新技术,提高测试精度和效率,以满足半导体行业的发展需求。关于与客户的合作模式,佐藤贤一认为,第三方检测机构应与客户建立紧密的合作关系,共同开发新技术,提高生产效率,降低成本。此外,佐藤贤一还提到了半导体行业的未来发展趋势,包括人工智能、物联网等领域的应用。并表示,日立愿意与第三方检测机构加强合作,紧跟行业发展趋势,不断提升自身能力,以共同应对未来的挑战。演讲嘉宾:新加坡工程院士、新加坡科学院士、SUTD professor YEO KIAT SENG演讲题目:Talent-The Challenge to Establish a Globally Competitive Semiconductor Industry报告主要讨论了在建立全球竞争力的半导体产业过程中,人才所面临的挑战和机遇。YEO KIAT SENG指出,半导体市场预计将以8.8%的年复合增长率增长,到2032年市场规模将超过1.3万亿美元。而智能、集成和创新将是推动半导体行业发展的关键因素。建立全球竞争力的半导体产业离不开人才的培养和发展。此外,YEO KIAT SENG强调了多学科教育的重要性,面对复杂的问题,单一学科的教育模式已经不再适用。提倡跨学科的教育模式,让学生在学习过程中接触不同领域的知识,培养创新能力和创造力。最后,YEO KIAT SENG谈到了未来工作的变化。并认为,自动化和智能机器人将取代许多传统工作,而信息和数据将成为新的货币。个人需要不断提升自己的技能,以适应未来的挑战。演讲嘉宾:青岛四方思锐智能技术有限公司 副总经理 谢均宇演讲题目:集成电路装备研发与第三方测试协同发展谢均宇表示,集成电路装备研发与第三方测试之间存在密切的协同关系。在研发过程中,测试可以帮助企业更好地了解设备的性能、结构和成分,从而提高设备的稳定性和可靠性。同时,测试还可以为企业提供有关工艺改进和创新的重要依据。通过深度合作和资源共享,双方可以实现优势互补,共同推动技术创新和产业升级。此外,谢均宇提到了公司在集成电路装备研发方面的一些突破,如公司已成功交付国内第一台高能离子注入机,并已实现批量销售。也分享了ALD设备应用、IMP工艺材料的表征需求等。演讲嘉宾:蔡司 XRM亚太应用技术专家 曹春杰演讲题目:三维无损分析在半导体领域的最新应用进展曹春杰首先介绍了三维无损分析技术在半导体领域、尤其是在结构和拓展方面的重要性。 接着,详细阐述了三维无损分析技术的原理、该技术在消费电子、封装测试等领域的应用,以及该技术的优势和特点。案例分享环节,曹春杰展示了三维无损分析技术在半导体领域的实际应用效果。提到了该技术在分析电子管道、IC结构等方面的应用,以及在故障分析和可靠性分析中的作用。最后,曹春杰介绍了蔡司公司的最新技术和产品,如630 Versa系列,以及AI技术在三维无损分析中的应用等。这些新技术也将进一步提高三维无损分析技术的性能和效率。演讲嘉宾:赛默飞世尔公司 高级业务拓展经理 曹潇潇演讲题目:标准化-加速半导体三方检测市场发展的新引擎曹潇潇在报告中强调了标准化在半导体产业中的重要性。认为标准化可以帮助企业在高速发展阶段建立共同的起跑线,提高研发效率和创新能力。此外,标准化还可以提升整个产业链的培训资源和降低错误率,确保产业链上下游站在同一水平上进行对话。接着分享了关于标准化在半导体时效分析中的具体应用。曹潇潇提到,赛默飞世尔公司在时效失效分析领域占据90%的市场份额,并提供了一套系统化的整体解决方案,希望将标准化工作进一步拓展到前端市场关系的过程中。同时也通过一些具体案例展示了标准化工作的实现。例如,在失效分析过程中,通过开发系列功能,可以实现跨平台之间的样品定位和数据的综合管理。此外,还可以实现工厂管理系统的无缝对接,提高自动化水平等。演讲嘉宾:胜科纳米(苏州)股份有限公司 前沿技术总监 乔明胜演讲题目:Labless助力半导体第三方分析检测服务机构评价体系的构建乔明胜首先介绍了半导体分析检测行业的概况,指出全球半导体第三方检测分析市场的年增长率超过10%,国内增长率更是接近20%。接着分析了国际国内实验室认证的现状。并强调,实验室认证本质上是管理体系的评价,而非技术水平的高低评价。乔明胜认为,Labless模式可以帮助企业在满足基本要求的同时,为客户提供更多的价值。并建议第三方检测机构应具备规模、技术先进性、设备能力和质量安全等方面的基本能力。他指出,目前半导体分析检测领域缺乏专门的标准体系,需要进一步完善。提出了构建半导体第三方分析检测服务机构评价体系的建议。而胜科纳米也正在完善自己的技术标准体系,以期为行业做出更多贡献。演讲嘉宾:天津三英精密仪器股份公司 董事长 须颖演讲题目:高分辨X射线三维成像技术与应用目前,通用显微成像技术如光学显微镜、扫描电镜等在分辨率上已达到一定水平,但在观察内部结构方面仍有局限。而X射线三维成像技术可以在不破坏样品的情况下,实现对样品内部结构的三维立体成像。须颖详细介绍了高分辨X射线三维成像技术的原理和特点,以及天津三英在该技术方面的工作成果。公司坚持高层面技术路线,使得公司在高分辨X射线三维成像领域具有竞争优势。须颖认为,随着工业应用的深入,客户对缺陷检测、内部结构测量等方面的需求越来越高,高分辨X射线三维成像技术在这些领域具有广泛的应用前景。天津三英也将不断完善产品线,开发针对不同类型样品的专用设备,以满足客户的需求。也坚信高分辨X射线三维成像技术将为工业检测、设计等领域带来更多的便利和价值。演讲嘉宾:IBM 科技事业部存储产品总监 周立暘演讲题目:IBM 存储,助力企业实现降本、增效、安全的数字化周立暘首先提到了数字化转型和国家半导体行业的发展,强调了数据作为新的生产要素在企业中的重要性。他表示,IBM存储产品可以帮助企业更好地管理和利用数据,实现降本增效。IBM的核心技术已经在国内半导体制造企业的MS系统中得到广泛应用,帮助企业更好地利用资产投入产生效益。在数据安全方面,介绍了IBM的High-Availability Data Replication技术,可以在短时间内恢复被勒索软件攻击篡改的数据。最后,周立暘表示,IBM希望通过存储技术和资源调度技术的结合,帮助企业在全球化国际化的环境中实现数据的优化管理和应用加速,从而助力企业实现更高的发展。演讲嘉宾:麦格昆磁 副总裁 Klaus Dittmer演讲题目:Advanced magnetic powder development and collaboration with third party analytical service providersKlaus Dittmer首先介绍了麦格昆磁公司,包括在稀土和其他关键金属领域的业务等。接着讨论了磁性粉末在永磁材料领域的重要性,并强调了磁性粉末微观结构表征的重要意义。关于如何通过精确的测量和控制来实现所需的磁性能,Klaus Dittmer介绍了扫描电镜、透射电镜、X射线衍射等几种用于表征磁性粉末微观结构的技术。在谈到与第三方分析服务提供商的合作时,Klaus Dittmer强调了成本、时间、质量和保密性等因素在选择合作伙伴时的重要性。他认为,与第三方服务提供商合作可以为公司提供更高效、高质量的分析和表征服务,同时降低成本和提高保密性。最后,Klaus Dittmer总结了麦格昆磁在磁性粉末开发与第三方分析服务合作方面的经验,强调了这种合作为公司带来的价值。演讲嘉宾:滨松光子学商贸(中国)有限公司 半导体领域负责人 王宁波演讲题目:半导体电性失效分析介绍失效分析有助于改进设计和工艺,提升产品性能。王宁波分享了失效分析的技术原理、常用的定位方法,以及在半导体制造和使用过程中的应用,如改善工艺、完善品质和提升芯片能力。最后,王宁波介绍了滨松光子公司在半导体电性失效分析领域的技术发展。包括公司在光电探测方面的专长、公司在半导体检测领域的一些新技术,如磁光电流成像、高分辨热成像和全自动探测系统等。这些技术有助于提高失效分析的精度和效率,满足半导体制造和设计工业的发展需求。圆桌会议为了进一步交流探讨,以“半导体第三方分析检测服务机构评价要素”为议题的圆桌会议压轴亮相。圆桌嘉宾从实验室基本能力、实验室服务效果以及实验室可持续发展三个维度展开深入探讨。在实验室基本能力方面,嘉宾们细致讨论了实验室建设的规模与布局、硬件设施的先进性与完备性,以及管理体系的健全程度。这些因素被普遍认为是实验室提供高质量服务的基础。实验室服务效果的议题中,服务流程的专业性、检测结果的准确性、响应时间的迅速性以及客户服务的周到性等关键指标备受瞩目。此外,信息安全也被特别提及,作为评价服务效果时不可忽视的一个维度。在实验室可持续发展方面,技术创新能力被视为推动实验室长期发展的核心动力。同时,人才培养、市场拓展策略以及行业合作与交流也被认为是实验室持续发展的重要支撑。圆桌讨论内容覆盖了半导体第三方分析检测服务机构评价的多个关键要素,旨在推动行业向更专业、更高效、更可持续的方向发展。这不仅是对当前行业现状的一次全面审视,更是对未来发展方向的一次前瞻性思考。同期展会掠影
  • 2024中国检测技术与半导体应用大会——暨半导体分析检测仪器与设备发展论坛通知
    半导体产业的蓬勃发展对从事半导体分析检测仪器和设备的科研机构和企业提供了良好的发展机遇和更高的要求。把握这种机遇,满足这一要求,需要半导体应用及其分析检测领域的龙头高校科研院所、链主企业、供应链上企业、创新链上科研院所,使命担当、脚踏实地、合作共赢,创新产品,携手提高制程良率,提升材料、器件和芯片的可靠性、稳定性、一致性。为促进半导体材料、器件和芯片领域科研院校,芯片设计、制造与封测企业,半导体分析检测仪器与设备企业,分析检测设备零部件供应企业之间的互动交流和融合创新,由国家集成电路创新中心、上海市仪器仪表行业协会和财联社主办,复旦大学光电研究研究院、复创芯和科创板日报等单位承办,中国上海测试中心、上海市集成电路行业协会等单协办的“2024中国检测技术与半导体应用大会暨半导体分析检测仪器与设备发展论坛”于2024年7月7-9日在上海虹桥举办。 本次会议旨在为提高产品质量,针对先进半导体材料、薄膜、器件、芯片等工艺控制和精确测试、测量分析技术,以及创新链、供应链合作机遇,主要探讨交流:1.相关科学技术应用现状、未来去哪里、怎么去实现、有哪些障碍及具体的需求,高校科研院所和企业在专业人才培养、产学研合作、技术成果转移转化等方面如何打通双向合作通道;2.从事半导体技术研究的高校科研院所,从事半导体制造的企业,从事半导体材料制造企业的研发水平提升、产品质量提高和未来发展方向等对半导体相关分析检测仪器与设备的需求;3.半导体分析检测仪器设备及其零部件产业发展现状如何、未来的方向、怎么去实现、有哪些障碍及相应的需求,供应链上下游企业合作机遇及合作方式等。会议主题包括:集成电路、新能源、显示、LED、汽车电子领域中先进半导体工艺、器件;半导体材料、薄膜表征技术及其仪器,包括SEM, TEM, XPS, AFM, XRD, SIMS等;半导体器件表征技术及其仪器,包括电学、光学、光电特性等;半导体芯片表征技术及其设备,包括封装可靠性;企业与科研院所产学研合作对接;科研院所科研成果展示、发布。参会人员将有利用各种物理、化学、光学、微结构、电学等技术进行半导体材料、薄膜、器件、芯片制备研究及分析检测仪器与设备研发等领域(集成电路、新能源、显示、LED、汽车电子)研究的高校科研院所课题组长、系主任、院长和学生;半导体材料和半导体前道和后道制造领域内的企业管理者和技术负责人;半导体检测仪器与设备企业管理者和技术负责人;半导体检测仪器与设备零部件制造企业的管理者和技术负责人。长按识别二维码下载通知附件
  • 【第二轮通知】2024中国检测技术与半导体应用大会暨半导体分析检测仪器与设备发展论坛
    为促进半导体材料、器件和芯片领域科研院校,芯片设计、制造与封测企业,半导体分析检测仪器与设备企业,分析检测设备零部件供应企业之间的互动交流和融合创新,由国家集成电路创新中心、上海市仪器仪表行协会、财联社等主办,复旦大学光电研究院等协办的“2024 中国检测技术与半导体应用大会暨半导体分析检测仪器与设备发展论坛”第二轮通知正式发布。会议将在于7月11-13日在上海虹桥举办,欢迎广大专家学者和企业高管积极参会,企业参展交流。你将有机会与500位来自科研院所、芯片设计制造与封测企业、半导体分析检测仪器与设备企业的专家教授和企业高管,共同研判半导体检测技术的发展趋势,共同碰撞产学研合作火花,共同对接面向产业市场和科研市场的高质量合作机遇。一、会议宗旨为提高产品质量,针对先进半导体材料、薄膜、器件、芯片等工艺控制和精确测试、测量分析技术,以及创新链、供应链合作机遇,主要探讨交流:1、相关科学技术应用现状、未来去哪里、怎么去实现、有哪些障碍及具体的需求,高校科研院所和企业在专业人才培养、产学研合作、技术成果转移转化等方面如何打通双向合作通道;2、从事半导体技术研究的高校科研院所,从事半导体制造的企业,从事半导体材料制造企业的研发水平提升、产品质量提高和未来发展方向等对半导体相关分析检测仪器与设备的需求;3、半导体分析检测仪器设备及其零部件产业发展现状如何、未来的方向、怎么去实现、有哪些障碍及相应的需求,供应链上下游企业合作机遇及合作方式等。二、会议主题1、集成电路、新能源、显示、LED、汽车电子领域中先进半导体工艺、器件2、半导体材料、薄膜表征技术及其仪器,包括SEM, TEM, XPS, AFM, XRD, SIMS等3、半导体器件表征技术及其仪器,包括电学、光学、光电特性等表征及相关仪器4、半导体芯片表征技术及其设备,包括功能、性能、封装可靠性等表征及相关设备5、企业上下游供应链对接,科创型企业知识产权布局和保护6、企业与科研院所产学研合作,科研院所科研成果展示和发布三、参会人员1、利用各种物理、化学、光学、微结构、电学等技术进行半导体材料、薄膜、器件、芯片制备研究及分析检测仪器与设备研发等领域(集成电路、新能源、显示、LED、汽车电子)研究的高校科研院所课题组长、系主任、院长和学生;2、芯片设计行业、半导体材料和半导体前后道制造领域的企业管理者和技术负责人;3、半导体分析检测仪器与设备业管理者和技术负责人;4、半导体分析检测仪器与设备零部件制造企业的管理者和技术负责人。四、组织单位指导单位:中国技术创业协会、上海市经济和信息化委员会、上海市科学技术协会、上海虹桥商务区管理委员会、上海市闵行区人民政府主办单位:国家集成电路创新中心、上海市仪器仪表行业协会、财联社承办单位:复旦大学光电研究院、上海复创芯半导体科技有限公司、科创板日报、上海南虹桥投资开发(集团)有限公司协办单位:中国上海测试中心、上海市集成电路行业协会、上海市真空学会、上海电子学会智能仪器与设备专委会、上海市在线检测与控制技术重点实验室、上海理工大学光电学院、上海大学特种光纤与光接入网重点实验室、求是缘半导体联盟、复旦大学校友总会集成电路行业分会、上海段和段律师事务所特别报道:《CMG数字中国》融媒体节目支持媒体:仪器信息网、半导体综研、半导体行业联盟、上海真空学会官网、大同学吧、芯片揭秘支持期刊:半导体学报、自动化仪表五、已确认参会的专家/企业(持续更新中)六、会议信息1、会议时间:2024年7月11日-13日2、会议日程:日期时间活动议程7月11日14:00-20:00大会报到、展台布置7月12日09:00-12:00大会报告-113:30-17:30分会报告、墙报18:00-19:30晚宴、颁奖7月13日08:30-12:00分会报告、技术培训13:30-17:00大会报告-2、论坛、人才交流3、报告主题:报告主题主题一集成电路晶圆级缺陷检测技术主题二半导体封装及缺陷检测技术主题三高分辨显微技术及半导体应用主题四薄膜制备及椭圆偏振测试技术主题五X射线检测技术及半导体应用主题六光谱技术应用于半导体材料检测主题七功率器件、芯片缺陷检测技术主题八射频芯片检测及分析技术主题九半导体器件可靠性及失效分析技术主题十芯片、微纳器件形貌、热探测技术主题十一半导体光电器件、芯片检测技术主题十二AI技术应用于半导体分析检测(备注:会议议程持续更新,以现场实际安排为准)4、会议地点会议规模:500人左右会议地点:上海虹桥 新华联索菲特大酒店具体地址:上海市闵行区泰虹路666号(直线距离虹桥火车站、虹桥2号航站楼3公里)七、注册费用及报名名称费用(元/人)2024年6月25日前缴费2024年6月25日后及现场缴费会议代表23002800学生代表15001800(备注:注册费用包含大会期间的餐费、会议资料及纪念品等,不包含住宿费用)请扫描二维码 立刻在线报名请参会人员于2024年6月25日前微信扫码登记或填写附件3“会议参会回执表八、论文摘要/企业参展赞助1、会议论文摘要(详见附件1"会议论文摘要模板”)2、本次会议及论坛的参展与赞助(详见附件2"会议赞助权益清单”)(附件下载,详见文末)九、报名及赞助联系方式会议Emait:kjyzy@fudan.edu.cn院校师生报名及论文投递联系人:刘老师 139 1828 3051企业报名及赞助咨询联系人:徐老师 135 8571 1280报名缴费及发票确认联系人:王老师 178 2179 68082024中国检测技术与半导体应用大会_会议论文摘要模板_附件1.doc2024中国检测技术与半导体应用大会_会议赞助权益清单_附件2.pdf2024中国检测技术与半导体应用大会_参会确认表_附件3.docx
  • 直播 | TESCAN SOLARIS X 提升你在半导体领域的分析能力
    直播 | TESCAN SOLARIS X 提升你在半导体领域的分析能力摘要:2024年3月5日16:00直播,从半导体分析的最新进展,到提高吞吐量和质量的工具演示,您将收获克服半导体样品分析挑战的宝贵经验。随着半导体行业朝着集成度、密度和小型化的更大目标发展,保持领先势在必行。 标记日历2024年3月5日,我们诚邀您参加一场“将改变您处理半导体样品分析的方式”的网络研讨会。本次会议将深入探讨影响半导体样品分析的最新趋势和技术,并展示TESCAN SOLARIS X的尖端功能。 主题:无论是半导体深度截面切割,制作无镓离子污染的TEM样品,以及实现逐层剥离,高吞吐量与质量保证TESCAN SOLARIS X 皆可兼顾时间:2024年3月5日(周二)下午4:00演讲人:Lukas Hladik | TESCAN集团 产品市场经理内容预告 行业发展洞察全面了解半导体行业对小型化和高密度集成化的追求。了解这些趋势如何重塑设备的功能、速度和功耗。 技术深度探究了解所有关于TESCAN SOLARIS X的信息,该系统具有快速、大面积切割和样品制备的能力,而不会受到Ga+离子暴露的不利影响。 实际演示体验现场演示,展示TESCAN SOLARIS X 熟练处理各种复杂样品,从OLED显示组件到14nm FinFET CPU材料等等。 您将收获从半导体分析的最新进展,到提高吞吐量和质量的正确工具演示,您将收获克服半导体样品分析挑战的宝贵经验。 想要深入了解半导体技术的各个方面,我们诚邀您访问我们的新网站 相约专家 Lukas Hladik, 是TESCAN集团经验丰富的产品市场经理,自2012年以来一直在公司发挥重要作用。他专注于等离子FIB-SEM和失效分析解决方案,他的专业知识深深植根于半导体研发,并与全球半导体行业密切相关。 现在预订您的位置,加入半导体前沿技术的专家社区。具体参加会议可移步至公众号:TESCAN公司
  • 直播预告!半导体材料分析技术进展:分析仪器如何助力材料检测
    2023年10月18-20日,仪器信息网(www.instrument.com.cn) 与电子工业出版社将联合主办第四届“半导体材料与器件分析检测技术与应用”主题网络研讨会。iCSMD 2023会议围绕光电材料与器件、第三代半导体材料与器件、传感器与MEMS、半导体产业配套原材料等热点材料、器件的材料分析、失效分析、可靠性测试、缺陷检测和量测等热点分析检测技术,为国内广大半导体材料与器件研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。本次大会分设:半导体材料分析技术新进展、可靠性测试技术新进展、半导体失效分析技术、缺陷检测和量测技术4个主题专场,诚邀业界人士报名参会。主办单位:仪器信息网,电子工业出版社参会方式:本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/icsmd2023/或扫描二维码报名“半导体材料分析技术新进展”专场预告(注:最终日程以会议官网为准)时间报告题目演讲嘉宾专场1:半导体材料分析技术新进展(10月18日)专场主持暨召集人:汪正 中国科学院上海硅酸盐研究所 研究员9:30等离子体质谱在半导体用高纯材料的分析研究汪正(中国科学院上海硅酸盐研究所 研究员)10:00有机半导体材料的质谱分析技术王昊阳(中国科学院上海有机化学研究所 高级工程师)10:30牛津仪器显微分析技术在半导体中的应用进展马岚(牛津仪器科技(上海)有限公司 应用工程师)11:00氮化物半导体的原子尺度晶格极性研究(拟)王涛(北京大学 高级工程师)11:30集成电路材料国产化面临的性能检测需求王轶滢(上海集成电路材料研究院 性能实验室总监)午休14:00离子色谱在高纯材料分析中的应用李青(中国科学院上海硅酸盐研究所 助理研究员)14:30拉曼光谱在半导体晶圆质量检测中的应用刘争晖(中国科学院苏州纳米技术与纳米仿生研究所 教授级高级工程师)15:00半导体—离子色谱检测解决方案王一臣(青岛盛瀚色谱技术有限公司 产品经理)15:30共宽禁带半导体色心的能量束直写制备及光谱表征徐宗伟(天津大学精密测试技术及仪器国家重点实验室 教授)嘉宾简介及报告摘要(按分享顺序)汪正 中国科学院上海硅酸盐研究所 研究员【个人简介】汪正,博士,中国科学院上海硅酸盐研究所研究员、博士生导师、材料谱学组分表征与应用课题组组长。研究方向为原子光谱/质谱/色谱基础和应用研究、光谱质谱新型仪器的研发和先进材料制备表征及在分析化学和环境化学的应用研究。曾先后负责科技部国家仪器研制重大专项、国家自然科学青年和面上基金、中科院仪器研制项目、中科院仪器设备功能开发技术创新项目和上海科委基金等。是国际期刊《Atomic Spectroscopy》、《Chinese Chemical Letters》和《光谱学与光谱分析》期刊编委。以第一和通讯作者在国内外同行认可的高水平期刊Anal. Chem., J. Anal. At. Spectrom.,Spectrochim. Acta Part B,Anal. Chim. Acta 等发表论文100 余篇,出版学术专著2 部,建立国家标准3 项,获授权专利17项。2010 和2018 年两次获得中国分析测试协会科学技术奖励(排名均为第一)。报告题目:等离子体质谱在半导体用高纯材料的分析研究【摘要】材料是制造业的基础,高纯材料是半导体制造业的最重要环节之一,高纯材料的纯度分析与表征是纯化工艺中的一个重要环节,对材料性质研究和工艺改进至关重要。本报告主要介绍电感耦合等离子体质谱法在高纯有机/无机半导体用材料方向的工作。王昊阳 中国科学院上海有机化学研究所 高级工程师【个人简介】2000年本科毕业于中国药科大学药学院药物分析专业;2003年获得中国药科大学与上海有机化学研究所联合培养硕士学位;2006年获得中国科学院上海有机化学研究所的博士学位;后前往德国奥尔登堡大学化学系博士后;2008年开始任中国科学院上海有机化学研究所,副研究员;2017年–至今担任中国科学院上海有机化学研究所公共技术服务中心质谱组课题组长。报告题目:有机半导体材料的质谱分析技术【摘要】根据有机半导体材料领域具体的测试需求和测试对象的不同,建立体系化的质谱分析方法与手段,结合顶空气相色谱对挥发性有机物进行分析,结合ESI以及(AP-)MALDI对小分子有机半导体材料进行表征与分析,再结合热裂解分析对有机半导体材料中的聚合物及其相关添加剂进行分析。马岚 牛津仪器科技(上海)有限公司 应用工程师【个人简介】2012年获得上海交通大学材料科学与工程学院博士学位,博士研究镁合金的时效强化机制及变形机制,主要利用TEM、SEM、 EBSD等手段进行表征。2012-2015年间在日本物质材料研究所进行博后工作,期间研究的课题为高强韧镁合金的开发及磁性材料微结构表征,利用HAADF-STEM、SEM、EBSD及3DAP进行材料表征,熟悉掌握FIB及纳米操作手。2015年回国加入牛津仪器公司,主要负责EDS、WDS、EBSD、OP的推广及技术支持。报告题目:牛津仪器显微分析技术在半导体中的应用进展【摘要】能谱(EDS)是半导体失效分析中常用的检测手段,但它只能揭示元素的异常,如果要对晶圆进行其他物性(如粗糙度、掺杂浓度、电势电位和内应力等)的分析,则需借助电子背散射衍射(EBSD)、原子力显微镜(AFM)和拉曼光谱(Raman)进行多尺度、多方位的检测和分析。 本报告将从结合三代半导体的痛点,展开介绍牛津仪器材料分析手段的进展及其在三代半导体中的应用,内容包括使用EBSD检测外延片位错,利用Raman分析碳化硅晶芯片晶型和微管类型及其带来的应力变化,以及采用AFM的SCM模式检测电容,并定量载流子浓度的最新应用。王轶滢 上海集成电路材料研究院 性能实验室总监【个人简介】从事半导体与集成电路领域技术研发、战略研究与规划工作多年。现承担负责上海市及国家集成电路材料重大项目测试平台课题,推进集成电路材料测试的科学评价体系建设,加速促进国产化替代。报告题目:集成电路材料国产化面临的性能检测需求李青 中国科学院上海硅酸盐研究所 助理研究员【个人简介】博士,中国科学院上海硅酸盐研究所助理研究员。主要从事高纯材料分析方法开发、光谱质谱仪器研制等工作。先后主持承担了包括国家自然科学基金、上海科委项目、中国科学院仪器功能开发项目等各类研发项目5项。目前在Anal. Chem., Anal. Chim. Acta等国际期刊发表论文10余篇,获授权国内专利14项,美国专利1项。报告题目:离子色谱在高纯材料分析中的应用【摘要】 阴阳离子分析涉及生物医学、集成电路、环境、食品安全等重要研究课题。利用离子色谱技术测定离子态物质的检测方法,分析速度快、灵敏度高、选择性好,已被广泛应用。本报告将主要介绍高纯电子试剂、高纯晶体、OLED材料中痕量卤素离子的分析方法。刘争晖 中国科学院苏州纳米技术与纳米仿生研究所 教授级高级工程师【个人简介】正高级工程师、博士生导师、中科院青年创新促进会会员、中科院关键技术人才。中科院苏州纳米所真空互联实验站工作,研发基于扫描探针的微纳米尺度光、电、力学综合测试分析设备和相关技术;开展基于新装备和新方法的应用基础研究。 主要成果: (1) 主持和参与中科院、基金委和科技部的多项仪器和表征技术研发项目,自主研制基于扫描开尔文探针的深紫外扫描近场光电探针系统,实现深紫外时间分辨光谱与表面光电压谱的同位微区测量,从时间和空间两个维度,以皮秒的时间分辨率和纳米级的空间分辨率对半导体光电材料的表面性质进行表征,从而为微观机制的探索提供有力的武器。 (2) 发展了基于光辅助扫描开尔文探针显微镜的新型扫描扩散显微术方法,定量测量光吸收系数、扩散长度、载流子寿命以及扩散系数的空间分布和变化,揭示了缺陷、相分离等微观结构对纳米光电性质的影响。 (3) 对氮化镓与石墨烯二维材料的界面输运性质进行了系统的研究,从实验和理论上系统阐明了石墨烯浮动费米面的特性对异质结电学输运性质的影响,发展了半导体表面测量二维材料微区迁移率的方法。 (4) 制定了国家标准GB/T 32189-2015 《氮化镓单晶衬底表面粗糙度的原子力显微镜检验法》,并取得相关实验室认证资格,为产业提供了大量支撑服务。报告题目:拉曼光谱在半导体晶圆质量检测中的应用【摘要】 半导体晶圆质量检测目前普遍采用工业视觉检测方法对全晶圆质量和缺陷进行评估,但诸如组分、应力、载流子浓度等关键物理性质的分布不均匀,难以通过视觉检测方法获得,这时光谱学的手段是重要的补充方法。光穿过介质时被原子和分子散射的光发生频率变化,该现象称为拉曼散射。拉曼光谱的强度、频移、线宽、特征峰数目以及退偏度与分子的振动能态、转动能态、对称性等紧密相关,广泛地应用于半导体材料的质量监控、失效分析,可用于检测组分、应力、载流子浓度、温度、晶向和缺陷等信息。通常的共聚焦拉曼测试由于信号较弱、对聚焦稳定性要求较高,常常只局限于单点或少量采样点。而对大到8寸乃至12寸全晶圆范围的覆盖性检测,可能会极大地帮助改进工艺制程和产品质量。我们通过一些的典型的案例,例如结晶硅薄膜晶化率测试,第三代半导体晶圆的应力和载流子浓度检测,以及多层复杂器件结构的综合性质检测,展示了拉曼光谱在半导体晶圆质量检测中的应用前景。王一臣 青岛盛瀚色谱技术有限公司 产品经理【个人简介】硕士研究生,现任青岛盛瀚色谱技术有限公司产品经理。目前主要负责青岛盛瀚公司离子色谱实验室类、在线类仪器以及联机类仪器的应用方法的开发和技术支持工作,拥有仪器分析行业多年的工作经验。对离子色谱行业有深刻见解,对设备选型、市场调研、需求管理等有丰富经验。报告题目:半导体—离子色谱检测解决方案【摘要】 针对半导体行业中,离子色谱技术对于检测其中的杂质阴离子具有的得天独厚的优势,本次盛瀚就针对半导体行业离子色谱方面做出的工作进行分享。徐宗伟 天津大学精密测试技术及仪器全国重点实验室 教授【个人简介】徐宗伟,天津大学,教授,博士/硕士生导师。中国电子显微镜学会聚焦离子束FIB专业委员会委员,中国微米纳米技术学会微纳米制造及装备分会理事。主要从事宽禁带半导体,微纳/原子尺度制造,拉曼/光致发光光谱,以及纳米功能器件设计、制备及应用。作为负责人获批十余项国家级项目,包括五项国际合作交流项目,其中一项被英国皇家学会列入“牛顿基金”项目。与德国弗朗霍夫协会、中电集团等宽禁带半导体企业和研究所开展紧密合作。研究成果受邀作主题报告/特邀报告30余次。报告题目:宽禁带半导体色心的能量束直写制备及光谱表征【摘要】碳化硅SiC、六方氮化硼hBN和金刚石等宽禁带半导体是制造量子及高功率半导体器件的优良材料。基于氦离子束、飞秒激光等超快能量束加工、变温光致发光光谱、分子动力学模拟等研究方法,研究了SiC硅空位/双空位色心、hBN和金刚石色心等加工产率,开展了飞秒激光原位退火、微结构阵列等色心荧光增强方法研究,基于共聚焦光致发光光谱表征了色心三维分布。会议联系会议内容康编辑:15733280108,kangpc@instrument.com.cn会议赞助周经理,19801307421,zhouhh@instrument.com.cn
  • 分析仪器的“眼睛”:半导体光探测器——访日本滨松光子学株式会社专务取缔役兼固体事业部部长山本晃永先生
    一般而言,分析仪器的发展可分为两种:一是分析仪器本身、内部的发展,二是分析仪器相关器件的发展所带动的分析仪器的发展。光探测器是光谱类科学仪器的“眼睛”,是搜集信号、进行信号转换的核心、关键部件,其发展对分析仪器产业的发展起着巨大的推动作用。   光电倍增管是大家熟知的光探测器,广泛应用于各类光谱仪器中。但近年来,一些国际仪器生产厂家已开始将ICP、光电直读光谱仪等仪器中采用的光电倍增管逐渐换成了半导体光探测器,其中使用较多的是CCD(Charge-Coupled Devices,电荷耦合检测器)。那么,半导体光探测器能否取代光电倍增管?半导体光探测器技术发展现状与趋势如何?日本滨松公司未来将如何发展半导体光探测技术?该公司是如何看待中国仪器行业?未来将如何拓展中国市场?本文将逐一为大家解答。   日本滨松光子学株式会社(以下简称“日本滨松公司”)是光子技术和光电探测器的世界知名企业,其主要产品有光电倍增管、光电二极管、图像传感器、各种光源、大功率半导体激光器等光器件。该公司固体事业部主要研发、生产各种半导体光电器件及其模块化产品。   2010年9月1日,日本滨松公司固体事业部在北京举办“2010 HAMAMATSU光半导体技术交流会之专家交流会”。日本滨松公司专务取缔役兼固体事业部部长山本晃永先生亲临现场。以此为契机,仪器信息网编辑在专家交流会现场就半导体光探测器的技术发展现状和趋势、日本滨松固体事业部未来的发展方向采访了山本晃永先生。 日本滨松公司专务取缔役兼固体事业部部长山本晃永先生 半导体光探测器的发展现状与趋势   “Photon is Our Business”,日本滨松公司最初是靠光电倍增管起家,主要用该产品来探测肉眼看不见的光子。该公司致力于了解光子以及光子与其他物质的相互作用,将相关技术转化为产品并使其产业化。经过几十年的发展,日本滨松公司不仅不断改良真空管探测器,同时也大力发展了半导体光探测器。   该公司固体事业部多年来一直从事半导体光探测器相关技术的研究。近几年,固体事业部非常重视图像传感器的研发,并在半导体光探测器的集成化、模块化上取得了较大进展。山本晃永先生详细地阐述了滨松的研究成果以及他对半导体光探测器技术发展的看法。 日本滨松公司固体事业部的主要产品   (1)在光探测器领域,从真空管技术到半导体技术是大势所趋   山本晃永先生认为,从真空管技术到半导体技术是大势所趋,日本滨松公司不能逆流而上。光电倍增管虽然是高性能的探测器,公司也对真空管探测器进行了一些改进,如增强其量子效率、使其小型化等,但仍残留一些难以解决的问题,比如操作上玻璃材料的繁难性、高电压的必须性等,这些难题限制了光电倍增管的使用。   但光电倍增管拥有光子探测灵敏度高的固有优势,半导体光探测器不可能完全取而代之,但后者的市场主导优势将日益明显。目前在日本滨松内部,固体事业部的销售额已超过了生产光电倍增管的电子管事业部,占据滨松所有产品总销售额的半壁江山。   日本滨松公司在继续研究真空管技术和半导体技术的基础上,将专心致力于相关模块和系统的开发。总之,所有与光子相关的技术,日本滨松公司都将采取积极的态度。   (2)CCD已发展得比较成熟   随着技术的进步,用于分光光度计、近红外光谱、拉曼光谱等光谱仪器的CCD已发展得比较成熟,其性能已有了很大改进。   日本滨松公司研发出的背面入射(Back-illuminated)CCD图像传感器,能减少CCD的Etaloning Effect(注:Etaloning Effect是存在于非常薄的CCD芯片中,入射光线因为在芯片前、后表面发生光反射而产生干涉,导致CCD分光灵敏度曲线在900nm附近凹凸不平的现象),从而能显著提高图像传感器的灵敏度、量子效率、响应时间以及信噪比。通过拼接技术,滨松将许多CCD加以拼接,使其面积增大。目前最大的CCD平板图像传感器大小可达2mX2m,量子效率非常高,同时对近红外长波的探测能力也大幅提高,可用于天文和宇宙探测领域。目前,全世界大部分的天文望远镜、人造卫星都在使用日本滨松的半导体光探测器产品。 各类CCD图像传感器   (3)CMOS发展前景看好,日本滨松公司力求让其取代CCD   山本晃永先生说到,CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)图像传感器与CCD在生产工艺上有许多相似之处,因其在集成化、生产成本、响应时间、使用方便、耗电量等方面的优势,发展尤为迅速,甚至可能比CCD图像传感器发展更为快速。目前,CMOS和CCD各有所长,CMOS还不能完全取代CCD,但是未来在很多领域CCD会被CMOS所取代。   日本滨松非常看好CMOS的发展前景,在CMOS上倾注很大精力,不断加大该产品的研发力度,力求让CMOS取代CCD。公司针对CMOS的缺点进行了一些改进,引入背面入射技术(back-illuminated)的同时,采用碘化铯作为转化晶体,提高探测器的灵敏度与效率。经过改造之后,APS(Active Pixel Sensor,有源像素传感器,是CMOS的一种)的性能几乎可以做得与CCD一样好。   近期日本滨松推出了多款大小不一、功能各异的CMOS新产品。例如用于牙科检查的CMOS,形状小巧、适合人的嘴型,且可以一次成像 而用于乳腺癌检测的CMOS平板检测器具有面积大、探测速度快、解析度高、低剂量的特点,能避免X射线对人体的伤害。 日本滨松生产的各类CMOS图像传感器   (4)MOEMS、MEMS促成了半导体光探测器的模块化、小型化   MOEMS(Micro-Opto-Electro-Mechanical System,微光机电系统)是在MEMS(Micro-Electro-Mechanical Systems,微机电系统)基础上发展起来的新技术,该系统把微光学元件、微电子和微机械装置有机地集成在一起,能够充分发挥三者的综合性能,可实现光学元件间的自对准,可用于光学器件和装置的制造。   日本滨松公司不仅生产各类半导体探测器,还生产与各种探测器相关的信号处理电路、数据采集卡以及模块产品。固体事业部充分利用MOEMS与MEMS技术,在光电二极管、雪崩二极管、图像传感器等产品的基础上,生产出了光电二极管电路及模块、硅雪崩二极管模块、图像传感器模块等模块化产品。以CMOS图像传感器为例,采用MOEMS技术可将图像传感器、光栅、后续电路加工在同一块硅片上,这样实现了元器件的集成化、小型化,同时也方便用户的使用。 小型分光计系列产品 拇指大小的超小型分光计   近期研发出来的超小型分光计,采用了MEMS的纳米压印(NanoTechnology)技术,只有拇指大小,敏感波长范围为340-750nm。从产品到产品模块、系统,这将是日本滨松公司固体事业部以后所要坚持的方向。   随着时代的发展,人们对于小型、可携带的东西的需求将增加。在日本,一些测试化妆品美白效果的小仪器很流行,类似的小型仪器在美国也很受欢迎。分析仪器、医疗仪器要走进寻常百姓家,就必然要求其小型化,而仪器小型化必然要求其器件也小型化。半导体技术就是满足这种需求的有效手段,其目前发展的重要主题是MEMS,而NanoTechnology(纳米技术)应该是关键。   从真空管技术到半导体技术、MEMS、纳米技术,这是滨松技术的变迁。未来几年,日本滨松公司仍要彻底地钻研这些技术,这是不变的方针。而唯一要改变的是各项技术的开发速度。技术开发得越早,日本滨松的产品在技术上就越有竞争力,这是很重要的。 与会滨松高层   (日本滨松光子学株式会社专务取缔役兼固体事业部部长山本晃永先生(右二)、北京滨松光子技术股份有限公司总经理席与霖先生(左二)、北京滨松光子股份有限公司总经理助理兼第一事业部部长段鸿滨先生(左一)、日本滨松光子学株式会固体事业部伊藤伸治先生(右一)) 与会专家   (从左到右依次为:中国仪器仪表行业协会朱明凯副理事长、国家地质测试实验中心杨啸涛研究员、中科科仪原董事长金鹤鸣先生、中国分析测试协会汪正范研究员) 滨松将加大半导体光探测器在中国市场的推广力度   采访中,山本晃永先生表达了对中国科学仪器行业发展情况的看法:中国科学仪器行业正蓬勃发展,虽然目前日本滨松的半导体光探测器在中国的用户并不是很多,但公司更重视中国市场,将把最新的产品和技术推广到中国来。   (1)中国科学仪器行业必将崛起,其市场容量巨大   回顾过往,手机、计算机在中国发展都很快,下一步中国的仪器仪表行业一定也会快速发展。医疗仪器、分析仪器都与人们的健康密切相关。中国人口是日本的十倍,这意味着如果中国仪器行业发展起来,那么其市场容量可能会是日本的10倍。而跟科学仪器发展密切相关的就是仪器探测器件的发展。   满足用户的需求始终是日本滨松公司努力的方向。作为仪器元器件的供应商,日本滨松公司一定要领先市场一步,这样才能提供市场需要的产品。虽然中国科学仪器行业可能还需要十年、二十年才能发展起来,但日本滨松对此非常有耐心,会非常关注中国市场需要什么样的技术和产品,也会不断地研发新产品去满足这些需求。   (2)加大半导体光探测器在中国分析仪器行业的推广力度   山本晃永先生介绍了日本滨松中国用户的一些情况。滨松固体事业部生产的各式各样的半导体探测器有50%销往国外,其余在日本国内销售。许多国际知名的仪器生产商都在使用滨松的探测器。但在中国,虽有仪器企业也使用滨松的半导体探测器,但是数量较少。   日本滨松公司固体事业部的约50%的产品都应用于医疗仪器,这个领域仍然是其非常重视的领域。同时,因为医疗仪器与分析仪器存在许多相似之处,所以日本滨松公司打算将在医疗仪器领域的优势发展到分析仪器等领域。   同时,该公司将加强与中国用户的沟通与交流,加大市场推广力度,把固体事业部的半导体光电器件的新技术、新产品介绍给中国用户,同时也要告诉他们如何选择、使用和应用滨松的产品,希望能为中国仪器行业的发展尽一份力。 采访现场  后记   在采访过程中,笔者仔细聆听山本晃永先生对仪器企业发展的一些看法,他提到:“小规模的科学仪器企业若没有特色,就没有发展潜力与市场竞争力。岛津、贝克曼等国际知名企业都是由有特色的小企业发展起来的。企业规模小并不可怕,可怕的是小企业没有自己的特色、随波逐流,只知模仿重复,不知发明创造,最终导致价格竞争,互相残杀。日本滨松公司虽然是一家小公司,但一直很努力地研发光子相关的各种技术与产品,希望能够通过公司的产品来促进科学仪器行业的发展。”   也许,日本滨松公司能够发展壮大就在于它五十余年来一直坚持自己的特色,将主要精力集中在自己优势的光探测器领域,因而能在仪器光电元器件市场上占有其他公司不可替代的一席之地。然而相比之下,目前国内科学仪器企业总体“大不够大,小不够专”,仪器元器件企业发展更是缓慢,这些客观因素决定中国仪器行业短时间内或不会有较大改观。同时, 中国仪器生产企业不仅只盯着整机仪器的研发,也不能忽视仪器元器件的开发。   采访编辑:杨丹丹   附录1:山本晃永先生简介   1970年3月毕业于静冈大学研究生院工学部应用化学专业   1970年3月入职日本滨松公司   1985年1月就任日本滨松公司固体事业部部长至今   1985年12月就任取缔役   1987年12月就任常务取缔役   2004年12月就任专务取缔役   2005年7月就任代表取缔役专务取缔役   附录2:日本滨松光子学株式会社   http://www.hamamatsu.com/   附录3:北京滨松光子技术股份有限公司   http://www.bhphoton.com/
  • 分析仪器助力半导体腾飞——“半导体材料及器件研究与应用进展”主题网络研讨会成功举办
    p    span style=" font-family: & quot times new roman& quot " strong 2018年6月12日,“半导体材料及器件研究与应用进展”主题网络研讨会在仪器信息网“网络讲堂”栏目成功举办。本次会议旨在为全国在半导体及器件领域或有意在本领域从事研发、教学、生产的科技人员提供一个学术与技术交流的平台,以促进我国半导体材料及器件领域的科技创新和产业发展。 /strong /span /p p span style=" font-family: & quot times new roman& quot "   半导体材料(semiconductor material)是一类具有半导体性能、可用来制作半导体器件和集成电路的电子材料。近年来半导体材料迅猛发展,特别是宽禁带化合物半导体在材料生长、器件与电路设计、制造工艺及其应用等方面具有最新进展。 /span /p p span style=" font-family: & quot times new roman& quot "   本次会议邀请了来自 span style=" font-family: 宋体, SimSun color: rgb(255, 0, 0) " 华进半导体、赛默飞、雷尼绍、HORIBA、牛津、华东师范大学 /span 六家机构从事半导体研究及应用的专家学者,对目前科学仪器在半导体应用领域的研究进展进行了介绍了。各项报告内容简介如下: /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/9f4a0912-662e-44eb-a670-f31943137df6.jpg" title=" 先进封装工艺与可靠性-刘海洋.jpg" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / /p p span style=" font-family: & quot times new roman& quot "    span style=" font-family: 宋体, SimSun color: rgb(31, 73, 125) " i 华进半导体研发部高级工程师刘海燕介绍了数种半导体材料与部件的封装工艺及其各自特点,着重讲解了目前处于前沿领域的扇出型封装工艺,代表的类型有eWLB、INFO POP、大板级。华进半导体目前正在开发晶圆级、大板级扇出封装技术,现已制备出部分样品,并申请了相关专利。此外还补充介绍了Low k芯片封装工艺。华进公司的主要业务包括设计仿真、封装工艺、测试验证、技术转移等领域。 /i /span /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/460a9fdb-85d5-4566-a742-3dbbc89e87dd.jpg" title=" ICP-MS在半导体行业原材料及高纯化学品分析中的应用-朱中正.jpg" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / /p p span style=" font-family: & quot times new roman& quot "   span style=" font-family: 宋体, SimSun color: rgb(31, 73, 125) " i  赛默飞的应用工程师朱中正介绍了ICP MS(电感耦合等离子体质谱仪)在半导体行业的应用和最新进展。半导体行业中,对痕量金属元素进行常规且准确的分析是十分重要的工作。随着半导体器件尺寸的不断缩小,杂质的存在对其性能的影响逐渐增加。报告重点介绍了赛默飞公司的四级杆ICP-MS和SQ-ICP-MS的结构、工作机理、主要优势以及局限性。 /i /span /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/776571c0-f293-46a7-b115-c43a17856c0f.jpg" title=" 雷尼绍拉曼光谱技术在半导体领域的一些应用-王志芳.jpg" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / /p p span style=" font-family: & quot times new roman& quot "    i span style=" font-family: 宋体, SimSun color: rgb(31, 73, 125) " 雷尼绍的高级应用工程师王志芳介绍了雷尼绍公司的拉曼光谱在半导体领域的一些应用工作。她首先为观众进行了拉曼光谱基础知识的讲解,拉曼光谱具有无损无创、原位检测、快速简便的使用特点,可应用于材料科学、生命科学、分析科学等多个领域。在半导体领域,拉曼光谱可对SiC、GaN、MoS sub 2 /sub 等半导体材料进行性能表征,可检测的性能特征有:晶型分布鉴定、应力表征缺陷分析、鉴定和发现污染物、电子迁移率分布、块材生长过程等。 /span /i /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/d979950b-1148-45f7-8de4-41a3357cc646.jpg" title=" 光谱分析在半导体材料领域的应用-孙正飞.jpg" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / /p p span style=" font-family: & quot times new roman& quot "   i span style=" font-family: 宋体, SimSun color: rgb(31, 73, 125) "  HORIBA公司仪器事业部的应用工程师孙正飞分享了光谱分析技术在半导体材料领域的应用,主要应用的分析手段有光致发光光谱、拉曼光谱、辉光放电GD、椭偏仪TF,并着重介绍了前两者的工作机理和应用方向。光致发光光谱可测定半导体材料的组分、识别其中的掺杂元素、测试材料/器件的发光效率、研究位错缺陷 拉曼光谱可分析半导体化学组成、结构、构象、形态、浓度、应力、温度、结晶度等特征。 /span /i /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/563d8427-33a1-40e8-ab1e-751277616320.jpg" title=" 能谱及EBSD在半导体行业中的应用-马岚.pptx.jpg" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / /p p span style=" font-family: & quot times new roman& quot "    span style=" font-family: 宋体, SimSun color: rgb(31, 73, 125) " i 牛津仪器纳米分析部的应用科学家马岚介绍了EDS能谱和EBSD(电子背散射衍射Electron Backscattered Diffraction)在半导体行业的应用。SEM-EDS可对样品进行成分检测、定性分析。针对扫描电镜及有窗能谱测试结果不准确的问题,提出了建议解决办法,通过对三种不同样品图像结果的分析,得出适当降低工作电压可提高电镜和能谱的空间分辨率。鉴于有窗能谱对10nm以下尺度空间分辨率的局限性,有窗能谱Extreme应运而生,在低电压下具有优良的表现。EBSD目前在半导体相关行业的应用还处于起步阶段,但由于其技术优势,会越来越多的应用在半导体的研发当中。可用于观测样品中晶粒的取向。 /i /span /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/b562f762-930a-494d-bec6-5ffda980fba0.jpg" title=" 相变存储器及存储材料-成岩.jpg" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / /p p span style=" font-family: & quot times new roman& quot "    i span style=" font-family: 宋体, SimSun color: rgb(31, 73, 125) " 华东师范大学电镜中心的成岩老师向观众分享了半导体存储领域的新秀—相变存储器,介绍了其发展、结构、原理、材料等研究内容。DRAM和Flash占据了存储器市场95%以上的份额,旧的存储器存在一定的性能缺陷以及存储速度和存储性能之间的矛盾,开发新型存储架构势在必行。IBM开发的SCM(Storage Class Memory)使用高速、非易失性、字节可访问、存储密度高的新型存储级内存介质构建外部大容量存储器,为计算机系统延续了数十年的内外存架构提供了新的选择,应用相变存储技术的PCRAM将高速、随机访问和非易失在同一存储介质上实现。透射电子显微镜可应用于对相变存储材料Ge sub 2 /sub Sb sub 2 /sub Te sub 5 /sub 的结构进行观测,发现其具有两级相变过程,可由非晶转变为面心立方结构,再转变为六方相结构。 /span /i /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/0881776f-607b-4fdd-8408-b0ca4a572b4e.jpg" title=" 赞助厂商.png" / /p p style=" text-align: center " strong span style=" font-family: & quot times new roman& quot " 赞助厂商 /span /strong /p p span style=" font-family: & quot times new roman& quot "   每场报告结束后,观众对报告内容踊跃提问和发言,老师也对观众们提出的部分问题进行了答疑,会议为关注和研究半导体材料应用的工作者们提供了一个交流和学习的良好平台。 /span /p
  • 第三代半导体专利分析——碳化硅篇
    第三代半导体材料主要是以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)等为代表的宽禁带半导体材料。与第一、二代半导体材料相比,第三代半导体材料具有更宽的禁带宽度、更高的击穿电场、更高的热导率、更高的电子饱和速率及更高的抗辐射能力,更适合于制作高温、高频、抗辐射及大功率器件,通常又被称为宽禁带半导体材料(禁带宽度大于2.3eV),亦被称为高温半导体材料。从目前第三代半导体材料及器件的研究来看,较为成熟的第三代半导体材料是碳化硅和氮化镓,而氧化锌、金刚石、氮化铝等第三代半导体材料的研究尚属起步阶段。碳化硅(SiC)和氮化镓(GaN),被行业称为第三代半导体材料的双雄。专利一般是由政府机关或者代表若干国家的区域性组织根据申请而颁发的一种文件,这种文件记载了发明创造的内容,并且在一定时期内产生这样一种法律状态,即获得专利的发明创造在一般情况下他人只有经专利权人许可才能予以实施。在我国,专利分为发明、实用新型和外观设计三种类型。专利文献作为技术信息最有效的载体,囊括了全球90%以上的最新技术情报,相比一般技术刊物所提供的信息早5~6年,而且70%~80%发明创造只通过专利文献公开,并不见诸于其他科技文献,相对于其他文献形式,专利更具有新颖、实用的特征。可见,专利文献是世界上最大的技术信息源,另据实证统计分析,专利文献包含了世界科技技术信息的90%~95%。如此巨大的信息资源远未被人们充分地加以利用。事实上,对企业组织而言,专利是企业的竞争者之间惟一不得不向公众透露而在其他地方都不会透露的某些关键信息的地方。因此,通过对专利信息细致、严密、综合、相关的分析,可以从其中得到大量有用信息。基于此,仪器信息网特统计分析了第三代半导体中碳化硅材料的专利信息,以期为从业者提供参考。(本文搜集信息源自网络,不完全统计分析仅供读者参考,时间以专利申请日为准)专利申请趋势分析(1985-2021)专利申请趋势分析(2010-2020)本次统计,以碳化硅为关键词进行检索,共涉及专利总数量为66318条(含世界知识产权组织940条专利),其中发明专利53498条、实用新型专利11780条和外观专利100条。从专利申请趋势分析(1985-2021)可以看出,2018年前相关专利呈现出不断增长的趋势,尤其是2018年之前十年的增长速度很快,2018年专利申请数量达到巅峰8081件,但此后专利申请量开始减少。这表明在18年前十年是碳化硅材料的研究高峰期,此后研发强度逐渐降低,一般而言这也意味着相关产业的前期研发已完成,步入了产业化阶段,市场生命周期进入成长期(行业生命周期分为四个阶段形成期、成长期、成熟期和衰退期)。由于数据采集时未到2021年底,2021年数据趋势不具有代表性。申请人数量趋势分析(2010-2020)发明人数量趋势分析(2010-2020)进一步分析2010-2020年之间的专利申请人数量趋势可以发现,申请相关专利的自然人也在18年之后略有下降。这表明在相关领域持续投入研发的企事业单位和科研院所也在逐渐减少,市场竞争机制加剧,企业的生命力越来越短,市场呈现出竞争对手减少的态势,未来市场将逐渐淘汰一些研发不足的企业。从发明人数量趋势变化可以发现,相关发明人在2019年达到顶点,但2018-2020年之间逐渐比较平稳,这表明相关研发工作也不在大规模招聘研发人员,未来从业者数量将趋于平稳。(专利申请人就是有资格就发明创造提出专利申请的自然人、法人或者其他组织,本调研中大部分为企事业单位和科研院所;专利法所称发明人或者设计人,是指对发明创造的实质性特点作出创造性贡献的人)TOP10申请人专利量排行及专利类型分布TOP10发明人专利量(排除不公告姓名)那么从事相关研发工作的主要有哪些单位呢?从申请人专利量排行可以看出,中芯国际在碳化硅领域的布局较多,其北京和上海的公司都要大量专利布局。具体来看,中芯国际的专利主要分布于半导体器件中的碳化硅层的生长、掺杂、刻蚀等工艺方面;三菱电机的专利主要集中于外延晶片的制造和相关半导体装置等方面。中芯国际和三菱不仅在中国发明专利量方面领先,同时发明授权专利数量也较多。碳化硅相关专利申请区域统计通过对区域专利申请量进行统计能够了解到目前专利技术的布局范围以及技术创新的活跃度,进而分析各区域的竞争激烈程度。从专利申请区域可以看出,碳化硅专利申请人主要集中于江苏省、广东省等,这些地区都是半导体产业发达的地区,其在第三代半导体方面的布局也快人一步。需要注意的是,本次统计以碳化硅为关键词检索,部分检索专利非半导体领域,相关结仅供参考。
  • 岛津NDI在半导体与元器件失效分析中的应用
    为推动我国无损检测技术发展和行业交流,促进新理论、新方法、新技术的推广与应用,仪器信息网定于2024年9月11-12日组织召开第三届无损检测技术进展与应用网络会议,邀请领域内科研、应用等专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开研讨。期间,岛津企业管理(中国)有限公司高级应用工程师黄军飞将作报告《NDI在半导体与元器件失效分析中的应用》,介绍岛津NDI在半导体材料与元器件失效分析中的应用案例。本次会议于线上召开,欢迎大家参会交流!关于岛津NDI事业部岛津作为一家著名的测试仪器、医疗器械及工业设备制造厂商,于1909年开发出了日本历史上第一台商用医疗X光机。随着焊接技术的发展,客户中产生了用无损的方法检测钢管焊接的需求,岛津便将其引用到工业领域。1999年,岛津成功开发出日本第一台微焦点X射线CT系统。此后,又陆续推出了一系列X-ray检查装置和测量用X射线CT系统。例如,2023年推出台式X射线CT系统XSeeker 8000,2024年推出倾斜CT和透视一体机 XslicerSMX-6000。目前,岛津NDI拥有微焦点X射线透视检查装置 、微焦点X射线CT系统 、X射线测量CT系统等系列产品。
  • Surpass在半导体行业应用
    近期两个著名的半导体制造商开始使用安东帕的固体表面Zeta电位分析仪来优化生产流程。 这不仅标志着在跌宕起伏的美国半导体市场,今年是安东帕的Surpass获得成功的一年,并且再次证实了固体表面分析仪器在半导体行业的重要性。 Surpass Zeta电位分析仪 Surpass Zeta电位分析仪是现代化的固体表面分析工具,灵敏度高,能够检测表面性质上的最微小变化,从小颗粒到大晶片,不同的测量元件适合不同形状样品测量。可快速更换样品槽,每秒刷新测量数值。并有全自动的测量程序无需手动干预。
  • Surpass在半导体行业应用
    近期两个著名的半导体制造商开始使用安东帕的固体表面Zeta电位分析仪来优化生产流程。   这不仅标志着在跌宕起伏的美国半导体市场,今年是安东帕的Surpass获得成功的一年,并且再次证实了固体表面分析仪器在半导体行业的重要性。 Surpass Zeta电位分析仪   Surpass Zeta电位分析仪是现代化的固体表面分析工具,灵敏度高,能够检测表面性质上的最微小变化,从小颗粒到大晶片,不同的测量元件适合不同形状样品测量。可快速更换样品槽,每秒刷新测量数值。并有全自动的测量程序无需手动干预。
  • 直播预告!半导体可靠性测试和失效分析技术篇
    2023年10月18-20日,仪器信息网(www.instrument.com.cn) 与电子工业出版社将联合主办第四届“半导体材料与器件分析检测技术与应用”主题网络研讨会。iCSMD 2023会议围绕光电材料与器件、第三代半导体材料与器件、传感器与MEMS、半导体产业配套原材料等热点材料、器件的材料分析、失效分析、可靠性测试、缺陷检测和量测等热点分析检测技术,为国内广大半导体材料与器件研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。本次大会分设:半导体材料分析技术新进展、可靠性测试和失效分析技术、可靠性测试和失效分析技术(赛宝实验室专场)、缺陷检测和量测技术4个主题专场,诚邀业界人士报名参会。主办单位:仪器信息网,电子工业出版社参会方式:本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/icsmd2023/ 或扫描二维码报名“可靠性测试和失效分析技术(上午场)”专场预告(注:最终日程以会议官网为准)时间报告题目演讲嘉宾专场:可靠性测试和失效分析技术(10月19日上午)9:30碳化硅器件的新型电力系统应用与可靠性研究田鸿昌(中国电气装备集团科学技术研究院有限公司 电力电子器件专项负责人)10:00集成电路激光试验测试技术研究马英起(中国科学院国家空间科学中心 正高级工程师)10:30失效半导体器件检测技术及案例分享江海燕(北京软件产品质量检测检验中心 集成电路测评实验室项目经理)11:00半导体元器件材料分析、失效分析技术与案例解析贾铁锁(甬江实验室微谱(浙江)技术服务有限公司 失效分析工程师)嘉宾简介及报告摘要(按分享顺序)田鸿昌 中国电气装备集团科学技术研究院有限公司 电力电子器件专项负责人【个人简介】田鸿昌,工学博士,博士后,高级工程师,主要从事宽禁带半导体功率器件与应用研究。2010年于西安电子科技大学自动化专业获学士学位,2015年于上海交通大学电子科学与技术专业获博士学位,2017年-2020年作为浙江大学-中国西电集团有限公司联合培养博士后从事电气工程专业研究。现任中国电气装备集团科学技术研究院电力电子器件专项负责人、中国电气装备集团有限公司科学技术委员会电力电子专家委员,兼任中国电工技术学会电力电子专委会委员、中国西电集团有限公司高层次科技创新领军人才、陕西省半导体与集成电路共性技术研发平台技术负责人、西安电子科技大学和西安交通大学研究生校外导师、陕西省电源学会常务理事、陕西省秦创原“科学家+工程师”团队首席工程师、陕西省“三秦学者”创新团队骨干成员。获得授权发明专利18项,发表学术论文20余篇,出版专著1部。主持科技部国家重点研发计划课题“高可靠性碳化硅MOSFET器件中试生产关键技术研究”,主持和参与国家级、省市级、企业级科研项目10余项。报告题目:碳化硅器件的新型电力系统应用与可靠性研究【摘要】报告首先从“双碳”目标下新型电力系统的发展需求,联系到碳化硅功率半导体器件的特性优势与发展现状,而后讨论了碳化硅功率在新型电力系统的多方面应用情况,最后介绍了对碳化硅器件发展起着重要作用的可靠性测试研究与相应的研究进展。马英起 中国科学院国家空间科学中心 正高级工程师【个人简介】马英起,男,中国科学院国家空间科学中心正高级工程师,太阳活动与空间天气重点实验室空间天气效应中心主任,中科院大学博士生导师,中科院青促会优秀会员,中国光学工程学会激光技术应用专委会委员。主要研究方向为航天器空间环境效应研究与应用、电路与电子系统设计。在卫星器件电路抗辐射研究领域,系统开展辐射效应机理、评估及加固设计验证技术研究,形成的单粒子效应脉冲激光关键技术相关研究成果及系列抗辐射试验平台,支撑了空间科学先导专项、载人航天空间站、月球与深空探测、核高基、高分六号等国家重大任务,形成国家级标准2项。近年来发表论文50余篇、授权发明专利10余项,获省部级科技进步一等奖1项、二等奖1项。报告题目:集成电路激光试验测试技术研究【摘要】概述基于激光光电效应、光热效应、电光效应等机制,开展航天单粒子效应及集成电路缺陷检测应用研究。江海燕 北京软件产品质量检测检验中心 集成电路测评实验室项目经理【个人简介】擅长半导体集成电路失效分析FIB,SEM,EDX,SAT,EMMI,Decap,X-RAY,IV,Probe,OM分析等。报告:失效半导体器件检测技术及案例分享【摘要】本次报告聚焦于集成电路失效分析技术分享,从失效分析的研究方法展开,重点分享失效分析检测手段应用,包含设备基本功能介绍和案例展示,致力于检测技术推广。贾铁锁 甬江实验室微谱(浙江)技术服务有限公司 失效分析工程师【个人简介】贾铁锁,毕业于大连海事大学材料科学与工程专业,对电子元器件失效模式和失效机理有丰富的理论和实践经验,为产品失效分析提供专业解决方案。甬江实验室材料分析与检测中心失效分析技术工程师,长期从事半导体器件失效分析工作,对元器件可靠性、失效分析、失效模式、失效机理等基本概念有科学认知,熟悉电子元器件常见失效模式与失效机理,建立一套对不同元器件失效分析的思路和方法,通过坚实的理论基础与科学的检测仪器分析相结合,解决元器件失效分析相关问题。报告:半导体元器件材料分析、失效分析技术与案例解析【摘要】 报告如下 1. 半导体元器件门类,16大类49小类,挑选部分元器件做讲解。 2. 失效分析的相关介绍:定义和作用、典型失效机理介绍、失效分析的一般流程、关键站点的介绍等 3. 分析技术:方法论和技术介绍,常用失效分析方法,常用技术分析,诸如电性测试、样品制备、失效点定位,FIB微区加工等 4. 失效分析案例解析。会议联系会议内容仪器信息网康编辑:15733280108,kangpc@instrument.com.cn会议赞助周经理,19801307421,zhouhh@instrument.com.cn
  • HORIBA:多种分析技术在半导体材料表征中的应用
    p style=" text-align: justify text-indent: 2em " 10月15日-16日,中国科学院半导体研究所、仪器信息网联合主办首届“半导体材料与器件研究与应用”网络会议(i Conference on Research and Application of Semiconductor Materials and Devices, iCSMD 2020),22位业内知名的国内外专家学者聚焦半导体材料与器件的产业热点方向,进行为期两日的学术交流。 /p p style=" text-align: justify text-indent: 2em " 会议期间,来自HORIBA Scientific的工业销售经理熊洪武做了《HORIBA Scientific多种分析技术在半导体材料表征中的应用》的报告。 /p p style=" text-align: center " script src=" https://p.bokecc.com/player?vid=6AB4F86C1108F04C9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script /p p style=" text-align: justify text-indent: 2em " 据介绍,HORIBA集团有五大事业部,包括汽车测试系统、过程&环境、医疗、半导体和科学仪器事业部。其中,半导体事业部主要提供质量流量控制(气体/液体流量控制技术)、药液浓度监控(监测不同药液浓度)和异物颗粒探测(光掩模颗粒检测与去除);科学仪器事业部则提供各种分析仪器,主要包括分子光谱、表面分析、粒度表征、元素分析和光学光谱仪器。本次报告,熊洪武分享了HORIBA技术在半导体材料中的应用。 /p p style=" text-align: justify text-indent: 2em " 熊洪武表示,HORIBA分析技术可广泛应用于半导体材料相关检测项目中。晶圆制程中,拉曼光谱仪可检测半导体材料的应力、晶型、成分、载流子浓度、温度和SiC单晶衬底晶型等;光致发光光谱仪可用于B、P、Al、As等杂质含量测试和GaAs、InP、GaN、SiC等材料PL;阴极射线发光光谱仪可用于GaN、SiC晶圆等材料的缺陷、杂质、包裹体等分析;氧分析仪可测试重掺硅单晶中氧含量。沉积制程中,椭圆偏振仪可用于膜厚、膜质量和膜均匀性的检测;辉光放电光谱仪可检测膜层/镀层元素在深度上的分布变化ICP-OES可测量Mo源中杂质元素含量。抛光制程中,激光粒度仪可用于CMP研磨液粒径测量。封装制程中,显微X射线荧光可用于集成电路封装布线中的离子迁移、缺陷、短路分析等。 /p p style=" text-align: justify text-indent: 2em " 报告中,熊洪武还详细介绍了一些半导体材料表征的应用实例。除以上科学仪器外,HORIBA还可为半导体设备制造商提供多种类型光栅、光谱仪。 /p
  • 【第三轮通知】2024中国检测技术与半导体应用大会暨半导体分析检测仪器与设备发展论坛
    “2024中国检测技术与半导体应用大会暨半导体分析检测仪器与设备发展论坛”将以“大会报告+分会报告+产品展览+高校科技成果展示+学术墙报+晚宴交流”的形式召开,85个口头报告专家及20余个提供墙报的学者,分别来自于半导体检测领域知名科研院校、半导体制造企业、半导体检测企业等。届时,您将有机会与科研院校的课题组长、系主任、副院长、院长和学生等,产业界知名企业的董事长、总经理和高管等共同研判半导体检测技术发展趋势,共同碰撞产学研合作火花,共同对接面向产业市场和科研市场的高质量合作机遇。诚邀您报名注册参会!指导单位中国技术创业协会上海市经济和信息化委员会上海市科学技术协会上海虹桥商务区管理委员会上海市闵行区人民政府主办单位国家集成电路创新中心上海市仪器仪表行业协会财联社承办单位复旦大学光电研究院上海复创芯半导体科技有限公司科创板日报上海南虹桥投资开发(集团)有限公司上海段和段(虹桥国际中央商务区)律师事务所协办单位中国上海测试中心上海市集成电路行业协会上海市真空学会上海电子学会智能仪器与设备专委会上海市在线检测与控制技术重点实验室上海理工大学光电学院上海大学特种光纤与光接入网重点实验室昆山上理工光电信息应用技术研究院有限公司求是缘半导体联盟复旦大学校友总会集成电路行业分会长三角集成电路产业产教融合共同体南通市半导体产业协同创新联合体特别报道《CMG 数字中国》融媒体节目支持媒体仪器信息网半导体综研半导体行业联盟上海市真空学会官网大同学吧芯片揭秘支持期刊半导体学报自动化仪表会议日程参会单位(字母排序,滑动阅读)爱德万测试(中国)管理有限公司爱发科费恩斯(南京)仪器有限公司安徽华鑫微纳集成电路有限公司安徽见行科技有限公司安捷伦科技(中国)有限公司安世半导体科技(上海)有限公司昂图(上海)贸易有限公司八帆仪器设备(上海)有限公司百及纳米科技(上海)有限公司北京北方华创微电子装备有限公司北京航空航天大学北京华峰装备技术有限公司北京华卓精科科技股份有限公司北京振兴计量测试研究所北京中科米格实验室技术有限公司忱芯科技(上海)有限公司大恒新纪元科技股份有限公司东方晶源微电子科技(北京)股份有限公司福禄克测试仪器(上海)有限公司复旦大学复纳科学仪器(上海)有限公司盖泽华矽半导体科技(上海)有限公司光库智能科技(南阳)有限公司广东金鉴实验室科技有限公司国仪量子技术(合肥)股份有限公司哈尔滨工业大学海宁凯成私募基金管理有限公司杭州富加镓业科技有限公司杭州广立微电子股份有限公司杭州积海半导体有限公司杭州加速科技有限公司杭州镓仁半导体有限公司杭州谱育科技发展有限公司杭州银行杭州长川科技股份有限公司合肥御微半导体技术有限公司河南大学闳康技术检测(上海)有限公司华东师范大学华恒半导体设备(苏州)有限公司华中科技大学加野仪器(上海)有限公司江南大学江苏才道精密仪器有限公司江苏超敏仪器有限公司江苏帝奥微电子股份有限公司江苏集萃苏科思科技有限公司江苏捷捷微电子股份有限公司江苏迈纳德微纳技术有限公司江苏微导纳米科技股份有限公司江苏芯德半导体科技有限公司江苏友润微电子有限公司匠岭科技(上海)有限公司聚微(嘉兴)科技有限公司卡尔蔡司(上海)管理有限公司开源证券研究所柯泰光芯(常州)测试技术有限公司科学指南针堀场(中国)贸易有限公司昆山国力电子科技股份有限公司昆山上理工光电信息应用技术研究院有限公司昆山新锦宏智能装备科技有限公司量伙半导体设备(上海)有限公司聆思半导体技术(苏州)有限公司领先光学技术(江苏)有限公司马尔精密量仪(苏州)有限公司麦峤里(上海)半导体科技有限责任公司苏州镁伽科技有限公司魅杰光电科技(上海 )有限公司木王芯(苏州)半导体科技有限公司上海拿成智能科技有限公司纳瑞科技(北京)有限公司南昌航空大学南京宏泰半导体科技股份有限公司南通晶测半导体科技有限公司南通敏顺智能科技有限公司南通芯力电子科技有限公司宁波银行欧陆埃文思材料科技(上海)有限公司珀金埃尔默企业管理(上海)有限公司普源精电科技股份有限公司青岛大学日置(上海)测量技术有限公司荣旗工业科技(苏州)股份有限公司睿励科学仪器(上海)有限公司赛默飞世尔电子技术研发(上海)有限公司赛默飞世尔电子技术研发(上海)有限公司赛英特半导体技术(西安)有限公司厦门国际银行上海大宁支行厦门海恩迈科技有限公司厦门锐思捷水纯化技术有限公司上海爱柯锐科技有限公司上海邦芯半导体科技有限公司上海超越摩尔私募基金上海澈芯科技有限公司上海崇诚国际贸易有限公司上海点莘技术有限公司上海电子信息职业技术学院上海顶策科技股份有限公司上海段和段律师事务所上海复旦微电子集团股份有限公司上海复享光学股份有限公司上海概伦电子股份有限公司上海感图网络科技有限公司上海鸿舸技研科技有限公司上海华岭集成电路技术股份有限公司上海汇博检测设备有限公司上海积塔半导体有限公司上海集材汇智集成电路技术有限公司上海集成电路材料研究院有限公司上海季丰电子股份有限公司上海交通大学上海精测半导体技术有限公司上海玖钲机械设备有限公司上海科源电子科技有限公司上海理工大学上海麦湘自动化科技有限公司上海铭剑电子科技有限公司上海欧波同仪器有限公司上海拍频光电科技有限公司上海市科普教育展示技术中心上海泰成投资管理有限公司上海微崇半导体设备有限公司上海伟测半导体科技股份有限公司上海遥芷科技有限公司上海怡瑞投资管理咨询有限公司上海隐冠半导体技术有限公司上海赢朔电子科技股份有限公司上海优睿谱半导体设备有限公司上海育仪科技有限公司上海曌达测控科技有限公司上海喆塔信息科技有限公司上海智湖信息技术有限公司上海众濒科技有限公司上海卓晶半导体科技有限公司深圳大学深圳市埃芯半导体科技有限公司深圳市普马电子科技有限公司深圳市森东宝科技有限公司深圳市市卓达智视科技有限公司深圳市卓达智视科技有限公司深圳市琢光半导体设备技术有限公司深圳中科飞测科技股份有限公司胜科纳米(苏州)股份有限公司是德科技(中国)有限公司苏州博欧自动化科技集团有限公司苏州东微半导体股份有限公司苏州芬中传感技术有限公司苏州国科测试科技有限公司苏州国芯科技股份有限公司苏州黑河电子科技有限公司苏州回能环保科技有限公司苏州钧信自动控制有限公司苏州凌光红外科技有限公司苏州妙光睿芯智能科技有限公司苏州瑞霏光电科技有限公司苏州天准科技股份有限公司苏州矽视科技有限公司泰克科技(中国)有限公司天津大学精仪学院通富微电子股份有限公司无锡北京大学电子设计自动化研究院无锡芯鉴半导体技术有限公司无锡英诺赛思科技有限公司武汉颐光科技有限公司西安电子科技大学西安交通大学/西安天交新能源有限公司夏罗登工业科技(上海)有限公司新慧能济(上海)科技有限公司新胜科技(上海)有限公司亚科电子(香港)有限公司亿丰测(上海)分析技术有限公司英铂科学仪器(上海)有限公司悦芯科技股份有限公司张江国家实验室长三角先进材料研究院兆易创新科技集团股份有限公司浙江潮芯电子有限公司浙江大学浙江大学集成电路学院浙江禾芯集成电路有限公司浙江晶能微电子有限公司浙江芯晟半导体科技有限责任公司致真精密仪器(青岛)有限公司中国半导体产业链集团中国电子技术标准化研究院中国科学院上海硅酸盐研究所中国原子能科学研究院中科飞测科技股份有限公司中芯聚源私募基金管理(上海)有限公司中信银行徐汇支行珠海錾芯半导体有限公司宏茂微电子(上海)有限公司
  • 十五种分析仪器助力半导体工艺检测
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 半导体器件生产中,从半导体单晶片到制成最终成品,须经历数十甚至上百道工序。为了确保产品性能合格、稳定可靠,并有高的成品率,根据各种产品的生产情况,对所有工艺步骤都要有严格的具体要求。因而,在生产过程中必须建立相应的系统和精确的监控措施,首先要从半导体工艺检测着手。 /span /p p style=" text-align: justify text-indent: 2em " 半导体工艺检测的项目繁多,内容广泛,方法多种多样,可粗分为两类。第一类是半导体晶片在经历每步工艺加工前后或加工过程中进行的检测,也就是半导体器件和集成电路的半成品或成品的检测。第二类是对半导体单晶片以外的原材料、辅助材料、生产环境、工艺设备、工具、掩模版和其他工艺条件所进行的检测。第一类工艺检测主要是对工艺过程中半导体体内、表面和附加其上的介质膜、金属膜、多晶硅等结构的特性进行物理、化学和电学等性质的测定。其中许多检测方法是半导体工艺所特有的。 /p p style=" text-align: justify text-indent: 2em " 工艺检测的目的不只是搜集数据,更重要的是要把不断产生的大量检测数据及时整理分析,不断揭示生产过程中存在的问题,向工艺控制反馈,使之不致偏离正常的控制条件。因而对大量检测数据的科学管理,保证其能够得到准确和及时的处理,是半导体工艺检测中的一项重要关键。同时半导体检测也涉及大量的科学仪器,针对于此,对一些半导体检测的仪器进行介绍。 /p h3 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/zc/537.html" target=" _self" 椭偏仪 /a /h3 p style=" text-align: justify text-indent: 2em " 椭偏仪是一种用于探测薄膜厚度、光学常数以及材料微结构的光学测量仪器。由于测量精度高,适用于超薄膜,与样品非接触,对样品没有破坏且不需要真空,使得椭偏仪成为一种极具吸引力的测量仪器。 /p p style=" text-align: justify text-indent: 2em " 目前,椭偏仪是测量透明、半透明薄膜厚度的主流方法,它采用偏振光源发射激光,当光在样本中发生反射时,会产生椭圆的偏振。椭偏仪通过测量反射得到的椭圆偏振,并结合已知的输入值精确计算出薄膜的厚度,是一种非破坏性、非接触的光学薄膜厚度测试技术。在晶圆加工中的注入、刻蚀和平坦化等一些需要实时测试的加工步骤内,椭偏仪可以直接被集成到工艺设备上,以此确定工艺中膜厚的加工终点。 /p h3 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/zc/1677.html" target=" _self" span style=" text-indent: 2em " 四探针测试仪 /span /a /h3 p style=" text-align: justify text-indent: 2em " 四探针测试仪是用来测量半导体材料(主要是硅单晶、锗单晶、硅片)电阻率,以及扩散层、外延层、ITO导电箔膜、导电橡胶方块电阻等的测量仪器。 /p p style=" text-align: justify text-indent: 2em " 测量半导体电阻率方法的测量方法主要根据掺杂水平的高低,半导体材料的电阻率可能很高。有多种因素会使测量这些材料的电阻率的任务复杂化,包括与材料实现良好接触的问题。特殊的探头设计用于测量半导体晶片和半导体棒的电阻率。这些探头通常由诸如钨的硬质金属制成,并接地到探头。在这种情况下,接触电阻很高,必须使用四点共线探针或四线绝缘探针。两个探针提供恒定电流,另外两个探针测量整个样品一部分的电压降。通过使用所测电阻的几何尺寸来计算电阻率。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 薄膜应力测试仪 /span br/ /h3 p style=" text-align: justify text-indent: 2em " 薄膜应力作为半导体制程、MEMS微纳加工、光电薄膜镀膜过程中性能测试的必检项,其测试的精度、重复性、效率等因素为业界所重点关注。对应产品目前业界有两种主流技术流派:1)以美国FSM、KLA、TOHO为代表的双激光波长扫描技术(线扫模式),尽管是上世纪90年代技术,但由于其简单高效,适合常规Fab制程中进行快速QC,至今仍广泛应用于相关工厂。2)以美国kSA为代表的MOS激光点阵技术,抗环境振动干扰,精于局部区域内应力测量,这在研究局部薄膜应力均匀分布具有特定意义。线扫模式主要测量晶圆薄膜整体平均应力,监控工序工艺的重复性有意义。但在监控或精细分析局部薄膜应力,激光点阵技术具有特殊优势,比如在MEMS压电薄膜的应力和缺陷监控。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 热波系统 /span br/ /h3 p style=" text-align: justify text-indent: 2em " 热播系统主要用来测量掺杂浓度。热波系统通过测量聚焦在硅片上同一点的两束激光在硅片表面反射率的变化量来计算杂质粒子的注入浓度。在该系统内,一束激光通过氩气激光器产生加热的波使硅片表面温度升高,热硅片会导致另一束氦氖激光的反射系数发生变化,这一变化量正比于硅片中由杂质粒子注入而产生的晶体缺陷点的数目。由此,测量杂质粒子浓度的热波信号探测器可以将晶格缺陷的数目与掺杂浓度等注入条件联系起来,描述离子注入工艺后薄膜内杂质的浓度数值。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " ECV设备 /span /h3 p style=" text-align: justify text-indent: 2em " ECV又名扩散浓度测试仪,结深测试仪等,即电化学CV法测扩散后的载流子浓度分布。电化学ECV可以用于太阳能电池、LED等产业,是化合物半导体材料研究或开发的主要工具之一。电化学ECV主要用于半导体材料的研究及开发,其原理是使用电化学电容-电压法来测量半导体材料的掺杂浓度分布。电化学ECV(CV-Profiler, C-V Profiler)也是分析或发展半导体光-电化学湿法蚀刻(PEC Etching)很好的选择。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 少子寿命测试仪 /span /h3 p style=" text-align: justify text-indent: 2em " 载流子寿命就是指非平衡载流子的寿命。而非平衡载流子一般也就是非平衡少数载流子(因为只有少数载流子才能注入到半导体内部、并积累起来,多数载流子即使注入进去后也就通过库仑作用而很快地消失了),所以非平衡载流子寿命也就是指非平衡少数载流子寿命,即少数载流子寿命。例如,对n型半导体,非平衡载流子寿命也就是指的是非平衡空穴的寿命。 /p p style=" text-align: justify text-indent: 2em " 少子寿命是半导体材料和器件的重要参数。它直接反映了材料的质量和器件特性。能够准确的得到这个参数,对于半导体器件制造具有重要意义。少子寿命测试仪可以直接获得长硅的质量参数。 /p h3 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/zc/34.html" target=" _self" 拉曼光谱 /a /h3 p style=" text-align: justify text-indent: 2em " 拉曼光谱是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.Raman在1928年所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息并应用于分子结构研究的一种分析方法。 /p p style=" text-align: justify text-indent: 2em " 拉曼光谱在材料科学中是物质结构研究的有力工具,在相组成界面、晶界等课题中可以做很多工作。半导体材料研究中,拉曼光谱可测出经离子注入后的半导体损伤分布,可测出半磁半导体的组分,外延层的质量,外延层混品的组分载流子浓度。 span style=" text-indent: 2em " & nbsp /span /p h3 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/zc/31.html" target=" _self" 红外光谱仪 /a /h3 p style=" text-align: justify text-indent: 2em " 红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。 /p p style=" text-align: justify text-indent: 2em " 红外光谱法操作简单,不破坏样品,使其在半导体分析的应用日趋广泛。半导体材料的红外光谱揭示了晶格吸收、杂质吸收和自由载流子吸收的情况,直接反映了半导体的许多性质,如确定红外透过率和结晶缺陷,监控外延工艺气体组分分布,测载流子浓度,测半导体薄层厚度和衬底表面质量。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 二次粒子质谱 /span /h3 p style=" text-align: justify text-indent: 2em " 二次粒子质谱是借助入射粒子的轰击功能,将样品表面原子溅出,由质谱仪测定二次粒子质量,根据质谱峰位的质量数,可以确定二次离子所属的元素和化合物,从而可精确测定表面元素的组成。这是一种常用的表面分析技术。其特点是高灵敏度和高分辨率。 /p p style=" text-align: justify text-indent: 2em " 利用二次离子质谱对掺杂元素的极高灵敏度的特点,对样品的注入条件进行分析,在生产中可以进行离子注入机台的校验,并确定新机台的可以投入生产。同时,二次离子质谱对于CVD沉积工艺的质量监控尤其是硼磷元素的分布和生长比率等方面有不可替代的作用。通过二次离子质谱结果的分析帮助CVD工程师进行生长条件的调节,确定最佳沉积工艺条件。对于杂质污染的分析,可以对样品表面结构和杂质掺杂情况进行详细了解,保证芯片的有源区的洁净生长,对器件的电性质量及可靠性起到至关重要的作用。对掺杂元素退火后的形貌分析研究发现通过改变掺杂元素的深度分布,来保证器件的电学性能达到设计要求。可以帮助LTD进行新工艺的研究对于90nm/65nm/45nm新产品开发起到很大作用。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " X射线光电子能谱仪 /span br/ /h3 p style=" text-align: justify text-indent: 2em " X射线光电子能谱仪以X射线为激发源。辐射固体表面或气体分子,将原子内壳层电子激发电离成光电子,通过分析样品发射出来的具有特征能量的光电子,进而分析样品的表面元素种类、化学状态和电荷分布等信息,是一种无损表面分析技术。 /p p style=" text-align: justify text-indent: 2em " 这种技术分析范围较宽,原则上可以分析除氢以外的所有元素,但分析深度较浅,大约在25~100 Å 范围,不过其绝对灵敏度高,测量精度可达10 nm左右,主要用于分析表面元素组成和化学状态,原子周围的电子密度,特别是原子价态及表面原子电子云和能级结构。 /p h3 style=" text-align: justify text-indent: 2em " X射线衍射 /h3 p style=" text-align: justify text-indent: 2em " 当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有X射线衍射分析相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关,每种晶体所产生的衍射花样都反映出该晶体内部的原子分配规律。这就是X射线衍射的基本原理。 /p p style=" text-align: justify text-indent: 2em " 半导体制造中的大部分材料是多晶材料,比如互连线和接触孔。XRD能够将多晶材料的一系列特性量化。这其中最重要的特性包括多晶相(镍单硅化物,镍二硅化物),平均晶粒大小,晶体织构,残余应力。 /p h3 style=" text-align: justify text-indent: 2em " 阴极荧光光谱 /h3 p style=" text-align: justify text-indent: 2em " 阴极荧光谱是利用电子束激发半导体样品,将价带电子激发到导带,之后由于导带能量高不稳定,被激发电子又重新跳回价带,并释放出能量E≤Eg(能隙)的特征荧光谱。CL谱是一种无损的分析方法,结合扫描电镜可提供与形貌相关的高空间分辨率光谱结果,是纳米结构和体材料的独特分析工具。利用阴极荧光谱,可以在进行表面形貌分析的同时,研究半导体材料的发光特性,尤其适合于各种半导体量子肼、量子线、量子点等纳米结构的发光性能的研究。 /p p style=" text-align: justify text-indent: 2em " 例如,对于氮化镓单晶,由于阴极萤光显微镜具有高的空间分辨率并且具有无损检测的优点,因此将其应用于位错密度的检测已经是行业内广泛采用的方法。目前也制定了相应的标准。 /p h3 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/zc/1016.html" target=" _self" 轮廓仪 /a /h3 p style=" text-align: justify text-indent: 2em " 轮廓仪是一种两坐标测量仪器,仪器传感器相对被测工件表而作匀速滑行,传感器的触针感受到被测表而的几何变化,在X和Z方向分别采样,并转换成电信号,该电信号经放大和处理,再转换成数字信号储存在计算机系统的存储器中,计算机对原始表而轮廓进行数字滤波,分离掉表而粗糙度成分后再进行计算,测量结果为计算出的符介某种曲线的实际值及其离基准点的坐标,或放大的实际轮廓曲线,测量结果通过显示器输出,也可由打印机输出。 /p p style=" text-align: justify text-indent: 2em " 而利用先进的3D轮廓仪可以实现对硅晶圆的粗糙度检测、晶圆IC的轮廓检测、晶圆IC减薄后的粗糙度检测。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em font-size: 16px " AOI (自动光学检测) /span br/ /h3 p style=" text-align: justify text-indent: 2em " AOI的中文全称是自动光学检测,是基于光学原理来对焊接生产中遇到的常见缺陷进行检测的设备。AOI是新兴起的一种新型测试技术,但发展迅速,很多厂家都推出了AOI测试设备。当自动检测时,机器通过摄像头自动扫描PCB,采集图像,测试的焊点与数据库中的合格的参数进行比较,经过图像处理,检查出PCB上缺陷,并通过显示器或自动标志把缺陷显示/标示出来,供维修人员修整。 /p p style=" text-align: justify text-indent: 2em " 运用高速高精度视觉处理技术自动检测PCB板上各种不同贴装错误及焊接缺陷。PCB板的范围可从细间距高密度板到低密度大尺寸板,并可提供在线检测方案,以提高生产效率,及焊接质量。通过使用AOI作为减少缺陷的工具,在装配工艺过程的早期查找和消除错误,以实现良好的过程控制。早期发现缺陷将避免将坏板送到随后的装配阶段,AOI将减少修理成本将避免报废不可修理的电路板。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " ATE测试机 /span /h3 p style=" text-align: justify text-indent: 2em " 广义上的IC测试设备我们都称为ATE(AutomaticTest Equipment),一般由大量的测试机能集合在一起,由电脑控制来测试半导体芯片的功能性,这里面包含了软件和硬件的结合。 /p p style=" text-align: justify text-indent: 2em " 在元器件的工艺流程中,根据工艺的需要,存在着各种需要测试的环节。目的是为了筛选残次品,防止进入下一道的工序,减少下一道工序中的冗余的制造费用。这些环节需要通过各种物理参数来把握,这些参数可以是现实物理世界中的光,电,波,力学等各种参量,但是,目前大多数常见的是电子信号的居多。ATE设计工程师们要考虑的最多的,还是电子部分的参数比如,时间,相位,电压电流,等等基本的物理参数。就是电子学所说的,信号处理。 /p p style=" text-align: justify text-indent: 2em " 此外,原子力显微镜、俄歇电子能谱、电感耦合等离子体质谱仪、X光荧光分析、气相色谱等都可以用于半导体检测。而随着半导体制程工艺的进步,工艺过程中微小的沾污、晶格缺陷等都可能导致电路的失效等,半导体的工艺检测也凸显的越来越重要。 /p
  • 半导体封装材料的性能评估和热失效分析
    前言芯片封装的主要目的是为了保护芯片,使芯片免受苛刻环境和机械的影响,并让芯片电极和外界电路实现连通,如此才能实现其预先设计的功能。常用的一种封装技术是包封或密封,通常采用低温的聚合物来实现。例如,导电环氧银胶用于芯片和基板的粘接,环氧塑封料用于芯片的模塑封,以及底部填充胶用于倒装焊芯片与基板间的填充等。主要的封装材料、工艺方法及特性如图1所示。包封必须满足一定的机械、热以及化学特性要求,不然直接影响封装效果以及整个器件的可靠性。流动和粘附性是任何包封材料都必须优化实现的两个主要物理特性。在特定温度范围内的热膨胀系数(CTE)、超出可靠性测试范围(-65℃至150℃)的玻璃化转变温度(Tg)对封装的牢固性至关重要。对于包封,以下要求都是必须的:包封材料的CTE和焊料的CTE比较接近以确保两者之间的低应力;在可靠性测试中,玻璃转化温度(Tg)能保证尺寸的稳定性;在热循环中,弹性模量不会导致大的应力;断裂伸长率大于1%;封装材料必须有低的吸湿性。但是,这些特性在某种类型的环氧树脂里并不同时具备。因此,包封用的环氧树脂是多种环氧的混合物。表1列出了倒装焊底部填充胶的一些重要的特性。随着对半导体器件的性能要求越来越高,对封装材料的要求同步提高,尤其是在湿气的环境下,性能评估和热失效分析更是至关重要,而这些都可以通过热分析技术给予准确测量,并可进一步用于工艺的CAE模拟仿真,帮助准确评估封装质量的优劣与否。表1 倒装焊中底部填充胶的性能要求[1]图1. 主要封装材料、工艺方法及特性[2]热性能检测梅特勒托利多全套热分析技术为半导体封装材料的性能评估和热失效分析提供全面、创新的解决方案。差示扫描量热仪DSC可以精准评估封装材料的Tg、固化度、熔点和Cp,并且结合行业内具有优势的动力学模块(非模型动力学MFK)可以高精准评估环氧胶的固化反应速率,从而为Moldex 3D模拟环氧塑封料、底部填充胶的流动特性提供可靠的数据。如图2所示,在非模型动力学的应用下,环氧胶在180℃下所预测的固化速率与实际测试曲线所表现出的固化行为具有非常高的一致性。热重TGA或同步热分析仪TGA/DSC可以准确测量封装材料的热分解温度,如失重1%时的温度,以及应用热分解动力学可以评估焊料在一定温度下的焊接时间。热机械分析仪TMA可以精准测量封装材料的热膨胀、固化时的热收缩、以及CTE和Tg,动态机械分析仪DMA提供封装材料准确的弹性模量、剪切模量、泊松比、断裂伸长率等力学数据,进一步可为Moldex 3D模拟芯片封装材料的翘曲和收缩提供可靠数据来源。图2. DSC结合非模型动力学评估环氧胶的固化反应速率检测难点1、 凝胶时间凝胶时间是Moldex 3D模拟环氧塑封料、底部填充胶流动特性的非常重要的数据来源之一。目前,行业内有多种测试凝胶时间的方法和设备。比如利用拉丝原理的凝胶时间测试仪,另有国家标准GB 12007.7-89环氧树脂凝胶时间测定方法[3],即利用标准柱塞在环氧树脂固化体系中往复运动受阻达到一个值而指示凝胶时间。但是,其对柱塞的形状和浮力要求较高,测试样品量也很大,仅适用于在试验温度下凝胶时间不小于5 min的环氧树脂固化体系,并且不适用于低于室温的树脂、高粘度树脂和有填料的体系。由此可见,现有测试方法都存在测试误差、硬件缺陷和测试范围有限等问题。梅特勒托利多创新性TMA/SDTA2+的DLTMA(动态载荷TMA)模式结合独家的负力技术可以准确测定凝胶时间。在常规TMA测试中,探针上施加的是恒定力,而在DLTMA模式中,探针上施加的是周期性力。如图3右上角插图所示,探针上施加的力随时间的变化关系,力在0.05N与-0.05N之间周期性变化,这里尤为关键的一点是,测试凝胶时间必须要使用负力,即不仅需要探针往下压,还需要探针能够自动向上抬起。图3所示案例为测试导电环氧银胶的凝胶时间,样品置于40μl铝坩埚内并事先固定在TMA石英支架平台上,采用直径为1.1 mm的平探针在恒定160℃条件下施加正负力交替变换测试。在未发生凝胶固化之前,探针不会被样品粘住,负力技术可使探针自由下压和抬起,测试的位移曲线表现出较大的位移变化。当发生交联固化,所施加的负力不足以将探针从样品中抬起,位移振幅突然减小为0,曲线成为一条直线。通过分析位移突变过程中的外推起始点即可得到凝胶时间。此外,固化后的环氧银胶片,可通过常规的TMA测试获得Tg以及玻璃化转变前后的CTE,如图3下方曲线所示。图3. 上图:TMA/SDTA2+的DLTMA模式结合负力技术准确测定凝胶时间. 下图:固化导电环氧银胶片的CTE和Tg测试.2、 弯曲弹性模量在热循环过程中,弹性模量不会导致过大的应力。封装材料在不同温度下的弹性模量可通过DMA直接测得。日本工业标准JIS C6481 5.17.2里要求使用弯曲模式对厚度小于0.5mm、跨距小于4mm、宽度为10mm的封装基板进行弯曲弹性模量测试。从DMA测试技巧角度来讲,如此小尺寸的样品应首选拉伸模式测试。弯曲模式在DMA中一共有三种,即三点弯曲、单悬臂和双悬臂,从样品的刚度及夹具的刚度和尺寸考虑,三点弯曲和双悬臂并不适合此类样品的测试。因此,单悬臂成为唯一的可能性,但考虑到单悬臂夹具尺寸和跨距小于4mm的要求,市面上大部分DMA难以满足此类测试。梅特勒托利多创新性DMA1另标配了单悬臂扩展夹具,可方便夹持小尺寸样品并能实现最小跨距为1mm的测试。图4为对厚度为40μm的基板分别进行x轴和y轴方向上的单悬臂测试,在跨距3.5mm、20Hz的频率下以10K/min的升温速率从25℃加热至350℃。从tan delta的出峰情况可以判断基板的Tg在241℃左右,以及在室温下的弯曲弹性模量高达12-13GPa。图4. DMA1单悬臂扩展夹具测试封装基板的弯曲弹性模量.3、 湿气对封装材料的影响湿气腐蚀是IC封装失效的主要原因,其降低了器件的性能和可靠性。保存在干燥环境下的封装环氧胶,完全固化后在高温和高湿气环境下也会吸湿发生水解,降低封装体的机械性能,无法有效保护内部的芯片。此外,焊球和底部填充环氧胶之间的粘附强度在湿气环境中放置一段时间后也会遭受破坏。水汽的吸收导致环氧胶的膨胀,并引起湿应力,这是引线连接失效的主要因素。通过湿热试验可以对封装材料的抗湿热老化性能进行系统的评估,进而对其进行改善,提升整体性能。通常是采用湿热老化箱进行处理,然后实施各项性能的评估。因此,亟需提供一种能够提高封装材料湿热老化测试效率的方法。梅特勒托利多TMA/SDTA2+和湿度发生器的联用方案,以及DMA1和湿度发生器的联用方案可以实现双85(85℃、85%RH)和60℃、90%RH的技术参数,这也是行业内此类湿度联用很难达到的技术指标。因此,可以原位在线环测封装材料在湿热条件下的尺寸稳定性和力学性能。图5. TMA/SDTA2+-湿度联用方案测试高填充环氧的尺寸变化.图5显示了TMA-湿度联用方案在不同湿热程序下高填充环氧的尺寸变化。湿热程序分别为20℃、60%RH、约350min,23℃、50%RH、约350min,30℃、30%RH、约350min,40℃、20%RH、约350min,60℃、10%RH、约350min,80℃、5%RH、约350min。可以看出,在60%的高湿环境下高填充环氧在350min内膨胀约0.016%,后续再降低湿度并升高温度,样品主要在温度的作用下发生较大的热膨胀。图6为DMA-湿度联用方案在双85的条件下评估PCB的机械性能的稳定性,测试时间为7天。可以看出,PCB在高湿热的环境下弹性模量有近似6%的变化,这与PCB的树脂材料发生吸湿后膨胀并引起湿应力是密不可分的,并且存在导致器件失效的风险。图6. DMA1-湿度联用方案测试PCB的弹性模量.4、 化学品质量对于封装结果的影响封装过程中会使用到各类的湿电子化学品,尤其是晶圆级封装等先进封装的工艺流程,对于清洗液、蚀刻液等材料的质量管控可以类比晶圆制造过程中的要求,同时针对不同工艺段的化学品浓度等配比都有所不同,因此如何控制使用的电子化学品质量对于封装工艺的效能有着重要的意义。下表展示了部分涉及到的化学品浓度检测的滴定检测方案,常规的酸碱滴定、氧化还原滴定可以基本满足对于单一品类化学品浓度的检测需求。指标电极滴定剂样品量85%H3PO4酸碱玻璃电极1mol/L NaOH0.5~1g96%H2SO4酸碱玻璃电极1mol/L NaOH0.5~1g70%HNO3酸碱玻璃电极1mol/L NaOH0.5~1g36%HCl酸碱玻璃电极1mol/L NaOH0.5~1g49%HF特殊耐HF酸碱电极1mol/L NaOH0.3~0.4gDHF(100:1)特殊耐HF酸碱电极1mol/L NaOH20-30g29%氨水酸碱玻璃电极1mol/L NaOH0.9~1.2gECP(acidity)酸碱玻璃电极1mol/L NaOH≈8g29%NH4OH酸碱玻璃电极1mol/L HCl0.5~1gCTS-100清洗液酸碱玻璃电极1mol/L NaOH≈1g表1. 部分化学品检测方法列表另一方面,对于刻蚀液等品类,常常会用到混酸等多种物质混配而成的化学品,以起到综合的反应效果,如何对于此类复杂的体系浓度进行检测,成为实际生产过程中比较大的挑战。梅特勒托利多自动电位滴定仪,针对不同的混合液制订不同的检测方案,如铝刻蚀液的硝酸/磷酸/醋酸混合液,在乙醇和丙二醇混合溶剂的作用下,采用非水酸碱电极针对不同酸液pKa的不同进行检测,得到以下图谱,一次滴定即可测定三种组分的含量。图7. 一种铝刻蚀液滴定曲线结论梅特勒托利多一直致力于帮助用户提高研发效率和质量控制,我们为半导体封装整个产业链提供完整专业的产品、应用解决方案和可靠服务。梅特勒托利多在半导体封装行业积累了大量经验和数据,希望我们的解决方案给半导体封装材料性能评估的工作者带来帮助。参考文献[1] Rao R. Tummala. 微系统封装基础. 15. 密封与包封基础 page 544-545.[2] Rao R. Tummala. 微系统封装基础. 18. 封装材料与工艺基础 page 641.[3] GB12007.7-89:环氧树脂凝胶时间测定方法.(梅特勒-托利多 供稿)
  • 【有奖直播课】TOC分析仪和硼分析仪在半导体行业中的应用
    小碳小碳又和大家见面啦!我们的#小碳微课堂#第五期将于8月28日(本周五)开课。本期直播课,我们还将从报名观众中随机抽取10名幸运儿,送出一份小礼品,快来报名吧!(报名时,请准确填写您的邮寄地址。获奖名单将于9月初在微信公众号中公布,敬请留意。)TOC分析仪和硼分析仪在微电子/半导体行业中的应用时间:2020年8月28日周五,14:00形式:网络直播课注册报名后可随时回看费用:免费微电子/半导体超纯水系统旨在降低水中的潜在污染物,这些污染物可能造成电子器件细微缺陷,从而降低产品质量和生产率。芯片尺寸的缩小和线宽的降低,对超纯水系统提出了更高要求,甚至需要将有机污染物控制到小于1 ppb。而为了准确检测如此微量的指标,要求所用的分析技术能够检出所有有机物组分,并且读值不受背景电导、pH和溶氧值变化的影响。总有机碳(TOC)分析仪为半导体超纯水检测需求提供了一种量化指标,可用于检测污染物,并适用于故障排除,或改进水系统和特种化学品的处理过程。此次直播课程中,我们将与您分享以下议题,欢迎收看:●微电子/半导体行业超纯水系统中TOC监测的重要性●TOC检测方法评审和Sievers® 分析仪的解决方案●TOC应用在超纯水系统中的监测点和目的●硼分析仪的介绍●TOC对废水排放和生产化学品溶液纯度的监测讲师介绍王延弘项目渠道经理Sievers分析仪王延弘经理是苏伊士水务技术与方案-Sievers分析仪的项目渠道经理,具有20余年水处理工艺系统设计的工作经验,熟悉制药和半导体用水处理系统中的预处理、反渗透、EDI、TOC等关键设备和仪器的性能,具有9年TOC分析仪的操作、使用和维护经验。报名方式扫下列二维码,进行会议注册,注册成功后,直播时登录直播链接,验证注册时的手机号,即可收看课程。若您未收到微信提醒,直播时可通过苏伊士Sievers分析仪的微信公众号菜单:最新资讯-小碳微课堂进入课程直播。如您当天无法收看直播,课程结束后您也可以登录直播链接,验证注册时的手机号,收看课程回放。
  • 真有趣!维生素C在有机半导体中神奇妙处,可惜99%的人不知道!
    【科学背景】在有机半导体(OSCs)领域,随着对柔性、可穿戴和大面积电子器件实际应用的不断探索,n型OSC作为基础电子元件的重要材料日益引起关注。然而,n型OSC长期以来面临着稳定性差、性能低和候选材料匮乏等多重挑战。这些问题的根源在于电子传输的不稳定性,主要由于化学退化和外源氧化物种引起的电子捕获。尽管通过提高n型OSC的电子亲和力来改善其抗氧化性能,但在设备运行期间产生的有机自由基阴离子却因热力学不稳定而易于与氧气和水反应,导致器件稳定性不佳。直到最近,天津大学胡文平-李立强课题组等人合作在“Nature Materials”期刊上发表了题为“Improving both performance and stability of n-type organic semiconductors by vitamin C”的最新论文。他们提出了一种创新的通用策略,利用维生素C(VC)的抗氧化性质来稳定n型OSC及其器件性能。维生素C通过清除反应性氧物种(ROS),如超氧阴离子、单线态氧和羟基自由基,显著减少了这些物种对n型OSC的破坏作用。具体而言,VC通过牺牲性氧化和非牺牲性三重态猝灭的级联过程,不仅持久地防止了分子结构的氧化损伤,还钝化了潜在的电子陷阱,从而稳定了电子传输。本研究不仅仅是在实验室条件下取得了成功,还展示了在实际应用中,即使是空气不稳定的n型OSC也能够得到稳定。此外,考虑到维生素C的低成本和广泛可获取性,这种策略具有显著的工业化潜力。例如,VC-PU复合材料的成本仅占整个器件成本的0.3%,这使得大规模生产和商业化应用变得可行。【科学亮点】1. 作者开发了一种基于维生素C的通用策略,利用其抗氧化性能清除ROS,显著提升了n型OSC及其器件的稳定性和性能。通过维生素C的介入,作者成功抑制了活性氧物种(ROS),如超氧阴离子(O2&minus )、单线态氧(1O2)和羟基自由基(OH&bull )对n型OSC的损害。2. 进一步分析显示,维生素C不仅提高了器件的初始稳定性,还显著延长了其使用寿命,尤其是在环境条件不稳定的情况下。3. 此外,维生素C作为一种廉价且商业化程度高的物质,其在设备制造中的成本较低,对大规模工业化具有重要意义。4. 这种策略不仅适用于n型OSC,还能推广到更广泛的有机材料,包括p型半导体、导电聚合物和发光分子,以及其他新兴材料如二维材料和钙钛矿,向太阳能电池、发光二极管等电子器件的发展方向。【科学图文】图1:VC提升n型有机半导体的抗氧化性能。图2. VC提升n型有机半导体器件性能。图3. VC提升n型有机半导体器件稳定性。图4. VC抗氧化策略在OFET阵列及逻辑电路元件中的应用。【科学结论】传统上,n型OSC由于其电子传输的不稳定性而受到限制,主要由于外源性氧化物种引起的化学退化和电子捕获。本研究首次采用维生素C作为一种新颖的策略,通过清除活性氧物种(ROS),如超氧阴离子、单线态氧和羟基自由基,有效防止了这些有害物质对n型OSC的破坏。这不仅在实验中得到了验证,也为解决n型OSC长期以来的稳定性问题提供了创新的思路。此外,维生素C的广泛应用性和商业可行性进一步加强了这一策略的科学启迪。作为一种廉价且易获取的化合物,维生素C在现代医药和食品工业中已有广泛应用,其在有机电子领域的应用潜力显而易见。本研究不仅展示了维生素C在改善n型OSC稳定性方面的独特效果,还为未来探索其他抗氧化剂或ROS清除剂在有机电子材料中的应用奠定了基础。综上所述,本研究不仅为有机半导体领域的研究提供了新的技术进展,还深化了对抗氧化剂在电子器件中应用的理解。未来的工作将集中于进一步优化和开发新型ROS清除剂,以推动n型OSC及其他有机材料向更广泛应用的转化,为可持续发展和高效能电子器件的实现做出贡献。文献信息:Yuan, L., Huang, Y., Chen, X. et al. Improving both performance and stability of n-type organic semiconductors by vitamin C. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01933-w
  • STEM-EDS分析化合物半导体晶体管元素分布
    自硅基半导体作为一个规模庞大的产业发展起来后,集成电路单位面积上晶体管的数量增加趋势始终遵循摩尔定律[1]。目前,硅基半导体中的关键尺寸(线宽或特征尺寸)已经降低到到10nm以下[2]。相比于硅基半导体,化合物半导体如SiC和GaN基半导体可以满足更苛刻的工作条件(高击穿电场、高热导率、高电子迁移率、高工作温度等),具有更大的输出功率和更好的频率特性,市场需求方兴未艾。化合物半导体的应用场景面向射频、高电压大功率、光电子等领域,不追求硅基半导体级别的先进制程工艺。如GaN制程的基本线宽在0.25~0.50µ m ,生产线以4英寸为主[3]。图1 电子束和样品的相互作用区域及逸出的信号半导体器件结构的微细化演进对电子显微镜视野下的微区元素分析带来了很大的挑战。在电子显微镜中,电子束照射在观察区域上,形成水滴形的相互作用区域,如图1 所示。从该区域中会逸出多种信号,如观察表面形貌的二次电子(SE)、区分成分衬度的背散射电子(BSE)和分析成分的X射线。电子显微镜会配置不同的探测器来接收这些信号进行成像。能谱仪(EDS, Energγ Dispersive Spectrometer)以X射线为信号源分析微区成分分布。图1也显示,这几种信号源的深度不同,SE最浅,BSE次之,X射线最深。不同信号源的逸出深度可以解释同样条件下SE、BSE和EDS成像的空间分辨率差异。
  • 默克与美国大数据公司Palantir合作建立半导体数据分析平台Athinia
    默克与Palantir合作建立半导体制造数据分析平台Athinia  德国材料巨头默克公司(Merck)正与美国大数据公司Palantir Technologies组建一家合资企业,以汇集半导体制造业芯片制造商及其供应商的数据并分析,解决当前面临的半导体短缺问题。  这家名为Athinia的公司将总部设在美国,由默克公司首席科技官Laura Matz担任首席执行官。它将利用人工智能和大数据的结合来帮助解决客户面临的半导体挑战。Athinia是一个安全的数据分析平台,新平台将处理IC制造从气体和沉积材料到光刻和光刻胶化学品供应的数据。该协作工具将把晶圆厂运营商和化学品与材料供应商联系起来,使他们能够安全地共享和分析晶圆厂数据,目标是在美国芯片制造商寻求提高集成电路产量的同时,帮助供应链合理化以提高效率,从而解决当前供应链中断的问题。协作分析平台还将提高供应链的透明度,帮助保证材料供应,防止材料供应影响芯片制造。    默克正通过其电子材料子公司——北美业务部门EMD electronics采取行动,EMD Electronics将监督针对半导体和显示器行业的计划。默克公司表示,到2025年,将在亚利桑那州、加利福尼亚州、宾夕法尼亚州和得克萨斯州的工厂为其美国业务投资10亿美元。Matz拒绝透露为创建Athinia投入了多少资金,也拒绝透露该公司是否有任何芯片制造商、材料供应商或研究机构与该平台签约。她说:“我们现在才刚刚起步,2022年将有第一批采用者。”“芯片短缺需要全行业的合作来解决消费者目前面临的供应链问题,”这家德国公司电子部门首席执行官Kai Beckmann在一份声明中表示。“我们正在美国投资,以扩大我们的生产能力。”  Athinia的计划是将多家材料供应商(包括默克的竞争对手)与半导体制造商一起引入,让他们共享、汇总和分析数据,以提高效率。这些数据将使用Palantir的大数据专业技术保密。  Palantir由Peter Thiel和其他人于2003年创建,并以Gotham、Metropolis和Foundry平台而闻名。Palantir Gotham被美国情报机构和美国国防部的反恐分析人员使用。Palantir Metropolis 供银行和金融界使用,而Palantir Foundry则供公司客户使用,典型客户包括Merck, Airbus and Fiat-Chrysler,后者现在是Stellantis的一部分。  “材料供应商和半导体制造商已经看到产量受到的影响越来越大,”Matz说,他还说,前沿工艺十分灵敏,以至于标称规格的材料可以产生可变化的产量。“传统参数不一定能预测晶圆厂工艺的相互作用,”她补充道。“这项服务的一个关键方面是隐私,Athinia将通过对数据进行编码和匿名来提供隐私。与Athinia合作的结果是,公司将更快地获得更好的数据。”  Athinia平台由Palantir Foundry提供支持,使用户能够构建和分析来自不同来源的数据,生成强有力的建议并支持运营决策,同时帮助确保敏感数据按照适用的数据隐私规则、法规和规范进行处理。
  • 【安捷伦】见证从微米到纳米的变迁 — 记安捷伦半导体无机元素分析论坛
    先进半导体材料的发展,已经成为国家战略发展的重要内容。而无机杂质分析和质量控制是半导体制程中非常重要的一环。为了助推集成电路产业发展,作为半导体无机分析的领导者,安捷伦科技于 2020 年 1 月 9 日,在上海举办了“安捷伦半导体论坛无机元素分析论坛”。来自全国的集成电路产业超过 100 名代表参加了本次论坛。来自日本和台湾地区的半导体无机分析专家,高纯试剂供应商 QC 专家,以及半导体在线元素分析,高纯气体分析等解决方案的供应商,分享了在半导体无机分析最先进分析技术,最热门的客户需求,以及最前沿的解决方案,共同为大家带来一场集成电路无机杂质分析技术盛宴。图为:论坛现场首先,安捷伦大中华东大区整机销售总经理杨挺先生做了精彩的欢迎致辞。图为:安捷伦科技大中华东大区整机销售总经理杨挺ICP-MS 已经成为半导体制程中痕量元素分析的标准技术。面对半导体制程一路快速发展,痕量元素分析的要求也越来越高。作为半导体行业无机分析解决方案的领导者,自 20 世纪 80 年代后期以来,安捷伦与领先的半导体制造商和化学品供应商密切合作,开发一系列 ICP-MS 系统和应用。安捷伦 ICP-MS 半导体元素分析的创新之路安捷伦原子光谱研发总监 Matsuzaki 先生带来了《安捷伦 ICP-MS 半导体元素分析中的创新之路》的报告,回顾了半导体客户对于仪器稳定性和基体耐受性的核心需求,安捷伦从冷等离子体技术到世界上第一台串接 ICP-MS,实现的一次次技术提升,以及对未来 ICP-MS 技术发展的展望。图为:安捷伦原子光谱 R&D 总监 Toshifumi Matsuzaki 亚太地区半导体全新分析技术客户不断提升的需求,驱动着安捷伦不断技术创新。来自台湾巴斯夫无机事业部品质管理经理,负责巴斯夫全球实验室的技术支持的許卿恆先生,做了名为《亚太地区半导体全新分析技术》的报告,分享了半导体制程飞速发展中对检测技术革新最直接的感受,以及利用安捷伦 7900 ICP-MS\8900 ICP-MS/MS 实现越来越严格半导体无机杂质质控要求的故事。图为:台湾巴斯夫无机事业部 品质管理经理 許卿恆ICP-MS/MS 测定有机溶剂中氯的分析技巧来自安捷伦日本,有着超过 30 年半导体 ICP-MS 应用研发经验的安捷伦的高级应用科学家Mizobuchi 先生带来了半导体领域又一个无机杂质质控难题攻克的故事:《ICP-MS/MS 测定有机溶剂中氯的分析技巧》。图为:安捷伦日本 ICP-MS 高级应用科学家 Katsuo Mizobuchi单纳米颗粒 ICP-MS 分析的最新趋势随着半导体制程线宽越来越窄,可能一个纳米级别的不溶性颗粒,都有可能造成不合格产品。关注半导体行业多年的安捷伦半导体 ICP-MS 应用专家 Shimamura 先生做了名为《单纳米颗粒ICP-MS 分析的最新趋势》的报告,介绍了安捷伦强大的应用研发团队和客户开发了利用 ICP-MS 分析高纯试剂中单纳米颗粒的最近技术进展。图为:安捷伦日本 半导体行业 ICP-MS 应用专家 Shimamura Yoshinori半导体无机杂质在线分析最新成果除了 ICP-MS 最前沿的技术进展,本次半导体论坛,安捷伦合作伙伴也分享了最新应用。来自德国 PVA Tepla 公司,VDP 事业部的经理 Robert Beikler 博士分享了 VPD 分析中的全自动液体处理和超痕量测试解决方案。图为:德国 PVA Tepla 公司 VDP 事业部经理 Robert BeiklerIAS Inc. China 的陈登云先生,带来了气体在线分析解决方案《最新气体分析和单纳米颗粒 ICP-MS 新进样系统介绍》。图为:IAS Inc. China 技术总监 陈登云本次论坛,来自半导体无机杂质分析各领域的专家分享了精彩的报告。来自全国的集成电路产业链的参会代表与演讲嘉宾,对无机杂质分析领域最前沿而分析技术,以及最热门的解决方案做了充分的沟通和交流。关于安捷伦科技安捷伦是生命科学、诊断和应用化学市场领域的领导者。公司为全世界的实验室提供仪器、服务、消耗品、应用与专业知识,以帮助客户获得他们所寻求的深入见解。安捷伦的专业知识和深受信赖的合作能力,使得客户对解决方案满怀信心。推荐阅读:1. ICP-MS 期刊 | 半导体行业解决方案创新之路,附海量干货下载https://www.instrument.com.cn/netshow/SH100320/news_483925.htm2. 微米到纳米的变迁 | 安捷伦和半导体行业的“超纯”往事https://www.instrument.com.cn/netshow/SH100320/news_520378.htm关注“安捷伦视界”公众号,获取更多资讯。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制